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Abstract 16 

Loss of mature  β  cell  function and  identity, or  β  cell dedifferentiation,  is  seen  in all  types of 17 

diabetes mellitus. Two competing models explain β cell dedifferentiation in diabetes. In the first 18 

model, β cells dedifferentiate in the reverse order of their developmental ontogeny. This model 19 

predicts  that dedifferentiated β cells resemble β cell progenitors.  In  the second model, β cell 20 

dedifferentiation depends on  the  type of diabetogenic  stress.  This model, which we  call  the 21 

“Anna Karenina” model, predicts that  in each type of diabetes, β cells dedifferentiate  in their 22 

own way, depending on how their mature  identity  is disrupted by any particular diabetogenic 23 

stress. We directly tested the two models using a β cell‐specific lineage‐tracing system coupled 24 

with RNA‐sequencing in mice. We constructed a multidimensional map of β cell transcriptional 25 

trajectories  during  the  normal  course  of  β  cell  postnatal  development  and  during  their 26 

dedifferentiation in models of both type 1 diabetes (NOD) and type 2 diabetes (BTBR‐Lepob/ob). 27 

Using this unbiased approach, we show here that despite some similarities between immature 28 

and dedifferentiated β cells, β cells dedifferentiation in the two mouse models is not a reversal 29 

of developmental ontogeny and is different between different types of diabetes.    30 
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Introduction 31 

Insulin‐secreting pancreatic β cells are essential for maintaining blood glucose homeostasis, and 32 

their loss or dysfunction underlies all types of diabetes mellitus. In type 1 diabetes (T1D), β cells 33 

are  targeted  by  an  autoimmune  attack.  In  type  2  diabetes  (T2D),  β  cells  fail  due  to  work 34 

overload and a  toxic metabolic environment brought about by obesity and peripheral  insulin 35 

resistance. In recent years, it has become clear that not all β cells are permanently lost in either 36 

type of diabetes. Instead, chronically stressed β cells  lose their functionally mature phenotype 37 

and  shift  to  a  dysfunctional  state  in  a  process  called  dedifferentiation.  Such  β  cell 38 

dedifferentiation  is seen  in humans (1‐6) as well as  in murine models of both T1D and T2D (7, 39 

8). The progression to overt diabetes can be prevented  if diabetic β cell stress  is alleviated  in 40 

time, before the functionally mature β cell mass is lost (9, 10). Thus, drugs that work by directly 41 

reversing or preventing β cell dedifferentiation are critically needed (11, 12).  42 

The  term “β  cell dedifferentiation”  to describe  the  loss of mature  β cell phenotype was  first 43 

coined over  two decades ago  (13, 14). However, what exactly constitutes “dedifferentiated β 44 

cells” remains debated (15). Previously, it was proposed that β cells in diabetes dedifferentiate 45 

in  the  reverse  order  of  their  normal  developmental  ontogeny  (8).  This model  predicts  that 46 

dedifferentiated  β  cells  resemble  β  cell  progenitors  (Figure  1,  top).  An  alternative  model 47 

suggests  that  β cell dedifferentiation  is a  stress  type‐specific process caused by disruption of 48 

specific gene regulatory networks by the diabetogenic environment, thus resulting  in a stress‐49 

type  specific  loss of  functional maturity, without assuming a “true”  β progenitor cell  identity 50 

(16). This model, which we call  the Anna Karenina model  (based on  the opening sentence  in 51 
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4 
 

Tolstoy’s novel by  the  same name,  “All happy  families  resemble one another, each unhappy 52 

family is unhappy in its own way” (17)), predicts that, in each type of diabetes, β cells will lose 53 

their  mature  phenotype  in  a  unique  manner,  depending  on  how  their  genetic  network  is 54 

perturbed by a particular diabetogenic environment (Figure 1, bottom).  55 

Here, we test the Anna Karenina model of β cell dedifferentiation  in diabetes. Specifically, we 56 

test whether  under  different  types  of  diabetic  stress,  dedifferentiated  β  cells  resemble  one 57 

progenitor state, or  if each type of diabetes produces β cells that are dedifferentiated  in their 58 

own way. We do so by elucidating how the transcriptional landscape of β cells changes during 59 

their  maturation  in  normal  development,  and  their  dedifferentiation  in  different  types  of 60 

diabetes,  using  a  β  cell‐specific  lineage‐tracing  system  in mice.  This  approach  enables  us  to 61 

follow  β  cells  during  both  the  normal  course  of  their  development  and  during  their 62 

