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Abstract 
Salmonella spp. express Salmonella pathogenicity island 1 (SPI-1) genes to mediate the initial 
phase of interaction with host cells. Prior studies indicate short-chain fatty acids, microbial 
metabolites at high concentrations in the gastrointestinal tract, limit SPI-1 gene expression. A 
number of reports show only a subset of Salmonella cells in a population express these genes, 
suggesting short-chain fatty acids could decrease SPI-1 population-level expression by acting on 
per-cell expression and/or the proportion of expressing cells. Here, we combine single-cell, 
theoretical, and molecular approaches to address the effect of short-chain fatty acids on SPI-1 
expression. Our results show short-chain fatty acids do not repress SPI-1 expression by 
individual cells. Rather, these compounds act to selectively slow the growth of SPI-1 expressing 
cells, ultimately decreasing their frequency in the population. Further experiments indicate slowed 
growth arises from short-chain fatty acid-mediated depletion of the proton motive force. By 
influencing the SPI-1 cell-type proportions, our findings imply gut microbial metabolites act on 
cooperation between the two cell-types and ultimately influence Salmonella’s capacity to 
establish within a host.  

Significance Statement 

Emergence of distinct cell-types in populations of genetically identical bacteria is common. 
Furthermore, it is becoming increasingly clear that cooperation between cell-types can be 
beneficial. This is the case during Salmonella infection, in which cooperation between 
inflammation-inducing virulent and fast-growing avirulent cell-types occurs during infection to aid 
in colonization of the host gut. Here, we show gut microbiota-derived metabolites slow growth by 
the virulent cell-type. Our study implies microbial metabolites shape cooperative interactions 
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between the virulent and avirulent cell types, a finding that can help explain the wide array of 
clinical manifestations of Salmonella infection. 
 
 
Main Text 
 
Introduction 
 
The mammalian gastrointestinal tract (GI) is chemically defined by resident bacteria metabolizing 
the host’s diet. Among the most abundant microbial metabolites are the short chain fatty acids 
(SCFAs) acetate, butyrate, and propionate. Each are found at up to 100 millimolar concentrations 
in the human GI, with levels lowest in the ileum, increasing to high levels in the proximal colon, 
and tapering off in the distal colon (1). They also vary as a function of microbiota members and 
fluctuate over time, correlating with the timing and composition of meals (2–4). The chemical 
environment an enteric microbe finds itself in, therefore, varies by location in the gut, from 
person-to-person, and across time.  

 

This holds true as well during the initial phases of infection by the enteric pathogen Salmonella 
enterica. Salmonella expresses virulence genes to inflame and subsequently colonize the host GI 
(reviewed in (5)) . Inflammation is initially caused by invading into gut epithelial tissues using a 
Type III Secretion System encoded on Salmonella pathogenicity island 1 (SPI-1, (6, reviewed in 
7)). This secretion system pumps effector proteins directly into host cells, leading to bacterial 
uptake and subsequent inflammation. Inflammation increases nutrient availability and killing of 
competitor resident microbiota, opening a niche for Salmonella establishment in the gut (8–12). 

 

Recent evidence shows there is cell-to-cell variation in SPI-1 expression by Salmonella cells. 
Each individual in the population is found in a discrete expressing (SPI-1+) or non-expressing 
(SPI-1-) state (13, 14). The emergence of these two cell-types is beneficial as they cooperate with 
each other to facilitate colonization of the host. SPI-1+ cells invade host tissues and induce 
inflammation while SPI-1- cells replicate quickly in the intestinal lumen to exploit the niche cleared 
by the SPI-1+ cells (15–17). It is currently unclear whether these cooperative interactions are 
influenced by environmental signals; of particular interest are the dynamic conditions of the GI, 
where there is high variation in the frequency of SPI-1+ cells (18). 

 

Several reports have shown microbiota-derived metabolites impact Salmonella infectivity. 
Importantly, SCFAs at physiological levels decrease SPI-1 expression by populations of 
Salmonella cells and limit their invasion into host cells (19, 20). The authors concluded from these 
studies that SCFAs repress SPI-1 expression and result in decreased pathogenicity. Consistent 
with this idea, the SCFAs butyrate and propionate impact Salmonella pathogenicity in vivo (21, 
22). However, because SPI-1 expression varies from cell-to-cell within a population prompts 
revisiting the effect of SCFAs on SPI-1 expression from a single-cell perspective.  
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The previously observed SCFA-mediated reduction in population-level SPI-1 expression could 
arise from a number of mechanisms scaling from behaviors by individual cells. Determining how 
SCFAs impact single-cell behaviors will inform on their mechanism of action and ultimately how 
the gut environment influences Salmonella pathogenicity. 

 

 
 
Results + Discussion 
 
SCFAs repress population-level SPI-1 expression through decreasing the proportion of 
SPI-1+ cells  

Reduced population-level SPI-1 expression could result from a combination of mechanisms: 
either by fewer SPI-1+ cells in the population or by decreased SPI-1 expression per-cell. To 
address how SCFAs impact SPI-1 expression by individual cells during growth, we first quantified 
population-level growth and SPI-1 expression using SPI-1 transcriptional reporter cells (PprgH-
gfp) grown in a range of SCFA concentrations (Figs 1A,B, Table S1). Consistent with previous 
reports (19, 20), increasing SCFA concentration correlated with decreased population-level SPI-1 
expression (Fig 1C, one-way anova, p < 0.0001). Increased SCFA concentrations also increased 
population-level lag time and maximal growth rate (Fig S1, one-way anovas, p < 0.0001, p < 
0.005, respectively). 

