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Abstract  

Attention is central for many aspects of cognitive performance, but there is no 
singular measure of a person’s overall attentional functioning across tasks. To develop 
a universal measure that integrates multiple components of attention, we collected data 
from more than 90 participants performing three different attention-demanding tasks 
during fMRI. We constructed a suite of whole-brain models that can predict a profile of 
multiple attentional components – sustained attention, divided attention and tracking, 
and working memory capacity – from a single fMRI scan type within novel individuals. 
Multiple brain regions across the frontoparietal, salience, and subcortical networks drive 
accurate predictions, supporting a universal (general) attention factor across tasks, 
which can be distinguished from task-specific attention factors and their neural 
mechanisms. Furthermore, connectome-to-connectome transformation modeling 
enhanced predictions of an individual’s attention-task connectomes and behavioral 
performance from their rest connectomes. These models were integrated to produce a 
new universal attention measure that generalizes best across multiple, independent 
datasets, and which should have broad utility for both research and clinical applications. 

 

Keywords: attention, fMRI, resting-state fMRI, connectome-based predictive modeling, 
cognitive neuroscience, computational modeling, functional connectome.  
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Introduction 

Attention has a ubiquitous role in perception and cognition (Chun et al., 2011).  
We are endlessly exposed to all kinds of overflowing sensory information, and the ability 
to deploy attention over space and to sustain it over time is crucial in everyday life.  We 
have, however, limited cognitive capacity, and therefore must selectively process 
information most relevant to our actions.  Attentiveness explains behavioral 
performance fluctuations both within and across individuals (Weissman et al., 2006), 
and attention deficits are common in mental illness and symptomatic of brain damage 
(Biederman et al., 1991; Heinrichs and Zakzanis, 1998; Levin et al., 1987).   

Despite this central importance of attention, clinicians and researchers lack a 
standardized way to measure a person’s overall attentional functioning.  Although no 
mental process can be reduced to a single number, both research and clinical practice 
can benefit from having standardized and quantifiable measures to facilitate comparison 
across and within individuals (Rosenberg et al., 2016a, 2018).  For example, 
intelligence research and education practice benefits from the ability to measure g, as 
an index of fluid intelligence (Deary et al., 2010).  A comparable index is lacking for 
attention, despite its pervasive role in modulating most perceptual and cognitive 
processes. 

The fact that there are so many different tasks to examine attention functioning 
reflects that attention is not a unitary construct but rather multifaceted (Chun et al., 
2011).  People’s attentional abilities may vary along the multiple dimensions of attention.  
These differences in attention functions among individuals can be measured by 
extensive behavioral tasks; however, an overload of tasks not only makes subjects feel 
fatigued, which may affect task performance, but also requires a substantial period of 
time. Therefore, it is important to understand what is common and what is unique 
among the different attention tasks and to try to predict them with minimal testing. 

The literature lacks a systematic investigation of the general and specific factors 
of attentional processes and the underlying neural architectures supporting general and 
specific aspects of attention across an array of tasks.  One behavioral study examined a 
set of cognitive tasks known to employ executive functions, including attention and 
working memory.  This study showed that the nine tested tasks are not completely 
independent but share common and separable components (Miyake et al., 2000).  
Another study also revealed a general behavioral factor that is shared by multiple 
attention task paradigms in common as well as specialized factors that are unique to 
specific tasks (Huang et al., 2012).  For the nine primary and eight secondary tasks 
involved in the study, one common component explained substantial variance in 
performance across most of the tasks.  However, this general attention factor could not 
be derived from an individual task, and the behavioral study did not explore the 
underlying neural mechanisms across tasks.  The frontal and parietal cortices are well-
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known to control attention (Corbetta and Shulman, 2002; Kanwisher and Wojciulik, 
2000), but most studies have not compared their engagement across multiple attention 
tasks.  In addition, only recently have studies begun to predict individual attentional 
behaviors from brain scans (Kucyi et al., 2017; Rosenberg et al., 2016a, 2017; Wu et al., 
2020). 

Here we seek to develop a universal attention profile measure that can quantify a 
person’s performance across the different cognitive demands of sustained attention, 
divided attention and tracking, and working memory.  The attention profile includes task-
specific measures and a universal measure that generalizes across tasks.  We use a 
neuroimaging-based data-driven approach called connectome-based predictive 
modeling (CPM; Shen et al., 2017) that develops computational models to accurately 
predict an unseen, novel individual’s trait and behavior from their brain activity.  This is 
based on the whole-brain pattern of functional connectivity (synchronized fluctuation of 
time-series signals from distributed brain regions), which is unique to each individual as 
a fingerprint and predictive of their behaviors (Cohen and D’Esposito, 2016; Finn et al., 
2015; Gratton et al., 2020; Woo et al., 2017).  CPM accurately predicts a variety of 
individual behaviors and traits, including intelligence (Finn et al., 2015; Yoo et al., 2019), 
attention (Rosenberg et al., 2016a, 2016b, 2018; Yoo et al., 2018), memory (Avery et al., 
2019; Lin et al., 2018; Zhang et al., 2020), language (Tomasi and Volkow, 2020), 
creativity (Beaty et al., 2018) and personalities (Cai et al., 2020; Hsu et al., 2018; Jiang 
et al., 2018).    

One of the earliest CPM studies introduced a model to predict an individual’s 
ability to sustain attention (Rosenberg et al., 2016a). The study demonstrated that the 
brain’s functional organization is predictive of behavioral performance in the gradual-
onset continuous performance task (gradCPT, Esterman et al., 2013).  In addition, the 
CPM of sustained attention generalized to predict individual performance in a stop-
signal task, performances in the Attention Network Task (ANT; Fan et al., 2005) and 
symptom severity in patients with attention-deficit/hyperactivity disorder (Rosenberg et 
al., 2016a, 2016b, 2018).  Sustained attention is, however, just one aspect of human 
attention (Chun et al., 2011). 

For a more comprehensive assessment of attention, we collected original 
behavioral and fMRI data from more than 90 participants performing three different 
attention tasks during fMRI scanning. The three tasks include the gradCPT to measure 
sustained attention, multiple object tracking (MOT) to measure divided attention and 
tracking, and a visual short-term memory (VSTM) task to assess working memory 
capacity as a form of internal attention (Chun et al., 2011; Engle, 2002).   

The primary goal of this study is to develop a battery of whole-brain functional 
network models that can measure how individuals vary in their attentional abilities.  We 
can predict task-specific attention measures, or we can unify the models to generate a 
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universal attention measure.  The suite of attention models developed in this study 
accurately predicts individual behaviors from functional connectivity measured during 
task performance as well as from the resting state.  A quantitative profile from a single 
fMRI session facilitates comparison across individuals and between sites, and it enables 
longitudinal tracking of individuals (Rosenberg et al., 2020) to assess development, 
aging, and intervention.  Moreover, we leveraged the network models to probe brain 
systems that support common and separable factors for attention functions measured 
during the tasks.  The investigation of functional anatomy across attentional functions 
sheds light on the relationships between components of attention and the brain 
networks that support them.   

Lastly, we developed new ways to significantly improve how patterns of brain 
networks supporting multiple attentional processes can be drawn from resting-state data 
alone.  This is essential because attention tasks vary widely and are difficult to 
standardize across studies and settings.  It is also impractical to ask participants, 
especially patients or children, to engage in many different attention tasks, especially 
inside a brain scanner.  If a profile of attention measures can be derived from resting-
state data, it would have significant utility for both research applications and clinical 
practice.  To enhance predictability from resting-state data, we utilized a novel method 
called connectome-to-connectome (C2C) state transformation modeling.  The C2C 
framework generates individual task-related connectomes from their rest connectomes 
with high specificity and improved behavioral prediction performance (Yoo et al., 2020).   
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Results 
Individual behaviors in three attentional tasks 

We first examined the reliability and similarity of individual performance in the 
three attention tasks.  To address the reliability of the behavioral measure of each task, 
we assessed the behavioral similarity between two sessions using Pearson’s correlation.  
Among the total of 94 subjects analyzed in this study, 65, 69, and 72 subjects had 
available behavioral performances in both sessions of gradCPT, MOT, and VSTM, 
respectively.  The individual behaviors were significantly correlated between two 
sessions in all three tasks (gradCPT: r=0.738, p=2.42x10-12; MOT: r=0.625, p=9.40x10-9; 
VSTM: r=0.577, p=1.16x10-7; significant under Bonferroni corrected p<0.05, 
Supplementary Figure S1).  These significant correlations between sessions indicate 
that individual behavioral performances were reliably measured in all tasks.   

We then tested how similarly participants performed in the three attention tasks.  
To assess the similarity of individual behaviors between the three different tasks, we 
estimated Pearson’s correlation of individual performances between them.  Individual 
performances were positively correlated between every pair of three attention tasks 
(gradCPT-MOT: r=0.366, p=2.86x10-4; gradCPT-VSTM: r=0.479, p=1.04x10-6; MOT-
VSTM: r=0.459, p=3.35x10-6; significant under Bonferroni corrected p<0.05, 
Supplementary Figure S2).   

