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ABSTRACT

Color perception relies on spatial comparisons of chromatic signals, but how the brain
performs these comparisons is poorly understood. Here, we show that many VA1
neurons compare signals across their receptive fields (RF) using a common principle.
We estimated the spatial-chromatic RFs of each neuron, and then measured neural
selectivity to customized colored edges that were sampled using a novel closed-loop
technique. We found that many double-opponent (DO) cells, which have spatially and
chromatically opponent RFs, responded to chromatic contrast as a weighted sum, akin
to how simple cells respond to luminance contrast. Other neurons integrated chromatic
signals non-linearly, confirming that linear signal integration is not an obligate property
of V1 neurons. The functional similarity of DO and simple cells suggests a common
underlying neural circuitry, promotes the construction of image-computable models for

full-color image representation, and sheds new light on V1 complex cells.
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INTRODUCTION

Color perception depends on the spectral composition and spatial organization of lights
in a visual scene (Monnier and Shevell, 2003; Shevell and Monnier, 2005). Spectral
signals across space are thought to contribute to scene segmentation as well as
facilitating object recognition and enhancing visual memory (Wurm et al., 1993; Fine et
al., 2003; Spence et al., 2006). Despite its importance for visual function, the spatial

integration of spectral signals by neurons in the visual system is poorly understood.

The first stage of the primate visual system at which spatial comparison of spectral
signals is implemented by individual neurons is area V1; many neurons in V1 are tuned
for orientation and spectral properties of edges. Simple and double-opponent (DO) cells
are tuned for the orientation of luminance and chromatic edges, respectively (Ringach,
2002; Conway and Livingstone, 2006; Johnson et al., 2008; De and Horwitz, 2020).
Simple cells combine signals from the L- and M-cone photoreceptors with the same sign
and are therefore cone non-opponent. They respond to light increments in one part of
their receptive fields (RFs) and decrements in another, rendering them sensitive to
spatial luminance contrast. DO cells are spatially opponent, like simple cells are, but
they combine signals from at least two different cone photoreceptor types
antagonistically within individual RF subfields (Daw, 1968; Conway, 2001; De and
Horwitz, 2020).

Simple cells combine signals across their RFs approximately as a weighted sum (Hubel
and Wiesel, 1959; Movshon et al., 1978b; Carandini et al., 1997). These neurons can
therefore be thought of as linear filters that operate on the retinal image. This insight
has propelled scientific progress in at least three ways. First, it facilitated the
construction of image-computable models of achromatic image representation (Marr
and Hildreth, 1980; Adelson and Bergen, 1991). Second, it shed light on cortical
circuitry: simple cells receive excitation (“push”) and inhibition (“pull”) with opposite
spatial tuning, which appears to be a critical step for establishing linearity in the face of
nonlinear input from the lateral geniculate nucleus (Ferster, 1988; Hirsch et al., 1998;

Ferster and Miller, 2000). Third, it provided an essential building block for quantitative
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models of V1 complex cells (Movshon et al.,, 1978a; Adelson and Bergen, 1985),
neurons in higher-order cortical areas (Simoncelli and Heeger, 1998; Cadieu et al.,
2007; Freeman et al., 2013), and a variety of psychophysical phenomena (Adelson and
Bergen, 1985; Beaudot and Mullen, 2006; Graham, 2011). Currently, all of these
advances have been restricted to the achromatic domain. A similar quantitative
understanding of image representation in the chromatic domain is severely lagging and

is necessary to extend these advances to natural, full-color images.

FIGURE 1 HERE

The nature of the spatial antagonism implemented by DO cells has important
implications for their contributions to vision. For example, consider a hypothetical DO
cell that compares cone-opponent signals between the left and right halves of its RF
(Figure 1A). If the cell integrates signals linearly and with equal weight, then it is well
suited for extracting vertical chromatic edges (Figure 1B-D). In this case, the excitation
due to a preferred light in one half of the RF can be cancelled by the same light
appearing in the neighboring half. On the other hand, if the cell integrates signals
nonlinearly, for example, by weighting contrast increments more heavily than contrast
decrements, it would encode both edges and surfaces (Figure 1C,F). In this case, a
light in one half of the RF would fail to cancel the same light appearing in the

neighboring half.

