

1 **Running head: Genetically-driven p-coumaroylation of poplar lignins**

2

3 Corresponding author: Gilles Pilate

4 BioForA, INRAE, ONF, 45000, Orléans, France

5 Email : gilles.pilate@inrae.fr

6 **Research area:** Physiology and biotechnology

7

8

9

10 **Title:** The PMT-driven *p*-coumaroylation of poplar lignins impacts lignin structure and
11 improves wood saccharification

12

13 **Authors:**

14 Catherine Lapierre,^a Richard Sibout,^b Françoise Laurans,^c Marie-Claude Lesage-
15 Descauses,^c Annabelle Déjardin,^c and Gilles Pilate^{c¹}

16 ^aINRAE, AgroParisTech, Université Paris Saclay, IJPB, Versailles, France

17 ^bINRAE, BIA, Nantes, France

18 ^cINRAE, ONF, BioForA, Orléans, France

19 ¹Author for contact : gilles.pilate@inrae.fr.

20 **ORCID IDs:** 0000-0002-6757-1524 (C.L.); 0000-0002-0639-5643 (R.S.); 0000-0002-7576-5476
21 (A.D.); 0000-0003-4802-8849 (G.P.).

22

23 **One-sentence summary**

24 The expression of a grass p-coumaroyl-CoA:monolignol transferase induces a high
25 p-coumaroylation of poplar lignins and a better saccharification of alkali-pretreated
26 poplar wood without growth penalty

27

28 **Author contributions:**

29 C.L., R.S. and G.P. conceived the original research plans; G.P. and M.C.L.
30 performed the plant transformation and production; C.L. performed the analyses of
31 CW phenolics; C.L. and G.P. analyzed the data, and wrote the article with
32 contributions of all the authors; R.S. and A.D. contributed to the research and
33 complemented the writing; F.L. performed the image analyzes; G.P. agrees to serve
34 as the author responsible for contact and ensures communication.

35

36 **Funding information:** the *AtF5H*-OE line was generated in the frame of the
37 European ENERGYPOPLAR project (FP7-211917). The acquisition of the Py-GC/MS
38 equipment was supported by the 3BCAR Carnot Institute.

39

40 ¹Author for contact : gilles.pilate@inrae.fr.

41

42 **ABSTRACT**

43 Transgenic poplars (*Populus tremula x Populus alba*, clone INRA 717-1B4) were
44 produced by introducing the *Brachypodium distachyon* *Bradi2g36910* (*BdPMT1*)
45 gene driven by the Arabidopsis (*Arabidopsis thaliana*) Cinnamate 4-Hydroxylase
46 (*AtC4H*) promoter in the wild-type (WT) line and in a line overexpressing the
47 Arabidopsis Ferulate 5-Hydroxylase (*AtF5H*). *BdPMT1* encodes a transferase which
48 catalyzes the acylation of monolignols by *p*-coumaric acid (CA). Several *BdPMT1*-
49 OE/WT and *BdPMT1*-OE/*AtF5H*-OE transgenic lines were grown in the greenhouse
50 and *BdPMT1* expression in xylem was confirmed by RT-PCR. The analysis of the cell
51 walls (CW) of poplar stems and of corresponding purified dioxan lignins (DL)
52 revealed that the *BdPMT1*-OE lignins were as *p*-coumaroylated as the lignins of C3
53 grass straws. For some transformants, CA levels even reached about 11 mg/g CW
54 and 66 mg/g DL, which by far exceeds those of *Brachypodium* or wheat samples.
55 This unprecedentedly high *p*-coumaroylation of poplar lignins affected neither the
56 poplar growth, nor the stem lignin content. By contrast, the transgenic lignins were
57 structurally modified, with an increase of terminal units with free phenolic groups.
58 Relative to controls, this increase argues for a reduced polymerization degree of
59 *BdPMT1*-OE lignins and makes them more soluble in cold NaOH solution. The *p*-
60 coumaroylation of poplar samples, up to the levels of C3 grasses, improved the
61 saccharification yield of alkali-pretreated poplar CW. These results establish that the
62 genetically-driven *p*-coumaroylation of lignins is a promising strategy to make wood
63 lignins more susceptible to the alkaline treatments that can be used during the
64 industrial processing of lignocellulosics.

65

66

67 **INTRODUCTION**

68 Wood appears as a major feedstock for traditional or innovative biorefineries
69 producing pulp, chemicals or fermentable sugars. However, most industrial
70 fractionations of lignocellulosics are detrimentally affected by lignins. For instance,
71 the enzymatic hydrolysis of cellulose into glucose, referred to as saccharification, is
72 severely hampered by lignins that hinder the accessibility of enzymes to CW
73 polysaccharides. Indeed, the economically effective production of cellulosic ethanol
74 necessitates costly, polluting and energy-intensive pretreatments that most often aim
75 at reducing the lignin shield effect (Yang and Wyman, 2008; Sun et al., 2016). Since
76 the last decades, lignin engineering in trees has been the subject of intensive studies
77 to produce tailor-made wood more amenable to efficient deconstruction by milder
78 processes (Pilate et al., 2012; Chanoca et al., 2019; Mahon and Mansfield, 2019).
79 However, lignins play key roles in wood and sufficient lignin amounts are required to
80 warrant tree growth, development and defense. On this basis, reducing lignin content
81 may result in impaired tree growth and redesigning lignin structure appears as a
82 better strategy to obtain wood biomass more adapted to industrial deconstruction
83 without yield penalty.

84 Lignins primarily result from the enzymatically-driven oxidation of monolignols,
85 mainly coniferyl alcohol and sinapyl alcohol that give rise to guaiacyl (G) and syringyl
86 (S) units, respectively. It is now well established that lignin biosynthesis is very plastic
87 and that, besides the main monolignols, a number of other molecules may participate
88 to the formation of lignin polymers (Mottiar et al., 2016; del Río et al., 2020). For
89 instance, *p*-coumaroylated sinapyl alcohol and, to a lower extent, *p*-coumaroylated
90 coniferyl alcohol, are naturally incorporated into grass lignins (Grabber et al., 1996;
91 Lu and Ralph, 1999; Hatfield et al., 2009; Ralph, 2010). This *p*-coumaroylation of

92 grass monolignols is specifically catalyzed by a *p*-coumaroyl-coenzyme A monolignol
93 transferase (PMT) studied in various grass species (Hatfield et al., 2009; Withers et
94 al., 2012; Marita et al., 2014; Petrik et al., 2014). The *p*-coumaroylation of dicot
95 lignins was recently achieved by introducing the rice *PMT* gene into poplar and
96 arabidopsis plants (Smith et al., 2015), but the *p*-coumaroylation level of transgenic
97 dicot CW reported in this study was modest (varying from 1 to 3.5 mg/g CW) and
98 much lower than that of lignified grass stems (CA ranging from 6 to 39 mg/g CW)
99 (Hatfield et al., 2009). By contrast, the introduction of two different *Brachypodium*
100 *PMT* genes (*BdPMT1* or *BdPMT2*) under the control of the *AtC4H* promoter into
101 various Arabidopsis lines boosted the *p*-coumaroylation of mature stem lignins up to
102 the grass lignin level (Sibout et al., 2016). In addition to a high CA content, the
103 Arabidopsis *BdPMT1*-OE lignins displayed other traits specific to grass lignins, *i.e.* a
104 high frequency of free phenolic units in lignins and an increased solubility in cold
105 alkali.

106 In this work, we explored the potential of introducing the *proAtC4H::BdPMT1*
107 construct into poplar in order to beneficially tailor lignin structure without biomass
108 penalty. To this end, *BdPMT1* was expressed not only in the poplar WT background,
109 but also in a transgenic poplar line overexpressing the *AtF5H* gene (*AtF5H*-OE). By
110 so doing, we obtained several independent transformants that were grown in the
111 greenhouse together with the corresponding controls during 3 months. In this study,
112 we first evaluated the growth of the *BdPMT1*-OE lines and the *p*-coumaroylation of
113 their stem lignins, as compared to control trees. We then investigated the effect of the
114 *BdPMT1* expression on lignin content and structure before subjecting the transgenic
115 and control poplar stems to alkali-solubilization assays and saccharification tests.

116 **RESULTS AND DISCUSSION**

117 **The Expression of Heterologous *BdPMT1* Gene under the Control of the *AtC4H***
118 **Promoter Does not Alter Poplar Growth**

119 The *BdPMT1* acyltransferase (referred to as Bradi2g36910) has been shown
120 to be specific to monolignol *p*-coumaroylation (Petrik et al., 2014). It is also the
121 closest homologue of the rice *OsPMT* that was introduced by Smith et al. (2015) into
122 poplar and *Arabidopsis* plants. As the *AtC4H* promoter confers a vascular specific
123 expression (Bell-Lelong et al., 1997), the *proAtC4H::BdPMT1* construct was
124 introduced into poplar trees in order to preferentially express *BdPMT1* in the xylem
125 tissues during the lignification step. The transformation was performed in two poplar
126 genetic backgrounds, the WT line and a transgenic line overexpressing the *AtF5H*
127 gene. The *AtF5H* expression was driven by a poplar cellulose synthase A4 promoter,
128 known to be highly active in the fibers and vessels of poplar developing xylem (Hai et
129 al., 2016). The *AtF5H*-OE poplar line was chosen to test the hypothesis that the *p*-
130 coumaroylation of poplar lignins may be favored by a high frequency of S units based
131 on the two following published data: a) the *p*-coumaroylation of grass lignins mostly
132 occurs on S units (reviewed in Ralph, 2010; Karlen et al., 2018)) and b)
133 overexpressing the *AtF5H* gene in poplar substantially increases the frequency of S
134 lignin units (Franke et al., 2000).

135 The *Agrobacterium tumefaciens*-mediated transformation yielded 14
136 independent transformants in the WT background (referred to as *BdPMT1*-OE/WT
137 lines) and 9 in the *AtF5H*-overexpressing background (referred to as *BdPMT1*-
138 OE/*AtF5H*-OE lines). Three *BdPMT1*-OE/WT lines and five *BdPMT1*-OE/*AtF5H*-OE
139 lines were selected for further analyses: they were acclimatized and grown for three
140 months in the greenhouse together with corresponding control plants (Supplemental
141 Fig.S1 A). RT-PCR with *BdPMT1* specific primers revealed a substantial *BdPMT1*

142 transcript abundance in developing xylem, with some variations between the
143 *BdPMT1*-OE lines, whereas no *BdPMT1* expression could be detected in the WT or
144 *AtF5H*-OE control trees. Likewise, when using primers directed to *AtF5H*, a strong
145 RT-PCR signal was observed in all the *AtF5H*-OE transgenic lines.

146 In the *BdPMT1*-OE/WT lines, the poplar plants did not show any phenotype
147 different from the WT trees. However, in the *AtF5H*-OE background, two lines
148 (referred to as lines 5 and 20.2) displayed patches of reddish coloration in the
149 developing xylem, mostly at the nodes (Supplemental Fig. S1 B-C). Relative to the
150 control trees, the *BdPMT1*-OE did not induce any significant difference in growth and
151 height (Fig. 1).

152 **The *BdPMT1*-OE Poplar Stems and their Corresponding Purified Dioxane
153 Lignin Fractions Are *p*-Coumaroylated up to the Levels of C3 Grass Samples**

154 CW samples from the stems of 3-month-old greenhouse-grown poplar trees
155 were subjected to mild alkaline hydrolysis to quantify *p*-hydroxybenzoic acid (Bz), *p*-
156 coumaric acid (CA) and ferulic acid (FA) ester-linked to CW polymers. Poplar wood is
157 typified by the occurrence of *p*-hydroxybenzoic acid ester-linked to lignins (Smith,
158 1955; Venverloo, 1969) and preferentially to the γ position of S lignin units (Lu et al.,
159 2004; Morreel et al., 2004). Most *BdPMT1*-OE poplar samples displayed similar *p*-
160 hydroxybenzoylation levels as their corresponding controls (Table I). In addition to
161 Bz, mild alkaline hydrolysis of poplar samples released small amounts of FA
162 consistently obtained in slightly smaller quantities in *BdPMT1*-OE/WT lines compared
163 to WT, whereas *BdPMT1*-OE/*AtF5H*-OE lines 5 and 20.2 delivered more FA than the
164 other *AtF5H*-OE lines (Table I). In plant CW, FA preferentially acylates non cellulosic

165 polysaccharides (Ishii, 1997) and the small differences of FA esters between poplar
166 lines might reflect some structural variations in these CW components.

