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Abstract

Loss of mature B cell function and identity, or B cell dedifferentiation, is seen in all types of
diabetes mellitus. Two competing models explain 8 cell dedifferentiation in diabetes. In the first
model, B cells dedifferentiate in the reverse order of their developmental ontogeny. This model
predicts that dedifferentiated B cells resemble B cell progenitors. In the second model, B cell
dedifferentiation depends on the type of diabetogenic stress. This model, which we call the
“Anna Karenina” model, predicts that in each type of diabetes, B cells dedifferentiate in their
own way, depending on how their mature identity is disrupted by any particular diabetogenic
stress. We directly tested the two models using a B cell-specific lineage-tracing system coupled
with RNA-sequencing in mice. We constructed a multidimensional map of B cell transcriptional
trajectories during the normal course of B cell postnatal development and during their
dedifferentiation in models of both type 1 diabetes (NOD) and type 2 diabetes (BTBR-Lep®?/°b).
Using this unbiased approach, we show here that despite some similarities between immature
and dedifferentiated B cells, B cells dedifferentiation in the two mouse models is not a reversal

of developmental ontogeny and is different between different types of diabetes.
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Introduction

Insulin-secreting pancreatic B cells are essential for maintaining blood glucose homeostasis, and
their loss or dysfunction underlies all types of diabetes mellitus. In type 1 diabetes (T1D), B cells
are targeted by an autoimmune attack. In type 2 diabetes (T2D), B cells fail due to work
overload and a toxic metabolic environment brought about by obesity and peripheral insulin
resistance. In recent years, it has become clear that not all B cells are permanently lost in either
type of diabetes. Instead, chronically stressed B cells lose their functionally mature phenotype
and shift to a dysfunctional state in a process called dedifferentiation. Such B cell
dedifferentiation is seen in humans (1-6) as well as in murine models of both T1D and T2D (7,
8). The progression to overt diabetes can be prevented if diabetic B cell stress is alleviated in
time, before the functionally mature B cell mass is lost (9, 10). Thus, drugs that work by directly

reversing or preventing B cell dedifferentiation are critically needed (11, 12).

The term “B cell dedifferentiation” to describe the loss of mature B cell phenotype was first
coined over two decades ago (13, 14). However, what exactly constitutes “dedifferentiated
cells” remains debated (15). Previously, it was proposed that B cells in diabetes dedifferentiate
in the reverse order of their normal developmental ontogeny (8). This model predicts that
dedifferentiated B cells resemble B cell progenitors (Figure 1, top). An alternative model
suggests that B cell dedifferentiation is a stress type-specific process caused by disruption of
specific gene regulatory networks by the diabetogenic environment, thus resulting in a stress-
type specific loss of functional maturity, without assuming a “true” B progenitor cell identity

(16). This model, which we call the Anna Karenina model (based on the opening sentence in
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Tolstoy’s novel by the same name, “All happy families resemble one another, each unhappy
family is unhappy in its own way” (17)), predicts that, in each type of diabetes, B cells will lose
their mature phenotype in a unique manner, depending on how their genetic network is

perturbed by a particular diabetogenic environment (Figure 1, bottom).

Here, we test the Anna Karenina model of B cell dedifferentiation in diabetes. Specifically, we
test whether under different types of diabetic stress, dedifferentiated B cells resemble one
progenitor state, or if each type of diabetes produces B cells that are dedifferentiated in their
own way. We do so by elucidating how the transcriptional landscape of B cells changes during
their maturation in normal development, and their dedifferentiation in different types of
diabetes, using a B cell-specific lineage-tracing system in mice. This approach enables us to
follow B cells during both the normal course of their development and during their
dedifferentiation in diabetes, and allows for direct, unbiased comparison between the gain of B
cell maturation in development and the ways it is lost upon different types of diabetogenic

insult.
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Results

Transcriptional relationships between 6 cell maturation in postnatal development and their

dedifferentiation in different types of diabetes.

To test the transcriptional relationship between B cell maturation and their dedifferentiation in
different types of diabetes, we used our previously reported murine B cell-specific lineage-
tracing system (18, 19). This system is made by crossing mice transgenic for Insulin2-Cre with
mice carrying a floxed reporter of histone H2B fused to mCherry (Rosa26-lox-stop-lox-
H2BmcCherry). In this system, any cell that had ever expressed the Insulin gene is permanently
marked with nuclear mCherry. This reporter mouse line thus enables us to isolate and
investigate B cells through development and functional maturation, as well as through the
progression of diabetes, using a single-platform method. We crossed this system into the non-
obese diabetic (NOD) model of autoimmune T1D and into the BTBR-Lep®”°? (BTBR-Ob/Ob)
model of obesity-related T2D. We FACS-purified lineage traced f cells from healthy mice during
postnatal development, through adulthood, and during the progression to diabetes in the
different models. We next subjected the samples to whole-genome RNA-sequencing. We thus
generated gene expression data from four time points during B cell development and
maturation (E18.5, P1, P7 and P10), as well as healthy adult mice and diabetic mice (defined by

having fed blood glucose levels >300mg/dL).