 

CPMs of three attentional tasks 

We built a battery of predictive models of attentional functions (Table 1).  We 
constructed nine CPMs of attention that differed in cognitive states of fMRI scans 
(performing attention tasks, resting-state, or movie-watching) and target attention tasks 
(gradCPT, MOT, and VSTM).  In detail, three models were trained to predict individual 
gradCPT performance, another three were to predict MOT performance, and the other 
three were to predict VSTM performance.  Among the three models of each task, one 
model was trained using the corresponding task fMRI, another one was trained using 
rest fMRI, and the other one was trained using movie fMRI.  We evaluated these nine 
CPMs in predicting an unseen individual’s task performance using LOOCV.  We 
assessed the model’s prediction accuracy by correlating model-predicted and observed 
behavioral scores.  In all three tasks, predicted behavioral scores significantly correlated 
with actual task scores (ps<0.05 FWE-corrected using permutation) when CPMs were 
trained using task fMRI (the top row in Figure 1).  A significant positive correlation 
indicates that CPMs accurately predict individual differences in task performance.  The 
CPMs trained using movie fMRI also accurately predicted individual performance in all 
three tasks (ps<0.05 FWE-corrected using permutation, bottom row in Figure 1).  In 
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contrast, rest fMRI-based models only predicted behavioral scores in gradCPT, and 
failed to predict scores in MOT and VSTM (the middle row in Figure 1).   

 

 
Figure 1. Prediction accuracy of nine CPMs. Rows represent the fMRI data used in model 
training and prediction, and columns represent the target attention task. Models’ prediction 
accuracies were assessed by correlating model-predicted behavioral scores and observed 
scores.  P values were obtained using 1,000 permutations and corrected for multiple tests (three 
correlation tests with task fMRI-based models, three tests with rest fMRI-based models, and 
three tests with movie fMRI-based models). GradCPT: gradual-onset continuous performance 
task, MOT: multiple object tracking, and VSTM: visual short-term memory. 
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CPMs fMRI data Attentional task 

1                                  -  gradCPT d’ sensitivity in gradCPT 
2 Task-performing -  MOT % accuracy in MOT 
3                              -  VSTM K capacity in VSTM 

4  d’ in gradCPT 
5 Resting-state % in MOT 
6  K in VSTM 

7  d’ in gradCPT 
8 Movie-watching % in MOT 
9  K in VSTM 

Table 1. Nine CPMs of attention.  Two models in gray shade are replications of our previous 
study (Rosenberg et al., 2016a), but with different samples.  The other seven models were 
newly developed in the current study. GradCPT: gradual-onset continuous performance task, 
MOT: multiple object tracking, and VSTM: visual short-term memory. 

 

In addition to examining correlations, we also calculated prediction q2 (Scheinost 
et al., 2019).  The prediction q2 is a normalized version of mean square error, assessing 
the model’s numerical accuracy in predicting individuals’ actual behavioral scores 
relative to simply guessing their population mean.  Thereby, this prediction q2 
assessment complements the correlation-based evaluation which measures the model 
accuracy in predicting individual differences in behavior.  The prediction q2 result 
corroborated the successful prediction of attention functions (Supplementary Figure 
S3).  Three models using task fMRI data successfully predicted individual behavioral 
scores (ps<0.05 FWE-corrected using permutation).  The models using movie fMRI data 
also accurately predicted individual scores (ps<0.05 FWE-corrected using permutation). 
The rest fMRI-based model predicted only behavioral scores in gradCPT. 

 

CPMs generalize to predict individual behaviors in different tasks 

We investigated whether the CPM of each task generalizes to different attention 
tasks and different cognitive states of fMRI.  The CPMs trained using task fMRI 
successfully generalized to different attention tasks (the top left 3 by 3 subpart in Figure 
2, ps<0.05 FWE corrected using permutation).  Interestingly, all three task-based 
models predicted individual performances in gradCPT better than their own 
corresponding tasks (Figure 2 and Supplementary Figure S4).  For example, the CPM 
trained using MOT fMRI predicted unseen subjects’ gradCPT performance better than 
MOT performance.  In addition, the current results showed that movie fMRI (the bottom 
right 3 by 3 subpart in Figure 2) better predicts individual attention behaviors compared 
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to rest fMRI (the center 3 by 3 subpart in Figure 2).  The models with movie fMRI 
provided successful predictions in general (four successful predictions among six cross-
task prediction cases, ps<0.05 FWE corrected using permutation), whereas the models 
with rest fMRI could predict behaviors only in gradCPT.  

 

Figure 2. Cross-prediction results across all cognitive states and attention tasks (�: p<0.05, ��: 
p<0.01, and ��� : p=1/1,001, corrected using permutation). Rows represent combinations of 
fMRI data and behavior scores used in model construction, and columns represent 
combinations of fMRI data and behavior scores used in model validation. On-diagonal elements 
represent the nine within-task prediction results and off-diagonal elements represent the cross-
task predictions. Models’ prediction accuracies were assessed by correlating model-predicted 
and observed behavioral scores.  P value was obtained using 1,000 permutations and corrected 
for multiple tests.  The models with task fMRI successfully generalized to different attention 
tasks (the top left 3 by 3 subpart), and the models with movie fMRI also generalized to different 

tasks to lesser degrees (the bottom right 3 by 3 subpart). GradCPT: gradual-onset continuous 
performance task, MOT: multiple object tracking, and VSTM: visual short-term memory. 

 

Generalizability of CPMs is not driven by correlated behaviors between tasks 

 We employed two different approaches to examine whether the generalizability 
of CPMs between tasks is fully driven by the correlations in behavior between them.  
First, we constructed variants of the original nine CPMs with connectivity features 
controlled for the performance in the two non-target tasks.  Edges that are correlated 
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with performance in a target task were first selected as features, and amongst these, 
edges that correlated with performance in either of the other two tasks were excluded.  
Hence, these new models include predictive edges that correlated only with individual 
behavioral performance in a target task, but not with behaviors in any of the other two 
transfer tasks; the resulting models contained only task-specific edges. All other steps 
except this feature selection remained the same as the original model construction.  We 
then assessed the generalizability of these nine variant models.  This analysis yielded a 
pattern of successful cross-task prediction similar to the original models 
(Supplementary Figure S5).  The models with task fMRI successfully predicted 
behaviors in different tasks (ps<0.05 FWE corrected using permutation).  Predictions by 
models with movie fMRI in general were also still successful (three among six cross-
task predictions, the bottom left 3 by 3 subpart in Supplementary Figure S5, ps<0.05 
FWE corrected using permutation).  This result indicates that the generalizability of the 
attention CPMs between different tasks is not dependent on the correlated behaviors 
and the shared connectivity features across different tasks.   

 As a second way to rule out the effect of correlated behavior in generalizing the models, 
we re-assessed the prediction accuracy of the original nine CPMs while controlling for 
performance in the non-target tasks.  In this case, we did not construct new models.  
Instead, we used partial correlations to evaluate the generalizability of the original 
models.  We correlated model-predicted and observed behavior performance with 
controlling for performance in non-target tasks. For example, to examine if a model 
trained to predict gradCPT scores generalizes to predict MOT, we calculated the partial 
correlation between model-predicted scores and observed MOT scores with controlling 
for observed gradCPT scores.  The partial correlation results were consistent with the 
results from the models with task-specific connectivity (Supplementary Figure S6, 
ps<0.05).  The results further support that predictive models generalize well across 
different attention tasks even when controlling for correlations between behavior.  

 

Predictive anatomy of the original CPMs of attentional tasks 

We explored the predictive anatomy of the original CPMs of three attention tasks.  
The distribution of predictive connectivity is similar across three tasks on a macro scale 
(Figure 3A).  In all three models, predictive connectivity is distributed across the whole 
brain, coinciding with the previous reports (Rosenberg et al., 2016a).  The salience, 
visual II, frontoparietal, subcortical, and cerebellum networks were shown to play major 
roles in the CPMs (darker color in Figure 3A).  To test whether there is a general 
connectivity component underlying the three attention tasks, we tracked the overlap of 
predictive connectivity between three task-based models. (the bottom right in Figure 
3A).  The connectivity of the salience, subcortical, and cerebellum networks were 
commonly involved in all three task-based CPMs for both positive and negative 
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networks.  In addition, the negative network also included connectivity of the 
frontoparietal and visual II networks.   

 

 
Figure 3. A. Predictive anatomy of three task-based CPMs.  The scale bar in gradCPT, MOT 
and VSTM represents the relative ratio of predictive functional connections to all possible 
number of functional connections between networks with a sign representing whether the 
functional connection is in a positive or negative network.  The scale bar in overlap represents 
the actual number of predictive functional connections with a sign representing whether the 
connectivity is in a positive or negative network. GradCPT: gradual-onset continuous 
performance task, MOT: multiple object tracking, and VSTM: visual short-term memory. MF: 
medial-frontal network, FPN: frontoparietal network, DMN: default mode network, Mot: motor, VI: 
visual I, VII: visual II, VAs: visual associations, SN: salience network, Subc: subcortex, Cbl: 
cerebellum.  B. The number of predictive functional connections of three task-based CPMs in 
positive and negative networks.  

 

CPMs are robust across the number of predictive connectivity features 

Although we found CPMs of three tasks generalize well between tasks, predictive 
performance was numerically different across them (Figure 1 & 2).  The number of 
predictive connectivity features was different across the models; for gradCPT there 
were 1,541 and 2,506 edges in the positive and negative networks, respectively, 
whereas for VSTM there were 713 and 884 edges, less than half the number in 
gradCPT (Figure 3B).  The numbers of predictive connectivity features for MOT were 
in-between gradCPT and VSTM, 1,080 and 892 edges in the positive and negative 
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networks, respectively.  We, therefore, examined if the better performance of gradCPT 
model is due to the larger number of predictive connectivity features compared to that of 
MOT and VSTM.  Here, we constructed variants of the nine models with different 
feature selection criteria.  In our original model, we selected edges that were 
significantly correlated with individual behaviors of interest at p<0.05.  In the current 
analysis, we selected the top n edges whose correlations with behaviors (either positive 
or negative) are most significant.  In this way, we control the number of predictive edges 
to be the same between different models.  We observed that model predictions remain 
similar with this new feature selection criteria (Supplementary Figure S7).  Across the 
range of selection thresholds, the gradCPT CPM predicted most accurately as the 
original CPM model.  This analysis indicates that the size of predictive network is not a 
driving factor for model performances and that CPM modeling is robust against the 
choice of feature selection threshold. 

