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Abstract9

We develop two efficient solvers for optimization problems arising from large-scale regularized10

regressions on millions of genetic variants sequenced from hundreds of thousands of individuals.11

These genetic variants are encoded by the values in the set {0, 1, 2, NA}. We take advantage of12

this fact and use two bits to represent each entry in a genetic matrix, which reduces memory13

requirement by a factor of 32 compared to a double precision floating point representation.14

Using this representation, we implemented an iteratively reweighted least square algorithm to15

solve Lasso regressions on genetic matrices, which we name snpnet-2.0. When the dataset16

contains many rare variants, the predictors can be encoded in a sparse matrix. We utilize17

the sparsity in the predictor matrix to further reduce memory requirement and computational18

speed. Our sparse genetic matrix implementation uses both the compact 2-bit representation19

and a simplified version of compressed sparse block format so that matrix-vector multiplications20

can be effectively parallelized on multiple CPU cores. To demonstrate the effectiveness of this21

representation, we implement an accelerated proximal gradient method to solve group Lasso on22

these sparse genetic matrices. This solver is named sparse-snpnet, and will also be included23

as part of snpnet R package. Our implementation is able to solve group Lasso problems on24

sparse genetic matrices with more than 1, 000, 000 columns and almost 100, 000 rows within 1025

minutes and using less than 32GB of memory.26

1 Introduction27

Constantly growing biobanks have provided scientists and researchers with unprecedented opportu-28

nities to understand the genetics of human phenotypes. One component is to predict phenotypes of29

an individual using genetic data. However, datasets of increasing size also pose computational chal-30

lenges for this task. On the statistics side, genetic datasets are usually high-dimensional, meaning31

the number of genetic variants is larger than the number of sequenced individuals. High dimensional32

statistics have been studied for more than two decades with well understood solutions. One such33
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solution is to “bet on sparsity”: the assumption that only a small subset of variables are associated34

with the response. The sparsity assumption is usually embodied through an objective function that35

encourages sparsity in the solution. Well known examples include the Lasso and the group Lasso.36

On the computation side, a statistical estimator that describes the relationship between the genetic37

variants and the response of interest are often obtained by optimizing an objective function involving38

the genetic matrix. While off-the-shelf solvers may exist for these optimization problems, they are39

usually not optimal for genetics data. First, these general purpose solvers require loading a floating40

point predictor matrix in memory before optimization can be done. This can demand a very large41

amount of memory for biobank scale data. For example, loading a matrix with 200, 000 rows and42

1, 000, 000 columns as double precision floating point numbers takes 1.6 terabytes, much larger than43

the RAM size of most machines. In particular, they do not exploit the fact that genetic variants can44

take on only four possible values. Secondly, many of these solvers do not fully utilize modern hard-45

ware features such as multi-core processors, which leaves lots of performance on the table. Thirdly, a46

large number of variants in exome and whole genome sequencing data are rare variants. If a variant47

is encoded as the number of copies of the minor allele, then the corresponding genetic matrix is48

sparse. In the UK Biobank’s exome sequencing data (Szustakowski et al. 2020), more than 99% of49

the variants in the targeted regions have minor allele frequency less than 1%. As a result, more than50

98% of the entries of the corresponding genetic matrix are zero. The sparsity in the predictor matrix51

can potentially be exploited to improve both memory requirements and computational speed.52

The main result of this work is an extremely efficient regularized regression solver for problems53

with sparse genetic predictors, named sparse-snpnet. The main features of this solver are the54

following:55

1. A compact, two bits representation of genetic variants based on PLINK2’s (Chang et al. 2015)56

pgen files.57

2. Good scalability to multi-core processors.58

3. A simplified version of the compressed sparse block format so that arithmetic operations on59

the genetic matrices are more amenable to parallelism.60

In addition, we provide an extension to the popular R package glmnet (Friedman et al. 2010, Simon61

et al. 2011) specifically for Lasso problems involving genetic matrices. This extension exploits the62

compact representation and is multi-threaded, but does not assume sparsity of the input genetic63

matrix. We incorporate this solver to the screening framework (Qian et al. 2020) in snpnet and64

name it snpnet-2.0. Both solvers are implemented in C++ and wrapped as part of the R package65

snpnet, which is available at https://github.com/rivas-lab/snpnet/tree/compact. We refer66