167 While expressing the *BdPMT1* gene both in the WT and the *AtF5H*-OE
168 backgrounds had little or no effect on Bz or FA units ester-linked to poplar CW, this
169 transformation increased CW *p*-coumaroylation to different levels with CA quantity
170 ranging between 0.76 to 11.11 mg/g CW, as compared to the trace amounts of the
171 controls (Table I). Remarkably enough, this quantity was boosted up to about 11
172 mg/g CW in *BdPMT1*-OE/WT line 17, *BdPMT1*-OE/*AtF5H*-OE line 5 and *BdPMT1*-
173 OE/*AtF5H*-OE line 20.2. As compared to grass mature stems, the CA levels of these
174 three poplar lines exceeded those of most C3 grass CW, but remained lower than
175 those of C4 grass CW (Supplemental Table S1). With the exception of one line, the
176 obtained *BdPMT1*-OE poplar lines were as *p*-coumaroylated as extract-free
177 *proAtC4H::BdPMT1* Arabidopsis mature stems (CA amounts ranging between 3.5
178 and 12.6 mg/g CW) (Sibout et al., 2016). By contrast, these levels were much higher
179 than the values reported for *OsPMT*-OE poplar lines (CA range : 1.2-3.5 mg/g CW) or
180 for *OsPMT*-OE Arabidopsis lines (CA range : 1.0-2.0 mg/g CW) when *OsPMT*
181 expression was driven by the CAULIFLOWER MOSAIC VIRUS promoter or by the
182 CELLULOSE SYNTHASE7 promoter (Smith et al., 2015). In agreement with this
183 study (Smith et al., 2015), the *p*-coumaroylation of poplar CW did not affect their *p*-
184 hydroxybenzoylation (Table I). The high *p*-coumaroylation of poplar CWs obtained in
185 the present work is very likely related to the efficiency of the *AtC4H* promoter, in
186 agreement with recent data obtained with *BdPMT1*-OE Arabidopsis lines (Sibout et
187 al., 2016).

188 Isolation of DL fractions followed by their mild alkaline hydrolysis recently
189 proved to be an efficient strategy to demonstrate that CA units introduced in

190 *BdPMT1*-transformed *arabidopsis* plants are ester-linked to lignins (Sibout et al.,
191 2016). The isolation method consists in mild acidolysis (refluxing CW samples in
192 dioxane/0.2 M aq. HCl for 30 min under N₂), which provides a rough lignin extract
193 then purified to recover DL fractions. This isolation method relies on the hydrolysis of
194 some ether bonds in lignins to make the insoluble native lignin polymers partially
195 soluble into the reaction medium. The purified DL fractions contain a low amount of
196 sugar contaminants (< 10% by weight) and the mild isolation procedure mostly
197 preserve lignin-linked CA esters, if present (Chazal et al., 2014). Purified poplar DL
198 fractions were isolated from a few control and *BdPMT1*-OE poplar lines and then
199 subjected to mid-IR spectroscopy. Their mid-IR spectra not only confirmed their low
200 contamination by sugar components, but also suggested that the lignin fractions
201 isolated from *BdPMT1*-OE/WT and *BdPMT1*-OE/*AtF5H*-OE lines were enriched in
202 CA esters (Supplemental Fig. S2). Relative to their respective controls, the IR spectra
203 from *BdPMT1*-OE lines displayed increased signals at 1604, 1164 and 833 cm⁻¹,
204 which can be assigned to the occurrence of CA units (Chazal et al., 2014). More
205 importantly, high CA amounts (from 31 to 66 mg/g DL, Table II) were released by
206 mild alkaline hydrolysis of the purified DL fractions isolated from *BdPMT1*-OE poplar
207 lines, as confirmed by both HPLC and GC/MS analyses (Supplemental Fig. S3). The
208 upper values were similar to the CA levels of DL fractions isolated from C3 grass
209 CW, but remained lower than those of DL fractions isolated from C4 grass species
210 (Supplemental Table S1). Alkaline hydrolysis of the DL fractions isolated from control
211 samples released noticeable amounts of CA units (Table II), which reveals that CA
212 acylates poplar lignins to a weak extent and in agreement with results obtained for
213 *Arabidopsis* lignins (Sibout et al., 2016). The CA contents of DL fractions from
214 *BdPMT1*-OE poplar line were found to be 6- to 10-fold higher than those from the

215 corresponding CW. Such an outstanding enrichment definitely establishes that most
216 CA units introduced in the transgenic poplars are ester-linked to lignins.

217 **Analytical Pyrolysis Further Confirms the High *p*-Coumaroylation of *BdPMT1-***
218 **OE Poplar Lines**

219 The main advantages of the pyrolysis-gas chromatography/mass spectrometry
220 (Py-GC/MS) method is its high throughput screening capabilities together with its low
221 sample demand (Ralph and Hatfield, 1991; Lapierre, 1993). When subjected to this
222 method, lignified CW samples provide lignin-derived phenolics originating from G and
223 S lignin units. In addition, during pyrolysis, ester-linked Bz and CA units (if present)
224 are decarboxylated to produce phenol (P) and vinylphenol (VP), respectively. The
225 relative abundances (area %) of the main G and S pyrolysis products and of P and
226 VP generated from the poplar CW samples are listed in Table III. The relative
227 percentage of pyrolysis-derived P did not discriminate the various transgenic samples
228 from their control. This result is quite consistent with mild alkaline hydrolysis which
229 provided similar Bz amounts from most transgenic lines and their respective controls.
230 By contrast, the relative importance of VP was dramatically increased in the
231 *BdPMT1*-OE lines as compared to their controls. Such a relative increase
232 concomitantly decreased the relative percentage of the lignin-derived pyrolysis
233 compounds ((S+G) in Table III). Even though the pyrolysis VP might originate from
234 tyrosine residues of putatively present protein contaminants, it is essentially produced
235 from the decarboxylation of CW-linked CA units (Ralph and Hatfield, 1991). The VP
236 relative abundance was found to nicely echo the level of alkali-releasable CA, as
237 revealed by the positive correlation between CA amount and the % VP ($R^2 = 0.982$,
238 Supplemental Fig. S4). In other words, the relative importance of pyrolysis-derived
239 VP may be viewed as a good signature of the CW *p*-coumaroylation level. To further

240 confirm that VP prominently originates from CA decarboxylation, a few pyrolysis
241 assays were carried out in the presence of tetramethylammonium hydroxyde
242 (TMAH). The TMAH-Py-GC/MS method yields methyl 4-methoxybenzoate (Bz_{Me}) and
243 methyl 4-methoxy-*p*-coumarate (CA_{Me}) from Bz and CA units, respectively (Kuroda et
244 al., 2001; Kuroda et al., 2002). As shown in the pyrograms outlined in Fig. 2, the
245 relative intensity of the Bz_{Me} peak was similar in the *BdPMT1*-OE and in their
246 corresponding controls whereas the CA_{Me} peak was prominent in the *BdPMT*-OE
247 poplar lines.

248 The pyrolysis S/G ratio calculated from the relative importance of lignin-
249 derived S and G pyrolysis compounds was not significantly affected in the *BdPMT1*-
250 OE/WT lines (Table III). This result suggests that the proportion of G and S lignin unit
251 is not affected by the transformation. In agreement with literature data (Franke et al.,
252 2000; Stewart et al., 2009), this ratio was substantially increased in the *AtF5H*-OE
253 control line as well as in the *BdPMT1*-OE/*AtF5H*-OE lines 1, 20.1 and 21. By
254 contrast, the *BdPMT1*-OE/*AtF5H*-OE lines 5 and 20.2, which were provided with a
255 patchy reddish xylem coloration and the highest CA levels, displayed much lower
256 pyrolysis S/G ratios (Table III), in agreement with the reduced Maüle staining
257 observed on stem transverse sections from these lines (Supplemental Fig. S1 D).
258 This result suggests that the substantial participation of *p*-coumaroylated monolignols
259 to lignification somehow counteracted the *AtF5H*-OE related enrichment in S units.

260 **The *proAtC4H::BdPMT1* Transformation Has no or Little Effect on the Lignin
261 Content of Poplar Stems, but a Strong Impact on Lignin Structure**

262 The most *p*-coumaroylated transgenic poplar lines were analyzed for their
263 lignin contents, using both the Klason Lignin (KL) and the Acetyl Bromide Lignin
264 (ABL) methods (Table IV). With the exception of the *BdPMT1*-OE/*AtF5H*-OE line 5

265 displaying slightly higher KL and ABL contents, the *BdPMT1* transformation had no
266 impact on the lignin content of the poplar stem CW. This result contrasts with those
267 obtained for *proAtC4H::BdPMT1* Arabidopsis transformants provided with similar *p*-
268 coumaroylation levels as these poplar transgenics, but with 10 to 30% lower lignin
269 contents than their controls (Sibout et al., 2016). Introducing the *proAtC4H::BdPMT1*
270 into Arabidopsis plants seemed to affect the metabolic flux to lignins and thereby the
271 stem lignin content whereas such an effect was not observed in the *BdPMT1*-OE
272 poplar lines.

273 A major structural trait of native lignins is their percentage of free phenolic
274 groups, which has a strong impact on lignin susceptibility towards industrial alkaline
275 or oxidative treatments. When thioacidolysis is performed on CW exhaustively
276 permethylated with diazomethane or trimethylsilyldiazomethane (TMSD), the
277 percentages of free phenolic groups in β -O-4 linked G or S lignin units, referred to as
278 % GOH or % SOH, can be evaluated. These percentages have been shown to nicely
279 parallel that of the whole polymer (Lapierre, 2010). With the objective to evaluate the
280 impact of the *BdPMT1* transformation on the structure of poplar native lignins, we
281 employed this analytical approach, the principle of which is outlined in Fig. 3. Past
282 studies have shown that the thioacidolysis yield is not affected by the mild
283 permethylation procedure (Lapierre et al., 1988; Lapierre, 2010). Whatever the
284 sample, the *p*-hydroxyphenyl (H) thioacidolysis monomers were found to be obtained
285 as trace components (less than 1% of the monomer yield) and, in consequence,
286 these minor H units were not considered in the following. In agreement with the Py-
287 GC/MS data, the thioacidolysis S/G ratio was not affected by the *BdPMT1*
288 transformation in the WT background (Table V). Not unexpectedly and as compared
289 to the WT, the thioacidolysis S/G ratio was found to be drastically increased in the

290 *AtF5H*-OE control sample as well as in the *BdPMT1*-OE/*AtF5H*-OE lines 20.1 and 21
291 (Table V). Consistently with the pyrolysis data (Table III), the two *BdPMT1*-
292 OE/*AtF5H*-OE lines 5 and 20.2, which are provided with the highest *p*-coumaroylation
293 levels (Table I), displayed S/G ratios close to those observed in the WT background.
294 This result confirms that the high *p*-coumaroylation level of these two poplar lines
295 somehow hinders the *AtF5H*-driven enrichment in S units by a mechanism which
296 remains to be explained.