 

Head motion during attention tasks cannot explain the accurate prediction of 
CPMs 

 To test whether there is any relationship between head motion and task 
performance, we correlated head motion, measured by mean FD, and task performance 
across individuals.  MOT performance was negatively correlated with head motion 
during all three tasks, rest, and movie scans (p<0.05 Bonferroni corrected, 
Supplementary Table S1).  Performance in gradCPT and VSTM were not correlated 
with head motion. 

 Since head motion was correlated with task performance in MOT, we 
reevaluated the performance of the original CPMs to confirm that the prediction of 
behavioral performance in MOT was not biased by head motion, measured by mean FD.  
To account for head motion in behavior prediction, we assessed the prediction accuracy 
of models by running partial correlations between the model-predicted and observed 
behavioral scores while controlling for head motion during the observed behavior.  For 
example, when we trained task-based model of gradCPT and tested this model in 
predicting the performance in MOT task, we ran a partial correlation between the 
predicted scores and the observed MOT scores while controlling for head motion during 
the MOT task.  Prediction performance of the models remained mostly significant even 
after controlling for head motion (Supplementary Figure S8).  Specifically, the 
prediction for MOT performance showed the largest drop in accuracy compared to that 
when not controlled for head motion (no significance, ps>0.07 in Supplementary 
Figure S8B).  Considering that only the performance in MOT task was correlated with 
head motion, this modulation in predicting MOT is not surprising.  Overall, the present 
analyses demonstrated that the successful prediction of the constructed models was not 
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based on head motion and that the CPMs established a reliable association between 
functional brain connectivity and attentional behaviors. 

 

CPMs of a universal (general) attention factor accurately predict individual 
behaviors in three tasks 

 To investigate if we can build a successful prediction model with a universal 
attention factor, we performed different variations of predictive modeling.  We trained 
nine predictive models to utilize edges that were correlated with all three task behaviors 
as features; the models used only connectivity features shared across tasks.  It is worth 
noting that these new models have significantly fewer predictive edges compared to the 
original models (Supplementary Table S2).  However, these models’ prediction 
accuracy and generalizability were almost identical with the nine original models.  The 
models with task fMRI fully generalized to different attention tasks (ps<0.05 FWE 
corrected using permutation, Figure 4A).  The predictive connectivity features of task 
fMRI-based models were distributed among multiple brain networks, mainly in the 
subcortical, cerebellum, frontoparietal, motor, visual II and salience networks (Figure 
4B). The prediction accuracy with all task-related edges exhibited similar patterns to 
those of the original models, and the generalizability was not significantly improved 
(Supplementary Figure S9). 

 

  
Figure 4. A. Cross-prediction results with a general component of three tasks (i.e., task-
common edges; �: p<0.05, ��: p<0.01, and ���: p=1/1,001, corrected using permutation). The 
models with task fMRI successfully generalized to different attention tasks (the top left 3 by 3 
subpart).  B. Predictive functional connections of a universal attention component that are 
shared in all three task fMRI-based CPMs. The scale bar represents the actual number of 
selected edges with a sign representing whether the functional connection is in a positive or 
negative network. GradCPT: gradual-onset continuous performance task, MOT: multiple object 
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tracking, and VSTM: visual short-term memory.  MF: medial-frontal network, FPN: frontoparietal 
network, DMN: default mode network, Mot: motor, VI: visual I, VII: visual II, VAs: visual 
associations, SN: salience network, Subc: subcortex, Cbl: cerebellum. 

 

Multiple brain networks contribute to prediction of attentional behaviors 

We scrutinized the brain networks driving accurate behavior predictions.  We 
defined ten networks (Finn et al., 2015; Noble et al., 2017), and to measure their 
contributions to performance, we computationally lesioned all the nodes in each network.  
Each of the ten networks was lesioned iteratively.  After lesioning each network, we 
trained and tested three task fMRI-based CPMs in the same way the original three task-
based models were constructed.  We found that lesioning one network did not 
significantly decrease predictive models’ accuracy (Figure 5A).  The three within-task 
predictions remained significant for all networks (ps<0.05 FWE corrected using 
permutation).  All cross-task prediction cases also remained significant for all networks, 
except when lesioning the motor network and subcortical network for MOT to VSTM 
prediction (ps<0.05 FWE corrected using permutation).   

 

 
Figure 5. Behavioral prediction after lesioning each network. (�: p<0.05, ��: p<0.01, and ���: 
p=1/1,001, corrected using permutation).  A. Rows represent lesioned network and columns 
represent combinations of training and testing data. Models’ prediction accuracies were 
assessed by correlating model-predicted and observed behavioral scores.  P value was 
obtained using 1,000 permutations and corrected for multiple tests.  B. The average prediction 
performance of each network.  This was obtained by averaging nine prediction cases in each 
row in A. GradCPT: gradual-onset continuous performance task, MOT: multiple object tracking, 
and VSTM: visual short-term memory. MF: medial-frontal network, FPN: frontoparietal network, 
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DMN: default mode network, Mot: motor, VI: visual I, VII: visual II, VAs: visual associations, SN: 
salience network, Subc: subcortex, Cbl: cerebellum. 

 

We further assessed the effect of lesioning each network on prediction 
(numerical decrease in accuracy) (Figure 5B).  We found that the salience network, 
followed by the subcortical and cerebellum networks, is the most important in the 
attention prediction.  To confirm that the lower performance was not driven by the 
smaller number of survived connections used in model training after lesioning, we 
tested the correlation between prediction performance and the number of survived 
connections (Supplementary Table S3).  There was no positive correlation, indicating 
that the salience network (and the subcortical and cerebellum networks) indeed plays a 
major role in prediction of performance across attention tasks. 

Next, we performed a complementary analysis to examine the predictive power 
of each network directly (Figure 6A).  In this analysis, we built predictive models only 
using within-network connectivity of each network, iteratively for each network.  This 
analysis confirmed that the subcortical, frontoparietal, and salience networks are the 
most predictive networks (Figure 6B).  Although the prediction performance was lower 
than the original models’ accuracy, the prediction accuracy by each of these networks is 
notable given the significantly fewer number of features in these models.   

 

 

Figure 6. Cross-prediction using only within-network connectivity (�: p<0.05, ��: p<0.01, and ���: 
p=1/1,001, corrected using permutation).  A. Rows represent each canonical network and 
columns represent combinations of training and testing data. Models’ prediction accuracies 
were assessed by correlating model-predicted and observed behavioral scores.  P value was 
obtained using 1,000 permutations and corrected for multiple tests.  B. The average prediction 
performance of each network.  This was obtained by averaging nine prediction cases in each 
row in A. GradCPT: gradual-onset continuous performance task, MOT: multiple object tracking, 
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and VSTM: visual short-term memory. MF: medial-frontal network, FPN: frontoparietal network, 
DMN: default mode network, Mot: motor, VI: visual I, VII: visual II, VAs: visual associations, SN: 
salience network, Subc: subcortex, Cbl: cerebellum. 

 

Note that this analysis examined the predictive power of only edges located 
within a network of interest; in contrast, the previous lesioning analysis examined the 
importance of edges within a target network and edges connecting a target network to 
the other nine networks together.  To further differentiate roles of within- and between-
network connectivity in prediction, we assessed the predictive power of between-
network connectivity for each network.  We constructed a new set of CPMs using 
functional connections that connect one network with the other nine networks.  We 
performed this analysis iteratively for each of the ten networks.  We found that the 
connectivity of the salience network was again the most predictive of individual attention 
on average across all prediction cases (ps<0.05 FWE corrected using permutation, 
Supplementary Figure S10A).  The averaged performance mirrored results from the 
lesioning analysis; the salience, cerebellum and subcortical networks well predicted 
individual behaviors (Supplementary Figure S10B).  Again, to confirm that the lower 
performance was not driven by the smaller number of between-network connections, we 
tested the correlation between performance and the number of edges.  The results 
showed no positive correlation between them. 

 

The salience, frontoparietal and subcortical networks predict universal attention 

Given the importance of the salience, subcortical, cerebellum, frontoparietal and 
visual II networks in predicting individual attentional behaviors, we asked if connectivity 
between these networks can predict individual behaviors in attention tasks with an 
accuracy comparable to the original whole-brain models.  The CPMs using the 
connectivity between the five networks fully generalize across different task-related 
behaviors (Supplementary Figure S11).  Among the models tested in this analysis, the 
connectivity of three networks, the salience, frontoparietal, and subcortical networks, 
were the most important for prediction (Supplementary Figure S11BC).  Of all models 
made by selecting any three out of five networks, a model using the salience, 
frontoparietal, and subcortical networks best predicted individual behaviors on average, 
and its prediction performance was comparable to the performance of the original 
whole-brain model.  This result suggests that connectivity between the salience, 
frontoparietal and subcortical networks may be associated with a general component of 
attention.  As a control analysis, we built a model using the other five networks (the 
medial-frontal, default mode, motor, visual I, and visual association networks) and found 
that the model’s prediction was less accurate than the previous five-network model or 
even the three-network (the salience, frontoparietal, and subcortical networks) model 
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(Supplementary Figure S11B).  This result agrees with the preceding observation that 
the CPM of a universal attention factor accurately predicts attention task performances 
(Figure 4) and corroborates these networks’ general importance in attention functions.   

