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Abstract

It is well understood that variation in relatedness among individuals, or kinship, can
lead to false genetic associations. Multiple methods have been developed to adjust for
kinship while maintaining power to detect true associations. However, relatively
unstudied, are the effects of kinship on genetic interaction test statistics. Here we
performed a survey of kinship effects on studies of six commonly used mouse
populations. We measured inflation of main effect test statistics, genetic interaction test
statistics, and interaction test statistics reparametrized by the Combined Analysis of
Pleiotropy and Epistasis (CAPE). We also performed linear mixed model (LMM)
kinship corrections using two types of kinship matrix: an overall kinship matrix
calculated from the full set of genotyped markers, and a reduced kinship matrix, which
left out markers on the chromosome(s) being tested. We found that test statistic
inflation varied across populations and was driven largely by linkage disequilibrium. In
contrast, there was no observable inflation in the genetic interaction test statistics.
CAPE statistics were inflated at a level in between that of the main effects and the
interaction effects. The overall kinship matrix overcorrected the inflation of main effect
statistics relative to the reduced kinship matrix. The two types of kinship matrices had
similar effects on the interaction statistics and CAPE statistics, although the overall
kinship matrix trended toward a more severe correction. In conclusion, we recommend
using a LMM kinship correction for both main effects and genetic interactions and
further recommend that the kinship matrix be calculated from a reduced set of markers
in which the chromosomes being tested are omitted from the calculation. This is
particularly important in populations with substantial population structure, such as
recombinant inbred lines in which genomic replicates are used.

Introduction

In recent years it has become increasingly common to account for relatedness, or
kinship, among individuals in genetic association studies, both in human GWAS [1,2]
and in model organism studies [3]. Both population structure and cryptic relatedness
can lead to artificial inflation of association statistics leading to false positives and loss
of power to detect true positive associations [4-6].

A popular method of kinship correction among mouse geneticists is to model
relatedness as a random effect using linear mixed models as described in Kang et al.
(2008) [7]. This method was originally developed to correct kinship effects on genetic
main effects in highly structured mouse populations, such as the hybrid mouse diversity
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panel (HMDP) [7] or multi-generation populations from advanced intercross lines (AIL)
[8]. The effects of kinship corrections on main effects in these types of populations are
well studied, and have been shown to dramatically reduce false positive rate (FPR) and
increases power to detect true main effects [7,8]. Relatively unstudied, however, are the
effects of population structure and relatedness on genetic interaction test statistics.
Genetic interactions, or epistasis, are an important aspect of describing complex
traits. Statistical models of complex traits are improved when epistasis is taken into
account [9], particularly when considering individuals at the tails of the trait
distribution [10]. Thus, epistasis may contribute to missing heritability and poor
replication of genetic associations across human populations [11]. Kinship may influence
these pairwise effects similarly to main effects. Understanding, and appropriately
adjusting for kinship when studying epistasis are important in reducing FPR while still

maintaining power to detect epistatic effects, which are often weaker than main effects.

Previous work suggests that kinship inflates interaction test statistics, and that
adjusting specifically for epistatatic kinship effects effectively reduces FPR in
interaction test statistics and improves modeling of complex traits through genetic
interaction networks [12]. We sought to expand upon this work by surveying a range of
commonly used mouse mapping populations. Although it is common to apply kinship
corrections universally, the effects of these corrections is relatively unstudied across
population types. Here we investigated the effects of kinship on interaction statistics in
these commonly used populations that sampled a range of relatedness as well as
population structure.

In addition to calculating main effects and interaction effects using linear models, we
investigated the effects of kinship on genetic interaction coefficients from the Combined
Analysis of Pleiotropy and Epistasis (CAPE). We previously developed CAPE to

combine information across multiple traits to infer directed genetic interactions [13,14].

This type of epistasis analysis is distinct from standard single-trait epistasis analysis, in
that the interactions are inferred for multiple traits simultaneously and are directional.
The most recent version of CAPE published on CRAN implements a LMM kinship
correction, and here we investigated whether kinship caused inflation of these statistics,
and how the kinship correction would affect any observed inflation.

For this survey, we selected six mouse populations that are commonly used for
identifying both main effects and interaction effects. The populations represented a
range of relatedness as well as population structure. In each population we assessed the
degree of inflation of main effect test statistics, and interaction test statistics from linear
models, as well as CAPE test statistics. We also implemented a kinship correction to
investigate the impact of these corrections on test statistic inflation. We used the LMM
method originally described in Kang et al. (2008) [7]. This method corrects for both
cryptic relatedness and population structure simultaneously, and can handle nearly
arbitrary and complex genetic relationships between individuals [3]. This is a
potentially useful feature in many complicated mouse populations, such as in
multi-generational outbred populations, or in experiments involving recombinant inbred
lines (RILs) with genomic replicates.