297 In agreement with literature data (Lapierre, 1993, 2010), the control poplar
298 samples displayed a % GOH and a % SOH close to 20% and 3%, respectively, which
299 confirms that S units essentially are internal units. These percentages were
300 significantly increased in the *p*-coumaroylated lignins of the *BdPMT1*-OE poplar lines
301 (Table V). The increase in % GOH or in % SOH was found to be nicely correlated to
302 the CA level of the *BdPMT1*-OE/WT lines ($R^2 = 0.95$ for % GOH and 0.93 for %
303 SOH) (Fig. 4). This result means that the incorporation of *p*-coumaroylated
304 monolignols in poplar lignins increases the frequency of free phenolic terminal units
305 relative to internal units. Such a structural change may be accounted for by the
306 occurrence of lignin polymers with lower polymerization degree and/or with a higher
307 content of biphenyl or biphenyl ether branching structures.

308 The alkaline hydrolysis of the DL fractions isolated from the *BdPMT1*-OE
309 poplar lines revealed that their CA units were primarily ester-linked to lignins. With
310 the objective to more precisely localize these CA esters on lignin units, we subjected
311 some poplar samples to 1-hour long thioacidolysis experiments, followed by Raney
312 nickel desulfuration in order to identify the syringylpropanol and/or guaiacylpropanol
313 units acylated by *p*-dihydrocoumaric acid (diHCA). This short thioacidolysis time is
314 necessary as CA esters do not survive the standard 4-hour long thioacidolysis

315 method (Lapierre, 1993; Sibout et al., 2016). When applied to the *BdPMT1*-OE/WT
316 line 17, the method provided substantial amount of syringylpropanol acylated by
317 diHCA while this dimer could not be observed with a longer thioacidolysis duration
318 (Supplemental Fig. S5 and Supplemental Table S2). Interestingly enough and by
319 contrast to the results reported by Smith et al. (2015), its G analogue could not be
320 detected. Taken together and similarly to grass lignins, these results support the
321 hypothesis that the *p*-coumaroylation of poplar transformants primarily involves S
322 lignin units.

323 The analysis of the lignin-derived dimers obtained with the standard
324 thioacidolysis method followed by Raney nickel desulfuration confirmed that lignins
325 from *BdPMT1*-OE poplars were structurally different from control lignins. The main
326 difference was related to the relative importance of the syringaresinol-derived dimer,
327 expressed as percentage of the total area of the main dimers (set to 100) : this
328 relative percentage was increased from (18.5 ± 1.7)% for the WT sample up to (26.1
329 ± 1.9)% for the *BdPMT1*-OE/WT line 17 line (mean and SD for duplicate analyses).
330 The syringaresinol structures exclusively originate from the dimerization of sinapyl
331 alcohol and are thus starting points for lignin growth (Ralph et al., 2004). Their higher
332 relative recovery from the *BdPMT1*-OE/WT line 17 further argues for the occurrence
333 of lignin polymers with lower polymerization degrees than in the control sample.

334 **The *BdPMT1*-driven Substantial *p*-Coumaroylation of Poplar Samples Makes
335 their Lignins more Easily Solubilized in Cold Alkali**

336 The enrichment in free phenolic G and S units is very likely to improve the
337 lignin susceptibility to alkaline treatments that are employed in chemical pulping or in
338 the cellulose-to-ethanol conversion process. The impact of % GOH on the CW
339 delignification induced by alkaline treatment has been established for a long time for

340 grass samples (Lapierre et al., 1989; Lapierre, 2010) and confirmed for poplar trees
341 deficient in Cinnamyl Alcohol Dehydrogenase (CAD) activity (Lapierre et al., 1999;
342 Lapierre et al., 2004; Van Acker et al., 2017), for tobacco plants deficient in
343 Cinnamoyl-Coenzyme A Reductase (CCR) activity (O'Connell et al., 2002) and for
344 *BdPMT1*-transformed *Arabidopsis* lines (Sibout et al., 2016). The results of a mild
345 alkaline treatment applied to the poplar samples are shown in Table VI. The residue
346 recovered after this treatment, referred to as the saponified residue (SR), was
347 obtained with similar yields whatever the line. However, its lignin amount was found
348 to be lower in *BdPMT1*-OE lines relative to their control (Table VI). Consistently with
349 these results, the percentage of the alkali-soluble lignin (%Alk-L) revealed that the
350 *BdPMT1*-OE lines are more easily delignified by the employed mild alkaline
351 treatment. Whereas 15 to 20 % of the lignin polymers were solubilized by cold alkali
352 for the controls, the %Alk-L was substantially increased in the *BdPMT1*-OE lines. As
353 reported for transgenic CAD- or CCR-deficient plants (Lapierre et al., 1999;
354 O'Connell et al., 2002), increasing the % GOH has beneficial effects on the kraft
355 pulping properties of the lignocellulosic biomass, thereby decreasing the energy and
356 environmental costs of this industrial process. The introduction of *BdPMT1* in trees
357 would likely improve the pulping properties of poplar wood.

358 The relationship of the free phenolic groups in poplar lignins to their
359 susceptibility towards cold alkaline treatment is further illustrated in Fig. 5. On this
360 scheme, we have gathered the data from 17 different poplar lines, comprising the
361 current *BdPMT1*-OE/WT lines and CAD-deficient ones (Lapierre et al., 2004),
362 together with their respective controls. The effect of the % GOH structural property
363 onto the solubility of poplar lignins in cold alkali is supported by the positive
364 correlation between % GOH and % Alk-L ($R^2 = 0.9513$).

365 **The BdPMT1-Driven *p*-Coumaroylation of Poplar Samples Results in Improved**
366 **Saccharification after Cold Alkaline Pretreatment**

367 It is well established that the detrimental role of lignins on the cost-effective
368 enzymatic conversion of lignocellulosic polysaccharides into fermentable sugars
369 makes necessary the use of pretreatments (Yang and Wyman, 2008; Wang et al.,
370 2015; Sun et al., 2016). From the analytical data that we obtained so far on the
371 *BdPMT1*-OE poplar lines, we could anticipate that an alkaline pretreatment would be
372 well suited to reduce the lignin-related recalcitrance of poplar wood to
373 saccharification. Accordingly, the saccharification experiments run on the poplar
374 samples were preceded by a cold alkaline pretreatment (aq. NaOH 1M, overnight,
375 room temperature). The saccharification efficiency was evaluated both by the weight
376 loss (% WL) and by the amount of released glucose (Glc) (Table VII). Both
377 parameters were higher in the *BdPMT1*-OE lines, compared with their control. Not
378 unexpectedly and within each background, the best saccharification results were
379 obtained for the lines provided with the concomitantly highest CA level, % GOH and
380 % Alk-L. The enrichment of poplar lignins in free phenolic groups made these lignins
381 more easily solubilized in alkali, which consequently improved the saccharification of
382 alkali-pretreated samples. Taken together, these results reveal that the lignins from
383 the current *BdPMT1*-OE poplar plants share common features with grass lignins. As
384 compared to non grass lignins from WT plants, these common features are a) a
385 substantial *p*-coumaroylation of S lignin units, b) a higher level of free phenolic units,
386 and c) a higher solubility in cold alkali. At this point, we may hypothesize that, similar
387 to grass lignins, lignins from the *BdPMT1*-OE poplar lines obtained herein are
388 distributed in the cell walls as small lignin domains which are both rich in free
389 phenolic groups and more easily extracted by cold alkali treatment (Lapierre, 2010).

390 **CONCLUSION**

391 In this study, we have shown that *p*-coumaroylating poplar lignins up to the
392 level of grass lignins has consequences that go far beyond a simple lignin decoration
393 and that deeply change not only lignin structural traits, but also important industrial
394 potentialities of lignified CW. Remarkably enough the *proAtC4H::BdPMT1*
395 transformation introduced neither any growth penalty, nor reduced lignin content in
396 the various transgenic greenhouse-grown poplar lines that were obtained in two
397 genetic backgrounds. In agreement with a recent study (Sibout et al., 2016),
398 choosing the lignin-specific *AtC4H* promoter to drive the heterologous expression of
399 *BdPMT1* in dicot CW had very likely a key role in changing wood properties.

400 Since the last decades and with the objective to facilitate the industrial
401 conversion of lignocellulosics into pulp or into bioethanol, many approaches have
402 been used to genetically modify lignin content and/or structure (reviewed in (Boerjan
403 and Ralph, 2019; Halpin, 2019; Mahon and Mansfield, 2019; Ralph et al., 2019)).
404 Among the lignin structural traits that can be affected by the genetic transformation of
405 angiosperm species, the S/G ratio is probably the most systematically scrutinized one
406 (Chanoca et al., 2019). By contrast, the relative frequency of free phenolic units in
407 native lignins is a key structural trait which is surprisingly overlooked despite its
408 biological significance and its major effect on the susceptibility of lignins to alkaline or
409 oxidative treatments. In past studies, redesigning native lignins with more free
410 phenolic groups (and therefore with increased alkali-solubility) could be obtained with
411 other genetic transformations, such as CCR or CAD down-regulation (O'Connell et
412 al., 2002; Lapierre et al., 2004). In this work, we provide another compelling evidence
413 that the genetically-driven increase of free phenolic units in lignins is an efficient

414 strategy for the rational design of lignocellulosics more adapted to industrial
415 biorefineries.

416 **MATERIALS AND METHODS**

417 **Production of Plant Materials**

418 The *proAtC4H::BdPMT1* construct used for poplar genetic transformation was
419 the same as the one described in (Sibout et al., 2016), with the *BdPMT1* sequence
420 inserted into the pCC0996 vector under the control of the *AtC4H* promoter (Weng et
421 al., 2008). This construct was introduced using *A. tumefaciens* cocultivation into the
422 hybrid poplar (*P. tremula* x *P. alba*) clone INRA 717-1B4 as well as in a 717-1B4
423 transgenic line named *AtF5H*-OE, according to the method described in Leplé et al.,
424 (1992). The *AtF5H*-OE line was previously transformed with an *AtF5H* gene under
425 the control of the promoter of the *P. tremula* x *P. alba* *CesA4* gene
426 (*Potri.002G257900*) (*proPtaCesA4::AtF5H*). Several transgenic lines from both
427 genetic background were selected for further analyses. Two to five ramets of each
428 line were acclimatized and grown in a S2 greenhouse for 3 months, from April until
429 July. Height and stem diameter were measured before plant sampling for molecular
430 and biochemical analyses.

431 Differentiating xylem samples were collected by a light scraping at the surface
432 of the debarked stem. Samples were immediately frozen in liquid nitrogen and stored
433 at -80°C until use. DNA was prepared using Nucleospin DNA Plant II kit (Macherey-
434 Nagel, Hoerdt, France) and the integration of *BdPMT* and *F5H* genes was verified by
435 PCR using the following primers pairs: PMT 5'-CCTCATCATGCAGGTGACAG-3' and
436 5'-GAAGCAGTTGCCGTAGAAC-3'; F5H 5'-ATGGAGTCTTCTATATCACA-3' and
437 5'-TTAAAGAGCACAGATGAGGC-3'. Likewise, RNA was extracted from

438 differentiating xylem using a Nucleospin RNA Plant kit (Macherey-Nagel, Hoerdt,
439 France). The expression level of the *BdPMT1* and *AtF5H* gene in each tree was
440 evaluated by semi-quantitative RT-PCR performed in standard conditions using the
441 same primers as above.

442 **Analyses of Cell Wall Phenolics**

443 ***Preparation of CW Samples and Dioxane Lignins***

444 All the analyses of cell wall phenolics were carried out from biological
445 replicates (2, 3 or 4 per line) harvested from 3-month-old poplar trees. For each tree,
446 the 20 cm-long basal part of the stem was collected, manually debarked, air-dried
447 and ground to 0.5 mm. Extract-free samples were prepared by exhaustive water and
448 ethanol extraction in an accelerated solvent extractor (ASE350, Dionex). The dried
449 and extract-free samples are referred to as cell wall samples (CW).

450 The isolation of DL fractions was performed from 1 to 2 g of CW as previously
451 described (Sibout et al., 2016). FTIR spectra of DL fractions were run on a Thermo
452 Scientific Nicolet IS5 spectrophotometer and in KBr pellets.

