bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

. Fast Numerical Optimization for Genome Sequencing Data in
: Population Biobanks

3 Ruilin Li*!, Christopher Chang?, Yosuke Tanigawa®, Balasubramanian
‘ Narasimhan®?, Trevor Hastie®>*, Robert Tibshirani®*, and Manuel A. Rivas'

s !Institute for Computational and Mathematical Engineering, Stanford University

6 2Qrail, Inc.

7 3Department of Biomedical Data Science, Stanford University

s “Department of Statistics, Stanford University

9 Abstract

10 We develop two efficient solvers for optimization problems arising from large-scale regularized
1 regressions on millions of genetic variants sequenced from hundreds of thousands of individuals.
12 These genetic variants are encoded by the values in the set {0,1,2,NA}. We take advantage of
13 this fact and use two bits to represent each entry in a genetic matrix, which reduces memory
14 requirement by a factor of 32 compared to a double precision floating point representation.
15 Using this representation, we implemented an iteratively reweighted least square algorithm to
16 solve Lasso regressions on genetic matrices, which we name snpnet-2.0. When the dataset
17 contains many rare variants, the predictors can be encoded in a sparse matrix. We utilize
18 the sparsity in the predictor matrix to further reduce memory requirement and computational
19 speed. Our sparse genetic matrix implementation uses both the compact 2-bit representation
20 and a simplified version of compressed sparse block format so that matrix-vector multiplications
21 can be effectively parallelized on multiple CPU cores. To demonstrate the effectiveness of this
2 representation, we implement an accelerated proximal gradient method to solve group Lasso on
23 these sparse genetic matrices. This solver is named sparse-snpnet, and will also be included
2 as part of snpnet R package. Our implementation is able to solve group Lasso problems on
25 sparse genetic matrices with more than 1,000,000 columns and almost 100,000 rows within 10
2 minutes and using less than 32GB of memory.

» 1 Introduction

;s Constantly growing biobanks have provided scientists and researchers with unprecedented opportu-
2o nities to understand the genetics of human phenotypes. One component is to predict phenotypes of
s an individual using genetic data. However, datasets of increasing size also pose computational chal-
s lenges for this task. On the statistics side, genetic datasets are usually high-dimensional, meaning
3 the number of genetic variants is larger than the number of sequenced individuals. High dimensional
;3 statistics have been studied for more than two decades with well understood solutions. One such

*Corresponding author: ruilinli@stanford.edu
fCorresponding author: mrivas@stanford.edu

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

u solution is to “bet on sparsity”: the assumption that only a small subset of variables are associated
3 with the response. The sparsity assumption is usually embodied through an objective function that
3 encourages sparsity in the solution. Well known examples include the Lasso and the group Lasso.
s On the computation side, a statistical estimator that describes the relationship between the genetic
3 variants and the response of interest are often obtained by optimizing an objective function involving
3 the genetic matrix. While off-the-shelf solvers may exist for these optimization problems, they are
w0 usually not optimal for genetics data. First, these general purpose solvers require loading a floating
s point predictor matrix in memory before optimization can be done. This can demand a very large
«2 amount of memory for biobank scale data. For example, loading a matrix with 200,000 rows and
a3 1,000,000 columns as double precision floating point numbers takes 1.6 terabytes, much larger than
w the RAM size of most machines. In particular, they do not exploit the fact that genetic variants can
s take on only four possible values. Secondly, many of these solvers do not fully utilize modern hard-
s ware features such as multi-core processors, which leaves lots of performance on the table. Thirdly, a
s large number of variants in exome and whole genome sequencing data are rare variants. If a variant
s 18 encoded as the number of copies of the minor allele, then the corresponding genetic matrix is
s« sparse. In the UK Biobank’s exome sequencing data (Szustakowski et al.|[2020), more than 99% of
so the variants in the targeted regions have minor allele frequency less than 1%. As a result, more than
51 98% of the entries of the corresponding genetic matrix are zero. The sparsity in the predictor matrix
s> can potentially be exploited to improve both memory requirements and computational speed.

53 The main result of this work is an extremely efficient regularized regression solver for problems
ss with sparse genetic predictors, named sparse-snpnet. The main features of this solver are the
55 following:

56 1. A compact, two bits representation of genetic variants based on PLINK2’s (Chang et al.|2015)

57 pgen files.

58 2. Good scalability to multi-core processors.

50 3. A simplified version of the compressed sparse block format so that arithmetic operations on
60 the genetic matrices are more amenable to parallelism.