We calculated two different kinship matrices for these corrections. For one we used
the full set of genotyped markers to create an overall kinship matrix. For the other we
calculated reduced kinship matrices using only markers on chromosomes not being
tested for association. The overall correction has been shown to be overly stringent and
can reduce power to detect main effects [8]. However by calculating kinship matrices
leaving out the chromosome being tested simultaneously controls FPR and retains
power to detect main effects on the omitted chromosome [8]. This method is called
leave-one-chromosome-out, or LOCO. We implemented an extension of LOCO for
epistatic tests in which we calculate kinship matrices leaving out the pair of
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chromosomes containing the markers being tested. Of course, if both markers are on the
same chromosome, this is the same as LOCO. Here we call this extension
leave-two-chromosomes-out, or LTCO. We compared the effect of these two kinship
matrices across all test statistics and all populations.

Materials and Methods

Data

We examined genomic inflation in previously published data sets representing commonly
used mouse populations. We selected these populations to represent a range of
relatedness and population structure. The populations were as follows: a reciprocal
backeross [15], an F2 intercross [16], a panel of BXD recombinant inbred lines (RILs)
[17-19], a cohort of Diversity Outbred mice [10,20], and a cohort from an advanced
intercross line (AIL) [21]. We created a sixth study population by averaging over
genomic replicates in the RIL. Averaging over replicates in RILs is common practice. It
reduces population structure, but also reduces n and the power to detect effects [22].
We refer to this population as the RIL with no replicates (RIL-NR).

We expected that the AIL, F2, and backcross populations would have negligible
population structure, but may potentially harbor cryptic relatedness, where random
differences in recombination led to some pairs of individuals being more highly related
than other pairs of individuals. Outbred and RIL populations are more likely to have
population structure that may confound genetic association tests. The Outbred
population used here included multiple generations of animals, and the RIL population
included genetic replicates.

Each data set is described in more detail below:

Mouse Populations

Advanced Intercross Lines: This advanced intercross line (AIL) was started by
crossing a large (LG/J) mouse with a small (SM/J) mouse [23]. The study population
used here are all males derived from the 50th filial generation [21]. Mice were assessed
for skeletal and muscular traits at 12 weeks of age [21]. The mice were genotyped at
7187 SNPs. Here we analyzed tibia length (Tibia) and soleus weight (Soleus) in 492
mice.

Backcross: This population was generated to investigate gene-environment
interactions influencing diabetes and obesity [15]. The diabetes-prone New Zealand
Obese (NZO/HILtJ) mouse was crossed to the diabetes-resistant Non-obese
Non-diabetic (NON/ShiLitJ) mouse. The F1 generation was then backcrossed to the
NON parent. The study population comprised 204 male mice genotyped at 84 MIT
markers. For this study, we selected trygliceride level (TG) and high-density lipoprotein
(HDLD) levels. We used cross direction (pgm) as a covariate in all runs.

F2: This large F2 intercross was generated to investigate genetic influences on bone
density traits in mice [16]. This population carried a fixed lit mutation in growth
hormone releasing hormone receptor (GHRHR), which arose naturally on the C57B16/J
(B6) background, and was transferred to the C3H/HeJ (C3H) background. C3H mice
with the lit mutation have the same body weight as B6 mice with the /it mutation but
have higher bone density. The purpose of this cross was to identify genetic factors that
increase bone density in the absences of GHRHR. We used 1095 female mice from this
cross. They were genotyped at 100 MIT markers. We analyzed percent body fat
(pctFat) and trabecular bone thickness (Th.Th) here.
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Outbred: We used a of cohort of Diversity Outbred mice [20], which were derived
from eight founder strains: 129S1/SvImJ (129), A/J, CAST/EiJ (CAST), NOD/ShiLtJ
(NOD), NZO/HILtJ (NZO), PWK/PhJ (PWK), and WSB/EiJ (WSB). The CAST,
PWK, and WSB strains were recently inbred from wild mouse strains, whereas the
other five strains were inbred mostly from pet fancy mice with limited genetic diversity
[24]. Across all eight strains there are roughtly 45 million SNPs, and because DO mice
are outbred, each carries a unique subset of these SNPs. The systematic mating scheme
was designed to limit population structure and relatedness. The DO population we used
here included 446 individuals, both male and female. We used only the mice that were
fed on a chow diet, eliminating those on a high-fat diet. We used sex as a covariate in
all runs. We analyzed the change in blood glucose between 6 and 19 weeks of age

(change.urine.glucose) and blood glucose levels at 19 weeks of age (urine.glucose2) in
this study.

Recombinant Inbred Lines (RIL): The recombinant inbred lines (RILs) we
analyzed here were from the BxD panel of RILs. RILs are generated by crossing two
parental strains, breeding the progeny for some number of generations to produce
recombinant chromosomes, and then inbreeding to generate stable, inbred genotypes.
The result is a panel of inbred mice each with a unique combination of genotypes from
the parental strains. BxD were generated from an initial cross between the C57B1/6J
(B) mouse and the DBA/2J (D) mouse. We downloaded data from the [Mouse Phenome
Database| [25] on August 5, 2020.

The data we analyzed were from an experiment investigating the genetics of
hippocampal anatomy and spatial learning [17-19]. The data set is called |Crusiol. We
downloaded all traits related to body weight, radial maze performance, and
histopathology.

The BxD panel has been genotyped at 7124 markers across the genome. The
genotypes are available from |GeneNetworkl. [26] We analyzed time to complete the
radial maze on the first day of training (task_time_d1) and the number of radial arms
entered on day five of training (num_arms_d5) in 452 females.