 

Using intermediate (75 mM) or high (150 mM) levels of SCFAs shown to reduce SPI-1 
expression, we next quantified SPI-1 expression on a per-cell basis. Reporter cells were cultured 
with the 0, 75, or 150 mM SCFAs and examined by flow cytometry at a range of timepoints. The 
mean fluorescence intensity of individual SPI-1+ cells was unaffected by SCFA treatment (Fig 
1D, two-way anova: SPI-1+ vs SPI-1-, p < 0.001; SCFA treatment, p > 0.25). Rather, SCFA 
treatment resulted in a dose-dependent decrease in the proportion of SPI-1+ cells (Fig 1E, two-
way anova, p < 0.0001). Untreated populations of cells consisted of roughly 40% SPI-1+ cells by 
mid-exponential phase through stationary phase. Populations grown with moderate or high SCFA 
concentrations consisted of 25% and 10% SPI-1+ cells at these timepoints, respectively. These 
observations demonstrate SCFAs do not decrease SPI-1 expression by individual cells, rather 
they act on the frequency of SPI-1+ cells in the population.  

 

The SCFA-mediated decrease in SPI-1+ cells occurs through limitations on SPI-1+ cell 
growth 

How can SCFAs decrease the frequency of SPI-1+ cells in the population? We reasoned SPI-1+ 
population frequency is set by four parameters: the growth rates of SPI-1- and SPI-1+ cells and 
the rates of switching between the two cell-types (Fig 2A). A minimal mathematical model 
(expanded up in Supporting Materials) established decreased SPI-1+ frequency can arise 
through multiple, non-mutually exclusive scenarios: increasing the SPI-1+ to SPI-1- switching 
rate, decreasing the SPI-1- to SPI-1+ switching rate, increasing the SPI-1- growth rate, or 
decreasing the SPI-1+ growth rate (Figs 2B,C,D). Parameter space exploration shows the 
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interaction of these four parameters (Figs 2C, D). In general, smaller changes in growth rates led 
to large shifts in the cell-type proportions, whereas larger changes in switching rates were 
necessary to shift cell-type proportions. 

 

Knowing how SCFAs change these parameters inform on their mechanism of action. Changes in 
cell-type growth rates imply SCFAs act on cellular metabolism. Meanwhile, SCFA action on cell-
type switching rates would suggest they act on SPI-1 regulation by individual cells. We measured 
impact of SCFAs on these four single-cell parameters directly using quantitative time-lapse 
microscopy. We employed a “feeding culture” microfluidic approach to recapitulate our 
population-level experiments (23). SPI-1 reporter cells under observation in a microfluidic chip 
were fed by an actively growing Salmonella culture with or without SCFAs. In this manner, 
reporter cells under observation are experiencing the dynamic environment of a growing culture, 
where nutrients are depleted and compounds are excreted. We observed individual reporter cells 
over 12 h of culture (Fig 3A, Supp video 1). By analyzing the images, we quantified single-cell 
growth rates and cell-type switches for each cell-type across growth phases. 

 

Single-cell growth rates of untreated cells changed over time. Growth rates increased as they 
exited lag phase and entered exponential growth and decreased as they entered late exponential 
phase (Fig 3B, two-way anova, p < 0.015 for all timepoints). All cells continued growth into 
stationary phase (Fig S2). At all timepoints, SPI-1- cells grew approximately 25% faster than SPI-
1+ cells, in line with previous reports (Fig 3B,C, two-way anova , p < 0.001, (24)).  

 

Cell-type switching rates of untreated cells also changed by growth phase (Fig 3D,E, anova, p < 
0.001). Consistent with few SPI-1+ cells during pre-exponential phase growth (Fig 1E), SPI-1+ to 
SPI-1- switches were frequent during lag phase. Upon reaching early and late exponential phase, 
the rate of SPI-1- to SPI-1+ switches increased and SPI-1+ to SPI-1- switches decreased.  

 

Salmonella cells grown in the presence of SCFAs behaved differently. Individual cells grown in 
the presence of SCFAs grew more slowly during lag phase, in line with our population-level 
observations (Fig 1A,B, S1). During the later phases of growth, SCFA treatment slowed single-
cell growth rates by both cell-types during each growth phase, however to different degrees (Figs 
3B,C). While SCFAs resulted in SPI-1- single cell growth rates approximately 25% lower than 
untreated cells, SCFAs slowed the growth of SPI-1+ cells by roughly 50% (Fig 3B). During each 
phase of growth, SCFA treated SPI-1+ cells grew roughly 50% slower than SPI-1- cells (Fig 3C).  

 

Given that SCFAs were expected to repress SPI-1 expression, it was surprising to see that this 
was not the case (Fig 3D,E, Fig S2, Supplemental movie I ). Rather, SPI-1+ cells frequently 
maintained expression for many generations, and switching off events were only observed during 
lag phase (Fig 3D,E). SPI-1- cells seldom switched to SPI-I+ in the presence of SCFAs, although 
these events were observed more frequently compared to SPI-1+ to SPI-1- switching during 
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exponential growth. Although SCFAs reduced the number of cell-type switching events overall, 
the difference was not statistically significant (Fig 3D,E, anova, p > 0.5).  

