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One-sentence summary

The expression of a grass p-coumaroyl-CoA:monolignol transferase induces a high
p-coumaroylation of poplar lignins and a better saccharification of alkali-pretreated

poplar wood without growth penalty
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ABSTRACT

Transgenic poplars (Populus tremula x Populus alba, clone INRA 717-1B4) were
produced by introducing the Brachypodium distachyon Bradi2g36910 (BdPMT1)
gene driven by the Arabidopsis (Arabidopsis thaliana) Cinnamate 4-Hydroxylase
(AtC4H) promoter in the wild-type (WT) line and in a line overexpressing the
Arabidopsis Ferulate 5-Hydroxylase (AtF5H). BAPMTL1 encodes a transferase which
catalyzes the acylation of monolignols by p-coumaric acid (CA). Several BAPMT1-
OE/WT and BdPMT1-OE/AtF5H-OE transgenic lines were grown in the greenhouse
and BAPMT1 expression in xylem was confirmed by RT-PCR. The analysis of the cell
walls (CW) of poplar stems and of corresponding purified dioxan lignins (DL)
revealed that the BAPMT1-OE lignins were as p-coumaroylated as the lignins of C3
grass straws. For some transformants, CA levels even reached about 11 mg/g CW
and 66 mg/g DL, which by far exceeds those of Brachypodium or wheat samples.
This unprecedentedly high p-coumaroylation of poplar lignins affected neither the
poplar growth, nor the stem lignin content. By contrast, the transgenic lignins were
structurally modified, with an increase of terminal units with free phenolic groups.
Relative to controls, this increase argues for a reduced polymerization degree of
BdPMT1-OE lignins and makes them more soluble in cold NaOH solution. The p-
coumaroylation of poplar samples, up to the levels of C3 grasses, improved the
saccharification yield of alkali-pretreated poplar CW. These results establish that the
genetically-driven p-coumaroylation of lignins is a promising strategy to make wood
lignins more susceptible to the alkaline treatments that can be used during the

industrial processing of lignocellulosics.
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INTRODUCTION

Wood appears as a major feedstock for traditional or innovative biorefineries
producing pulp, chemicals or fermentable sugars. However, most industrial
fractionations of lignocellulosics are detrimentally affected by lignins. For instance,
the enzymatic hydrolysis of cellulose into glucose, referred to as saccharification, is
severely hampered by lignins that hinder the accessibility of enzymes to CW
polysaccharides. Indeed, the economically effective production of cellulosic ethanol
necessitates costly, polluting and energy-intensive pretreatments that most often aim
at reducing the lignin shield effect (Yang and Wyman, 2008; Sun et al., 2016). Since
the last decades, lignin engineering in trees has been the subject of intensive studies
to produce tailor-made wood more amenable to efficient deconstruction by milder
processes (Pilate et al., 2012; Chanoca et al., 2019; Mahon and Mansfield, 2019).
However, lignins play key roles in wood and sufficient lignin amounts are required to
warrant tree growth, development and defense. On this basis, reducing lignin content
may result in impaired tree growth and redesigning lignin structure appears as a
better strategy to obtain wood biomass more adapted to industrial deconstruction

without yield penalty.

Lignins primarily result from the enzymatically-driven oxidation of monolignols,
mainly coniferyl alcohol and sinapyl alcohol that give rise to guaiacyl (G) and syringyl
(S) units, respectively. It is now well established that lignin biosynthesis is very plastic
and that, besides the main monolignols, a number of other molecules may participate
to the formation of lignin polymers (Mottiar et al., 2016; del Rio et al., 2020). For
instance, p-coumaroylated sinapyl alcohol and, to a lower extent, p-coumaroylated
coniferyl alcohol, are naturally incorporated into grass lignins (Grabber et al., 1996;

Lu and Ralph, 1999; Hatfield et al., 2009; Ralph, 2010). This p-coumaroylation of
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grass monolignols is specifically catalyzed by a p-coumaroyl-coenzyme A monolignol
transferase (PMT) studied in various grass species (Hatfield et al., 2009; Withers et
al., 2012; Marita et al., 2014; Petrik et al., 2014). The p-coumaroylation of dicot
lignins was recently achieved by introducing the rice PMT gene into poplar and
arabidopsis plants (Smith et al., 2015), but the p-coumaroylation level of transgenic
dicot CW reported in this study was modest (varying from 1 to 3.5 mg/g CW) and
much lower than that of lignified grass stems (CA ranging from 6 to 39 mg/g CW)
(Hatfield et al., 2009). By contrast, the introduction of two different Brachypodium
PMT genes (BAPMT1 or BAPMT2) under the control of the AtC4H promoter into
various Arabidopsis lines boosted the p-coumaroylation of mature stem lignins up to
the grass lignin level (Sibout et al., 2016). In addition to a high CA content, the
Arabidopsis BAPMT1-OE lignins displayed other traits specific to grass lignins, i.e. a
high frequency of free phenolic units in lignins and an increased solubility in cold

alkali.

In this work, we explored the potential of introducing the proAtC4H::BdPMT1
construct into poplar in order to beneficially tailor lignin structure without biomass
penalty. To this end, BAPMT1 was expressed not only in the poplar WT background,
but also in a transgenic poplar line overexpressing the AtF5H gene (AtF5H-OE). By
so doing, we obtained several independent transformants that were grown in the
greenhouse together with the corresponding controls during 3 months. In this study,
we first evaluated the growth of the BAPMT1-OE lines and the p-coumaroylation of
their stem lignins, as compared to control trees. We then investigated the effect of the
BdPMT1 expression on lignin content and structure before subjecting the transgenic

and control poplar stems to alkali-solubilization assays and saccharification tests.

RESULTS AND DISCUSSION
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The Expression of Heterologous BAPMT1 Gene under the Control of the AtC4H

Promoter Does not Alter Poplar Growth

The BAPMT1 acyltransferase (referred to as Bradi2g36910) has been shown
to be specific to monolignol p-coumaroylation (Petrik et al., 2014). It is also the
closest homologue of the rice OsPMT that was introduced by Smith et al. (2015) into
poplar and Arabidopsis plants. As the AtC4H promoter confers a vascular specific
expression (Bell-Lelong et al., 1997), the proAtC4H::BdPMTL1 construct was
introduced into poplar trees in order to preferentially express BAPMT1 in the xylem
tissues during the lignification step. The transformation was performed in two poplar
genetic backgrounds, the WT line and a transgenic line overexpressing the AtF5H
gene. The AtF5H expression was driven by a poplar cellulose synthase A4 promoter,
known to be highly active in the fibers and vessels of poplar developing xylem (Hai et
al., 2016). The AtF5H-OE poplar line was chosen to test the hypothesis that the p-
coumaroylation of poplar lignins may be favored by a high frequency of S units based
on the two following published data: a) the p-coumaroylation of grass lignins mostly
occurs on S units (reviewed in Ralph, 2010; Karlen et al., 2018)) and b)
overexpressing the AtF5H gene in poplar substantially increases the frequency of S

lignin units (Franke et al., 2000).