Recombinant Inbred Lines, No Replicates (RIL-NR): This test used the
same RIL data set as described above, but we averaged over individuals of the same
strain resulting in 55 individuals. Averaging over replicates in a single strain is common
practice. This practice reduces structure in the mapping population, but also reduces
power to detect effects [22]. Here we examined how averaging across replicates in a
strain affected test statitic inflation. We used only females in this analysis to completely
eliminate any duplicated genomes.

Trait selection

CAPE combines information across multiple traits and requires at least two traits as
input. It has been observed previously that body weight and size traits are significantly
correlated with the proportion of New Zealand Obese (NZO) genotype in an individual
(Petr Simicek personal communication). Two of our populations here, the backcross and
the outbred populations, include NZO genomes, and using body weight traits in these
populations could lead to increased test statistic inflation due to high levels of
polygenicity. To reduce this effect, we selected traits from each population that
minimized the correlation with the first principal component of the kinship matrix

(Supp. Fig. [4] and Supp. Table[7).

Kinship Matrix Calculation

We use the R package qtl2 [27] to calculate the kinship matrix as described in Kang et
al. (2008) [7]. This method calculates a similarity matrix based on measured genotypes.
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This matrix has been shown to correct confounding population structure effectively and
is guaranteed to be positive semidefinite. The kinship matrix is calculated as follows:

G x GT

)

K =
n

where G is the genotype matrix, and n is the number of genotyped markers. For
calculating main effects, we use the leave-one-chromosome-out (LOCO) method [8], in
which the markers on the chromosome being tested are left out of the kinship matrix
calculation. LOCO has been shown to reduce the rate of false negatives relative to use
of the overall kinship matrix [8,28]. For each chromosome, we calculated

KC _ GC X Gg’
n
where G is the genotype matrix with all markers on chromosome C' removed. For
the pairwise tests, we used the natural extension of LOCO, which we called
leave-two-chromosomes-out (LTCO). To calculte the kinship matrix for a pairwise test,
we left out the two chromosomes containing the two markers being tested. If both

markers were on the same chromosome, we left out only that one chromosome.

For

To gauge the level of population structure in each population, we calculated the fixation
index (Fgr) using the sum of the heterozygosity across all loci 7 [29]. In the following
equation, 7 is the heterozygosity across all populations, and 7g is the average
heterozygosity across the subpopulations [29].
Fst = UENEE

T

An Fgr of 0 indicates that the population is interbreeding freely, and a value of 1
indicates that subpopulations within the population are genetically isolated. Here, Fis
estimated how structured each mouse population was.

To do this, we converted the kinship matrix for each population to a network using
the R package igraph [30]. We used the fast-greedy clustering algorithm [31] in igraph
to define subpopulations, which we then used to calculate Fgr.

Linear Mixed Model Correction

To account for population structure in our association tests, we used a linear mixed
model correction as described in [7,32]. Briefly, population corrections account for
polygenic effects on the phenotype that are not attributable to the test marker, which
cause the assumption of independent prediction errors to fail. To account for correlated
errors, Kang et al. proposed a mixed-effects model where the residual errors are not
independent, but correlated according to a multi-variate Gaussian distribution whose
covariance matrix is given by a linear combination of the identity matrix (independent
random noise) and a kinship matrix, K, which is simply the variance-covariance matrix
of the genotypes among individuals. Fitting this model requires identifying the
maximum likelihood parameters for the genetic (fixed) effects and the two mixing
parameters defining the correlated residual errors. As shown by Lippert et al. (2011),
this model can be fit rapidly by first factoring K into its spectral decomposition and
adjusting the genotypes and phenotypes to align with the residual error structure [32].
The mathematical form of the model allows the fixed effects and the genetic variance
to be solved for explicitly as a function of a mixing parameter, which can be optimized
using a one-dimensional grid search. We have re-implemented this procedure within
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CAPE for use with mouse model populations using the code from the R/qtl2
implementation [27].

Test Statistics from Linear Models

After adjusting for kinship effects, we used single-locus marker regression and pairwise
marker regression to derive test statistics in each population. For the single-locus
regression, we fit the following model:

ne
Ul =B+ weiBl +z1ip] +
c=1

where U corresponds to traits, and € is an error term. The index ¢ runs from 1 to
the number of individuals, and j runs from 1 to the number of traits. x; is the
probability of the presence of the alternate allele for individual i at locus j. We
calculated p values for each test statistic analytically using a ¢ distribution with n — 1
degrees of freedom, where n was the number of individuals in the population. We
collected main effect test statistics for all traits in each data set.

For the pairwise marker scans, we limited our analysis to two traits. As described
below, CAPE requires at least two traits. However, CAPE and pairwise tests in general
are computationally intensive, and our ability to run many traits was limited. We fit
linear models for each pair of markers and each of the two selected traits as follows:

Ne
J _ nJ § : .3 37 R Y] J
Ui = Bo + xc,zﬁc +$1,1ﬁ1 + 332,1/82 +x1,1£2,1ﬁ12 +€;,
=1
;,_/ main effects interaction

covariates

Again, U corresponds to traits, and € is an error term. The index ¢ runs from 1 to
the number of individuals, and j runs from 1 to the number of traits. x; is the
probability of the presence of the alternate allele for individual ¢ at locus j. For the
pairwise tests, we calculated empirical p values from permutations.

