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Abstract
Large datasets of hundreds to thousands of individuals measuring RNA-seq in observational
studies are becoming available. Many popular software packages for analysis of RNA-seq data
were constructed to study differencesin expression signatures in an experimental design with
well-defined conditions (exposures). In contrast, observational studies may have varying levels
of confounding of the transcript-exposure associations; further, exposure measures may vary
from discrete (exposed, yes/no) to continuous (levels of exposure), with non-normal distributions
of exposure. We compare popular software for gene expression - DESeq2, edgeR, and 1 imma
- aswell as linear regression-based analyses for studying the association of continuous exposures
with RNA-seq. We developed a computation pipeline that includes transformation, filtering, and
generation of empirical null distribution of association p-values, and we apply the pipelineto
compute empirical p-values with multiple testing correction. We employ a resampling approach
that allows for assessment of false positive detection across methods, power comparison, and the
computation of quantile empirical p-values. The results suggest that linear regression methods
are substantially faster with better control of false detections than other methods, even with the
resampling method to compute empirical p-values. We provide the proposed pipeline with fast

algorithmsin R.

I ntroduction
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Many studies of phenotypes associated with gene expression from RNA-seq consist of small
sample sizes (tens of subjects) and are focused on comparisons of transcriptional expression
patterns between well-delineated states, such as different experimental conditions, tumor versus
non-tumor cells (1; 2), and disease vs non-disease groups (3). Some studies are designed to
identify differential expression across hidden, discrete conditions (4). Epidemiological cohorts
have recently utilized stored samplesto facilitate the use of RNA-seq data in studies of
association with subclinical phenotypes such as blood biomarkers, imaging, and other

physiological measures, with often continuous measures being used in statistical analyses.

High throughput RNA sequencing enables broad assaying of a sampl€'s transcriptome (5) and
has been in increasing use for over a decade (6). A large variety of analytic and statistical
approaches have been developed to address scientific questions such as alternative splicing,
differential expression, and more (4; 7-11), often building on methods devel oped for analyses of
expression microarrays (12-14); comprehensive reviews are available (15-19). In thiswork, we
are specifically interested in differential expression analysis with continuous exposures, and we
assume that count data are already prepared and available to the analyst. Popular software
packages for differential expression analysis include the DESeqg2 R package (9), which models
the expression counts as following a negative binomial distribution, with shrinkage imposed on
both the mean and the dispersion parameters, based on estimates from the entire transcriptome,
or user-supplied values. EdgeR (7) uses a negative binomial model similar to the DESeqg2
model for transcript counts, in combination with overdispersion moderation. EdgeR was
primarily designed for differential expression analysis between two groups when at least one of

the groups has replicated measurements (20). Limma (21) uses linear models, which are very
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flexible and can effectively accommodate many study designs and hypotheses. Similar to the
DESeq2 and edgeR packages, I.imma also uses an empirical Bayes method to borrow
information across transcripts to estimate a global variance parameter that is applied for the
computation of variance parameters of each single transcript. It useslog transformation and
weighting, known asthe “voom” transformation, in the final linear model that is used for
differential expression analysis. Werefer to it henceforth as the limma-voom. Prior to
differential expression analysis, library normalization is performed (22). Popular approaches are
the TMM (trimmed-means of M-values) normalization (23), implemented in edgeR, and the

size factors normalization (24), implemented in DESeq?2.

Sleep disordered breathing phenotypes, such as the Apnea-Hypopnea Index (AHI), the number
of apnea and hypopnea events per hour of sleep, provides a quantitative assessment of the
severity of the disorder, with no clear threshold above which different biological processes occur
(although thresholds are used for clinical decision making and health insurance reimbursement).
Association analysis with continuous exposures provides different challenges than those
traditionally encountered. The distribution of such exposures may have strong effects on the
association analysis results, regardless of the underlying associations, due to the combination of
skewed exposure distributions and the distribution of RNA-seq read count data, that are
generally over-dispersed with occasional extreme values. As observational study data analyses

may include covariates, statistical methods from experimental studies (e.g., exact tests) cannot be