&1 In addition, we provide an extension to the popular R package glmnet (Friedman et al.[2010, |Simon
e (et al|[2011)) specifically for Lasso problems involving genetic matrices. This extension exploits the
63 compact representation and is multi-threaded, but does not assume sparsity of the input genetic
s matrix. We incorporate this solver to the screening framework (Qian et al.[2020)) in snpnet and
6 name it snpnet-2.0. Both solvers are implemented in C++ and wrapped as part of the R package
e snpnet, which is available at https://github.com/rivas-lab/snpnet/tree/compact. We refer
e the readers to section [5| for comparisons between these two methods.

s 2 Results

o 2.1 Optimization Algorithm

7o We focus on regularized regression problems whose objective functions are in the following form:

f(B) = h(XB) + AR(B) (1)

7 where X € {0,1,2,NA}"*4 is a genetic matrix, 3 € R is the parameter vector, h : R"® R
2 is usually the negative log-likelihood function of a generalized linear model (Hastie & Tibshirani

https://github.com/rivas-lab/snpnet/tree/compact
https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

7 [1986)), and is always assumed to be smooth and convex. We have omitted the dependence of h on
21 the response vector to simplify the notation. R : R? — R, is a regularization function, and A € R,
75 represents the strength of regularization. Here are some examples of h:

76 1. Linear regression: h(X) = 1|y — X 3|3 for a response vector y € R".

7 2. Logistic regression: write n = X, h(X) = h(n) = > i, yilog(1+e™)+ (1 —y;) log(14+ e~ ")
7 for a binary response y € {0,1}".

79 3. Cox regression (Cox|1972)): Writen = X3, h(XB) = h(n) =Y 1, O; [—m + log (Eyjzyi e”f)}

80 for a survival time vector y € R, and an event indicator O € {0,1}".

a1 The regularization function is usually a seminorm but not always. Some examples are:

@ 1. Lasso (Tibshirani|[1996): R(8) = [B]li = > i, 3] -
83 2. Elastic net (Zou & Hasti€|[2005): R(8) = ||B]|1 + «||3]|3 for some a > 0.

8 3. Group Lasso (Yuan & Lin|2006): R(3) = deg IB4ll2, where g € G, g C {1,2,---,d} repre-
85 sents a subset of variables.

s To minimize (1), we apply an accelerated proximal gradient descent algorithm (Nesterov||1983,
s |Daubechies et al.||2004, [Beck & Teboulle|2009) with backtracking line search to determine the step
e size. This algorithm has fast convergence rate, essentially no tuning parameter, and is particularly
s suitable for the simple regularization functions that we use. In short, this algorithm alternates
w between a gradient descent step that decreases the value of h(X), and a proximal step that ensures
o that the regularization term is not too large. Note that the gradient here refers to the gradient of
o h(Xp) with respect to 8. The regularization function is usually not differentiable at 0. The proximal
o3 operator is defined as:

proxp(B) == arg min%”z — Bl% + AR(2). (2)

z€R4

oo When the regularization function is one of the examples above, the corresponding proximal operator
os have explicit expression. We summarize this process in the pseudo-code in algorithm
96
o7 We observe that in this algorithm, the only operations that involve the predictor matrix X are
s matrix-vector multiplications X3 and XTr, where r = Vh(X3) € R%. When X is dense, these two
9 operations are also the most computationally intensive ones in this algorithm, having complexity
w O(nd), whereas all other operations are either O(n) or O(d). This, together with the need to reduce
w1 the amount of memory required to load X, motivate a more compact and efficient representation of
12 the genetic predictor matrix X.

w 2.2 Sparse Genotype Matrix Representation

104 In this section we describe the format we use to represent sparse genetic matrices. First of all,
105 we pack each entries in the matrix to two bits. 0,1,2 and NA are represented by 00,01,10 and 11,
s respectively. The compressed sparse column (CSC) format is a popular way to store a sparse matrix.
w7 The PLINK 2.0 library (Chang et al.|[2015) provides functions that make loading a genetic matrix
108 into this format straightforward. Under CSC, a matrix with n rows, d columns and nnz non-zero
109 entries are represented by three arrays:

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

110 1. A column pointer array col_ptr of size d + 1.

1 2. A row index array row_idx of size nnz.

112 3. A value array val of size nnz.

us For each column j € {1,2,---,d}, the non-zero entries in that column are stored from the col_ptr [j]th

us (inclusive) entry to the (col ptr[j+1] - 1)th entry of row_idx and val, where row_idx stores the
us row index of the non-zero entry and val stores the non-zero value. Figure [l provides an illustration
us of a sparse genetic matrix under CSC format.

117 When a sparse matrix is stored in CSC format, accessing a particular column is simple. As a
us result, one can trivially parallellize the computation of XTr. For example, thread j can compute
19 the inner product of the jth column of X and r and write to the jth entry of the output without
120 interfering with other threads. However, same thing can’t be said about X3. We can’t directly
11 access a row of X stored in CSC format, so there is no easy way to make each thread compute the
12 inner product between 8 and a row of X. Another way is to, say, have thread j add §; times the
123 jth column of X to the output, but doing this in parallel leads to data race. Alternatively, one can
s store X in the compressed sparse row format, which makes parallelizing X 8 easy but X7 difficult.