We performed unsupervised bottom-up hierarchical clustering of the samples based on the top
15% most variable genes, using Spearman’s correlation as the distance metric (Figure 2). This

method identified three large clusters (“development”, “healthy adult”, and “diabetic”).
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87 Importantly, wildtype (WT) samples (ICR genetic background) and non-diabetic Ob/+ samples
88  (BTBR genetic background) clustered together, without apparent separation between them,
89  confirming that our method correctly distinguishes between the disease conditions, and not
90 between genetic backgrounds. Interestingly, three of the NOD non-diabetic samples clustered
91 together with the healthy adult samples, and four of the NOD non-diabetic samples clustered
92  with the diabetes samples, suggesting that transcriptional changes related to B cell stress can

93  be detected before the increase in blood glucose in these mice.

94

95  Ontogeny of 8 cell maturation and dedifferentiation.

96 To distinguish, in an unbiased manner, between the reversal of ontogeny model and the Anna
97 Karenina model of B cell dedifferentiation in diabetes, we generated a multi-dimensional
98  trajectory map of the transcriptional states of B cells as they mature during development and as
99  they lose their mature identity in each of the two types of diabetes (Figure 3). We reasoned
100 that if the reversal of ontogeny model is correct, then diabetic B cells are expected to cluster
101  along the developmental trajectory. On the other hand, if the Anna Karenina model is correct,
102  then diabetic B cells will not cluster with any progenitor stage. Principal component analysis
103  (PCA) of the top 15% most variable genes among the groups was used to generate a three-
104 dimensional spatial distribution map of the samples. We found that the first three principal
105 components captured 46.5% of the variation between the samples. PC1 (26.8% of the
106  variation), PC2 (13.5% of the variation) and PC3 (6.2% of the variation) clearly separated the

107  “healthy adult” samples, the “development” samples, and the “diabetic” samples into three
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108  distinct clusters (Figure 3, Left). Further separation was seen between the NOD-diabetic (T1D)
109 and the BTBR-Ob/Ob-diabetic (T2D) samples (Figure 3, Right). Again, the NOD non-diabetic
110  samples were divided between the NOD-diabetic and the healthy adult samples, indicating that
111 loss of B cell maturation in NOD mice precedes the onset of overt diabetes. Thus, our analyses
112  using two independent unsupervised mathematical methods suggest that B cells in the above
113  two diabetes models lose their mature identity, but do not return to any developmentally

114  relevant stage.

115

116  Gene-specific expression changes in 8 cell maturation and dedifferentiation.

117  To validate our unbiased clustering results, we directly examined the expression of a broad list
118  of published markers of mature B cell identity (20-29), “B cell disallowed” genes (30-32),
119  markers of immature B cells and non-insulin-expressing B cell precursors (6, 8, 9, 20, 33-36),
120  and islet hormones (Figure 4). Several markers of immature B cells and B cell progenitor genes
121 (MafB, Nnat, Sox17, Fev, and Myc), as well as most “B cells disallowed” genes (Ldha, Hk1, Mylk,
122 Igfbp4, Ndrg2, Pcolce, and Slc16a2) showed down-regulation during normal B cell maturation
123 but were not re-expressed in either type of diabetes. One “disallowed” gene, Ly6a, was re-
124  expressed in the T1D group and one disallowed gene, Aldhla3, was re-expressed in the T2D
125  group. Of the mature B cell genes, MafA, Nkx6.1, Tshz1, and Slc2a2 were already present at
126 high levels in the development group (which included semi-mature P10 pups (37)) and were
127  down-regulated in the T2D group and, to a lesser extent, in the T1D group. Of the known ( cell

128  maturation markers, only Ucn3 was up-regulated during B cell maturation and down-regulated
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129  in both types of diabetes, confirming previous reports by us and others that Ucn3 is one of the
130 most sensitive markers for the fully mature B cell state (18, 20, 38, 39). Conversely, Dlk1, a
131 marker for immature B cells (20, 40), is down-regulated in maturation and is re-expressed in
132 both types of diabetes, while Gast appears to be down-regulated in maturation and to be re-
133 expressed specifically in T2D, as was previously reported (33). We did not see re-expression of