dedifferentiation in diabetes, and allows for direct, unbiased comparison between the gain of β 63 

cell maturation  in development  and  the ways  it  is  lost upon different  types of diabetogenic 64 

insult.   65 
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5 
 

Results 66 

Transcriptional  relationships  between  β  cell maturation  in  postnatal  development  and  their 67 

dedifferentiation in different types of diabetes. 68 

To test the transcriptional relationship between β cell maturation and their dedifferentiation in 69 

different  types  of  diabetes, we  used  our  previously  reported murine  β  cell‐specific  lineage‐70 

tracing system  (18, 19). This system  is made by crossing mice transgenic  for  Insulin2‐Cre with 71 

mice  carrying  a  floxed  reporter  of  histone  H2B  fused  to  mCherry  (Rosa26‐lox‐stop‐lox‐72 

H2BmCherry). In this system, any cell that had ever expressed the Insulin gene  is permanently 73 

marked  with  nuclear  mCherry.  This  reporter  mouse  line  thus  enables  us  to  isolate  and 74 

investigate  β  cells  through  development  and  functional maturation,  as well  as  through  the 75 

progression of diabetes, using a single‐platform method. We crossed this system into the non‐76 

obese  diabetic  (NOD) model  of  autoimmune  T1D  and  into  the  BTBR‐LepOb/Ob  (BTBR‐Ob/Ob) 77 

model of obesity‐related T2D. We FACS‐purified lineage traced β cells from healthy mice during 78 

postnatal  development,  through  adulthood,  and  during  the  progression  to  diabetes  in  the 79 

different models. We next subjected the samples to whole‐genome RNA‐sequencing. We thus 80 

generated  gene  expression  data  from  four  time  points  during  β  cell  development  and 81 

maturation (E18.5, P1, P7 and P10), as well as healthy adult mice and diabetic mice (defined by 82 

having fed blood glucose levels >300mg/dL).  83 

We performed unsupervised bottom‐up hierarchical clustering of the samples based on the top 84 

15% most variable genes, using Spearman’s correlation as the distance metric  (Figure 2). This 85 

method  identified  three  large  clusters  (“development”,  “healthy  adult”,  and  “diabetic”). 86 
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Importantly, wildtype  (WT) samples  (ICR genetic background) and non‐diabetic Ob/+ samples 87 

(BTBR  genetic  background)  clustered  together, without  apparent  separation  between  them, 88 

confirming  that our method  correctly distinguishes between  the disease  conditions,  and not 89 

between genetic backgrounds.  Interestingly, three of the NOD non‐diabetic samples clustered 90 

together with the healthy adult samples, and four of the NOD non‐diabetic samples clustered 91 

with the diabetes samples, suggesting that transcriptional changes related to β cell stress can 92 

be detected before the increase in blood glucose in these mice.  93 

 94 

Ontogeny of β cell maturation and dedifferentiation.  95 

To distinguish, in an unbiased manner, between the reversal of ontogeny model and the Anna 96 

Karenina  model  of  β  cell  dedifferentiation  in  diabetes,  we  generated  a  multi‐dimensional 97 

trajectory map of the transcriptional states of β cells as they mature during development and as 98 

they  lose  their mature  identity  in each of  the  two  types of diabetes  (Figure 3). We  reasoned 99 

that  if the reversal of ontogeny model  is correct, then diabetic β cells are expected to cluster 100 

along the developmental trajectory. On the other hand, if the Anna Karenina model is correct, 101 

then diabetic  β  cells will not  cluster with any progenitor  stage. Principal  component analysis 102 

(PCA) of  the  top 15% most variable genes among  the groups was used  to generate a  three‐103 

dimensional  spatial distribution map of  the  samples. We  found  that  the  first  three principal 104 

components  captured  46.5%  of  the  variation  between  the  samples.  PC1  (26.8%  of  the 105 

variation), PC2  (13.5% of  the variation) and PC3  (6.2% of  the variation) clearly  separated  the 106 