In this study, we measured the spatial integration of visual signals by individual V1
neurons in awake, fixating monkeys. Neurons can combine signals in many ways, but
we focus on linear combinations because of their theoretical significance. Linearity is a
mathematical ideal that is never fully realized by neurons, so we do not ask whether
neurons integrate visual information across their RFs linearly but instead quantify how
well a linear model describes spatial integration relative to a more flexible model.
Models were fit to data collected using a closed-loop stimulus generation technique

(Boélinger and Gollisch, 2012; Horwitz and Hass, 2012). The closed-loop technique
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involved the online construction of optimally oriented and positioned edges that varied in
color but drove identical spike count responses. An advantage of this approach is that it
is robust to output nonlinearities that complicate other approaches (DeAngelis et al.,
1993; Gollisch and Herz, 2012). It also avoids the necessity of adopting a single
definition of stimulus contrast, which is particularly important when probing responses to
chromatic stimuli because no universally accepted definition of contrast applies to all
color directions and how linear a neuron appears depends on stimulus contrast
(Albrecht and Hamilton, 1982; Mullen, 1985).

Using this technique, we found that many DO cells responded linearly to differences in
cone-opponent signals across their RFs, in quantitive similarity to how simple cells
respond to spatial differences in luminance. Other V1 neurons combined signals non-
linearly, confirming the existence of non-linear, cone-opponent neurons in V1 and the
ability of the closed-loop technique to detect them. These results suggest that DO cells,
like simple cells, are building blocks for complex cells, a proposal that explains several
previous results and provides new insight into the functional role of color-sensitive V1

complex cells.
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RESULTS

We analyzed the spiking responses of 98 V1 neurons in two awake, fixating male
macaque monkeys (69 from Monkey 1, 29 from Monkey 2). Each neuron was
stimulated with white noise, and data were analyzed by spike-triggered averaging to
identify a pair of functionally distinct subfields within the classical RF. Visual stimulation
was then targeted to these subfields to characterize their individual and joint impact on

neuron’s firing rate.

FIGURE 2 HERE

RF characterization

Spike-triggered averages (STAs) of some neurons resembled uniform blobs, indicating
consistent spectral sensitivity across the RF. Other STAs were spatially structured, for
example, consisting of a set of yellow pixels adjacent to a set of blue pixels (Figure 2A).
These structured STAs are a signature of neurons that compare spectral information
across space. These neurons only were tested; if an STA did not reveal at least two

distinct subfields, the neuron was passed over for data collection.

A major goal of these experiments was to characterize spatial integration within the RFs
of V1 neurons. The white noise checkerboard stimulus is ill-suited for achieving this
particular goal because it modulates V1 neurons weakly, and nonlinear spatial
integration might appear linear in response to small perturbations. To drive the neurons
more effectively, we customized the stimulus to each neuron studied. From the STA, we
identified two contiguous groups of pixels, each covering a single RF subfield, and
yoked each group into a “hyperpixel”’. White noise modulation of the two hyperpixels
stimulated the two subfields strongly and independently, driving a wide range of firing

rates (Phase 2 of the protocol, see Experimental Protocol, Figure 2B & Figure S1).
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Neurons with spatially opponent RFs were classified into three categories on the basis
of their responses to the hyperpixel white noise stimulus. Twenty-six neurons were
classified as simple cells, 27 were classified as DO cells, and 47 neurons were neither
simple nor DO and were classified conservatively as “NSNDQO” (neither simple nor
double-opponent). For each neuron studied, the colors on the two sides of the
hyperpixel STA were complementary or nearly so (Pearson’s r between the two sides :
-0.94 £ 0.11 (mean %= SD) for simple cells, -0.76 £ 0.23 for DO cells, and -0.77 £ 0.24
for NSNDO cells). Many neurons in the NSNDO category are likely to be complex cells
although a decisive classification would require an analysis of F1/FO response
amplitude modulation which we did not measure (Skottun et al., 1991). Some NSNDO
neurons might have been classified as DO in other studies, an issue to which we return
in the Discussion.