453 ***Analytical Pyrolysis***

454 Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) was done
455 using a CDS model 5250 pyroprobe autosampler interfaced to an Agilent 6890/5973
456 GC/MS. The CW samples (about 300 µg) were pyrolyzed in a quartz tube at 500°C
457 for 15 s. The pyrolysis products were separated on a capillary column (5% phenyl
458 methyl siloxane, 30 m, 250 µm i.d., and 0.25 µm film thickness) using helium as the
459 carrier gas with a flow rate of 1 mL/min. The pyrolysis and GC/MS interfaces were
460 kept at 290°C and the GC was programmed from 40°C (1 min) to 130°C at +6°C min⁻¹
461 ¹, then from 130 to 250°C at +12°C min⁻¹ and finally from 250°C to 300°C at +30°C

462 min^{-1} (3 min at 300°C). The various phenolic pyrolysis compounds were identified by
463 comparison to published spectra (Ralph and Hatfield, 1991). Py-GC/MS in the
464 presence of tetramethylammonium hydroxyde (TMAH) was similarly performed but
465 with addition of 3 μL of a 25% TMAH methanolic solution (Aldrich) onto the CW
466 sample. The methylated pyrolysis products were identified by comparison of their
467 mass spectra with those of the NIST MS library or with published TMAH-pyrograms
468 (Kuroda et al., 2001; Kuroda et al., 2002).

469 ***Determination of Lignin Content***

470 The determination of KL content was performed from about 300 mg of CW
471 (weighted to the nearest 0.1 mg) and as previously described (Méchin et al., 2014).
472 The quantitation of ABL was done from about 5 mg of CW (weighted to the nearest
473 0.01 mg) according to a recently published procedure (Sibout et al., 2016).

474 ***Determination of Ester-linked p-Hydroxybenzoic and p-Hydroxycinnamic Acids
475 by Mild Alkaline Hydrolysis***

476 About 5 to 10 mg of poplar CW or DL samples were put into 2-mL Eppendorf
477 tube together with 1 mL of 1 M NaOH and 0.1 mL of o-coumaric internal standard (IS)
478 methanolic solution. The IS amount was 0.05 mg for CW samples and 0.25 mg for
479 DL ones. Mild alkaline hydrolysis was proceeded on a carousel overnight and at
480 room temperature. After acidification (0.2 mL of 6 M HCl) and centrifugation (1500 g,
481 10 min), the supernatant was subjected to solid phase extraction as previously
482 described (Ho-Yue-Kuang et al., 2016). The recovered methanolic samples were
483 analyzed by HPLC combined with diode array detection (HPLC-DAD). For HPLC
484 separation, 1 μL of sample was injected onto an RP18 column (4 \times 50 mm, 2.7 μm
485 particle size, Nucleoshell, Macherey-Nagel) with a flow rate of 0.25 mL min^{-1} . The

486 eluents were 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B),
487 and the gradient was as follows: 0 min 5% B; 12 min, 20% B; 14 min, 80% B; 16 min,
488 5% B. The quantitative determination of alkali-released Bz, CA and FA was
489 performed from the 250–400 nm DAD chromatograms and after calibration with
490 authentic compounds

491 ***Analysis of Lignin Structure by Thioacidolysis***

492 Thioacidolysis (4-hour long) followed by GC/MS of the trimethylsilylated (TMS)
493 lignin-derived compounds was carried out from about 10 mg of CW samples using
494 the simplified procedure previously published (Méchin et al., 2014), with some
495 adaptations to the CW type concerning the IS amount and the reagent to sample
496 ratio. In brief, 5 to 10 mg (weighed to the nearest 0.1 mg) were put together with 2
497 mL of freshly prepared thioacidolysis reagent and 0.1 mL of IS solution (heinecosane
498 C21, 5 mg/mL in CH_2Cl_2) in a glass tube (Teflon-lined screwcap). The closed tubes
499 were then heated at 100°C (oil bath) and for 4 h with occasional gentle shaking. After
500 tube cooling, 2 mL of 0.2 M NaHCO_3 were added to destroy the excess of BF_3
501 etherate. Then, 0.025 mL of 6 M HCl were added to ensure that the pH was less than
502 3, before addition of 2 mL CH_2Cl_2 and tube mixing. A small amount (about 0.5 mL) of
503 the lower organic phase was withdrawn with a glass Pasteur pipette, dried over
504 anhydrous Na_2SO_4 and then directly subjected to trimethylsilylation. This silylation
505 was performed with 10 μL of the solution together with 100 μL BSTFA (Sigma-
506 Aldrich) and 10 μL of GC-grade pyridine (1 h at room temperature). The GC/MS
507 analyses were carried out as previously described (Méchin et al., 2014). Some short
508 thioacidolysis assays (1-hour long) were also carried out and were followed by
509 desulfuration experiments according to a published method (Lapierre et al., 1995). In
510 addition, thioacidolysis from exhaustively permethylated CW samples was run

511 according to Sibout et al. (2016) and using the same thioacidolysis and GC/MS
512 conditions.

513 **Investigation of Some CW Properties**

514 ***Alkali Solubilization Assays***

515 About 300 mg of poplar CW were subjected to mild alkaline hydrolysis in 10
516 mL of 1 M NaOH, into a 25 mL plastic tube agitated overnight on a carousel and at
517 room temperature. The alkali-treated residue, referred to as the saponified residue
518 (SR), was recovered by centrifugation (2000 g, 20 min), washed with 1 M HCl before
519 centrifugation and then with water (3 times with centrifugation following each washing
520 step). The final residue was freeze-dried, weighted to calculate its recovery yield and
521 subjected to KL or ABL determination. The weight percentage of alkali-soluble lignin
522 (% Alk-L) was calculated from the weight percentages of ABL in CW (%ABL_{CW}) and
523 in SR (%ABL_{SR}) samples and from the SR recovery yield (%SR), as follows :

524
$$\% \text{ Alk-L} = (100 \times \% \text{ ABL}_{\text{CW}} - (\% \text{ SR} \times \% \text{ ABL}_{\text{SR}})) / \% \text{ ABL}_{\text{CW}}$$

525 ***Saccharification Assays***

526 Saccharification experiments were performed from about 30 mg of SR
527 samples (weighed to the nearest 0.1 mg) under the conditions previously described
528 (Sibout et al., 2016). Saccharification efficacy was calculated both from the weight
529 loss and from the glucose yield.

530

531 **Acknowledgments**

532 We thank Armelle Delile, Orlane Touzet (INRAE Biofora) and Anita Rinfray (GBFOR,
533 INRAE, Forest Genetics and Biomass Facility,
534 <https://doi.org/10.15454/1.5572308287502317E12>) for their technical contribution to
535 produce and characterize the plant material. Likewise, the technical assistance of
536 Frédéric Legée for the determination of Klason Lignin is gratefully acknowledged.
537 The production of transgenic material has benefited from the LICA (Laboratoire
538 d'Ingénierie Cellulaire de l'Arbre) equipments.

539 **Table I.** Amount of *p*-hydroxybenzoic acid (Bz), *p*-coumaric acid (CA) and ferulic acid (FA)
540 released by mild alkaline hydrolysis of extract-free poplar stems from *BdPMT1*-OE lines
541 obtained in the WT and *AtF5H*-OE backgrounds, as compared to their respective controls.
542 The data represent mean values (and SD) from n biological replicates. asterisks denote
543 significant differences (one-way ANOVA) compared to the value of the corresponding control
544 (*: P < 0.05; **: P < 0.001).

Line (n replicates)	Bz	CA	FA
	mg/g CW	mg/g CW	mg/g CW
WT control (3)	3.86 (0.10)	0.01 (0.00)	0.22 (0.00)
<i>BdPMT1</i> -OE/WT line 9 (3)	3.21 (0.51)	7.12 (0.49)**	0.15 (0.02)*
<i>BdPMT1</i> -OE/WT line 17 (3)	3.66 (0.28)	10.69 (0.49)**	0.18 (0.01)*
<i>BdPMT1</i> -OE/WT line 31 (3)	3.57 (0.11)	3.63 (0.42)**	0.10 (0.00)*
<i>AtF5H</i> -OE control (4)	3.29 (0.14)	0.01 (0.00)	0.06 (0.00)
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 1 (4)	3.06 (0.56)	0.76 (0.04)*	0.07 (0.01)
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 5 (4)	3.47 (0.26)	11.06 (0.63)**	0.31 (0.04)*
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 20.1 (2)	3.66 (0.12)	4.41 (0.18)**	0.13 (0.02)
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 20.2 (2)	3.53 (0.03)	11.11 (0.10)**	0.40 (0.07)*
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 21 (3)	4.35 (0.08)*	4.92 (0.19)**	0.13 (0.02)

545

546

547 **Table II.** Amount of *p*-coumaric acid (CA) released by mild alkaline hydrolysis of DL fractions
548 isolated from control and *BdPMT1*-OE lines obtained in the WT and *AtF5H*-OE backgrounds.
549 The data represent mean values (and SD) from technical duplicates

Line	CA mg/g DL
WT control	3.21 (0.17)
<i>BdPMT1</i> -OE/WT line 9	50.00 (0.77)
<i>BdPMT1</i> -OE/WT line 17	66.52 (0.47)
<i>BdPMT1</i> -OE/WT line 31	31.36 (0.43)
<i>AtF5H</i> -OE control	0.87 (0.04)
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 5	66.43 (1.43)
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 21	33.98 (0.53)

550

551 **Table III.** Relative percentage values of the peaks assigned to the main phenolics released
552 by Py-GC/MS of poplar CW from *BdPMT1*-OE lines obtained in the WT and *AtF5H*-OE
553 backgrounds, as compared to their respective controls. These area values are expressed as
554 percentage of the total area per sample (set to 100).
555 The data represent mean values (and SD) from n biological replicates. asterisks denote
556 significant differences (one-way ANOVA) compared to the value of the corresponding control
557 (*: P < 0.05; **: P < 0.01).

Line (n replicates)	Phenol	4-vinylphenol	(S+G) compounds ^a	S/G ratio
WT control (4)	5.33 (0.46)	0.21 (0.07)	94.47 (0.41)	2.82 (0.21)
<i>BdPMT1</i> -OE/WT line 9 (4)	4.60 (0.94)	10.73 (0.35)**	84.67 (1.22)**	2.88 (0.13)
<i>BdPMT1</i> -OE/WT line 17 (4)	5.43 (0.43)	15.44 (0.71)**	79.13 (0.57)**	2.83 (0.12)
<i>BdPMT1</i> -OE/WT line 31 (4)	5.06 (0.56)	5.40 (1.46)**	89.54 (1.72)**	2.72 (0.19)
<i>AtF5H</i> -OE control (4)	4.99 (0.70)	0.10 (0.04)	95.01 (0.70)	4.11 (0.29)
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 1 (4)	4.40 (1.17)	1.15 (0.010)*	94.47 (1.23)	4.32 (0.52)
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 5 (4)	4.92 (0.68)	15.01 (0.86)**	80.08 (0.67)**	2.73 (0.24)*
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 20.1 (2)	4.99 (0.25)	6.65 (0.30)**	88.37 (0.55)**	4.27 (0.12)
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 20.2 (2)	4.51 (1.03)	16.42 (1.52)**	79.08 (0.48)**	2.50 (0.16)*
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 21 (3)	6.21 (0.42)	7.43 (0.25)**	86.35 (0.52)**	4.27 (0.24)

558 ^a G compounds include: guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-vinylguaiacol, 4-
559 allylguaiacol (2 isomers), vanillin, acetoguaiacone, guaiacylacetone; S compounds include:
560 syringol, 4-methylsyringol, 4-ethylsyringol, 4-vinylsyringol, 4-allylsyringol (2 isomers),
561 syringaldehyde, acetosyringone, syringylacetone.

