

# 1 Transcriptome sequence reveals candidate genes 2 involving in the post-harvest hardening of trifoliate 3 yam *Dioscorea dumetorum*

4  
5  
6 **Christian Siadjeu<sup>1</sup>, Eike Mayland-Quellhorst<sup>1</sup>, Sascha Laubinger<sup>1</sup>, Dirk C. Albach<sup>1</sup>**

7 <sup>1</sup> Institute for Biology and Environmental Sciences, Biodiversity and Evolution of Plants, Carl-von-  
8 Ossietzky University Oldenburg, Carl-von-Ossietzky Str. 9-11, 26111 Oldenburg, Germany;  
9 christian.siadjeu@uol.de; eike.mayland.quellhorst@uol.de; sascha.laubinger@uol.de;  
10 dirk.albach@uol.de

11 \* Correspondence: christian.siadjeu@uol.de

12  
13 **Abstract:** Storage ability of *D. dumetorum* is restricted by a severe phenomenon of post-harvest  
14 hardening which starts 72h after harvest and renders tubers inedible. Previous work has only focused  
15 on the biochemistry changes affecting the PHH on *D. dumetorum*. To the best of our knowledge nobody  
16 has identified candidate genes responsible for hardness on *D. dumetorum*. Here, transcriptome analysis  
17 of *D. dumetorum* tubers was performed, 4 months after emergence (4MAE), after harvest (AH), 3 days  
18 AH (3DAH) and 14 days AH (14DAH) on four accessions using RNA-Seq. In total between AH and  
19 3DAH, 165, 199,128 and 61 differentially expressed genes (DEGs) were detected in Bayangam 2,  
20 Fonkouankem 1, Bangou 1 and Ibo sweet 3 respectively. Functional analysis of DEGs revealed that  
21 genes encoding for cellulose synthase A, xylan O-acetyltransferase chlorophyll a/b binding protein  
22 1,2,3,4 and transcription factor MYBP were found predominantly and significantly up-regulated 3DAH,  
23 implying that genes were potentially involved in the post-harvest hardening. A hypothetical  
24 mechanism of this phenomenon and its regulation has been proposed. These findings provide the first  
25 comprehensive insights into genes expression in yam tubers after harvest and valuable information for  
26 molecular breeding against the post-harvest hardening. A hypothetical mechanism of this phenomenon  
27 and its regulation has been proposed. These findings provide the first comprehensive insights into  
28 genes expression in yam tubers after harvest and valuable information for molecular breeding against  
29 the post-harvest hardening.

30  
31  
32 **Keywords:** *D. dumetorum*; Yam; tuber; orphan crop; post-harvest hardening; transcriptome; RNA-Seq,  
33 gene expression

## 34 35 1. Introduction

36  
37 Yams constitute an important food crop for over 300 million people in the humid and subhumid  
38 tropics. Among the eight yam species commonly grown and consumed in West and Central Africa,  
39 *Dioscorea dumetorum* is the most nutritious [1]. Tubers of *D. dumetorum* are rich in protein (9.6%), well  
40 balanced in essential amino acids (chemical score of 0.94) and its starch is easily digestible [2]-3].  
41 *Dioscorea dumetorum* is not only used for human alimentation but also for pharmaceutical purposes. A  
42 bio-active compound, dioscoretine, has been identified in *D. dumetorum* [4], which is acceptable  
43 pharmaceutically and which can be used advantageously as a hypoglycemic agent in situations of acute  
44 stress. In Nigeria, the tuber is, therefore, used in treating diabetes [5].

45  
46 Despite of these qualities, the storage ability of this yam species is restricted by severe post-  
47 harvest hardening (PHH) of the tubers, which begins within 24 h after harvest and renders them  
48 unsuitable for human consumption [1]. The post-harvest hardening of *D. dumetorum* is separated into a

49 reversible component associated with the decrease of phytate and an irreversible component associated  
50 with the increase of total phenols [6]. The mechanism of post-harvest hardening is supposed to start  
51 with enzymatic hydrolyzation of phytate and subsequent migration of the released divalent cations to  
52 the cell wall where they cross-react with demethoxylated pectins in the middle lamella. This starts the  
53 lignification process in which the aromatic compounds accumulate on the surface of the cellular wall  
54 reacting as precursors for the lignification [7].

55 Whereas physiological changes associated with hardening of yam tubers are now reasonably  
56 well understood, we lack the knowledge of how to overcome hardening. Naturally occurring genotypes  
57 lacking post-harvest hardening [8] which offers a chance to understand the genetic basis of hardening.  
58 The next step has been to understand the genetic background of this genotype and its relationship to  
59 other genotypes, which has been conducted using GBS (Illumina-based genotyping-by-sequencing; [9]).  
60 Further insights have been gained by sequencing and analyzing the genome of the genotype Ibo sweet  
61 3 [10].

62 Here, we analyze the transcriptome of this genotype Ibo sweet 3 and related genotypes to  
63 identify genes involved in the postharvest hardening phenomenon. The study of the transcriptome  
64 examines the abundance of mRNAs in a given cell population and usually includes some information  
65 on the concentration of each RNA molecule, as a factor of the number of reads sequenced, in addition  
66 to the molecular identities. Unlike the genome, which is roughly fixed for a given cell line when  
67 neglecting mutations, the transcriptome varies from organ to organ, during development and based on  
68 external environmental conditions. In particular, transcriptome analysis by RNA-seq enables  
69 identification of genes that have differential expression in response to environmental changes or  
70 developmental stage and mapping genomic diversity in non-model organisms [11]. Differential gene  
71 expression analysis under different conditions has, therefore, allowed an enormously increased insight  
72 into the responses of plants to external and internal factors and into the regulation of different biological  
73 processes. High-throughput sequencing technologies allow an almost exhaustive survey of the  
74 transcriptome, even in species with no available genome sequence [12]. Indeed, transcriptome analysis  
75 based on high-throughput sequencing technology has been applied to investigate gene expression of  
76 hardening in carrot [13]. In yam, it helped elucidate flavonoid biosynthesis regulation of *D. alata* tubers  
77 [14].

78 A lack of availability of next generation ‘-omics’ resources and information had hindered  
79 application of molecular breeding in yam [15], which has recently been overcome by the publication of  
80 two genome sequences in the genus [10]-16]. Here, we report the first transcriptomic study of *D.*  
81 *dumetorum* and the first to evaluate the influence of genes on the postharvest hardening phenomenon  
82 in a monocot tuber using transcriptomics. We aim to close this gap by identifying candidate genes  
83 involved in the post-harvest hardening phenomenon of *D. dumetorum* to facilitate breeding non-  
84 hardening varieties of *D. dumetorum*.  
85

## 86 2. Results

### 87 2.1. Descriptive statistics of RNA-Seq data

88 After trimming, 943,323,048 paired-end raw reads (150-bp in length) were generated. for 48  
89 samples (Supplementary S1). Among these, 242.7, 224.6, 233.9 and 242,1 million reads were belonged to  
90 Bangou1, Bayangam2, Fonkouakem1 and Ibosweet3. On average, 90% of all the clean reads were  
91 aligned to reference genome. Furthermore, 56 % (on average) of those reads were uniquely mapped to  
92 the reference genome sequence. A PCA plot of the normalized read counts of all samples is depicted in  
93 Figure 1. The first two principal components (PCs) explained 69% of the variability among samples.  
94 Four months after emergence (4MAE) was distantly clustered from After Harvest (AH) and later on  
95 after harvest. No clear separation was observed between AH and later on after harvest (3DAH, 14DAH).  
96 However, taking into account accession specificity, AH is distantly grouped from 3DAH and 14DAH.  
97 This finding indicated a difference between transcriptome expressions of accessions after harvest. One  
98 biological replicate of each accession at a specific time point did not cluster with others likely due to  
99 individual variability between plants.