 

 
Figure 7. Prediction of individual behaviors with different approaches. A. Prediction 
performance was assessed by prediction q2 and negative values were set to zero (i.e., task-to-
rest prediction with the empirical rest connectome in all three tasks). Darker bars represent the 
behavior prediction with task connectomes generated by C2C modeling. The task connectomes 
generated by C2C modeling from rest data significantly better predicted individual behaviors 
than empirical rest connectome in all three attention tasks.  A darker bar in task-to-rest 
represents the behavior prediction of a model trained using empirical task connectome and 
predicted with task connectome generated from empirical rest connectome.  A darker bar in 
rest-to-rest represents the prediction of a model trained using empirical rest connectome and 
predicted with task connectome generated from rest connectome.  B. The same result, but 
prediction performance was assessed by correlation r.   Error bars represent standard deviation 
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across 1,000 iterations.  GradCPT: gradual-onset continuous performance task, MOT: multiple 
object tracking, and VSTM: visual short-term memory. 

 

C2C modeling successfully generates patterns of attention-related connectomes 
from resting state fMRI and improves prediction of attentional behaviors 

Although the results above demonstrated that task-based connectomes led to 
better prediction of behaviors compared to rest connectomes, resting scans still have 
the undisputable advantage of enhancing data retention by reducing the demand on 
participants, especially in clinical populations. Therefore, we next asked if we could 
improve individual behavior predictions from rest connectomes by applying 
connectome-to-connectome (C2C) state transformation modeling (Yoo et al., 2020).  
We implemented the C2C pipeline to our rest connectomes to generate connectomes of 
the three attention tasks.  The model-generated task connectomes accurately 
resembled their corresponding empirical task connectomes (Supplementary Figure 
S12AB).  The generated task connectomes were more statistically similar to the 
empirical task connectomes than the empirical rest connectomes were, in terms of the 
edge-wise strength as well as the spatial pattern of the whole-brain connectome 
(ps=1/1,001).  More remarkably, individual attentional behaviors were predicted by the 
generated task connectomes better than by the empirical rest connectomes alone 
(ps<0.05).  The generated connectomes not only captured individual differences (as 
measured by Pearson’s r; Figure 7B) but also accurately predicted an individual’s 
actual behavioral scores (as measured by q2; Figure 7A).  This result suggests that 
C2C state transformation is essential to make CPMs generalizable across different 
cognitive states of fMRI.  The results from the movie connectomes are also shown in 
Supplementary Figure S12CD and S13.  

 

A universal attention model 

Unifying the models and findings above, we propose a universal attention model 
to predict a single attention measure for novel individuals based on resting-state data 
alone.  The universal attention model accurately predicted performance in the three 
attention tasks based on the rest connectome, and the universal attention model was 
significantly better than the MOT and VSTM task models applied to rest data with C2C 
transformations (Figure 8 and Supplementary Figure S14A).  When the task-specific 
models were applied to rest data without C2C transformations, they could not predict 
individuals’ actual scores at all (q2=0 in three task-based models, Supplementary 
Figure S14B), showing the importance of C2C transformation for applying CPMs to rest 
data. 
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The universal attention model’s performance was even comparable to task-
specific models applied to task data, averaged across three tasks (Supplementary 
Figure S15).  Importantly, the universal model generalized across the three tasks better 
than any of the task-specific models, which made weaker predictions for non-native 
tasks.  The strong predictive power and the higher generalizability of the universal 
model make it broadly applicable.   

 

 

Figure 8.  Behavior prediction by the universal attention model. Each task name in x-axis 
represents a single task-based model combined with corresponding C2C model.  The universal 
attention model and three CPMs predict individual behaviors from a resting-state connectome.  
Behavior prediction represents performance averaged for three tasks prediction.  Error bars 
represent standard deviation across 1,000 iterations.  � : The universal model prediction 
significantly better predicted behaviors than CPMs at p<0.05 from 1,000 iterations.  GradCPT: 
gradual-onset continuous performance task, MOT: multiple object tracking, and VSTM: visual 
short-term memory. 

 

External validation: the universal model generalizes to independent datasets 

To further validate the proposed universal attention model's generalizability and 
practical applicability, we tested it on three independent datasets.  The three datasets 
comprise rest connectomes and gradCPT scores (d’) from 25 adults (Rosenberg et al., 
2016a),  rest connectomes and ANT scores (RT variability) from 41 adults (Rosenberg 
et al., 2018), and rest connectomes and ADHD Rating Scale-IV scores (DuPaul et al., 
1998) from 113 children and adolescents with and without ADHD diagnoses 
(Rosenberg et al., 2016a) provided by the ADHD-200 consortium (Consortium, 2012).   

The universal model successfully generalized to predict attention performance in 
the three external datasets.  The universal model not only captured individual 
differences in attention function (Supplementary Figure S17) but also accurately 
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predicted individuals’ actual scores (Figure 9).  In contrast, the two CPM models trained 
using gradCPT fMRI or rest fMRI were much less accurate in predicting actual individual 
abilities across the different external datasets and measures (Figure 9).  It should be 
noted that the gradCPT CPMs were able to detect relative differences in individual 
attention performance (vs. actual performance) when measured by correlation 
(Supplementary Figure S17).  This result demonstrates the practicality of the proposed 
universal attention model over task-specific CPMs.   

 

Figure 9.  Generalizability of the universal attention model in three independent datasets.  A. 
Prediction performance was assessed by prediction q2. Negative q2 values were set to zero.  
The universal model (yellow) successfully generalized in different datasets.  The universal 
model accurately predicted individuals’ actual attentional abilities obtained in gradCPT and ANT 
and assessed by ADHD-RS.  In contrast, the CPMs trained using gradCPT fMRI or rest fMRI 
did not generalize to predict individual abilities that were assessed by different measures in the 
external datasets. 

 

To confirm that the universal attention model predictions are specific to attention, 
we performed the following analyses adopted from Rosenberg et al., 2016a, using the 
ADHD dataset.  First, we assessed the correlation-based model performance while 
controlling for age and IQ measured by the Wechsler Intelligence Scale for Chinese 
Children-Revised (Dan and Yu, 1990).  The universal attention model remained 
successful, exhibiting a significant positive correlation between observed and predicted 
scores (r=0.223, p=1.85x10-2), even after controlling for age and IQ.  This result 
indicates that the model indeed measures attention rather than a general cognitive 
ability or age.  Second, to confirm that an individual’s general arousal did not drive the 
universal model prediction, we assessed the relationship between the model prediction 
and the hyperactivity-impulsivity.  If the proposed universal attention model predicts 
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arousal rather than attention, model-predicted scores should correlate positively with 
hyperactivity scores that reflect high arousal.  Instead, the universal attention model 
predictions correlated negatively to the hyperactivity scores (r=-0.240, p=1.03x10-2), 
suggesting that hyperactive individuals have worse attention.  Again, this result 
suggests that the universal attention model captures attentional ability rather than 
individual arousal. 
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Discussion 
 We developed a suite of whole-brain connectome-based predictive models (CPM) 
that can predict both a universal (task-general) or multifaceted (task-specific) measure 
of attention from an individual’s resting-state fMRI data or single-task fMRI data.  The 
network models accurately predicted sustained attention, divided attention and tracking, 
and working memory capacity.  By comparing these models, we uncovered the 
underlying neural mechanisms supporting a general component across these 
attentional functions.  We observed that patterns of multiple brain networks, including 
the salience, subcortical, cerebellum and frontoparietal networks, drive accurate 
prediction of individuals’ attentional abilities across tasks, suggesting that these 
networks support a universal (general) attention factor.  To further enhance the 
measurement of attention, we applied a novel analysis framework, connectome-to-
connectome (C2C) modeling (Yoo et al., 2020), and demonstrated that we can generate 
the patterns of individuals’ attention task connectomes from their rest connectome alone. 
More remarkably, the generated task connectomes further improved prediction of 
individual attention behaviors in either a task-specific or universal manner.  The 
universal attention measure performed better than task-specific models applied to rest 
data, and it generalized better across the three attention tasks and other external 
measures, making it a powerful measure with broad utility.   

 

The generalizability and functional anatomy of attention network models  

 CPMs successfully generalized to predict performance across three different 
attention tasks: sustained attention, tracking, and visual working memory (Figure 2).  
For example, a model trained to predict individual behaviors in gradCPT accurately 
predicted performance in MOT and in VSTM as well.  This generalizability of predictive 
models across different attention tasks suggests shared neural mechanisms of a 
universal attention factor across the tasks.  Previous studies revealed a general 
attention factor (Huang et al., 2012), and the neural system underlying attention 
performance in diverse tasks (Wojciulik and Kanwisher, 1999).  Going beyond these 
studies, our CPM approach looks at connectivity patterns that can further predict 
quantifiable performance across multiple tasks in novel individuals.  