“healthy  adult”  samples,  the  “development”  samples,  and  the  “diabetic”  samples  into  three 107 
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distinct clusters (Figure 3, Left). Further separation was seen between the NOD‐diabetic (T1D) 108 

and  the  BTBR‐Ob/Ob‐diabetic  (T2D)  samples  (Figure  3,  Right).  Again,  the  NOD  non‐diabetic 109 

samples were divided between the NOD‐diabetic and the healthy adult samples, indicating that 110 

loss of β cell maturation in NOD mice precedes the onset of overt diabetes. Thus, our analyses 111 

using two  independent unsupervised mathematical methods suggest that β cells  in the above 112 

two  diabetes models  lose  their mature  identity,  but  do  not  return  to  any  developmentally 113 

relevant stage.  114 

 115 

Gene‐specific expression changes in β cell maturation and dedifferentiation. 116 

To validate our unbiased clustering results, we directly examined the expression of a broad list 117 

of  published  markers  of  mature  β  cell  identity  (20‐29),  “β  cell  disallowed”  genes  (30‐32), 118 

markers of  immature  β cells and non‐insulin‐expressing  β cell precursors  (6, 8, 9, 20, 33‐36), 119 

and islet hormones (Figure 4). Several markers of immature β cells and β cell progenitor genes 120 

(MafB, Nnat, Sox17, Fev, and Myc), as well as most “β cells disallowed” genes (Ldha, Hk1, Mylk, 121 

Igfbp4, Ndrg2, Pcolce, and Slc16a2) showed down‐regulation during normal β cell maturation 122 

but were not  re‐expressed  in  either  type of diabetes. One  “disallowed”  gene,  Ly6a, was  re‐123 

expressed  in  the T1D group and one disallowed gene, Aldh1a3, was  re‐expressed  in  the T2D 124 

group. Of  the mature  β cell genes, MafA, Nkx6.1, Tshz1, and Slc2a2 were already present at 125 

high  levels  in  the development group  (which  included  semi‐mature P10 pups  (37)) and were 126 

down‐regulated in the T2D group and, to a lesser extent, in the T1D group. Of the known β cell 127 

maturation markers, only Ucn3 was up‐regulated during β cell maturation and down‐regulated 128 
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in both types of diabetes, confirming previous reports by us and others that Ucn3 is one of the 129 

most  sensitive markers  for  the  fully mature  β  cell  state  (18, 20, 38, 39). Conversely, Dlk1,  a 130 

marker  for  immature  β cells  (20, 40),  is down‐regulated  in maturation and  is  re‐expressed  in 131 

both types of diabetes, while Gast appears to be down‐regulated  in maturation and to be re‐132 

expressed specifically in T2D, as was previously reported (33). We did not see re‐expression of 133 

Neurog3 or any of the other markers of early β cell precursors in either type of diabetes.  134 

Further  comparisons of all genes expressed at higher and  lower  than 1.5‐fold with adjust p‐135 

value of less than 0.05 (q<0.05) in each non‐mature condition (development, T1D‐diabetic, and 136 

T2D‐diabetic)  compared  to  the  healthy  adult  group  showed  little  overlap  among  the  non‐137 

mature  groups,  confirming  our  observation  that  dedifferentiated  β  cells  in  either  of  the 138 

diabetes groups do not revert to a developmentally relevant transcriptional state (Figure 5). A 139 

full list of genes in each group and Gene Ontology (GO) term enrichment of biological processes 140 

significantly enriched in each of the groups are presented in Supplementary Tables 1‐4. Side by 141 

side comparisons of genes differentially expressed between each group and all other groups are 142 

shown in Supplementary Figure 1. These gene‐specific analyses confirm distinct gene signatures 143 

for β cell maturation during normal postnatal development, and their dedifferentiation in each 144 

type of diabetes. We concluded that β cell dedifferentiation  in diabetic NOD and BTBR‐Ob/Ob 145 

mice is not a reversal of developmental ontogeny and is different for each type of diabetes.  146 
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Discussion 147 

Preventing or  reversing  β cell dedifferentiation  is a promising approach  to  restoring glycemic 148 

control  in  people  with  diabetes.  To  this  end,  it  is  essential  to  understand  the  genetic 149 

mechanisms leading to β cell dedifferentiation under different diabetogenic conditions. Several 150 

studies over the last decade proposed that β cells in diabetes dedifferentiate in reverse order of 151 

their normal developmental ontogeny. This was shown by the loss of mature β cell markers in 152 

diabetic β cells, concomitant with the re‐expression of several β cell progenitors genes, such as 153 