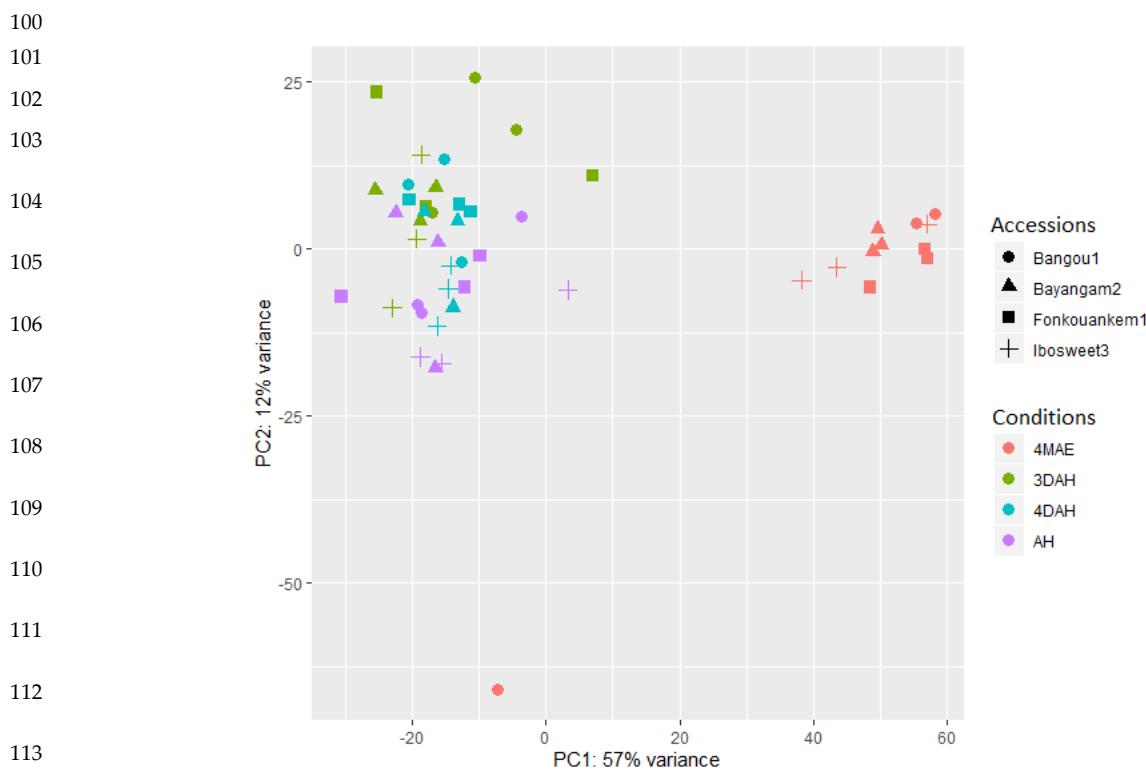
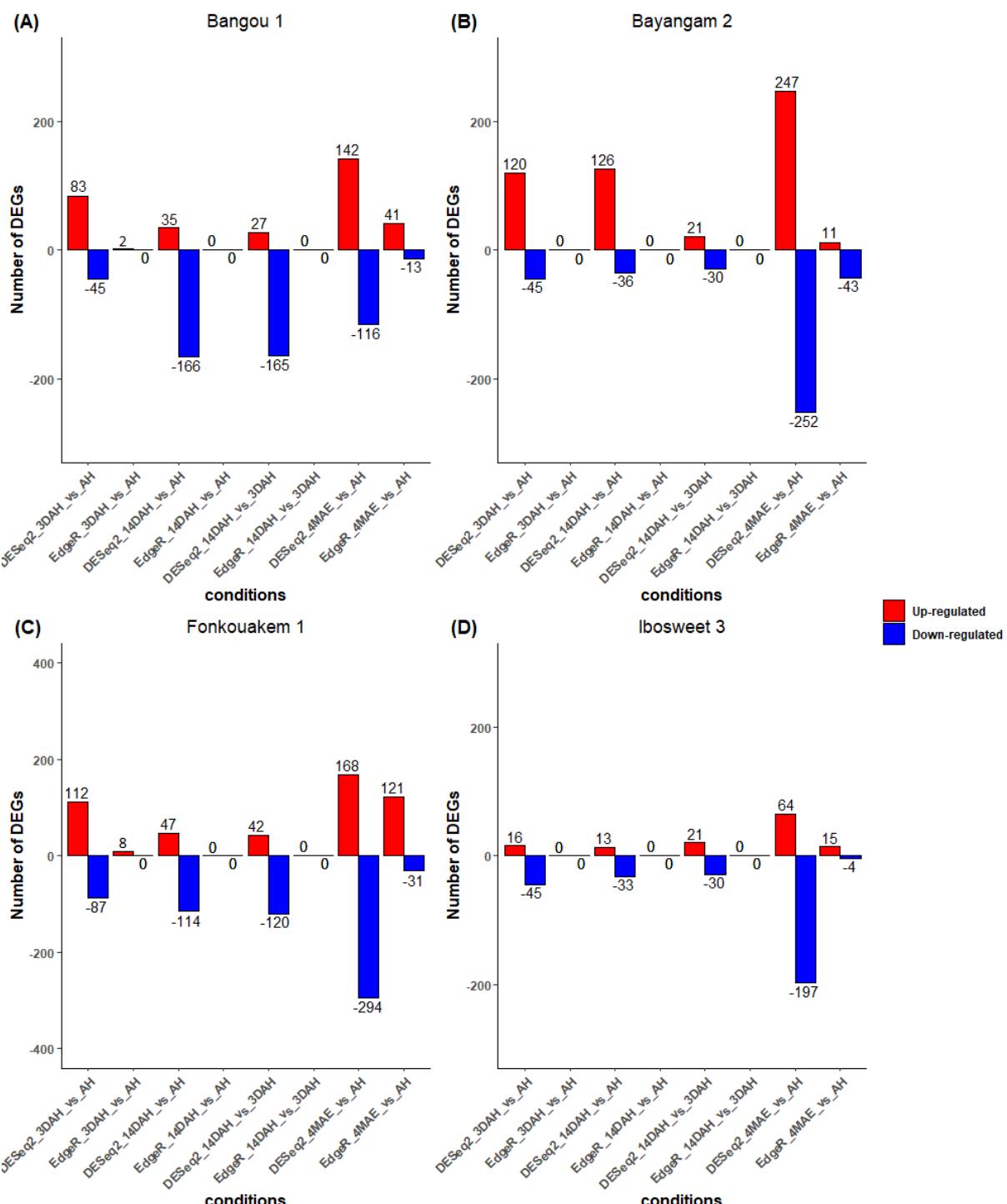
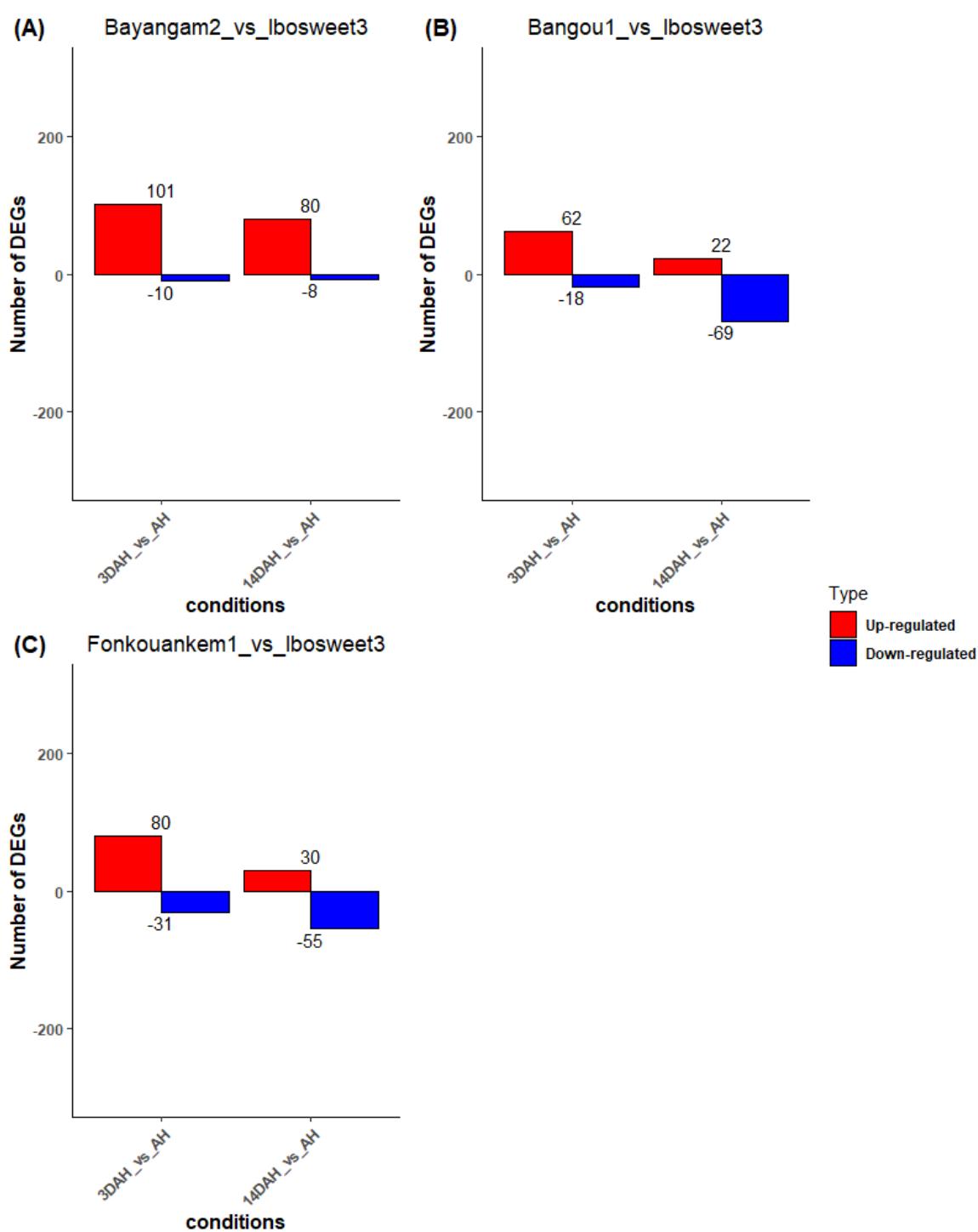



Figure 1. PCA plot of normalized count using VSD.

## 115 2.2. Differential expression analysis


116 Two well established statistical analysis methods to assess differentially expressed genes based  
117 on read counts (edgeR and DESeq2). We used two strategies to determine DEG on *D. dumetorum* after  
118 harvest: STAR\_DESeq2, and STAR\_edgeR. The design model for DE analysis was ~ Accession +  
119 Conditions + Accession:Conditions. We carried out multiple comparison at the accession, conditions  
120 and interaction accession\*conditions levels. The approach STAR\_DESeq2 yielded the highest number  
121 of DEG (Figure 2) and the results were selected for downstream analysis. Pairwise comparisons (4MAE  
122 vs. AH, 3DAH vs. AH, 14DAH vs. AH, 14DAH vs. 3DAH) of gene expression among the four accessions  
123 were performed (Figure 2). However, since the post-harvest hardening on *D. dumetorum* tubers occurs  
124 after harvest, results of gene expression were focused after harvest. A decrease of up-regulated DEGs  
125 and an increase of down-regulated DEGs were noticed among the 3 accessions that do harden from  
126 harvest to 14DAH (Figure 2). The accession that does not harden depicted a different pattern.  
127 Comparing 3DAH vs. AH, 165, 199, 128 and 61 significantly DEGs were detected in Bayangam 2,  
128 Fonkouankem 1, Bangou 1 and Ibo sweet 3, respectively. Amongst these, 120, 112, 83 and 16 were up-  
129 regulated in Bayangam, Fonkouankem, Bangou1 and Ibo sweet3 respectively. For 14DAH vs. AH 162,  
130 201, 161, and 46 significantly DEGs were obtained in Bayangam 2, Bangou 1, Fonkouankem 1 and Ibo  
131 sweet 3 respectively. Among which, 126, 83, 47, and 13 were up-regulated DEGs in Bayangam, Bangou1,  
132 Fonkouankem and Ibo sweet 3, respectively. In total, the highest number of significantly up-regulated  
133 DEGs were detected in Bayangam 2 and the lowest in Ibo sweet 3. A mixture analysis of all accessions  
134 that do harden irrespective of accession was performed (Supplementary S2). Pairwise comparisons of  
135 gene expression among the three stages (AH, 3DAH and 14DAH) detected 59, 40 and 13 up-regulated  
136 DEGs between 3DAH vs. AH, 14DAH vs. AH and 14DAH vs. 3DAH respectively. Whereas, 14, 36, and  
137 56 down-regulated DEGs were obtained between 3DAH vs. AH, 14DAH vs. AH and 14DAH vs. 3DAH  
138 respectively.