The Agrobacterium tumefaciens-mediated transformation yielded 14
independent transformants in the WT background (referred to as BAPMT1-OE/WT
lines) and 9 in the AtF5H-overexpressing background (referred to as BAPMT1-
OE/AtF5H-OE lines). Three BAPMT1-OE/WT lines and five BAPMT1-OE/AtF5H-OE
lines were selected for further analyses: they were acclimatized and grown for three
months in the greenhouse together with corresponding control plants (Supplemental

Fig.S1 A). RT-PCR with BAPMT1 specific primers revealed a substantial BAPMT1
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transcript abundance in developing xylem, with some variations between the
BdPMT1-OE lines, whereas no BAPMTL1 expression could be detected in the WT or
AtF5H-OE control trees. Likewise, when using primers directed to AtF5H , a strong

RT-PCR signal was observed in all the AtF5H-OE transgenic lines.

In the BAPMT1-OE/WT lines, the poplar plants did not show any phenotype
different from the WT trees. However, in the AtF5H-OE background, two lines
(referred to as lines 5 and 20.2) displayed patches of reddish coloration in the
developing xylem, mostly at the nodes (Supplemental Fig. S1 B-C). Relative to the
control trees, the BAPMT1-OE did not induce any significant difference in growth and

height (Fig. 1).

The BAPMT1-OE Poplar Stems and their Corresponding Purified Dioxane

Lignin Fractions Are p-Coumaroylated up to the Levels of C3 Grass Samples

CW samples from the stems of 3-month-old greenhouse-grown poplar trees
were subjected to mild alkaline hydrolysis to quantify p-hydroxybenzoic acid (Bz), p-
coumaric acid (CA) and ferulic acid (FA) ester-linked to CW polymers. Poplar wood is
typified by the occurrence of p-hydroxybenzoic acid ester-linked to lignins (Smith,
1955; Venverloo, 1969) and preferentially to the y position of S lignin units (Lu et al.,
2004; Morreel et al., 2004). Most BAPMT1-OE poplar samples displayed similar p-
hydroxybenzoylation levels as their corresponding controls (Table I). In addition to
Bz, mild alkaline hydrolysis of poplar samples released small amounts of FA
consistently obtained in slightly smaller quantities in BAPMT1-OE/WT lines compared
to WT, whereas BAPMT1-OE/AtF5H-OE lines 5 and 20.2 delivered more FA than the

other AtF5H-OE lines (Table I). In plant CW, FA preferentially acylates non cellulosic
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polysaccharides (Ishii, 1997) and the small differences of FA esters between poplar

lines might reflect some structural variations in these CW components.

While expressing the BAPMTL1 gene both in the WT and the AtF5H-OE
backgrounds had little or no effect on Bz or FA units ester-linked to poplar CW, this
transformation increased CW p-coumaroylation to different levels with CA quantity
ranging between 0.76 to 11.11 mg/g CW, as compared to the trace amounts of the
controls (Table I). Remarkably enough, this quantity was boosted up to about 11
mg/g CW in BAPMT1-OE/WT line 17, BAPMT1-OE/AtF5H-OE line 5 and BAPMT1-
OE/AtF5H-OE line 20.2. As compared to grass mature stems, the CA levels of these
three poplar lines exceeded those of most C3 grass CW, but remained lower than
those of C4 grass CW (Supplemental Table S1). With the exception of one line, the
obtained BAPMT1-OE poplar lines were as p-coumaroylated as extract-free
proAtC4H::BdPMTL1 Arabidopsis mature stems (CA amounts ranging between 3.5
and 12.6 mg/g CW) (Sibout et al., 2016). By contrast, these levels were much higher
than the values reported for OsPMT-OE poplar lines (CA range : 1.2-3.5 mg/g CW) or
for OsPMT-OE Arabidopsis lines (CA range : 1.0-2.0 mg/g CW) when OsPMT
expression was driven by the CAULIFLOWER MOSAIC VIRUS promoter or by the
CELLULOSE SYNTHASE7 promoter (Smith et al., 2015). In agreement with this
study (Smith et al., 2015), the p-coumaroylation of poplar CW did not affect their p-
hydroxybenzoylation (Table 1). The high p-coumaroylation of poplar CWs obtained in
the present work is very likely related to the efficiency of the AtC4H promoter, in
agreement with recent data obtained with BAPMT1-OE Arabidopsis lines (Sibout et

al., 2016).

Isolation of DL fractions followed by their mild alkaline hydrolysis recently

proved to be an efficient strategy to demonstrate that CA units introduced in
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BdPMT1-transformed arabidopsis plants are ester-linked to lignins (Sibout et al.,
2016). The isolation method consists in mild acidolysis (refluxing CW samples in
dioxane/0.2 M aq. HCI for 30 min under N;), which provides a rough lignin extract
then purified to recover DL fractions. This isolation method relies on the hydrolysis of
some ether bonds in lignins to make the insoluble native lignin polymers partially
soluble into the reaction medium. The purified DL fractions contain a low amount of
sugar contaminants (< 10% by weight) and the mild isolation procedure mostly
preserve lignin-linked CA esters, if present (Chazal et al., 2014). Purified poplar DL
fractions were isolated from a few control and BAPMT1-OE poplar lines and then
subjected to mid-IR spectroscopy. Their mid-IR spectra not only confirmed their low
contamination by sugar components, but also suggested that the lignin fractions
isolated from BAPMT1-OE/WT and BdPMT1-OE/AtF5H-OE lines were enriched in
CA esters (Supplemental Fig. S2). Relative to their respective controls, the IR spectra
from BAPMT1-OE lines displayed increased signals at 1604, 1164 and 833 cm™,
which can be assigned to the occurrence of CA units (Chazal et al., 2014). More
importantly, high CA amounts (from 31 to 66 mg/g DL, Table Il) were released by
mild alkaline hydrolysis of the purified DL fractions isolated from BAPMT1-OE poplar
lines, as confirmed by both HPLC and GC/MS analyses (Supplemental Fig. S3). The
upper values were similar to the CA levels of DL fractions isolated from C3 grass
CW, but remained lower than those of DL fractions isolated from C4 grass species
(Supplemental Table S1). Alkaline hydrolysis of the DL fractions isolated from control
samples released noticeable amounts of CA units (Table II), which reveals that CA
acylates poplar lignins to a weak extent and in agreement with results obtained for
Arabidopsis lignins (Sibout et al., 2016). The CA contents of DL fractions from

BdPMT1-OE poplar line were found to be 6- to 10-fold higher than those from the

10
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corresponding CW. Such an outstanding enrichment definitely establishes that most

CA units introduced in the transgenic poplars are ester-linked to lignins.