125 Our implementation uses a simplified version of the compressed sparse block (CSB) format
s proposed in [Bulug et al.| (2009). In this format, the sparse matrix is partitioned into a grid of
127 smaller, rectangular sub-matrices with same dimensions, which are referred to as blocks. When
128 partitioned to B blocks, a matrix with n rows, d columns, and nnz non-zero entries are represented
19 by four arrays:

130 1. A block pointer array blk_ptr of size B + 1.
131 2. A row index array row_idx of size nnz.

132 3. A column index array col_idx of size nnz.
133 4. A value array val of size nnz.

1 In this representation, non-zero entries in a block (as oppose to those in a column in CSC format)
135 are stored contiguously . The row indices, column indices, and values of the non-zero values in a
13 block b € {1,2,---, B} are stored in row_idx, col_idx, and val, starting at the index blk_ptr[b]
17 and ending at the index blk_ptr[b+1]-1. In the original CSB paper the non-zero elements in each
138 block has a Z-Morton ordering, while the blocks can have any order. In our simplified version we
139 store the blocks and the non-zero elements within a block in a column major fashion. Figure
u provides an illustration.

11 Under this representation accessing a block in the sparse matrix is easy. As a result, parallellizing
w2 both X3 and X7r are straightforward. For example if X is the matrix in figure [2| then to compute
us X[we can have thread 1 compute the inner product of the first three rows of X and 3, thread 2
w compute the inner product of row 4-6 and /3, etc. Similarly, to compute X”r thread b will compute
us the inner product between r and the columns 3b — 2,3b — 1,3b in X for b € {1,2, 3}.

146 Since our implementation uses 2 bits to store a matrix entry and 32 bits to store each index, the
wr genetic CSB format (compared to a dense representation) will only save memory when the matrix is
us sufficiently sparse (approximately < 3% of entries are non-zero). While there are many techniques
1o to reduce the number of bits needed to represent the indices (such as storing the indices relative

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Algorithm 1: Accelerated Proximal Gradient Method for

Set line search parameter v > 1;

Initialize the parameter vector 6(0) =0;

Set iteration count ¢ = 0; Set initial step-size ¢ = 1; Set Nesterov weights wg,w; = 1;
while 3 has not converged do

Nesterov acceleration:

wy < (14 /14 4w3d)/2;
B BY + (wo — 1)(BD — U=V Jwy; wo wy;
Compute the gradient g = XTVh(Xj);
Start backtracking line search:
repeat
5(i+()‘5) «— 6 _ tXTVh(Xﬂ);
Apply proximal step: B0V «+ proxy, (B¢
if h(XB) <h(XB)+ (B = B) g+ |5+ - BlI3/(2t) then
‘ break;
end
Shrink step size t « t/7v;
until the break condition above is satisfied;
Accept the iterate g1,
141+ 1;
Check convergence based on objective value change or parameter change.
end
return g*+!

i+0‘5));

1 NA 1 1
2 NA 2
b coliptr[IO]:Il[n|5‘6'10|13[15|19‘22|25|
1 2 1
NA row_idx[24]:|z|7|9‘1|z|1|4|6‘7|2|5[6|7‘9|1|3[4|9‘1|3|9[4|6‘9‘
2 | NA 1
val([24]: ‘10|11‘D1|m‘11‘11|01‘wlm|w‘11|11‘11|01|01‘11|10‘1u|01|11‘10|01‘a1|m|
NA 1 NA
it 2l 2 2 2

Figure 1: A sparse genetic matrix represented in the compressed sparse column format. The zero
entries on the left are omitted.

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

150 to the start of the block, differential encoding, bit packing), the current version of our software
151 does not implement these techniques. For variants with high minor allele frequency, we store the
152 corresponding columns in dense format and keep track of their column indices. We also keep an
153 additional array of length d to store the mean imputation of the missing values in X.

= 3 Benchmarks

s 3.1 Performance on Dense Matrix-Vector Multiplications

16 In the first benchmark we evaluate the performance improvement when the predictor matrix uses
157 the 2-bit compact representation, but not the sparse format described in the last section. The
158 genetics data are dense and simulated through the plink2 --dummy command. The matrix have
10 n = 200,000 rows and d = 30,000 columns with approximately 5% entries NAs. In Figure [3| we
1o show the relative speedup of the compact matrix as a function of the number of threads used. The
11 baseline is R’s builtin matrix-vector multiplication functions for double precision matrices (a basic,
12 single threaded BLAS implementation). The numbers reported are based on the median wall time
163 of 10 runs. Figure [3| demonstrates a more than 20-35 folds of speedup over the baseline, and good
14 performance scalability in the number of threads for up to almost 20 threads. Unless otherwise
165 specified, all computational experiments in this paper are done on an Intel Xeon Gold 6258R. For
16 most of our applications 16 out of the 28 CPU cores that comes with this CPU are used.

w 3.2 Performance on Solving Large-scale Lasso Problems

s In the second benchmark we compare the performance of the 2-bit compact genetic matrix represen-
10 tation when it is incorporated in the software packages glmnet and snpnet to solve large-scale Lasso
o problems where the predictors are mostly Single-nucleotide polymorphisms (SNPs) (with perhaps a
m few real-valued covariates such as age). As mentioned in the introduction, we call this implemen-
w2 tation snpnet-2.0. The main performance gain comes from these factors (the readers can refer to
ws |Qian et al.| (2020)), [Li et al,| (2020)) for the definitions of some terms below):

174 1. glmnet fitting is based on the iteratively reweighted least square (IRLS) algorithm, where the

175 main bottleneck is computing inner-products between columns of X and a real-valued vector.
176 This is done using the 2-bit compact representation and is multi-threaded in snpnet-2.0.

