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Abstract

It is well understood that variation in relatedness among individuals, or kinship, can
lead to false genetic associations. Multiple methods have been developed to adjust for
kinship while maintaining power to detect true associations. However, relatively
unstudied, are the effects of kinship on genetic interaction test statistics. Here we
performed a survey of kinship effects on studies of six commonly used mouse
populations. We measured inflation of main effect test statistics, genetic interaction test
statistics, and interaction test statistics reparametrized by the Combined Analysis of
Pleiotropy and Epistasis (CAPE). We also performed linear mixed model (LMM)
kinship corrections using two types of kinship matrix: an overall kinship matrix
calculated from the full set of genotyped markers, and a reduced kinship matrix, which
left out markers on the chromosome(s) being tested. We found that test statistic
inflation varied across populations and was driven largely by linkage disequilibrium. In
contrast, there was no observable inflation in the genetic interaction test statistics.
CAPE statistics were inflated at a level in between that of the main effects and the
interaction effects. The overall kinship matrix overcorrected the inflation of main effect
statistics relative to the reduced kinship matrix. The two types of kinship matrices had
similar effects on the interaction statistics and CAPE statistics, although the overall
kinship matrix trended toward a more severe correction. In conclusion, we recommend
using a LMM kinship correction for both main effects and genetic interactions and
further recommend that the kinship matrix be calculated from a reduced set of markers
in which the chromosomes being tested are omitted from the calculation. This is
particularly important in populations with substantial population structure, such as
recombinant inbred lines in which genomic replicates are used.

Introduction 1

In recent years it has become increasingly common to account for relatedness, or 2

kinship, among individuals in genetic association studies, both in human GWAS [1,2] 3

and in model organism studies [3]. Both population structure and cryptic relatedness 4

can lead to artificial inflation of association statistics leading to false positives and loss 5

of power to detect true positive associations [4–6]. 6

A popular method of kinship correction among mouse geneticists is to model 7

relatedness as a random effect using linear mixed models as described in Kang et al. 8

(2008) [7]. This method was originally developed to correct kinship effects on genetic 9

main effects in highly structured mouse populations, such as the hybrid mouse diversity 10
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panel (HMDP) [7] or multi-generation populations from advanced intercross lines (AIL) 11

[8]. The effects of kinship corrections on main effects in these types of populations are 12

well studied, and have been shown to dramatically reduce false positive rate (FPR) and 13

increases power to detect true main effects [7,8]. Relatively unstudied, however, are the 14

effects of population structure and relatedness on genetic interaction test statistics. 15

Genetic interactions, or epistasis, are an important aspect of describing complex 16

traits. Statistical models of complex traits are improved when epistasis is taken into 17

account [9], particularly when considering individuals at the tails of the trait 18

distribution [10]. Thus, epistasis may contribute to missing heritability and poor 19

replication of genetic associations across human populations [11]. Kinship may influence 20

these pairwise effects similarly to main effects. Understanding, and appropriately 21

adjusting for kinship when studying epistasis are important in reducing FPR while still 22

maintaining power to detect epistatic effects, which are often weaker than main effects. 23

Previous work suggests that kinship inflates interaction test statistics, and that 24

adjusting specifically for epistatatic kinship effects effectively reduces FPR in 25

interaction test statistics and improves modeling of complex traits through genetic 26

interaction networks [12]. We sought to expand upon this work by surveying a range of 27

commonly used mouse mapping populations. Although it is common to apply kinship 28

corrections universally, the effects of these corrections is relatively unstudied across 29

population types. Here we investigated the effects of kinship on interaction statistics in 30

these commonly used populations that sampled a range of relatedness as well as 31

population structure. 32

In addition to calculating main effects and interaction effects using linear models, we 33

investigated the effects of kinship on genetic interaction coefficients from the Combined 34

Analysis of Pleiotropy and Epistasis (CAPE). We previously developed CAPE to 35

combine information across multiple traits to infer directed genetic interactions [13,14]. 36

This type of epistasis analysis is distinct from standard single-trait epistasis analysis, in 37

that the interactions are inferred for multiple traits simultaneously and are directional. 38

The most recent version of CAPE published on CRAN implements a LMM kinship 39

correction, and here we investigated whether kinship caused inflation of these statistics, 40

and how the kinship correction would affect any observed inflation. 41

For this survey, we selected six mouse populations that are commonly used for 42

identifying both main effects and interaction effects. The populations represented a 43

range of relatedness as well as population structure. In each population we assessed the 44

degree of inflation of main effect test statistics, and interaction test statistics from linear 45

models, as well as CAPE test statistics. We also implemented a kinship correction to 46

investigate the impact of these corrections on test statistic inflation. We used the LMM 47

method originally described in Kang et al. (2008) [7]. This method corrects for both 48

cryptic relatedness and population structure simultaneously, and can handle nearly 49

arbitrary and complex genetic relationships between individuals [3]. This is a 50

potentially useful feature in many complicated mouse populations, such as in 51

multi-generational outbred populations, or in experiments involving recombinant inbred 52

lines (RILs) with genomic replicates. 53

We calculated two different kinship matrices for these corrections. For one we used 54

the full set of genotyped markers to create an overall kinship matrix. For the other we 55

calculated reduced kinship matrices using only markers on chromosomes not being 56

tested for association. The overall correction has been shown to be overly stringent and 57

can reduce power to detect main effects [8]. However by calculating kinship matrices 58

leaving out the chromosome being tested simultaneously controls FPR and retains 59

power to detect main effects on the omitted chromosome [8]. This method is called 60

leave-one-chromosome-out, or LOCO. We implemented an extension of LOCO for 61

epistatic tests in which we calculate kinship matrices leaving out the pair of 62
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chromosomes containing the markers being tested. Of course, if both markers are on the 63

same chromosome, this is the same as LOCO. Here we call this extension 64

leave-two-chromosomes-out, or LTCO. We compared the effect of these two kinship 65

matrices across all test statistics and all populations. 66

Materials and Methods 67

Data 68

We examined genomic inflation in previously published data sets representing commonly 69

used mouse populations. We selected these populations to represent a range of 70

relatedness and population structure. The populations were as follows: a reciprocal 71

backcross [15], an F2 intercross [16], a panel of BXD recombinant inbred lines (RILs) 72