Combined Analysis of Pleiotropy and Epistasis

Starting with the pairwise linear regression above, we ran the Combined Analysis of
Pleiotropy and Epistasis (CAPE) [13,14]. CAPE reparametrizes 5 coefficients from
pairwise linear regressions to infer directed influence coefficients between genetic
markers. The reparametrization combines information across multiple traits thereby
identifying interactions that are consistent across all traits simultaneously. Combining
information across traits also allows inference of the direction of the interaction [13,14].
The f coefficients from the linear models are redefined in terms of two new ¢ terms,
which describe how each marker either enhances or suppresses the activity of the other

marker:
1 171 1
[51} _ [51 2] ) [512]
&) BT B3 Bta
We then translated the § terms into marker-to-marker influence terms:

01 = mia(1 4 92), 02 = mai (14 01)

Since matrix inversion can lead to large values with larger standard errors, we
performed standard error analysis on the regression parameters, and propagated the
errors using a second-order Taylor expansion [14,33]. To calculate p values for the
directed influence coefficients we performed permutation testing.
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Evaluation of Inflation

To assess test statistic inflation in each population, we ran cape three times, each time
collecting the main effect statistics and interaction effect statistics from the linear
models, as well as the cape statistics. To estimate the variation in test statistic
distributions across sampled populations, we performed Monte-Carlo cross validation
[34] by sampling 80% of the individuals over 10 trials.

In each trial, we assessed the inflation of each set of test statistics using A [4]. This
inflation factor is the ratio of the median test statistic over the mean of the theoretical
distribution. Here we calculated the mean of the chi-square quantiles of 1 — p over the
theoretical mean of the null, uniform p value distribution with one degree of freedom
(0.456).

Results

Population structure and relatedness varied across populations

We observed varying degrees of relatedness across the populations (Fig. . The
heatmaps in Fig[l| show how each population was clustered into subpopulations and the
relatedness within and among subpopulations. The AIL and F2 populations had
negligible structure with no discernible differences in heterozygosity across
subpopulations. The Outbred mice were drawn from multiple generations of DO mice,
which created subpopulations with slightly higher relatedness than the overall average.
The Backcross and RIL had the most substantial structure, with Fgp values more
similar to human populations.

Fig 1. Population structure and relatedness distributions across populations. Each
panel shows the population structure of a population as a heatmap in the upper part of
the panel. The heatmaps show the overall kinship matrix for each population clustered
into subpopulations. Cool colors indicate less relatedness, and warm colors indicate
more relatedness. The gray lines indicate the boundaries of subpopulations. The
histograms below each heatmap show the distribution of relatedness from the upper
triangle of the kinship matrix. Average relatedness varies from the level of cousins in the
Outbred animals to slightly higher than the level of siblings in the AIL animals. The
Fsr value for each population is shown in the upper right hand corner of each histogram
and was calculated as described in the methods. Panels are in order of increasing Fgr.

Independent of the population structure, the populations also had varying degrees of
relatedness. On average the Outbred mice were related to each other at a level
equivalent to first cousins, which is by design [20], whereas the AIL mice were slightly
more related to each other than siblings. The other three populations were all siblings
on average, but had differential variation around that mean, with the F2 having a very
narrow distribution of relatedness and the Backcross having a wider distribution (Fig.

1.

Main effect test statistic inflation varied widely across
populations

Before running CAPE, we investigated overall trends in test statistic inflation by
scanning all traits for main effects using marker regression. This revealed wide variation
in test statistic inflation by population (Fig . Across all traits, the AIL, Outbred, and
RIL-NR populations showed very little inflation. In contrast, the RIL, F2, and
Backcross populations showed substantial inflation across most or all traits when no
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kinship correction was applied (Fig. [2|left-most group). Inflation in the RIL population

was corrected by a leave-one-chromosome-out kinship correction (Fig. [2| middle group).

The overall kinship correction eliminated inflation in all populations (Fig. [2| right-most
group).

Fig 2. Inflation of test statistics for main effects. Each group of dots shows inflation of
main effect statistics across all populations for one of the kinship correction types (none,
LMM-loco, or LMM-overall). Each dot represents one trait. The populations are
differentiated by color, and are shown in order of increasing LD. The legend shows the
correspondance between color and population, as well as the number of individuals in
each study. The horizontal line shows A = 1, which indicates no inflation. Numbers
below each set of dots indicate the mean and standard deviation of A for each group.
The inset in the top right-hand side of the plot shows the pairwise correlation between
markers on the same chromosome for each population, which is a standin for LD. The
color of each box identifies which population the data come from. The horizontal line in
the boxplot shows r = 0. The F2 and Backcross populations, which have the highest
LD, also have the highest test statistic inflation. The extreme inflation seen in the F2
population is likely due to a combination of high LD and large n.