applied.
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In this manuscript, we compare the DESeq2, edgeR, and 1imma-voom analyss approaches
for differential expression analysis, with linear regression—based approaches that do not use the
empirical Bayes approach for estimating variance parameter across the transcriptome. We study
the computation of p-values using resampling of phenotype residuals, while preserving the
structure of the data. This addresses the limitation of permutation noted by others in the context
of differential expression analysis of RNA-seq (21), where permutation may not be tuned to test
a specific null hypothesis becausein its standard form it “breaks’ all relationships between the
permuted variable and the rest of the dataset. Finally, we study the use of empirical p-values that
tune the original p-values based on the residual resampling scheme. Throughout, we use a dataset
with sleep disordered breathing phenotypes and RNA-seq from the Multi-Ethnic Study of
Atherosclerosis as a case study. We demonstrate the statistical implications of performing
association analysis of RNA-seq with continuous, non-normal exposures, compare analysis

methods, and devel op recommendations.

M ethods

The Multi-Ethnic Sudy of Atherosclerosis (MESA)

MESA isalongitudinal cohort study, established in 2000, that prospectively collected risk
factors for development of subclinical and clinical cardiovascular disease among participantsin
six field centers across the United States (Baltimore City and Baltimore County, MD; Chicago,
IL; Forsyth County, NC; Los Angeles County, CA; Northern Manhattan and the Bronx, NY'; and
St. Paul, MN). The cohort has been studied every few years. The present analysis considers N =

462 individuals who participated in asleep ancillary study performed shortly following the
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participants Exam 5 during 2010-2013 (25; 26), with RNA-seq measured viathe Trans-Omicsin
Precision Medicine (TOPMed) program. Here, we used RNA-seq data with RNA extracted from
whole blood drawn in Exam 5 (2010-2012). Sleep data were collected using standardized full in-
home level-2 polysomnography (Compumedics Somte Systems, Abbotsville, Australia, AUO), as
described before (26). Of the 462 participants in the current analysis, there were 196 African-
Americans (AA), 259 European-Americans (EA) and 125 Hispanic-Europeans (HA). RNA

sequencing in MESA is briefly described in the Supplementary Materials.

Seep disordered breathing measures

As examples for continuous exposures from population-based studies, we took three sleep
disordered breathing measures: (1) the Apnea-Hypopnea Index (AHI), defined as the number of
apnea (breathing cessation) and hypopnea (at least 30% reduction of breath volume,
accompanied by 3% or higher reduction of oxyhemoglobin saturation compared to the baseline
saturation) per 1 hour or sleep; (2) minimum oxyhemoglobin saturation during sleep (MinO2),
and (3) average oxyhemoglobin saturation during sleep (AvgO2). We chose these traits because
they are clinically relevant, often used in sleep research studies, and represent exposures that
may alter gene expression (via hypoxemia and sympathetic activation). The AHI had the |east
skewed distribution of the considered phenotypes, and AvgO2 had the longest “tail” of small
valuesin the residual distribution. Residuals were obtained by regression the sleep measures on

age, sex, body massindex (BMI), study center, and self-reported race/ethnic group.

Compared tests of associations between exposure and transcripts
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We compared the standard packages DESeq2, edgeR, 1imma, and linear regression-based
approaches, in which we always applied log transformation on the transcript counts, and then
applied linear regression. Because some of the observed transcript count values are zero, which
cannot be log transformed, we compared a few approaches for replacing zero values. For agiven

transcript j, denote the minimum observed transcript level that is higher than zero by m; =
min {t;, ..., t: t;; > 0 fori = 1,...,n}. We compare the following approaches, applied on each
transcript j,j = 1, ..., k separately:

A1.SubHalfMin: Replace zero values with 2.
A2.AddHafMin: Replaceall values ¢;; by t;; + %

A3.AddHalf: Replace all values t;; by t;; +~.