134  Neurog3 or any of the other markers of early B cell precursors in either type of diabetes.

135  Further comparisons of all genes expressed at higher and lower than 1.5-fold with adjust p-
136  value of less than 0.05 (g<0.05) in each non-mature condition (development, T1D-diabetic, and
137  T2D-diabetic) compared to the healthy adult group showed little overlap among the non-
138  mature groups, confirming our observation that dedifferentiated B cells in either of the
139  diabetes groups do not revert to a developmentally relevant transcriptional state (Figure 5). A
140  full list of genes in each group and Gene Ontology (GO) term enrichment of biological processes
141  significantly enriched in each of the groups are presented in Supplementary Tables 1-4. Side by
142  side comparisons of genes differentially expressed between each group and all other groups are
143  shown in Supplementary Figure 1. These gene-specific analyses confirm distinct gene signatures
144  for B cell maturation during normal postnatal development, and their dedifferentiation in each
145  type of diabetes. We concluded that B cell dedifferentiation in diabetic NOD and BTBR-Ob/Ob

146 mice is not a reversal of developmental ontogeny and is different for each type of diabetes.
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147 Discussion

148  Preventing or reversing B cell dedifferentiation is a promising approach to restoring glycemic
149  control in people with diabetes. To this end, it is essential to understand the genetic
150 mechanisms leading to B cell dedifferentiation under different diabetogenic conditions. Several
151  studies over the last decade proposed that B cells in diabetes dedifferentiate in reverse order of
152  their normal developmental ontogeny. This was shown by the loss of mature B cell markers in
153  diabetic B cells, concomitant with the re-expression of several B cell progenitors genes, such as
154  Neurog3, Sox9, Myc, and in some cases even Nanog and Oct4 (8, 9, 34, 35). Other studies,
155  however, reported the loss of mature B cell markers in diabetic B cells without re-expression of
156  progenitor-stage transcription factors (16, 18, 41), or found that dedifferentiated B cells
157 resemble immature (neonatal) B cells to some extent, but are not Neurog3-expressing
158  progenitors (12, 33). It thus remains debated whether dedifferentiated B cells in diabetes revert
159  to a progenitor-like state, or whether they lose their mature identity without reverting to any
160  ontogeny-relevant stage and, if so, whether different types of diabetogenic stresses push B cells
161  to different dedifferentiated trajectories. We set out to distinguish between the different
162  models of B cell dedifferentiation in an unbiased manner, using unsupervised analysis of the
163  transcriptional landscapes of both [ cell maturation during development and their
164  dedifferentiation in two mouse models of diabetes, namely NOD (a model for T1D) and BTBR-
165 Ob/Ob (a model for T2D). We used the same lineage-tracing reporter system to isolate B cells
166  both during development and during the progression to diabetes in the two different models of
167 the disease. This allowed us to compare B cell maturation and their dedifferentiation in

168  diabetes using one unperturbed system. We reasoned that superimposing the complete
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169  transcriptional states of the diabetic samples on the developmental ontogeny transcriptional
170  map will directly resolve between the two models: if B cells in diabetes revert to any
171  development-relevant transcriptional state, then the dedifferentiated samples will cluster along
172  the developmental trajectory. On the other hand, if B cell dedifferentiation in diabetes is not a
173  reversal of ontogeny, despite up-regulation of some genes that are expressed also in
174  progenitors, then the dedifferentiated B cells will not cluster with any development-relevant
175  stage. We report that, despite some similarities between immature and dedifferentiated B cells,
176  such as reduced expression of several maturation markers and increased expression of some
177  disallowed genes, B cells dedifferentiation, at least in the two mouse models tested here, is not

178  areversal of developmental ontogeny and is different between T1D and T2D.

179 It is worth noting that our analyses here focused on late (postnatal) B cell maturation. It is
180  possible that if we compared our diabetic B cells to earlier (embryonic) progenitors, we would
181 have found that there may be different entry points to B cell dedifferentiation, but the
182  trajectories eventually converge to a stage resembling embryonic B cell precursors. However,
183  we did not see re-expression of any known marker of early B cell percussors, including Neurog3,
184  in either of the diabetes groups, even in samples from mice that were extremely diabetic for
185  several weeks. Furthermore, our approach using an Insulin promoter-based genetic lineage-
186  tracing system instead of a transient Insulin promoter-driven fluorescent reporter to isolate the
187  cells means that we would have observed dedifferentiated B cells even if they were to drift into
188  a non-insulin-expressing precursor state. This lineage-tracing system would have also detected
189 B cell transdifferentiation into other endocrine and non-endocrine cell types, should that have