177 2. snpnet uses a screening procedure named the batch screening iterative Lasso (BASIL). At
178 each BASIL iteration a different set of predictors is used to fit a model. Using the compact
179 representation reduces the amount of memory traffic needed.

180 3. snpnet-2.0 uses reduced precision floating point numbers (float32 instead of float64) to
181 do KKT checking.

182 4. Warm start support, as well as more relaxed convergence criteria, for binomial model and Cox
183 model.

184 Since snpnet-2.0 also uses more relaxed convergence criteria than the previous version, it is not
185 very fair to just compare the speed of these packages. As a result we provide both the time spent
16 as well as the test set prediction performance. The data used here are a combination of directly

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

i NA 4 § 1
2 NA 2
blkiptr[10]:|1|a|a‘6|5|11|15|19|22|25|
NA | NA
1 2 1 rawﬁidx[24]:|z|1|2|7|9|1|2|A|s|5|5|7|7|9|1|3|1|3|4|4|5|9|9|9|
NA
cot_saxtzars [2[5 (1 e o s]« e s[5 e]e (o717 [s]e]7 15 7]¢]7]
2 [NA 1
NA 1 NA val[24]: ‘10|01|11|11|01‘11|10|01|1o|11‘11|01|11|01|01|11|01|11|1o|01‘u1|10|m|w|
1 s P 2 2

Figure 2: A sparse genetic matrix represented in the compressed sparse block format. The zero
entries on the left are omitted. The boundaries of each block are highlighted in blue. The non-zero
elements in each block are stored contiguously in an top-to-bottom, left-to-right order. The blocks
are also in an top-to-bottom, left-to-right order

XB

23.86 24.03 24.17
233

.34
2285 2267 544 72280 2263 5, 3, T

&

Relative Speedup
o
£

s

15
Number of Threads

Figure 3: A bar plot demonstrating the relative speedup in computing X3 when the compact
representation is used. The baseline is the R’s builtin matrix-vector multiplication function for
double precision matrices. The horizontal axis is the number of threads. The vertical axis is the
ratio of between time spent in the baseline and the time spent with the compact representation.
The baseline for X/ is 9.8 seconds.

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

w7 genotyped variants (release version 2 of [Sudlow et al. (2015))), the imputed allelotypes in human
188 leukocyte antigen allelotypes (Venkataraman et al.|2020)), and copy number variations described in
180 |Aguirre et al.| (2019)), resulting in a genotype matrix of 1,080,968 variants, as described in |Sinnott-
10 |Armstrong et al.| (2021). The study population consists of 337,129 unrelated participants of white
11 British ancestry described in [DeBoever et al| (2018)). We randomly select 70% of the participants
12 as the training set, 10% as the validation set, and 20% as the test set. The results are summarized
103 in table[3] The table shows that snpnet-2.0 achieves significant speedup over the old version while
14 having very similar test set prediction performance. We note that for standing height, more than
15 80,000 variants are selected to fit the model. Since the predictor matrix is duplicated in its fitting
16 process, the old version of snpnet requires more than 400GB to successfully finish. On the other
17 hand, 32GB of memory is sufficient for snpnet-2.0.

Time (new) | Time (old) | Test metric (new) | Test metric (old)
High cholesterol (B) 21.9 109.8 0.72533 0.72531
Asthma (B) 21.7 130.0 0.61609 0.61608
Standing Height (Q) 99.9 405.8% 0.71096 0.71100
BMI (Q) 51.5 208.3* 0.11408 0.11412
Other hypothyroidism (S) 13.5 71.5 0.75194 0.75205
Thyrotoxicosis (S) 3.6 10.0 0.71020 0.71021

Table 1: Speed comparison between the old version of snpnet and snpnet-2.0. Time is measured
in minutes. (B) indicates the response is binary, (Q) indicates the response is quantitative, and
(S) indicates that the response is a survival time. For binary response, the test metric is the area
under the ROC curve (AUC). For quantitative response, the metric is the R-squared. For survival
response, the metric is the C-index. *The machine we used for most of the applications here has a
dual-socket architecture, each having around 400 GB of local memory. The memory requirements
by the old version of snpnet for both standing height and BMI exceeds the capacity of the local
memory of a single socket in this machine. As a result, we ran these two experiments on an Intel
Xeon Gold 6130 (also 16 cores) machine with more memory.