562

563

564 **Table IV** Lignin content of extract-free poplar stems from *BdPMT1-OE* lines obtained in the
565 WT and *AtF5H-OE* backgrounds, as compared to their respective controls. The lignin content
566 is expressed as weight percentage of the sample and was determined using the Klason
567 Lignin (KL) and the Acetyl Bromide Lignin (ABL) methods
568 The data represent mean values (and SD) from n biological replicates. asterisks denote
569 significant differences (one-way ANOVA) with the control at P < 0.05.

Line (n replicates)	KL (%)	ABL (%)
WT control (3)	21.82 (0.21)	19.18 (0.33)
<i>BdPMT1-OE</i> /WT line 9 (3)	21.22 (0.09)	18.77 (0.50)
<i>BdPMT1-OE</i> /WT line 17 (3)	21.60 (0.21)	19.47 (0.44)
<i>BdPMT1-OE</i> /WT line 31 (3)	21.09 (0.43)	19.27 (0.28)
<i>AtF5H-OE</i> control (3)	20.86 (0.23)	19.95 (0.23)
<i>BdPMT1-OE</i> / <i>AtF5H-OE</i> line 5 (3)	22.23 (0.17)*	21.87 (0.42)*
<i>BdPMT1-OE</i> / <i>AtF5H-OE</i> line 20.2 (2)	20.82 (0.50)	22.00 (0.50)*
<i>BdPMT1-OE</i> / <i>AtF5H-OE</i> line 21 (3)	20.87 (0.69)	19.86 (0.13)

570

571

572

573 **Table V.** Thioacidolysis of TMSD-methylated poplar CW from from *BdPMT1*-OE lines
574 obtained in the WT and *AtF5H*-OE backgrounds, as compared to their respective controls.
575 The S/G molar ratio corresponds to the ratio of the S monomers (**3 + 4**) to the G monomers
576 (**1 + 2**) (monomers shown in Figure 3). The molar % of free phenolic groups in β-O-4 linked
577 G or S units, referred to as % GOH or % SOH, is calculated according to the outlined
578 formula.
579 The data represent mean values (and SD) from n biological replicates. asterisks denote
580 significant differences (one-way ANOVA) compared to the value of the corresponding control
581 (*: P < 0.05; **: P < 0.01).

Line (n replicates)	S/G molar ratio (3 + 4)/(1 + 2)	% free phenolic units in βO-4 linked	
		G or S units	
		% GOH	% SOH
		100 × 1/(1+2)	100 × 3/(3+4)
WT control (3)	2.05 (0.03)	19.45 (0.22)	2.81 (0.07)
<i>BdPMT1</i> -OE/WT line 9 (3)	2.09 (0.18)	22.85 (0.12)**	3.65 (0.19)**
<i>BdPMT1</i> -OE/WT line 17 (3)	2.12 (0.19)	23.65 (0.48)**	4.44 (0.25)**
<i>BdPMT1</i> -OE/WT line 31 (3)	2.08 (0.06)	21.09 (0.26)**	3.44 (0.10)*
<i>AtF5H</i> -OE control (3)	3.12 (0.13)	20.85 (0.44)	3.26 (0.03)
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 5 (3)	1.84 (0.15)**	22.66 (0.02)**	4.34 (0.08)**
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 20.1 (2)	3.36 (0.04)	22.55 (0.59)*	3.90 (0.09)*
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 20.2 (2)	1.83 (0.02)**	22.79 (0.22)**	4.15 (0.19)**
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 21 (3)	2.96 (0.15)	23.10 (0.49)*	4.02 (0.21)*

582

583

584 **Table VI.** Impact of a mild alkaline treatment (aq. NaOH 1 M, overnight, room temperature)
585 on extract-free poplar stems from control and *BdPMT1*-OE lines obtained in the WT and
586 *AtF5H*-OE backgrounds. The percentage of the recovered saponified residue (% SR) is
587 expressed relative to the initial sample. The lignin content of the SR sample is measured as
588 acetyl bromide lignin (% ABL). The percentage of alkali-soluble lignins (% Alk-L) is calculated
589 from the ABL content of the CW and from the % SR recovery yield.
590 The data represent mean values (and SD) from biological triplicates. asterisks denote
591 significant differences (one-way ANOVA) compared to the value of the corresponding control
592 (*: P < 0.05; **: P < 0.01).

Line	% SR	% ABL in SR	% Alk-L
WT control	68.03 (0.88)	23.69 (0.04)	15.5 (2.1)
<i>BdPMT1</i> -OE/WT line 9	67.17 (0.46)	20.85 (0.47)**	25.5 (1.1)**
<i>BdPMT1</i> -OE/WT line 17	65.25 (0.73)*	21.52 (0.24)**	28.1 (1.7)**
<i>BdPMT1</i> -OE/WT line 31	68.17 (0.22)	22.11 (0.75)*	21.7 (1.6)*
<i>AtF5H</i> -OE control	69.02 (0.65)	22.96 (0.28)	20.5 (1.3)
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 5	66.89 (0.80)	21.05 (0.43)**	36.1 (1.1)**
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 21	67.65 (1.28)	21.52 (0.13)*	26.4 (1.7)*

593

594

595 **Table VII.** Saccharification of the poplar saponified residues (SR) obtained after a mild
596 alkaline treatment (aq. NaOH 1 M, overnight, room temperature) and corresponding to
597 *BdPMT1*-OE lines obtained in the WT and *AtF5H*-OE backgrounds, as compared to their
598 respective controls. The saccharification efficiency is evaluated both by the weight loss
599 (%WL) and by the released glucose (Glc).
600 The data represent mean values (and SD) from biological triplicates. asterisks denote
601 significant differences (one-way ANOVA) compared to the value of the corresponding control
602 (*: P < 0.05; **: P < 0.01).

SR from Line	% WL	Glc mg.g ⁻¹ SR
WT control	39.8 (1.3)	307.7 (16.0)
<i>BdPMT1</i> -OE/WT line 9	52.1 (1.6)**	417.5 (23.2)**
<i>BdPMT1</i> -OE/WT line 17	55.1 (2.0)**	452.4 (17.7)**
<i>BdPMT1</i> -OE/WT line 31	45.8 (0.3)	369.3 (17.9)*
<i>AtF5H</i> -OE control	44.2 (2.2)	401.4 (6.7)
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 5	56.4 (1.3)**	510.1 (9.1)**
<i>BdPMT1</i> -OE/ <i>AtF5H</i> -OE line 21	49.4 (1.5)**	461.7 (22.4)**

603

604

605

606 **Figure Legends**

607 **Figure 1.** Growth response to the introduction of the *proAtC4H::BdPMT1* construct
608 into the poplar WT background (black bars) and into the *AtF5H*-OE background (grey
609 bars), as compared to control (Ctrl) trees. The basal diameter (A) and the tree height
610 (B) were measured on 3-month-old greenhouse-grown trees. Data are means (and
611 SD) of biological triplicates, except for lines 20.1 and 20.2 (biological duplicates).

612 **Figure 2.** TMAH-Py-GC/MS traces of poplar CW from A) WT control, B) *BdPMT1*-
613 OE/WT line 9, C) *AtF5H*-OE control and D) *BdPMT1*-OE/*AtF5H*-OE line 5. Bz_{Me} : 4-
614 methoxybenzoate ; CA_{Me} : methyl 4-methoxy-*p*-coumarate ; peaks quoted G and S
615 correspond to methylated G and S compounds, respectively.

616 **Figure 3.** Principle of the evaluation of free phenolic units in lignin by thioacidolysis of
617 permethylated samples. Lignin units only involved in β -O-4 bonds give rise to
618 thioacidolysis guaiacyl ($R_2 = H$) and syringyl ($R_2 = OMe$) monomers. Terminal G and
619 S units with free phenolic group ($R_1 = H$) are first methylated at C4, then degraded to
620 monomers **1** and **3** (erythro/threo mixture), respectively. Internal G and S units ($R_1 =$
621 C_β of another lignin sidechain) are degraded to monomers **2** and **4**, respectively
622 (erythro/threo mixture).

623 **Figure 4.** Relationships between the CA amounts in poplar CW and the percentage
624 of G lignin units with free phenolic groups (% GOH, black circles, full line) or the
625 percentage of S lignin units with free phenolic groups (% SOH, white circles, dotted
626 lines). The lignin structural traits % GOH and % SOH are evaluated by thioacidolysis
627 of permethylated samples for *BdPMT1*-OE poplars and their WT controls.

628 **Figure 5.** Relationship between the percentage of G lignin units with free phenolic
629 groups (% GOH) and the solubility of poplar lignins in cold alkali (% Alk-L). The data

630 correspond to *BdPMT1*-OE trees and their WT controls (black circles) as well as to
631 CAD-deficient trees and their corresponding controls (white circles).

632 **Supplemental Data**

633 The following supplemental materials are available.

634 **Supplemental Figure S1.** Macroscopical and histochemical description of the plant
635 material.

636 **Supplemental Figure S2.** IR spectra (KBr pellet) of DL lignin fractions isolated from
637 *BdPMT1*-OE/WT and *BdPMT1*-OE/*AtF5H*-OE lines as compared to their controls.

638 **Supplemental Figure S3.** HPLC and GC/MS analyses of low-molecular weight
639 phenolics released by alkaline hydrolysis of DL lignin fractions isolated from WT and
640 *BdPMT1*-OE/WT lines.

641 **Supplemental Figure S4.** Correlation between the amount of ester-linked CA and
642 the relative % of 4-vinylphenol (% VP) released by analytical pyrolysis of *BdPMT1*-
643 OE poplar trees.

644 **Supplemental Figure S5.** Partial GC/MS chromatograms of the main dimers
645 obtained after 1- or 4-hour-long thioacidolysis followed by Raney nickel desulfuration
646 and from WT or *BdPMT1*-OE/WT lines.

647 **Supplemental Table S1.** Amount of *p*-coumaric acid (CA) ester-linked to grass CW
648 and to the corresponding purified DL fractions.

649 **Supplemental Table S2.** Relative importance (% area) of the main dimers obtained
650 after thioacidolysis and Raney nickel desulfuration of extract-free poplar stems.

651 **LITERATURE CITED**

652

653 Bell-Lelong DA, Cusumano JC, Meyer K, Chapple C (1997) Cinnamate-4-
654 Hydroxylase Expression in *Arabidopsis* (Regulation in Response to
655 Development and the Environment). *Plant Physiology* 113: 729-738

656 Boerjan W, Ralph J (2019) Editorial overview: Plant biotechnology - lignin
657 engineering. *Current Opinion in Biotechnology* 56: iii-v

658 Chanoca A, de Vries L, Boerjan W (2019) Lignin Engineering in Forest Trees.
659 *Frontiers in Plant Science* 10

660 Chazal R, Robert P, Durand S, Devaux MF, Saulnier L, Lapierre C, Guillon F (2014)
661 Investigating Lignin Key Features in Maize Lignocelluloses Using Infrared
662 Spectroscopy. *Applied Spectroscopy* 68: 1342-1347

663 del Río J, Rencoret J, Gutiérrez A, Elder T, Kim H, Ralph J (2020) Lignin Monomers
664 from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in
665 the Wall. *ACS Sustainable Chemistry & Engineering* 8: 4997-5012

666 Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000)
667 Modified lignin in tobacco and poplar plants over-expressing the *Arabidopsis*
668 gene encoding ferulate 5-hydroxylase. *Plant Journal* 22: 223-234

669 Grabber JH, Quideau S, Ralph J (1996) p-coumaroylated syringyl units in maize
670 lignin: Implications for beta-ether cleavage by thioacidolysis. *Phytochemistry*
671 43: 1189-1194

672 Hai G, Jia Z, Xu W, Wang C, Cao S, Liu J, Cheng Y (2016) Characterization of the
673 *Populus PtrCesA4* promoter in transgenic *Populus alba* × *P. glandulosa*. *Plant*
674 *Cell, Tissue and Organ Culture* 124: 495-505

675 Halpin C (2019) Lignin engineering to improve saccharification and digestibility in
676 grasses. *Current Opinion in Biotechnology* 56: 223-229