[17–19], a cohort of Diversity Outbred mice [10,20], and a cohort from an advanced 73

intercross line (AIL) [21]. We created a sixth study population by averaging over 74

genomic replicates in the RIL. Averaging over replicates in RILs is common practice. It 75

reduces population structure, but also reduces n and the power to detect effects [22]. 76

We refer to this population as the RIL with no replicates (RIL-NR). 77

We expected that the AIL, F2, and backcross populations would have negligible 78

population structure, but may potentially harbor cryptic relatedness, where random 79

differences in recombination led to some pairs of individuals being more highly related 80

than other pairs of individuals. Outbred and RIL populations are more likely to have 81

population structure that may confound genetic association tests. The Outbred 82

population used here included multiple generations of animals, and the RIL population 83

included genetic replicates. 84

Each data set is described in more detail below: 85

Mouse Populations 86

Advanced Intercross Lines: This advanced intercross line (AIL) was started by 87

crossing a large (LG/J) mouse with a small (SM/J) mouse [23]. The study population 88

used here are all males derived from the 50th filial generation [21]. Mice were assessed 89

for skeletal and muscular traits at 12 weeks of age [21]. The mice were genotyped at 90

7187 SNPs. Here we analyzed tibia length (Tibia) and soleus weight (Soleus) in 492 91

mice. 92

Backcross: This population was generated to investigate gene-environment 93

interactions influencing diabetes and obesity [15]. The diabetes-prone New Zealand 94

Obese (NZO/HlLtJ) mouse was crossed to the diabetes-resistant Non-obese 95

Non-diabetic (NON/ShiLtJ) mouse. The F1 generation was then backcrossed to the 96

NON parent. The study population comprised 204 male mice genotyped at 84 MIT 97

markers. For this study, we selected trygliceride level (TG) and high-density lipoprotein 98

(HDLD) levels. We used cross direction (pgm) as a covariate in all runs. 99

F2: This large F2 intercross was generated to investigate genetic influences on bone 100

density traits in mice [16]. This population carried a fixed lit mutation in growth 101

hormone releasing hormone receptor (GHRHR), which arose naturally on the C57Bl6/J 102

(B6) background, and was transferred to the C3H/HeJ (C3H) background. C3H mice 103

with the lit mutation have the same body weight as B6 mice with the lit mutation but 104

have higher bone density. The purpose of this cross was to identify genetic factors that 105

increase bone density in the absences of GHRHR. We used 1095 female mice from this 106

cross. They were genotyped at 100 MIT markers. We analyzed percent body fat 107

(pctFat) and trabecular bone thickness (Tb.Th) here. 108
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Outbred: We used a of cohort of Diversity Outbred mice [20], which were derived 109

from eight founder strains: 129S1/SvImJ (129), A/J, CAST/EiJ (CAST), NOD/ShiLtJ 110

(NOD), NZO/HlLtJ (NZO), PWK/PhJ (PWK), and WSB/EiJ (WSB). The CAST, 111

PWK, and WSB strains were recently inbred from wild mouse strains, whereas the 112

other five strains were inbred mostly from pet fancy mice with limited genetic diversity 113

[24]. Across all eight strains there are roughtly 45 million SNPs, and because DO mice 114

are outbred, each carries a unique subset of these SNPs. The systematic mating scheme 115

was designed to limit population structure and relatedness. The DO population we used 116

here included 446 individuals, both male and female. We used only the mice that were 117

fed on a chow diet, eliminating those on a high-fat diet. We used sex as a covariate in 118

all runs. We analyzed the change in blood glucose between 6 and 19 weeks of age 119

(change.urine.glucose) and blood glucose levels at 19 weeks of age (urine.glucose2) in 120

this study. 121

Recombinant Inbred Lines (RIL): The recombinant inbred lines (RILs) we 122

analyzed here were from the BxD panel of RILs. RILs are generated by crossing two 123

parental strains, breeding the progeny for some number of generations to produce 124

recombinant chromosomes, and then inbreeding to generate stable, inbred genotypes. 125

The result is a panel of inbred mice each with a unique combination of genotypes from 126

the parental strains. BxD were generated from an initial cross between the C57Bl/6J 127

(B) mouse and the DBA/2J (D) mouse. We downloaded data from the Mouse Phenome 128

Database [25] on August 5, 2020. 129

The data we analyzed were from an experiment investigating the genetics of 130

hippocampal anatomy and spatial learning [17–19]. The data set is called Crusio1. We 131

downloaded all traits related to body weight, radial maze performance, and 132

histopathology. 133

The BxD panel has been genotyped at 7124 markers across the genome. The 134

genotypes are available from GeneNetwork. [26] We analyzed time to complete the 135

radial maze on the first day of training (task time d1) and the number of radial arms 136

entered on day five of training (num arms d5) in 452 females. 137

Recombinant Inbred Lines, No Replicates (RIL-NR): This test used the 138

same RIL data set as described above, but we averaged over individuals of the same 139

strain resulting in 55 individuals. Averaging over replicates in a single strain is common 140

practice. This practice reduces structure in the mapping population, but also reduces 141

power to detect effects [22]. Here we examined how averaging across replicates in a 142

strain affected test statitic inflation. We used only females in this analysis to completely 143

eliminate any duplicated genomes. 144

Trait selection 145

CAPE combines information across multiple traits and requires at least two traits as 146

input. It has been observed previously that body weight and size traits are significantly 147

correlated with the proportion of New Zealand Obese (NZO) genotype in an individual 148