Main effect inflation was correlated with linkage disequilibrium

Linkage disequilibrium (LD) influences test statistic inflation because a single causal
SNP within an LD block can inflate the test statistics of all SNPs linked to it. If there
are relatively few recombinations in the population, such as in an F2 or backcross, large

portions of the genome may be significantly associated with a trait due to linkage alone.

To investigate whether linkage disequilibrium (LD) may be related to the inflation of
test statistics in the populations used here, we calculated pairwise Pearson correlations
(r) between markers on the same chromosome across all chromosomes and all
populations. These distributions are shown in the inset in Fig. [2 The two populations
with the highest test statistic inflation, the F2 and Backcross populations, also had the
highest average LD.

However, although the F2 had lower LD than the backcross, it had substantially
greater inflation of test statistics. The F2 also had many more individuals than the
backcross, and thus greater power to detect effects. This increase in power combined
with high LD could lead to the high levels of inflation seen in the F2. To test this, we
subsampled the F2 to the same number of individuals in the backcross and recalculated
A. Reducing n in the F2 also reduced inflation to similar levels seen in the backcross

(Supp. Fig[3).

Kinship corrections reduced inflation differentially across
populations

Fig. [BA shows a more detailed view of test statistic inflation in the main effect statistics
for each population. Each panel shows QQ plots for the —log1o(p) for two traits against
the theoretical null p values. The more the points rise above the line y = z, the stronger
the inflation factor A. In the absence of a kinship correction, the F2 and RIL showed
strong inflation, the AIL and RIL without replicates showed moderate inflation, and the
backcross and Outbred populations showed very minor inflation if any at all (Fig. [BJA).

Numeric values are shown in the legends of Fig 3] The RIL (A = 2.7) was the most
affected by inflation, while traits in the Outbred population had mild deflation (A =
0.82).
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Fig 3. Quantile-quantile (QQ) plots for all test statistics. Each panel shows the QQ
plots for one set of statistics across all populations and all correction types. Each row
holds the results for a single population. Each column shows one test statistic: (A) QQ
plots for main effects. (B) QQ plots for the pairwise test statistics. (C) QQ plots for
CAPE statistics. Correction types (none, LMM-loco/ltco, or LMM-overall) are shown in
different colors. The x axis in each plot shows the theoretical quantiles of the null p
value distribution, and the y axis shows the observed quantiles. Dots show the mean p
value distribution across 10 rounds of Monte Carlo cross validation, and transparent
polygons show the standard deviation. The black line in each plot shows y = z. The
legends show the A values for each set of statistics.

The overall kinship correction had a strong effect on inflation across all populations
(purple dots in Fig. [B]A). The leave-one-chromosome-out (LOCO) correction had varied
effects (green dots in Fig. ) It provided strong control of inflation in the RIL, but
had no effect in the Backcross, F2, or AIL populations.

Interaction coefficients were largely unaffected by genomic
inflation

The p values associated with interaction coefficients were almost completely unaffected
by inflation (Fig ) The only population where inflation appeared to affect the
interaction statistics was the RIL population (A = 1.1). This inflation was reduced by
both the leave-two-chromosomes-out (LTCO) and overall kinship corrections.

The LTCO correction appeared to slightly improve power to detect interaction
effects in the Outbred population, although this was not evident in the A values (A,one
= 1, VS. >\ltco :1)

CAPE coefficients were intermediately affected by inflation

The CAPE coefficients influenced by inflation at a level in between that of the main
effect statistics and the pairwise statistics (Fig. [3IC). The bulk of the inflation was seen
in the RIL (A = 1.7), F2 (A = 1.4), and backeross populations (A = 1). The overall and
LTCO kinship corrections had remarkably similar effects across all populations.

Discussion

In this study we examined inflation of main effect and genetic interaction statistics in
five mouse mapping populations. We also investigated the effect of kinship corrections
on this inflation.

We found large variation in test statistic inflation across populations and across
traits. Across populations, the primary driving factors of inflation were LD and
population size. Populations with high LD, like the F2 and backcross, had the highest
inflation. Between those populations with the highest LD, the number of individuals in
the population had a large effect on inflation. High power to detect effects combined
with high LD creates hugely inflated test statistics. There was also wide variation in
inflation across different traits. We hypothesize that polygenicity may be the primary
factor in the variation in inflation across traits within a single population. All else being
equal, there will be a preponderance of small p values for traits with multiple true
positive loci.

Differences in LD cannot explain the difference in inflation between the RIL with
replicates, which had substantial inflation, and the RIL without replicates (RIL-NR),
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which did not. It has been shown previously that including genetic replicates increases
power to detect genetic effects [22]. Increase in power alone potentially increases the
prevalence of small p values; however, genetic relatedness also increases false positive
rate (FPR) when strain effects are large relative to individual error [22]. Taken together,
these results suggest that including genetic replicates in a RIL study increases power to
detect effects, but that a LOCO kinship correction should be done to counterract the
increase in FPR caused by the replicates. Here, the LOCO kinship correction
substantially reduced inflation in the RIL population without the overcorrection seen
with the overall kinship correction (See Figs. [2] and [BA).