Measuring spatial integration using white noise

We quantified interactions between RF subfields using an approach similar to one used
previously to study interactions between the stimulus features that trigger spikes in
complex cells (Touryan et al., 2002; Rust et al., 2005). In these previous studies, white
noise stimuli were projected onto the plane spanned by the first and second principal
components of the stimuli the drove spikes. Similarly, we projected the hyperpixel white
noise stimuli onto the two halves of the STA (see White noise analysis of signal
combination across subunits). These two projection values reveal how similar the
stimulus was to the two halves of the STA; the larger the projection value, the more of
the STA is present in the stimulus. We visualized a firing rate map by binning stimulus
projections and calculating the proportion of stimuli in each bin that drove a spike
(Figure 2C). The probability of spiking increased with the stimulus projection onto
individual RF subfields, and it rose more steeply when both projections increased

together.
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To analyze spatial integration between RF subfields, we fit the data with a generalized
linear model (GLM) and a generalized quadratic model (GQM) (see White noise
analysis of signal combination across subunits; Figure S2A). We then quantified
the ability of the two models to classify stimuli as spike-triggering or not using ROC
analysis (Figure S2B) (Green and Swets, 1966). Classification error rates of the GLM
and GQM were summarized with a white noise non-linearity index (NLI) (see White
noise non-linearity index). A white noise NLI < 0 indicates that the GLM provides more
accurate predictions than the GQM, and an NLI > 0 indicates that the GQM provides
more accurate predictions than the GLM. An NLI of 0 occurs if the GLM and GQM make
identical predictions, which can occur because the GLM is a special case of the GQM
with three parameters set to zero. Because of these extra parameters, the GQM always
fits the training data as well or better than the GLM. To compare the two models fairly,
we tested the model on data that had been held out from the fitting using 10-fold cross-
validation (Browne, 2000).

NLIs differed across the three cell types (median white noise NLI for simple cells =
0.0009, DO cells = 0.0005, NSNDO cells = 0.0034; p=0.02, Kruskal-Wallis test; Figure
2D-F). Comparison between simple and DO cells revealed no significant difference
between them (p=0.99, Mann-Whitney U test). To the contrary, NLIs of simple and DO
cells were both lower than those of the NSNDO cells (p<0.05, Mann-Whitney U tests).
We conclude that simple and DO cells are similarly linear and are more so than other

V1 neurons that also have spatially structured STAs.

In interpreting these data, it is important to note that a lack of evidence for a difference
between simple and DO cells is not evidence that a difference does not exist. This
experiment probed neurons with low-contrast, rapidly modulated stimuli (Figure S1).
The possibility remains that differences between simple and DO cells become evident
when they are tested with stimuli of higher contrast or longer duration. We tested this

possibility in Phase 3 of our experimental protocol, as described below.

FIGURE 3 HERE
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Measuring spatial integration using the isoresponse method

For each neuron, we found a collection of stimuli that evoked the same response. Each
stimulus was spatially identical to the hyperpixel STA, but the contrast of the two
hyperpixels was adjusted according to the algorithm described in Contrast staircase

procedure. Negative contrasts were allowed.

To appreciate the necessity of this technique, it is useful to consider a classical
alternative. A classic test of linearity is to present one stimulus at the receptive field of a
recorded neuron, then another, and then both together. If the response to the combined
stimulus does not equal the sum of responses to the two components, the neuron is not
linear. However, this test is sensitive to nonlinearities that are logically distinct from the
linearity of spatial summation and are present in otherwise linear cortical neurons (e.g.
spike firing thresholds and saturating contrast-response functions). An alternative
approach is to find a collection of stimuli that evoke the same response from an isolated
neuron and analyze these stimuli to identify the features they share. This approach has
been used previously to study signal integration in the salamander retina and locust
auditory receptor cells (Gollisch et al., 2002; Bélinger and Gollisch, 2012). It has also
been used previously in macaque V1 to analyze the linearity of signal integration across
cone types by individual neurons (Horwitz and Hass, 2012), but it has not been used

previously to analyze the linearity of signal integration across a V1 RF.