Analytical Pyrolysis Further Confirms the High p-Coumaroylation of BAPMT1-

OE Poplar Lines

The main advantages of the pyrolysis-gas chromatography/mass spectrometry
(Py-GC/MS) method is its high throughput screening capabilities together with its low
sample demand (Ralph and Hatfield, 1991; Lapierre, 1993). When subjected to this
method, lignified CW samples provide lignin-derived phenolics originating from G and
S lignin units. In addition, during pyrolysis, ester-linked Bz and CA units (if present)
are decarboxylated to produce phenol (P) and vinylphenol (VP), respectively. The
relative abundances (area %) of the main G and S pyrolysis products and of P and
VP generated from the poplar CW samples are listed in Table Ill. The relative
percentage of pyrolysis-derived P did not discriminate the various transgenic samples
from their control. This result is quite consistent with mild alkaline hydrolysis which
provided similar Bz amounts from most transgenic lines and their respective controls.
By contrast, the relative importance of VP was dramatically increased in the
BdPMT1-OE lines as compared to their controls. Such a relative increase
concomitantly decreased the relative percentage of the lignin-derived pyrolysis
compounds ((S+G) in Table Il1). Even though the pyrolysis VP might originate from
tyrosine residues of putatively present protein contaminants, it is essentially produced
from the decarboxylation of CW-linked CA units (Ralph and Hatfield, 1991). The VP
relative abundance was found to nicely echoe the level of alkali-releasable CA, as
revealed by the positive correlation between CA amount and the % VP (R? = 0.982,
Supplemental Fig. S4). In other words, the relative importance of pyrolysis-derived

VP may be viewed as a good signature of the CW p-coumaroylation level. To further

11
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confirm that VP prominently originates from CA decarboxylation, a few pyrolysis
assays were carried out in the presence of tetramethylammonium hydroxyde
(TMAH). The TMAH-Py-GC/MS method yields methyl 4-methoxybenzoate (Bzye) and
methyl 4-methoxy-p-coumarate (CAwe) from Bz and CA units, respectively (Kuroda et
al., 2001; Kuroda et al., 2002). As shown in the pyrograms oulined in Fig. 2, the
relative intensity of the Bzye peak was similar in the BAPMT1-OE and in their
corresponding controls whereas the CAye peak was prominent in the BAPMT-OE

poplar lines.

The pyrolysis S/G ratio calculated from the relative importance of lignin-
derived S and G pyrolysis compounds was not significantly affected in the BAPMT1-
OE/WT lines (Table Il). This result suggests that the proportion of G and S lignin unit
Is not affected by the transformation. In agreement with literature data (Franke et al.,
2000; Stewart et al., 2009), this ratio was substantially increased in the AtF5H-OE
control line as well as in the BAPMT1-OE/AtF5H-OE lines 1, 20.1 and 21. By
contrast, the BAPMT1-OE/AtF5H-OE lines 5 and 20.2, which were provided with a
patchy reddish xylem coloration and the highest CA levels, displayed much lower
pyrolysis S/G ratios (Table 1ll), in agreement with the reduced Malle staining
observed on stem transverse sections from these lines (Supplemental Fig. S1 D).
This result suggests that the substantial participation of p-coumaroylated monolignols

to lignification somehow counteracted the AtF5H-OE related enrichment in S units.

The proAtC4H::BdPMT1 Transformation Has no or Little Effect on the Lignin

Content of Poplar Stems, but a Strong Impact on Lignin Structure

The most p-coumaroylated transgenic poplar lines were analyzed for their
lignin contents, using both the Klason Lignin (KL) and the Acetyl Bromide Lignin

(ABL) methods (Table V). With the exception of the BAPMT1-OE/AtF5H-OE line 5

12
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displaying slightly higher KL and ABL contents, the BAPMT1 transformation had no
impact on the lignin content of the poplar stem CW. This result contrasts with those
obtained for proAtC4H::BdPMT1 Arabidopsis transformants provided with similar p-
coumaroylation levels as these poplar transgenics, but with 10 to 30% lower lignin
contents than their controls (Sibout et al., 2016). Introducing the proAtC4H::BdPMT1
into Arabidopsis plants seemed to affect the metabolic flux to lignins and thereby the
stem lignin content whereas such an effect was not observed in the BAPMT1-OE

poplar lines.

A major structural trait of native lignins is their percentage of free phenolic
groups, which has a strong impact on lignin susceptibility towards industrial alkaline
or oxidative treatments. When thioacidolysis is performed on CW exhaustively
permethylated with diazomethane or trimethylsilyldiazomethane (TMSD), the
percentages of free phenolic groups in 3-O-4 linked G or S lignin units, referred to as
% GOH or % SOH, can be evaluated. These percentages have been shown to nicely
parallel that of the whole polymer (Lapierre, 2010). With the objective to evaluate the
impact of the BAPMT1 transformation on the structure of poplar native lignins, we
employed this analytical approach, the principle of which is outlined in Fig. 3. Past
studies have shown that the thioacidolysis yield is not affected by the mild
permethylation procedure (Lapierre et al., 1988; Lapierre, 2010). Whatever the
sample, the p-hydroxyphenyl (H) thioacidolysis monomers were found to be obtained
as trace components (less than 1% of the monomer yield) and, in consequence,
these minor H units were not considered in the following. In agreement with the Py-
GC/MS data, the thioacidolysis S/G ratio was not affected by the BAPMT1
transformation in the WT background (Table V). Not unexpectedly and as compared

to the WT, the thioacidolysis S/G ratio was found to be drastically increased in the
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AtF5H-OE control sample as well as in the BAPMT1-OE/AtF5H-OE lines 20.1 and 21
(Table V). Consistently with the pyrolysis data (Table Ill), the two BAPMT1-
OE/AtF5H-OE lines 5 and 20.2, which are provided with the highest p-coumaroylation
levels (Table I), displayed S/G ratios close to those observed in the WT background.
This result confirms that the high p-coumaroylation level of these two poplar lines
somehow hinders the AtF5H-driven enrichment in S units by a mechanism which

remains to be explained.