ws 3.3 Performance of the Sparse Format

19 In the third benchmark we evaluate the performance improvement when the genetic predictors
200 make use of both the 2-bit compact representation, and the sparse representation described in the
21 last section. In this case we use real exome data from the UK Biobank. The raw data has 200, 643
22 individuals and 17,777,950 variants. For this benchmark we only use variants with least 3 individuals
23 having the minor allele and with missing rate at most 10%. The result is a sparse genetic matrix
20 with 200,643 rows and 7,462,671 columns. For our application in the next section the number
25 of variants used to fit models will be smaller since the training set will be a subset of the entire
206 population in this data. On average each column of this matrix has 1399.5 non-zero entries, half of
207 the columns have less than 7 non-zero entries, and 90% of the columns have less than 91 non-zero
28 entries. In our sparse representation we divide this matrix into 16 x 16 = 256 blocks, each with
20 dimension 12,540 by 466,416 (the size of the blocks is a tuning parameter), except at the boundary
a0 the block size could be larger. As we mentioned in the last section, storing dense blocks using our
au version of the compressed sparse block format is not memory efficient, so if a column has a large
212 number of non-zero entries we store all entries of that column separately. For this particular matrix,
23 223,596 variants does not use the sparse representation. In table[2]we present the amount of time to
24 load the matrix and to compute X3, X using the sparse matrix representations. Again 16 cores
x5 are used for the computation. Loading such matrix would take almost 12 terabytes of memory if

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a6 the entries are stored as double precision floating point numbers.

Loading | X5 | XTr
56.5 1.86 | 1.80

Table 2: The loading and computation time in seconds when the genetic matrix is stored in sparse
format. This matrix has 200,643 rows and 7,462,671 columns with more than 10 billion non-zero
entries. The computation time are the median of 10 runs. Both dense and sparse format compute
the matrix-vector multiplication using 16 cores.

x4 Applications to UK Biobank Exome Sequencing Data

28 In this section we put our method into practice. Specifically, we use the exome data described in
20 the last part of section 3 to fit group-sparse linear models on multiple phenotypes. The method
20 described in this section is implemented in sparse-snpnet. In this case the regularization term will
21 be the sum of the 2-norms of the predefined groups. For our applications the groups are defined by
22 the gene symbol of the variants. For example, the objective function for a Gaussian model is:

1
~lly = XBIE+AY_ V1ol Bsll2 (3)

geg

23 where G ={g:9 C {1,2,---,d}} is a collection of indices corresponding to variants with the same
24 gene symbol. |g|, the number of element in the group, is part of the regularization term so that
25 groups of same size are penalized by the same degree. 3, € RI9! is the sub-vector of 3 corresponding
26 to the indices in g. We do not allow overlapping groups, so G needs to be a partition of all variables.
27 That is Ugegg = {1,2,--- ,d}, and deg lg| = d. One can show that the proximal operator for this
28 regularization function satisfies:

.1
2" = proxp(B) := arg min %Hz — B3 +)\Z V109l Bgll2- (4)
2€R? geg
229

0 if [|2]l2 < tAV/Ig]
2z = T] for all g € G. (5)

9 (1 - T) z if [|z]l2 > tAy/]g]
230 In practice we would like to adjust for covariates such as age, sex, and other demographic

2 information when fitting a regression model. In our application we first fit a unregularized regression
2 model of the response on these covariates and fit the regularized model of the residual on the
23 genetic variants. The number of covariates are usually much smaller compared to the number of
2 individuals, so the first fitting is not computationally or statistically challenging. To be more precise,
25 let Xeoy € R™ € be the ¢ > 0 covariates that we would like to adjust for. Using the same notation
26 in . We fit a model in two steps:

237 1. First, we fit a unregularized model using the covariates:
Beow = arg min h(XeoBeov)- (6)
Beov ER®
238 2. Then, we fit the regularized model on the “residuals” using the variants:
b= axg min (X eovBeow + X B) + AR(B). (7)

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

20 For example, if we write the predicted value of the covariates as v = XCOUBCOU € R™, then for a
20 Gaussian model, the objective function of the second step above is:

FB) =~~~ XI5+ A3 VIl s Q

IS4

2 For logistic regression this becomes:

f(B) = %Zyi log(1+e”7) + (1 —y)log(1+e ") +2Y VIdllBglla, n=XB. (9)

i=1 g€g

22 For Cox model the objective function is

8= 23001 [=i tlog | 30 e | [4A VIglldle, n=X5. (10)

1=1 Yj 2Yi geyg

23 We optimize these objective functions for a decreasing sequence of As starting from one such that
a4 the solution just becomes non-zero. The initial value for the proximal gradient method of the next
x5 A are initialized from the solution from the current A (warm start). As alluded in the last section,
s we randomly assign 70% of the white British individuals in this dataset to the training set, 10%
7 to the validation set, and 20% to the test set. We remove individuals whose phenotype value is
»s missing, keeping variants with at least 3 minor allele count, has an associated gene symbol, has less
9 than 10% of missing value, and the ratio of the missing value and minor allele is less than 10. We
w0 further filter out the variants that are not protein truncating or protein altering. Depending on the
»1 number of missing values in the phenotype, the number of individuals and variants used for fitting
s could be different. In all of the examples here the training set has more than 90,000 individuals
»3 and the number of genetic variants used are over 1,000,000. The covariates are the sex, age, and 10
»s principal components of the genetic data described in the second benchmark of section [3.2

