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Abstract

Salmonella spp. express Salmonella pathogenicity island 1 (SPI-1) genes to mediate the initial
phase of interaction with host cells. Prior studies indicate short-chain fatty acids, microbial
metabolites at high concentrations in the gastrointestinal tract, limit SPI-1 gene expression. A
number of reports show only a subset of Salmonella cells in a population express these genes,
suggesting short-chain fatty acids could decrease SPI-1 population-level expression by acting on
per-cell expression and/or the proportion of expressing cells. Here, we combine single-cell,
theoretical, and molecular approaches to address the effect of short-chain fatty acids on SPI-1
expression. Our results show short-chain fatty acids do not repress SPI-1 expression by
individual cells. Rather, these compounds act to selectively slow the growth of SPI-1 expressing
cells, ultimately decreasing their frequency in the population. Further experiments indicate slowed
growth arises from short-chain fatty acid-mediated depletion of the proton motive force. By
influencing the SPI-1 cell-type proportions, our findings imply gut microbial metabolites act on
cooperation between the two cell-types and ultimately influence Salmonella’s capacity to
establish within a host.

Significance Statement

Emergence of distinct cell-types in populations of genetically identical bacteria is common.
Furthermore, it is becoming increasingly clear that cooperation between cell-types can be
beneficial. This is the case during Salmonella infection, in which cooperation between
inflammation-inducing virulent and fast-growing avirulent cell-types occurs during infection to aid
in colonization of the host gut. Here, we show gut microbiota-derived metabolites slow growth by
the virulent cell-type. Our study implies microbial metabolites shape cooperative interactions
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between the virulent and avirulent cell types, a finding that can help explain the wide array of
clinical manifestations of Salmonella infection.

Main Text
Introduction

The mammalian gastrointestinal tract (Gl) is chemically defined by resident bacteria metabolizing
the host’s diet. Among the most abundant microbial metabolites are the short chain fatty acids
(SCFAs) acetate, butyrate, and propionate. Each are found at up to 100 millimolar concentrations
in the human Gl, with levels lowest in the ileum, increasing to high levels in the proximal colon,
and tapering off in the distal colon (1). They also vary as a function of microbiota members and
fluctuate over time, correlating with the timing and composition of meals (2—4). The chemical
environment an enteric microbe finds itself in, therefore, varies by location in the gut, from
person-to-person, and across time.

This holds true as well during the initial phases of infection by the enteric pathogen Salmonella
enterica. Salmonella expresses virulence genes to inflame and subsequently colonize the host Gl
(reviewed in (5)) . Inflammation is initially caused by invading into gut epithelial tissues using a
Type Il Secretion System encoded on Salmonella pathogenicity island 1 (SPI-1, (6, reviewed in
7)). This secretion system pumps effector proteins directly into host cells, leading to bacterial
uptake and subsequent inflammation. Inflammation increases nutrient availability and killing of
competitor resident microbiota, opening a niche for Salmonella establishment in the gut (8—12).

Recent evidence shows there is cell-to-cell variation in SPI-1 expression by Salmonella cells.
Each individual in the population is found in a discrete expressing (SPI-1+) or non-expressing
(SPI-1-) state (13, 14). The emergence of these two cell-types is beneficial as they cooperate with
each other to facilitate colonization of the host. SPI-1+ cells invade host tissues and induce
inflammation while SPI-1- cells replicate quickly in the intestinal lumen to exploit the niche cleared
by the SPI-1+ cells (15-17). It is currently unclear whether these cooperative interactions are
influenced by environmental signals; of particular interest are the dynamic conditions of the Gl,
where there is high variation in the frequency of SPI-1+ cells (18).

Several reports have shown microbiota-derived metabolites impact Salmonella infectivity.
Importantly, SCFAs at physiological levels decrease SPI-1 expression by populations of
Salmonella cells and limit their invasion into host cells (19, 20). The authors concluded from these
studies that SCFAs repress SPI-1 expression and result in decreased pathogenicity. Consistent
with this idea, the SCFAs butyrate and propionate impact Salmonella pathogenicity in vivo (21,
22). However, because SPI-1 expression varies from cell-to-cell within a population prompts
revisiting the effect of SCFAs on SPI-1 expression from a single-cell perspective.
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The previously observed SCFA-mediated reduction in population-level SPI-1 expression could
arise from a number of mechanisms scaling from behaviors by individual cells. Determining how
SCFAs impact single-cell behaviors will inform on their mechanism of action and ultimately how
the gut environment influences Salmonella pathogenicity.

Results + Discussion

SCFAs repress population-level SPI-1 expression through decreasing the proportion of
SPI-1+ cells

Reduced population-level SPI-1 expression could result from a combination of mechanisms:
either by fewer SPI-1+ cells in the population or by decreased SPI-1 expression per-cell. To
address how SCFAs impact SPI-1 expression by individual cells during growth, we first quantified
population-level growth and SPI-1 expression using SPI-1 transcriptional reporter cells (PprgH-
gfp) grown in a range of SCFA concentrations (Figs 1A,B, Table S1). Consistent with previous
reports (19, 20), increasing SCFA concentration correlated with decreased population-level SPI-1
expression (Fig 1C, one-way anova, p < 0.0001). Increased SCFA concentrations also increased
population-level lag time and maximal growth rate (Fig S1, one-way anovas, p < 0.0001, p <
0.005, respectively).

Using intermediate (75 mM) or high (150 mM) levels of SCFAs shown to reduce SPI-1
expression, we next quantified SPI-1 expression on a per-cell basis. Reporter cells were cultured
with the 0, 75, or 150 mM SCFAs and examined by flow cytometry at a range of timepoints. The
mean fluorescence intensity of individual SPI-1+ cells was unaffected by SCFA treatment (Fig
1D, two-way anova: SPI-1+ vs SPI-1-, p < 0.001; SCFA treatment, p > 0.25). Rather, SCFA
treatment resulted in a dose-dependent decrease in the proportion of SPI-1+ cells (Fig 1E, two-
way anova, p < 0.0001). Untreated populations of cells consisted of roughly 40% SPI-1+ cells by
mid-exponential phase through stationary phase. Populations grown with moderate or high SCFA
concentrations consisted of 25% and 10% SPI-1+ cells at these timepoints, respectively. These
observations demonstrate SCFAs do not decrease SPI-1 expression by individual cells, rather
they act on the frequency of SPI-1+ cells in the population.