677 Hatfield RD, Marita JM, Frost K, Grabber J, Ralph J, Lu FC, Kim H (2009) Grass
678 lignin acylation: p-coumaroyl transferase activity and cell wall characteristics of
679 C3 and C4 grasses. *Planta* 229: 1253-1267

680 Ho-Yue-Kuang S, Alvarado C, Antelme S, Bouchet B, Cezard L, Le Bris P, Legege F,
681 Maia-Grondard A, Yoshinaga A, Saulnier L, Guillon F, Sibout R, Lapierre C,
682 Chateigner-Boutin A-L (2016) Mutation in *Brachypodium* caffeic acid O-
683 methyltransferase 6 alters stem and grain lignins and improves straw
684 saccharification without deteriorating grain quality. *Journal of Experimental
685 Botany* 67: 227-237

686 Ishii T (1997) Structure and functions of feruloylated polysaccharides. *Plant Science*
687 127: 111-127

688 Karlen SD, Free HCA, Padmakshan D, Smith BG, Ralph J, Harris PJ (2018)
689 Commelinid Monocotyledon Lignins Are Acylated by p-Coumarate. *Plant
690 Physiology* 177: 513-521

691 Kuroda K, Ozawa T, Ueno T (2001) Characterization of sago palm (*Metroxylon sagu*)
692 lignin by analytical pyrolysis. *Journal of Agricultural and Food Chemistry* 49:
693 1840-1847

694 Kuroda Ki, Nishimura N, Izumi A, Dimmel DR (2002) Pyrolysis of Lignin in the
695 Presence of Tetramethylammonium Hydroxide: A Convenient Method for S/G
696 Ratio Determination. *Journal of Agricultural and Food Chemistry* 50: 1022-
697 1027

698 Lapierre C (1993) Applications of new methods for the investigation of lignin
699 structure. *In* HG Jung, DR Buxton, RD Hatfield, J Ralph, eds, *Forage cell wall*

700 structure and digestibility. American Society of Agronomy Inc., Madison, pp
701 133-163

702 Lapierre C (2010) Determining lignin structure by chemical degradations. *In* CD
703 Heitner, D., JA Schmidt, eds, Lignin and lignans - Advances in Chemistry.
704 CRC Press/Taylor & Francis Group, Boca Raton (FL, United States), pp 11-48

705 Lapierre C, Jouin D, Monties B (1989) On the molecular origin of the alkali solubility
706 of gramineae lignins. *Phytochemistry* 28: 1401-1403

707 Lapierre C, Monties B, Rolando C (1988) Thioacidolyses of diazomethane-
708 methylated pine compression wood and wheat straw *in situ* lignins.
709 *Holzforschung* 42: 409-411

710 Lapierre C, Pilate G, Pollet B, Mila I, Leple JC, Jouanin L, Kim H, Ralph J (2004)
711 Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins.
712 *Phytochemistry* 65: 313-321

713 Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple J-C, Boerjan
714 W, Ferret V, De Nadai V, Jouanin L (1999) Structural Alterations of Lignins in
715 Transgenic Poplars with Depressed Cinnamyl Alcohol Dehydrogenase or
716 Caffeic Acid O-Methyltransferase Activity Have an Opposite Impact on the
717 Efficiency of Industrial Kraft Pulping. *Plant Physiology* 119: 153-163

718 Lapierre C, Pollet B, Rolando C (1995) New Insights into the Molecular Architecture
719 of Hardwood Lignins by Chemical Degradative Methods. *Research on*
720 *Chemical Intermediates* 21: 397-412

721 Leplé JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic
722 poplars: expression of chimeric genes using four different constructs. *Plant*
723 *Cell Reports* 11: 137-141

724 Lu F, Ralph J (1999) Detection and determination of p-coumaroylated units in lignins.

725 Journal of Agricultural and Food Chemistry 47: 1988-1992

726 Lu FC, Ralph J, Morreel K, Messens E, Boerjan W (2004) Preparation and relevance

727 of a cross-coupling product between sinapyl alcohol and sinapyl p-

728 hydroxybenzoate. Organic & Biomolecular Chemistry 2: 2888-2890

729 Mahon EL, Mansfield SD (2019) Tailor-made trees: engineering lignin for ease of

730 processing and tomorrow's bioeconomy. Current Opinion in Biotechnology 56:

731 147-155

732 Marita JM, Hatfield RD, Rancour DM, Frost KE (2014) Identification and suppression

733 of the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase in Zea mays L.

734 Plant Journal 78: 850-864

735 Méchin V, Laluc A, Legée F, Cézard L, Denoue D, Barrière Y, Lapierre C (2014)

736 Impact of the Brown-Midrib bm5 Mutation on Maize Lignins. Journal of

737 Agricultural and Food Chemistry 62: 5102-5107

738 Morreel K, Ralph J, Kim H, Lu FC, Goeminne G, Ralph S, Messens E, Boerjan W

739 (2004) Profiling of oligolignols reveals monolignol coupling conditions in

740 lignifying poplar xylem. Plant Physiology 136: 3537-3549

741 Mottiar Y, Vanholme, Ruben , Boerjan W, Ralph J, Mansfield SD (2016) Designer

742 lignins: harnessing the plasticity of lignification. Current Opinion in

743 Biotechnology 37: 190-200

744 O'Connell A, Holt K, Piquemal J, Grima-Pettenati J, Boudet A, Pollet B, Lapierre C,

745 Petit-Conil M, Schuch W, Halpin C (2002) Improved paper pulp from plants

746 with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol

747 dehydrogenase. Transgenic Research 11: 495-503

748 Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, Liu S, Le Bris P, Antelme S,
749 Santoro N, Wilkerson CG, Sibout R, Lapierre C, Ralph J, Sedbrook JC (2014)
750 p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin
751 biosynthetic pathway in *Brachypodium distachyon*. *Plant Journal* 77: 713-726
752 Pilate G, Dejardin A, Leplé J-C (2012) Field trials with lignin modified transgenic
753 trees. *In* L Jouanin, C Lapierre, eds, *Lignins: Biosynthesis, Biodegradation and*
754 *bioengineering*, Vol 61. Academic Press/Elsevier, London (UK), pp 1-36
755 Ralph J (2010) Hydroxycinnamates in lignification. *Phytochemistry Reviews* 9: 65-83
756 Ralph J, Hatfield RD (1991) Pyrolysis-GC-MS Characterization of Forage Materials.
757 *Journal of Agricultural and Food Chemistry* 39: 1426-1437
758 Ralph J, Lapierre C, Boerjan W (2019) Lignin structure and its engineering. *Current*
759 *Opinion in Biotechnology* 56: 240-249
760 Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD,
761 Ralph SA, Christensen JH, Boerjan W (2004) Lignins: Natural polymers from
762 oxidative coupling of 4-hydroxyphenyl- propanoids. *Phytochemistry Reviews* 3:
763 29-60
764 Sibout R, Le Bris P, Legege F, Cezard L, Renault H, Lapierre C (2016) Structural
765 Redesigning *Arabidopsis* Lignins into Alkali-Soluble Lignins through the
766 Expression of p-Coumaroyl-CoA: Monolignol Transferase PMT. *Plant*
767 *Physiology* 170: 1358-1366
768 Smith DCC (1955) Ester Groups in Lignin. *Nature* 176: 267-268
769 Smith RA, Gonzales-Vigil E, Karlen SD, Park J-Y, Lu F, Wilkerson CG, Samuels L,
770 Ralph J, Mansfield SR (2015) Engineering monolignol p-coumarate conjugates
771 into Poplar and *Arabidopsis* lignins. *Plant Physiology* 169: 2992-3001

772 Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) The Effects on
773 Lignin Structure of Overexpression of Ferulate 5-Hydroxylase in Hybrid
774 Poplar1. *Plant Physiology* 150: 621-635

775 Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the
776 enzymatic hydrolysis of lignocellulosic materials. *Bioresource Technology* 199:
777 49-58

778 Van Acker R, Dejardin A, Desmet S, Hoengenaert L, Vanholme R, Morreel K,
779 Laurans F, Kim H, Santoro N, Foster C, Goeminne G, Legege F, Lapierre C,
780 Pilate G, Ralph J, Boerjan W (2017) Different Routes for Conifer- and
781 Sinapaldehyde and Higher Saccharification upon Deficiency in the
782 Dehydrogenase CAD1. *Plant Physiology* 175: 1018-1039