 

All of the measured changes in parameters can help to explain how SCFAs lower the frequency 
of SPI-1+ cells. To understand the interplay of these parameters, we used stochastic simulations 
to predict the proportion of SPI-1+ cells in a population growing under experimentally measured 
single-cell growth and switching values. Simulations using parameters extracted from SCFA 
untreated and treated cells yielded a final SPI-1+ frequency of 18% and 6%, respectively (Fig 
3F). Both are roughly 2-fold lower than what is observed experimentally. This underestimation by 
the simulations suggests additional parameters are necessary to fully simulate SPI-1 
subpopulation dynamics (expanded upon in Supplemental Materials). Nonetheless, these simple 
simulations captured the SCFA-mediated reduction SPI-1+ frequency in the population observed 
during our experiments. 

 

These simulations can also inform on the relative influence that experimentally measured 
parameter shifts have on the proportion of SPI-1+ cells in a population. Populations of cells 
simulated to grow at untreated rates and cell-type switching at SCFA rates yielded a final SPI-1+ 
proportion similar to untreated cells (Fig 3F, anova, p > 0.02). Similarly, populations simulated to 
grow at SCFA-treated rates and switch with untreated rates more resembled SCFA-treated SPI-
1+ proportions. These simulations indicate growth rate changes during SCFA treatment is a 
dominant driver of decreased SPI-1+ population frequency.  

 

These results demonstrate SCFAs decrease SPI-1 expression at the population-level by acting 
on single-cell growth rates. We conclude SPI-1 expression is not inhibited by SCFAs as cells 
maintain SPI-1 expression in their presence for at least 12 h and over many generations. Taken 
together, our results indicate SCFAs decrease the proportion of SPI-1+ cells predominately 
through a selectively stronger reduction in growth by SPI-1+ cells. 

 

SPI-1+ cells maintain a higher PMF that is susceptible to perturbation by SCFAs 

SCFAs can impact Salmonella physiology in multiple ways. Salmonella can use all three SCFAs 
present in our experiments as a carbon source, thus SCFAs could facilitate growth. More 
fundamentally, upon entry into the bacterial cytosol, SCFAs dissociate into the anion and a proton 
due to their relatively high pKa. An accumulation of the SCFA anion leads to an increase in turgor 
pressure while the accumulation of protons leads to a decrease in the intracellular pH (reviewed 
in (25)). A decrease in the intracellular pH ultimately lowers the proton motive force (PMF), 
leading to a slower rate of ATP production and by implication limited growth.  

 

Because SCFAs slow single-cell growth rates, we examined how a global decrease in PMF 
impacts SPI-1+ population frequency. We added CCCP, a chemical decoupler of the proton 
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gradient, at concentrations that did not inhibit population-level growth (Fig S4, anova, p > 0.2). 
Similar to SCFA treatment, the addition of CCCP decreased population-level SPI-1 expression 
(Fig 4A, anova, p < 0.001) and the proportion of SPI-1+ cells (Fig 4B, anova followed by Tukey’s 
Honest Test, no SCFAs vs CCCP, p < 0.0001; + SCFAs vs CCCP, p > 0.5). Thus, PMF 
dissipation at levels that do not limit population-level growth are sufficient to decrease the SPI-1+ 
subpopulation, consistent with the idea that SCFAs reduce the proportion of SPI-1+ cells through 
PMF dissipation. 

 

A remaining question is how SCFAs differentially affect the growth rates of SPI-1+ and SPI-1- 
cells. By combining single-cell analyses with a fluorescent PMF indicator, we observed SPI-1+ 
cells maintain a higher membrane potential compared to SPI-1- cells (Fig 4C, three-way ANOVA, 
p < 0.05). SCFA and CCCP treatment lead to an overall decrease in membrane potential (Figs 
5A, three-way anova, p < 0.005). In particular, SCFA treatment led to a statistically significant 
decrease in the SPI-1+ cell PMF (three-way anova followed by Tukey’s Honest Significance Test, 
p < 0.05), whereas the SCFA-mediated decrease in in the SPI-1- cell PMF was not statistically 
significant (p > 0.2; no interaction detected).  

 

Collectively, these observations are in line with the idea that SCFAs preferentially slow SPI-1+ 
cell growth by decreasing their PMF to a higher degree. We suspect SPI-1+ cells are more 
sensitive to SCFA-mediated PMF reduction due to their inherently higher PMF.  

 

 

 

Conclusions 

Our study demonstrates SCFAs decrease population-level SPI-1 expression by differentially 
impacting SPI-1 cell-type behaviors. Although not the major driver, we find SCFAs influence the 
molecular regulation of SPI-1 by reducing cell-type switching events. However, because SCFA-
treated SPI-1+ cells maintain expression across many generations and SPI-1- cells initiate SPI-1 
expression, we conclude SCFAs do not act as a canonical transcriptional co-repressor of SPI-1 
transcription. Our data collectively indicate SCFAs shape population-level SPI-1 expression 
predominately by acting on the growth rate of SPI-1+ cells.  

 

These findings also have implications for how Salmonella causes disease. That SCFAs act on 
cell-type proportions indicates they shape the cooperative interactions between SPI-1- and SPI-
1+ subpopulations during infection (15–17, 26). Because SCFA levels fluctuate as a function of 
nutrient intake, microbiota metabolism, and location in the gut, these dynamic conditions likely 
influence on Salmonella cell-type interactions over time. High SCFA levels would lead to fewer 
inflammation-inducing SPI-1+ cells and thus limit the expansion of SPI-1- cells, while low SCFA 
levels would enhance inflammation induction by increasing the number of SPI-1+ cells and 
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therefore aid in Salmonella colonization of the gut. SCFA levels and their dynamics, therefore, 
likely help to balance infection outcomes between colonization resistance, asymptomatic 
carriage, and symptomatic disease. 