The SCFA-mediated decrease in SPI-1+ cells occurs through limitations on SPI-1+ cell
growth

How can SCFAs decrease the frequency of SPI-1+ cells in the population? We reasoned SPI-1+
population frequency is set by four parameters: the growth rates of SPI-1- and SPI-1+ cells and
the rates of switching between the two cell-types (Fig 2A). A minimal mathematical model
(expanded up in Supporting Materials) established decreased SPI-1+ frequency can arise
through multiple, non-mutually exclusive scenarios: increasing the SPI-1+ to SPI-1- switching
rate, decreasing the SPI-1- to SPI-1+ switching rate, increasing the SPI-1- growth rate, or
decreasing the SPI-1+ growth rate (Figs 2B,C,D). Parameter space exploration shows the
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interaction of these four parameters (Figs 2C, D). In general, smaller changes in growth rates led
to large shifts in the cell-type proportions, whereas larger changes in switching rates were
necessary to shift cell-type proportions.

Knowing how SCFAs change these parameters inform on their mechanism of action. Changes in
cell-type growth rates imply SCFAs act on cellular metabolism. Meanwhile, SCFA action on cell-
type switching rates would suggest they act on SPI-1 regulation by individual cells. We measured
impact of SCFAs on these four single-cell parameters directly using quantitative time-lapse
microscopy. We employed a “feeding culture” microfluidic approach to recapitulate our
population-level experiments (23). SPI-1 reporter cells under observation in a microfluidic chip
were fed by an actively growing Salmonella culture with or without SCFAs. In this manner,
reporter cells under observation are experiencing the dynamic environment of a growing culture,
where nutrients are depleted and compounds are excreted. We observed individual reporter cells
over 12 h of culture (Fig 3A, Supp video 1). By analyzing the images, we quantified single-cell
growth rates and cell-type switches for each cell-type across growth phases.

Single-cell growth rates of untreated cells changed over time. Growth rates increased as they
exited lag phase and entered exponential growth and decreased as they entered late exponential
phase (Fig 3B, two-way anova, p < 0.015 for all timepoints). All cells continued growth into
stationary phase (Fig S2). At all timepoints, SPI-1- cells grew approximately 25% faster than SPI-
1+ cells, in line with previous reports (Fig 3B,C, two-way anova , p < 0.001, (24)).

Cell-type switching rates of untreated cells also changed by growth phase (Fig 3D,E, anova, p <
0.001). Consistent with few SPI-1+ cells during pre-exponential phase growth (Fig 1E), SPI-1+ to
SPI-1- switches were frequent during lag phase. Upon reaching early and late exponential phase,
the rate of SPI-1- to SPI-1+ switches increased and SPI-1+ to SPI-1- switches decreased.

Salmonella cells grown in the presence of SCFAs behaved differently. Individual cells grown in
the presence of SCFAs grew more slowly during lag phase, in line with our population-level
observations (Fig 1A,B, S1). During the later phases of growth, SCFA treatment slowed single-
cell growth rates by both cell-types during each growth phase, however to different degrees (Figs
3B,C). While SCFAs resulted in SPI-1- single cell growth rates approximately 25% lower than
untreated cells, SCFAs slowed the growth of SPI-1+ cells by roughly 50% (Fig 3B). During each
phase of growth, SCFA treated SPI-1+ cells grew roughly 50% slower than SPI-1- cells (Fig 3C).

Given that SCFAs were expected to repress SPI-1 expression, it was surprising to see that this
was not the case (Fig 3D,E, Fig S2, Supplemental movie | ). Rather, SPI-1+ cells frequently
maintained expression for many generations, and switching off events were only observed during
lag phase (Fig 3D,E). SPI-1- cells seldom switched to SPI-I+ in the presence of SCFAs, although
these events were observed more frequently compared to SPI-1+ to SPI-1- switching during

4


https://doi.org/10.1101/2021.02.14.430798
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.430798; this version posted February 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

exponential growth. Although SCFAs reduced the number of cell-type switching events overall,
the difference was not statistically significant (Fig 3D,E, anova, p > 0.5).

All of the measured changes in parameters can help to explain how SCFAs lower the frequency
of SPI-1+ cells. To understand the interplay of these parameters, we used stochastic simulations
to predict the proportion of SPI-1+ cells in a population growing under experimentally measured
single-cell growth and switching values. Simulations using parameters extracted from SCFA
untreated and treated cells yielded a final SPI-1+ frequency of 18% and 6%, respectively (Fig
3F). Both are roughly 2-fold lower than what is observed experimentally. This underestimation by
the simulations suggests additional parameters are necessary to fully simulate SPI-1
subpopulation dynamics (expanded upon in Supplemental Materials). Nonetheless, these simple
simulations captured the SCFA-mediated reduction SPI-1+ frequency in the population observed
during our experiments.

These simulations can also inform on the relative influence that experimentally measured
parameter shifts have on the proportion of SPI-1+ cells in a population. Populations of cells
simulated to grow at untreated rates and cell-type switching at SCFA rates yielded a final SPI-1+
proportion similar to untreated cells (Fig 3F, anova, p > 0.02). Similarly, populations simulated to
grow at SCFA-treated rates and switch with untreated rates more resembled SCFA-treated SPI-
1+ proportions. These simulations indicate growth rate changes during SCFA treatment is a
dominant driver of decreased SPI-1+ population frequency.

These results demonstrate SCFAs decrease SPI-1 expression at the population-level by acting
on single-cell growth rates. We conclude SPI-1 expression is not inhibited by SCFAs as cells
maintain SPI-1 expression in their presence for at least 12 h and over many generations. Taken
together, our results indicate SCFAs decrease the proportion of SPI-1+ cells predominately
through a selectively stronger reduction in growth by SPI-1+ cells.

SPI-1+ cells maintain a higher PMF that is susceptible to perturbation by SCFAs

SCFAs can impact Salmonella physiology in multiple ways. Salmonella can use all three SCFAs
present in our experiments as a carbon source, thus SCFAs could facilitate growth. More
fundamentally, upon entry into the bacterial cytosol, SCFAs dissociate into the anion and a proton
due to their relatively high pKa. An accumulation of the SCFA anion leads to an increase in turgor
pressure while the accumulation of protons leads to a decrease in the intracellular pH (reviewed
in (25)). A decrease in the intracellular pH ultimately lowers the proton motive force (PMF),
leading to a slower rate of ATP production and by implication limited growth.