In agreement with literature data (Lapierre, 1993, 2010), the control poplar
samples displayed a % GOH and a % SOH close to 20% and 3%, respectively, which
confirms that S units essentially are internal units. These percentages were
significantly increased in the p-coumaroylated lignins of the BAPMT1-OE poplar lines
(Table V). The increase in % GOH or in % SOH was found to be nicely correlated to
the CA level of the BAPMT1-OE/WT lines (R* = 0.95 for % GOH and 0.93 for %
SOH) (Fig. 4). This result means that the incorporation of p-coumaroylated
monolignols in poplar lignins increases the frequency of free phenolic terminal units
relative to internal units. Such a structural change may be accounted for by the
occurrence of lignin polymers with lower polymerization degree and/or with a higher

content of biphenyl or biphenyl ether branching structures.

The alkaline hydrolysis of the DL fractions isolated from the BAPMT1-OE
poplar lines revealed that their CA units were primarily ester-linked to lignins. With
the objective to more precisely localize these CA esters on lignin units, we subjected
some poplar samples to 1-hour long thioacidolysis experiments, followed by Raney
nickel desulfuration in order to identify the syringylpropanol and/or guaiacylpropanol
units acylated by p-dihydrocoumaric acid (diHCA). This short thioacidolysis time is

necessary as CA esters do not survive the standard 4-hour long thioacidolysis
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method (Lapierre, 1993; Sibout et al., 2016). When applied to the BAPMT1-OE/WT
line 17, the method provided substantial amount of syringylpropanol acylated by
diHCA while this dimer could not be observed with a longer thioacidolysis duration
(Supplemental Fig. S5 and Supplemental Table S2). Interestingly enough and by
contrast to the results reported by Smith et al. (2015), its G analogue could not be
detected. Taken together and similarly to grass lignins, these results support the
hypothesis that the p-coumaroylation of poplar transformants primarily involves S

lignin units.

The analysis of the lignin-derived dimers obtained with the standard
thioacidolysis method followed by Raney nickel desulfuration confirmed that lignins
from BAPMT1-OE poplars were structurally different from control lignins. The main
difference was related to the relative importance of the syringaresinol-derived dimer,
expressed as percentage of the total area of the main dimers (set to 100) : this
relative percentage was increased from (18.5 £ 1.7)% for the WT sample up to (26.1
+ 1.9)% for the BAPMT1-OE/WT line 17 line (mean and SD for duplicate analyses).
The syringaresinol structures exclusively originate from the dimerization of sinapyl
alcohol and are thus starting points for lignin growth (Ralph et al., 2004). Their higher
relative recovery from the BAPMT1-OE/WT line 17 further argues for the occurrence

of lignin polymers with lower polymerization degrees than in the control sample.

The BAPMT1-driven Substantial p-Coumaroylation of Poplar Samples Makes

their Lignins more Easily Solubilized in Cold Alkali

The enrichment in free phenolic G and S units is very likely to improve the
lignin susceptibility to alkaline treatments that are employed in chemical pulping or in
the cellulose-to-ethanol conversion process. The impact of % GOH on the CW

delignification induced by alkaline treatment has been established for a long time for
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grass samples (Lapierre et al., 1989; Lapierre, 2010) and confirmed for poplar trees
deficient in Cinnamyl Alcohol Dehydrogenase (CAD) activity (Lapierre et al., 1999;
Lapierre et al., 2004; Van Acker et al., 2017), for tobacco plants deficient in
Cinnamoyl-Coenzyme A Reductase (CCR) activity (O'Connell et al., 2002) and for
BdPMT1-transformed Arabidopsis lines (Sibout et al., 2016). The results of a mild
alkaline treatment applied to the poplar samples are shown in Table VI. The residue
recovered after this treatment, referred to as the saponified residue (SR), was
obtained with similar yields whatever the line. However, its lignin amount was found
to be lower in BAPMT1-OE lines relative to their control (Table VI). Consistently with
these results, the percentage of the alkali-soluble lignin (%AIlk-L) revealed that the
BdPMT1-OE lines are more easily delignified by the employed mild alkaline
treatment. Whereas 15 to 20 % of the lignin polymers were solubilized by cold alkali
for the controls, the %Alk-L was substantially increased in the BAPMT1-OE lines. As
reported for transgenic CAD- or CCR-deficient plants (Lapierre et al., 1999;
O'Connell et al., 2002), increasing the % GOH has beneficial effects on the kraft
pulping properties of the lignocellulosic biomass, thereby decreasing the energy and
environmental costs of this industrial process.The introduction of BAPMTL1 in trees

would likely improve the pulping properties of poplar wood.

The relationship of the free phenolic groups in poplar lignins to their
susceptibility towards cold alkaline treatment is further illustrated in Fig. 5. On this
scheme, we have gathered the data from 17 different poplar lines, comprising the
current BAPMT1-OE/WT lines and CAD-deficient ones (Lapierre et al., 2004),
together with their respective controls. The effect of the % GOH structural property
onto the solubility of poplar lignins in cold alkali is supported by the positive

correlation between % GOH and % Alk-L (R? = 0.9513).
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The BAPMT1-Driven p-Coumaroylation of Poplar Samples Results in Improved

Saccharification after Cold Alkaline Pretreatment

It is well established that the detrimental role of lignins on the cost-effective
enzymatic conversion of lignocellulosic polysaccharides into fermentable sugars
makes necessary the use of pretreatments (Yang and Wyman, 2008; Wang et al.,
2015; Sun et al., 2016). From the analytical data that we obtained so far on the
BdPMT1-OE poplar lines, we could anticipate that an alkaline pretreatment would be
well suited to reduce the lignin-related recalcitrance of poplar wood to
saccharification. Accordingly, the saccharification experiments run on the poplar
samples were preceded by a cold alkaline pretreatment (aq. NaOH 1M, overnight,
room temperature). The saccharification efficiency was evaluated both by the weight
loss (% WL) and by the amount of released glucose (Glc) (Table VII). Both
parameters were higher in the BAPMT1-OE lines, compared with their control. Not
unexpectedly and within each background, the best saccharification results were
obtained for the lines provided with the concomitantly highest CA level, % GOH and
% Alk-L. The enrichment of poplar lignins in free phenolic groups made these lignins
more easily solubilized in alkali, which consequently improved the saccharification of
alkali-pretreated samples. Taken together, these results reveal that the lignins from
the current BAPMT1-OE poplar plants share common features with grass lignins. As
compared to non grass lignins from WT plants, these common features are a) a
substantial p-coumaroylation of S lignin units, b) a higher level of free phenolic units,
and c) a higher solubility in cold alkali. At this point, we may hypothesize that, similar
to grass lignins, lignins from the BAPMT1-OE poplar lines obtained herein are
distributed in the cell walls as small lignin domains which are both rich in free

phenolic groups and more easily extracted by cold alkali treatment (Lapierre, 2010).
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CONCLUSION

In this study, we have shown that p-coumaroylating poplar lignins up to the
level of grass lignins has consequences that go far beyond a simple lignin decoration
and that deeply change not only lignin structural traits, but also important industrial
potentialities of lignified CW. Remarkably enough the proAtC4H::BdPMT1
transformation introduced neither any growth penalty, nor reduced lignin content in
the various transgenic greenhouse-grown poplar lines that were obtained in two
genetic backgrounds. In agreement with a recent study (Sibout et al., 2016),
choosing the lignin-specific AtC4H promoter to drive the heterologous expression of

BdPMT1 in dicot CW had very likely a key role in changing wood properties.