139 In order to understand the difference between Ibo sweet 3 and the other accessions, a multiple  
140 pairwise comparison (Bayangam vs. Ibo sweet 3, Bangou 1 vs. Ibo sweet 3, Fonkouankem vs. Ibo sweet  
141 3) after harvest (3DAH vs. AH, 14DAH vs. AH) was carried out (Figure 3). After harvest to 3DAH  
142 (3DAH vs. AH), 111, 111 and 80 significantly DEGs were acquired comparing Bayangam vs. Ibosweet3,  
143 Fonkouankem vs. Ibo sweet 3 and Bangou1 vs. Ibo sweet 3 respectively. Amongst these, 101, 80 and 62


144 were up-regulated DEGs in Bayangam vs. Ibo sweet 3, Fonkouankem vs. Ibo sweet 3 and Bangou 1 vs.  
145 Ibo sweet 3 respectively. For 14DAH vs. AH, 88, 85 and 91 significantly DEGs were detected comparing  
146 Bayangam vs. Ibosweet3, Fonkouankem vs. Ibo sweet 3 and Bangou1 vs. Ibo sweet 3 respectively.  
147 Among which, 80, 30 and 22 were up-regulated in Bayangam vs. Ibo sweet 3, Fonkouankem vs. Ibo  
148 sweet 3 and Bangou 1 vs. Ibo sweet 3 respectively.

149

150



174 **Figure 2.** The number of DEGs based on the comparison of DESeq2 and EdgeR 4MAE and after harvest. (A),  
175 Bangou, (B), Bayangam (C), Fonkouankem, (D) Ibo sweet 3 (non-hardening accession). Blue represents down-  
176 regulated transcripts, and red represents up-regulated transcripts.



**Figure 3.** The number of DEGs based on the comparison between Ibo sweet 3 and other accessions after harvest. (A) Ibo sweet 3 vs. Bayangam 2, (A) Ibo sweet 3 vs. Bangou 1, (C) Ibo sweet 3 vs. Fonkouankem 1. Blue represents down-regulated transcripts, and red represents up-regulated transcripts.

207 2.2. GO enrichment and functional classification of DEGs with KEGG and Mapman

208

209 For better comprehension of the post-harvest hardening phenomenon, GO term annotation and  
210 enrichment was performed on up-regulated DEGs resulted from pairwise comparisons (3DAH vs. AH,  
211 14DAH vs. AH) of all the three accessions that do harden (Figure 4 A). Compared with 3DAH and AH,  
212 out of the 59 up-regulated DEGs, 38 were significantly annotated in 43 GO terms, most of which were  
213 involved in biological processes related to cellular process, response to stimulus and metabolic process.  
214 Likewise, for 14 DAH vs. AH, 23 up-regulated genes (out of 40) were significantly enriched regarding  
215 biological processes in relation to cellular process, response to stimulus and metabolic process (Figure  
216 4 B). Individual analysis of each accession separately revealed that cellular process, metabolic process,  
217 response to stimulus and response to stress belong to the top 10 of the mostly enriched GO term 3DAH  
218 and 14DAH for biological process (Figure 4 C, D).

219 Pathway-based analysis with KEGG revealed that metabolic pathway (Ko01100) was the most  
220 enriched with 7 and 6 up-regulated transcripts followed by biosynthesis of secondary metabolites  
221 (Ko01110) with 3 and 1 up-regulated transcripts 3DAH and 14DAH respectively (Figure 5 A, B). Based  
222 on MapMan photosynthesis pathway (Bin 1, 23 genes) and RNA biosynthesis (Bin 15, 8 genes) were the  
223 most enriched 3DAH. Likewise, 14 DAH, photosynthesis (6 genes) and RNA biosynthesis (6 genes)  
224 were the most enriched (Figure 4 A, B).

225 Pathway-based analysis with KEGG revealed that metabolic pathway (Ko01100) was the most  
226 enriched with 7 and 6 up-regulated transcripts followed by biosynthesis of secondary metabolites  
227 (Ko01110) with 3 and 1 up-regulated transcripts 3DAH and 14DAH respectively (Figure 5 A, B). Based  
228 on MapMan photosynthesis pathway (Bin 1, 23 genes) and RNA biosynthesis (Bin 15, 8 genes) were the  
229 most enriched 3DAH. Likewise, 14 DAH, photosynthesis (6 genes) and RNA biosynthesis (6 genes)  
230 were the most enriched (Figure 4 A, B).

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

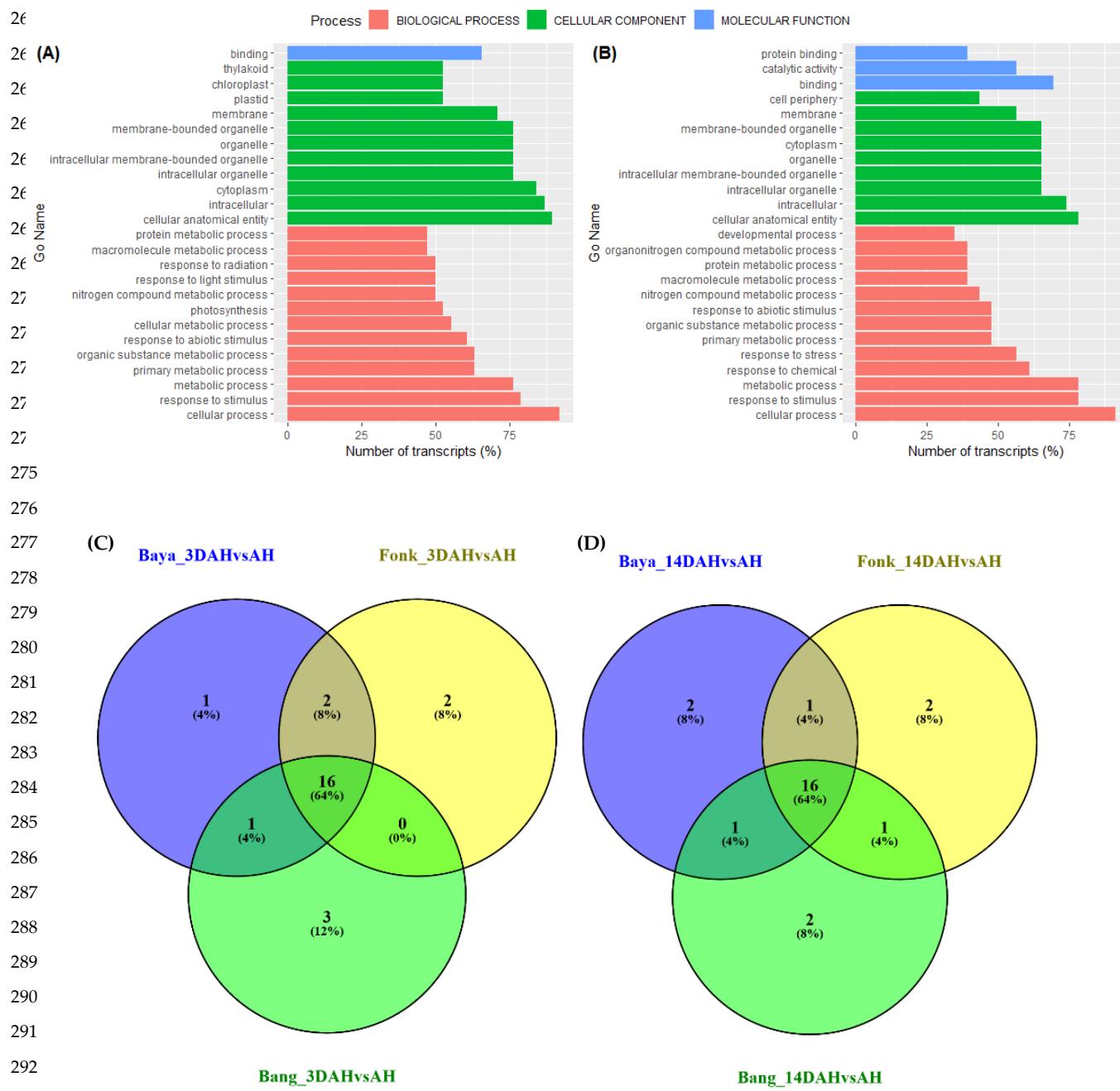
252

253

254

255

256

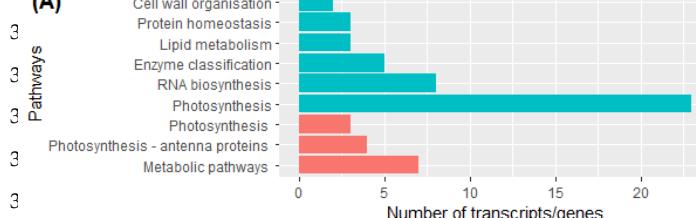

257

258

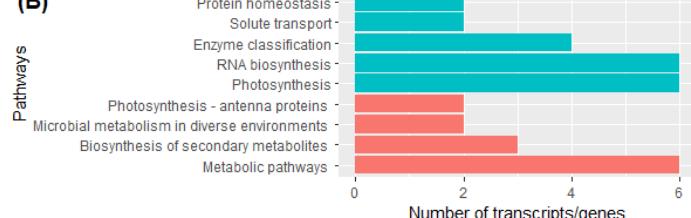
259

260

261




**Figure 4.** Functional annotation of the top 20 up-regulated enriched GO pathways of *D. dumetorum* tubers after harvest. (A) and (B) combined analysis of 3 hardened accessions 3 DAH and 14DAH respectively. (C) and (D) enrichment of each hardened accessions independently 3 DAH and 14DAH respectively. Blue bar represents molecular process, green bar represents cellular component, and red bar represents biological process.


307

3

3 (A)



(B)



315

316

(C) Baya\_3DAHvsAH

Fonk\_3DAHvsAH

(D) Baya\_14DAHvsAH

Fonk\_14DAHvsAH

Bang\_3DAHvsAH

Bang\_14DAHvsAH

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

**Figure 5.** Functional classification of DEG after harvest. (A) and (B) the most enriched pathways of the combined analysis of 3 hardened accessions 3 DAH and 14DAH respectively. (C) and (D) the most enriched pathways of each hardened accessions 3 DAH and 14DAH respectively. Green bar represents pathway annotation with MapMan database, and red bar represents pathway annotation with KEGG database.