Because SCFAs slow single-cell growth rates, we examined how a global decrease in PMF
impacts SPI-1+ population frequency. We added CCCP, a chemical decoupler of the proton
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gradient, at concentrations that did not inhibit population-level growth (Fig S4, anova, p > 0.2).
Similar to SCFA treatment, the addition of CCCP decreased population-level SPI-1 expression
(Fig 4A, anova, p < 0.001) and the proportion of SPI-1+ cells (Fig 4B, anova followed by Tukey’s
Honest Test, no SCFAs vs CCCP, p < 0.0001; + SCFAs vs CCCP, p > 0.5). Thus, PMF
dissipation at levels that do not limit population-level growth are sufficient to decrease the SPI-1+
subpopulation, consistent with the idea that SCFAs reduce the proportion of SPI-1+ cells through
PMF dissipation.

A remaining question is how SCFAs differentially affect the growth rates of SPI-1+ and SPI-1-
cells. By combining single-cell analyses with a fluorescent PMF indicator, we observed SPI-1+
cells maintain a higher membrane potential compared to SPI-1- cells (Fig 4C, three-way ANOVA,
p < 0.05). SCFA and CCCP treatment lead to an overall decrease in membrane potential (Figs
5A, three-way anova, p < 0.005). In particular, SCFA treatment led to a statistically significant
decrease in the SPI-1+ cell PMF (three-way anova followed by Tukey’s Honest Significance Test,
p < 0.05), whereas the SCFA-mediated decrease in in the SPI-1- cell PMF was not statistically
significant (p > 0.2; no interaction detected).

Collectively, these observations are in line with the idea that SCFAs preferentially slow SPI-1+
cell growth by decreasing their PMF to a higher degree. We suspect SPI-1+ cells are more
sensitive to SCFA-mediated PMF reduction due to their inherently higher PMF.

Conclusions

Our study demonstrates SCFAs decrease population-level SPI-1 expression by differentially
impacting SPI-1 cell-type behaviors. Although not the major driver, we find SCFAs influence the
molecular regulation of SPI-1 by reducing cell-type switching events. However, because SCFA-
treated SPI-1+ cells maintain expression across many generations and SPI-1- cells initiate SPI-1
expression, we conclude SCFAs do not act as a canonical transcriptional co-repressor of SPI-1
transcription. Our data collectively indicate SCFAs shape population-level SPI-1 expression
predominately by acting on the growth rate of SPI-1+ cells.

These findings also have implications for how Salmonella causes disease. That SCFAs act on
cell-type proportions indicates they shape the cooperative interactions between SPI-1- and SPI-
1+ subpopulations during infection (15-17, 26). Because SCFA levels fluctuate as a function of
nutrient intake, microbiota metabolism, and location in the gut, these dynamic conditions likely
influence on Salmonella cell-type interactions over time. High SCFA levels would lead to fewer
inflammation-inducing SPI-1+ cells and thus limit the expansion of SPI-1- cells, while low SCFA
levels would enhance inflammation induction by increasing the number of SPI-1+ cells and
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therefore aid in Salmonella colonization of the gut. SCFA levels and their dynamics, therefore,
likely help to balance infection outcomes between colonization resistance, asymptomatic
carriage, and symptomatic disease.

Lastly, there is strong support for the idea that SPI-1+ and SPI-1- cell-types are distinct in ways
other than SPI-1 expression. Previous reports show these two cell-types have different growth
rates, susceptibility to antibiotics, and cell sizes (17, 27). We add to this body of evidence of
Salmonella differentiation by showing that SPI-1+ and SPI-1- cells differ in response to an
environmental stimulus (SCFAs) and PMF. We speculate these reflect further specialization by
each cell type to best fulfill their function. For example, the higher PMF of SPI-1+ cells could allow
for more efficient effector secretion during interaction with host cells, whereas the maintenance of
a high PMF by SPI-1- cells would be unconducive for fast growth (28). Identifying distinguishing
characteristics of the two cell-types will shed light on the specializations each make to fulfill their
function, including how SPI-1+ cells prepare for their intracellular future.

As single-cell analyses have become more common, the importance of bacterial cell-types during
pathogenesis is becoming clear (15-17, 29-34). Combining these efforts with developing detailed
molecular maps of each cell-type will help guide the development of therapeutics which inhibit a
single cell-type of interest (e.g. virulent cells) rather than the whole population. Cell-type targeted
therapeutics could impede disease development while not selecting against a given species as
only a subset of the cells would be susceptible (35, 36), a valuable strategy in the fight against
antibiotic resistance.

Materials and Methods

Bacterial cultivation Throughout the study we used SB300 (a spontaneous Streptomycin
resistant SL1344 derivative, wild-type (wt)) and its SPI-1 fluorescent transcriptional reporter,
PprgH-gfp (13). Frozen strains were streaked onto LB Miller agar for single colonies. After 24 h, a
single colony was transferred to 5 mL LB Miller in a 15 mL round bottom tube and incubated at 37
°C with shaking at 200 rpm. A 16-18 h liquid culture prepared in this way was the starting point for
all experiments. All experiments were performed in LB Miller and, when applicable, supplemented
with sodium acetate, sodium butyrate, and sodium propionate at appropriate concentrations
(table S1).

Quantification of population-level growth and SPI-1 expression We prepared a 96-well plate
containing 2 pL of an overnight in 200 pL of media containing or not SCFAs at indicated
concentrations. OD600 and GFP fluorescence of cultures were measured every 3 minutes using
a heated, automated microplate reader (Biotek Synergy). Three experiments were performed with
each condition in triplicate. Blank (uninoculated) and autofluorescence (SB300) background

7


https://doi.org/10.1101/2021.02.14.430798
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.430798; this version posted February 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

control wells were run in each experiment. Resultant values were background subtracted by
appropriate time-matched, control-well values. Maximum growth rate, lag time, yield, and max
GFP fluorescence levels were determined by fitting a logistic equation to each time series using
the GrowthCurver package in R (37).