the readers to section 5 for comparisons between these two methods.67

2 Results68

2.1 Optimization Algorithm69

We focus on regularized regression problems whose objective functions are in the following form:70

f(β) = h(Xβ) + λR(β) (1)

where X ∈ {0, 1, 2,NA}n×d is a genetic matrix, β ∈ Rd is the parameter vector, h : Rn 7→ R71

is usually the negative log-likelihood function of a generalized linear model (Hastie & Tibshirani72
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1986), and is always assumed to be smooth and convex. We have omitted the dependence of h on73

the response vector to simplify the notation. R : Rd 7→ R+ is a regularization function, and λ ∈ R+74

represents the strength of regularization. Here are some examples of h:75

1. Linear regression: h(Xβ) = 1
n‖y −Xβ‖

2
2 for a response vector y ∈ Rn.76

2. Logistic regression: write η = Xβ, h(Xβ) = h(η) =
∑n
i=1 yi log(1+eηi)+(1−yi) log(1+e−ηi)77

for a binary response y ∈ {0, 1}n.78

3. Cox regression (Cox 1972): Write η = Xβ, h(Xβ) = h(η) =
∑n
i=1Oi

[
−ηi + log

(∑
yj≥yi e

ηj
)]

79

for a survival time vector y ∈ Rn+ and an event indicator O ∈ {0, 1}n.80

The regularization function is usually a seminorm but not always. Some examples are:81

1. Lasso (Tibshirani 1996): R(β) = ‖β‖1 =
∑n
i=1 |βi| .82

2. Elastic net (Zou & Hastie 2005): R(β) = ‖β‖1 + α‖β‖22 for some α > 0.83

3. Group Lasso (Yuan & Lin 2006): R(β) =
∑
g∈G ‖βg‖2, where g ∈ G, g ⊆ {1, 2, · · · , d} repre-84

sents a subset of variables.85

To minimize (1), we apply an accelerated proximal gradient descent algorithm (Nesterov 1983,86

Daubechies et al. 2004, Beck & Teboulle 2009) with backtracking line search to determine the step87

size. This algorithm has fast convergence rate, essentially no tuning parameter, and is particularly88

suitable for the simple regularization functions that we use. In short, this algorithm alternates89

between a gradient descent step that decreases the value of h(Xβ), and a proximal step that ensures90

that the regularization term is not too large. Note that the gradient here refers to the gradient of91

h(Xβ) with respect to β. The regularization function is usually not differentiable at 0. The proximal92

operator is defined as:93

proxR,t(β) := arg min
z∈Rd

1

2t
‖z − β‖22 + λR(z). (2)

When the regularization function is one of the examples above, the corresponding proximal operator94

have explicit expression. We summarize this process in the pseudo-code in algorithm 1.95

96

We observe that in this algorithm, the only operations that involve the predictor matrix X are97

matrix-vector multiplications Xβ and XT r, where r = ∇h(Xβ) ∈ Rd. When X is dense, these two98

operations are also the most computationally intensive ones in this algorithm, having complexity99

O(nd), whereas all other operations are either O(n) or O(d). This, together with the need to reduce100

the amount of memory required to load X, motivate a more compact and efficient representation of101

the genetic predictor matrix X.102

2.2 Sparse Genotype Matrix Representation103

In this section we describe the format we use to represent sparse genetic matrices. First of all,104

we pack each entries in the matrix to two bits. 0, 1, 2 and NA are represented by 00, 01, 10 and 11,105

respectively. The compressed sparse column (CSC) format is a popular way to store a sparse matrix.106

The PLINK 2.0 library (Chang et al. 2015) provides functions that make loading a genetic matrix107

into this format straightforward. Under CSC, a matrix with n rows, d columns and nnz non-zero108

entries are represented by three arrays:109
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1. A column pointer array col ptr of size d+ 1.110

2. A row index array row idx of size nnz.111

3. A value array val of size nnz.112

For each column j ∈ {1, 2, · · · , d}, the non-zero entries in that column are stored from the col ptr[j]th113