 

Lastly, there is strong support for the idea that SPI-1+ and SPI-1- cell-types are distinct in ways 
other than SPI-1 expression. Previous reports show these two cell-types have different growth 
rates, susceptibility to antibiotics, and cell sizes (17, 27). We add to this body of evidence of 
Salmonella differentiation by showing that SPI-1+ and SPI-1- cells differ in response to an 
environmental stimulus (SCFAs) and PMF. We speculate these reflect further specialization by 
each cell type to best fulfill their function. For example, the higher PMF of SPI-1+ cells could allow 
for more efficient effector secretion during interaction with host cells, whereas the maintenance of 
a high PMF by SPI-1- cells would be unconducive for fast growth (28). Identifying distinguishing 
characteristics of the two cell-types will shed light on the specializations each make to fulfill their 
function, including how SPI-1+ cells prepare for their intracellular future.  

 

As single-cell analyses have become more common, the importance of bacterial cell-types during 
pathogenesis is becoming clear (15–17, 29–34). Combining these efforts with developing detailed 
molecular maps of each cell-type will help guide the development of therapeutics which inhibit a 
single cell-type of interest (e.g. virulent cells) rather than the whole population. Cell-type targeted 
therapeutics could impede disease development while not selecting against a given species as 
only a subset of the cells would be susceptible (35, 36), a valuable strategy in the fight against 
antibiotic resistance.  

 

 

 
Materials and Methods 
 
Bacterial cultivation Throughout the study we used SB300 (a spontaneous Streptomycin 
resistant SL1344 derivative, wild-type (wt)) and its SPI-1 fluorescent transcriptional reporter, 
PprgH-gfp (13). Frozen strains were streaked onto LB Miller agar for single colonies. After 24 h, a 
single colony was transferred to 5 mL LB Miller in a 15 mL round bottom tube and incubated at 37 
°C with shaking at 200 rpm. A 16-18 h liquid culture prepared in this way was the starting point for 
all experiments. All experiments were performed in LB Miller and, when applicable, supplemented 
with sodium acetate, sodium butyrate, and sodium propionate at appropriate concentrations 
(table S1).  

 

Quantification of population-level growth and SPI-1 expression We prepared a 96-well plate 
containing 2 µL of an overnight in 200 µL of media containing or not SCFAs at indicated 
concentrations. OD600 and GFP fluorescence of cultures were measured every 3 minutes using 
a heated, automated microplate reader (Biotek Synergy). Three experiments were performed with 
each condition in triplicate. Blank (uninoculated) and autofluorescence (SB300) background 
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control wells were run in each experiment. Resultant values were background subtracted by 
appropriate time-matched, control-well values. Maximum growth rate, lag time, yield, and max 
GFP fluorescence levels were determined by fitting a logistic equation to each time series using 
the GrowthCurver package in R (37). 

 

Single-cell SPI-1 expression quantification using flow cytometry Overnight cultures of wt and 
SPI-1 reporter cells were diluted 1:100 into LB Miller ± SCFAs and incubated at 37°C with 
shaking. At each timepoint, 10 mL of the culture was centrifuged (tabletop centrifuge,3000 xg, 15 
mins). Supernates were removed and pellets were resuspended in 1 mL PBS. Cells were 
centrifuged (microcentrifuge, 14000 xg, 5 mins), pellets resuspended in 1 mL 4% 
paraformaldehyde in PBS, and incubated at room temperature for 10 min. Fixed cells were 
pelleted, washed in 1 mL PBS, resuspended in 1 mL PBS, and stored at 4°C. Fixed cell samples 
were analyzed by flow cytometry within 1 week of collection. Forward scatter, side scatter, and 
GFP fluorescence of 50,000 events from each sample were measured using a Beckman Coulter 
Gallios flow cytometer. We performed three independent experiments.  

 

Average per-cell gene expression (mean fluorescence intensity, MFI) and subpopulation 
frequencies were calculated as follows. Distributions of GFP fluorescence values per sample 
were extracted from .fcs files using FlowCore (38). A test for bimodality was performed on each 
log10 transformed GFP fluorescence distribution (39). If distributions tested negativity for 
bimodality (e.g. all wt samples), a single normal distribution was fitted to the data. If distributions 
tested positively for bimodality (almost all reporter strain samples), the mixtools package was 
used to fit two normal distributions to the bimodal distribution (40). The mean of each distribution 
is the MFI of the subpopulation and the proportion of events assigned to each distribution using 
mixtools was used as the subpopulation frequency. The MFI of wt samples was used as a 
benchmark to determine which MFI represented the SPI-1- subpopulation. There were no 
significant differences between wt and SPI-1- reporter cell MFIs. 

 

Mathematical modeling and simulations The simple differential equation was solved using 
Mathematica. Analytical solutions were run in MatLab. Gillespie simulations were run in RStudio. 
For more information, please see Supporting Materials. 