Neurog3,  Sox9, Myc,  and  in  some  cases  even Nanog  and Oct4  (8,  9,  34,  35). Other  studies, 154 

however, reported the loss of mature β cell markers in diabetic β cells without re‐expression of 155 

progenitor‐stage  transcription  factors  (16,  18,  41),  or  found  that  dedifferentiated  β  cells 156 

resemble  immature  (neonatal)  β  cells  to  some  extent,  but  are  not  Neurog3‐expressing 157 

progenitors (12, 33). It thus remains debated whether dedifferentiated β cells in diabetes revert 158 

to a progenitor‐like state, or whether they  lose their mature  identity without reverting to any 159 

ontogeny‐relevant stage and, if so, whether different types of diabetogenic stresses push β cells 160 

to  different  dedifferentiated  trajectories.  We  set  out  to  distinguish  between  the  different 161 

models of  β cell dedifferentiation  in an unbiased manner, using unsupervised analysis of  the 162 

transcriptional  landscapes  of  both  β  cell  maturation  during  development  and  their 163 

dedifferentiation  in two mouse models of diabetes, namely NOD (a model for T1D) and BTBR‐164 

Ob/Ob (a model for T2D). We used the same  lineage‐tracing reporter system to  isolate β cells 165 

both during development and during the progression to diabetes in the two different models of 166 

the  disease.  This  allowed  us  to  compare  β  cell  maturation  and  their  dedifferentiation  in 167 

diabetes  using  one  unperturbed  system.  We  reasoned  that  superimposing  the  complete 168 
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transcriptional  states of  the diabetic  samples on  the developmental ontogeny  transcriptional 169 

map  will  directly  resolve  between  the  two  models:  if  β  cells  in  diabetes  revert  to  any 170 

development‐relevant transcriptional state, then the dedifferentiated samples will cluster along 171 

the developmental trajectory. On the other hand, if β cell dedifferentiation in diabetes is not a 172 

reversal  of  ontogeny,  despite  up‐regulation  of  some  genes  that  are  expressed  also  in 173 

progenitors,  then  the dedifferentiated  β  cells will not  cluster with any development‐relevant 174 

stage. We report that, despite some similarities between immature and dedifferentiated β cells, 175 

such as  reduced expression of several maturation markers and  increased expression of some 176 

disallowed genes, β cells dedifferentiation, at least in the two mouse models tested here, is not 177 

a reversal of developmental ontogeny and is different between T1D and T2D.  178 

It  is worth  noting  that  our  analyses  here  focused  on  late  (postnatal)  β  cell maturation.  It  is 179 

possible that if we compared our diabetic β cells to earlier (embryonic) progenitors, we would 180 

have  found  that  there  may  be  different  entry  points  to  β  cell  dedifferentiation,  but  the 181 

trajectories eventually converge  to a stage resembling embryonic β cell precursors. However, 182 

we did not see re‐expression of any known marker of early β cell percussors, including Neurog3, 183 

in either of the diabetes groups, even  in samples  from mice that were extremely diabetic  for 184 

several weeks.  Furthermore,  our  approach  using  an  Insulin  promoter‐based  genetic  lineage‐185 

tracing system instead of a transient Insulin promoter‐driven fluorescent reporter to isolate the 186 

cells means that we would have observed dedifferentiated β cells even if they were to drift into 187 

a non‐insulin‐expressing precursor state. This lineage‐tracing system would have also detected 188 

β cell transdifferentiation into other endocrine and non‐endocrine cell types, should that have 189 

been  a  substantial  phenomenon.  Another  aspect  of  our  approach  that may  confound  our 190 
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results is the possibility of contamination from small numbers of non‐β cells, which are hard to 191 

sieve out using our bulk RNA‐seq approach, such as mature acinar cells (few in early postnatal 192 

pancreata and  increasing  in adults),  immune cells  (higher probability of contamination  in T1D 193 

samples),  or  adipose  cells  (more  abundant  in  samples  from  obese‐diabetic  mice).  Indeed, 194 

several genes associated with such contamination are detected in our comparisons. While such 195 

contamination may  possibly  skew  our  unsupervised  clustering  analyses  to  some  extent,  our 196 

FACS‐sorting  using  lineage‐traced  β  cells  and  our  bulk  RNA‐seq  approaches  compensate  for 197 

such rare events due to the analyses being done on relatively purified β cell populations, and 198 

the depth of sequencing, which is not possible with single‐cell RNA‐seq. Most importantly, our 199 

gene‐specific analyses using a large list of known markers of β cell development and maturation 200 

provide  independent  confirmation  that  dedifferentiated  β  cells  in  diabetic  NOD  and  BTBR‐201 

Ob/Ob mice lose their mature β cell identity, but do not return to any developmentally‐relevant 202 

state. That said, our results do not dispute that β cells in other models not tested here, such as 203 