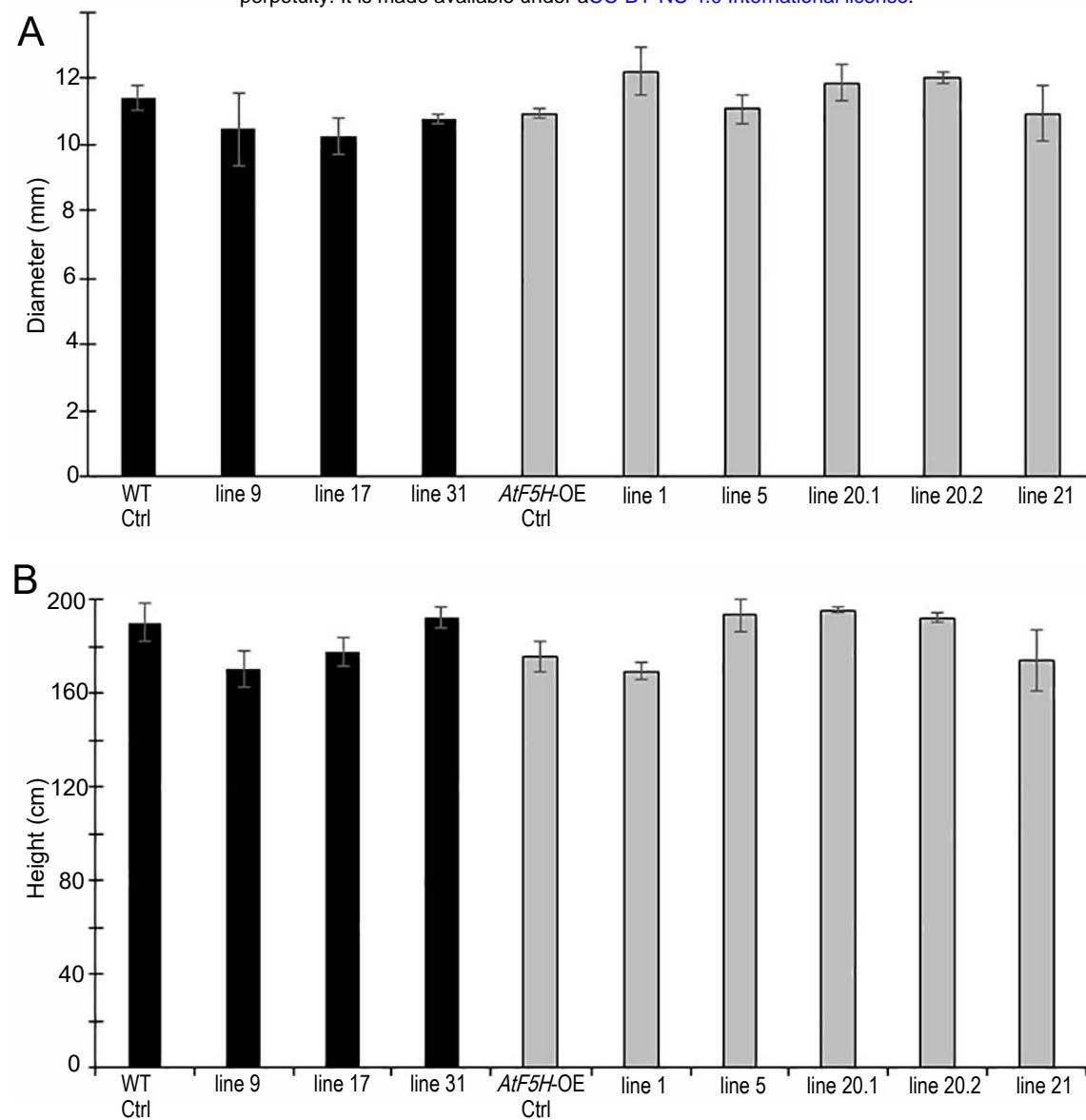
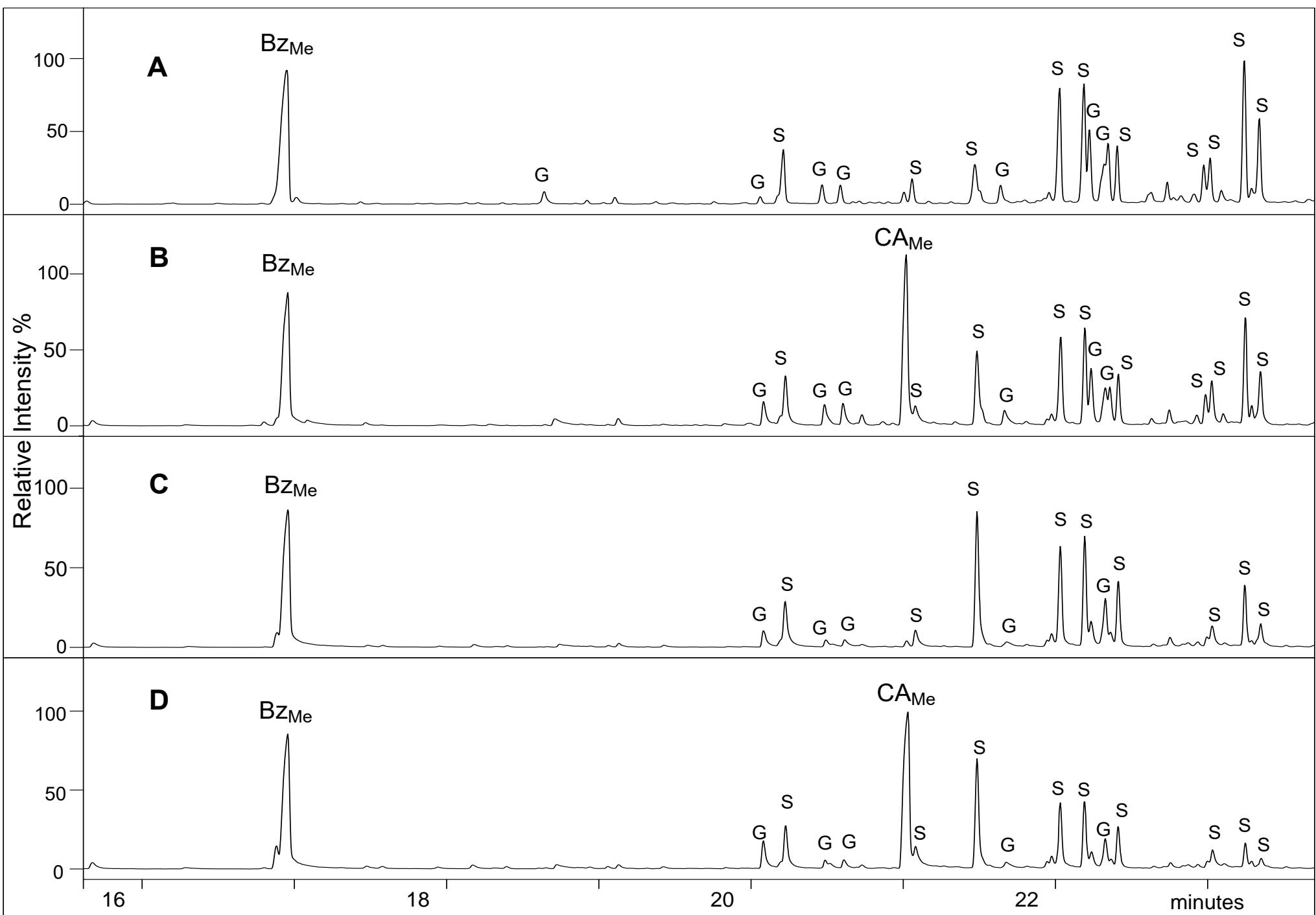
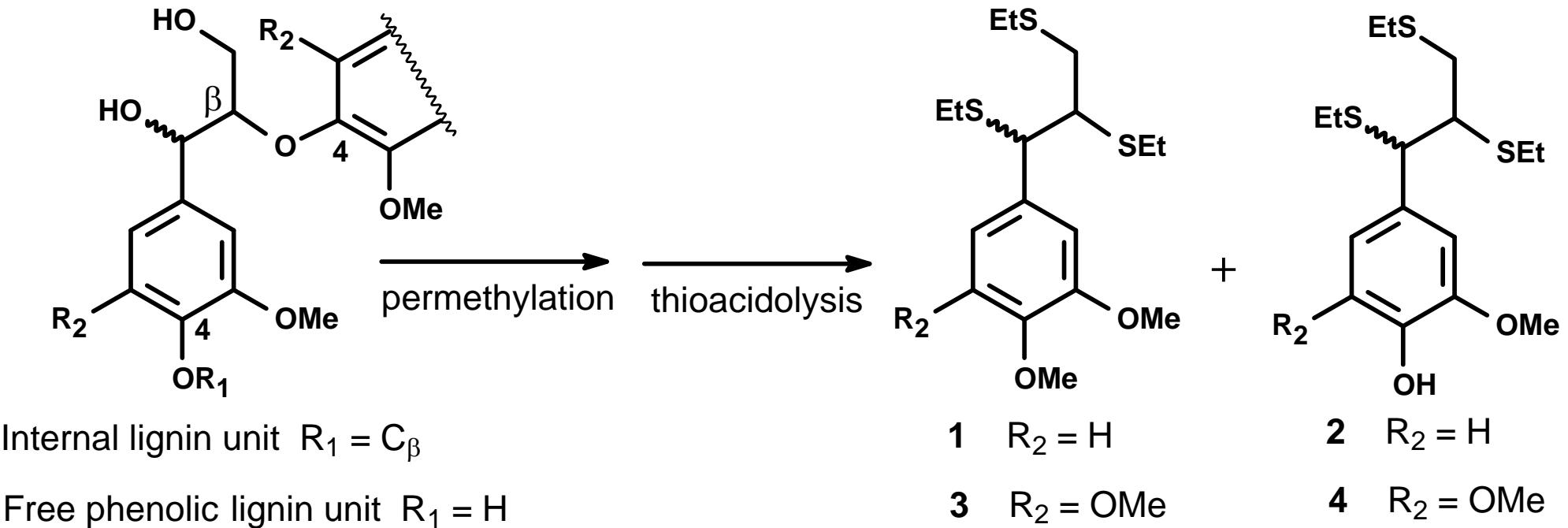
783 Venverloo CJ (1969) The lignin of *Populus nigra* L C.v. "Italica". A comparative study
784 of the lignified structures in tissues cultures and the tissues of the tree. *Acta
785 Botanica Neerlandica* 18: 241-314

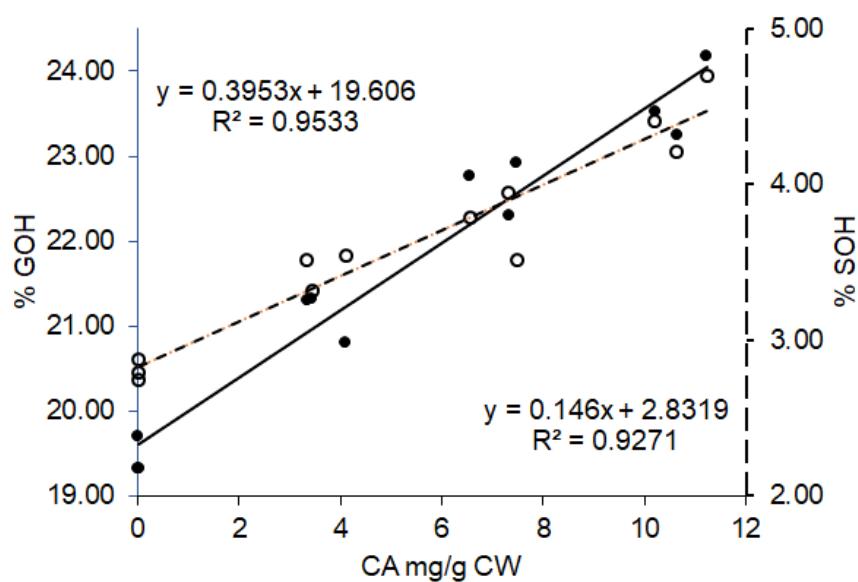
786 Wang P, Dudareva N, Morgan JA, Chapple C (2015) Genetic manipulation of
787 lignocellulosic biomass for bioenergy. *Current Opinion in Chemical Biology* 29:
788 32-39

789 Weng J-K, Li X, Stout J, Chapple C (2008) Independent origins of syringyl lignin in
790 vascular plants. *Proceedings of the National Academy of Sciences* 105: 7887-
791 7892

792 Withers S, Lu F, Kim H, Zhu Y, Ralph J, Wilkerson CG (2012) Identification of Grass-
793 specific Enzyme That Acylates Monolignols with p-Coumarate. *Journal of
794 Biological Chemistry* 287: 8347-8355

795 Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic
796 ethanol. *Biofuels Bioproducts & Biorefining-Biofpr* 2: 26-40


Figure 1. Growth response to the introduction of the *AtC4H:BdPMT1* construct into the poplar WT background (black bars) and into the *AtF5H-OE* background (grey bars), as compared to control (Ctrl) trees. The basal diameter (A) and the tree height (B) were measured on 3-month-old and greenhouse-grown trees. Data are means (and SD) of biological triplicates, except for lines 20.1 and 20.2 (biological duplicates).

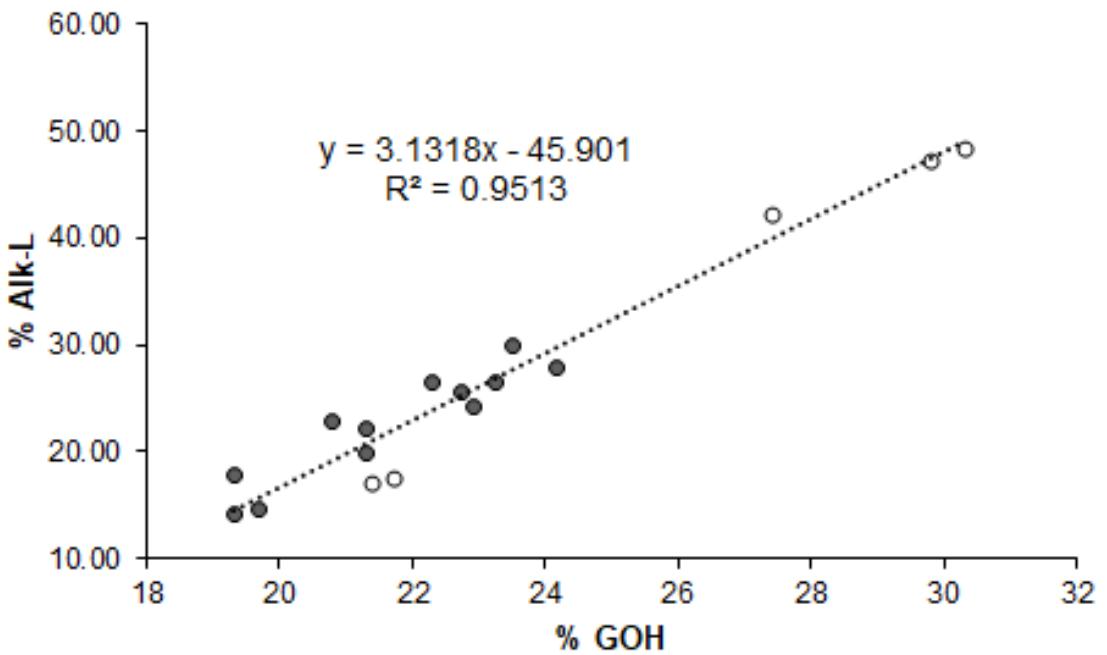

Figure 2. TMAH-Py-GC/MS traces of poplar CW from A) WT control, B) *BdPMT1*-OE/WT line 9, C) *AtF5H*-OE control and D) *BdPMT1*-OE/*AtF5H*-OE line 5. BzMe : 4-methoxybenzoate ; CA_{Me} : methyl 4-methoxy-p-coumarate ; peaks quoted G and S correspond to methylated G and S compounds, respectively.