 

Feeding-culture microfluidics Microfluidic chips were fabricated using previously described 
methods (23, 27). All images were acquired with an automated Olympus IX81 inverted 
microscope using an oil-immersion 100x objective (Olympus), an ORCA-flash 4.0 v2 sCMOS 
camera (Hamamatsu), X-Cite120 metal halide arc lab (Lumen Dynamics), and Chroma 49000 
fluorescent filter sets (Chroma, N49002).      
 

A 16 – 18 h stationary culture of PprgH-gfp reporter cells were loaded into the microfluidic device. 
Cells were concentrated for loading into the chip by centrifuging 100 µL of the stationary phase 
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culture, decanting excess media, and resuspending the cell pellet in the remaining culture media. 
One microliter of 1% Tween-20 in PBS was added to facilitate loading cells into observation 
channels. The concentrated cells were then pipetted into the microfluidic device and examined by 
microscopy for sufficient loading. We then connected flasks of LB or LB + SCFAs (150 mM) to the 
microfluidic chip to feed the cells with a flow rate of 0.5 mL per hour. 

 

To recapitulate the population-level experiments above, we used a feeding culture approach. 
After fresh media was flowed through the device for approximately 0.5-1 h (time used to set-up 
the automated, time-lapse program for image acquisition), we inoculated the flasks feeding the 
microfluidic chip with stationary phase reporter cells at a ratio of 1:100. We then started image 
acquisition (t=0). Phase contrast and GFP images were acquired for each position at 3-minute 
intervals over 12 hours. 

  

Calculation of growth rates and cell-type switching probabilities 

Time-lapse microscopy images were segmented, tracked, and quantified using SuperSegger 
(41). Images were first deconvolved using a point-spread function (42). Segmentation of images 
(identification of individual cells) was performed using optimized segmentation constants to detect 
both SPI-1+ and SPI-1- cell types, which differ in size and curvature. All segmentation and 
tracking results were manually curated for erroneous boundary-calling and tracking. For all 
lineages examined, we only tracked and quantified the “mother cell,” the cell at the closed end of 
the observation channel. 

 

Cell-type switches were called by examining GFP traces of each mother cell over time. Mean 
GFP values per cell over the duration of the experiment were smoothed by fitting a LOESS curve 

(! = 0.5) to reduce noise. The first derivative of the smoothed GFP trace was then examined to 

determine changes in SPI-1 expression: values of approximately zero (±10, MFI change of 10 
GFP AU over 30 minutes) indicates equal GFP levels over time; values > 10 indicate increases in 
MFI levels over time; and values < -10 indicate decreases in MFI levels over time. The time in 
which the derivative surpassed 10 or dropped below -10 was considered the time of cell-type 
switch.  

 

The time and direction of cell-type switch was then mapped to individual cells to call which cell-
type each cell was in at a given time. Manual inspection indicated good agreement between 
individual cell MFI levels and cell-type mapping using the above calling procedure. Growth rates 
of individual cells by cell-type assignment were then plotted and examined statistically using two-
way analysis of variance. 

 

CCCP treatment  
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Reporter cells in a range of concentrations of CCCP were analyzed by 96-well plate assays as 
described above. The flow cytometric analyses were performed and analyzed as described above 
by adding 100 µM CCCP to the culture medium. 

 

Single-cell PMF measurements 

Reporter cells were grown in LB, LB + 150 mM SCFAs, LB + 150 mM NaCl (ionic control for 
SCFAs), LB + 100 µM CCCP, and LB + DMSO (CCCP vehicle control) and sampled at 0, 3, 5, 
and 7 hours post-inoculation. At the time of sampling, cells were centrifuged to pellet (table-top 
centrifuge, 3000 xg, 15 min) and resuspended in PBS containing MitoView 633 (Biotium). 
MitoView 633 accumulates in the inner membrane as a function of membrane potential. Higher 
fluorescence signal indicates higher membrane potential, i.e. a higher charge differential across 
the membrane. Sampled reporter cells were stained with MitoView-633 for 20 minutes on ice and 
then analyzed using flow cytometry to assign SPI-1 cell-type and MFI of MitoView accumulation. 
Wt Salmonella cells (no reporter) were used as a negative control to confirm no bleed-through of 
GFP or MitoView into the other fluorescence channels. All MitoView values were background 
subtracted with the time-matched, unstained, reporter strain control. At all timepoints, the addition 
of 150 mM NaCl and DMSO lead to an approximate 20% increase in MitoView accumulation; an 
expected observation as the addition of ions will impact the charge differential across the 
membrane. Thus, a 20% correction was applied to SCFA-treated and CCCP-treated cells to 
account for the impact of 150 mM extra ions or DMSO in the environment.  
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Fig 1: SCFAs decrease population-level SPI-1 expression by decreasing the proportion of 
SPI-1+ cells 
A Mean ± standard error of the mean (SEM) OD600 and B mean ± SEM GFP fluorescence 
intensity (i.e. SPI-1 expression) by SPI-1 reporter cells in no (0 mM, yellow), intermediate (75 
mM, salmon), and high (150 mM, dark orange) SCFA concentrations measured every 3 min over 
15 h in a plate reader assay C SPI-1 expression normalized to OD600 as a function of SCFA 
concentration. Average of triplicates from 3 independent experiments, one-way ANOVA, 
expression vs SCFA concentration, p < 0.0001; Tukey’s Honest Significance Test, 0 mM vs 75 
mM, p < 0.0001, 75 mM vs 150 mM, p < 0.001. The impact of SCFAs on single-cell D mean GFP 
fluorescence intensity (MFI) ± SEM by SPI-1 cell-type and E mean ± SEM proportion of SPI-1+ 
cells as measured by flow cytometry. 50,000 cells quantified per timepoint and averaged 3 
independent experiments; MFI by treatment over time, two-way ANOVA, MFI by SCFA treatment, 
p > 0.2; SPI-1 cell type proportions by SCFA treatment over time, two-way ANOVA, proportion by 
SCFA treatment, p < 0.0001. 
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Fig 2: Mathematical modelling shows single-cell growth and cell-type switching rates 
shape subpopulation frequencies 