(Petr Simicek personal communication). Two of our populations here, the backcross and 149

the outbred populations, include NZO genomes, and using body weight traits in these 150

populations could lead to increased test statistic inflation due to high levels of 151

polygenicity. To reduce this effect, we selected traits from each population that 152

minimized the correlation with the first principal component of the kinship matrix 153

(Supp. Fig. 4, and Supp. Table 7). 154

Kinship Matrix Calculation 155

We use the R package qtl2 [27] to calculate the kinship matrix as described in Kang et 156

al. (2008) [7]. This method calculates a similarity matrix based on measured genotypes. 157
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This matrix has been shown to correct confounding population structure effectively and 158

is guaranteed to be positive semidefinite. The kinship matrix is calculated as follows: 159

K =
G×GT

n
,

where G is the genotype matrix, and n is the number of genotyped markers. For 160

calculating main effects, we use the leave-one-chromosome-out (LOCO) method [8], in 161

which the markers on the chromosome being tested are left out of the kinship matrix 162

calculation. LOCO has been shown to reduce the rate of false negatives relative to use 163

of the overall kinship matrix [8,28]. For each chromosome, we calculated 164

KC =
GC ×GT

C

n
,

where GC is the genotype matrix with all markers on chromosome C removed. For 165

the pairwise tests, we used the natural extension of LOCO, which we called 166

leave-two-chromosomes-out (LTCO). To calculte the kinship matrix for a pairwise test, 167

we left out the two chromosomes containing the two markers being tested. If both 168

markers were on the same chromosome, we left out only that one chromosome. 169

FST 170

To gauge the level of population structure in each population, we calculated the fixation 171

index (FST ) using the sum of the heterozygosity across all loci π [29]. In the following 172

equation, πT is the heterozygosity across all populations, and πS is the average 173

heterozygosity across the subpopulations [29]. 174

FST =
πT − πS
πT

An FST of 0 indicates that the population is interbreeding freely, and a value of 1 175

indicates that subpopulations within the population are genetically isolated. Here, FST 176

estimated how structured each mouse population was. 177

To do this, we converted the kinship matrix for each population to a network using 178

the R package igraph [30]. We used the fast-greedy clustering algorithm [31] in igraph 179

to define subpopulations, which we then used to calculate FST . 180

Linear Mixed Model Correction 181

To account for population structure in our association tests, we used a linear mixed 182

model correction as described in [7,32]. Briefly, population corrections account for 183

polygenic effects on the phenotype that are not attributable to the test marker, which 184

cause the assumption of independent prediction errors to fail. To account for correlated 185

errors, Kang et al. proposed a mixed-effects model where the residual errors are not 186

independent, but correlated according to a multi-variate Gaussian distribution whose 187

covariance matrix is given by a linear combination of the identity matrix (independent 188

random noise) and a kinship matrix, K, which is simply the variance-covariance matrix 189

of the genotypes among individuals. Fitting this model requires identifying the 190

maximum likelihood parameters for the genetic (fixed) effects and the two mixing 191

parameters defining the correlated residual errors. As shown by Lippert et al. (2011), 192

this model can be fit rapidly by first factoring K into its spectral decomposition and 193

adjusting the genotypes and phenotypes to align with the residual error structure [32]. 194

The mathematical form of the model allows the fixed effects and the genetic variance 195

to be solved for explicitly as a function of a mixing parameter, which can be optimized 196

using a one-dimensional grid search. We have re-implemented this procedure within 197
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CAPE for use with mouse model populations using the code from the R/qtl2 198

implementation [27]. 199

Test Statistics from Linear Models 200

After adjusting for kinship effects, we used single-locus marker regression and pairwise 201

marker regression to derive test statistics in each population. For the single-locus 202

regression, we fit the following model: 203

U j
i = βj

0 +

nc∑
c=1

xc,iβ
j
c + x1,iβ

j
1 + εji

where U corresponds to traits, and ε is an error term. The index i runs from 1 to 204

the number of individuals, and j runs from 1 to the number of traits. xi is the 205

probability of the presence of the alternate allele for individual i at locus j. We 206

calculated p values for each test statistic analytically using a t distribution with n− 1 207

degrees of freedom, where n was the number of individuals in the population. We 208

collected main effect test statistics for all traits in each data set. 209

For the pairwise marker scans, we limited our analysis to two traits. As described 210

below, CAPE requires at least two traits. However, CAPE and pairwise tests in general 211

are computationally intensive, and our ability to run many traits was limited. We fit 212

linear models for each pair of markers and each of the two selected traits as follows: 213

U j
i = βj

0 +

nc∑
c=1

xc,iβ
j
c︸ ︷︷ ︸

covariates

+x1,iβ
j
1 + x2,iβ

j
2︸ ︷︷ ︸

main effects

+x1,ix2,iβ
j
12︸ ︷︷ ︸

interaction

+εji ,

Again, U corresponds to traits, and ε is an error term. The index i runs from 1 to 214

the number of individuals, and j runs from 1 to the number of traits. xi is the 215

probability of the presence of the alternate allele for individual i at locus j. For the 216

pairwise tests, we calculated empirical p values from permutations. 217

Combined Analysis of Pleiotropy and Epistasis 218

Starting with the pairwise linear regression above, we ran the Combined Analysis of 219