The brain networks of the universal attention factor mainly recruited the salience, 
subcortical, cerebellum, frontoparietal and motor networks (Figure 4B).  CPMs tuned to 
the universal attention factor exhibited prediction accuracy and generalizability 
comparable to the native task models.  This was surprising given that the universal 
attention models utilized significantly fewer connectivity features than the native task 
models (Figure 3B and Supplementary Table S2).   
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To further understand the relative contribution of each canonical brain network 
for the universal attention factor, we computationally lesioned each network in isolation 
and examined their impact on whole brain CPM performance.  We observed that the 
salience network, followed by the subcortical and frontoparietal networks, is the most 
important network in predicting individual attentional behaviors across all tasks in 
general, that is, exhibiting high generalizability (Figure 5 & 6 and Supplementary 
Figure S9 & S10).  The results further show that these networks play a primary role in 
attention performance across tasks.  The involvement of these networks in CPM is in 
line with previous findings that attention-related tasks induce or modulate a functional 
engagement of frontal and parietal areas (Corbetta et al., 1995; Hopfinger et al., 2000; 
Pardo et al., 1991; Sprague and Serences, 2013; Wojciulik and Kanwisher, 1999) and 
subcortical areas (Coull et al., 2004; Heinze et al., 1994; Wimmer et al., 2015). 

Interestingly, we also found that connectivity between the cerebellum and other 
networks are an informative marker of individual attentional performance (Figure 5 & 6).  
Although the cerebellum is traditionally important for motor control, cerebellar 
involvement in higher cognition has been proposed over three decades (Gao et al., 
1996; Leiner et al., 1986; Petersen et al., 1989; see for reviews, Stoodley, 2012; Strick 
et al., 2009).  Advances in brain imaging techniques started to reveal cerebellar 
connections with higher association cortices and coactivation with cortical networks in 
various cognitive tasks (Buckner, 2013).  Cerebellar involvement in the specific function 
of attention has also been well documented; such as, attention-induced cerebellar 
activation (Allen et al., 1997), attentional modulation on the cerebellar activity (Rees et 
al., 1997), and attention deficits with cerebellar lesions (Gottwald et al., 2003).   

 

The validity of the universal attention measure 

The universal attention model here was based on three tasks, which cover many 
fundamental dimensions of attention: sustained attention, divided attention and tracking, 
and working memory. Amongst the specific tasks, the gradCPT task supports the 
strongest predictions and generalizability to other tasks here and in other studies 
(Rosenberg et al., 2016a, 2016b; Yoo et al., 2018).  For these reasons, when only one 
attention task can be conducted in the scanner, we recommend the use of the gradCPT.  
When only rest data are available, the universal attention model offers the most 
generalizable measure of attention.   

The gradCPT, MOT, and VSTM tasks tested here are only a small sample of the 
wide variety of attention tasks out there. However, having tested a wider variety of tasks, 
Huang et al. demonstrated that that there appears to be only one general factor that is 
shared across them, and we believe that this is what underlies the universal attention 
measure proposed here (Huang et al., 2012).   
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As further external validation, our universal attention model generalized to predict 
attention performance, and not general cognitive ability or arousal, across several novel 
and independent datasets, multiple measures of attention (gradCPT d’, ANT RT 
variability, and ADHD Rating Scale), lab or clinical data (ADHD diagnosis), different age 
groups (adults and children/adolescents), and variable data acquisition sites (two 
centers in New Haven and one in Beijing) and data processing procedures (AFNI and 
Bioimage Suite with SPM8).  Future work can further validate the universal attention 
measure across different tasks and datasets such as the Human Connectome Project 
(Barch et al., 2013), Philadelphia Neurodevelopmental Cohort (Satterthwaite et al., 
2014), and Adolescent Brain Cognitive Development Study (Casey et al., 2018).  

 

Factors affecting prediction accuracy 

Our CPMs of different attention functions provided different, at least numerically, 
prediction accuracy for the three tasks.  We attempted to address if any parametric 
difference in modeling or behavioral measures causes the different accuracy of 
predictive models.  Our results indicate that different reliabilities of the three behavioral 
measures might have constrained the prediction accuracy of models.  Individual 
behaviors in gradCPT were most reliable, and the model prediction of gradCPT 
performance was the most accurate (Supplementary Figure S1).  Individual behaviors 
in VSTM were least reliable, and the model prediction of VSTM performance was the 
least accurate, although it was still significant.  Other factors – the degree to which the 
general factor explains individual behaviors in each task (Supplementary Table S4), 
the number of predictive features, the number of available subjects, and scan duration –  
were uncorrelated with prediction accuracy (or controlled to be consistent across tasks 
in experimental design).  This result underlines the obvious importance of measuring 
behaviors accurately during fMRI scanning. 

 

Functional connectome during the movie-watching and the resting states 

 The idea of using naturalistic stimuli during fMRI acquisition has attracted 
research interest.  Movie-watching paradigms of fMRI were demonstrated to amplify 
individual differences of brain organization (Vanderwal et al., 2017) and to better 
capture individual differences in intelligence than predictions based on resting state 
fMRI (Finn and Bandettini, 2020).  Expanding on these reports, we demonstrated 
improved predictions of individual attention performance from movie-watching scans.  
However, it remains unclear why movie-watching data supports better predictions than 
rest data.  One possibility is that movie watching induces attentional engagement of 
participants, making their functional connectomes more similar to attention task 
connectomes.  To address if this was the case, we estimated the spatial similarity of 
movie-watching connectomes to attention task connectomes and compared it to the 
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similarity of resting-state connectomes to attention task connectomes.  We observed 
that these similarities were not significantly different, suggesting that being engaged in a 
movie does not simply make individual connectomes more similar to attention-task 
connectomes.  Another possibility is that movie watching aligns individual brain 
organization to be more consistent with each other (responding to the same visual 
stimulus), thus reducing individual variability from random mind wandering, which 
should be widely different across subjects and between sessions.  Previous studies 
reported that movie-watching paradigms improved reliability and individual identification 
(Meer et al., 2020; Wang et al., 2017).  To examine this in our dataset, we estimated 
and compared intra- and inter-individual similarity of connectomes at resting-state and 
at movie-watching.  fMRI time-volumes made available to the connectome construction 
was matched between two states: 300 TRs from each session.  We observed, however, 
that the connectome similarity (both within and between individuals) during movie-
watching was only numerically higher than the resting-state and we did not see any 
statistical difference.  This suggests that subjects may exhibit a substantial difference in 
processing the same stimuli based on own experiences and knowledges, and the 
difference might be reflected in across the whole brain.   

 

Practical utility and potential applications 

To enhance the practicality of the current approach and models, we extended 
CPM modeling with a novel method called connectome-to-connectome (C2C) modeling. 
We showed that C2C modeling accurately predicted the individual attention-task 
connectomes from their rest connectomes, and notably, it enhanced behavioral 
predictions better than using the rest connectome alone.  

The C2C framework should have significant practical and clinical promise.  
Compared to task scans, rest scans are easier to collect consistently across studies and 
sites.  For example, clinical populations may have difficulty performing certain tasks 
(Pujol et al., 1998). Instead, researchers or clinicians can obtain rest scans from 
patients because of its simplicity and minimal demands (Bullmore, 2012).  This is one of 
the main reasons why resting-state fMRI has gained much popularity in clinical and 
other neuroimaging studies.  However, relative to task data, rest data have reduced 
accuracy in characterizing individual traits and behaviors (Greene et al., 2018; Jiang et 
al., 2020; Tomasi and Volkow, 2020; Yoo et al., 2018), perhaps due to unconstrained 
mind-wandering that may result in more variable mental states from scan to scan and 
from subject to subject.  The C2C modeling improves the diagnostic value of rest scans, 
easing the burden of conducting multiple scans or trying to standardize tasks across 
individuals.   

In this study, we demonstrated the applicability of the C2C framework in studying 
attention functioning.  Our approach of combining CPM and C2C modeling should be 
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useful in studying other mental abilities such as memory and fluid intelligence, and 
related neuropsychiatric disorders such as attention-deficit/hyperactivity disorder and 
dementia.  Our approach can derive estimates of multiple cognitive measures from a 
single rest scan, analogous to how physicians can assay multiple health measures from 
a single blood sample. The universal attention measure is proposed as a standard to 
quantify and compare attention functioning across individuals and testing sites.   

 

Conclusion 

We developed a suite of connectome-based models that can predict a profile of 
individual attentional abilities from a single fMRI scan. The task fMRI-based models 
accurately predicted attentional components of sustained attention, divided attention 
and tracking, and working memory capacity.  We observed that patterns of multiple 
brain networks, including the frontoparietal, salience, and subcortical networks, drive the 
accurate prediction of individuals’ attentional abilities across tasks, suggesting that 
these networks underlie a general factor of attention.  The combined approach of CPM 
and C2C allows these complex profiles of an individual’s cognitive and behavioral 
abilities to be estimated from commonly collected rest scans.   
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Methods 
Subjects and experimental designs 

One hundred and twenty-seven right-handed, neurologically healthy individuals 
with normal or corrected-to-normal vision participated in a two-session fMRI study (80 
female, ages 18 to 35 years, mean=23.15 years, SD=4.43). Data from thirty-three 
participants were excluded from the analysis due to excessive head motion (>3 mm 
maximum head displacement and >0.15 mm mean framewise displacement [FD]) 
during fMRI scanning, task performances with lower or higher than 2.5 standard 
deviations from the group mean in both sessions, or low imaging data quality.  The 
remaining 94 individuals with all behavioral and imaging data were included in the main 
analysis (61 female, ages 18 to 35 years, mean=23.07 years, SD=4.51).  Two fMRI 
sessions were separated by approximately two weeks (mean=17.27 days, SD=20.29). 