339

340

### 2.3. Cluster expression analysis

341

342

343

344

345

346

347

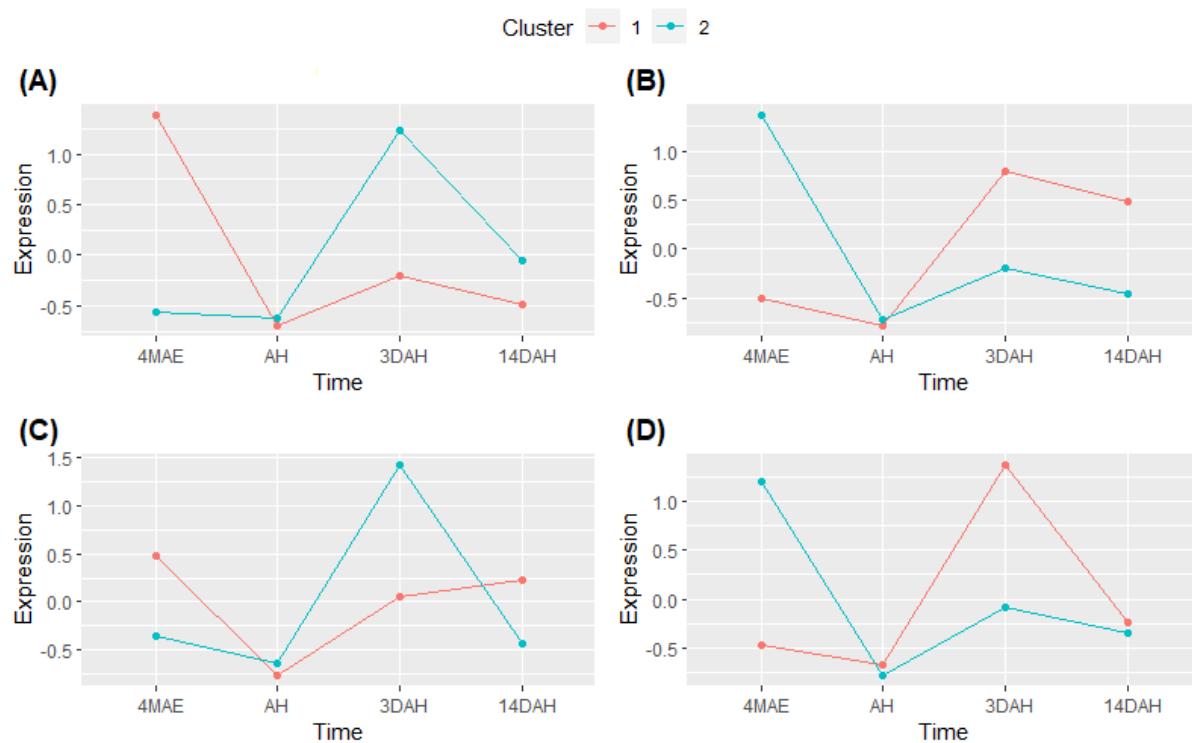
348

349

350

351

352


353

354

Clustering gene expression of DEG 3DAH was assessed to identify groups of genes that are co-up-regulated (Figure 6). Two groups were identified amongst the genes differentially expressed 3DAH. One of the two clusters depicted a high peak 4MAE and then decreased AH and slightly increased 3DAH and 14DAH with an expression under zero except for the accession Fonkouankem. This group corresponds to cluster 1 for Bangou and Fonkouankem and cluster 2 for Bayangam and the mixture of the 3 accessions (Figure 6 A, B, C, D). Conversely, for the other cluster, the expression was down 4MAE and AH, and sharply increased 3DAH and then decreased 14DAH. This latter one showing the highest peak 3DAH is a group of genes that co-expression and could be involved in the post-harvest hardening. It corresponds to cluster 2 for Bangou and Fonkouankem and cluster 1 for Bayangam and the mixture of the 3 accessions. Therefore, functional annotation of genes of this group were further investigated.

The top 3 accumulated pathways in the cluster 2 were photosynthesis (20 contigs) followed by solute transport (2 contigs) and cell wall organization (1 contig) in Bangou (Supplementary S3). For Bayangam the top 3 were protein modification (8 contigs) followed by RNA biosynthesis (7 contigs)

355 and phytohormone action (7 contigs). However, it is worth to outline that cell wall organization (4  
356 contigs) and secondary metabolism (3 contigs) were as well accumulated. On the contrary in  
357 Fonkouankem cell wall organization (19 contigs) was the most enriched pathway followed by RNA  
358 biosynthesis (8 contigs) and photosynthesis, secondary metabolism, protein homeostasis, cytoskeleton  
359 organization and solute transport with 4 contigs each of them. The mixture of all those accessions  
360 showed that photosynthesis was the most accumulated pathway (21 contigs) followed by protein  
361 homeostasis, lipid metabolism with 3 contigs each of them and cell wall organization with 2 contigs. In  
362 sum, genes encoding for photosynthesis, cell wall organization, protein modification and RNA  
363 biosynthesis genes and secondary metabolism are co-up-regulated after harvest and likely involved in  
364 the post-harvest hardening on *D. dumetorum* tubers.  
365



385 **Figure 6.** Cluster analysis of DEGs 3DAH among the different sampling time 4MAE and after harvest.  
386 (A), Bangou, (B), Bayangam (C), Fonkouankem, (D) combined analysis of the 3 hardened accessions.  
387

#### 388 2.4. Comprehensive analysis of expression of genes potentially involved in post-harvest hardening

389 We opted for investigation of genes differentially expressed 3 DAH on the accession  
390 Fonkouankem due to its high amount of up-regulated genes associated with cell organization and the  
391 combining analysis of all three accessions together. In the cluster 1, a total of 20 transcripts homologous  
392 to the genes encoding for photosynthesis were observed as up-regulated differentially expressed three  
393 days after harvest when all hardening accessions were analyzed together (Table 1), including  
394 chlorophyll a/b binding protein LHCBl (8 transcripts), LHCIA4 (2 transcripts) LHCBl2 (2 transcripts),  
395 photosystem II protein psbX (2 transcripts). Those genes response to light stimulus and may be the  
396 triggers of this phenomenon. Three transcripts associated with cell wall organization were found  
397 encoding for fasciclin-type arabinogalactan protein, COB cellulose and glucan endo-1,3-beta-  
398 glucosidase. They are likely involved in the reinforcement of the cell wall (hardening). One transcript  
399 homologous to the gene related to the transcription factor TF-MYB was included in this group.  
400 However, it is important to note that genes involved in lipid metabolism namely lipase (3 transcripts)  
401 were found in this group.

402 In Fonkouankem (Table 2), 18 up-regulated genes encoding for cell wall organization including  
403 xylan O-acetyltransferase XOAT (5 transcripts), cellulose synthase CESA (3 transcripts), COB cellulose  
404 (2 transcripts) were found in cluster 2. The transcription factor MYB was the most abundant (4  
405 transcripts) followed by DREB and NAC with 2 transcripts each of them. Photosynthesis genes LHCBI,  
406 LHCA4 were found with 2 transcripts each of them. However, genes encoding for phenolic metabolism  
407 were enriched with 2 genes cinnamate 4-hydroxylase (2 transcripts) and phenylalanine ammonia lyase  
408 (2 transcripts). Likewise, lipase (3 transcripts) was recorded in this group.

409 In all hardening accession and the combining analysis of all three accessions together,  
410 annotation with several MYB database identified putative MYB genes (MYB54, MYB52, MYB73, MYB70,  
411 MYB44, MYB77, MYB46, MYB83, MYB9, MYB107, MYB93, MYB53, MYB92) associated with cell wall  
412 modifications (Supplementary S4).

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438 **Table 1. Candidate genes associated with post-harvest hardening in *D. dumetorum* tuber on 3DAH**  
 439 **vs AH DEG on All accession 3DAH vs AH.**

| Contig          | LF2C  | padj    | Bin/KO           | Gene\Name       | Description                              |
|-----------------|-------|---------|------------------|-----------------|------------------------------------------|
| contig544.g2040 | 6.91  | 0.04740 | 21.4.1.1.3       | FLA             | fasciclin-type AGP                       |
| contig278.g50   | 8.89  | 0.02720 | 21.1.2.2         | COB             | regulatory protein                       |
| contig760.g29   | 18.35 | 0.03609 | 1.2.3/K05298     | GAPA            | glyceraldehyde-3-phosphate dehydrogenase |
| contig119.g125  | 8.07  | 0.00170 | 1.1.6.1.1        | PGR5/PGRL1      | complex.component PGR5-like              |
| contig678.g379  | 7.72  | 0.00000 | 1.1.4.1.4/K08910 | LHCA4           | chlorophyll a/b binding protein 4        |
| contig679.g24   | 7.98  | 0.00000 | 1.1.4.1.4/K08910 | LHCA4           | chlorophyll a/b binding protein 4        |
| contig549.g218  | 6.53  | 0.00000 | K02694           | psaF            | photosystem I subunit III                |
| contig222.g1555 | 5.27  | 0.00626 | 1.1.4.2.8/K02695 | psaH            | photosystem I subunit VI                 |
| contig206.g10   | 5.55  | 0.00042 | 1.1.1.1.1/K08912 | LHCB1           | chlorophyll a/b binding protein 1        |
| contig206.g11   | 7.98  | 0.00000 | 1.1.1.1.1/K08912 | LHCB1           | chlorophyll a/b binding protein 1        |
| contig206.g6    | 7.12  | 0.00000 | 1.1.1.1.1/K08912 | LHCB1           | chlorophyll a/b binding protein 1        |
| contig206.g8    | 7.58  | 0.00000 | 1.1.1.1.1/K08912 | LHCB1           | chlorophyll a/b binding protein 1        |
| contig267.g402  | 5.81  | 0.00836 | 1.1.1.1.1/K08913 | LHCB2           | chlorophyll a/b binding protein 2        |
| contig355.g38   | 5.82  | 0.01516 | 1.1.1.1.1/K08913 | LHCB2           | chlorophyll a/b binding protein 2        |
| contig391.g20   | 6.24  | 0.00012 | 1.1.1.1.1/K08912 | LHCB1           | chlorophyll a/b binding protein 1        |
| contig391.g26   | 6.94  | 0.00000 | 1.1.1.1.1/K08912 | LHCB1           | chlorophyll a/b binding protein 1        |
| contig391.g28   | 5.72  | 0.00038 | 1.1.1.1.1/K08912 | LHCB1           | chlorophyll a/b binding protein 1        |
| contig391.g29   | 7.65  | 0.00000 | 1.1.1.1.1/K08912 | LHCB1           | chlorophyll a/b binding protein 1        |
| contig553.g402  | 4.31  | 0.04740 | 1.1.1.1.1/K08914 | LHCB3           | chlorophyll a/b binding protein 3        |
| contig565.g52   | 7.56  | 0.02366 | 1.1.1.1.1/K08912 | LHCB1           | chlorophyll a/b binding protein 1        |
| contig89.g1873  | 5.94  | 0.01452 | 1.1.1.6.2.1      | ELIP            | LHC-related protein group.protein        |
| contig544.g1881 | 5.17  | 0.04740 | 1.1.1.2.13       | 1.1.1.2.13/PsbX | PS-II complex.component                  |
| contig544.g1970 | 5.05  | 0.00905 | 1.1.1.2.13       | 1.1.1.2.13/PsbX | PS-II complex.component                  |
| contig267.g494  | 20.89 | 0.00000 | 15.5.2.1/K09422  | MYB             | transcription factor                     |