If a neuron combines cone-contrast signals linearly across its RF, then stimuli that drive
the same response will lie on lines when represented in the stimulus space shown in
Figure 2C. If the stimuli lie on a curve instead of a line, the hypothesis of linear spatial
summation can be rejected. This approach makes no assumptions about static output
nonlinearities downstream of spatial integration whereas the GLM and GQM assumed a
logistic function. It also does not assume linearity of cone signal integration within

individual RF subfields. This assumption was needed to reduce the RGB values that
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identify each stimulus frame to two stimulus projections for the GLM and GQM

analyses.

In Figure 2C, each point represents a stimulus, distance from the origin represents
contrast relative to the background, and angle represents contrast between the two
sides of the stimulus. Within this plane, a search was performed to find physically
distinct stimuli that evoked the same neuronal response. Angles were selected pseudo-
randomly, and distances were titrated by a staircase procedure until a target firing rate
was achieved (Figure S3). To mitigate the impact of spontaneous spiking activity on
staircase procedure, target firing rates were well above baseline firing rates (95/98
neurons had target firing rates that were greater than the 95t percentile value of their
respective baseline firing rate distribution). Target firing rates did not differ across cell
types (p=0.57, Kruskal-Wallis Test).

For some neurons, staircase termination points lay close to a line when plotted in the
stimulus space (Figure 3A-B). This result shows that the excitation produced by a
preferred light at one part of the RF can be cancelled by an anti-preferred light at a
neighboring part with a fixed constant of proportionality over the entire gamut of our
video display. This cancellation is consistent with linearity of spatial integration (Figure
1A) and not with differential sensitivity to contrast increments and decrements (Figure
1B). However, not all neurons behaved this way. For some neurons, staircase

termination points lay on a curve (Figure 3C), indicating nonlinear spatial integration.

To determine quantitatively whether a line or a curve provided the better description of
the staircase termination points for each neuron, we compared linear and quadratic
models fits (see Evaluating model fits to staircase termination points; Figure S4).
We defined an isoresponse non-linearity index (isoresponse NLI) similarly to the white
noise NLI defined previously (see Isoresponse non-linearity index). An isoresponse
NLI of 0 indicates that the linear and quadratic models made equally accurate response
predictions, NLI < 0 indicates that the linear model predicts responses more accurately

than the quadratic model, and NLI > O indicates that the quadratic model predicts
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responses more accurately than the linear model. Cross validation ensured that the
quadratic model does not achieve greater prediction accuracy simply by virtue of having

more parameters.

NLIs of simple cells and DO cells were close to zero and did not differ significantly
(median isoresponse NLI for DO cells = 0.1007, median isoresponse NLI for simple
cells = -0.0097; p=0.14, Mann-Whitney U test; Figure 3D). In contrast, NLIs were
greater for the NSNDO neurons (median isoresponse NLI = 0.2822, p=0.02, Kruskal-
Wallis test). We conclude that simple and DO cells are similarly linear over the range
that we were able to test given the limits of our display, and that they are more linear

than other neurons in V1.

Despite the many methodological differences between Phases 2 and 3 of the
experiment, the results were similar for individual neurons (Figure 3E). Isoresponse
NLIs were positively correlated with the white noise NLIs (r = 0.30, p = 0.001,
Spearman’s correlation between isoresponse NLI and white noise NLI). This correlation
was driven primarily by NSNDO cells (r = 0.41, p = 0.004, Spearman’s rank correlation)
and not by DO (r = 0.01, p = 0.95, Spearman’s rank correlation) or simple cells (r =
-0.19, p = 0.34, Spearman’s rank correlation). We conclude that some nonlinearities that
manifest in responses to white noise also manifest in responses to more classical
stimuli, and that nonlinearities that were not manifested in responses to white noise

were similarly common among simple and DO cells.
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DISCUSSION