FoxO1‐null mice  (8)  and mice  subjected  to  a  fasting‐mimicking  diet  (42)  could  return  to  a 204 

Neurog3‐expressing progenitor state. With Neurog3 being a master regulator of an embryonic 205 

proto‐endocrine  transcriptional  program  (43,  44),  it  is  conceivable  its  re‐expression  in  these 206 

unique models may  force a more developmentally‐relevant cell  identity  that  is not  seen  in  β 207 

cells from diabetic NOD or BTBR‐Ob/Ob mice.  208 

We  propose  that  at  least  in  the  case  of  diabetic NOD  and  BTBR‐Ob/Ob mice,  each  type  of 209 

diabetes  produces  β  cells  that  are  dedifferentiated  in  their  own way,  supporting  the  Anna 210 

Karenina model of β cell dedifferentiation. We hope that these results will provide a valuable 211 
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resource  in  the  efforts  of  finding  genetic  and  pharmacological  intervention  points  for 212 

preventing and possibly reversing β cell dedifferentiation in diabetes.    213 
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Methods 214 

Mice: All animal experiments were conducted  in accordance with the University of Wisconsin‐215 

Madison  IACUC  guidelines  under  protocol  number  M005221.  BTBR‐Lepob/ob,  NOD,  and  ICR 216 

(“WT”) mice were obtained from the Jackson Laboratories and Envigo. Insulin2‐Cre;Rosa26‐lox‐217 

stop‐lox‐H2BmCherry  mice  were  previously  reported  (18).  Blood  glucose  and  weight  were 218 

measured  in non‐fasted animals using OneTouch Ultra2 glucometer (LifeScan, Milpitas, CA) at 219 

the animal facility before islet collection. Mice with blood glucose higher than 300 mg/dL were 220 

considered as diabetic. Islet  isolation was performed as previously described (18, 20). Isolated 221 

islets were  dissociated with  0.25%  trypsin‐EDTA  before  sorting  through  BD  FACS  Aria  II  for 222 

mCherry+ cells. 223 

RNA sequencing: RNA was  isolated from FACS sorted  lineage‐traced β cells from  ICR embryos, 224 

neonates, and adult mice; NOD adult  (diabetic and non‐diabetic) mice, and BTBR‐Ob/Ob and 225 

BTBR‐Ob/+ adult mice using phenol chloroform extraction (TRIzol) and Qiagen RNeasy Plus Mini 226 

Kit (Qiagen). DNA libraries were generated using Takara’s SMART‐Seq v4 Low Input RNA Kit for 227 

Sequencing  (Takara,  Mountain  View,  California,  USA)  for  cDNA  synthesis  and  the  Illumina 228 

NexteraXT DNA Library Preparation  (Illumina, San Diego, CA, USA) kit  for cDNA dual  indexing. 229 

Full  length  cDNA  fragments  were  generated  from  1‐10ng  total  RNA  by  SMART  (Switching 230 

Mechanism at 5’ End of RNA Template) technology and were sequenced for 1x100 on Illumina 231 

NovaSeq 6000 at sequencing depth of 25‐30 M reads per sample. Two samples (1 BTBR‐Ob/Ob 232 

and 1 BTBR‐Ob/+) were sequenced for 2x100 on Illumina NovaSeq 6000 at the same sequencing 233 

depth.  Quality  control  (QC)  of  both  single‐end  and  paired‐end  raw  sequencing  data  was 234 
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conducted using FastQC‐0.11.7 (45) and MultiQC‐1.9 (46). All samples passed QC as they have 235 

uniformly high base quality and sequence quality. Mild adapter contaminations were detected, 236 

and we decided not to perform adapter trimming. Raw sequencing data were aligned to mm10 237 

reference genome using Bowtie‐1.2.2 (47) under default settings. Gene‐by‐sample count matrix 238 

was estimated using RSEM‐1.3.0 (48) under default settings. After combining the two batches 239 

into one dataset, genes with average expression less than 1 were filtered out. Median‐by‐ratio 240 

normalization (49) was conducted on combined data to account for sequencing depth artifact 241 

and batch effects. This  results  in a normalized expression matrix with 63  samples and 16455 242 

genes.  All  sequencing  data  are  available  in  the  Gene  Expression  Omnibus  (GEO)  repository 243 

under accession number ########. 244 

Hierarchical clustering and principal component analysis: The normalized expression matrix was 245 

log2 transformed and further adjusted for potential batch effects by removeBatchEffect() in the 246 