The differences of effects between the overall and reduced kinship matrices for the
main effects illustrates a couple important points about these two corrections. First, the
overall kinship correction reduces power to detect true effects [8]. Indeed, we saw
complete elimination of inflation across all populations with this correction. Second, the
comparison between the LOCO and overall corrections suggests that the inflation seen
in the RIL was primarily due to population structure. The substantial inflation of main
effect test statistics in the RIL was reduced by the LOCO correction. However, the
LOCO correction did not reduce inflation in the F2 or backcross. These populations
had very little structure, and inflation was likely due primarily to LD and polygenicity.

That the overall kinship correction erased all inflation shows how this severe
correction can eliminate power to detect true effects. The LOCO correction, however,
retains power to detect true effects, while still correcting for relatedness. It should be
noted that treating the F2 and Backcross populations as GWAS mapping populations is
not really a fair representation, since in practice the markers in these populations would
not be treated as independent measurements. However, this exercise illustrates
important, albeit dramatic, aspects of test statistic inflation, and how kinship
corrections affect test statistics in different situations.

The interaction 3 coefficients did not show any inflation in any population except
possibly in the RIL, despite these populations being well powered to detect epistasis.
The effects of both kinship corrections were minimal, however, there may have been
some minor improvement of power from both corrections in the Outbred population.
This complete lack of inflation is in contrast to a previous study in which epistatic test
statistics were inflated [12]. There were many differences between this study and the
previous study making a direct comparison of results difficult. Ning et al. (2018)
observed inflation of interaction test statistics in F10 of a mouse advanced intercross
line (AIL) [12]. We examined pairwise statistics in later generations of the same AIL. It
is unlikely that the reduction in LD or in later generations of the AIL explains the
difference in statistic inflation, since the F2 and Backcross in this study had very high
LD, and no test statistic inflation. Further, increasing the pairwise marker correlation
cutoff to r = 0.8 did not change pairwise statistic inflation in any population (data not
shown). We performed exhaustive pairwise testing in both the F2 and Backcross, and
our F2 was similarly powered to the AIL population in Ning et al., suggesting that
marker pair sampling and power differences do not sufficiently explain the differences in
our observations. However, in the RIL, which was the one population for which there
was apparent inflation in pairwise test stastics, both LMM paradigms corrected the
inflation. This result is concordant with previous findings that LMM kinship corrections
reduce inflation in pairwise test statistics.

In contrast to the interaction coefficients from pairwise linear models, CAPE
interaction coefficients did show inflation in some populations. We saw the most
inflation in the F2, RIL, and AIL populations. Lambda values were intermediate
between those seen for the main effect statistics and the interaction statistics, which we
expect given that CAPE interaction coefficients are non-linear combinations of main
effect statistics and interaction statistics across multiple traits across populations. We
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therefore attribute inflation in these CAPE coefficients to propagation of main effect
inflation. Indeed, the lambda values of the main effect statistics and CAPE interaction
coefficients were positively correlated (Supp. Fig. @ When there was inflation of
CAPE coefficients, both corrections controlled the inflation well. The similarity in
effects of the two corrections was somewhat surprising. We predicted that as with
LOCO, the LTCO correction would have been less stringent than the overall correction,
but this was not what we observed. Extrapolating from the main effect results, test
statistic in the RIL should be most subject to inflation derived from kinship. In this
population, both kinship matrices controlled inflation well, but the overall correction
did trend toward the more severe correction. Although more work needs to be done,
these results suggest that using the LTCO kinship matrix for interaction effects may
maintain power to detect effects better than the overall matrix.

We conclude that although many experimental mouse populations are created in
such a way to minimize population structure, cryptic relatedness and population
structure may still increase FPR in these populations for both main effects and genetic
interactions. This is particularly true in populations with unusual relatedness patterns,
such as RILs with genomic replicates. In all populations, but particularly in those with
greater structure, applying a kinship correction reduces FPR. We recommend applying
the reduced kinship matrix in which the chromosomes containing the tested markers are
left out. These kinship matrices reduce FPR related to population structure with
minimal effect on power. The major drawback to implementing these corrections is the
computational time they require, particularly for large populations. However, we
recommend that any decision to forego a kinship correction should be justified with a
full examination of structure in the study population. Simulations were beyond the
scope of this project, but could potentially further delineate guidelines for when kinship
corrections are necessary, and which types of kinship matrices to use. Such simulations
should take LD, polygenicity, and multiple types of population structure into account.

Acknowledgements

This work was funded by the National Institute of General Medicine grant RO1
GM115518.

Data and Software Availability
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Supplemental Figure Legends

Fig 4. Correlations between traits and the first principal component (PC) of the
kinship matrix. Traits with high correlation to the kinship matrix may be highly
polygenic and thus be susceptible to test statistic inflation due to many true positives.
To reduce this risk, we selected traits with low correlation with the first kinship matrix
PC. This figure shows the distribution of correlations between traits and the first
kinship PC across populations.
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Fig 5. Reducing n reduces inflation. This figure is identical to Fig. |2| except that we
have added a column for the F2 that has been subsampled to the same n as the
Backcross. This subsampling reduces power to detect effects, and thus reduces inflation
to roughly the same level as that seen in the backcross.