255 To evaluate the fitted model, we use the R-squared value for quantitative phenotype, the area
6 under the receiver operating characteristic (ROC) curve (AUC) for binary phenotype, and the con-
»r cordance index (C-index) for time-to-event phenotype. These metrics will be computed on the
»s validation set to determine the optimal regularization parameter A and on the test set to evaluate
»9 the model corresponding to the A used. Once the validation metric starts to decrease, we stop the
20 fitting process and do not compute the solutions for smaller A values. Figures 5] [6] [7] illustrate a few
s Lasso path plots obtained from our implementation. It is worth noting that Alzheimer’s disease has
»%2 a sharp increase in C-index for A indices 7-10.

263 In terms of computation, unlike in snpnet (or the 2.0 version), the optimization in sparse-snpnet
xe are all done without variable screening, and the entire training data (in sparse format) is loaded in
%5 memory before fitting starts. This eliminates all the I/O operations carried out in the KKT check-
26 ing step of snpnet. The applications in this section successfully finished when we allocate 32GB of
27 memory to these jobs. In addition, while the applications in this paper focus on Gaussian, logistic,
%8 and Cox families and group Lasso regularization, our implementation uses several abstraction in
0 C++ so it’s easy to extend to other generalized linear models and regularization functions.

-~ 9 Discussions

on - We present two fast and memory efficient solvers for generalized linear models with regularization
a2 on large genetic data. Both methods utilize a 2-bit compact representation of genetic variants and

10

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2145
1970

Relative Speedup

28.40

15
Number of Threads

22 32,67

Figure 4: A bar plot demonstrating the relative speedup in computing X7r when the compact
representation is used. The baseline is the R’s builtin matrix-vector multiplication function for
double precision matrices. The horizontal axis is the number of threads. The vertical axis is the
ratio of between time spent in the baseline and the time spent with the compact representation.

The baseline for XTr is 11.4 seconds.

Height

split
~— train

—=— validation

Metrics (R2)
o
3

- ftest

0 20
Lambda Index

Metrics (R2)

LDL cholesterol

split
~— train
~— validation

- ftest

0 20 40

Lambda Index

Figure 5: Lasso path plots for the quantitative phenotypes Height and LDL cholesterol. The hori-
zontal axis is the index of the regularization parameter A, the vertical axis are the R-squared of the
solution corresponding to each A index. The numbers on the top are the number of genes with non-
zero coefficients at the corresponding A indices. The color corresponds to the train, validation and
test set. The duration of training these two models are 8.34 minutes and 8.35 minutes respectively.

11

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

High Cholesterol (binary) Asthma (binary)

Number of Active Genes

=
© @ 9 ~ & 8§ 3 2
o 4« oo w 4 & 8 5 & & § 3

-1336
-2011
-2719

0.775-

0.750-

split split
train train

—— validation —— validation
0.725-

Metrics (AUC)
Metrics (AUC)

test test

0.6-

e e

0 10 20 30
Lambda Index

0.700-

’ - Lambda Inzdoex -

Figure 6: Lasso path plots for the binary phenotypes High Cholesterol and Asthma. The horizontal
axis is the index of the regularization parameter A, the vertical axis are the AUC values of the
solution corresponding to each A index. The numbers on the top are the number of genes with non-
zero coefficients at the corresponding A indices. The color corresponds to the train, validation and

test set. The duration of training these two models are 6.88 minutes and 8.27 minutes respectively.

Alzheimer's disease (age of onset) Hypothyroidism (age of onset)

Number of Active Genes Number of Active Genes
< o

- - I ~ ~ &

34
73

o~ o @
~ e e s RS T8
o a w0 oS NP BGES 3D

1288
1884
2610

-3409
4198
5150

0.9-
0.8-

°
2

°

®

split split
train train
—~— validation ~— validation
test

Metrics (C-Index)
Metrics (C-Index)

test
0.7-

: Lamf}oda Index S “ ’ & Lambé?a Index @ .
Figure 7: Lasso path plots for the time-to-event phenotypes Alzheimer’s disease and Hypothyroidism.
The horizontal axis is the index of the regularization parameter A, the vertical axis are the C-
index of the solution corresponding to each A index. The numbers on the top are the number of
genes with non-zero coefficients at the corresponding A indices. The color corresponds to the train,

validation and test set. The duration of training these two models are 6.12 minutes and 6.92 minutes
respectively.