Figure 3. Principle of the evaluation of free phenolic units in lignin by thioacidolysis of permethylated samples. Lignin units only involved in β -O-4 bonds give rise to thioacidolysis guaiacyl ($R_2 = H$) and syringyl ($R_2 = OMe$) monomers. Terminal G and S units with free phenolic group ($R_1 = H$) are first methylated at C4, then degraded to monomers **1** and **3** (erythro/threo mixture), respectively. Internal G and S units ($R_1 = C_\beta$ of another lignin sidechain) are degraded to monomers **2** and **4**, respectively (erythro/threo mixture).

Figure 4. Relationships between the CA amounts in poplar CWs and the percentage of G lignin units with free phenolic groups (% GOH, black circles, full line) or the percentage of S lignin units with free phenolic groups (% SOH, white circles, dotted lines). The lignin structural traits % GOH and % SOH are evaluated by thioacidolysis of permethylated samples and for *BdPMT1-OE* transformed poplars and their WT controls.

Figure 5. Relationship between the percentage of G lignin units with free phenolic groups (% GOH) and the solubility of poplar lignins in cold alkali (% Alk-L). The data correspond to *BdPMT1-OE* trees and their WT controls (black circles) as well as to CAD-deficient trees and their corresponding controls (white circles).

Parsed Citations

Bell-Lelong DA, Cusumano JC, Meyer K, Chapple C (1997) Cinnamate-4-Hydroxylase Expression in *Arabidopsis* (Regulation in Response to Development and the Environment). *Plant Physiology* 113: 729-738
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Boerjan W, Ralph J (2019) Editorial overview: Plant biotechnology - lignin engineering. *Current Opinion in Biotechnology* 56: iii-v
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chanoca A, de Vries L, Boerjan W (2019) Lignin Engineering in Forest Trees. *Frontiers in Plant Science* 10
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chazal R, Robert P, Durand S, Devaux MF, Saulnier L, Lapierre C, Guillon F (2014) Investigating Lignin Key Features in Maize Lignocelluloses Using Infrared Spectroscopy. *Applied Spectroscopy* 68: 1342-1347
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

del Río J, Rencoret J, Gutiérrez A, Elder T, Kim H, Ralph J (2020) Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall. *ACS Sustainable Chemistry & Engineering* 8: 4997-5012
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000) Modified lignin in tobacco and poplar plants over-expressing the *Arabidopsis* gene encoding ferulate 5-hydroxylase. *Plant Journal* 22: 223-234
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Grabber JH, Quideau S, Ralph J (1996) p-coumaroylated syringyl units in maize lignin: Implications for beta-ether cleavage by thioacidolysis. *Phytochemistry* 43: 1189-1194
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hai G, Jia Z, Xu W, Wang C, Cao S, Liu J, Cheng Y (2016) Characterization of the *Populus PtrCesA4* promoter in transgenic *Populus alba* × *P. glandulosa*. *Plant Cell, Tissue and Organ Culture* 124: 495-505
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Halpin C (2019) Lignin engineering to improve saccharification and digestibility in grasses. *Current Opinion in Biotechnology* 56: 223-229
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hatfield RD, Marita JM, Frost K, Grabber J, Ralph J, Lu FC, Kim H (2009) Grass lignin acylation: p-coumaroyl transferase activity and cell wall characteristics of C3 and C4 grasses. *Planta* 229: 1253-1267
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ho-Yue-Kuang S, Alvarado C, Antelme S, Bouchet B, Cezard L, Le Bris P, Legee F, Maia-Grondard A, Yoshinaga A, Saulnier L, Guillon F, Sibout R, Lapierre C, Chateigner-Boutin A-L (2016) Mutation in *Brachypodium* caffeic acid O-methyltransferase 6 alters stem and grain lignins and improves straw saccharification without deteriorating grain quality. *Journal of Experimental Botany* 67: 227-237
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ishii T (1997) Structure and functions of feruloylated polysaccharides. *Plant Science* 127: 111-127
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Karlen SD, Free HCA, Padmakshan D, Smith BG, Ralph J, Harris PJ (2018) Commelinid Monocotyledon Lignins Are Acylated by p-Coumarate. *Plant Physiology* 177: 513-521
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kuroda K, Ozawa T, Ueno T (2001) Characterization of sago palm (*Metroxylon sagu*) lignin by analytical pyrolysis. *Journal of Agricultural and Food Chemistry* 49: 1840-1847
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kuroda Ki, Nishimura N, Izumi A, Dimmel DR (2002) Pyrolysis of Lignin in the Presence of Tetramethylammonium Hydroxide: A Convenient Method for S/G Ratio Determination. *Journal of Agricultural and Food Chemistry* 50: 1022-1027
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lapierre C (1993) Applications of new methods for the investigation of lignin structure. In HG Jung, DR Buxton, RD Hatfield, J Ralph, eds, *Forage cell wall structure and digestibility*. American Society of Agronomy Inc., Madison, pp 133-163
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lapierre C (2010) Determining lignin structure by chemical degradations. In CD Heitner, D., JA Schmidt, eds, *Lignin and lignans - Advances in Chemistry*. CRC Press/Taylor & Francis Group, Boca Raton (FL, United States), pp 11-48
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lapierre C, Jouin D, Monties B (1989) On the molecular origin of the alkali solubility of gramineae lignins. *Phytochemistry* 28: 1401-1403
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lapierre C, Monties B, Rolando C (1988) Thioacidolyses of diazomethane-methylated pine compression wood and wheat straw in situ lignins. *Holzforschung* 42: 409-411

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lapierre C, Pilate G, Pollet B, Mila I, Leple JC, Jouanin L, Kim H, Ralph J (2004) Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins. *Phytochemistry* 65: 313-321

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple J-C, Boerjan W, Ferret V, De Nadai V, Jouanin L (1999) Structural Alterations of Lignins in Transgenic Poplars with Depressed Cinnamyl Alcohol Dehydrogenase or Caffeic Acid O-Methyltransferase Activity Have an Opposite Impact on the Efficiency of Industrial Kraft Pulping. *Plant Physiology* 119: 153-163

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lapierre C, Pollet B, Rolando C (1995) New Insights into the Molecular Architecture of Hardwood Lignins by Chemical Degradative Methods. *Research on Chemical Intermediates* 21: 397-412

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Leplé JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: expression of chimeric genes using four different constructs. *Plant Cell Reports* 11: 137-141

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lu F, Ralph J (1999) Detection and determination of p-coumaroylated units in lignins. *Journal of Agricultural and Food Chemistry* 47: 1988-1992

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lu FC, Ralph J, Morreel K, Messens E, Boerjan W (2004) Preparation and relevance of a cross-coupling product between sinapyl alcohol and sinapyl p-hydroxybenzoate. *Organic & Biomolecular Chemistry* 2: 2888-2890

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mahon EL, Mansfield SD (2019) Tailor-made trees: engineering lignin for ease of processing and tomorrow's bioeconomy. *Current Opinion in Biotechnology* 56: 147-155

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Marita JM, Hatfield RD, Rancour DM, Frost KE (2014) Identification and suppression of the p-coumaroyl CoAhydroxycinnamyl alcohol transferase in *Zea mays* L. *Plant Journal* 78: 850-864

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Méchin V, Laluc A, Legée F, Cézard L, Denoue D, Barrière Y, Lapierre C (2014) Impact of the Brown-Midrib *bm5* Mutation on Maize Lignins. *Journal of Agricultural and Food Chemistry* 62: 5102-5107

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Morreel K, Ralph J, Kim H, Lu FC, Goeminne G, Ralph S, Messens E, Boerjan W (2004) Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem. *Plant Physiology* 136: 3537-3549

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mottiar Y, Vanholme, Ruben, Boerjan W, Ralph J, Mansfield SD (2016) Designer lignins: harnessing the plasticity of lignification. *Current Opinion in Biotechnology* 37: 190-200

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

O'Connell A, Holt K, Piquemal J, Grima-Pettenati J, Boudet A, Pollet B, Lapierre C, Petit-Conil M, Schuch W, Halpin C (2002) Improved paper pulp from plants with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol dehydrogenase. *Transgenic Research* 11: 495-503

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, Liu S, Le Bris P, Antelme S, Santoro N, Wilkerson CG, Sibout R, Lapierre C, Ralph J, Sedbrook JC (2014) p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in *Brachypodium distachyon*. *Plant Journal* 77: 713-726

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pilate G, Dejardin A, Leplé J-C (2012) Field trials with lignin modified transgenic trees. In L Jouanin, C Lapierre, eds, *Lignins: Biosynthesis, Biodegradation and bioengineering*, Vol 61. Academic Press/Elsevier, London (UK), pp 1-36

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ralph J (2010) Hydroxycinnamates in lignification. *Phytochemistry Reviews* 9: 65-83

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ralph J, Hatfield RD (1991) Pyrolysis-GC-MS Characterization of Forage Materials. *Journal of Agricultural and Food Chemistry* 39: 1426-1437

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ralph J, Lapierre C, Boerjan W (2019) Lignin structure and its engineering. *Current Opinion in Biotechnology* 56: 240-249

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. *Phytochemistry Reviews* 3: 29-60

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sibout R, Le Bris P, Legege F, Cezard L, Renault H, Lapierre C (2016) Structural Redesigning *Arabidopsis* Lignins into Alkali-Soluble Lignins through the Expression of p-Coumaroyl-CoA: Monolignol Transferase PMT. *Plant Physiology* 170: 1358-1366

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Smith DCC (1955) Ester Groups in Lignin. *Nature* 176: 267-268

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Smith RA, Gonzales-Vigil E, Karlen SD, Park J-Y, Lu F, Wilkerson CG, Samuels L, Ralph J, Mansfield SR (2015) Engineering monolignol p-coumarate conjugates into Poplar and *Arabidopsis* lignins. *Plant Physiology* 169: 2992-3001

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) The Effects on Lignin Structure of Overexpression of Ferulate 5-Hydroxylase in Hybrid Poplar1. *Plant Physiology* 150: 621-635

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials.

Bioresource Technology 199: 49-58

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Van Acker R, Dejardin A, Desmet S, Hoengenaert L, Vanholme R, Morreel K, Laurans F, Kim H, Santoro N, Foster C, Goeminne G, Legege F, Lapierre C, Pilat G, Ralph J, Boerjan W (2017) Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1. *Plant Physiology* 175: 1018-1039

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vennerloo CJ (1969) The lignin of *Populus nigra* L C.v. "Italica". A comparative study of the lignified structures in tissues cultures and the tissues of the tree. *Acta Botanica Neerlandica* 18: 241-314

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang P, Dudareva N, Morgan JA, Chapple C (2015) Genetic manipulation of lignocellulosic biomass for bioenergy. *Current Opinion in Chemical Biology* 29: 32-39

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Weng J-K, Li X, Stout J, Chapple C (2008) Independent origins of syringyl lignin in vascular plants. *Proceedings of the National Academy of Sciences* 105: 7887-7892

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Withers S, Lu F, Kim H, Zhu Y, Ralph J, Wilkerson CG (2012) Identification of Grass-specific Enzyme That Acylates Monolignols with p-Coumarate. *Journal of Biological Chemistry* 287: 8347-8355

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. *Biofuels Bioproducts & Biorefining-Biofpr* 2: 26-40

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)