440

441

442

443

444

445

446

447

448

449

450

451

452

453 **Table 2. Candidate genes associated with post-harvest hardening in *D. dumetorum* tuber on**  
 454 **Fonkouankem 3DAH vs AH.**

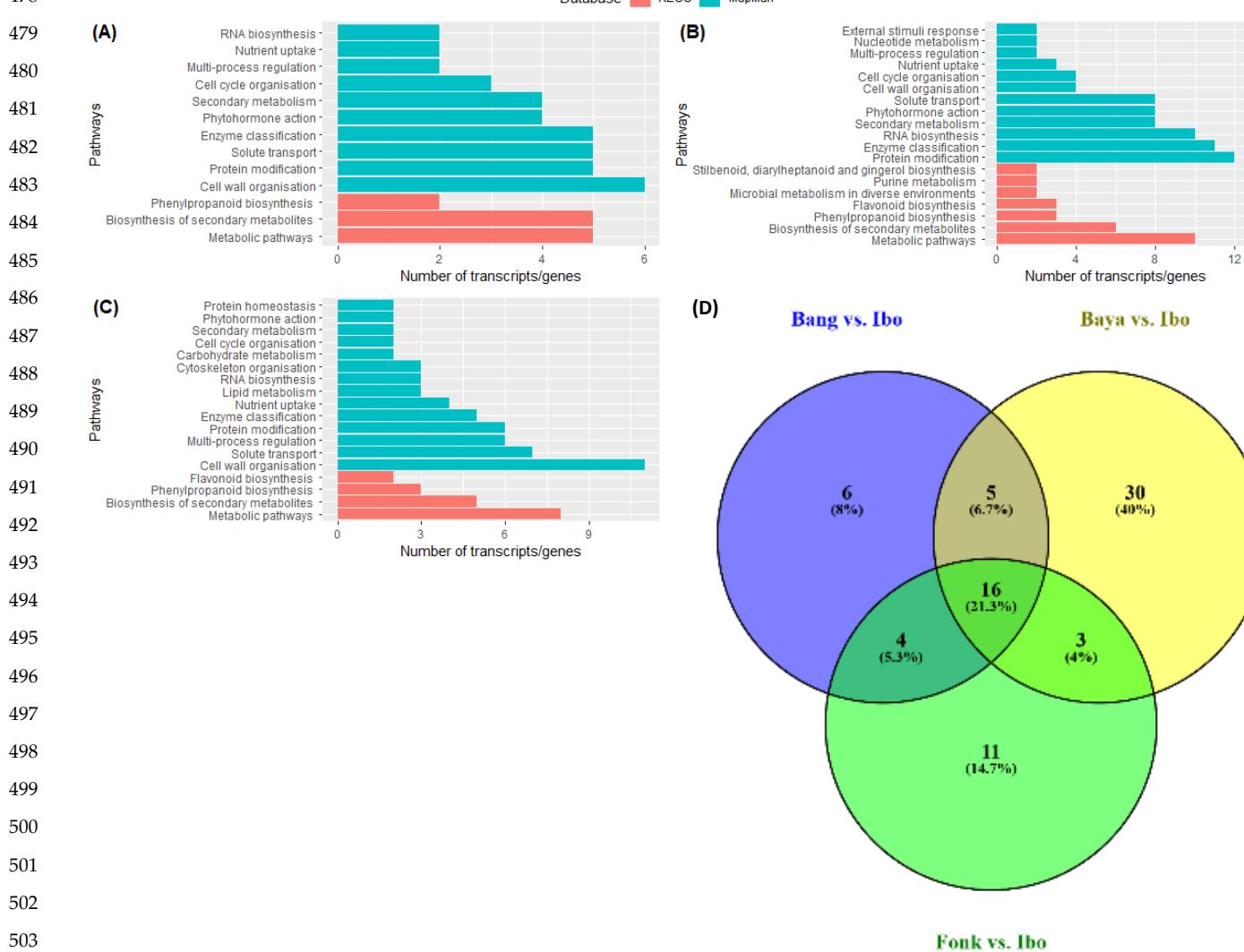
| Contig          | LF2C  | padj     | Bin/Ko            | Gene\Name  | Description                                  |
|-----------------|-------|----------|-------------------|------------|----------------------------------------------|
| contig557.g748  | 9.02  | 3.15E-09 | 21.1.1.1.1/K10999 | CESA       | cellulose synthase A                         |
| contig60.g53    | 8.86  | 3.44E-09 | 21.1.1.1.1/K10999 | CESA       | cellulose synthase A                         |
| contig73.g5     | 8.94  | 3.78E-09 | 21.1.1.1.1/K10999 | CESA       | cellulose synthase A                         |
| contig267.g188  | 23.39 | 5.99E-06 | 21.1.2.2          | COB        | regulatory protein                           |
| contig278.g50   | 14.51 | 2.99E-03 | 21.1.2.2          | COB        | regulatory protein                           |
| contig143.g88   | 17.83 | 2.27E-03 | 21.2.2.2.2        | XOAT       | xytan O-acetyltransferase                    |
| contig145.g17   | 17.90 | 2.01E-03 | 21.2.2.2.2        | XOAT       | xytan O-acetyltransferase                    |
| contig199.g1435 | 12.17 | 1.46E-04 | 21.2.2.2.2        | XOAT       | xytan O-acetyltransferase                    |
| contig920.g250  | 17.89 | 1.76E-04 | 21.2.2.2.2        | XOAT       | xytan O-acetyltransferase                    |
| contig922.g12   | 11.49 | 7.50E-03 | 21.2.2.2.2        | XOAT       | xytan O-acetyltransferase                    |
| contig750.g97   | 6.45  | 8.83E-04 | 21.6.1.7/K13066   | COMT       | caffic acid 3-O-methyltransferase            |
| contig646.g19   | 5.52  | 1.68E-02 | K18368            | CSE        | caffeoyleshikimate esterase                  |
| contig552.g180  | 5.18  | 1.60E-02 | K00588            | E2.1.1.104 | caffeoyle-CoA O-methyltransferase            |
| contig3.g487    | 5.66  | 4.55E-02 | 21.6.1.2/K09754   | CYP98A     | 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase |
| contig199.g1672 | 10.14 | 3.21E-03 | 21.6.2.2/K05909   | E1.10.3.2  | laccase                                      |
| contig559.g139  | 26.23 | 4.72E-08 | 21.6.2.1          | PMT        | p-coumaroyl-CoA                              |
| contig119.g106  | 14.35 | 9.30E-03 | K05350            | bglB       | beta-glucosidase                             |
| contig390.g181  | 6.08  | 3.53E-02 | 21.3.2.2.2        | BGAL       | beta-galactosidase                           |
| contig678.g379  | 7.74  | 2.36E-04 | 1.1.4.1.4/K08910  | LHCA4      | chlorophyll a/b binding protein 4            |
| contig679.g24   | 11.17 | 4.28E-06 | 1.1.4.1.4/K08910  | LHCA4      | chlorophyll a/b binding protein 4            |
| contig206.g11   | 7.52  | 4.19E-07 | 1.1.1.1.1/K08912  | LHCB1      | chlorophyll a/b binding protein 1            |
| contig391.g29   | 6.83  | 5.77E-04 | 1.1.1.1.1/K08912  | LHCB1      | chlorophyll a/b binding protein 1            |
| contig546.g79   | 20.36 | 6.88E-04 | 15.5.7.2          | DREB       | transcription factor                         |
| contig771.g2    | 25.08 | 4.05E-05 | 15.5.7.2          | DREB       | transcription factor                         |
| contig267.g494  | 25.57 | 3.54E-02 | 15.5.2.1/K09422   | MYB        | transcription factor                         |
| contig678.g290  | 16.94 | 1.44E-02 | K09422            | MYB        | transcription factor                         |
| contig693.g10   | 6.77  | 4.76E-02 | K09422            | MYB        | transcription factor                         |
| contig750.g121  | 25.14 | 2.61E-07 | K09422            | MYB        | transcription factor                         |
| contig158.g23   | 37.78 | 5.01E-06 | 15.5.17           | NAC        | transcription factor                         |
| contig556.g459  | 37.78 | 5.01E-06 | 15.5.17           | NAC        | transcription factor                         |

455

456

457

458 **2.5. Comprehensive difference between harden and non-harden accessions**


459

460       Pairwise comparisons of accessions that do harden to the accession that does not harden in  
 461 different stage after harvest showed that up-regulated genes were enriched mostly in cellular process,  
 462 cellular anatomical entity and intracellular 3DAH and 14DAH (Figure 7, Supplementary S5). Besides,  
 463 KEGG enrichment revealed that metabolic pathways were the most enriched with 10, 8 and 5 up-  
 464 regulated genes 3DAH for Bayangam vs Ibo, Fonkouankem vs Ibo and Bangou vs Ibo respectively  
 465 (Figure 7 A, B, C). This pathway was followed by biosynthesis of secondary metabolites with 6, 5, and  
 466 5 up-regulated genes for Bayangam 2 vs Ibo, Fonkouankem 1 vs Ibo sweet 3 and Bangou 1 vs Ibo sweet  
 467 3 respectively. Those pathways were the most enriched as well 14DAH (Supplementary S6). MapMan  
 468 annotation showed that cell wall organization was predominantly enriched when comparing Bangou 1  
 469 to Ibo sweet 3 and Fonkouankem 1 vs Ibo sweet 3 3DAH. Whereas protein modification was particularly  
 470 enriched for Bayangam 2 vs Ibo sweet 3. However, cell organization, protein modification and RNA

471 biosynthesis belong to the top 7 of the most enriched pathways 3DAH. On the contrary, protein  
472 modification was the most enriched irrespective of the comparison 14DAH (Supplementary S6). Venn  
473 diagram of the annotation revealed 5 common up-regulated genes potentially involved in the hardening  
474 process among the accessions that do harden comparing to the non-hardening accession Ibo sweet 3.  
475 Those genes encoding for chalcone synthase, diterpene synthase, transcription factor MYB, xylan O-  
476 acetyltransferase (XOAT), lignin laccase (Figure 7 D).