(inclusive) entry to the (col ptr[j+1] - 1)th entry of row idx and val, where row idx stores the114

row index of the non-zero entry and val stores the non-zero value. Figure 1 provides an illustration115

of a sparse genetic matrix under CSC format.116

When a sparse matrix is stored in CSC format, accessing a particular column is simple. As a117

result, one can trivially parallellize the computation of XT r. For example, thread j can compute118

the inner product of the jth column of X and r and write to the jth entry of the output without119

interfering with other threads. However, same thing can’t be said about Xβ. We can’t directly120

access a row of X stored in CSC format, so there is no easy way to make each thread compute the121

inner product between β and a row of X. Another way is to, say, have thread j add βj times the122

jth column of X to the output, but doing this in parallel leads to data race. Alternatively, one can123

store X in the compressed sparse row format, which makes parallelizing Xβ easy but XT r difficult.124

Our implementation uses a simplified version of the compressed sparse block (CSB) format125

proposed in Buluç et al. (2009). In this format, the sparse matrix is partitioned into a grid of126

smaller, rectangular sub-matrices with same dimensions, which are referred to as blocks. When127

partitioned to B blocks, a matrix with n rows, d columns, and nnz non-zero entries are represented128

by four arrays:129

1. A block pointer array blk ptr of size B + 1.130

2. A row index array row idx of size nnz.131

3. A column index array col idx of size nnz.132

4. A value array val of size nnz.133

In this representation, non-zero entries in a block (as oppose to those in a column in CSC format)134

are stored contiguously . The row indices, column indices, and values of the non-zero values in a135

block b ∈ {1, 2, · · · , B} are stored in row idx, col idx, and val, starting at the index blk ptr[b]136

and ending at the index blk ptr[b+1]-1. In the original CSB paper the non-zero elements in each137

block has a Z-Morton ordering, while the blocks can have any order. In our simplified version we138

store the blocks and the non-zero elements within a block in a column major fashion. Figure 2139

provides an illustration.140

Under this representation accessing a block in the sparse matrix is easy. As a result, parallellizing141

both Xβ and XT r are straightforward. For example if X is the matrix in figure 2, then to compute142

Xβ we can have thread 1 compute the inner product of the first three rows of X and β, thread 2143

compute the inner product of row 4-6 and β, etc. Similarly, to compute XT r thread b will compute144

the inner product between r and the columns 3b− 2, 3b− 1, 3b in X for b ∈ {1, 2, 3}.145

Since our implementation uses 2 bits to store a matrix entry and 32 bits to store each index, the146

genetic CSB format (compared to a dense representation) will only save memory when the matrix is147

sufficiently sparse (approximately < 3% of entries are non-zero). While there are many techniques148

to reduce the number of bits needed to represent the indices (such as storing the indices relative149
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Algorithm 1: Accelerated Proximal Gradient Method for (1)

Set line search parameter γ > 1;

Initialize the parameter vector β(0) = 0;
Set iteration count i = 0; Set initial step-size t = 1; Set Nesterov weights w0, w1 = 1;
while β has not converged do

Nesterov acceleration:
w1 ← (1 +

√
1 + 4w2

0)/2;

β ← β(i) + (w0 − 1)(β(i) − β(i−1))/w1; w0 ← w1;

Compute the gradient g = XT∇h(Xβ);
Start backtracking line search:
repeat

β(i+0.5) ← β − tXT∇h(Xβ);

Apply proximal step: β(i+1) ← proxR,t
(
β(i+0.5)

)
;

if h(Xβi+1) ≤ h(Xβ) + (βi+1 − β)T g + ‖βi+1 − β‖22/(2t) then
break;

end
Shrink step size t← t/γ;

until the break condition above is satisfied ;
Accept the iterate βi+1;
i← i+ 1;
Check convergence based on objective value change or parameter change.

end
return βi+1

Figure 1: A sparse genetic matrix represented in the compressed sparse column format. The zero
entries on the left are omitted.
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to the start of the block, differential encoding, bit packing), the current version of our software150

does not implement these techniques. For variants with high minor allele frequency, we store the151

corresponding columns in dense format and keep track of their column indices. We also keep an152

additional array of length d to store the mean imputation of the missing values in X.153

3 Benchmarks154

3.1 Performance on Dense Matrix-Vector Multiplications155

In the first benchmark we evaluate the performance improvement when the predictor matrix uses156

the 2-bit compact representation, but not the sparse format described in the last section. The157

genetics data are dense and simulated through the plink2 --dummy command. The matrix have158

n = 200, 000 rows and d = 30, 000 columns with approximately 5% entries NAs. In Figure 3 we159

show the relative speedup of the compact matrix as a function of the number of threads used. The160

baseline is R’s builtin matrix-vector multiplication functions for double precision matrices (a basic,161

single threaded BLAS implementation). The numbers reported are based on the median wall time162

of 10 runs. Figure 3 demonstrates a more than 20-35 folds of speedup over the baseline, and good163

performance scalability in the number of threads for up to almost 20 threads. Unless otherwise164

specified, all computational experiments in this paper are done on an Intel Xeon Gold 6258R. For165

most of our applications 16 out of the 28 CPU cores that comes with this CPU are used.166