12

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

oz are accelerated though multi-threading on CPUs with multiple cores. The first solver implements
o the iteratively-reweighted least square algorithm in glmnet, and its goal is to provide boosted com-
a5 putational and memory performance to the large-scale Lasso solver described in (Qian et al.[[2020,
a6 |Li et al.|[2020). The second solver implements an accelerated proximal gradient method that’s able
a7 to solve more general regularized regression problems. One important feature of this solver is that it
as combines a version of compressed sparse block format for sparse matrices and the 2-bit encoding of
29 genetic variants. We summarize the characteristics of these two solvers in table[3] We demonstrate
20 the effectiveness of our methods through several benchmarks and UK Biobank exome data applica-
s tions. We believe our method will be a useful tool as whole genome sequencing data becomes more
282 COININOI.

snpnet-2.0 sparse-snpnet
Algorithm IRLS Proximal gradient
Use variable screening Yes No
Easy to extend to other GLMs Yes Yes
Easy to extend to other regularizations No Yes
Use 2-bit representation of variants Yes Yes
Use sparse matrix format No Yes
Multi-threaded Yes Yes

Table 3: A comparison between the two solvers we present in this paper.

» 6 Acknowledgments

s Y.T. is supported by a Funai Overseas Scholarship from the Funai Foundation for Information
25 Technology and the Stanford University School of Medicine.

286 M.A.R. is supported by Stanford University and a National Institute of Health center for Multi
sr - and Trans-ethnic Mapping of Mendelian and Complex Diseases grant (5U01 HG009080). This work
288 was supported by National Human Genome Research Institute (NHGRI) of the National Institutes
280 of Health (NTH) under awards ROIHG010140. The content is solely the responsibility of the authors
20 and does not necessarily represent the official views of the National Institutes of Health.

201 R.T was partially supported by NIH grant 5R01 EB001988-16 and NSF grant 19 DMS1208164.

202 T.H. was partially supported by grant DMS-1407548 from the National Science Foundation, and
23 grant 5R01 EB 001988-21 from the National Institutes of Health.

204 This research has been conducted using the UK Biobank Resource under application number
205 24983. We thank all the participants in the study. The primary and processed data used to generate
25 the analyses presented here are available in the UK Biobank access management system (https://
27 lamsportal.ukbiobank.ac.uk/)) for application 24983, “Generating effective therapeutic hypotheses
208 from genomic and hospital linkage data” (http://www.ukbiobank.ac.uk/wp-content/uploads/
209 2017/06/24983-Dr-Manuel-Rivas.pdf)).

300 All of the computing for this project was performed on the Nero and Sherlock clusters. We
s would like to thank Stanford University and the Stanford Research Computing Center for providing
32 computational resources and support that contributed to these research results.

303 Conflict of Interest: None declared.

13

https://amsportal.ukbiobank.ac.uk/
https://amsportal.ukbiobank.ac.uk/
https://amsportal.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf
https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

« References

w05 Aguirre, M., Rivas, M. A. & Priest, J. (2019), ‘Phenome-wide Burden of Copy-Number Variation
306 in the UK Biobank’, Am J Hum Genet 105(2), 373—-383.

s Beck, A. & Teboulle, M. (2009), ‘A fast iterative shrinkage-thresholding algorithm for linear inverse
308 problems’; STAM J. Img. Sci. 2(1), 183-202.
300 URL: https://doi.org/10.1137/080716542

s Bulug, A., Fineman, J. T., Frigo, M., Gilbert, J. R. & Leiserson, C. E. (2009), Parallel sparse matrix-
311 vector and matrix-transpose-vector multiplication using compressed sparse blocks, in ‘Proceedings
312 of the Twenty-First Annual Symposium on Parallelism in Algorithms and Architectures’, SPAA
313 ’09, Association for Computing Machinery, New York, NY, USA, p. 233-244.

314 URL: https://doi.org/10.1145/1583991.1584053

as Chang, C., Chow, C., Tellier, L., Vattikuti, S., Purcell, S. & Lee, J. (2015), ‘Second-generation plink:
316 Rising to the challenge of larger and richer datasets’, GigaScience 4.

ar Cox, D. R. (1972), ‘Regression models and life-tables’, Journal of the Royal Statistical Society. Series
218 B (Methodological) 34(2), 187-220.
310 URL: http://www.jstor.org/stable /2985181

20 Daubechies, 1., Defrise, M. & De Mol, C. (2004), ‘An iterative thresholding algorithm for linear
321 inverse problems with a sparsity constraint’, Communications on Pure and Applied Mathematics
322 57(11), 1413-1457.

323 URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20042

su DeBoever, C., Tanigawa, Y., Lindholm, M. E., Mclnnes, G., Lavertu, A., Ingelsson, E., Chang,
325 C., Ashley, E. A., Bustamante, C. D., Daly, M. J. et al. (2018), ‘Medical relevance of protein-
326 truncating variants across 337,205 individuals in the uk biobank study’, Nature communications
2 9(1), 1-10.