190 been a substantial phenomenon. Another aspect of our approach that may confound our

10
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191  results is the possibility of contamination from small numbers of non-B cells, which are hard to
192  sieve out using our bulk RNA-seq approach, such as mature acinar cells (few in early postnatal
193  pancreata and increasing in adults), immune cells (higher probability of contamination in T1D
194  samples), or adipose cells (more abundant in samples from obese-diabetic mice). Indeed,
195  several genes associated with such contamination are detected in our comparisons. While such
196  contamination may possibly skew our unsupervised clustering analyses to some extent, our
197  FACS-sorting using lineage-traced B cells and our bulk RNA-seq approaches compensate for
198  such rare events due to the analyses being done on relatively purified B cell populations, and
199 the depth of sequencing, which is not possible with single-cell RNA-seq. Most importantly, our
200 gene-specific analyses using a large list of known markers of B cell development and maturation
201  provide independent confirmation that dedifferentiated B cells in diabetic NOD and BTBR-
202  Ob/Ob mice lose their mature B cell identity, but do not return to any developmentally-relevant
203  state. That said, our results do not dispute that B cells in other models not tested here, such as
204  FoxO1-null mice (8) and mice subjected to a fasting-mimicking diet (42) could return to a
205  Neurog3-expressing progenitor state. With Neurog3 being a master regulator of an embryonic
206  proto-endocrine transcriptional program (43, 44), it is conceivable its re-expression in these
207  uniqgue models may force a more developmentally-relevant cell identity that is not seen in B

208  cells from diabetic NOD or BTBR-Ob/Ob mice.

209 We propose that at least in the case of diabetic NOD and BTBR-Ob/Ob mice, each type of
210 diabetes produces B cells that are dedifferentiated in their own way, supporting the Anna

211 Karenina model of B cell dedifferentiation. We hope that these results will provide a valuable

11
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212 resource in the efforts of finding genetic and pharmacological intervention points for

213  preventing and possibly reversing B cell dedifferentiation in diabetes.

12
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214  Methods

215  Mice: All animal experiments were conducted in accordance with the University of Wisconsin-
216  Madison IACUC guidelines under protocol number M005221. BTBR-Lep®”°?, NOD, and ICR
217  (“WT”) mice were obtained from the Jackson Laboratories and Envigo. Insulin2-Cre;Rosa26-lox-
218  stop-lox-H2BmCherry mice were previously reported (18). Blood glucose and weight were
219  measured in non-fasted animals using OneTouch Ultra2 glucometer (LifeScan, Milpitas, CA) at
220 the animal facility before islet collection. Mice with blood glucose higher than 300 mg/dL were
221  considered as diabetic. Islet isolation was performed as previously described (18, 20). Isolated
222 islets were dissociated with 0.25% trypsin-EDTA before sorting through BD FACS Aria Il for

223 mCherry+ cells.

224  RNA sequencing: RNA was isolated from FACS sorted lineage-traced B cells from ICR embryos,
225 neonates, and adult mice; NOD adult (diabetic and non-diabetic) mice, and BTBR-Ob/Ob and
226  BTBR-Ob/+ adult mice using phenol chloroform extraction (TRIzol) and Qiagen RNeasy Plus Mini
227  Kit (Qiagen). DNA libraries were generated using Takara’s SMART-Seq v4 Low Input RNA Kit for
228  Sequencing (Takara, Mountain View, California, USA) for cDNA synthesis and the Illumina
229  NexteraXT DNA Library Preparation (Illumina, San Diego, CA, USA) kit for cDNA dual indexing.
230  Full length cDNA fragments were generated from 1-10ng total RNA by SMART (Switching
231 Mechanism at 5’ End of RNA Template) technology and were sequenced for 1x100 on lllumina
232 NovaSeq 6000 at sequencing depth of 25-30 M reads per sample. Two samples (1 BTBR-Ob/Ob
233  and 1 BTBR-Ob/+) were sequenced for 2x100 on Illumina NovaSeq 6000 at the same sequencing

234  depth. Quality control (QC) of both single-end and paired-end raw sequencing data was

13
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235 conducted using FastQC-0.11.7 (45) and MultiQC-1.9 (46). All samples passed QC as they have
236  uniformly high base quality and sequence quality. Mild adapter contaminations were detected,
237 and we decided not to perform adapter trimming. Raw sequencing data were alighed to mm10
238  reference genome using Bowtie-1.2.2 (47) under default settings. Gene-by-sample count matrix
239  was estimated using RSEM-1.3.0 (48) under default settings. After combining the two batches
240  into one dataset, genes with average expression less than 1 were filtered out. Median-by-ratio
241  normalization (49) was conducted on combined data to account for sequencing depth artifact
242  and batch effects. This results in a normalized expression matrix with 63 samples and 16455
243  genes. All sequencing data are available in the Gene Expression Omnibus (GEO) repository

244  under accession number #it###HiH.