Conceptual framework for studying analysis approaches

To study performance of various analysis approaches, we performed simulation studies.
Simulation study 1 was used to assess type 1 error across methods when using output p-values,
and when using “empirical p-values’, which are p-values that account for true distribution of the
p-values under the null and are described later. Simulation study 2 was used to assess power in
transcriptome-wide analysis settings, when using methods that control the type 1 error according
to simulation study 1. In addition, we performed a simulation study (Supplementary Materials) to
assess power for testing of individual transcript according to various distributional characteristics
of transcript counts. The goal was to identify approaches for filtering transcripts for association
analysis that will optimize power. All smulationsused a “residual permutation” (below). The
reported criteria for declaring differentially expressed transcripts were False Discovery Rate

(FDR) controlling p-values <0.05 based on the Benjamini-Hochberg (BH) procedure, and based
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on the local FDR procedure implemented in the gvalue R package, Family-Wise Error Rate
(FWER) controlling p-values <0.05 based on the Holms procedure, and an arbitrary threshold of

p-value<10>.

Residual permutation approach for simulations and for empirical p-value computation
To generate realistic smulation studies in which: (a) the data structure, including the exposure,
covariates, and outcome distributions; and (b) their relationships, aside from the exposure-
outcome association, are the same as in the real data, we used aresidual permutation approach.
We regressed each sleep exposure of interest X on the covariates € and estimated their effect a.
We then obtained residuals, defined as:
e=X—-Ca.

To study type 1 error, we permuted these residuals at random to obtain perm(e), and generated
a sleep exposure unassociated with any of the RNA-seq measures by:

X = Ca + perm(e).
We repeated this procedure 1000 times for evaluating type 1 error control. We generated
simulated data under four power simulationsin a similar approach, with the difference that we
forced a specific correlation value between the simulated sleep exposure and a specific transcript.
To thisend, for agiven transcript j measured on individualsi = 1, ..., n, we computed the rank

of each individual: r; (ty;), ..., 7, (tn;). TO set acorrelation p between the smulated X, and
transcript j we sampled p X n (rounded) indices from 1, ..., n, corresponding to p x n individuals
for which we forced their ranks in the permuted residual values, now denoted by perm(¢),,, to
be the same as their ranks in the transcript values (note that the transcript values are never

changed). For therest of the individuals, the permuted residuals are completely random. When
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multiple individuals have the same transcript counts (i.e., their ranks are tied), we randomly
assign their ranks. For example, if 100 people have zero counts for a given transcript, each of
these individuals will be equally likely to havetherank of 1, 2, ..., or 100. The code for
generating this residual permutation approach is provided in the Supplementary Information and
in a dedicated GitHub repository https.//github.com/nkurniansyah/RNA-

Seq_continuous_exposure.

Empirical p-valuesto account for the null distribution of p-values

We used the residual permutation approach, under the null hypothesis, to generate a null
distribution of p-values and to compute empirical p-values. When the distribution of p-values
under the null hypothesisis unknown, and specifically when it is not uniform, their values are
not reliable for hypothesistesting. Alternative approaches compute “empirical p-values’ with the
goal of generating an appropriate p-value distribution, i.e., in which an empirical p-vaue p,

satisfies Pr(p, < 0.05|H,) = 0.05 (Supplementary Materials).

For computing empirical p-values, we use ardatively small number of residual permutations (in
comparison to the number of permutations used for computing permutation p-values) followed
by transcriptome-wide association studies. We use the results of these transcriptome-wide tests
under permutation to compute the null distribution of p-values, which isthen used to compute
the empirical p-values. We compare two types of empirical p-values: quantile empirical p-values,
and Storey empirical p-valuesimplemented in the gvalue R package (27). The quantile
empirical p-value approach isinspired by previously proposed procedures based on permutation

(28) of phenotypes (rather than residuals). It estimates the null distribution of p-values non-
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parametrically, and the quantile empirical p-value isthe quantile of the raw p-valuein this
distribution. The Storey empirical p-values uses the null distribution of the test statisticsto
identify whether atranscript is likely sampled from the null or a non-null distribution. Both
implementations assume that the empirical null distribution is the same for al transcripts. We
used 100 residual permutations to compute test statistics and p-values under the null and

compared the empirical p-values to standard permutation p-values.