Each fMRI session started with an anatomical magnetization prepared rapid 
gradient echo (MPRAGE) followed by 10-min resting-state runs (two runs in session 1 
and one run in session 2) and a 7:16-min watching-movie run (Inscapes, Vanderwal et 
al., 2015). Afterwards, all participants performed three 10-min attention-related tasks 
while they were in the scanner.  The three tasks were the gradual-onset continuous 
performance task (gradCPT), multiple object tracking (MOT), and visual short-term 
memory task (VSTM).  The order of these tasks was counterbalanced across 
participants and sessions.  An additional task, either the Attention Network Task (ANT; 
Fan et al., 2005) or an n-back task, was collected after completing the three main tasks 
in session 2, but these tasks are not included in this study.  All participants provided 
written informed consent approved by the Yale University IRB and were paid for their 
participation. 

 

Three attention tasks 

Participants performed three attention-related tasks in the scanner. Task 
performance was assessed with sensitivity (d’), accuracy (%), and working memory 
capacity (Pashler’s K) for gradCPT, MOT, and VSTM, respectively. To calculate task 
performance scores, we averaged scores from the two sessions for each task.  For 
those who had only one session that met our data inclusion criteria (29 subjects for 
gradCPT, 25 subjects for MOT, and 22 subjects for VSTM), we used the task score of 
the available session in the analysis.  

 

Gradual-onset continuous performance task 

The gradCPT is a task that measures sustained attention and inhibitory control 
(Esterman et al., 2013; Rosenberg et al., 2013). In this 10-min task, participants saw 
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grayscale photographs of scenes gradually transitioned from one to the next. The 
scenes consist of city scenes that appear in 90% of the total trials and mountain scenes 
that appears in only 10% of the total trials.  Each scene transitioned every 800ms, and 
participants were asked to respond every time they saw a city scene by pressing a 
button with their right index finger and withhold responses to the mountain scenes. The 
task consisted of 740 trials (.8 s each).  Sensitivity (d’) was calculated to assess task 
performance.  

 

Multiple object tracking 

MOT measures divided attention, tracking, working memory capacity, spatial 
attention, inhibition, and sustained selective attention (Pylyshyn and Storm, 1988).  In 
this 10-min task, participants tracked multiple target objects while all stimuli were 
moving. At the beginning of each trial, participants were presented with 12 randomly 
spread identical white discs on the screen. For each trial, three or five discs among the 
12 flashed green and turned back to white, designating them as the target discs of that 
trial, while the remaining non-target discs remained white. All of the 12 discs then 
moved around the screen for 5,000 ms, and then one of the 12 discs was probed. 
Participants were instructed to press a button with their right index finger if the probed 
disc was one of the original targets and press with their right middle finger if it was not. 
The task consisted of 56 trials (10.3 s each), and performance was assessed by a 
percent accuracy.  

 

Visual short-term memory task 

VSTM measures visual working memory capacity that stores visual information 
(Luck and Vogel, 1997). In this 10-min task, participants saw discs of same size but 
different colors on the screen for 100ms and were asked to remember the colors of 
individual discs. The number of discs for each trial varied from two to eight (two, three, 
four, six, or eight discs). The stimuli were replaced by a fixation mark for 900ms, and the 
discs reappeared with or without color changes. Participants were instructed to press a 
button with their right index finger if they detect any color changes between two 
appearances of the discs and press the other button with their right middle finger if no 
change had occurred. Participants had 2,000ms to respond.  The task consisted of 160 
trials (3.6 s each). For half of the total trials, original discs were replaced by different 
colors of discs, and for the other half of the trials, the original discs remained unchanged. 
Visual working memory capacity was assessed with Pashler’s K (Pashler, 1988). 

 

Behavioral analysis: Individual performance in three attentional tasks 
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  Given that all tasks required attentional ability, individuals who performed well in 
one task were expected to perform well on others.  In order to confirm how behaviors in 
different attentional tasks are related, we computed Pearson’s correlation between 
individual performance scores on every pair of tasks, resulting in three between-task 
similarity metrics: between gradCPT and MOT, gradCPT and VSTM, and MOT and 
VSTM.  

The between-task similarity estimate should be constrained by the reliability of 
the behavioral measures we adopted. Therefore, prior to computing a similarity of 
individual performance on the three tasks, we assessed the reliability of each behavioral 
measure.  For this analysis, we only used subjects who had acceptable behavioral 
scores from both sessions for each task, resulting in a different number of available 
subjects for each task; 65 subjects for gradCPT, 69 subjects for MOT, and 72 subjects 
for VSTM.  Within these subsamples, we estimated Pearson’s correlation of individual 
performance between the two sessions for each task. 

 

MR imaging parameters and preprocessing 

MRI data were collected at the Yale Magnetic Resonance Research Center and 
the Brain Imaging Center at Yale with 3T Siemens Prisma system and 64-channel head 
coil. A high-resolution MPRAGE was collected at the beginning of each session with the 
following parameters:  TR = 1800 ms, TE = 2.26 ms, flip angle = 8°, acquisition matrix = 
256 × 256, in-plane resolution = 1.0 mm2, slice thickness = 1.0 mm, 208 sagittal slices.  
10-min resting-state scans, two scans in session 1 and one in session 2, were collected 
after MPRAGE followed by an Inscape movie-watching run (7:16 min). After these 
passive viewing scans, participants performed three 10-min main attention-related tasks, 
gradCPT, VSTM, and MOT, with a button box in their right hand. Each of the three tasks 
and resting-state scans included 600 whole-brain volumes acquired using an EPI 
sequence with the following parameters: TR = 1,000 ms, TE = 30 ms, flip angle = 62°, 
acquisition matrix = 84 × 84, in-plane resolution = 2.5 mm2, 52 axial-oblique slices 
parallel to the AC-PC line, slice thickness = 2.5 mm, multiband 4, acceleration factor = 1.  
This information was also provided in Rosenberg et al. (2020), which analyzed a subset 
of the current dataset; 49 subjects with two usable gradCPT runs at the time of the 
study (Rosenberg et al., 2020) 

Collected data were preprocessed with AFNI (Cox, 1996). The preprocessing 
procedure included the following steps: Removing the first three volumes; censoring of 
volumes containing outliers in more than 10% of voxels; censoring of volumes for which 
the Euclidean norm of the head motion parameter derivatives are greater than 0.2 mm; 
despiking; slice-time correction; motion correction; regression of mean signal from the 
CSF, white matter, and whole brain and 24 motion parameters. FMRI data were aligned 
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to the high-resolution anatomical image (MPRAGE) and normalized to MNI space.  All 
the following main analyses were performed in MATLAB R2016b. 

 

Whole-brain connectivity matrix 

Functional network nodes were defined using a 268-node whole-brain functional 
atlas, which covers the cortex, subcortex, and the cerebellum (Shen et al., 2013). We 
excluded 22 nodes (due to imperfect acquisition of fMRI data on these areas from at 
least one subject), resulting in 246 nodes analyzed in this study. For each participant, 
an averaged time-series signal was calculated for each node, and Pearson’s correlation 
between all possible pairs of the 246 nodes were computed.  The pairwise correlations 
were then Fisher z-transformed, resulting in a 246x246 symmetrical whole-brain 
functional connectivity matrix (30,135 unique edges).  We calculated the connectivity 
matrix for each session separately and averaged them across two sessions for the final 
analysis.  For those who had only one session that met our data inclusion criteria (29 
subjects for gradCPT, 25 subjects for MOT, and 22 subjects for VSTM), we used the 
connectivity matrix from the available session in the analysis.  Every individual had five 
connectivity matrices including three attention-related, one resting-state, and one 
movie-watching.   

 

Brain-based prediction of individual behaviors across three attention tasks 

Previous studies demonstrated that CPMs accurately predict individual gradCPT 
performance from both task-related and resting-state fMRI connectivity (Rosenberg et 
al., 2016a; Yoo et al., 2018).  Extending these previous studies, we asked in the current 
study whether different attention tasks lead to different predictive models that are 
generalizable across multiple attentional behaviors.  To this end, we constructed nine 
CPMs using different combinations of imaging and behavior data; that is, three different 
cognitive states of fMRI scans (performing one of three attention tasks, resting-state, or 
movie-watching) and three different attentional behaviors (gradCPT, MOT, or VSTM).  A 
detailed procedure of CPM modeling and generalizability tests are described in the 
following sections. 

 

Connectome-based predictive modeling (CPM) 

We constructed and validated CPMs using a leave-one-out cross-validation 
(LOOCV).  In building CPMs, we held one subject out for model testing, with 93 
participants in the training set.  In training the CPM model, we first selected features 
(edges) that were significantly correlated with individual behaviors in a target task 
(Pearson’s, p<0.05).  These features yielded both positive and negative edge masks 
depending on the signs of their correlation with behavior.  For each subject in the 
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training set, two networks’ strengths (one from the positive and the other from the 
negative network) were measured by averaging their respective connectivity strengths.  
Then, we fitted a general linear model between task performance (a dependent variable) 
and the two network strengths (independent variables).  Once the two network masks 
and a general linear model were constructed, we applied the CPM to the held-out 
testing subject.  The CPM estimated two network strengths for the test subject and 
predicted the subjects’ task performance from their network strength measures.  Every 
subject was iteratively used as a test sample in LOOCV.   

We previously demonstrated that CPMs are robust against the choice of feature 
selection threshold within the range of traditional statistical significance (e.g., p of 0.05 ~ 
0.001) (Yoo et al., 2018, 2019).  We tested a similar range of selection thresholds in the 
current study and confirmed that the results remained similar across the range.   