245  Hierarchical clustering and principal component analysis: The normalized expression matrix was
246  log2 transformed and further adjusted for potential batch effects by removeBatchEffect() in the
247  limma R package (50) (v3.44.3). The 15% most variable genes were identified using varFilter() in
248  the genefilter R package (v1.70). Hierarchical clustering was performed on these highly variable
249  genes using Spearman correlational distance and Ward’s linkage method in the cluster R
250 package (51) (v2.1) and visualized on dendextend (52) R packages (v1.14). For principal
251  component analysis, eigenvectors were calculated using the prcomp() function, and 3D

252  visualization was generated by the Plotly R package (v4.9.2.1).

253  Differential Expression and fold change: Genes having non-zero expression in 10 or more
254  samples and at least 5 reads total were retained for differential expression (DE) analysis.

255  DESeq2 (53) (v1.28.1) was used to identify DE genes. Specifically, we applied DESeq2 to obtain

14
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256  gene-specific p-values which were converted to g-values using the Benjamini and Hochberg
257 method. A gene was considered DE if its g-value <0.05 and if its shrunken log2 fold change,
258  estimated using IfcShrink() in the DESeq2 package, exceeded 1.5. Visualization was done in

259  Biovenn (54) and the EnchancedVolcano R package (v1.6).

260

261  Author contributions

262  Conceptualization, B.B. and S.D.N.; Methodology, B.B., S.D.N., and C.K.; Data Acquisition, S.D.N.;
263  Formal Analysis, S.D.N, Z.N., and J.B.; Writing Original Draft, B.B. and S.D.N.; Writing, Review

264  and Editing, all authors; Funding Acquisition, B.B.; Supervision, B.B. and C.K.

265

266  Acknowledgments

267  We thank N. Sharon, D. Ben-Zvi, A. Helman, and A. Attie for valuable comments and discussion.
268  We are grateful to all present and former members of the Blum Lab, especially Melissa Adams,
269  Jennifer Gilbert, Bayley Waters, Emily Cade, Ron Fleminger, and Emily Maritato for help on this
270  project. We are also grateful to the University of Wisconsin-Madison Biotechnology Center
271  Gene Expression Core for RNA sequencing. This work was funded in part by grants number
272 1R56DK115837 from the NIDDK and 2-SRA-2018-621-S-B from the JDRF to BB, and grant
273 number 1S10RR025483-01 to the University of Wisconsin-Madison School of Medicine and

274  Public Health Flow Cytometry Core.

15


https://doi.org/10.1101/2021.02.16.431507
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431507; this version posted February 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

275  Figure 1
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276

277 Two models for B cell dedifferentiation in diabetes. Top: The reversal of ontogeny model
278  predicts that B cells dedifferentiate in diabetes in a reverse order of their normal ontogeny
279  during development. Bottom: The “Anna Karenina” model predicts that in each type of diabetic
280 stress, B cells lose their mature identity in a different way and take on different

281  dedifferentiated identities.
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283

284  Unsupervised hierarchical clustering of B cell transcriptomes during development and
285 dedifferentiation. Unsupervised bottom-up hierarchical clustering of the samples based on the
286  top 15% most variable genes using Spearman’s correlation as the distance metric is shown.
287 Three independent clusters are identified: development (red), healthy adult (green), and
288  diabetic (blue). Adult WT and non-diabetic Ob/+ samples cluster together, confirming that the
289 method correctly distinguishes between the diabetes stages and not between genetic
290  backgrounds. Three of the NOD non-diabetic samples cluster together with the healthy adult

291  samples, and four of the NOD non-diabetic cluster with the diabetes samples (arrows).
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292  Figure 3
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293
294  Different transcriptional trajectories in B cell maturation in development and their
295 dedifferentiation in different types of diabetes. Principal component analysis of the top 15%
296  most variable genes between B cell transcriptomes during development and dedifferentiation is
297  shown. Left: B cells in diabetes cluster away from B cell of healthy adult mice, but do not cluster
298  with any developmentally relevant stage, indicating that B cell dedifferentiation is not a reversal
299  of developmental ontogeny. Right: View of the trajectory map from another angle, showing
300 separation between [ cell states in T1D and T2D.
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301 Figure 4
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302