A Conceptual model underlying SPI-1 cell-type frequencies. The cell-type frequency is set by 
these four parameters: µ-, growth rate of SPI-1- cells; d-, SPI-1- to SPI-1+ switching rate; µ+, 
growth rate of SPI-1+ cells; and d+, SPI-1- to SPI-1+ switching rate. B The conceptual model 
from panel A was transformed into mathematical equations to estimate how these parameters 
impact cell-type frequency analytically (expanded upon in the Supplementary Materials). 
Calculated SPI-1+ proportions assuming the indicated rates of growth and cell-type switching. C 
How SPI-1 cell-type growth rates impact SPI-1+ proportion when d+ = 0.05 h-1 and d- = 0.05 h-1 D 
How SPI-1 cell-type switching rates impact SPI-1+ proportion when µ- = 2 h-1and µ+ = 1 h-1  
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Fig 3: SCFAs slow growth and inhibit phenotypic switching by Salmonella cells 

A Experimental set-up for quantitative time-lapse microscopy using a feeding culture approach. 
An actively growing culture of Salmonella cells is pumped through a microfluidic chip and into a 
waste container using a peristaltic pump. Simultaneously, SPI-1 reporter Salmonella cells loaded 
into the microfluidic chip are experiencing the same chemical environment as cells in the flask. 
Cells in the chip are imaged every 3 minutes.  Time-lapse images are then analyzed to extract 
SPI-1- and SPI-1+ growth and switching rates. Data presented is from 4 independent 
experiments; we designated the first 0.5 h of growth lag phase, the next 6 h early exponential, 
and the last 5.5 h late exponential. B Mean growth rates (n = 2502 cells, box = quartiles, whiskers 
= all observations) by cell-type, SCFA treatment, and growth phase. Three-way ANOVA followed 
by Tukey’s Honest Significance Test, ** p < 0.001 C Ratio ± SEM of SPI-1+ and SPI-1- cell 
growth rates in the absence of presence of SCFAs. Two-way ANOVA followed by Tukey’s Honest 
Significance test, ** p < 0.001. D Observed cell-type switching events plotted by SCFA treatment 
over time. Each dot indicates the time of an observed switching event switching event. E Mean ± 
SEM probability of cell-type switching during each growth phase by treatment. Two-way ANOVA 
followed by Tukey’s Honest Significance test, ** p < 0.001 F Results from Gillespie simulations 
using our experimentally measured parameters. Average of 100 individual simulations per 
condition. One-way ANOVA, ** p < 0.001. 
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Fig 4: SCFAs and CCCP similarly impact SPI-1+ cell-type proportion and PMF dissipation 

A Mean ± SEM maximal population-level SPI-1 expression by CCCP concentrations. Average of 
3 independent experiments with triplicate wells; one-way ANOVA, p < 0.001. B Mean ± SEM SPI-
1+ proportions over time in untreated, 150 mM SCFA, or 100 µM CCCP as determined by flow 
cytometry. Average of 4 independent experiments, 50,000 cells per sample per timepoint; two-
way ANOVA followed by Tukey’s Honest Significance Test, ** p < 0.001. C Mean ± SEM 
membrane potential of SPI-1 cell-types by treatment as determined by MitoView 633 staining 
combined with flow cytometry. Average of 4 independent experiments. Three-way ANOVAs 
followed by Tukey’s Honest Significance Test, SPI-1- vs SPI-1+, p < 0.025; no SCFA vs + SCFA, 
p < 0.005; no SCFA vs CCCP, p < 0.001; no SCFA SPI-1+ vs + SCFA SPI-1+, p < 0.05; no SCFA 
SPI-1- vs + SCFA SPI.I-, p > 0.2; no SCFA SPI-1+ vs CCCP SPI-I+, p < 0.0005; no SCFA SPI-1- 
vs CCCP SPI-1-, p < 0.05; SCFA SPI-1+ vs CCCP SPI-1+, p > 0.5 ; SCFA SPI-1- vs CCCP SPI-
1-, p > 0.4. 
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Fig S1: Impact of SCFAs on population-level growth 

A SCFA treatment correlates with higher maximal population-level growth, one-way ANOVA, p 
<0.005 B SCFA treatment delays time to maximal growth rate, a proxy for lag-time, one-way 
ANOVA, p < 0.0001  
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Fig S2: Single-cell growth rates and SPI-1 expression over time 

A Single-cell growth rate of every cell included in our analysis by time. SCFA treatment and SPI-1 
cell-type indicated by color. Mean GFP intensity (SPI-1 expression) of lineages of cells over time 
in B untreated and C SCFA-treated conditions. In panels B and C, flat lines at close to zero 
indicate SPI-1- cells. 
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Fig S3F

 

Fig S3: Impact of CCCP on population-level growth 

Mean ± SEM population-level growth rate by CCCP treatment. Average of 3 independent 
experiments with triplicate wells; one-way ANOVA, p < 0.001)  
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Supplemental video 1: Population-level vs single-cell growth and SPI-1 expression by 
SCFA treatment 