 

CPMs of different attentional tasks 

Here, we tested whether we could construct successful CPMs for each attention 
task, and whether CPMs of attentional tasks generalized to predict individual behaviors 
across different tasks.  To address these questions, we constructed a total of nine 
CPMs.  These models were constructed using different combinations of three cognitive 
states of fMRI scans (task-performing, resting-state, or movie-watching) and three 
attentional behaviors of target tasks (gradCPT, MOT, or VSTM) (Table 1).  The nine 
CPMs include seven new models and two models (model 1 and 4 in Table 1) that were 
introduced in our previous studies (Rosenberg et al., 2016a; Yoo et al., 2018).     

We assessed the performance of these nine models in predicting individual 
behaviors of interest. First, we tested model performance of a within-task prediction, for 
example, training the model using VSTM fMRI and VSTM behavioral task scores and 
testing it to predict the VSTM behavior from VSTM fMRI of the held-out subject.  To 
examine model generalizability across different tasks, we then assessed prediction 
performance across tasks and fMRI, in a cross-task prediction analysis.  For example, 
the model 1 in Table 1 was trained using gradCPT fMRI and gradCPT behavior. We 
applied this model to a testing subject’s MOT fMRI to predict the MOT score of the 
subject to assess the generalizability of the model to MOT fMRI and MOT behavior.  In 
this way, we tested each model in each of the nine fMRI–behavior pairs, yielding 72 
cross-task predictions along with nine within-task predictions from nine predictive 
models (as shown in Figure 2, diagonal elements correspond to within-task predictions 
and off-diagonal correspond to cross-task predictions). 

We assessed each model’s prediction performance by correlating model-
predicted individual task scores and observed task scores.  A significant positive 
correlation indicates that the model successfully predicts individual differences in 
behavioral performance.  We also estimated prediction q2, based on normalized MSE, 
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to further validate model prediction (Scheinost et al., 2019).  The prediction q2 
represents a model’s numerical accuracy in predicting an individual’s actual behavioral 
score compared to simply guessing their mean behavior.  The prediction q2 serves as a 
complementary measure of the correlation-based performance measure that describes 
the accuracy in predicting individual differences between behavioral scores.   

Behavioral scores were z-scored for each task before predictive modeling.  Z-
scoring was essential to compare predictions across multiple tasks with incompatible 
scoring scales.  We used raw scores only in the visualizations of within-task prediction 
results with scatter plots. 

 

Significance testing of CPMs’ behavioral prediction accuracy  

We evaluated the significance of model performance using permutations.  We 
ran 1,000 permutations to construct 1,000 null models for the 81 model predictions.  In 
each permutation, individual performances were randomly shuffled, and the null CPMs 
were trained and tested with connectivity matrices and the shuffled performances for 81 
prediction cases.  We assessed the performance of the null models by correlating the 
model-predicted behavioral scores and the shuffled scores.  The same evaluation was 
applied to the real model, except shuffling individual behaviors. 

Importantly, we used permutations to correct for multiple tests.  To do this, we 
first divided 81 predictions into nine divisions based on cognitive states of fMRI of 
training and testing datasets (1: task fMRI to task fMRI prediction; 2: task to rest; 3: task 
to movie; 4: rest to task; 5: rest to rest; 6: rest to movie; 7: movie to task; 8: movie to 
rest; 9: movie to movie).  Then, we further subdivided each division into two groups, one 
group of three within-task prediction cases and the other of six cross-task prediction 
cases, resulting in 18 case groups in total.  We corrected for multiple comparisons for 
each case group separately.  In each permutation run, the maximum null performance 
was selected for each case group, to yield 1,000 maximum performance null models for 
each group.  We compared observed model performance with the 1,000 max null model 
of the corresponding group. The FWE-corrected significance of the observed model 
performance was calculated as p = (1 + the number of the null performances better than 
the observed model performance) / 1,001.  

 

Generalizing CPMs while controlling for behavioral correlations between tasks 

In the previous analysis, we examined the generalizability of CPMs across 
different tasks.  Successful generalization, however, may be considered trivial, given the 
significant correlation of individual performances between tasks.  To address this issue, 
we controlled for behavioral correlations across tasks in assessing model performance.  
In the original model building, feature edges were selected based on the significance of 
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their association with a behavior of the target.  We constructed additional models while 
controlling for the correlated behaviors.  In these models, among the selected features 
in the original model, we excluded edges that were significantly correlated with 
behaviors in either of the other two tasks.  In other words, these models only included 
predictive edges that were specific to one task.  We assessed the performance of these 
models as described in Significance testing of CPMs’ behavioral prediction accuracy. 

We further examined the generalizability and specificity of the original models by 
applying partial correlations.  In this case, we re-assessed the original models’ 
prediction accuracy using partial correlations between model-predicted and observed 
behavioral scores while controlling for scores in non-target tasks.  We assessed the 
performance of the models as described in Significance testing of CPMs’ behavioral 
prediction accuracy. 

 

Predictive anatomy of attention CPMs 

We explored the predictive anatomy of CPMs to reveal the anatomical basis of 
the attention tasks.  Each iteration of LOOCV provided positive and negative network 
masks for each model.  We extracted the most robust edges that appeared in every 
LOOCV iteration of each modeling.  These robust predictive edges were then visualized 
with ten canonical networks (medial frontal, frontoparietal, default mode, motor, visual I, 
visual II, visual associations, salience, subcortical, and cerebellum; Finn et al., 2015; 
Noble et al., 2017). 

 

Controlling for confounding factors 

The number of predictive features in CPM modes 

Each attention task CPM has a different number of predictive edges, which may 
induce differences in predictive power. To address this concern, we controlled the 
number of features, revised the feature selection threshold, and constructed three new 
task-based CPMs.  In the original modeling, we selected all edges that were 
significantly associated with a behavior of interest.  In the current analysis, we selected 
the top 1,000, 5,000, and 10,000 edges that were most significantly associated with a 
behavior as features.  By doing this, all models contained the same number of feature 
edges.  We tested the performance of the models in the same way as the original 
modeling, including significance testing with FWE correction.  

 

Effect of head motion on behavior prediction 

As described earlier, we took into account head motion in this study 1) by 
censoring high motion fMRI frames in each data (described in MR imaging parameters 
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and preprocessing), 2) by excluding subjects with excessive head motion (described 
in Subjects and experimental designs) and 3) by regressing out head motion 
parameters during MR preprocessing (described in MR imaging parameters and 
preprocessing).  These procedures, however, might not fully eliminate the influence of 
head motion on the estimations of associations between behavior and brain connectivity, 
thereby affecting connectome-based predictions of behavior.  To address this issue, we 
re-assessed the prediction accuracy of nine original CPMs, taking head motion into 
account.  We ran partial correlations between model-predicted and observed behavioral 
scores while controlling for head motion from the scan of the target task.  We confirmed 
that the maximum FD values of all five fMRI data (three tasks, one rest, and one movie) 
did not correlate with behavioral performance in any of three tasks.  Hence, we 
controlled for mean FD as a head motion estimate of task scans. 

 

CPMs of a general attention component to develop a universal measure 

 To examine how well a general component of attention can explain behaviors on 
a variety of attentional tasks, we built CPMs using only functional connections that were 
associated with all three task behaviors.  In the original task-specific models, feature 
edges were selected based on the significance of their association with a behavior of 
the target task.  In this variation, among the selected features in the original models, we 
further selected edges that were significantly correlated with behaviors in the other two 
tasks (the intersection of edges).  By doing so, we constructed one set of network 
masks of which respective edge strengths were correlated with all three task behaviors 
across individuals.  Hence, the number of connectivity features was significantly fewer 
than in the original models.  We trained and validated these “intersection” models using 
task fMRI in the same way as the original models, except for this feature selection step. 

 To reveal a set of connectivity features that supports the general factor of 
attention across all three fMRI tasks, we tracked common predictive connectivity at the 
network level.  We extracted the predictive anatomy of three task-based CPMs of the 
universal attention factor (refer to Predictive anatomy of attention CPMs for details).  
Since each model had a small number of connectivity features, we loosened the 
threshold, selecting robust edges that appear in at least 75% of LOOCV iterations (i.e., 
750 iterations out of 1,000). We then tracked predictive connectivity features that the 
three task-based models shared in common.   

In addition, we trained nine additional predictive models to utilize a set of 
connections correlated with any of three task behaviors as features (all task-related 
edges).  Hence, these “union” models have larger numbers of predictive feature edges 
compared to the original models.  We validated these models in the same ways as 
above, except for the feature selection step.  
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Role of canonical brain networks in attentional behaviors 

CPMs with computational lesion in brain networks 

Next, we investigated which brain network is the most predictive of all three 
attention task scores.  To assess the network-wise importance in behavioral prediction, 
we divided 246 brain nodes into ten canonical networks (the medial frontal, 
frontoparietal, default mode, motor, visual I, visual II, visual associations, salience, 
subcortical, and cerebellum) and computationally lesioned all nodes of a given network.  
Then we constructed and evaluated the nine CPMs of the reduced size of the 
connectivity matrix after the lesioning.  We repeated this procedure by lesioning each 
network iteratively.  We assessed the performance of the models in the same way as 
the original model assessment, including significance testing with FWE correction.  We 
restricted this analysis to task-related connectivity matrices which yielded to provide a 
successful prediction in the preceding analysis. 