Pleiotropy and Epistasis (CAPE) [13,14]. CAPE reparametrizes β coefficients from 220

pairwise linear regressions to infer directed influence coefficients between genetic 221

markers. The reparametrization combines information across multiple traits thereby 222

identifying interactions that are consistent across all traits simultaneously. Combining 223

information across traits also allows inference of the direction of the interaction [13,14]. 224

The β coefficients from the linear models are redefined in terms of two new δ terms, 225

which describe how each marker either enhances or suppresses the activity of the other 226

marker: 227[
δ1
δ2

]
=

[
β1
1 β1

2

β2
1 β2

2

]−1

·
[
β1
12

β2
12

]
We then translated the δ terms into marker-to-marker influence terms: 228

δ1 = m12(1 + δ2), δ2 = m21(1 + δ1)

Since matrix inversion can lead to large values with larger standard errors, we 229

performed standard error analysis on the regression parameters, and propagated the 230

errors using a second-order Taylor expansion [14,33]. To calculate p values for the 231

directed influence coefficients we performed permutation testing. 232
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Evaluation of Inflation 233

To assess test statistic inflation in each population, we ran cape three times, each time 234

collecting the main effect statistics and interaction effect statistics from the linear 235

models, as well as the cape statistics. To estimate the variation in test statistic 236

distributions across sampled populations, we performed Monte-Carlo cross validation 237

[34] by sampling 80% of the individuals over 10 trials. 238

In each trial, we assessed the inflation of each set of test statistics using λ [4]. This 239

inflation factor is the ratio of the median test statistic over the mean of the theoretical 240

distribution. Here we calculated the mean of the chi-square quantiles of 1 − p over the 241

theoretical mean of the null, uniform p value distribution with one degree of freedom 242

(0.456). 243

Results 244

Population structure and relatedness varied across populations 245

We observed varying degrees of relatedness across the populations (Fig. 1). The 246

heatmaps in Fig 1 show how each population was clustered into subpopulations and the 247

relatedness within and among subpopulations. The AIL and F2 populations had 248

negligible structure with no discernible differences in heterozygosity across 249

subpopulations. The Outbred mice were drawn from multiple generations of DO mice, 250

which created subpopulations with slightly higher relatedness than the overall average. 251

The Backcross and RIL had the most substantial structure, with FST values more 252

similar to human populations. 253

Fig 1. Population structure and relatedness distributions across populations. Each
panel shows the population structure of a population as a heatmap in the upper part of
the panel. The heatmaps show the overall kinship matrix for each population clustered
into subpopulations. Cool colors indicate less relatedness, and warm colors indicate
more relatedness. The gray lines indicate the boundaries of subpopulations. The
histograms below each heatmap show the distribution of relatedness from the upper
triangle of the kinship matrix. Average relatedness varies from the level of cousins in the
Outbred animals to slightly higher than the level of siblings in the AIL animals. The
FST value for each population is shown in the upper right hand corner of each histogram
and was calculated as described in the methods. Panels are in order of increasing FST .

Independent of the population structure, the populations also had varying degrees of 254

relatedness. On average the Outbred mice were related to each other at a level 255

equivalent to first cousins, which is by design [20], whereas the AIL mice were slightly 256

more related to each other than siblings. The other three populations were all siblings 257

on average, but had differential variation around that mean, with the F2 having a very 258

narrow distribution of relatedness and the Backcross having a wider distribution (Fig. 259

1). 260

Main effect test statistic inflation varied widely across 261

populations 262

Before running CAPE, we investigated overall trends in test statistic inflation by 263

scanning all traits for main effects using marker regression. This revealed wide variation 264

in test statistic inflation by population (Fig 2). Across all traits, the AIL, Outbred, and 265

RIL-NR populations showed very little inflation. In contrast, the RIL, F2, and 266

Backcross populations showed substantial inflation across most or all traits when no 267
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kinship correction was applied (Fig. 2 left-most group). Inflation in the RIL population 268

was corrected by a leave-one-chromosome-out kinship correction (Fig. 2 middle group). 269

The overall kinship correction eliminated inflation in all populations (Fig. 2 right-most 270

group). 271

Fig 2. Inflation of test statistics for main effects. Each group of dots shows inflation of
main effect statistics across all populations for one of the kinship correction types (none,
LMM-loco, or LMM-overall). Each dot represents one trait. The populations are
differentiated by color, and are shown in order of increasing LD. The legend shows the
correspondance between color and population, as well as the number of individuals in
each study. The horizontal line shows λ = 1, which indicates no inflation. Numbers
below each set of dots indicate the mean and standard deviation of λ for each group.
The inset in the top right-hand side of the plot shows the pairwise correlation between
markers on the same chromosome for each population, which is a standin for LD. The
color of each box identifies which population the data come from. The horizontal line in
the boxplot shows r = 0. The F2 and Backcross populations, which have the highest
LD, also have the highest test statistic inflation. The extreme inflation seen in the F2
population is likely due to a combination of high LD and large n.