303 Expression of selected B cell maturation genes, B cell “disallowed” genes, markers of
304 immature B cells and non-insulin expressing precursors, and islet hormones. Red:
305 “development group”; green: “healthy adult” group; blue: “T1D-diabeic” group; purple: “T2D”

306  group.
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308

309 Comparison of gene-specific expression changes during B cell maturation and
310 dedifferentiation in T1D and T2D. BioVenn diagram showing the number of genes up-regulated
311  and down-regulated (1.5-fold, g<0.05) in each group compared to the healthy adult group.
312  Representative genes enriched in each category are also presented. For a list of all genes in

313  each group and enriched GO terms in each groups see Supplementary Tables 1-4.
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314  Supplementary Figure 1
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315

316 Gene-specific expression changes between each of the groups and all other groups. Shown
317  are volcano plots of genes differentially expressed between each group compared to all other

318  groups.

21


https://doi.org/10.1101/2021.02.16.431507
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431507; this version posted February 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

319 References

320 1. Lam CJ, Chatterjee A, Shen E, Cox AR, and Kushner JA. Low-Level Insulin Content Within
321 Abundant Non-beta Islet Endocrine Cells in Long-standing Type 1 Diabetes. Diabetes.
322 2019;68(3):598-608.

323 2. Damond N, Engler S, Zanotelli VRT, Schapiro D, Wasserfall CH, Kusmartseva I, et al. A Map of
324 Human Type 1 Diabetes Progression by Imaging Mass Cytometry. Cell metabolism.
325 2019;29(3):755-68 e5.

326 3. Oram RA, Sims EK, and Evans-Molina C. Beta cells in type 1 diabetes: mass and function;
327 sleeping or dead? Diabetologia. 2019;62(4):567-77.

328 4. Cinti F, Bouchi R, Kim-Muller JY, Ohmura Y, Sandoval PR, Masini M, et al. Evidence of beta-Cell
329 Dedifferentiation in Human Type 2 Diabetes. The Journal of clinical endocrinology and
330 metabolism. 2016;101(3):1044-54.

331 5. Sun J, Ni Q, Xie J, Xu M, Zhang J, Kuang J, et al. beta-Cell Dedifferentiation in Patients With T2D
332 With Adequate Glucose Control and Nondiabetic Chronic Pancreatitis. The Journal of clinical
333 endocrinology and metabolism. 2019;104(1):83-94.

334 6. Avrahami D, Wang YJ, Schug J, Feleke E, Gao L, Liu C, et al. Single-cell transcriptomics of human
335 islet ontogeny defines the molecular basis of beta-cell dedifferentiation in T2D. Molecular
336 metabolism. 2020;42:101057.

337 7. Rui J, Deng S, Arazi A, Perdigoto AL, Liu Z, and Herold KC. beta Cells that Resist Immunological
338 Attack Develop during Progression of Autoimmune Diabetes in NOD Mice. Cell metabolism.
339 2017;25(3):727-38.

340 8. Talchai C, Xuan S, Lin HV, Sussel L, and Accili D. Pancreatic beta cell dedifferentiation as a
341 mechanism of diabetic beta cell failure. Cell. 2012;150(6):1223-34.

342 9. Wang Z, York NW, Nichols CG, and Remedi MS. Pancreatic beta cell dedifferentiation in diabetes
343 and redifferentiation following insulin therapy. Cell metabolism. 2014;19(5):872-82.

344 10. Taylor R, Al-Mrabeh A, Zhyzhneuskaya S, Peters C, Barnes AC, Aribisala BS, et al. Remission of
345 Human Type 2 Diabetes Requires Decrease in Liver and Pancreas Fat Content but Is Dependent
346 upon Capacity for beta Cell Recovery. Cell metabolism. 2018;28(4):547-56 e3.

347 11. Tahrani AA, Barnett AH, and Bailey CJ. Pharmacology and therapeutic implications of current
348 drugs for type 2 diabetes mellitus. Nature reviews Endocrinology. 2016;12(10):566-92.

349 12. Sachs S, Bastidas-Ponce A, Tritschler S, Bakhti M, Bottcher A, Sanchez-Garrido MA, et al.
350 Targeted pharmacological therapy restores beta-cell function for diabetes remission. Nat
351 Metab. 2020;2(2):192-209.

352 13. Jonas JC, Sharma A, Hasenkamp W, llkova H, Patane G, Laybutt R, et al. Chronic hyperglycemia
353 triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. The Journal of
354 biological chemistry. 1999;274(20):14112-21.

355 14. Weir GC, and Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to
356 diabetes. Diabetes. 2004;53 Suppl 3:516-21.