 

CPMs using connectivity of brain networks: within-network connectivity and between-
network connectivity 

In addition to the computational lesioning, we performed complementary 
analyses to examine the predictive power of brain networks.  In this analysis, we 
restricted CPMs to use functional connections of only one brain network instead of the 
whole-brain connectivity.  This analysis was further separated into two parts.  First, we 
constructed CPMs based on connectivity within each brain network.  Second, we 
constructed CPMs based on connectivity of one target network to the other nine 
networks.  Hence, the first analysis was to examine predictiveness of within-network 
connectivity, and the second analysis was to examine predictiveness of between-
network connectivity.  We assessed the performance of the models in the same way as 
the original modeling, including significance testing with FWE correction. 

 

Generating attention connectomes from resting-state data using connectome-to-
connectome state transformation modeling 

We utilized a novel method from our lab called connectome-to-connectome state 
transformation modeling (C2C modeling; Yoo et al., 2020) to facilitate the estimation of 
attention-task connectomes and to improve behavioral predictions from resting-state 
data alone.  In the previous analyses, we examined the generalizability of CPMs across 
multiple attention tasks. However, predictions of individual scores are typically impaired 
when the testing sample of fMRI data is different from the training samples.  The C2C 
framework estimates task connectomes from the rest connectome or movie-watching 
connectome, and by employing the C2C approach to generate three attention task 
connectomes from rest data, we can improve individual behavioral predictions. 
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The C2C model works in three steps.  First, the model extracts subsystems from 
the whole-brain resting-state connectome of individuals.  The model, then, transforms 
the extracted subsystems to estimate task-specific subsystems.  Finally, the model 
constructs whole-brain task-specific connectomes from estimated subsystems.  More 
specifically, the C2C model first defines and extracts state-specific subsystems and 
their scores separately for the resting-state and task-related state using two principal 
component analyses (PCA).  We applied one PCA on the rest connectomes of 
individuals in the training set.  This corresponds to the first step of the C2C model 
described above.  We applied another PCA separately on these same individuals’ 
gradCPT connectomes.  This second PCA provides a reconstruction the whole-brain 
task connectome from the generated task subsystems, corresponding to the third step 
of the C2C model.  Then, we employed partial least square regression to estimate the 
transformation of subsystems from the resting-state to the gradCPT state.  The PCA-
extracted subsystem scores of the resting and gradCPT states were put into the 
regression.  This corresponds to the second step. 

In this analysis, we constructed three C2C models to predict whole-brain 
connectomes of the three attention tasks from the rest connectomes.  We assessed the 
success of task connectome generation in 10-fold cross-validation. We held out one fold 
(9 or 10 subjects) for model validation and used nine folds to train C2C models.  For 
model validation, we calculated the similarity between the model-generated 
connectomes and observed task connectomes and the similarity between observed rest 
connectomes and observed task connectomes, using spatial correlation. We also 
estimated the root mean square difference between the model-generated and observed 
task connectomes and compared it with a difference between the observed rest and 
task connectomes.  Finally, we used the model-generated task connectomes to predict 
individual behaviors in the three attention tasks.  We compared prediction accuracy of 
the generated task connectomes with the accuracy of the observed rest connectomes.  
Here, CPMs and C2C models were trained in the same training partition of 10-folds and 
tested in the held-out fold.  That is, all naive CPMs to which we compared C2C-
combined models were re-constructed and validated in 10-fold cross-validation with 
1,000 iterations.  We confirmed identical CPM performances between LOOCV and 10-
fold cross-validation. We ran the same C2C modeling and comparison procedure using 
movie data.   

 

Building a universal attention model  

To maximize the practical utility of our suite of attention prediction models 
described above, we developed a universal attention model that integrates the multiple 
CPM and C2C models to (1) generate a universal attention connectome from a rest 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2021. ; https://doi.org/10.1101/2021.02.13.431091doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431091
http://creativecommons.org/licenses/by-nc-nd/4.0/


Yoo et al. A brain-based universal attention model 

 

p. 37 

connectome and (2) predict universal (general) attention performance in novel 
individuals. 

The first step for model training was to generate for each participant a universal 
attention connectome that combines the edges from the individual’s three attention task 
connectomes.  There are several methods for doing so, described at the end of this 
section, and we chose the method that selects the edge with the highest absolute 
strength across the three tasks. To do this consistently across individuals, we first 
computed a group-average attention task connectome by averaging the edge strength 
from all the training participants for each edge in each task connectome.  Then to select 
which task edge to use for the universal attention connectome, we compared the 
absolute mean strength for each edge across the three average task connectomes.  For 
example, if the average gradCPT connectome showed the maximum absolute strength 
for a particular edge, relative to the absolute edge strength in the other average task 
connectomes (MOT and VSTM), then we assigned the gradCPT edge strength to be the 
representative edge in the universal attention connectome lookup table 
(Supplementary Figure S16), which specifies which of the task edges to use. Then for 
each participant, we used this population-level the universal attention connectome 
lookup table to generate the individual’s universal attention connectome as a mosaic of 
the empirical edge values pulled from the individual’s three task connectomes. 

The resulting individual universal attention connectome can then be fed into the 
CPM and C2C pipeline like any other individual connectome.  We trained one CPM to 
predict the averaged task score from the representative connectome: the average score 
across the three tasks is significantly correlated with their first principal component 
(r=0.9998, Supplementary Table S4), suggesting that the average performance 
reflects a universal (general) attention factor (for the three tasks).  This CPM selected all 
the connectivity edges that correlated with any of three task scores as predictive 
features.  We also trained one C2C model that can estimate individual universal 
attention connectome from novel rest connectomes.  Once trained, the universal 
attention model, combining the CPM and C2C models, can predict a novel participant’s 
universal (general) attention performance from a single rest connectome.  This model 
was constructed and validated using 10-fold cross-validation. 

We explored different variants of ways to build the universal attention model, and 
the primary model described above was chosen based on simplicity and performance, 
although performance did not vary significantly between models.  To combine the task 
connectomes into the universal attention connectome, one could average the edges, 
concatenate the three task connectomes, choose task edges that showed the largest 
variance across participants, or choose task edges that showed the maximum absolute 
strength for each participant (without consistency across them).  These different 
methods showed only small numerical differences in performance with the averaging 
method showing the lowest performance.  For feature selection, we also considered 
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edges that correlated with all three task scores (the intersection of features across 
tasks), rather than with any of the three task scores (the union of features across tasks). 
The intersection performed slightly worse, so we chose the union model.  Finally, we 
tried predicting behavior using three inner linear regressions to predict the three task 
scores and then average them for the universal measure; this method performed 
similarly to the primary model.  We tested all the different combinations of these 
modeling choices and settled on the primary model described above because of its 
simplicity over the other models, again noting that prediction performance of the 
different model parameter choices was similar. 

 

External validation 

Lastly, we validated the proposed universal attention model in three independent 
external validation datasets, two locally obtained (our lab) and one publicly available, to 
assess the attention models' generalizability and practical applicability.  One local 
dataset included rest fMRI connectomes and gradCPT performance (sensitivity, or d’) 
from 25 young adults (Rosenberg et al., 2016a), and the other local set included rest 
fMRI connectomes and ANT performance (correct-trial response time [RT] variability) 
from 41 young adults (Rosenberg et al., 2018).  Task connectomes from these two 
studies were not analyzed here.  Imaging data from these two datasets were acquired 
using similar parameters to the current study but pre-processed differently.  Detailed 
descriptions of task paradigm, imaging parameters and preprocessing, and data 
inclusion criteria can be found in Rosenberg et al., 2016a (gradCPT) and Rosenberg et 
al., 2018 (ANT).  All participants in the two datasets gave written informed consent in 
accordance with the Yale University Human Subjects Committee and were paid for their 
participation.  The open dataset included rest fMRI connectome and ADHD Rating 
Scale-IV (DuPaul et al., 1998) from 113 children and adolescents with and without 
ADHD diagnoses, including 75 typically developing controls, from the Peking University 
site  (Rosenberg et al., 2016a) provided by the ADHD-200 consortium (Consortium, 
2012).  Detailed descriptions of imaging parameters and preprocessing, and data 
inclusion criteria can be found in Rosenberg et al., 2016a and online at the International 
Neuroimaging Data-Sharing Initiative (http://fcon_1000.projects.nitrc.org/indi/adhd200/).  
Each participant’s parent provided informed consent, and all children agreed to 
participate in the study.  The data collection was approved by the Research Ethics 
Review Board of Institute of Mental Health, Peking University.  The variable data 
collection and analysis procedures across multiple studies and sites enabled a strong 
test of our model’s generalizability. That is, if our universal attention model successfully 
predicts attentional behavior across the diverse datasets, then it emphasizes our 
model’s practical utility.  
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For external validation analyses, we restricted our predictive network to 230 
nodes by removing nodes missing in the ADHD data, resulting in 26,335 (=230x229/2) 
unique edges in each connectome.  Otherwise, the gradCPT task-based CPM model, 
the rest CPM trained to predict gradCPT score, and the universal attention model were 
identical to the models tested throughout the present study (n=94).  We tested these 
three models in the three independent external datasets where the attention measures 
were d’ in gradCPT, RT variability in ANT, and ADHD Rating Scale in ADHD.  The 
attention measures were z-scored in each dataset.  We reversed the sign of z-scores of 
the ANT RT variability scores and ADHD Rating Scale-IV scores so that a higher score 
represents better attention performance.  Model performance was assessed by the 
prediction q2 and correlation. 

 

Data and Code availability 

Scripts for the predictive model construction are available for download at 
https://github.com/rayksyoo/UniversalAttention.  Scripts for the other (statistical) 
analyses are available from the corresponding author upon request.  Raw task and rest 
fMRI data used in the primary analyses will be made available at NIMH Data Archive. 
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