Main effect inflation was correlated with linkage disequilibrium 272

Linkage disequilibrium (LD) influences test statistic inflation because a single causal 273

SNP within an LD block can inflate the test statistics of all SNPs linked to it. If there 274

are relatively few recombinations in the population, such as in an F2 or backcross, large 275

portions of the genome may be significantly associated with a trait due to linkage alone. 276

To investigate whether linkage disequilibrium (LD) may be related to the inflation of 277

test statistics in the populations used here, we calculated pairwise Pearson correlations 278

(r) between markers on the same chromosome across all chromosomes and all 279

populations. These distributions are shown in the inset in Fig. 2. The two populations 280

with the highest test statistic inflation, the F2 and Backcross populations, also had the 281

highest average LD. 282

However, although the F2 had lower LD than the backcross, it had substantially 283

greater inflation of test statistics. The F2 also had many more individuals than the 284

backcross, and thus greater power to detect effects. This increase in power combined 285

with high LD could lead to the high levels of inflation seen in the F2. To test this, we 286

subsampled the F2 to the same number of individuals in the backcross and recalculated 287

λ. Reducing n in the F2 also reduced inflation to similar levels seen in the backcross 288

(Supp. Fig 5). 289

Kinship corrections reduced inflation differentially across 290

populations 291

Fig. 3A shows a more detailed view of test statistic inflation in the main effect statistics 292

for each population. Each panel shows QQ plots for the −log10(p) for two traits against 293

the theoretical null p values. The more the points rise above the line y = x, the stronger 294

the inflation factor λ. In the absence of a kinship correction, the F2 and RIL showed 295

strong inflation, the AIL and RIL without replicates showed moderate inflation, and the 296

backcross and Outbred populations showed very minor inflation if any at all (Fig. 3A). 297

Numeric values are shown in the legends of Fig 3. The RIL (λ = 2.7) was the most 298

affected by inflation, while traits in the Outbred population had mild deflation (λ = 299

0.82). 300
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Fig 3. Quantile-quantile (QQ) plots for all test statistics. Each panel shows the QQ
plots for one set of statistics across all populations and all correction types. Each row
holds the results for a single population. Each column shows one test statistic: (A) QQ
plots for main effects. (B) QQ plots for the pairwise test statistics. (C) QQ plots for
CAPE statistics. Correction types (none, LMM-loco/ltco, or LMM-overall) are shown in
different colors. The x axis in each plot shows the theoretical quantiles of the null p
value distribution, and the y axis shows the observed quantiles. Dots show the mean p
value distribution across 10 rounds of Monte Carlo cross validation, and transparent
polygons show the standard deviation. The black line in each plot shows y = x. The
legends show the λ values for each set of statistics.

The overall kinship correction had a strong effect on inflation across all populations 301

(purple dots in Fig. 3A). The leave-one-chromosome-out (LOCO) correction had varied 302

effects (green dots in Fig. 3A). It provided strong control of inflation in the RIL, but 303

had no effect in the Backcross, F2, or AIL populations. 304

Interaction coefficients were largely unaffected by genomic 305

inflation 306

The p values associated with interaction coefficients were almost completely unaffected 307

by inflation (Fig 3B). The only population where inflation appeared to affect the 308

interaction statistics was the RIL population (λ = 1.1). This inflation was reduced by 309

both the leave-two-chromosomes-out (LTCO) and overall kinship corrections. 310

The LTCO correction appeared to slightly improve power to detect interaction 311

effects in the Outbred population, although this was not evident in the λ values (λnone 312

= 1, vs. λltco =1). 313

CAPE coefficients were intermediately affected by inflation 314

The CAPE coefficients influenced by inflation at a level in between that of the main 315

effect statistics and the pairwise statistics (Fig. 3C). The bulk of the inflation was seen 316

in the RIL (λ = 1.7), F2 (λ = 1.4), and backcross populations (λ = 1). The overall and 317

LTCO kinship corrections had remarkably similar effects across all populations. 318

Discussion 319

In this study we examined inflation of main effect and genetic interaction statistics in 320

five mouse mapping populations. We also investigated the effect of kinship corrections 321

on this inflation. 322

We found large variation in test statistic inflation across populations and across 323

traits. Across populations, the primary driving factors of inflation were LD and 324

population size. Populations with high LD, like the F2 and backcross, had the highest 325

inflation. Between those populations with the highest LD, the number of individuals in 326

the population had a large effect on inflation. High power to detect effects combined 327

with high LD creates hugely inflated test statistics. There was also wide variation in 328

inflation across different traits. We hypothesize that polygenicity may be the primary 329

factor in the variation in inflation across traits within a single population. All else being 330

equal, there will be a preponderance of small p values for traits with multiple true 331

positive loci. 332

Differences in LD cannot explain the difference in inflation between the RIL with 333

replicates, which had substantial inflation, and the RIL without replicates (RIL-NR), 334
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which did not. It has been shown previously that including genetic replicates increases 335

power to detect genetic effects [22]. Increase in power alone potentially increases the 336

prevalence of small p values; however, genetic relatedness also increases false positive 337

rate (FPR) when strain effects are large relative to individual error [22]. Taken together, 338

these results suggest that including genetic replicates in a RIL study increases power to 339

detect effects, but that a LOCO kinship correction should be done to counterract the 340

increase in FPR caused by the replicates. Here, the LOCO kinship correction 341

substantially reduced inflation in the RIL population without the overcorrection seen 342

with the overall kinship correction (See Figs. 2 and 3A). 343

The differences of effects between the overall and reduced kinship matrices for the 344

main effects illustrates a couple important points about these two corrections. First, the 345

overall kinship correction reduces power to detect true effects [8]. Indeed, we saw 346

complete elimination of inflation across all populations with this correction. Second, the 347

comparison between the LOCO and overall corrections suggests that the inflation seen 348

in the RIL was primarily due to population structure. The substantial inflation of main 349

effect test statistics in the RIL was reduced by the LOCO correction. However, the 350

LOCO correction did not reduce inflation in the F2 or backcross. These populations 351

had very little structure, and inflation was likely due primarily to LD and polygenicity. 352