Population-level growth (blue) and SPI-1 expression by reporter cells with or without 150 mM 
SCFAs as quantified in our plate reader experiments (Fig 1). Single-cell growth and SPI-1 
expression from our time-lapse microscopy experiments in microfluidic devices (Fig 3). Movies of 
population-level and single-cells are synced in time.   
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Table S1: SCFA concentrations used 

Total SCFAs (mM) Sodium Acetate 
(mM) 

Sodium Butyrate 
(mM) 

Sodium Propionate 
(mM) 

0 0 0 0 
2.5 1 1 0.5 
11 5 5 1 
22.5 10 10 2.5 
45 25 15 5 
75 50 18 7 
110 75 25 10 
150 100 25 25 
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Supporting Materials

1 Mathematical model

Here, we present the details of the mathematical model to predict SPI-1+ and

SPI-1- cell-type frequencies as a function of growth and cell-type switching rates

shown in Figure 2 of the main text. This model di↵ers from the model previ-

ously described by Sturm, et al, (2011) by including SPI-1+ to SPI-1- switching

events, as these are observed experimentally. In addition, we discuss cases for

specific choice of the parameter space.

1.1 Two growth rates and two switching rates model

SPI-1- and SPI-1+ cell number is denoted with X and Y , respectively. SPI-1-

cells grow with growth rate µX and switch to SPI-1+ cells with rate �X!Y =

�Y X . SPI-1+ cells grow with growth rate µY and switch to SPI-1- cells with rate

�Y!X = �XY . This models exponential growth of the two cell-types assuming

no interactions other than cell-type switching.

The quantity of each cell-type follows this system of ordinary di↵erential

equations:

(
dX(t)
dt = µXX(t)� �Y XX(t) + �XY Y (t)

dY (t)
dt = µY Y (t)� �XY Y (t) + �Y XX(t).

(1)

The solution of the system of di↵erential equations is:

X(t) =
e

1
2 (µX+µY ��XY ��Y X��)t

2�

✓
X0 (µY � µX � �XY + �Y X + �)� 2Y0�XY +

e�t (2Y0�XY +X0 (�µY + µX + �XY � �Y X + �))

◆
(2)

Y (t) =
e

1
2 (µX+µY ��XY ��Y X��)t

2�

✓
Y0 (µX � µY � �Y X + �XY + �)� 2X0�Y X+

e�t (2X0kY X + Y0 (�µX + µY � �XY + �Y X + �))

◆
, (3)

where X0 and Y0 are the initial number of cells at time zero, and

� =

q
(�µY + µX + �XY )

2 + 2(µY � µX + �XY )�Y X + �2Y X .

1
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The fraction of SPI-1+ cells in a population growing exponentially, for time

t � � > 0 reach a steady state at

Y

Y +X
(t ! 1) =

µX � µY + �XY + �Y X � �

2(µX � µY )
. (4)

The fraction of SPI-1+ cells in Eq. (4) is shown in Figure 2 of the main text as

a function of the growth rates (Fig. 2c) and switching rates (Fig. 2d).

1.2 The case of negligible switching from SPI-1+ to SPI-
1-: �Y X = 0

For simplicity, we describe here the case in which the switching rate from SPI-

1+ to SPI-1- is negligible kY X = 0, and the growth rate of the SPI-1- cells is

larger than SPI-1+ cells, µX > µY . In this case, the solution of the simplify

version of Eq. (1) are:

X(t) = X0e
(µX��Y X)t , (5)

Y (t) =
X0�Y Xe(µX��Y X)t � eµY t

(X0�Y X � Y0 (µX � µY � �Y X))

µX � µY � �Y X
, (6)

The fraction of SPI-1+ cells in a population growing exponentially, under the

assumptions that µX > µY + �Y X reach a steady state at

Y

Y +X
(t ! 1) =

�Y X

µX � µY
. (7)

1.3 The case of equivalent growth rates for SPI-1+ and
SPI-1-: µ = µX = µY

The case of equivalent growth rates between the two cell-types has been use to

resolve the indeterminacy of the solution of Eq.(4) for µX = µY = µ. In this

case, the solution of the version of Eq. (1) are:

X(t) =
e(µ��XY ��Y X)t

�Y X + �XY

⇣
X0�Y X � Y0�XY + �XY e

(�Y X+�XY )t
(X0 + Y0)

⌘
, (8)

Y (t) =
e(µ��XY ��Y X)t

�Y X + �XY

⇣
Y0�XY �X0�Y X + �Y Xe(�Y X+�XY )t

(X0 + Y0)

⌘
. (9)

The fraction of SPI-1+ cells in a population growing exponentially reach a

steady state at

Y

Y +X
(t ! 1) =

�Y X

�XY � �Y X
. (10)

2 Growth Simulations

In this section, we outline the details of the growth simulations presented in

Figure 3E of the main text.
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2.1 Rationale

The analytical solution presented above models populations growing exponen-

tially, however cells in our experiments grow logistically, plateauing upon ap-

proaching the carrying capacity. To better describe our experimental system

where cells grow logistically and cell-type switches are stochastic, we moved to

stochastic simulations of cell-type frequencies using the parameters of growth,

cell-type switching, and carrying capacity.