Resampling approach for binary exposure phenotypes

We compared the analysis of a continuous exposure to that of a dichotomized variable. Instead of
a sleep measure, we used body mass index (BMI), because it is known to have large impact of
gene expression and is therefore a powerful phenotype for such a comparison. BMI was
dichotomized to “obese” if BMI = 30kg/m? and non-obese otherwise. Because obesity is binary
and, therefore, the residual permutation approach is not appropriate as proposed for continuous
variables, we generated a binomial obesity variable based on BMI probability given covariates.
Given alogistic modd logit[p(0SA; = 1)] = ¢! a, we estimated the covariates’ association
parameters @ and obtained estimated probabilities for obesity for each personi = 1, ...,n by
p(0SA; = 1) = expit(c! &). Based on these estimated outcome probabilities, we sampled

random obesity status as binomial variables.

Results
MESA participant characteristics are provided in the Supplementary Material, Table S1. The
distribution of the raw phenotypes AHI, MinO2, and AvgO2, and their residuals after regression

on covariatesis provided in Figure 1, demonstrating the high non-normality. Simulations were

10
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performed after normalizing the data so that each library has the same size (prior to filtering),
which we set to the median observed value (i.e., median normalization) in the raw reads, or
23,210,672. Resultsfor some of the settings in smulation study 1 under TMM and size factor

normalizations are provided in the Supplementary Materials.

Smulation study 1: type 1 error analysis

After normalization, we applied filters to remove lowly expressed transcripts. There were 58,311
transcripts. After applying filters requiring that the () maximum read count is>10 and that (b)
the proportion of individuals with zero counts for a transcript across the sampleis not higher than
0.75 (see Supplementary Materials for more information on filters), 23,004 transcripts were
available for the ssmulation study. We used residual permutation to generate simulated SDB
phenotypes that are not associated with the transcripts, but maintain the same correlation
structure with the transcript and covariates. We generated 100 datasets with ssimulated SDB
phenotypes, and performed analyses. Complete results showing the average number of false
positive detection based on the existing packages 1 imma, edgeR, and DESeqg2, aswell asthe
three linear regression analyses described here, are provided in Supplementary Figures S3-S5.
These results include comparisons of raw p-values, the proposed quantile empirical p-values, and
the empirical p-values provided in the gvalue R package (27), and for the three SDB

phenotypes.

We found that the number of false positives vary with the exposure phenotypes, with analyses of
MinO2 (Figure 2) generally resulting in more false positive detections than analyses of the AHI,
with intermediate numbers for AvgO2 (Figures S3-S5 in the Supplementary Materials). Figure 2

compares the average number of falsely discovered transcript associations when using simulated

11
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slegp phenotypes mimicking MinO2 using the residual permutation approach by focusing on
1limma, edgeR, DESeq2, and linear regression applied on log2 of expression counts with
SubHalfMin. For each method, type | error was determined using raw p-values and Storey
empirical p-values, with significance thresholds based on Benjamini-Hochberg (BH) FDR, local
FDR (gvalue package), and Holms Family-Wise Error Rate (FWER). Empirical p-values
usually reduced the number of false detections, with the method in the gvalue package being
usually more conservative than the quantile-based empirical p-values method. Compared to
linear regression-based approaches, DESeq2, edgeR and 1imma -voom had many false
detections when using the raw p-values, even after applying multiple testing corrections. The
three linear regression-based methods described here were quite similar, with the AddHalf
approach often resulting in slightly more fal se detections. Based on these results, we chose to
move forward for the next set of simulations with linear regression with SubHalfMin for

handling of zero counts.