Fig 6. Correlations between lambda values of main effect statistics and CAPE
interaction coefficients across populations. Each panel shows the correlation between
inflation values for the main effect statistics and CAPE coefficients for a single
popopulation. The last panel shows this correlation across all populations. Overall,
greater inflation of main effect statistics propagated to greater inflation of CAPE
coefficients.

Supplemental Table Descriptions

Fig 7. Correlations between traits and the first PC of the kinship matrix.
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population trait Pearson.Correlation.Trait.to.Kin.PC
AlL Tibia 0.039713
AlL Soleus -0.05029
AlL TA -0.05547
AlL thick_log  -0.05548
AlL thick -0.06488
AlL Thickness  -0.06488
AlL EDL -0.07454
AlL delta_thick -0.07831
AlL Mode -0.09564
AlL Gastroc -0.12887
RIL task_time_ 0.007261
RIL num_arms 0.007713
RIL iipmf_pct_ 0.010487
RIL task_time_ -0.01198
RIL iipmf_pct_  0.01525
RIL num_arms -0.01673
RIL iipmf_pct_ 0.019353
RIL num_arms 0.019419
RIL task_time_ 0.019601
RIL hilus_R -0.0261
RIL iipmf_R 0.027386
RIL hilus_pct | -0.0284
RIL hilus_L 0.032441
RIL num_arms -0.03391
RIL iipmf_L 0.035195
RIL hippocamg 0.039531
RIL hippocamg 0.049081
RIL num_arms -0.05312
RIL brain_wt  0.066961
RIL bw -0.08434
RIL task_time_  0.09759
RIL task_time_ -0.11165
RIL brain_wt_ 0.138394
RIL-NR bw -0.00473

RIL-NR hippocamg -0.01155
RIL-NR brain_wt_ 0.012034
RIL-NR iipmf_pct_ 0.015029
RIL-NR  iipmf_L -0.01559
RIL-NR brain_wt  0.030058
RIL-NR iipmf_pct_ 0.032841
RIL-NR hippocamg 0.045116
RIL-NR iipmf_pct_ 0.050339
RIL-NR hilus_R -0.0508
RIL-NR hilus_pct_L -0.05212
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log GLU_1
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log GLU 2
log_ GLU_ 2
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0.240666
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0.033929
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0.049234
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0.080437
-0.08535
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0.153502
0.165695
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0.184188
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Backcross bw_8 0.376771
Backcross pct_fat 0.379462
Backcross peritoneal. 0.390986
Backcross bw_16 0.410108
Backcross bw_12 0.416452
Backcross BMI 0.420147
Backcross bw_20 0.421028
Backcross gonadal fa 0.42709
Backcross bw_24 0.432731
Backcross inguinal_fa 0.44177
Backcross total fat 0.45428
Outbred change.urii 0.001071
Outbred urine.glucc 0.001071
Outbred perc.neutl -0.00112
Outbred perc.eosl -0.00137

Outbred gldhl 0.003874
Outbred change.rbc -0.00392
Outbred rbc2 -0.00392
Outbred leptin 0.004409
Outbred nefal -0.00598

Outbred perclyml -0.00682
Outbred change.uriit -0.00745
Outbred urine.creat -0.00745
Outbred gtt.120 -0.00757
Outbred ftm1l 0.009121
Outbred urine.micrc¢ -0.01049
Outbred mhgbl 0.010954
Outbred gen 7 2 -0.01337

Outbred ct.eosl 0.01343
Outbred change.gld 0.013479
Outbred gldh2 0.013479
Outbred change.tbil 0.01402
Outbred tbil2 0.01402
Outbred chgbl 0.018235
Outbred rdwl 0.021044
Outbred change.ftmr -0.02113
Outbred ftm2 -0.02113
Outbred chcml -0.02191
Outbred change.tg -0.02365
Outbred tg2 -0.02365
Outbred gtt.t15 -0.02557
Outbred change.plt -0.02649
Outbred plt2 -0.02649

Outbred ct.neutl 0.026741
Outbred change.ct.r -0.02696
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Outbred ct.neut2 -0.02696
Outbred calciuml 0.027104
Outbred calcium2 -0.02744
Outbred change.cali -0.02744

Outbred bw.30 0.028734
Outbred rbcl -0.02966
Outbred ct.lymil 0.030679
Outbred hctl 0.031251

Outbred perc.mono 0.031755
Outbred change.uriit 0.032091
Outbred urine.micrc¢ 0.032091
Outbred sex 0.032554
Outbred mchcl -0.03332
Outbred gtt.auc 0.033669
Outbred non.fast.pt -0.03567

Outbred hr 0.036063
Outbred whbcl 0.03863
Outbred phosphoru 0.038674
Outbred bun2 0.03868

Outbred change.bur 0.03868
Outbred gen 7 1 -0.03889
Outbred freewater. 0.039266
Outbred urine.glucc -0.03931