477

478



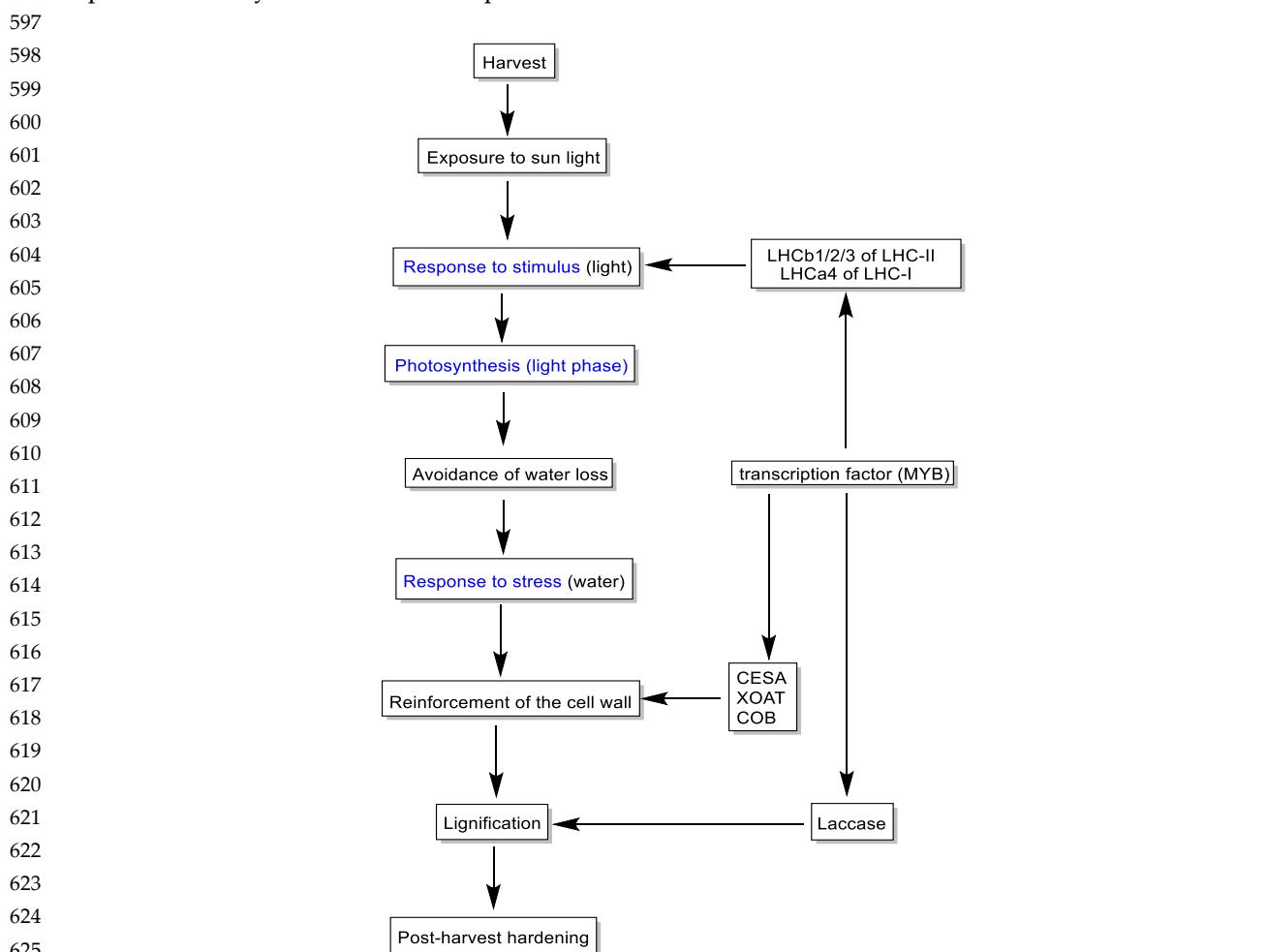
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1380

518 **3. Discussion**

519  
520 The post-harvest hardening of *D. dumetorum* tubers has been extensively studied. regarding the  
521 biochemical and physical aspects [1]-17]. Based on our study, we reported genes that differential  
522 expressed and up-regulated AH. This demonstrates that the PHH on *D. dumetorum* Tuber is likely  
523 controlled by genes. Our results showed that the number of the up-regulated genes was abundant  
524 3DAH and then decreased 14DAH. This suggest that the PHH predominantly occurs few days after  
525 harvest. This is consistent with previous studies [1,8,18] showing a substantial increase of the hardness  
526 the first 3 DAH.

527 Functional analysis via KEGG enrichment revealed that most genes were involved in pathways  
528 of secondary metabolites. These genes were involved in photosynthesis, RNA biosynthesis  
529 (transcription factors), cell wall organisation. In order to understand causes of this phenomenon, GO  
530 enrichment revealed that many genes were involved in cellular process, response to stimulus and  
531 metabolic process, response to stress. These results prove that the PHH on *D. dumetorum* is a cellular  
532 and metabolic process in response to stimulus leading to stress.

533 Indeed, [1] reported that the PHH on *D. dumetorum* is associated with an increase in sugar and  
534 structural polysaccharides (cellulose, hemicellulose, and lignin). Later, [18] associated it with a decrease  
535 of phytate and total phenols. However, these authors failed to address causes of this phenomenon.  
536 Cellular processes are triggered by stimulus, an investigation of genes related to response to stimulus  
537 revealed photosynthetic genes LHCBl,2,3 and LCH4 were up regulated 3DAH. Those genes are light-  
538 harvesting chlorophyll a/b binding antenna responsible for photons capture. This suggests that *D.  
539 dumetorum* tubers are capable of photosynthesis. In the field, *D. dumetorum* tubers turn green under the  
540 yam skin (on the surface) were they are exposed to sun light (Supplementary S7). Unlike potatoes,  
541 greening occurs only in the field but not in storage. Photosynthesis implies that the sunlight energy  
542 capture through photons is used to extract electron from water leading to the synthesis of adenosine  
543 triphosphate ATP and nicotinamide adenine dinucleotide phosphate NADPH [19], highlighting the  
544 importance of water in this process. After harvest, tubers are exposed to the external environment with  
545 no possibility of water absorption. This likely leads to a stress process as revealed by GO term analysis  
546 in relation with water limitation. In fact, a rapid decrease of water on tuber after harvest was reported  
547 [1-18], probably due in majority to this putative photosynthetic activity of *D. dumetorum* tubers. Thus,  
548 the PHH of *D. dumetorum* tubers appears as a mechanism to limit water loss.


549 Mechanism of limitation of water loss in plant has been extensively associated with the  
550 reinforcement of the cell wall [20]. Indeed, [18] reported a decrease of water absorption by tubers after  
551 harvest suggesting that the cell wall permeability decreases during the storage. Genes related to cell  
552 wall organisation xylan O-acetyltransferase XOAT, cellulose synthase CESA, corncob cellulose COB  
553 cellulose were predominantly up-related after harvest. This confirms biochemical changes associated  
554 with the PHH of *D. dumetorum* tubers [1]-18]. They observed an increase in various cell wall  
555 polysaccharide such as cellulose, hemicellulose and lignin during storage. Cellulose synthase encodes  
556 for cellulose biosynthesis [21] and COB regulate the orientation of cellulose microfibrils whereas xylan  
557 O-acetyltransferase XOAT encode for hemicellulose (xylan) [22]. These cell wall polysaccharides play an  
558 important role as a protective barrier in response to various environmental perturbations. Accumulation  
559 and deposition of these polysaccharides inside primary walls reinforces the strength and rigidity of the  
560 cell wall and are probably a key component of the plant response to environment factors [20]. It suggests  
561 that cellulose and lignin are key cell wall polymers responsible for cell wall rigidification during the  
562 PHH on *D. dumetorum*.

563 Many biological processes are controlled by the regulation of gene expression at the level of  
564 transcription. Transcription factors TFs are key players in controlling cellular processes. Among those  
565 TFs, MYB family is large and involved in controlling diverse processes such as responses to abiotic and  
566 biotic stresses [23]. Our results showed that TF from MYB family was predominantly expressed and up  
567 regulated after harvest. This result suggests that transcription factors from MYB family may be  
568 potentially involved in the mechanism of post-harvest hardening. [24] demonstrated the role of an MYB  
569 TF family in response to water stress from stem of a plant tree birch through lignin deposition,  
570 secondary cell wall thickness and the expression of genes in secondary cell wall formation.

571 Pairwise comparison of the hardened accessions and the non-hardened accession confirmed  
572 that the PHH is a cellular and metabolic process leading to the cell wall modification. However, it is

573 interesting to note that protein modifications seem to occur predominantly after hardness from 3 to 14  
574 DAH. This could explain the poor sensory qualities of hardened tubers such as coarseness in the mouth  
575 [25]. Five common genes were found up-regulated in the hardened accessions and down-regulated in  
576 Ibosweet 3 3DAH. Those genes are chalcone synthase, diterpene synthase, transcription factor MYB,  
577 xylan O-acetyltransferase and lignin laccase. Chalcone synthase is a key enzyme of the  
578 flavonoids/isoflavanoid biosynthesis pathway and is induced in plants under stress conditions [26].  
579 Laccase catalyse the oxidation of phenolic substrates using oxygen as electron acceptor. Laccase has  
580 been recognized in the lignification process through the oxidation of lignin precursors. Indeed, [27]  
581 demonstrated an involvement of laccase genes in lignification as response to adaptation to abiotic  
582 stresses in *Eucalyptus*.