Smulation study 2: power analysis

We performed simulations that mimic transcriptome-wide analysis to assess power. Based on
simulations comparing power by transcript distributional characteristics (see Supplementary
Materials), we only considered 19,742 transcripts for which no more than 50% of the sample had
zero counts. We chose two transcripts, and for each of these and each of the sleep phenotypes,
we performed 100 simulations in which we used the residual permutation approach to generate
association between the sleep phenotype and the transcript with correlation p = 0.3. We
performed transcriptome-wide association analysis using DESeg2, edgeR, and linear regression

with SubHalfMin transformation (1 imma - voom was not used, given its high rate of false

12
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positive detectionsin some of the settings in simulation study 1). For power, we always used
empirical p-values (both types) and determined whether the specific transcript of interest passed
the significance threshold based on FDR-adjusted (29) empirical p-value < 0.05. Power was
defined as the proportion of the simulations in which the associations was significant, and was
consistently higher for the linear regression-based approach compared to DESeg2 or edgeR.
For linear regression, the quantile empirical p-values performed essentially the same as Storey’s
empirical p-values, while Storey’s empirical p-values resulted in substantially higher statistical
power when using DESeqg2 and edgeR. We illustrate power comparisonsin Figure 3 using
Storey’sempirical p-values. Power comparisons using quantile empirical p-values are provided

in the Supplementary Materials Figure S8.

Proposed analysis approach

Based on the above simulation studies, we developed an analytic pipeline as depicted in Figure
4: (a) theraw read count are normalized; (b) filters are applied to remove lowly expressed
transcripts and those for which the statistical power islow, as determined by simulations, (c)
AddHalfMin transformation is applied for each individual separately, then log transformation is
applied on al transcripts, (d) association analyses is performed using linear regression to
compute effect sizes and p-values, (e) permutations are computed 100 times on exposure
residuals after regressing on covariates, to generate simulated traits that maintain the data
structure, (f) each of 100 vectors of simulated traits are analyzed using the same approach as the
raw trait, generating p-values, (g) p-values from the analysis of the 100 simulated traits are

combined to generate an empirical null distribution of p-values, that are used to generate

13


https://doi.org/10.1101/2021.02.12.430989
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.12.430989; this version posted February 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

empirical p-values for the raw trait using the gvalue package, and (h) multiple testing

correction is applied on the empirical p-values.

Comparison of analysis of continuous BMI with analysis of dichotomous obesity status

We compared the differential expression of transcriptsin analysis of BMI and obesity. Residual
permutation procedure was used and quantile-empirical p-values generated for both analyses. A
total of 925 MESA individuals had BMI measure available and, for analysis, at least 50% non-
zero transcripts were required. For obesity, several non-zero transcript thresholds were
examined: 50%, 40%, and 30%. The results were similar for all thresholds, resulting in many
more identified transcript associations (446 vs. 251) with continuous BMI compared to using a

dichotomous trait (Supplementary Information Figure S9).

Computing time comparison

The compute time for transcriptome-wide association study was obtained for analyses using
DESeq2, edgeR, and our linear regression implementation. Using our linear regression
implementation on a single core, a single transcriptome-wide association study applied on ~19K
transcripts and N=462 individual s took less than a minute; when 100 transcriptome-wide
association studies applied to residual permutations were included to compute empirical p-
values, the time reached 7 minutes, and the maximum memory used was 1.3GB. In comparison,
DESeqg2 took 53.5 minutes and edgeR took 18.8 minutes for a single transcriptome-wide

association study. The maximum memory used for DESeg2 and edgeR was similar at 3.1GB.

R package

14
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Code for implementing the proposed procedure and for a shiny app is provided in the GitHub
repository https://github.com/nkurniansyah/Olivia. The code also provides test of multiple
exposure variable at the same time, which applies the multivariate-Wald test, and an efficient
implementation of a permutation test when considering a single transcript, rather than a

transcriptome-wide analysis. The repository also includes code used for simulations.

Data availability
MESA data are available through application to doGaP. Phenotypes are available in MESA study
accession phs000209.v13.p3, and RNA-seq data has been deposited and will become available

through the TOPMed-MESA study accession phs001416.v2.p1.