3.2 Performance on Solving Large-scale Lasso Problems167

In the second benchmark we compare the performance of the 2-bit compact genetic matrix represen-168

tation when it is incorporated in the software packages glmnet and snpnet to solve large-scale Lasso169

problems where the predictors are mostly Single-nucleotide polymorphisms (SNPs) (with perhaps a170

few real-valued covariates such as age). As mentioned in the introduction, we call this implemen-171

tation snpnet-2.0. The main performance gain comes from these factors (the readers can refer to172

Qian et al. (2020), Li et al. (2020) for the definitions of some terms below):173

1. glmnet fitting is based on the iteratively reweighted least square (IRLS) algorithm, where the174

main bottleneck is computing inner-products between columns of X and a real-valued vector.175

This is done using the 2-bit compact representation and is multi-threaded in snpnet-2.0.176

2. snpnet uses a screening procedure named the batch screening iterative Lasso (BASIL). At177

each BASIL iteration a different set of predictors is used to fit a model. Using the compact178

representation reduces the amount of memory traffic needed.179

3. snpnet-2.0 uses reduced precision floating point numbers (float32 instead of float64) to180

do KKT checking.181

4. Warm start support, as well as more relaxed convergence criteria, for binomial model and Cox182

model.183

Since snpnet-2.0 also uses more relaxed convergence criteria than the previous version, it is not184

very fair to just compare the speed of these packages. As a result we provide both the time spent185

as well as the test set prediction performance. The data used here are a combination of directly186
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Figure 2: A sparse genetic matrix represented in the compressed sparse block format. The zero
entries on the left are omitted. The boundaries of each block are highlighted in blue. The non-zero
elements in each block are stored contiguously in an top-to-bottom, left-to-right order. The blocks
are also in an top-to-bottom, left-to-right order
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Figure 3: A bar plot demonstrating the relative speedup in computing Xβ when the compact
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ratio of between time spent in the baseline and the time spent with the compact representation.
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7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.14.431030doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/


genotyped variants (release version 2 of Sudlow et al. (2015)), the imputed allelotypes in human187

leukocyte antigen allelotypes (Venkataraman et al. 2020), and copy number variations described in188

Aguirre et al. (2019), resulting in a genotype matrix of 1, 080, 968 variants, as described in Sinnott-189

Armstrong et al. (2021). The study population consists of 337, 129 unrelated participants of white190

British ancestry described in DeBoever et al. (2018). We randomly select 70% of the participants191

as the training set, 10% as the validation set, and 20% as the test set. The results are summarized192

in table 3. The table shows that snpnet-2.0 achieves significant speedup over the old version while193

having very similar test set prediction performance. We note that for standing height, more than194

80, 000 variants are selected to fit the model. Since the predictor matrix is duplicated in its fitting195

process, the old version of snpnet requires more than 400GB to successfully finish. On the other196

hand, 32GB of memory is sufficient for snpnet-2.0.197

Time (new) Time (old) Test metric (new) Test metric (old)
High cholesterol (B) 21.9 109.8 0.72533 0.72531

Asthma (B) 21.7 130.0 0.61609 0.61608
Standing Height (Q) 99.9 405.8∗ 0.71096 0.71100

BMI (Q) 51.5 208.3∗ 0.11408 0.11412
Other hypothyroidism (S) 13.5 71.5 0.75194 0.75205

Thyrotoxicosis (S) 3.6 10.0 0.71020 0.71021

Table 1: Speed comparison between the old version of snpnet and snpnet-2.0. Time is measured
in minutes. (B) indicates the response is binary, (Q) indicates the response is quantitative, and
(S) indicates that the response is a survival time. For binary response, the test metric is the area
under the ROC curve (AUC). For quantitative response, the metric is the R-squared. For survival
response, the metric is the C-index. ∗The machine we used for most of the applications here has a
dual-socket architecture, each having around 400 GB of local memory. The memory requirements
by the old version of snpnet for both standing height and BMI exceeds the capacity of the local
memory of a single socket in this machine. As a result, we ran these two experiments on an Intel
Xeon Gold 6130 (also 16 cores) machine with more memory.