Since the last decades and with the objective to facilitate the industrial
conversion of lignocellulosics into pulp or into bioethanol, many approaches have
been used to genetically modify lignin content and/or structure (reviewed in (Boerjan
and Ralph, 2019; Halpin, 2019; Mahon and Mansfield, 2019; Ralph et al., 2019)).
Among the lignin structural traits that can be affected by the genetic transformation of
angiosperm species, the S/G ratio is probably the most systematically scrutinized one
(Chanoca et al., 2019). By contrast, the relative frequency of free phenolic units in
native lignins is a key structural trait which is surprisingly overlooked despite its
biological significance and its major effect on the susceptibility of lignins to alkaline or
oxidative treatments. In past studies, redesigning native lignins with more free
phenolic groups (and therefore with increased alkali-solubility) could be obtained with
other genetic transformations, such as CCR or CAD down-regulation (O'Connell et
al., 2002; Lapierre et al., 2004). In this work, we provide another compelling evidence

that the genetically-driven increase of free phenolic units in lignins is an efficient
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strategy for the rational design of lignocellulosics more adapted to industrial

biorefineries.

MATERIALS AND METHODS

Production of Plant Materials

The proAtC4H::BdPMT1 construct used for poplar genetic transformation was
the same as the one described in (Sibout et al., 2016), with the BAPMT1 sequence
inserted into the pCC0996 vector under the control of the AtC4H promoter (Weng et
al., 2008). This construct was introduced using A. tumefaciens cocultivation into the
hybrid poplar (P. tremula x P. alba) clone INRA 717-1B4 as well as in a 717-1B4
transgenic line named AtF5H-OE, according to the method described in Leplé et al.,
(1992). The AtF5H-OE line was previously transformed with an AtF5H gene under
the control of the promoter of the P. tremula x P. alba CesA4 gene
(Potri.002G257900) (proPtaCesA4::AtF5H). Several transgenic lines from both
genetic background were selected for further analyses. Two to five ramets of each
line were acclimatized and grown in a S2 greenhouse for 3 months, from April until
July. Height and stem diameter were measured before plant sampling for molecular

and biochemical analyses.

Differentiating xylem samples were collected by a light scraping at the surface
of the debarked stem. Samples were immediately frozen in liquid nitrogen and stored
at —80°C until use. DNA was prepared using Nucleospin DNA Plant 1l kit (Macherey-
Nagel, Hoerdt, France) and the integration of BAPMT and F5H genes was verified by
PCR using the following primers pairs: PMT 5’-CCTCATCATGCAGGTGACAG-3’ and
5-GAAGCAGTTGCCGTAGAACC-3’; F5H 5-ATGGAGTCTTCTATATCACA-3’ and

5-TTAAAGAGCACAGATGAGGC-3'. Likewise, RNA was extracted from
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differentiating xylem using a Nucleospin RNA Plant kit (Macherey-Nagel, Hoerdt,
France). The expression level of the BAPMT1 and AtF5H gene in each tree was
evaluated by semi-quantitative RT-PCR performed in standard conditions using the

same primers as above.
Analyses of Cell Wall Phenolics
Preparation of CW Samples and Dioxane Lignins

All the analyses of cell wall phenolics were carried out from biological
replicates (2, 3 or 4 per line) harvested from 3-month-old poplar trees. For each tree,
the 20 cm-long basal part of the stem was collected, manually debarked, air-dried
and ground to 0.5 mm. Extract-free samples were prepared by exhaustive water and
ethanol extraction in an accelerated solvent extractor (ASE350, Dionex). The dried

and extract-free samples are referred to as cell wall samples (CW).

The isolation of DL fractions was performed from 1 to 2 g of CW as previously
described (Sibout et al., 2016). FTIR spectra of DL fractions were run on a Thermo

Scientific Nicolet IS5 spectrophotometer and in KBr pellets.
Analytical Pyrolysis

Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) was done
using a CDS model 5250 pyroprobe autosampler interfaced to an Agilent 6890/5973
GC/MS. The CW samples (about 300 pg) were pyrolyzed in a quartz tube at 500°C
for 15 s. The pyrolysis products were separated on a capillary column (5% phenyl
methyl siloxane, 30 m, 250 um i.d., and 0.25 um film thickness) using helium as the
carrier gas with a flow rate of 1 mL/min. The pyrolysis and GC/MS interfaces were
kept at 290°C and the GC was programmed from 40°C (1 min) to 130°C at +6°C min’

! then from 130 to 250°C at +12°C min™ and finally from 250°C to 300°C at +30°C
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min™ (3 min at 300°C). The various phenolic pyrolysis compounds were identified by
comparison to published spectra (Ralph and Hatfield, 1991). Py-GC/MS in the
presence of tetramethylammonium hydroxyde (TMAH) was similarly performed but
with addition of 3 pL of a 25% TMAH methanolic solution (Aldrich) onto the CW
sample. The methylated pyrolysis products were identified by comparison of their
mass spectra with those of the NIST MS library or with published TMAH-pyrograms

(Kuroda et al., 2001; Kuroda et al., 2002).
Determination of Lignin Content

The determination of KL content was perfomed from about 300 mg of CW
(weighted to the nearest 0.1 mg) and as previously described (Méchin et al., 2014).
The quantitation of ABL was done from about 5 mg of CW (weighted to the nearest

0.01 mg) according to a recently published procedure (Sibout et al., 2016).