That the overall kinship correction erased all inflation shows how this severe 353

correction can eliminate power to detect true effects. The LOCO correction, however, 354

retains power to detect true effects, while still correcting for relatedness. It should be 355

noted that treating the F2 and Backcross populations as GWAS mapping populations is 356

not really a fair representation, since in practice the markers in these populations would 357

not be treated as independent measurements. However, this exercise illustrates 358

important, albeit dramatic, aspects of test statistic inflation, and how kinship 359

corrections affect test statistics in different situations. 360

The interaction β coefficients did not show any inflation in any population except 361

possibly in the RIL, despite these populations being well powered to detect epistasis. 362

The effects of both kinship corrections were minimal, however, there may have been 363

some minor improvement of power from both corrections in the Outbred population. 364

This complete lack of inflation is in contrast to a previous study in which epistatic test 365

statistics were inflated [12]. There were many differences between this study and the 366

previous study making a direct comparison of results difficult. Ning et al. (2018) 367

observed inflation of interaction test statistics in F10 of a mouse advanced intercross 368

line (AIL) [12]. We examined pairwise statistics in later generations of the same AIL. It 369

is unlikely that the reduction in LD or in later generations of the AIL explains the 370

difference in statistic inflation, since the F2 and Backcross in this study had very high 371

LD, and no test statistic inflation. Further, increasing the pairwise marker correlation 372

cutoff to r = 0.8 did not change pairwise statistic inflation in any population (data not 373

shown). We performed exhaustive pairwise testing in both the F2 and Backcross, and 374

our F2 was similarly powered to the AIL population in Ning et al., suggesting that 375

marker pair sampling and power differences do not sufficiently explain the differences in 376

our observations. However, in the RIL, which was the one population for which there 377

was apparent inflation in pairwise test stastics, both LMM paradigms corrected the 378

inflation. This result is concordant with previous findings that LMM kinship corrections 379

reduce inflation in pairwise test statistics. 380

In contrast to the interaction coefficients from pairwise linear models, CAPE 381

interaction coefficients did show inflation in some populations. We saw the most 382

inflation in the F2, RIL, and AIL populations. Lambda values were intermediate 383

between those seen for the main effect statistics and the interaction statistics, which we 384

expect given that CAPE interaction coefficients are non-linear combinations of main 385

effect statistics and interaction statistics across multiple traits across populations. We 386
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therefore attribute inflation in these CAPE coefficients to propagation of main effect 387

inflation. Indeed, the lambda values of the main effect statistics and CAPE interaction 388

coefficients were positively correlated (Supp. Fig. 6). When there was inflation of 389

CAPE coefficients, both corrections controlled the inflation well. The similarity in 390

effects of the two corrections was somewhat surprising. We predicted that as with 391

LOCO, the LTCO correction would have been less stringent than the overall correction, 392

but this was not what we observed. Extrapolating from the main effect results, test 393

statistic in the RIL should be most subject to inflation derived from kinship. In this 394

population, both kinship matrices controlled inflation well, but the overall correction 395

did trend toward the more severe correction. Although more work needs to be done, 396

these results suggest that using the LTCO kinship matrix for interaction effects may 397

maintain power to detect effects better than the overall matrix. 398

We conclude that although many experimental mouse populations are created in 399

such a way to minimize population structure, cryptic relatedness and population 400

structure may still increase FPR in these populations for both main effects and genetic 401

interactions. This is particularly true in populations with unusual relatedness patterns, 402

such as RILs with genomic replicates. In all populations, but particularly in those with 403

greater structure, applying a kinship correction reduces FPR. We recommend applying 404

the reduced kinship matrix in which the chromosomes containing the tested markers are 405

left out. These kinship matrices reduce FPR related to population structure with 406

minimal effect on power. The major drawback to implementing these corrections is the 407

computational time they require, particularly for large populations. However, we 408

recommend that any decision to forego a kinship correction should be justified with a 409

full examination of structure in the study population. Simulations were beyond the 410

scope of this project, but could potentially further delineate guidelines for when kinship 411

corrections are necessary, and which types of kinship matrices to use. Such simulations 412

should take LD, polygenicity, and multiple types of population structure into account. 413
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Supplemental Figure Legends 423

Fig 4. Correlations between traits and the first principal component (PC) of the
kinship matrix. Traits with high correlation to the kinship matrix may be highly
polygenic and thus be susceptible to test statistic inflation due to many true positives.
To reduce this risk, we selected traits with low correlation with the first kinship matrix
PC. This figure shows the distribution of correlations between traits and the first
kinship PC across populations.
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Fig 5. Reducing n reduces inflation. This figure is identical to Fig. 2 except that we
have added a column for the F2 that has been subsampled to the same n as the
Backcross. This subsampling reduces power to detect effects, and thus reduces inflation
to roughly the same level as that seen in the backcross.

Fig 6. Correlations between lambda values of main effect statistics and CAPE
interaction coefficients across populations. Each panel shows the correlation between
inflation values for the main effect statistics and CAPE coefficients for a single
popopulation. The last panel shows this correlation across all populations. Overall,
greater inflation of main effect statistics propagated to greater inflation of CAPE
coefficients.