limma R package (50) (v3.44.3). The 15% most variable genes were identified using varFilter() in 247 

the genefilter R package (v1.70). Hierarchical clustering was performed on these highly variable 248 

genes  using  Spearman  correlational  distance  and  Ward’s  linkage  method  in  the  cluster  R 249 

package  (51)  (v2.1)  and  visualized  on  dendextend  (52)  R  packages  (v1.14).  For  principal 250 

component  analysis,  eigenvectors  were  calculated  using  the  prcomp()  function,  and  3D 251 

visualization was generated by the Plotly R package (v4.9.2.1). 252 

Differential  Expression  and  fold  change:  Genes  having  non‐zero  expression  in  10  or  more 253 

samples  and  at  least  5  reads  total  were  retained  for  differential  expression  (DE)  analysis. 254 

DESeq2 (53) (v1.28.1) was used to identify DE genes. Specifically, we applied DESeq2 to obtain 255 
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gene‐specific  p‐values which were  converted  to  q‐values  using  the  Benjamini  and Hochberg 256 

method. A gene was  considered DE  if  its q‐value <0.05 and  if  its  shrunken  log2  fold  change, 257 

estimated  using  lfcShrink()  in  the DESeq2  package,  exceeded  1.5.  Visualization was  done  in 258 

Biovenn (54) and the EnchancedVolcano R package (v1.6). 259 
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Figure 1  275 

 276 

Two models  for  β  cell  dedifferentiation  in  diabetes.  Top:  The  reversal  of  ontogeny model 277 

predicts  that  β  cells dedifferentiate  in diabetes  in  a  reverse order of  their normal ontogeny 278 

during development. Bottom: The “Anna Karenina” model predicts that in each type of diabetic 279 

stress,  β  cells  lose  their  mature  identity  in  a  different  way  and  take  on  different 280 

dedifferentiated identities.    281 
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Figure 2 282 

283 

Unsupervised  hierarchical  clustering  of  β  cell  transcriptomes  during  development  and 284 

dedifferentiation. Unsupervised bottom‐up hierarchical clustering of the samples based on the 285 

top  15% most  variable  genes  using  Spearman’s  correlation  as  the  distance metric  is  shown. 286 

Three  independent  clusters  are  identified:  development  (red),  healthy  adult  (green),  and 287 

diabetic (blue). Adult WT and non‐diabetic Ob/+ samples cluster together, confirming that the 288 

method  correctly  distinguishes  between  the  diabetes  stages  and  not  between  genetic 289 

backgrounds. Three of  the NOD non‐diabetic samples cluster  together with  the healthy adult 290 

samples, and four of the NOD non‐diabetic cluster with the diabetes samples (arrows).  291 
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Figure 3 292 

293 

Different  transcriptional  trajectories  in  β  cell  maturation  in  development  and  their 294 

dedifferentiation  in different types of diabetes. Principal component analysis of the top 15% 295 

most variable genes between β cell transcriptomes during development and dedifferentiation is 296 

shown. Left: β cells in diabetes cluster away from β cell of healthy adult mice, but do not cluster 297 

with any developmentally relevant stage, indicating that β cell dedifferentiation is not a reversal 298 

of developmental ontogeny. Right: View of  the  trajectory map  from  another  angle,  showing 299 

separation between β cell states in T1D and T2D.   300 
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Figure 4 301 

 302 

Expression  of  selected  β  cell  maturation  genes,  β  cell  “disallowed”  genes,  markers  of 303 

immature  β  cells  and  non‐insulin  expressing  precursors,  and  islet  hormones.  Red: 304 

“development group”; green: “healthy adult” group; blue: “T1D‐diabeic” group; purple: “T2D” 305 

group.    306 
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Figure 5 307 

 308 

Comparison  of  gene‐specific  expression  changes  during  β  cell  maturation  and 309 

dedifferentiation in T1D and T2D. BioVenn diagram showing the number of genes up‐regulated 310 

and  down‐regulated  (1.5‐fold,  q<0.05)  in  each  group  compared  to  the  healthy  adult  group. 311 

Representative genes enriched  in each  category are also presented. For a  list of all genes  in 312 

each group and enriched GO terms in each groups see Supplementary Tables 1‐4. 313 
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Supplementary Figure 1 314 

 315 

Gene‐specific expression changes between each of  the groups and all other groups. Shown 316 

are volcano plots of genes differentially expressed between each group compared to all other 317 

groups.    318 
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