357 15. Weir GC, Aguayo-Mazzucato C, and Bonner-Weir S. beta-cell dedifferentiation in diabetes is
358 important, but what is it? Islets. 2013;5(5):233-7.

359 16. Guo S, Dai C, Guo M, Taylor B, Harmon JS, Sander M, et al. Inactivation of specific beta cell
360 transcription factors in type 2 diabetes. The Journal of clinical investigation. 2013;123(8):3305-
361 16.

362 17. Tolstoy L. Anna Karenina. New York,: T. Y. Crowell & co.; 1889.
363 18. Blum B, Roose AN, Barrandon O, Maehr R, Arvanites AC, Davidow LS, et al. Reversal of beta cell
364 de-differentiation by a small molecule inhibitor of the TGFbeta pathway. eLife. 2014;3:e02809.

22


https://doi.org/10.1101/2021.02.16.431507
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431507; this version posted February 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

365 19. Adams MT, Gilbert JM, Hinojosa Paiz J, Bowman FM, and Blum B. Endocrine cell type sorting and

366 mature architecture in the islets of Langerhans require expression of Roundabout receptors in
367 beta cells. Scientific reports. 2018;8(1):10876.

368 20. Blum B, Hrvatin S, Schuetz C, Bonal C, Rezania A, and Melton DA. Functional beta-cell
369 maturation is marked by an increased glucose threshold and by expression of urocortin 3.
370 Nature biotechnology. 2012;30(3):261-4.

371 21. Pasquali L, Gaulton KJ, Rodriguez-Segui SA, Mularoni L, Miguel-Escalada I, Akerman |, et al.
372 Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nature
373 genetics. 2014;46(2):136-43.

374 22. Ediger BN, Du A, Liu J, Hunter CS, Walp ER, Schug J, et al. Islet-1 Is essential for pancreatic beta-
375 cell function. Diabetes. 2014;63(12):4206-17.

376 23. Khoo C, Yang J, Weinrott SA, Kaestner KH, Naji A, Schug J, et al. Research resource: the pdx1
377 cistrome of pancreatic islets. Mol Endocrinol. 2012;26(3):521-33.

378 24. Avrahami D, Li C, Zhang J, Schug J, Avrahami R, Rao S, et al. Aging-Dependent Demethylation of
379 Regulatory Elements Correlates with Chromatin State and Improved beta Cell Function. Cell
380 metabolism. 2015;22(4):619-32.

381 25. Ackermann AM, Wang Z, Schug J, Naji A, and Kaestner KH. Integration of ATAC-seq and RNA-seq
382 identifies human alpha cell and beta cell signature genes. Molecular metabolism. 2016;5(3):233-
383 44,

384 26. Ediger BN, Lim HW, Juliana C, Groff DN, Williams LT, Dominguez G, et al. LIM domain-binding 1
385 maintains the terminally differentiated state of pancreatic beta cells. The Journal of clinical
386 investigation. 2017;127(1):215-29.

387 27. Gutierrez GD, Bender AS, Cirulli V, Mastracci TL, Kelly SM, Tsirigos A, et al. Pancreatic beta cell
388 identity requires continual repression of non-beta cell programs. The Journal of clinical
389 investigation. 2017;127(1):244-59.

390 28. Swisa A, Avrahami D, Eden N, Zhang J, Feleke E, Dahan T, et al. PAX6 maintains beta cell identity
391 by repressing genes of alternative islet cell types. The Journal of clinical investigation.
392 2017;127(1):230-43.

393 29. Tennant BR, Robertson AG, Kramer M, Li L, Zhang X, Beach M, et al. Identification and analysis of
394 murine pancreatic islet enhancers. Diabetologia. 2013;56(3):542-52.

395 30. Dumayne C, Tarussio D, Sanchez-Archidona AR, Picard A, Basco D, Berney XP, et al. KIf6 protects
396 beta-cells against insulin resistance-induced dedifferentiation. Molecular metabolism.
397 2020;35:100958.

398 31. Pullen TJ, Khan AM, Barton G, Butcher SA, Sun G, and Rutter GA. Identification of genes
399 selectively disallowed in the pancreatic islet. Islets. 2010;2(2):89-95.

400 32. Kim-Muller JY, Fan J, Kim YJ, Lee SA, Ishida E, Blaner WS, et al. Aldehyde dehydrogenase 1a3
401 defines a subset of failing pancreatic beta cells in diabetic mice. Nature communications.
402 2016;7:12631.