Single-cell SPI-1 expression quantification using flow cytometry Overnight cultures of wt and
SPI-1 reporter cells were diluted 1:100 into LB Miller + SCFAs and incubated at 37°C with
shaking. At each timepoint, 10 mL of the culture was centrifuged (tabletop centrifuge,3000 xg, 15
mins). Supernates were removed and pellets were resuspended in 1 mL PBS. Cells were
centrifuged (microcentrifuge, 14000 xg, 5 mins), pellets resuspended in 1 mL 4%
paraformaldehyde in PBS, and incubated at room temperature for 10 min. Fixed cells were
pelleted, washed in 1 mL PBS, resuspended in 1 mL PBS, and stored at 4°C. Fixed cell samples
were analyzed by flow cytometry within 1 week of collection. Forward scatter, side scatter, and
GFP fluorescence of 50,000 events from each sample were measured using a Beckman Coulter
Gallios flow cytometer. We performed three independent experiments.

Average per-cell gene expression (mean fluorescence intensity, MFI) and subpopulation
frequencies were calculated as follows. Distributions of GFP fluorescence values per sample
were extracted from .fcs files using FlowCore (38). A test for bimodality was performed on each
log10 transformed GFP fluorescence distribution (39). If distributions tested negativity for
bimodality (e.g. all wt samples), a single normal distribution was fitted to the data. If distributions
tested positively for bimodality (almost all reporter strain samples), the mixtools package was
used to fit two normal distributions to the bimodal distribution (40). The mean of each distribution
is the MFI of the subpopulation and the proportion of events assigned to each distribution using
mixtools was used as the subpopulation frequency. The MFI of wt samples was used as a
benchmark to determine which MFI represented the SPI-1- subpopulation. There were no
significant differences between wt and SPI-1- reporter cell MFls.

Mathematical modeling and simulations The simple differential equation was solved using
Mathematica. Analytical solutions were run in MatLab. Gillespie simulations were run in RStudio.
For more information, please see Supporting Materials.

Feeding-culture microfluidics Microfluidic chips were fabricated using previously described
methods (23, 27). All images were acquired with an automated Olympus IX81 inverted
microscope using an oil-immersion 100x objective (Olympus), an ORCA-flash 4.0 v2 sCMOS
camera (Hamamatsu), X-Cite120 metal halide arc lab (Lumen Dynamics), and Chroma 49000
fluorescent filter sets (Chroma, N49002).

A 16 — 18 h stationary culture of PprgH-gfp reporter cells were loaded into the microfluidic device.
Cells were concentrated for loading into the chip by centrifuging 100 uL of the stationary phase
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culture, decanting excess media, and resuspending the cell pellet in the remaining culture media.
One microliter of 1% Tween-20 in PBS was added to facilitate loading cells into observation
channels. The concentrated cells were then pipetted into the microfluidic device and examined by
microscopy for sufficient loading. We then connected flasks of LB or LB + SCFAs (150 mM) to the
microfluidic chip to feed the cells with a flow rate of 0.5 mL per hour.

To recapitulate the population-level experiments above, we used a feeding culture approach.
After fresh media was flowed through the device for approximately 0.5-1 h (time used to set-up
the automated, time-lapse program for image acquisition), we inoculated the flasks feeding the
microfluidic chip with stationary phase reporter cells at a ratio of 1:100. We then started image
acquisition (t=0). Phase contrast and GFP images were acquired for each position at 3-minute
intervals over 12 hours.

Calculation of growth rates and cell-type switching probabilities

Time-lapse microscopy images were segmented, tracked, and quantified using SuperSegger
(41). Images were first deconvolved using a point-spread function (42). Segmentation of images
(identification of individual cells) was performed using optimized segmentation constants to detect
both SPI-1+ and SPI-1- cell types, which differ in size and curvature. All segmentation and
tracking results were manually curated for erroneous boundary-calling and tracking. For all
lineages examined, we only tracked and quantified the “mother cell,” the cell at the closed end of
the observation channel.

Cell-type switches were called by examining GFP traces of each mother cell over time. Mean
GFP values per cell over the duration of the experiment were smoothed by fitting a LOESS curve

(a = 0.5) to reduce noise. The first derivative of the smoothed GFP trace was then examined to

determine changes in SPI-1 expression: values of approximately zero (10, MFI change of 10
GFP AU over 30 minutes) indicates equal GFP levels over time; values > 10 indicate increases in
MFI levels over time; and values < -10 indicate decreases in MFI levels over time. The time in
which the derivative surpassed 10 or dropped below -10 was considered the time of cell-type
switch.

The time and direction of cell-type switch was then mapped to individual cells to call which cell-
type each cell was in at a given time. Manual inspection indicated good agreement between
individual cell MFI levels and cell-type mapping using the above calling procedure. Growth rates
of individual cells by cell-type assignment were then plotted and examined statistically using two-
way analysis of variance.

CCCP treatment
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Reporter cells in a range of concentrations of CCCP were analyzed by 96-well plate assays as
described above. The flow cytometric analyses were performed and analyzed as described above
by adding 100 uM CCCP to the culture medium.

Single-cell PMF measurements

Reporter cells were grown in LB, LB + 150 mM SCFAs, LB + 150 mM NacCl (ionic control for
SCFAs), LB + 100 uM CCCP, and LB + DMSO (CCCP vehicle control) and sampled at 0, 3, 5,
and 7 hours post-inoculation. At the time of sampling, cells were centrifuged to pellet (table-top
centrifuge, 3000 xg, 15 min) and resuspended in PBS containing MitoView 633 (Biotium).
MitoView 633 accumulates in the inner membrane as a function of membrane potential. Higher
fluorescence signal indicates higher membrane potential, i.e. a higher charge differential across
the membrane. Sampled reporter cells were stained with MitoView-633 for 20 minutes on ice and
then analyzed using flow cytometry to assign SPI-1 cell-type and MFI of MitoView accumulation.
Wt Salmonella cells (no reporter) were used as a negative control to confirm no bleed-through of
GFP or MitoView into the other fluorescence channels. All MitoView values were background
subtracted with the time-matched, unstained, reporter strain control. At all timepoints, the addition
of 150 mM NaCl and DMSO lead to an approximate 20% increase in MitoView accumulation; an
expected observation as the addition of ions will impact the charge differential across the
membrane. Thus, a 20% correction was applied to SCFA-treated and CCCP-treated cells to
account for the impact of 150 mM extra ions or DMSO in the environment.