Outbred choll -0.03991
Outbred change.nef -0.04053
Outbred nefa2 -0.04053

Outbred change.per 0.043075
Outbred perc.eos2 0.043075
Outbred gtt.180 0.04386
Outbred change.mh 0.044505
Outbred mhgb2 0.044505
Outbred hdwl 0.045369
Outbred bw.28 0.046973
Outbred gtt.t60 0.047284
Outbred change.ct.e 0.047474
Outbred ct.eos2 0.047474
Outbred change.chg 0.050193
Outbred chgb2 0.050193
Outbred change.phc 0.050303
Outbred phosphoru 0.050303
Outbred bw.29 0.050609
Outbred gtt.t30 0.051031
Outbred change.hdl -0.05115
Outbred hdld2 -0.05115
Outbred gen 8 1 0.051592
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Outbred
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Outbred
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Outbred
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ct.monol
ars
change.ret
retic2
insulin
bunil

rre
change.per
perc.neut2
adiponectil
acr2
change.acr
change.wb
whbc2
fat.mri
acrl
non.fast.ca
hdld1
kidney.wt.i
change.rdv
rdw2
change.ct.|
ct.lym2
mch1l
change.hct
hct2
heart.wt
change.chc
chol2
change.per
perc.lym2
bw.22
spleen.wt
bw.23
change.mc
mch2
perc.fatl
change.mc
mcv2
change.ttrr
ttm2

tgl

bw.20
bw.21
gtt.t0

0.052224
-0.05249
-0.0526
-0.0526
0.053285
0.053689
-0.05371
-0.05401
-0.05401
-0.05525
0.055887
0.055887
0.057888
0.057888
0.060152
-0.06038
-0.06203
-0.063
0.063097
0.063208
0.063208
0.064682
0.064682
0.06775
-0.06949
-0.06949
0.069498
-0.07011
-0.07011
0.070146
0.070146
0.072166
0.076059
0.076442
0.077611
0.077611
-0.07818
-0.08092
-0.08092
0.081921
0.081921
0.082541
0.083481
0.086186
0.0877
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Outbred kidney.wt.l 0.088233
Outbred urine.creat -0.08995
Outbred bmd2 0.090797
Outbred change.bm 0.090797
Outbred change.glu -0.0916

Outbred glucose2 -0.0916
Outbred bw.19 0.091821
Outbred bw.18 0.0921
Outbred necr.wt 0.096487
Outbred bw.17 0.09705

Outbred change.per -0.09761
Outbred perc.fat2 -0.09761
Outbred change.we 0.097621
Outbred weight2 0.097621
Outbred glucosel -0.10033
Outbred ghrelin 0.101206

Outbred mcvl 0.102682
Outbred bw.pc2 0.10362
Outbred b.areal 0.103995
Outbred bw.14 0.104411
Outbred bw.16 0.104916
Outbred reticl 0.105812
Outbred change.t.ar 0.10766
Outbred t.area2 0.10766
Outbred hrv -0.10859
Outbred bw.15 0.109048
Outbred bw.26 0.111048
Outbred st -0.11109

Outbred pnn50...6mr -0.11149
Outbred change.len 0.112641
Outbred length2 0.112641
Outbred bw.pcl 0.112891

Outbred pr -0.11312
Outbred bw.25 0.114399
Outbred mpvil 0.114981
Outbred change.hdy 0.115804
Outbred hdw?2 0.115804
Outbred weightl 0.117034
Outbred ttm1l 0.118182
Outbred frucl -0.11836
Outbred bw.11 0.12275
Outbred pq -0.12337
Outbred bw.27 0.124415
Outbred rmssd -0.12595

Outbred bw.10 0.129363
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Outbred lipasel 0.131034
Outbred b.area2 0.131748
Outbred change.b.a 0.131748

Outbred bw.12 0.132194
Outbred bw.13 0.132371
Outbred change.ltm 0.134039
Outbred Itm2 0.134039

Outbred qtc.dispers -0.13483
Outbred lengthl 0.134908

Outbred bw.24 0.135214
Outbred change.mp 0.135436
Outbred mpv2 0.135436
Outbred bw.8 0.137126
Outbred qgtc -0.13843
Outbred bmc2 0.139377
Outbred change.bm 0.139377
Outbred bmcl 0.14079
Outbred bw.6 0.142878
Outbred gen 9 1 0.144828
Outbred Itm1 0.145244
Outbred t.areal 0.145532
Outbred bw.5 0.146202
Outbred bw.9 0.147232
Outbred gen 4 1 -0.14767
Outbred pltl -0.14958
Outbred bmd1l 0.154378
Outbred bw.4 0.15554

Outbred non.fast.cr 0.162479
Outbred gen_11 2 0.166196
Outbred gen_11_ 1 0.168122
Outbred totalwater. 0.170923
Outbred lean.mri 0.175287
Outbred bw.7 0.185825
Outbred weight.mri 0.196365
Outbred change.mc 0.201043
Outbred mchc2 0.201043
Outbred change.chc 0.208359
Outbred chcm?2 0.208359
Outbred non.fast.all -0.22496
Outbred gen 8 2 -0.23116
Outbred change.ct.r -0.23745
Outbred ct.mono2 -0.23745
Outbred change.per -0.25412
Outbred perc.mono -0.25412
Outbred tbill -0.31467
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Outbred bw.3 0.366298
Outbred gen_4 2 NA
Outbred diet NA
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