403 33. Dahan T, Ziv O, Horwitz E, Zemmour H, Lavi J, Swisa A, et al. Pancreatic beta-Cells Express the
404 Fetal Islet Hormone Gastrin in Rodent and Human Diabetes. Diabetes. 2017;66(2):426-36.

405 34, Oshima M, Knoch KP, Diedisheim M, Petzold A, Cattan P, Bugliani M, et al. Virus-like infection
406 induces human beta cell dedifferentiation. JCI Insight. 2018;3(3).

407 35. Diedisheim M, Oshima M, Albagli O, Huldt CW, Ahlstedt |, Clausen M, et al. Modeling human
408 pancreatic beta cell dedifferentiation. Molecular metabolism. 2018;10:74-86.

409 36. Byrnes LE, Wong DM, Subramaniam M, Meyer NP, Gilchrist CL, Knox SM, et al. Lineage dynamics
410 of murine pancreatic development at single-cell resolution. Nature communications.
411 2018;9(1):3922.

23


https://doi.org/10.1101/2021.02.16.431507
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431507; this version posted February 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

412 37. Stolovich-Rain M, Enk J, Vikesa J, Nielsen FC, Saada A, Glaser B, et al. Weaning triggers a

413 maturation step of pancreatic beta cells. Developmental cell. 2015;32(5):535-45.

414 38. van der Meulen T, Xie R, Kelly OG, Vale WW, Sander M, and Huising MO. Urocortin 3 marks
415 mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells. PloS
416 one. 2012;7(12):e52181.

417 39. van der Meulen T, Donaldson CJ, Caceres E, Hunter AE, Cowing-Zitron C, Pound LD, et al.
418 Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion.
419 Nature medicine. 2015;21(7):769-76.

420 40. Martens GA, Motte E, Kramer G, Stange G, Gaarn LW, Hellemans K, et al. Functional
421 characteristics of neonatal rat beta cells with distinct markers. J Mol Endocrinol. 2014;52(1):11-
422 28.

423 41. Neelankal John A, Ram R, and Jiang FX. RNA-Seq Analysis of Islets to Characterise the
424 Dedifferentiation in Type 2 Diabetes Model Mice db/db. Endocrine pathology. 2018;29(3):207-
425 21.

426 42, Cheng CW, Villani V, Buono R, Wei M, Kumar S, Yilmaz OH, et al. Fasting-Mimicking Diet
427 Promotes Ngn3-Driven beta-Cell Regeneration to Reverse Diabetes. Cell. 2017;168(5):775-88
428 el2.

429 43, Smith SB, Watada H, and German MS. Neurogenin3 activates the islet differentiation program
430 while repressing its own expression. Mol Endocrinol. 2004;18(1):142-9.

431 44, Zhou Q, Brown J, Kanarek A, Rajagopal J, and Melton DA. In vivo reprogramming of adult
432 pancreatic exocrine cells to beta-cells. Nature. 2008;455(7213):627-32.

433 45. Andrews S, Krueger F, Seconds-Pichon A, Biggins F, and Wingett S. FastQC: A quality control tool
434 for high throughput sequence data. Babraham Institute Babraham Bioinformatics. 2015;11.

435 46. Ewels P, Magnusson M, Lundin S, and Kaller M. MultiQC: summarize analysis results for multiple
436 tools and samples in a single report. Bioinformatics. 2016;32(19):3047-8.

437  47. Langmead B, Trapnell C, Pop M, and Salzberg SL. Ultrafast and memory-efficient alignment of
438 short DNA sequences to the human genome. Genome biology. 2009;10(3):R25.

439  48. Li B, and Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or
440 without a reference genome. BMC Bioinformatics. 2011;12:323.

441 49, Anders S, and Huber W. Differential expression analysis for sequence count data. Genome
442 biology. 2010;11(10):R106.

443 50. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression
444 analyses for RNA-sequencing and microarray studies. Nucleic acids research. 2015;43(7):e47.

445 51. Machler M, Rousseeuw P, Struyf A, Hubert M, and Hornik K. Cluster: Cluster Analysis Basics and
446 Extensions. 2012.

447 52. Galili T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical
448 clustering. Bioinformatics. 2015;31(22):3718-20.

449 53. Love MI, Huber W, and Anders S. Moderated estimation of fold change and dispersion for RNA-
450 seq data with DESeq2. Genome biology. 2014;15(12):550.

451 54. Hulsen T, de Vlieg J, and Alkema W. BioVenn - a web application for the comparison and
452 visualization of biological lists using area-proportional Venn diagrams. BMC genomics.
453 2008;9:488.

24


https://doi.org/10.1101/2021.02.16.431507
http://creativecommons.org/licenses/by-nc-nd/4.0/