Acknowledgments

The authors would like to express gratitude to all members of the Microbial Systems Ecology
group for the helpful discussions during all phases of this work.

References

1. J. H. Cummings, E. W. Pomare, H. W. J. Branch, E. Naylor, G. T. Macfarlane, Short chain
fatty acids in human large intestine, portal, hepatic and venous blood. 28, 122—1 (1987).

2. L. M. Filkins, et al., Prevalence of Streptococci and Increased Polymicrobial Diversity
Associated with Cystic Fibrosis Patient Stability. J. Bacteriol. 194, 4709—-4717 (2012).

3. D. Rios-Covian, et al., Intestinal Short Chain Fatty Acids and their Link with Diet and
Human Health. Front. Microbiol. 7, 185 (2016).

4, E. G. Zoetendal, et al., The human small intestinal microbiota is driven by rapid uptake
and conversion of simple carbohydrates. ISME J. 6, 1415-1426 (2012).

5. D. L. LaRock, A. Chaudhary, S. I. Miller, Salmonellae interactions with host processes.
Nat. Rev. Microbiol. 13, 191-205 (2015).

6. J. E. Galan, R. Curtiss, Cloning and molecular characterization of genes whose products

10


https://doi.org/10.1101/2021.02.14.430798
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.430798; this version posted February 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl. Acad. Sci. U. S.
A. 86, 6383—7 (1989).

7. S. Y. Wotzka, B. D. Nguyen, W.-D. Hardt, Salmonella Typhimurium Diarrhea Reveals
Basic Principles of Enteropathogen Infection and Disease-Promoted DNA Exchange. Cell
Host Microbe 21, 443—-454 (2017).

8. P. A. McLaughlin, et al., Inflammatory monocytes provide a niche for Salmonella
expansion in the lumen of the inflamed intestine. PLOS Pathog. 15, e1007847 (2019).

9. B. Stecher, et al., Salmonella enterica Serovar Typhimurium Exploits Inflammation to
Compete with the Intestinal Microbiota. PLoS Biol. 5, e244 (2007).

10. S. E. Winter, et al., Gut inflammation provides a respiratory electron acceptor for
Salmonella. Nature 467, 4269 (2010).

11. P. Thiennimitr, et al., Intestinal inflammation allows Salmonella to use ethanolamine to
compete with the microbiota. Proc. Natl. Acad. Sci. 108, 17480-17485 (2011).

12. L. Maier, et al., Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the
gut ecosystem. Cell Host Microbe 14, 641-51 (2013).

13. I. Hautefort, M. J. Proencga, J. C. D. Hinton, Single-copy green fluorescent protein gene
fusions allow accurate measurement of Salmonella gene expression in vitro and during
infection of mammalian cells. Appl. Environ. Microbiol. 69, 7480-91 (2003).

14. D. Bumann, Examination of Salmonella gene expression in an infected mammalian host
using the green fluorescent protein and two-colour flow cytometry. Mol. Microbiol. 43,
12691283 (2002).

15. M. Diard, et al., Stabilization of cooperative virulence by the expression of an avirulent
phenotype. Nature 494, 353-356 (2013).

16. M. Ackermann, et al., Self-destructive cooperation mediated by phenotypic noise. Nature
454, 987-990 (2008).

17. A. Sturm, et al., The Cost of Virulence: Retarded Growth of Salmonella Typhimurium Cells
Expressing Type Il Secretion System 1. PLoS Pathog. 7, 1002143 (2011).

18. S. Y. Wotzka, et al., Escherichia coli limits Salmonella Typhimurium infections after diet
shifts and fat-mediated microbiota perturbation in mice https:/doi.org/10.1038/s41564-019-
0568-5 (February 10, 2021).

19. S. D. Lawhon, R. Maurer, M. Suyemoto, C. Altier, Intestinal short-chain fatty acids alter
Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol.
Microbiol. 46, 1451-1464 (2002).

20. I. Gantois, et al., Butyrate specifically down-regulates salmonella pathogenicity island 1
gene expression. Appl. Environ. Microbiol. 72, 946-9 (2006).

21. F. Rivera-Chavez, et al., Depletion of Butyrate-Producing Clostridia from the Gut
Microbiota Drives an Aerobic Luminal Expansion of Salmonella. Cell Host Microbe 19,
443-454 (2016).

22. A. Jacobson, et al., A Gut Commensal-Produced Metabolite Mediates Colonization
Resistance to Salmonella Infection. Cell Host Microbe 24, 296-307.e7 (2018).

11


https://doi.org/10.1101/2021.02.14.430798
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.430798; this version posted February 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

23. S. Moreno-Gamez, et al., Wide lag time distributions break a trade-off between
reproduction and survival in bacteria. Proc. Natl. Acad. Sci. U. S. A. 117, 18729-18736
(2020).

24. A. Sturm, et al., The Cost of Virulence: Retarded Growth of Salmonella Typhimurium Cells
Expressing Type Il Secretion System 1. PLoS Pathog. 7, 1002143 (2011).

25. A. J. Wolfe, The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12-50 (2005).

26. M. A. Sanchez-Romero, J. Casadesus, Contribution of SPI-1 bistability to Salmonella
enterica cooperative virulence: insights from single cell analysis. Sci. Rep. 8, 14875
(2018).

27. M. Arnoldini, et al., Bistable Expression of Virulence Genes in Salmonella Leads to the
Formation of an Antibiotic-Tolerant Subpopulation. PLoS Biol. 12, e1001928 (2014).

28. M. Erhardt, M. E. Mertens, F. D. Fabiani, K. T. Hughes, ATPase-Independent Type-Il|
Protein Secretion in Salmonella enterica. PLoS Genet. 10, e1004800 (2014).

29. K. M. Davis, S. Mohammadi, R. R. Isberg, Community behavior and spatial regulation
within a bacterial microcolony in deep tissue sites serves to protect against host attack.
Cell Host Microbe 17, 21-31 (2015).

30. K. M. Davis, R. R. Isberg, Defining heterogeneity within bacterial populations via single
cell approaches. BioEssays 38, 782—790 (2016).

31. K. M. Davis, For the Greater (Bacterial) Good: Heterogeneous Expression of Energetically
Costly Virulence Factors. Infect. Immun. 88 (2020).