3.3 Performance of the Sparse Format198

In the third benchmark we evaluate the performance improvement when the genetic predictors199

make use of both the 2-bit compact representation, and the sparse representation described in the200

last section. In this case we use real exome data from the UK Biobank. The raw data has 200, 643201

individuals and 17, 777, 950 variants. For this benchmark we only use variants with least 3 individuals202

having the minor allele and with missing rate at most 10%. The result is a sparse genetic matrix203

with 200, 643 rows and 7, 462, 671 columns. For our application in the next section the number204

of variants used to fit models will be smaller since the training set will be a subset of the entire205

population in this data. On average each column of this matrix has 1399.5 non-zero entries, half of206

the columns have less than 7 non-zero entries, and 90% of the columns have less than 91 non-zero207

entries. In our sparse representation we divide this matrix into 16 × 16 = 256 blocks, each with208

dimension 12, 540 by 466, 416 (the size of the blocks is a tuning parameter), except at the boundary209

the block size could be larger. As we mentioned in the last section, storing dense blocks using our210

version of the compressed sparse block format is not memory efficient, so if a column has a large211

number of non-zero entries we store all entries of that column separately. For this particular matrix,212

223, 596 variants does not use the sparse representation. In table 2 we present the amount of time to213

load the matrix and to compute Xβ, XT r using the sparse matrix representations. Again 16 cores214

are used for the computation. Loading such matrix would take almost 12 terabytes of memory if215
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the entries are stored as double precision floating point numbers.216

Loading Xβ XT r
56.5 1.86 1.80

Table 2: The loading and computation time in seconds when the genetic matrix is stored in sparse
format. This matrix has 200, 643 rows and 7, 462, 671 columns with more than 10 billion non-zero
entries. The computation time are the median of 10 runs. Both dense and sparse format compute
the matrix-vector multiplication using 16 cores.

4 Applications to UK Biobank Exome Sequencing Data217

In this section we put our method into practice. Specifically, we use the exome data described in218

the last part of section 3 to fit group-sparse linear models on multiple phenotypes. The method219

described in this section is implemented in sparse-snpnet. In this case the regularization term will220

be the sum of the 2-norms of the predefined groups. For our applications the groups are defined by221

the gene symbol of the variants. For example, the objective function for a Gaussian model is:222

1

n
‖y −Xβ‖22 + λ

∑
g∈G

√
|g|‖βg‖2 (3)

where G = {g : g ⊆ {1, 2, · · · , d}} is a collection of indices corresponding to variants with the same223

gene symbol. |g|, the number of element in the group, is part of the regularization term so that224

groups of same size are penalized by the same degree. βg ∈ R|g| is the sub-vector of β corresponding225

to the indices in g. We do not allow overlapping groups, so G needs to be a partition of all variables.226

That is ∪g∈Gg = {1, 2, · · · , d}, and
∑
g∈G |g| = d. One can show that the proximal operator for this227

regularization function satisfies:228

z′ := proxR,t(β) := arg min
z∈Rd

1

2t
‖z − β‖22 + λ

∑
g∈G

√
|g|‖βg‖2. (4)

229

z′g =

0 if ‖z‖2 ≤ tλ
√
|g|(

1− tλ
√
|g|

‖z‖2

)
z if ‖z‖2 > tλ

√
|g|

for all g ∈ G. (5)

In practice we would like to adjust for covariates such as age, sex, and other demographic230

information when fitting a regression model. In our application we first fit a unregularized regression231

model of the response on these covariates and fit the regularized model of the residual on the232

genetic variants. The number of covariates are usually much smaller compared to the number of233

individuals, so the first fitting is not computationally or statistically challenging. To be more precise,234

let Xcov ∈ Rn×c be the c ≥ 0 covariates that we would like to adjust for. Using the same notation235

in (1). We fit a model in two steps:236

1. First, we fit a unregularized model using the covariates:237

β̂cov = arg min
βcov∈Rc

h(Xcovβcov). (6)

2. Then, we fit the regularized model on the “residuals” using the variants:238

β̂ = arg min
β∈Rd

h(Xcovβ̂cov +Xβ) + λR(β). (7)
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For example, if we write the predicted value of the covariates as γ = Xcovβ̂cov ∈ Rn, then for a239