583 Based on our results, the PHH seems to be governed by differentially expressed genes in a  
584 metabolic network, which is attributed to the exposure to external environment or sun light. Therefore,  
585 a putative model of the hardening mechanism and the regulatory network associated was proposed  
586 (Figure 8). After harvest, yam tubers are exposed to the external environment particularly to sun light.  
587 This environmental factor acts as the first signal to stimulate photosynthetic genes involved in photons  
588 capture namely LHCb1, LHCb2, LHCb3 and LHCA4. The absorption of photons implies loss of  
589 electrons which is replaced by electrons from the splitting water through photolysis [28]. This activity  
590 implies the necessity of a continued electron supply through the breakdown of water molecule.  
591 However, tubers are detached from roots with no possibility of water absorption. Therefore, a signal is  
592 given to reinforce the cell wall in order to avoid loss of water from the tubers via the up regulation of  
593 CESA, XOAT and COB genes. This reinforcement of the cell wall implies firstly, an accumulation of cell  
594 wall polysaccharide such as cellulose hemicellulose during the first days of storage. Secondly, probably  
595 from the third day after harvest starts the lignification process controlling laccase genes. This overall  
596 process is likely controlled transcription factor MYB.



627 **Figure 7.** Putative mechanism of the PHH on *D. dumetorum*. Blue represents GO annotation.

628 **4. Materials and Methods**

629 *4.1. Plant materials*

630 Four accessions have been collected from various localities in the main growing regions of yam  
631 (West and South-West) in Cameroon and one from Nigeria based on the analysis of [9]. These accessions  
632 were planted in pots in the greenhouse of the botanic garden of the University of Oldenburg under  
633 controlled conditions at 25 °C. They are available upon request.

634 *4.2. Sample preparation*

635 Three tubers of each accession were randomly collected 4 months after emergence (ME), 9 ME  
636 (Harvest time AH), 3 days after harvest (3DAH) and 14 DAH. Collected tubers were washed and their  
637 skin peeled off. Then, the samples will be immediately frozen in liquid nitrogen and stored at – 80 °C  
638 prior to RNA isolation.

639 *4.3. RNA-Seq extraction*

640 The stored tubers (– 80 °C) were immediately lyophilized. Total RNA was extracted from 48  
641 samples using innuPREP Plant RNA Kit (Analytik Jena AG, Germany). The RNA quality was analysed  
642 using a spectrophotometer (Nano-Drop Technologies, Wilmington, DE, USA). RNA Integrity Number  
643 (RIN) values were determined using a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA) to  
644 ensure all samples had a RNA integrity number (RIN) above 6.

645 *4.4. Library construction and Illumina sequencing*

646 We constructed cDNA libraries comprising 48 RNA samples using the Universal Plus mRNA-  
647 Seq offered by NuQuant (Tecan Genomics, Inc California, USA). Paired-end (2 × 150 bp) sequencing of  
648 the cDNA libraries was performed on the Illumina HiSeq 2000 (Illumina Inc., San Diego, CA, USA).

649

650 *4.5. Data processing and functional analysis*

651 Low quality reads were filtered using TrimGalore v 0.6.5  
652 (<https://github.com/FelixKrueger/TrimGalore/releases>) with the following parameters --length 36 -q 5 -  
653 -stringency 1 -e 0.1. The filtered reads were aligned to the reference genome of *D. dumetorum* [10] with  
654 STAR v 2.7.3a [29] with default parameters. The aligned reads in BAM files were sorted and indexed  
655 using SAMtools v 1.9 [30]. The number of reads that can be assigned uniquely to genomic features were  
656 counted using the function SummarizeOverlaps of the R package GenomicAlignments v1.20.1 [31] with  
657 mode="Union", singleEnd=FALSE, ignore.strand=TRUE, fragments=TRUE as parameters.

658 Two programs DESeq2 [32] and edgeR [33] were deployed to analyze differentially expressed  
659 genes (DEGs) between conditions and the interaction conditions x accessions. Gene with p-adjusted  
660 value < 0.05 and log2 fold change > 2 were considered as significantly expressed genes. False discovery  
661 rate FDR threshold was < 0.05. We performed a basic time course experiment to assess genes that change  
662 their expression after harvest using Deseq2 [32]. Metabolic pathway assignments of DEGs were based  
663 on the KEGG Orthology database using the KAAS system [34]. The final pathway analyses were mostly  
664 based on the tool Mercator4 and Mapman4 [35]. In addition, differential expressed MYB genes were  
665 functional annotated based on several datasets *Arabidopsis thaliana* MYBs [36], *Beta vulgaris* MYBs [37],  
666 *Musa acuminata* MYBs [38], *Croton tiglium* MYBs [39], *Dioscorea rotundata* MYBs and *Dioscorea dumetorum*  
667 MYBs via KIPEs (<https://github.com/bpucker/KIPEs>). GO term assignment and enrichment were  
668 performed using Blast2GO [40] via OmicsBox with cutoff 55, Go weight 5, e-value 1.e-6, HSP-hit  
669 coverage cutoff 80 and hit filter 500. Co-expression analysis was carried out using k-means method and  
670 the number of cluster was determined through the sum of squared error and the average silhouette  
671 width.

672 **5. Conclusions**

673 In this study, for the first time differentially expressed genes after harvest and during yam  
674 storage was investigated through RNA-Seq. The evidence from this study suggests that the PHH on *D.*

675 *dumetorum* is a cellular and metabolic process involving a combined action of several genes as response  
676 to environmental stress due to sun and water. Genes encoding for cell wall polysaccharide constituents  
677 were found significantly up-regulated suggesting that they directly responsible for the hardness of *D.*  
678 *dumetorum* tubers. It is worth noticing that many genes encoding for light-harvesting chlorophyll a/b  
679 binding proteins were as well significantly up regulated after harvest. This support the idea that  
680 sunlight is the trigger element of the PHH manifested by the strengthen of cell call in order to avoid  
681 water loss useful for a putative photosynthesis activity. These findings add substantially to our  
682 understanding of hardening on *D. dumetorum* and provide the framework for molecular breeding  
683 against the PHH on *D. dumetorum*.

684 **Supplementary Materials:** Supplementary S1: Statistic of clean reads mapped to *D. dumetorum* reference genome,  
685 Supplementary S2: Number of DEGs based on the combined analysis of the three hardening accessions 4MAE and  
686 after harvest, Supplementary S3: Group resulting from Cluster analysis of DEGs 3DAH among the different  
687 sampling times for Bangou, Bayangam, Fonkouankem, and the combined analysis of the three hardening  
688 accessions, Supplementary S4: Phylogenetic tree of candidate MYB genes in Bangou, Bayangam, Fonkouankem,  
689 and the combined analysis of the three hardening accessions , Supplementary S5: GO enrichment of up-regulated  
690 DEG 3DAH and 14DAH based on the comparison of hardening accessions against the non-hardening accession,  
691 Supplementary S6: Functional classification of up-regulated DEG 14DAH based on the comparison of hardening  
692 accessions against the non-hardening accession. (A), (B) and (C) the most enriched pathways 14 DAH in Bangou 1  
693 vs. Ibo sweet 3, Bayangam 2 vs. Ibo sweet 3, and Fonkouankem 1 vs. Ibo sweet 3, respectively. Green bars represent  
694 pathway annotation with the MapMan database, and red bars represent pathway annotation with the KEGG  
695 database, Supplementary S7: Greening of young *D. dumetorum* tuber exposed to sunlight as opposed to the non-  
696 greening one.

697 **Author Contributions:** Conceptualization, C.S. and D.C.A.; methodology, C.S., E.M., and S.L.; software, C.S.;  
698 validation, C.S.; formal analysis, C.S.; investigation, C.S., E.M.; resources, C.S.; data curation, C.S.; writing—original  
699 draft preparation, C.S.; writing—review and editing, D.C.A., S.L.; visualization, C.S.; supervision, D.C.A., S.L.;  
700 project administration, D.C.A., E.M.; funding acquisition, DCA., C.S. All authors have read and agreed to the  
701 published version of the manuscript.

702 **Funding:** This research was funded by Alexander von Humboldt-Stiftung, grant number 1128007-NGA-IP and by  
703 Deutscher Akademischer Austauschdienst DAAD, grant number 57299294.

704 **Data Availability Statement:** Data are available upon request.

705 **Acknowledgments:** We would like to thank Dr. Boas Pucker for helping in the annotation with KIPEs.

706 **Conflicts of Interest:** The authors declare no conflict of interest.

## 707 References

- 708 1. Sefa-Dedeh, S.; Afoakwa, E.O. Biochemical and textural changes in trifoliate yam *Dioscorea dumetorum* tubers  
709 after harvest. *Food Chem.* 2002, 79, 27–40, doi:10.1016/S0308-8146(02)00172-3.
- 710 2. Mbome Lape, I, Treche, S. Nutritional quality of yam (*Dioscorea dumetorum* and *D rotundata*) flours for growing  
711 rats. *J. Sci. Food Agric.* 1994, 66, 447–455, doi:10.1002/jsfa.2740660405.
- 712 3. Afoakwa, E.O.; Sefa-Dedeh, S. Chemical composition and quality changes occurring in *Dioscorea dumetorum*  
713 Pax tubers after harvest. *Food Chem.* 2001, 75, 85–91, doi:10.1016/S0308-8146(01)00191-1.
- 714 4. Iwu, M.M.; Okunji, C.; Akah, P.; Corley, D.; Tempesta, S. Hypoglycaemic Activity of Dioscoretine from Tubers  
715 of *Dioscorea dumetorum* in Normal and Alloxan Diabetic Rabbits. *Planta Med.* 1990, 56, 264–267.
- 716 5. Nimenibo-Uadia, R.; Oriakhi, A. Proximate, Mineral and Phytochemical Composition of *Dioscorea dumetorum*  
717 Pax. *J. Appl. Sci. Environ. Manag.* 2017, 21, 771, doi:10.4314/jasem.v21i4.18.
- 718 6. Medoua, G.N.; Mbofung, C.M.F. Hard-to-cook defect in trifoliate yam *Dioscorea dumetorum* tubers after  
719 harvest. *Food Res. Int.* 2006, 39, 513–518, doi:10.1016/j.foodres.2005.10.005.
- 720 7. Medoua, G.N. Potentiels nutritionnel et technologique des tubercules durcis de l'igname *Dioscorea dumetorum*  
721 (Kunth), Doctoral thesis, Ngaoundere University, Cameroon, 2005.
- 722 8. Siadjeu, C.; Panyoo, E.A.; Mahbou Somo Toukam, G.; Bell, M.; Nono, B.; Medoua, G.N. Influence of cultivar  
723 on the post-harvest hardening of trifoliate yam (*Dioscorea dumetorum*) tubers. *Adv. Agric.* 2016, 2016, 1–18.
- 724 9. Siadjeu, C.; Mayland-quelhorst, E.; Albach, D.C. Genetic diversity and population structure of trifoliate yam  
725 (*Dioscorea dumetorum* Kunth) in Cameroon revealed by genotyping-by-sequencing (GBS). *BMC Plant Biology*  
726 2018, 1–14.
- 727 10. Siadjeu, C.; Pucker, B.; Viehöver, P.; Albach, D.C.; Weisshaar, B. High contiguity de novo genome sequence  
728 assembly of trifoliate yam (*Dioscorea dumetorum*) using long read sequencing. *Genes (Basel)*. 2020, 11,  
729 doi:10.3390/genes11030274.