32. E. H. Rego, R. E. Audette, E. J. Rubin, Deletion of a mycobacterial divisome factor
collapses single-cell phenotypic heterogeneity. Nature 546, 153-157 (2017).

33. M. Diard, et al., Antibiotic Treatment Selects for Cooperative Virulence of Salmonella
Typhimurium. Curr. Biol. 24, 2000-2005 (2014).

34. I. Ronin, et al., A long-term epigenetic memory switch controls bacterial virulence
bimodality. Elife 6, 7808—7818 (2017).

35. D. A. Rasko, V. Sperandio, Anti-virulence strategies to combat bacteria-mediated disease.
Nat. Rev. Drug Discov. 9, 117-128 (2010).

36. G. Bell, C. MacLean, The Search for “Evolution-Proof” Antibiotics. Trends Microbiol. 26,
471-483 (2018).

37. K. Sprouffske, A. Wagner, Growthcurver: an R package for obtaining interpretable metrics
from microbial growth curves. BMC Bioinformatics 17, 172 (2016).

38. F. Hahne, et al., flowCore: a Bioconductor package for high throughput flow cytometry.
BMC Bioinformatics 10, 106 (2009).

39. Martin Maechler, “Package ‘diptest’ Title Hartigan’s Dip Test Statistic for Unimodality-
Corrected” (2016) (February 5, 2021).

40. T. Benaglia, D. Chauveau, D. R. Hunter, D. Young, mixtools : An R Package for
Analyzing Finite Mixture Models. J. Stat. Softw. 32, 1-29 (2009).

12


https://doi.org/10.1101/2021.02.14.430798
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.430798; this version posted February 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

41. S. Stylianidou, C. Brennan, S. B. Nissen, N. J. Kuwada, P. A. Wiggins, SuperSegger:
robust image segmentation, analysis and lineage tracking of bacterial cells. Mol. Microbiol.
102, 690-700 (2016).

42, S. van Viliet, et al., Spatially Correlated Gene Expression in Bacterial Groups: The Role of

Lineage History, Spatial Gradients, and Cell-Cell Interactions. Cell Syst. 6, 496-507.e6
(2018).

13


https://doi.org/10.1101/2021.02.14.430798
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.14.430798; this version posted February 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

50000 50000

]
H
g
g

(AU)
ion/ODgoo

8 30000
[SCFA] (mM)

ODgoo

0
75
E

g

20000

x
025 10000 10000
.~ o o
000 =

0 5 10 15 0 00
T
Time (h) Time () [SCFAs] (mM)

g
8
max prgH express

nce intensity (MFI)

uorescer

[SCFA] (mM)
0

Proportion SPI-1+

|
|
!

10 [
Time (h) Time (h)

Fig 1. SCFAs decrease population-level SPI-1 expression by decreasing the proportion of
SPI-1+ cells

A Mean + standard error of the mean (SEM) OD600 and B mean + SEM GFP fluorescence
intensity (i.e. SPI-1 expression) by SPI-1 reporter cells in no (0 mM, yellow), intermediate (75
mM, salmon), and high (150 mM, dark orange) SCFA concentrations measured every 3 min over
15 h in a plate reader assay C SPI-1 expression normalized to ODeoo as a function of SCFA
concentration. Average of triplicates from 3 independent experiments, one-way ANOVA,
expression vs SCFA concentration, p < 0.0001; Tukey’s Honest Significance Test, 0 mM vs 75
mM, p < 0.0001, 75 mM vs 150 mM, p < 0.001. The impact of SCFAs on single-cell D mean GFP
fluorescence intensity (MFI) + SEM by SPI-1 cell-type and E mean + SEM proportion of SPI-1+
cells as measured by flow cytometry. 50,000 cells quantified per timepoint and averaged 3
independent experiments; MFI by treatment over time, two-way ANOVA, MFI by SCFA treatment,

p > 0.2; SPI-1 cell type proportions by SCFA treatment over time, two-way ANOVA, proportion by
SCFA treatment, p < 0.0001.
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Fig 2: Mathematical modelling shows single-cell growth and cell-type switching rates
shape subpopulation frequencies

A Conceptual model underlying SPI-1 cell-type frequencies. The cell-type frequency is set by
these four parameters: u-, growth rate of SPI-1- cells; 8-, SPI-1- to SPI-1+ switching rate; u+,
growth rate of SPI-1+ cells; and 5+, SPI-1- to SPI-1+ switching rate. B The conceptual model
from panel A was transformed into mathematical equations to estimate how these parameters
impact cell-type frequency analytically (expanded upon in the Supplementary Materials).
Calculated SPI-1+ proportions assuming the indicated rates of growth and cell-type switching. C
How SPI-1 cell-type growth rates impact SPI-1+ proportion when §+ =0.05 h" and 8-=0.05h" D
How SPI-1 cell-type switching rates impact SPI-1+ proportion when p- =2 h''and p+ = 1 h™!
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Fig 3: SCFAs slow growth and inhibit phenotypic switching by Salmonella cells

A Experimental set-up for quantitative time-lapse microscopy using a feeding culture approach.
An actively growing culture of Salmonella cells is pumped through a microfluidic chip and into a
waste container using a peristaltic pump. Simultaneously, SPI-1 reporter Salmonella cells loaded
into the microfluidic chip are experiencing the same chemical environment as cells in the flask.
Cells in the chip are imaged every 3 minutes. Time-lapse images are then analyzed to extract
SPI-1- and SPI-1+ growth and switching rates. Data presented is from 4 independent
experiments; we designated the first 0.5 h of growth lag phase, the next 6 h early exponential,
and the last 5.5 h late exponential. B Mean growth rates (n = 2502 cells, box = quartiles, whiskers
= all observations) by cell-type, SCFA treatment, and growth phase. Three-way ANOVA followed
by Tukey’s Honest Significance Test, ** p < 0.001 C Ratio + SEM of SPI-1+ and SPI-1- cell
growth rates in the absence of presence of SCFAs. Two-way ANOVA followed by Tukey’'s Honest
Significance test, ** p < 0.001. D Observed cell-type switching events plotted by SCFA treatment
over time. Each dot indicates the time of an observed switching event switching event. E Mean +
SEM probability of cell-type switching during each growth phase by treatment. Two-way ANOVA
followed by Tukey’s Honest Significance test, ** p < 0.001 F Results from Gillespie simulations
using our experimentally measured parameters. Average of 100 individual simulations per
condition. One-way ANOVA, ** p < 0.001.
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Fig 4: SCFAs and CCCP similarly impact SPI-1+ cell-type proportion and PMF dissipation