Discussion

We systematically assessed the approaches for studying the association of gene expression,
estimated using RNA sequencing, with continuous and non-normally distributed exposure
phenotypes. We found that linear regression-based analysis performs well for continuous
phenotype associations, and is computationally highly efficient. We used aresidual permutation
approach to study the distribution of p-values under the null of no association between the
phenotypes and RNA-seq, and used this approach to further study power, and to compute
empirical p-values. Notably, the residual permutation approach allows for the dataset to have the
same correlation structures and associations between the phenotypes and the transcripts and
covariates, while eliminating the transcri pt-phenotype associations. We implemented this
approach in an R package and developed an R shiny app, to make our pipeline easily accessible

to the research community.
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Recently, van Rooij et a (30) also performed a benchmarking study comparing analysis
approaches for transcriptome-wide analysis of RNA-seq in population-based studies, including
when using continuous phenotypes in association testing. While we used similar statistical
methods to theirs, we took a different analytical approach. Van Rooij et a. used multiple datasets
to apply association analysis between a phenotype and transcripts, and assessed replication
between analyses. We, on the other hand, leveraged simulations to generate data under a known
association structure. In addition, we were motivated by a specific problem: highly non-normal
sleep exposure measures, often leading to suboptimal control of Type 1 error. Thus, it was
critical to assess control of false discovery under the null hypothesis. Notably, sleep phenotypes
are less often available and there are no other large observational studies data sets to our
knowledge with both RNA-seq measures and similar SDB phenotypes. Some of our findings are
similar to those of van Rooij et al.: they also recommend using linear regression analysis, and
they also found that using a continuous phenotype is generally more powerful than
dichotomizing it (in agreement with what is known from statistical literature). Similarly, they
found that normalization method had very little effect on the results. However, they recommend
testing all genes, while we recommend filtering transcripts with at least 50% zero counts, based
on our power simulations. Additional future work is needed to evaluate various filtering criteria,
and to develop methods that allow for flexible, non-linear modeling of the association between
phenotype and gene expression while remaining computationally efficient to allow for

permutation analysis.

We propose to compute p-values under the null hypothesis of no association between the

transcript and the exposure phenotype by permuting residuals of the exposure phenotype after
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regressing on covariates, and re-structuring the exposure by summing the permuted residuals
with the estimated mean, and thus maintain the overall data structure except for the exposure-
outcome association of interest. Outside the gene expression literature, others have proposed to
permute residuals rather than the outcome. For example, previous permutation methods proposed
to permute residuals of the outcome after regressing on covariates (31), or to permute the
residuals of the exposure phenotypes without constructing a new exposure phenotype by
summing the permuted residuals with the estimated mean (32). It will be interesting to perform a
more comprehensive study of statistical permutation approaches for RNA-seq associ ation

analyses, as well as studying them in the context of mixed models.

We recommend using empirical p-values, which require 100 residual permutation, and therefore,
performing 101 transcriptome-wide association analyses instead of one. Considering Figures S3-
S5 in the Supplementary Information, one can see that in most settings, linear regression
methods do not have many false positive detections even when raw p-values are used. However,
we chose to be more conservative by strongly protecting the analysis from false positive
detections. Importantly, the linear regression analysis with empirical p-values had higher power
than the other common approaches (DESeq2, edgeR), indicating simultaneous improvement in
controlling false positives and increasing power. Unfortunately, we cannot effectively estimate
the FDR in these simulations. FDR is defined as the proportion of false discoveries out of all
discovered (significant) associations. In simulation study 1, none of the transcripts were
associated with the outcomes, so that any estimated FDR would be 100%. Under the alternative,
one can suggest to use the number of wrongly discovered associations to estimate the FDR.

However, many transcripts are highly correlated with the one simulated to be associated with the
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exposures, and are therefore associated with the exposure by design, and thus the number of

transcripts falsely detected as associated with the exposure cannot be easily determined.