Gaussian model, the objective function of the second step above is:240

f(β) =
1

n
‖y − γ −Xβ‖22 + λ

∑
g∈G

√
|g|‖βg‖2 (8)

For logistic regression this becomes:241

f(β) =
1

n

n∑
i=1

yi log(1 + eηi+γi) + (1− yi) log(1 + e−ηi−γi) + λ
∑
g∈G

√
|g|‖βg‖2, η = Xβ. (9)

For Cox model the objective function is242

f(β) =
1

n

n∑
i=1

Oi

−ηi − γi + log

∑
yj≥yi

eηj+γj

+ λ
∑
g∈G

√
|g|‖βg‖2, η = Xβ. (10)

We optimize these objective functions for a decreasing sequence of λs starting from one such that243

the solution just becomes non-zero. The initial value for the proximal gradient method of the next244

λ are initialized from the solution from the current λ (warm start). As alluded in the last section,245

we randomly assign 70% of the white British individuals in this dataset to the training set, 10%246

to the validation set, and 20% to the test set. We remove individuals whose phenotype value is247

missing, keeping variants with at least 3 minor allele count, has an associated gene symbol, has less248

than 10% of missing value, and the ratio of the missing value and minor allele is less than 10. We249

further filter out the variants that are not protein truncating or protein altering. Depending on the250

number of missing values in the phenotype, the number of individuals and variants used for fitting251

could be different. In all of the examples here the training set has more than 90, 000 individuals252

and the number of genetic variants used are over 1, 000, 000. The covariates are the sex, age, and 10253

principal components of the genetic data described in the second benchmark of section 3.2.254

To evaluate the fitted model, we use the R-squared value for quantitative phenotype, the area255

under the receiver operating characteristic (ROC) curve (AUC) for binary phenotype, and the con-256

cordance index (C-index) for time-to-event phenotype. These metrics will be computed on the257

validation set to determine the optimal regularization parameter λ and on the test set to evaluate258

the model corresponding to the λ used. Once the validation metric starts to decrease, we stop the259

fitting process and do not compute the solutions for smaller λ values. Figures 5, 6, 7 illustrate a few260

Lasso path plots obtained from our implementation. It is worth noting that Alzheimer’s disease has261

a sharp increase in C-index for λ indices 7-10.262

In terms of computation, unlike in snpnet (or the 2.0 version), the optimization in sparse-snpnet263

are all done without variable screening, and the entire training data (in sparse format) is loaded in264

memory before fitting starts. This eliminates all the I/O operations carried out in the KKT check-265

ing step of snpnet. The applications in this section successfully finished when we allocate 32GB of266

memory to these jobs. In addition, while the applications in this paper focus on Gaussian, logistic,267

and Cox families and group Lasso regularization, our implementation uses several abstraction in268

C++ so it’s easy to extend to other generalized linear models and regularization functions.269

5 Discussions270

We present two fast and memory efficient solvers for generalized linear models with regularization271

on large genetic data. Both methods utilize a 2-bit compact representation of genetic variants and272
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Figure 7: Lasso path plots for the time-to-event phenotypes Alzheimer’s disease and Hypothyroidism.
The horizontal axis is the index of the regularization parameter λ, the vertical axis are the C-
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are accelerated though multi-threading on CPUs with multiple cores. The first solver implements273

the iteratively-reweighted least square algorithm in glmnet, and its goal is to provide boosted com-274

putational and memory performance to the large-scale Lasso solver described in (Qian et al. 2020,275

Li et al. 2020). The second solver implements an accelerated proximal gradient method that’s able276

to solve more general regularized regression problems. One important feature of this solver is that it277

combines a version of compressed sparse block format for sparse matrices and the 2-bit encoding of278

genetic variants. We summarize the characteristics of these two solvers in table 3. We demonstrate279

the effectiveness of our methods through several benchmarks and UK Biobank exome data applica-280

tions. We believe our method will be a useful tool as whole genome sequencing data becomes more281

common.282

snpnet-2.0 sparse-snpnet

Algorithm IRLS Proximal gradient
Use variable screening Yes No
Easy to extend to other GLMs Yes Yes
Easy to extend to other regularizations No Yes
Use 2-bit representation of variants Yes Yes
Use sparse matrix format No Yes
Multi-threaded Yes Yes

Table 3: A comparison between the two solvers we present in this paper.
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