»s Friedman, J., Hastie, T. & Tibshirani, R. (2010), ‘Regularization paths for generalized linear models
329 via coordinate descent’, Journal of Statistical Software 33(1), 1-22.
330 URL: https://www.jstatsoft.org/v33/i01/

sn Hastie, T. & Tibshirani, R. (1986), ‘Generalized additive models’, Statist. Sci. 1(3), 297-310.
R URL: https://doi.org/10.121/4/ss/117701360/

a3 Li, R., Chang, C., Justesen, J. M., Tanigawa, Y., Qian, J., Hastie, T., Rivas, M. A. & Tibshirani, R.
33 (2020), ‘Fast Lasso method for large-scale and ultrahigh-dimensional Cox model with applications
335 to UK Biobank’, Biostatistics . kxaa038.

336 URL: https://doi.org/10.1093/biostatistics/kraa038

s Nesterov, Y. (1983), ‘A method for solving the convex programming problem with convergence
338 rateO(1/k?)’, Proceedings of the USSR Academy of Sciences 269, 543-547.

9 Qian, J., Tanigawa, Y., Du, W., Aguirre, M., Chang, C., Tibshirani, R., Rivas, M. A. & Hastie, T.
340 (2020), ‘A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression
301 with application to the uk biobank’, PLOS Genetics 16(10), 1-30.

342 URL: https://doi.org/10.1871 /journal.pgen.1009141

a3 Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. (2011), ‘Regularization paths for cox’s propor-
244 tional hazards model via coordinate descent’, Journal of Statistical Software 39(5), 1-13.
345 URL: https://www.jstatsoft.org/v39/i05/

14

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.431030; this version posted February 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

us Sinnott-Armstrong, N., Tanigawa, Y., Amar, D., Mars, N. J., Aguirre, M., Venkataraman, G. R.,
37 Wainberg, M., Ollila, H. M., Pirruccello, J. P., Qian, J., Shcherbina, A., FinnGen, Rodriguez, F.,
38 Assimes, T. L., Agarwala, V., Tibshirani, R., Hastie, T., Ripatti, S., Pritchard, J. K., Daly, M. J.
349 & Rivas, M. A. (2021), ‘Genetics of 38 blood and urine biomarkers in the uk biobank’, Nature
350 Genetics (in press) .

351 URL: hitps://www.biorziv.org/content/early/2019/06/05/660506

2 Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P.,
353 Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen,
354 T., Peakman, T. & Collins, R. (2015), ‘Uk biobank: An open access resource for identifying the
355 causes of a wide range of complex diseases of middle and old age’, PLOS Medicine 12(3), 1-10.
356 URL: https://doi.org/10.1371 /journal.pmed. 1001779

s Szustakowski, J. D., Balasubramanian, S., Sasson, A., Khalid, S., Bronson, P. G., Kvikstad, E.,
358 Wong, E., Liu, D., Davis, J. W., Haefliger, C., Loomis, A. K., Mikkilineni, R., Noh, H. J.,
350 Wadhawan, S., Bai, X., Hawes, A., Krasheninina, O., Ulloa, R., Lopez, A., Smith, E. N., Waring,
360 J., Whelan, C. D., Tsai, E. A., Overton, J., Salerno, W., Jacob, H., Szalma, S., Runz, H.,
361 Hinkle, G., Nioi, P., Petrovski, S., Miller, M. R., Baras, A., Mitnaul, L. & Reid, J. G. a. (2020),
362 ‘Advancing human genetics research and drug discovery through exome sequencing of the uk
363 biobank’, medRxiv .

364 URL: https://www.medrziv.org/content/early/2020/11/04,/2020.11.02.20222232

w5 Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, Journal of the Royal Sta-
366 tistical Society. Series B (Methodological) 58(1), 267—288.
367 URL: http://www.jstor.org/stable/2346178

ws Venkataraman, G. R., Olivieri, J. E., DeBoever, C., Tanigawa, Y., Justesen, J. M., Dilthey, A. &
369 Rivas, M. A. (2020), ‘Pervasive additive and non-additive effects within the hla region contribute
370 to disease risk in the uk biobank’, bioRziv .

sm URL: https://www.biorziv.org/content/early/2020/06/12/2020.05.28.119669

sz Yuan, M. & Lin, Y. (2006), ‘Model selection and estimation in regression with grouped variables’,
3 Journal of the Royal Statistical Society Series B 68, 49-67.

s Zou, H. & Hastie, T. (2005), ‘Regularization and variable selection via the elastic net’, Journal of
375 the Royal Statistical Society. Series B (Statistical Methodology) 67(2), 301-320.
376 URL: http://www.jstor.org/stable/3647580

15

https://doi.org/10.1101/2021.02.14.431030
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Optimization Algorithm
	Sparse Genotype Matrix Representation

	Benchmarks
	Performance on Dense Matrix-Vector Multiplications
	Performance on Solving Large-scale Lasso Problems
	Performance of the Sparse Format

	Applications to UK Biobank Exome Sequencing Data
	Discussions
	Acknowledgments