730 11. Wang, L.; Wang, Z.; Chen, J.; Liu, C.; Zhu, W.; Wang, L.; Meng, L. De Novo Transcriptome Assembly and  
731 Development of Novel Microsatellite Markers for the Traditional Chinese Medicinal Herb, *Veratrilla Baillonii*  
732 Franch (Gentianaceae). *Evolutionary Bioinformatics* 2015, 11, 39–45, doi:10.4137/EBO.S20942. Received.

733 12. Alves-Carvalho, S.; Aubert, G.; Carrère, S.; Cruaud, C.; Brochot, A.L.; Jacquin, F.; Klein, A.; Martin, C.;  
734 Boucherot, K.; Kreplak, J.; et al. Full-length de novo assembly of RNA-seq data in pea (*Pisum sativum* L.)  
735 provides a gene expression atlas and gives insights into root nodulation in this species. *Plant J.* 2015, 84, 1–19,  
736 doi:10.1111/tpj.12967.

737 13. Becerra-Moreno, A.; Redondo-Gil, M.; Benavides, J.; Nair, V.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A.  
738 Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with  
739 phenolic biosynthesis in carrot. *Front. Plant Sci.* 2015, 6, doi:10.3389/fpls.2015.00837.

740 14. Wu, Z.-G.; Jiang, W.; Mantri, N.; Bao, X.-Q.; Chen, S.-L.; Tao, Z.-M. Transcriptome analysis reveals flavonoid  
741 biosynthesis regulation and simple sequence repeats in yam (*Dioscorea alata* L.) tubers. *BMC Genomics* 2015,  
742 doi:10.1186/s12864-015-1547-8.

743 15. Bhattacharjee, R.; Gedil, M.; Sartie, A.; Otoo, E.; Dumet, D.; Kikuno, H.; Kumar, P.L.; Asiedu, R. *Dioscorea*. In  
744 Book Wild Crop Relatives: Genomic Breeding Resources Industrial Crops. ed. C. Kole, 2011, 71–96,  
745 doi:10.1007/978-3-642-21102-7\_4.

746 16. Tamiru, M.; Natsume, S.; Takagi, H.; White, B.; Yaegashi, H.; Shimizu, M.; Yoshida, K.; Uemura, A.; Oikawa,  
747 K.; Abe, A.; et al. Genome sequencing of the staple food crop white *Guinea* yam enables the development of a  
748 molecular marker for sex determination. *BMC Biol.* 2017, 15, 1–20, doi:10.1186/s12915-017-0419-x.

749 17. Medoua, G.N.; Mbome, I.L.; Agbor-Egbe, T.; Mbofung, C.M.F. Physicochemical changes occurring during  
750 post-harvest hardening of trifoliate yam (*Dioscorea dumetorum*) tubers. *Food Chem.* 2005, 90, 597–601,  
751 doi:10.1016/j.foodchem.2004.04.018.

752 18. Medoua, G.N.; Mbome, I.L.; Agbor-Egbe, T.; Mbofung, C.M.F. Study of the hard-to-cook property of stored  
753 yam tubers (*Dioscorea dumetorum*) and some determining biochemical factors. *Food Res. Int.* 2005, 38, 143–149.

754 19. Schlüter, U.; Weber, A.P.M. Regulation and Evolution of C 4 Photosynthesis. 2020, 183–215.

755 20. Le Gall, H.; Philippe, F.; Domon, J.M.; Gillet, F.; Pelloux, J.; Rayon, C. Cell wall metabolism in response to  
756 abiotic stress. *Plants* 2015, 4, 112–166, doi:10.3390/plants4010112.

757 21. Speicher, T.L.; Li, P.Z.; Wallace, I.S. Phosphoregulation of the plant cellulose synthase complex and cellulose  
758 synthase-like proteins. *Plants* 2018, 7, 1–18, doi:10.3390/plants7030052.

759 22. Polko, J.K.; Kieber, J.J. The regulation of cellulose biosynthesis in plants. *Plant Cell* 2019, 31, 282–296,  
760 doi:10.1105/tpc.18.00760.

761 23. Ambawat, S.; Sharma, P.; Yadav, N.R.; Yadav, R.C. MYB transcription factor genes as regulators for plant  
762 responses: An overview. *Physiol. Mol. Biol. Plants* 2013, 19, 307–321, doi:10.1007/s12298-013-0179-1.

763 24. Guo, H.; Wang, Y.; Wang, L.; Hu, P.; Wang, Y.; Jia, Y.; Zhang, C.; Zhang, Y.; Zhang, Y.; Wang, C.; et al.  
764 Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell  
765 wall deposition in *Betula platyphylla*. *Plant Biotechnol. J.* 2017, 15, 107–121, doi:10.1111/pbi.12595.

766 25. Medoua, G.N.; Lape Mbome, I.; Agbor-Egbe, T.; Mbofung, C.M.F. Antinutritional factors changes occurring  
767 in trifoliate yam (*Dioscorea dumetorum*) tubers after harvest. *Food Chem.* 2007, 102, 716–720,  
768 doi:10.1016/j.foodchem.2006.06.005.

769 26. Dao, T.T.H.; Linthorst, H.J.M.; Verpoorte, R. Chalcone synthase and its functions in plant resistance.  
770 *Phytochem. Rev.* 2011, 10, 397–412, doi:10.1007/s11101-011-9211-7.

771 27. Arcuri, M.L.C.; Fialho, L.C.; Vasconcellos Nunes-Laitz, A.; Fuchs-Ferraz, M.C.P.; Wolf, I.R.; Valente, G.T.;  
772 Marino, C.L.; Maia, I.G. Genome-wide identification of multifunctional laccase gene family in *Eucalyptus*  
773 *grandis*: potential targets for lignin engineering and stress tolerance. *Trees - Struct. Funct.* 2020, 34, 745–758,  
774 doi:10.1007/s00468-020-01954-3.

775 28. Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D.J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. Mimicking  
776 Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems. *Chem.  
777 Rev.* 2018, 118, 5201–5241, doi:10.1021/acs.chemrev.7b00286.

778 29. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R.  
779 STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics* 2013, 29, 15–21, doi:10.1093/bioinformatics/bts635.

780 30. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The  
781 Sequence Alignment/Map format and SAMtools. *Bioinformatics* 2009, 25, 2078–2079,  
782 doi:10.1093/bioinformatics/btp352.

783 31. Lawrence, M.; Huber, W.; Pagès, H.; Aboyoun, P.; Carlson, M.; Gentleman, R.; Morgan, M.T.; Carey, V.J.  
784 Software for Computing and Annotating Genomic Ranges. *PLoS Comput. Biol.* 2013, 9, 1–10,  
785 doi:10.1371/journal.pcbi.1003118.

786 32. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with  
787 DESeq2. *Genome Biol.* 2014, 15, 1–21, doi:10.1186/s13059-014-0550-8.

788 33. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression  
789 analysis of digital gene expression data. *Bioinformatics* 2009, 26, 139–140, doi:10.1093/bioinformatics/btp616.

790 34. Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.C.; Kanehisa, M. KAAS: An automatic genome annotation and  
791 pathway reconstruction server. *Nucleic Acids Res.* 2007, 35, 182–185, doi:10.1093/nar/gkm321.

792 35. Schwacke, R.; Ponce-Soto, G.Y.; Krause, K.; Bolger, A.M.; Arsova, B.; Hallab, A.; Gruden, K.; Stitt, M.; Bolger,  
793 M.E.; Usadel, B. MapMan4: A Refined Protein Classification and Annotation Framework Applicable to Multi-  
794 Omics Data Analysis. *Mol. Plant* 2019, 12, 879–892, doi:10.1016/j.molp.2019.01.003.

795 36. Stracke, R.; Werber, M.; Weisshaar, B. The R2R3-MYB gene family in *Arabidopsis thaliana*. *Curr. Opin. Plant Biol.*  
796 2001, 4, 447–456, doi:10.1016/S1369-5266(00)00199-0.

797 37. Stracke, R.; Holtgräwe, D.; Schneider, J.; Pucker, B.; Rosleff Sørensen, T.; Weisshaar, B. Genome-wide  
798 identification and characterisation of R2R3-MYB genes in sugar beet (*Beta vulgaris*). *BMC Plant Biol.* 2014, 14,  
799 1–17, doi:10.1186/s12870-014-0249-8.

800 38. Pucker, B.; Pandey, A.; Weisshaar, B.; Stracke, R. The R2R3-MYB gene family in banana (*Musa acuminata*):  
801 Genome-wide identification, classification and expression patterns. *PLoS One* 2020, 15, 1–27,  
802 doi:10.1371/journal.pone.0239275.

803 39. Pucker, B.; Reiher, F.; Schilbert, H.M. Automatic identification of players in the flavonoid biosynthesis with  
804 application on the biomedicinal plant croton tiglium. *Plants* 2020, 9, 1–21, doi:10.3390/plants9091103.

805 40. Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.;  
806 Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite.  
807 *Nucleic Acids Res.* 2008, 36, 3420–3435, doi:10.1093/nar/gkn176.

808

809