Determination of Ester-linked p-Hydroxybenzoic and p-Hydroxycinnamic Acids

by Mild Alkaline Hydrolysis

About 5 to 10 mg of poplar CW or DL samples were put into 2-mL Eppendorf
tube together with 1 mL of 1 M NaOH and 0.1 mL of o-coumaric internal standard (IS)
methanolic solution. The IS amount was 0.05 mg for CW samples and 0.25 mg for
DL ones. Mild alkaline hydrolysis was proceeded on a carousel overnight and at
room temperature. After acidification (0.2 mL of 6 M HCI) and centrifugation (1500 g,
10 min), the supernatant was subjected to solid phase extraction as previously
described (Ho-Yue-Kuang et al., 2016). The recovered methanolic samples were
analyzed by HPLC combined with diode array detection (HPLC-DAD). For HPLC
separation, 1 uL of sample was injected onto an RP18 column (4 x 50 mm, 2.7 ym

particle size, Nucleoshell, Macherey-Nagel) with a flow rate of 0.25 mL min™. The
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eluents were 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B),
and the gradient was as follows: 0 min 5% B; 12 min, 20% B; 14 min, 80% B; 16 min,
5% B. The quantitative determination of alkali-released Bz, CA and FA was
performed from the 250-400 nm DAD chromatograms and after calibration with

authentic compounds

Analysis of Lignin Structure by Thioacidolysis

Thioacidolysis (4-hour long) followed by GC/MS of the trimethylsilylated (TMS)
lignin-derived compounds was carried out from about 10 mg of CW samples using
the simplified procedure previously published (Méchin et al., 2014), with some
adaptations to the CW type concerning the IS amount and the reagent to sample
ratio. In brief, 5 to 10 mg (weighed to the nearest 0.1 mg) were put together with 2
mL of freshly prepared thioacidolysis reagent and 0.1 mL of IS solution (heinecosane
C21, 5 mg/mL in CH,Cl,) in a glass tube (Teflon-lined screwcap). The closed tubes
were then heated at 100°C (oil bath) and for 4 h with occasional gentle shaking. After
tube cooling, 2 mL of 0.2 M NaHCO3; were added to destroy the excess of BF3
etherate. Then, 0.025 mL of 6 M HCI were added to ensure that the pH was less than
3, before addition of 2 mL CH,Cl, and tube mixing. A small amount (about 0.5 mL) of
the lower organic phase was withdrawn with a glass Pasteur pipette, dried over
anhydrous Na,SO, and then directly subjected to trimethylsilylation. This silylation
was performed with 10 pL of the solution together with 100 pL BSTFA (Sigma-
Aldrich) and 10 pL of GC-grade pyridine (1 h at room temperature). The GC/MS
analyses were carried out as previously described (Méchin et al., 2014). Some short
thioacidolysis assays (1-hour long) were also carried out and were followed by
desulfuration experiments according to a published method (Lapierre et al., 1995). In

addition, thioacidolysis from exhaustively permethylated CW samples was run
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according to Sibout et al. (2016) and using the same thioacidolysis and GC/MS

conditions.

Investigation of Some CW Properties

Alkali Solubilization Assays

About 300 mg of poplar CW were subjected to mild alkaline hydrolysis in 10
mL of 1 M NaOH, into a 25 mL plastic tube agitated overnight on a carousel and at
room temperature. The alkali-treated residue, referred to as the saponified residue
(SR), was recovered by centrifugation (2000 g, 20 min), washed with 1 M HCI before
centrifugation and then with water (3 times with centrifugation following each washing
step). The final residue was freeze-dried, weighted to calculate its recovery yield and
subjected to KL or ABL determination. The weight percentage of alkali-soluble lignin
(% Alk-L) was calculated from the weight percentages of ABL in CW (%ABLcw) and

in SR (%ABLsg) samples and from the SR recovery yield (%SR), as follows :

% Alk-L = (100 X %ABLcw — (%SR X %ABLsR)) / %ABLcw

Saccharification Assays

Saccharification experiments were performed from about 30 mg of SR
samples (weighed to the nearest 0.1 mg) under the conditions previously described
(Sibout et al., 2016). Saccharification efficency was calculated both from the weight

loss and from the glucose yield.
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539 Table I. Amount of p-hydroxybenzoic acid (Bz), p-coumaric acid (CA) and ferulic acid (FA)

540 released by mild alkaline hydrolysis of extract-free poplar stems from BAPMT1-OE lines

541  obtained in the WT and AtF5H-OE backgrounds, as compared to their respective controls.

542  The data represent mean values (and SD) from n biological replicates. asterisks denote

543  significant differences (one-way ANOVA) compared to the value of the corresponding control

544  (*: P <0.05; **: P < 0.001).

Line (n replicates) i A A

mg/g CW mg/g CW mg/g CW

WT control (3) 3.86 (0.10) 0.01 (0.00) 0.22 (0.00)
BdPMT1-OE/WT line 9 (3) 3.21 (0.51) 7.12 (0.49)* 0.15 (0.02)*
BAPMT1-OE/WT line 17 (3) 3.66 (0.28) 10.69 (0.49)** 0.18 (0.01)*
BAPMT1-OE/WT line 31 (3) 3.57 (0.11) 3.63 (0.42)** 0.10 (0.00)*
AtF5H-OE control (4) 3.29 (0.14) 0.01 (0.00) 0.06 (0.00)
BdPMT1-OE/AtF5H-OE line 1 (4) 3.06 (0.56) 0.76 (0.04)* 0.07 (0.01)
BdPMT1-OE/AtF5H-OE line 5 (4) 3.47 (0.26) 11.06 (0.63)** 0.31 (0.04)*
BdPMT1-OE/AtF5H-OE line 20.1 (2) 3.66 (0.12) 4.41 (0.18)** 0.13 (0.02)
BdPMT1-OE/AtF5H-OE line 20.2 (2) 3.53 (0.03) 11.11 (0.10)** 0.40 (0.07)*
BdPMT1-OE/AtF5H-OE line 21 (3) 4.35 (0.08)* 4.92 (0.19)* 0.13 (0.02)
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547  Table Il. Amount of p-coumaric acid (CA) released by mild alkaline hydrolysis of DL fractions

548 isolated from control and BAPMT1-OE lines obtained in the WT and AtF5H-OE backgrounds.

549  The data represent mean values (and SD) from technical duplicates

Line A

mg/g DL
WT control 3.21 (0.17)
BdPMT1-OE/WT line 9 50.00 (0.77)
BdPMT1-OE/WT line 17 66.52 (0.47)
BdPMT1-OE/WT line 31 31.36 (0.43)
AtF5H-OE control 0.87 (0.04)
BdPMT1-OE/AtF5H-OE line 5 66.43 (1.43)
BAPMT1-OE/AtF5H-OE line 21 33.98 (0.53)

550
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551 Table lll. Relative percentage values of the peaks assigned to the main phenolics released
552 by Py-GC/MS of poplar CW from BAPMT1-OE lines obtained in the WT and AtF5H-OE
553  backgrounds, as compared to their respective controls. These area values are expressed as
554  percentage of the total area per sample (set to 100).
555  The data represent mean values (and SD) from n biological replicates. asterisks denote
556  significant differences (one-way ANOVA) compared to the value of the corresponding control
557 (*: P <0.05;*: P <0.01).
Line (n replicates) Phenol 4-vinylphenol  (S+G) compounds®  S/G ratio
WT control (4) 5.33 (0.46) 0.21 (0.07) 94.47 (0.41) 2.82 (0.21)
BAPMT1-OE/WT line 9 (4) 4.60 (0.94) 10.73 (0.35)** 84.67 (1.22)** 2.88 (0.13)
BAPMT1-OE/WT line 17 (4) 5.43(0.43) 15.44 (0.71)** 79.13 (0.57)** 2.83 (0.12)
BAPMT1-OE/WT line 31 (4) 5.06 (0.56)  5.40 (1.46)** 89.54 (1.72)** 2.72 (0.19)
AtF5H-OE control (4) 4.99 (0.70) 0.10 (0.04) 95.01 (0.70) 4.11 (0.29)
BAPMT1-OE/AtF5H-OE line 1 (4) 440 (1.17) 1.15(0.010)* 94.47 (1.23) 4.32 (0.52)