The empirical p-values procedure uses p-values from the entire tested transcriptome to compute
the empirical null distribution. This encapsulates the assumption that the null distribution of p-
valuesisthe samefor all transcripts, which is generally a limitation, but has been shown to be
often acceptable since it will lead to less power, rather than increasing the number of false
detections (33; 34). An approach that does not require this assumption estimates the null
distribution for p-value for each transcript separately, which is a standard permutation approach.
We investigated thisissue by comparing the quantile empirical p-values with the permutation p-
values that use 100,000 residual permutations to estimate the null distribution of the p-value of
each transcript separately (Figure S2 in the Supplementary Materials). The two p-value
distributions are very similar. Therefore, a computationally expensive permutation approach, as
well as other approaches proposed by investigators, such as estimating null distributions across
sets of transcripts with similar properties (33; 35), are likely unnecessary and not superior to the
computationally efficient empirical p-values method. Another approach for estimating the null
digtribution of p-values uses the primary results, without any permutation (36; 37). These
approaches also use the assumption that the null p-value distribution is the same across
transcripts (i.e. a shared null distribution exists). Given the computationally fast implementation
of the transcriptome-wide association study, we believe that using residual permutation is

beneficial because it allows for a more precise quantification of the null p-value distribution.
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Batch effects are important to account for in studies of RNA-seq. Here, we did not study their
effect because it was beyond the scope of our investigation. van Rooij et al (30) in their
benchmarking study focusing on replication across cohorts, compared a few approaches for
adjusting for technical covariates, including estimating and adjusting for latent confounders (38).
They concluded that inclusion of more technical adjusting covariates, including hidden

confounders, increases the rate of replication between studies.

To summarize, we highlighted the problem of high false positive findingsin RNA-seq data
when studying the association of continuous exposure phenotypes that are highly non-normal.
We developed a computationally efficient pipeline to address the false positive detection
problem, and studied strategies to optimize statistical power. Our approach will be particularly
useful for epidemiological studies with RNA-seq data that were not designed as di sease-focused

case-control studies.
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Figure legends
Figure 1: Distributions of the three sleep-disordered breathing exposure phenotypes used as case

studies in this manuscript. The left column provides the empirical density functions of the raw
phenotypes, the right column provides the empirical density function of their residuals after
regressing on age, sex, BMI, self-reported race/ethnic group, and study center. AvgO2: average
oxyhemoglobin saturation during sleep. MinO2: minimum oxyhemoglobin saturation during
sleep. AHI: Apnea Hypopnea Index.
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Figure 2: Average number of false positive transcript associations detected by various methods
used in simulation study 1 and computed over 100 repetitions. We used the residual
permutation approach to mimic the MESA data set with the sleep phenotype MinO2. The
methods reported here are linear regression (applied on log2-transformed transcript counts,
with zero values replaced with SubHalfMin); DESeq2, edgeR, and 1imma-voom. The left
column provides results when using raw p-values, the middle corresponds to use of quantile-
empirical p-values, and the right corresponds to Storey empirical p-values. We report false
positive detections as those with Benjamini-Hochberg (BH) False Discovery Rate adjusted (FDR)
adjusted p-value < 0.05, Local FDR <0.05 (gvalue package) and with Holms Family-Wise Error
Rate (FWER) adjusted p-values < 0.05. Error bars reflect the mean + standard error. In
Supplementary Figures S3-S5, we provide complete results, including for additional sleep

phenotypes: AHI and AvgO2.
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Figure 3: Estimated power for detecting a transcript simulated as associated with the three sleep traits

when using Storey empirical p-values, and association is determined significant if its BH FDR-adjusted p-

value is <0.05. The transcripts were randomly selected out of available transcripts (after filtering of

transcripts with 50% or higher zero counts across the sample). We compared linear regression, DESeq2,

and edgeRr in transcriptome-wide association analysis for each of the sleep phenotypes. For each

transcript used in simulations, we show both power and the box plot of its distribution in the sample after

Median normalization.
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Figure 4: Analysis pipeline for association transcriptome-wide association analysis of continuous
exposure phenotypes. The raw data is normalized using library-size normalization, followed by
filtering of transcripts, transformation of transcript expression values, then single-transcript
testing to obtain raw p-values. In parallel, residual permutation is applied under the null 100
times, and p-values are used to construct an empirical p-value distribution under the null, and
to compute empirical p-values. Finally, the quantile empirical p-values are corrected for

multiple testing.
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