Supplemental Table Descriptions 424

Fig 7. Correlations between traits and the first PC of the kinship matrix.
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population trait Pearson.Correlation.Trait.to.Kin.PC
AIL Tibia 0.039713
AIL Soleus -0.05029
AIL TA -0.05547
AIL thick_log -0.05548
AIL thick -0.06488
AIL Thickness -0.06488
AIL EDL -0.07454
AIL delta_thick -0.07831
AIL Mode -0.09564
AIL Gastroc -0.12887
RIL task_time_ 0.007261
RIL num_arms_ 0.007713
RIL iipmf_pct_ 0.010487
RIL task_time_ -0.01198
RIL iipmf_pct_ 0.01525
RIL num_arms_ -0.01673
RIL iipmf_pct_ 0.019353
RIL num_arms_ 0.019419
RIL task_time_ 0.019601
RIL hilus_R -0.0261
RIL iipmf_R 0.027386
RIL hilus_pct_L -0.0284
RIL hilus_L 0.032441
RIL num_arms_ -0.03391
RIL iipmf_L 0.035195
RIL hippocamp 0.039531
RIL hippocamp 0.049081
RIL num_arms_ -0.05312
RIL brain_wt 0.066961
RIL bw -0.08434
RIL task_time_ 0.09759
RIL task_time_ -0.11165
RIL brain_wt_p 0.138394
RIL-NR bw -0.00473
RIL-NR hippocamp -0.01155
RIL-NR brain_wt_p 0.012034
RIL-NR iipmf_pct_ 0.015029
RIL-NR iipmf_L -0.01559
RIL-NR brain_wt 0.030058
RIL-NR iipmf_pct_ 0.032841
RIL-NR hippocamp 0.045116
RIL-NR iipmf_pct_ 0.050339
RIL-NR hilus_R -0.0508
RIL-NR hilus_pct_L -0.05212
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RIL-NR hilus_L -0.0546
RIL-NR iipmf_R 0.05583
RIL-NR task_time_ 0.078382
RIL-NR num_arms_ -0.09702
RIL-NR num_arms_ 0.132804
RIL-NR num_arms_ 0.154968
RIL-NR num_arms_ 0.199836
RIL-NR task_time_ 0.200366
RIL-NR task_time_ 0.22297
RIL-NR task_time_ 0.240666
RIL-NR task_time_ 0.250485
RIL-NR num_arms_ 0.295519
F2 pctFat 0.022344
F2 Tb.Th 0.033929
F2 ROI.L2.4.BM0.043848
F2 BV.TV 0.049234
F2 pQCT.fem.d -0.05263
F2 BV.CORTICA 0.058791
F2 C.Th -0.07097
F2 body.weigh 0.075124
F2 BV.TV.TRAB 0.080437
F2 cort.thick -0.08535
F2 Tb.N 0.123425
F2 Final.IGF.1 0.135823
F2 STIFFNESS 0.153502
F2 peri.c 0.165695
F2 Femur.Leng 0.168598
F2 BMD.g.cm2 0.184188
F2 endo.c 0.208804
F2 TV 0.216649
Backcross TG -0.01676
Backcross HDLD 0.07891
Backcross Chol 0.11505
Backcross bw_4 0.216492
Backcross INS_20 0.260879
Backcross INS_24 0.27822
Backcross GLU_16 0.286971
Backcross INS_16 0.299898
Backcross LEP_24 0.31646
Backcross GLU_24 0.31901
Backcross log_GLU_1 0.319548
Backcross GLU_20 0.334177
Backcross mesenteric 0.343914
Backcross log_GLU_2 0.344924
Backcross log_GLU_2 0.354231
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Backcross bw_8 0.376771
Backcross pct_fat 0.379462
Backcross peritoneal_ 0.390986
Backcross bw_16 0.410108
Backcross bw_12 0.416452
Backcross BMI 0.420147
Backcross bw_20 0.421028
Backcross gonadal_fa 0.42709
Backcross bw_24 0.432731
Backcross inguinal_fa 0.44177
Backcross total_fat 0.45428
Outbred change.urin 0.001071
Outbred urine.gluco 0.001071
Outbred perc.neut1 -0.00112
Outbred perc.eos1 -0.00137
Outbred gldh1 0.003874
Outbred change.rbc -0.00392
Outbred rbc2 -0.00392
Outbred leptin 0.004409
Outbred nefa1 -0.00598
Outbred perc.lym1 -0.00682
Outbred change.urin -0.00745
Outbred urine.creat -0.00745
Outbred gtt.120 -0.00757
Outbred ftm1 0.009121
Outbred urine.micro -0.01049
Outbred mhgb1 0.010954
Outbred gen_7_2 -0.01337
Outbred ct.eos1 0.01343
Outbred change.gld 0.013479
Outbred gldh2 0.013479
Outbred change.tbil 0.01402
Outbred tbil2 0.01402
Outbred chgb1 0.018235
Outbred rdw1 0.021044
Outbred change.ftm -0.02113
Outbred ftm2 -0.02113
Outbred chcm1 -0.02191
Outbred change.tg -0.02365
Outbred tg2 -0.02365
Outbred gtt.t15 -0.02557
Outbred change.plt -0.02649
Outbred plt2 -0.02649
Outbred ct.neut1 0.026741
Outbred change.ct.n -0.02696
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Outbred ct.neut2 -0.02696
Outbred calcium1 0.027104
Outbred calcium2 -0.02744
Outbred change.calc -0.02744
Outbred bw.30 0.028734
Outbred rbc1 -0.02966
Outbred ct.lym1 0.030679
Outbred hct1 0.031251
Outbred perc.mono 0.031755
Outbred change.urin 0.032091
Outbred urine.micro 0.032091
Outbred sex 0.032554
Outbred mchc1 -0.03332
Outbred gtt.auc 0.033669
Outbred non.fast.ph -0.03567
Outbred hr 0.036063
Outbred wbc1 0.03863
Outbred phosphoru 0.038674
Outbred bun2 0.03868
Outbred change.bun 0.03868
Outbred gen_7_1 -0.03889
Outbred freewater.m0.039266
Outbred urine.gluco -0.03931