A Mean + SEM maximal population-level SPI-1 expression by CCCP concentrations. Average of
3 independent experiments with triplicate wells; one-way ANOVA, p < 0.001. B Mean + SEM SPI-
1+ proportions over time in untreated, 150 mM SCFA, or 100 uM CCCP as determined by flow
cytometry. Average of 4 independent experiments, 50,000 cells per sample per timepoint; two-
way ANOVA followed by Tukey’s Honest Significance Test, ** p < 0.001. C Mean + SEM
membrane potential of SPI-1 cell-types by treatment as determined by MitoView 633 staining
combined with flow cytometry. Average of 4 independent experiments. Three-way ANOVAs
followed by Tukey’s Honest Significance Test, SPI-1- vs SPI-1+, p < 0.025; no SCFA vs + SCFA,
p < 0.005; no SCFA vs CCCP, p <0.001; no SCFA SPI-1+ vs + SCFA SPI-1+, p < 0.05; no SCFA
SPI-1- vs + SCFA SPLI-, p > 0.2; no SCFA SPI-1+ vs CCCP SPI-I+, p < 0.0005; no SCFA SPI-1-
vs CCCP SPI-1-, p < 0.05; SCFA SPI-1+ vs CCCP SPI-1+, p > 0.5 ; SCFA SPI-1- vs CCCP SPI-
1-,p>0.4.
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Fig S1: Impact of SCFAs on population-level growth
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Fig S1: Impact of SCFAs on population-level growth

A SCFA treatment correlates with higher maximal population-level growth, one-way ANOVA, p
<0.005 B SCFA treatment delays time to maximal growth rate, a proxy for lag-time, one-way
ANOVA, p <0.0001
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Fig S2: Single-cell growth and SPI-l expression over time
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Fig S2: Single-cell growth rates and SPI-1 expression over time

A Single-cell growth rate of every cell included in our analysis by time. SCFA treatment and SPI-1
cell-type indicated by color. Mean GFP intensity (SPI-1 expression) of lineages of cells over time
in B untreated and C SCFA-treated conditions. In panels B and C, flat lines at close to zero
indicate SPI-1- cells.
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Fig S3F

Fig S3: Impact of CCCP on population level growth
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Fig S3: Impact of CCCP on population-level growth

Mean + SEM population-level growth rate by CCCP treatment. Average of 3 independent
experiments with triplicate wells; one-way ANOVA, p < 0.001)
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Supplemental video 1: Population-level vs single-cell growth and SPI-1 expression by
SCFA treatment

Population-level growth (blue) and SPI-1 expression by reporter cells with or without 150 mM
SCFAs as quantified in our plate reader experiments (Fig 1). Single-cell growth and SPI-1
expression from our time-lapse microscopy experiments in microfluidic devices (Fig 3). Movies of
population-level and single-cells are synced in time.
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Table S1: SCFA concentrations used

Total SCFAs (mM) Sodium Acetate Sodium Butyrate Sodium Propionate
(mM) (mM) (mM)

0 0 0 0

2.5 1 1 0.5

11 5 5 1

22,5 10 10 2.5

45 25 15 5

75 50 18 7

110 75 25 10

150 100 25 25
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Supporting Materials

1 Mathematical model

Here, we present the details of the mathematical model to predict SPI-14+ and
SPI-1- cell-type frequencies as a function of growth and cell-type switching rates
shown in Figure 2 of the main text. This model differs from the model previ-
ously described by Sturm, et al, (2011) by including SPI-1+ to SPI-1- switching
events, as these are observed experimentally. In addition, we discuss cases for
specific choice of the parameter space.

1.1 Two growth rates and two switching rates model

SPI-1- and SPI-1+ cell number is denoted with X and Y, respectively. SPI-1-
cells grow with growth rate px and switch to SPI-14 cells with rate dx_,y =
Oy x. SPI-14 cells grow with growth rate py and switch to SPI-1- cells with rate
0y x = 0xy. This models exponential growth of the two cell-types assuming
no interactions other than cell-type switching.

The quantity of each cell-type follows this system of ordinary differential

equations:
L = px X (1) = Sy x X (1) + oxy Y (1) (1)
DO = yy Y (t) = Sxy Y (t) + Sy x X ().
The solution of the system of differential equations is:
eé(MXJr#Y*t;XY*(;YX*F)t
X(t) = o7 <X0 (y —px —dxy +d0yx +T) = 2Yodxy+
e (2Yodxy + Xo (—py + px +0xy — Sy x +T)) ) (2)
6%(#x+#y*5XY*5YX*F)t
Y(t) = o7 <Y0 (ux — py —dyx +dxy +T1) = 2Xodyx+
el't (2Xokyx + Yo (—ux + py —5xy+5yx+r)))a (3)

where Xy and Yy are the initial number of cells at time zero, and

r= \/(_,UY +px +0xy)? + 2y — px + xy )y x + 6
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The fraction of SPI-1+ cells in a population growing exponentially, for time
t > T > 0 reach a steady state at
Y — 1) oyx — I
(t—>oo):'uX Hy +0xy + Ovx .
Y +X 2(px — py)
The fraction of SPI-1+ cells in Eq. (4) is shown in Figure 2 of the main text as
a function of the growth rates (Fig. 2c) and switching rates (Fig. 2d).

(4)

1.2 The case of negligible switching from SPI-14+ to SPI-
1-: 5YX =0

For simplicity, we describe here the case in which the switching rate from SPI-

14 to SPI-1- is negligible ky x = 0, and the growth rate of the SPI-1- cells is

larger than SPI-1+ cells, ux > py. In this case, the solution of the simplify
version of Eq. (1) are:

X(t) = Xoeltx =0t (5)
_ Xodyxeltx =00t — emvt (Xodyx — Yo (ux — py — dyx)) (6)

px — py —dyx
The fraction of SPI-1+ cells in a population growing exponentially, under the
assumptions that pux > py + dy x reach a steady state at
Y Oy x

t—00) = —"—.
Y—l—X( ) Bx — Ky

Y (t)

(7)

1.3 The case of equivalent growth rates for SPI-14+ and
SPI-1-: p= px = py
The case of equivalent growth rates between the two cell-types has been use to

resolve the indeterminacy of the solution of Eq.(4) for ux = py = p. In this
case, the solution of the version of Eq. (1) are:

e(#*5XY*5YX)t 5 s .