BAPMT1-OE/AtF5H-OE line 5 (4)  4.92(0.68)  15.01 (0.86)** 80.08 (0.67)** 2.73 (0.24)*

BAPMT1-OE/AtF5H-OE line 20.1 (2)  4.99 (0.25)  6.65 (0.30)** 88.37 (0.55)* 4.27 (0.12)

BAPMT1-OE/AtF5H-OE line 20.2 (2)  4.51(1.03)  16.42 (1.52)** 79.08 (0.48)** 2.50 (0.16)*

BdPMT1-OE/AtF5H-OE line 21 (3) 6.21 (0.42) 7.43 (0.25)** 86.35 (0.52)** 4.27 (0.24)
558 @G compounds include: guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-vinylguaiacol, 4-
559 allylguaiacol (2 isomers), vanillin, acetoguaiacone, guaiacylacetone; S compounds include:
560  syringol, 4-methylsyringol, 4-ethylsyringol, 4-vinylsyringol, 4-allylsyringol (2 isomers),
561  syringaldehyde, acetosyringone, syringylacetone.
562
563
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Table IV Lignin content of extract-free poplar stems from BAPMT1-OE lines obtained in the
WT and AtF5H-OE backgrounds, as compared to their respective controls. The lignin content

is expressed as weight percentage of the sample and was determined using the Klason

Lignin (KL) and the Acetyl Bromide Lignin (ABL) methods

The data represent mean values (and SD) from n biological replicates. asterisks denote

significant differences (one-way ANOVA) with the control at P < 0.05.

Line (n replicates) KL (%) ABL (%)
WT control (3) 21.82 (0.21) 19.18 (0.33)
BAPMT1-OE/WT line 9 (3) 21.22 (0.09) 18.77 (0.50)
BAPMT1-OE/WT line 17 (3) 21.60 (0.21) 19.47 (0.44)
BAPMT1-OE/WT line 31 (3) 21.09 (0.43) 19.27 (0.28)
AtF5H-OE control (3) 20.86 (0.23) 19.95 (0.23)
BAPMT1-OE/AtF5H-OE line 5 (3) 22.23 (0.17)* 21.87 (0.42)*
BAPMT1-OE/AtF5H-OE line 20.2 (2) 20.82 (0.50) 22.00 (0.50)*
BAdPMT1-OE/AtF5H-OE line 21 (3) 20.87 (0.69) 19.86 (0.13)
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573  Table V. Thioacidolysis of TMSD-methylated poplar CW from from BAPMT1-OE lines

574  obtained in the WT and AtF5H-OE backgrounds, as compared to their respective controls.

575  The S/G molar ratio corresponds to the ratio of the S monomers (3 + 4) to the G monomers

576 (1 + 2) (monomers shown in Figure 3). The molar % of free phenolic groups in B-O-4 linked

577 G or S units, referred to as % GOH or % SOH, is calculated according to the outlined

578  formula.

579  The data represent mean values (and SD) from n biological replicates. asterisks denote

580 significant differences (one-way ANOVA) compared to the value of the corresponding control

581  (*: P <0.05; **: P < 0.01).

% free phenolic units in BO-4 linked

S/G molar ratio G or S units
Line (n replicates)
@ +4)/Q1+2) % GOH % SOH
100 x 1/(1+2) 100 x 3/(3+4)
WT control (3) 2.05 (0.03) 19.45 (0.22) 2.81 (0.07)
BAPMT1-OE/WT line 9 (3) 2.09 (0.18) 22.85 (0.12)** 3.65 (0.19)**
BdPMT1-OE/WT line 17 (3) 2.12 (0.19) 23.65 (0.48)** 4.44 (0.25)**
BdPMT1-OE/WT line 31 (3) 2.08 (0.06) 21.09 (0.26)** 3.44 (0.10)*
AtF5H-OE control (3) 3.12(0.13) 20.85 (0.44) 3.26 (0.03)

BdPMT1-OE/AtF5H-OE line 5 (3) 1.84 (0.15)**

BAPMT1-OE/AtF5H-OE line 20.1 (2)  3.36 (0.04)
BAPMT1-OE/AtF5H-OE line 20.2 (2)  1.83 (0.02)*

BdPMT1-OE/AtF5H-OE line 21 (3) 2.96 (0.15)

22.66 (0.02)**
22.55 (0.59)*
22.79 (0.22)*

23.10 (0.49)*

4.34 (0.08)*
3.90 (0.09)*
4.15 (0.19)*

4.02 (0.21)*

582

583
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584  Table VI. Impact of a mild alkaline treatment (aq. NaOH 1 M, overnight, room temperature)
585  on extract-free poplar stems from control and BAPMT1-OE lines obtained in the WT and
586  AtF5H-OE backgrounds. The percentage of the recovered saponified residue (% SR) is
587  expressed relative to the initial sample. The lignin content of the SR sample is measured as
588  acetyl bromide lignin (% ABL). The percentage of alkali-soluble lignins (% Alk-L) is calculated
589  from the ABL content of the CW and from the % SR recovery yield.
590 The data represent mean values (and SD) from biological triplicates. asterisks denote
591 significant differences (one-way ANOVA) compared to the value of the corresponding control
592  (*: P <0.05; *: P <0.01).
Line % SR % ABL in SR % Alk-L
WT control 68.03 (0.88) 23.69 (0.04) 15.5 (2.1)
BAPMT1-OE/WT line 9 67.17 (0.46)  20.85 (0.47)** 25.5 (1.1)**
BAPMT1-OE/WT line 17 65.25 (0.73)*  21.52 (0.24)** 28.1 (1.7)**
BAPMT1-OE/WT line 31 68.17 (0.22) 22.11 (0.75)* 21.7 (1.6)*
AtF5H-OE control 69.02 (0.65) 22.96 (0.28) 20.5 (1.3)
BdPMT1-OE/AtF5H-OE line 5 66.89 (0.80) 21.05 (0.43)** 36.1 (1.1)*
BdPMT1-OE/AtF5H-OE line 21 67.65 (1.28) 21.52 (0.13)* 26.4 (1.7)*
593
594
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Table VII. Saccharification of the poplar saponified residues (SR) obtained after a mild
alkaline treatment (ag. NaOH 1 M, overnight, room temperature) and corresponding to
BdPMT1-OE lines obtained in the WT and AtF5H-OE backgrounds, as compared to their
respective controls. The saccharification efficiency is evaluated both by the weight loss

(%WL) and by the released glucose (Glc).