Outbred chol1 -0.03991
Outbred change.nef -0.04053
Outbred nefa2 -0.04053
Outbred change.per 0.043075
Outbred perc.eos2 0.043075
Outbred gtt.180 0.04386
Outbred change.mh 0.044505
Outbred mhgb2 0.044505
Outbred hdw1 0.045369
Outbred bw.28 0.046973
Outbred gtt.t60 0.047284
Outbred change.ct.e 0.047474
Outbred ct.eos2 0.047474
Outbred change.chg 0.050193
Outbred chgb2 0.050193
Outbred change.pho 0.050303
Outbred phosphoru 0.050303
Outbred bw.29 0.050609
Outbred gtt.t30 0.051031
Outbred change.hdl -0.05115
Outbred hdld2 -0.05115
Outbred gen_8_1 0.051592
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Outbred ct.mono1 0.052224
Outbred qrs -0.05249
Outbred change.reti -0.0526
Outbred retic2 -0.0526
Outbred insulin 0.053285
Outbred bun1 0.053689
Outbred rr -0.05371
Outbred change.per -0.05401
Outbred perc.neut2 -0.05401
Outbred adiponectin -0.05525
Outbred acr2 0.055887
Outbred change.acr 0.055887
Outbred change.wb 0.057888
Outbred wbc2 0.057888
Outbred fat.mri 0.060152
Outbred acr1 -0.06038
Outbred non.fast.ca -0.06203
Outbred hdld1 -0.063
Outbred kidney.wt.r 0.063097
Outbred change.rdw 0.063208
Outbred rdw2 0.063208
Outbred change.ct.l 0.064682
Outbred ct.lym2 0.064682
Outbred mch1 0.06775
Outbred change.hct -0.06949
Outbred hct2 -0.06949
Outbred heart.wt 0.069498
Outbred change.cho -0.07011
Outbred chol2 -0.07011
Outbred change.per 0.070146
Outbred perc.lym2 0.070146
Outbred bw.22 0.072166
Outbred spleen.wt 0.076059
Outbred bw.23 0.076442
Outbred change.mc 0.077611
Outbred mch2 0.077611
Outbred perc.fat1 -0.07818
Outbred change.mcv -0.08092
Outbred mcv2 -0.08092
Outbred change.ttm 0.081921
Outbred ttm2 0.081921
Outbred tg1 0.082541
Outbred bw.20 0.083481
Outbred bw.21 0.086186
Outbred gtt.t0 0.0877
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Outbred kidney.wt.l 0.088233
Outbred urine.creat -0.08995
Outbred bmd2 0.090797
Outbred change.bm 0.090797
Outbred change.glu -0.0916
Outbred glucose2 -0.0916
Outbred bw.19 0.091821
Outbred bw.18 0.0921
Outbred necr.wt 0.096487
Outbred bw.17 0.09705
Outbred change.per -0.09761
Outbred perc.fat2 -0.09761
Outbred change.we 0.097621
Outbred weight2 0.097621
Outbred glucose1 -0.10033
Outbred ghrelin 0.101206
Outbred mcv1 0.102682
Outbred bw.pc2 0.10362
Outbred b.area1 0.103995
Outbred bw.14 0.104411
Outbred bw.16 0.104916
Outbred retic1 0.105812
Outbred change.t.ar 0.10766
Outbred t.area2 0.10766
Outbred hrv -0.10859
Outbred bw.15 0.109048
Outbred bw.26 0.111048
Outbred st -0.11109
Outbred pnn50...6m -0.11149
Outbred change.len 0.112641
Outbred length2 0.112641
Outbred bw.pc1 0.112891
Outbred pr -0.11312
Outbred bw.25 0.114399
Outbred mpv1 0.114981
Outbred change.hdw 0.115804
Outbred hdw2 0.115804
Outbred weight1 0.117034
Outbred ttm1 0.118182
Outbred fruc1 -0.11836
Outbred bw.11 0.12275
Outbred pq -0.12337
Outbred bw.27 0.124415
Outbred rmssd -0.12595
Outbred bw.10 0.129363
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Outbred lipase1 0.131034
Outbred b.area2 0.131748
Outbred change.b.a 0.131748
Outbred bw.12 0.132194
Outbred bw.13 0.132371
Outbred change.ltm 0.134039
Outbred ltm2 0.134039
Outbred qtc.dispers -0.13483
Outbred length1 0.134908
Outbred bw.24 0.135214
Outbred change.mp 0.135436
Outbred mpv2 0.135436
Outbred bw.8 0.137126
Outbred qtc -0.13843
Outbred bmc2 0.139377
Outbred change.bm 0.139377
Outbred bmc1 0.14079
Outbred bw.6 0.142878
Outbred gen_9_1 0.144828
Outbred ltm1 0.145244
Outbred t.area1 0.145532
Outbred bw.5 0.146202
Outbred bw.9 0.147232
Outbred gen_4_1 -0.14767
Outbred plt1 -0.14958
Outbred bmd1 0.154378
Outbred bw.4 0.15554
Outbred non.fast.cre 0.162479
Outbred gen_11_2 0.166196
Outbred gen_11_1 0.168122
Outbred totalwater. 0.170923
Outbred lean.mri 0.175287
Outbred bw.7 0.185825
Outbred weight.mri 0.196365
Outbred change.mc 0.201043
Outbred mchc2 0.201043
Outbred change.chc 0.208359
Outbred chcm2 0.208359
Outbred non.fast.alb -0.22496
Outbred gen_8_2 -0.23116
Outbred change.ct.m -0.23745
Outbred ct.mono2 -0.23745
Outbred change.per -0.25412
Outbred perc.mono -0.25412
Outbred tbil1 -0.31467
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Outbred bw.3 0.366298
Outbred gen_4_2 NA
Outbred diet NA
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