2.2 Growth, switching, and carrying capacity simulations

We used Gillespie stochastic simulations to estimate cell-type proportions during

logistic growth. At each randomly determined time interval, one of four possible

events can occur:

Event A = a SPI-1- cell doubles

Impact on population : X + 1

Event B = a SPI-1+ cell doubles

Impact on population : Y + 1

Event C = a SPI-1- cell switches to SPI-1+

Impact on population : X � 1 and Y + 1

Event D = a SPI-1+ cell switches to SPI-1-

Impact on population : X + 1 and Y � 1

A random number from a uniform distribution between 0 and 1 was selected

at each iteration to determine the outcome of the event (X + 1, etc). For

example, if the random number was greater than PA and less than PB , the

outcome would be Y + 1. The probabilities were as follows, where k is the

carrying capacity:

PA = µX ⇤X ⇤ 1�(X+Y )
k

PB = µY ⇤ Y ⇤ 1�(X+Y )
k

PC = �XY ⇤X ⇤ 1�(X+Y )
k

PD = �Y X ⇤ Y ⇤ 1�(X+Y )
k

Time elapsed between events during our simulations was determined as fol-

lows:

� 1

R
⇤ loge(r) (11)

Where R is the sum of probabilities and r is a randomly selected number

from a uniform distribution between 0 and 1.

2.3 Parameters used

For these simulations, we used the mean of experimentally measured parameters

for single-cell growth and cell-type switching rates during lag (1), early expo-

nential (2), and late exponential (3) growth phases. This was done to account

for the di↵erent cell-type switching rates during the di↵erent growth phases and

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2021. ; https://doi.org/10.1101/2021.02.14.430798doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.14.430798
http://creativecommons.org/licenses/by-nc-nd/4.0/


to also recapitulate the delayed growth during lag phase not accounted for in

the base equation. Growth was simulated for 12 hours.

For all simulations, Xo = 60, Yo = 40, and k = 10000, approximating the

1:100 culture dilution we performed during the experiment. Lag phase values

were used for the first 30 minutes of the simulation; early exponential for the

next 6 h; and late exponential for the last 5.5 h.

2.3.1 No SCFAs

All values are provided in events per hour.

µX1 = 0.842 �XY 1 = 0.030
µX2 = 1.190 �XY 2 = 0.009
µX3 = 1.013 �XY 3 = 0.003
µY 1 = 0.600 �Y X1 = 0.267
µY 2 = 0.876 �Y X2 = 0.002
µY 3 = 0.712 �Y X3 = 0.002

2.3.2 + SCFAs

All values are provided in events per hour.

µX1 = 0.520 �XY 1 = 0

µX2 = 0.901 �XY 2 = 0.002
µX3 = 0.793 �XY 3 = 0.003
µY 1 = 0.226 �Y X1 = 0.267
µY 2 = 0.467 �Y X2 = 0

µY 3 = 0.346 �Y X3 = 0

2.4 Potential reasons for underestimation of SPI-1+ cell
proportion during simulations

While our simulations using parameters quantified by time-lapse microscopy

captured the SCFA-mediated decrease in SPI-1+ proportion, they underesti-

mated the experimentally measured SPI-1+ proportion by roughly 2-fold in

both the absence and presence of SCFAs. Here, we speculate on why this may

be the case.

2.4.1 Assumptions in the simulation

For each switching event, we simulate a single cell turning on at a time (X � 1,

Y + 1). By observing real switching events, we see that 2-4 sister cells (mean

= 3.111 cells/switch event, see Supplementary video) simultaneously turn from

SPI-1- to SPI-1+ (X � 3.111, Y + 3.111). When we attempt to account for
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this in our simulations, we observe a 3% and 0.8% increase in the SPI-1+

cell-type frequency using untreated and SCFA parameters, respectively. This

coordinated switching by sister cells does therefore impact the final proportion,

but does not account for all of the underestimation.

The only parameters we use here are growth rates of SPI-1- and SPI-1+ cells

and cell-type switching rates. It’s likely additional parameters are necessary to

better predict cell-type frequencies. For example, we model interactions between

the cell types only in the carrying capacity and switching rates; other types of

interactions, including chemical communication, are neglected.

2.4.2 Potential biological sources of noise

As mentioned above, during experiments, on average 3 cells turn on at a time.

This suggests the signal for cell-type switching takes place in a cell’s ”mother”

or ”grandmother” and then executed 1-2 generations later. This suggests there

are influences other than only single-cell growth rates and switching frequen-

cies on SPI-1+ proportion, including history dependence in SPI-1- to SPI-1+

switches . This makes it very di�cult to simulate with precision. This aspect is

currently under investigation. As an aside, during switch o↵ events, we seldom

observe sister cells turning o↵ SPI-1 expression simultaneously, indicating a lack

of history dependence for SPI-1+ to SPI-1- events.

Cells which have just switched to the SPI-1+ phenotype also undergo a re-

ductive division soon after becoming GFP+, doubling the SPI-1+ cell-type soon

after switches. This dynamic is also very di�cult to capture using stochastic

simulations and could be a source of the underestimation.

Although we employed a feeding-culture approach, cells in the microflu-

idic chip, from where our single-cell parameters were derived, are experiencing

a di↵erent environment compared to cells growing in liquid culture as in our

population-level experiments (e.g. physical constraint and likely di↵erences in

oxygen levels as PDMS is very permeable to gasses). We also therefore cannot

exclude the di↵erence in physico-chemical environment as be a source of error

in parameter estimation.
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