The data represent mean values (and SD) from biological triplicates. asterisks denote
significant differences (one-way ANOVA) compared to the value of the corresponding control

(*: P < 0.05; **: P < 0.01).

Glc
SR from Line % WL

mg.g* SR

WT control 39.8 (1.3) 307.7 (16.0)
BAPMT1-OE/WT line 9 52.1 (1.6)** 417.5 (23.2)**
BAPMT1-OE/WT line 17 55.1 (2.0)** 452.4 (17.7)**
BAPMT1-OE/WT line 31 45.8 (0.3) 369.3 (17.9)*

AtF5H-OE control 44.2 (2.2) 401.4 (6.7)
BdPMT1-OE/AtF5H-OE line 5 56.4 (1.3)** 510.1 (9.1)*
BdPMT1-OE/AtF5H-OE line 21 49.4 (1.5)* 461.7 (22.4)*
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Figure Legends

Figure 1. Growth response to the introduction of the proAtC4H::BdPMT1 construct
into the poplar WT background (black bars) and into the AtF5H-OE background (grey
bars), as compared to control (Ctrl) trees. The basal diameter (A) and the tree height
(B) were measured on 3-month-old greenhouse-grown trees. Data are means (and

SD) of biological triplicates, except for lines 20.1 and 20.2 (biological duplicates).

Figure 2. TMAH-Py-GC/MS traces of poplar CW from A) WT control, B) BAPMT1-
OE/WT line 9, C) AtF5H-OE control and D) BAPMT1-OE/AtF5H-OE line 5. Bz : 4-
methoxybenzoate ; CAye : methyl 4-methoxy-p-coumarate ; peaks quoted G and S

correspond to methylated G and S compounds, respectively.

Figure 3. Principle of the evaluation of free phenolic units in lignin by thioacidolysis of
permethylated samples. Lignin units only involved in B-O-4 bonds give rise to
thioacidolysis guaiacyl (R, = H) and syringyl (R, = OMe) monomers. Terminal G and
S units with free phenolic group (R1 = H) are first methylated at C4, then degraded to
monomers 1 and 3 (erythro/threo mixture), respectively. Internal G and S units (Ry =
Cg of another lignin sidechain) are degraded to monomers 2 and 4, respectively

(erythro/threo mixture).

Figure 4. Relationships between the CA amounts in poplar CW and the percentage
of G lignin units with free phenolic groups (% GOH, black circles, full line) or the
percentage of S lignin units with free phenolic groups (% SOH, white circles, dotted
lines). The lignin structural traits % GOH and % SOH are evaluated by thioacidolysis

of permethylated samples for BAPMT1-OE poplars and their WT controls.

Figure 5. Relationship between the percentage of G lignin units with free phenolic

groups (% GOH) and the solubility of poplar lignins in cold alkali (% Alk-L). The data

32


https://doi.org/10.1101/2021.02.16.431462
http://creativecommons.org/licenses/by-nc/4.0/

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431462; this version posted February 18, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

33

correspond to BAPMT1-OE trees and their WT controls (black circles) as well as to

CAD-deficient trees and their corresponding controls (white circles).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Macroscopical and histochemical description of the plant

material.

Supplemental Figure S2. IR spectra (KBr pellet) of DL lignin fractions isolated from

BdPMT1-OE/WT and BAPMT1-OE/AtF5H-OE lines as compared to their controls.

Supplemental Figure S3. HPLC and GC/MS analyses of low-molecular weight
phenolics released by alkaline hydrolysis of DL lignin fractions isolated from WT and

BdPMT1-OE/WT lines.

Supplemental Figure S4. Correlation between the amount of ester-linked CA and
the relative % of 4-vinylphenol (% VP) released by analytical pyrolysis of BAPMT1-

OE poplar trees.

Supplemental Figure S5. Partial GC/MS chromatograms of the main dimers
obtained after 1- or 4-hour-long thioacidolysis followed by Raney nickel desulfuration

and from WT or BAPMT1-OE/WT lines.

Supplemental Table S1. Amount of p-coumaric acid (CA) ester-linked to grass CW

and to the corresponding purified DL fractions.

Supplemental Table S2. Relative importance (% area) of the main dimers obtained

after thioacidolysis and Raney nickel desulfuration of extract-free poplar stems.
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Figure 1. Growth response to the introduction of the AtC4H:BdPMT1 construct into the poplar WT background (black
bars) and into the AtF5H-OE background (grey bars), as compared to control (Ctrl) trees. The basal diameter (A) and the
tree height (B) were measured on 3-month-old and greenhouse-grown trees. Data are means (and SD) of biological
triplicates, except for lines 20.1 and 20.2 (biological duplicates).
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Figure 2. TMAH-Py-GC/MS traces of poplar CW from A) WT control, B) BAPMT1-OE/WT line 9, C) AtF5H-OE control and D) BdPMT1-OE/AtF5H-OE line 5.

BzMe : 4-methoxybenzoate ; CAMe : methyl 4-methoxy-p-coumarate ; peaks quoted G and S correspond to methylated G and S compounds, respectively.
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Figure 3. Principle of the evaluation of free phenolic units in lignin by thioacidolysis of permethylated samples. Lignin units only involved in f-O-4
bonds give rise to thioacidolysis guaiacyl (R, = H) and syringyl (R, = OMe) monomers. Terminal G and S units with free phenolic group (R = H) are 5
first methylated at C4, then degraded to monomers 1 and 3 (erythro/threo mixture), respectively. Internal G and S units (R; = C3 of another lignin
sidechain) are degraded to monomers 2 and 4, respectively (erythro/threo mixture).
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Figure 4. Relationships between the CA amounts in poplar CWs and the percentage of G lignin
units with free phenolic groups (% GOH, black circles, full line) or the percentage of S lignin units
with free phenolic groups (% SOH, white circles, dotted lines). The lignin structural traits % GOH
and % SOH are evaluated by thioacidolysis of permethylated samples and for BdAPMT1-OE
transformed poplars and their WT controls.
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Figure 5. Relationship between the percentage of G lignin units with free phenolic groups (% GOH) and the solubility of poplar
lignins in cold alkali (% Alk-L). The data correspond to BAPMT1-OE trees and their WT controls (black circles) as well as to CAD-
deficient trees and their corresponding controls (white circles).
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