X(t) = ovx T oxy <X05YX — Yobxy + 6xy el X0t (x4 Yo)) ., (8)
e(#*5XY*5yx)t 5 s .

Y(t) = ovx T oxy <Y05XY — Xodyx + Oy xex Tt (X, 4 Y0)> . (9)

The fraction of SPI-1+ cells in a population growing exponentially reach a

steady state at

dyx

(t — o0) = (10)

Y+ X dxy —Oyx
2 Growth Simulations

In this section, we outline the details of the growth simulations presented in
Figure 3E of the main text.
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2.1 Rationale

The analytical solution presented above models populations growing exponen-
tially, however cells in our experiments grow logistically, plateauing upon ap-
proaching the carrying capacity. To better describe our experimental system
where cells grow logistically and cell-type switches are stochastic, we moved to
stochastic simulations of cell-type frequencies using the parameters of growth,
cell-type switching, and carrying capacity.

2.2 Growth, switching, and carrying capacity simulations

We used Gillespie stochastic simulations to estimate cell-type proportions during
logistic growth. At each randomly determined time interval, one of four possible
events can occur:
Event A = a SPI-1- cell doubles
Impact on population : X + 1
Event B = a SPI-1+ cell doubles
Impact on population : Y + 1
Event C = a SPI-1- cell switches to SPI-1+
Impact on population : X —1 and Y +1
Event D = a SPI-1+ cell switches to SPI-1-
Impact on population : X + 1 and Y — 1

A random number from a uniform distribution between 0 and 1 was selected
at each iteration to determine the outcome of the event (X + 1, etc). For
example, if the random number was greater than P4 and less than Pg, the
outcome would be Y 4+ 1. The probabilities were as follows, where k is the
carrying capacity:

Pa=pux*Xx #

PBZNY*Y*#

PC = 6XY * X % #
PD = 6YX *Y * 71—(Xk+Y)

Time elapsed between events during our simulations was determined as fol-
lows:

7% « log, () (11)

Where R is the sum of probabilities and 7 is a randomly selected number
from a uniform distribution between 0 and 1.

2.3 Parameters used

For these simulations, we used the mean of experimentally measured parameters
for single-cell growth and cell-type switching rates during lag (1), early expo-
nential (2), and late exponential (3) growth phases. This was done to account
for the different cell-type switching rates during the different growth phases and
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to also recapitulate the delayed growth during lag phase not accounted for in
the base equation. Growth was simulated for 12 hours.

For all simulations, X, = 60, Y, = 40, and £ = 10000, approximating the
1:100 culture dilution we performed during the experiment. Lag phase values
were used for the first 30 minutes of the simulation; early exponential for the
next 6 h; and late exponential for the last 5.5 h.

2.3.1 No SCFAs

All values are provided in events per hour.

px1 = 0.842 dxy1 = 0.030
Hx2 = 1.190 6XY2 = 0.009
HUx3 = 1.013 6xy3 = 0.003
Hy1 = 0.600 5yx1 = 0.267
ty2 = 0.876 Oy x2 = 0.002
Hys3 = 0.712 5yx3 = 0.002

2.3.2 + SCFAs

All values are provided in events per hour.

tx1 = 0.520 Oxy1 =0
Hx2 = 0.901 (SXYQ = 0.002
Hx3 = 0.793 (Sxyg = 0.003
wy1 = 0.226 oy x1 = 0.267
Hyo2 = 0.467 5YX2 =0
ptys = 0.346 oyx3 =20

2.4 Potential reasons for underestimation of SPI-1+ cell
proportion during simulations

While our simulations using parameters quantified by time-lapse microscopy
captured the SCFA-mediated decrease in SPI-1+ proportion, they underesti-
mated the experimentally measured SPI-1+ proportion by roughly 2-fold in
both the absence and presence of SCFAs. Here, we speculate on why this may
be the case.

2.4.1 Assumptions in the simulation

For each switching event, we simulate a single cell turning on at a time (X — 1,
Y +1). By observing real switching events, we see that 2-4 sister cells (mean
= 3.111 cells/switch event, see Supplementary video) simultaneously turn from
SPI-1- to SPI-1+ (X — 3.111, Y + 3.111). When we attempt to account for
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this in our simulations, we observe a 3% and 0.8% increase in the SPI-1+
cell-type frequency using untreated and SCFA parameters, respectively. This
coordinated switching by sister cells does therefore impact the final proportion,
but does not account for all of the underestimation.

The only parameters we use here are growth rates of SPI-1- and SPI-1+ cells
and cell-type switching rates. It’s likely additional parameters are necessary to
better predict cell-type frequencies. For example, we model interactions between
the cell types only in the carrying capacity and switching rates; other types of
interactions, including chemical communication, are neglected.

2.4.2 Potential biological sources of noise

As mentioned above, during experiments, on average 3 cells turn on at a time.
This suggests the signal for cell-type switching takes place in a cell’s ”mother”
or "grandmother” and then executed 1-2 generations later. This suggests there
are influences other than only single-cell growth rates and switching frequen-
cies on SPI-14 proportion, including history dependence in SPI-1- to SPI-1+
switches . This makes it very difficult to simulate with precision. This aspect is
currently under investigation. As an aside, during switch off events, we seldom
observe sister cells turning off SPI-1 expression simultaneously, indicating a lack
of history dependence for SPI-1+ to SPI-1- events.

Cells which have just switched to the SPI-14+ phenotype also undergo a re-
ductive division soon after becoming GFP+, doubling the SPI-1+ cell-type soon
after switches. This dynamic is also very difficult to capture using stochastic
simulations and could be a source of the underestimation.

Although we employed a feeding-culture approach, cells in the microflu-
idic chip, from where our single-cell parameters were derived, are experiencing
a different environment compared to cells growing in liquid culture as in our
population-level experiments (e.g. physical constraint and likely differences in
oxygen levels as PDMS is very permeable to gasses). We also therefore cannot
exclude the difference in physico-chemical environment as be a source of error
in parameter estimation.
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