A fundamental goal of visual neuroscience is to characterize the transformation from
light stimulation of individual neurons to spiking responses. In this study, we
characterized the spatial integration by individual V1 neurons using a combination of
white noise RF mapping, closed-loop isoresponse measurements, and statistical model
comparisons. We found that DO cells integrate signals across their RFs roughly linearly,
like simple cells and in contrast to other V1 neurons, which were less linear on average.
Below, we compare our results to those of previous studies and discuss the impact of
our cell classification criteria on the results. We then discuss the implications of our
results on the circuitry that underlies DO and simple cells and how each cell type may
contribute to downstream image processing. We conclude with speculations on parallels

between the processing of color and other stimulus features in V1 by complex cells.

Relationship to previous work

Linearity in the visual system is "a rare and (apparently) prized commodity in neural
signal processing” (Shapley, 2009). The linearity of V1 simple cells is not an accident of
random convergence of LGN afferents but rather the product of specialized excitatory
and inhibitory circuitry (Ferster, 1988; Tolhurst and Dean, 1990; Hirsch et al., 1998). The
discovery that V1 simple cells combine signals linearly across their RFs contributed to
scientific progress in many ways. It provided a valuable bridge between
neurophysiology and the fields of psychophysics and computer vision. It provided
guidance for how to characterize neuronal stimulus tuning efficiently. It served a basis
for more elaborate models; all V1 neurons exhibit some degree of nonlinearity, but the
linear model remains a cornerstone of even nonlinear V1 models (Carandini et al.,
2005; Carandini, 2006).

Color can be quantified in many ways. In this study, we used the intensity of individual
(display-specific) phosphor channels relative to the background. The fact that DO cells

and simple cells combined light intensities across space approximately linearly in this
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representation shows that it is a reasonable one for analyzing V1 neurons. We note that
any color representation that is a linear transformation of this device-specific color
space would also have this property (e.g. cone-contrast, cone-excitation-differences-

from-background, Derrington-Krauskopf-Lennie, etc).

Nearly all quantitative studies of V1 RFs have used achromatic stimuli. Extending
quantitative RF mapping to color is complicated by the curse of dimensionality. As the
dimensionality of the color space increases from 1-D (achromatic) to 3-D (full color), the
number of possible spatial combinations grows exponentially. Classic workarounds
include the use of gratings, which have a highly constrained spatial structure and/or
cone isolating stimuli, which are most useful for analyzing neurons that combine signals
linearly across cone type. Our solution was to map the RF of each neuron with white

noise and then customize spatiochromatic patterns on the basis of these maps.

Two previous studies investigated spatial integration by DO cells. Using the 2-bar
interaction technique, Conway et al. (2002) found that most color-sensitive V1 neurons
responded maximally when a pair of different cone-isolating bars appeared side-by-side
inside the RF. This maximal response exceeded the response to either bar in isolation,
consistent with linearity as well as with other models. Conway and Livingstone (2006)
measured the responses of DO neurons to cone-isolating stimuli at individual RF
locations. They assumed that the excitatory response to a contrast increment had the
same magnitude, but opposite sign, as the suppression to a contrast decrement. This
need not be the case; retinal and LGN ON and OFF pathways are asymmetric, and
some cone-opponent pathways particularly so (De Valois et al., 2000; Chichilnisky and
Kalmar, 2002; Chatterjee and Callaway, 2003; Tailby et al., 2008). Nevertheless, most of
the DO cells they studied showed clear signs of push-pull inhibition, which is consistent
with linearity (Tolhurst and Dean, 1990; Ferster, 1994; Hirsch et al., 1998; Ferster and
Miller, 2000). Our findings extend these results by demonstrating the linearity of spatial
integration directly through simultaneous stimulation of functionally distinct RF subfields,
and they suggest that the assumption made by Conway and Livingstone (2006) is a

reasonable one for V1 DO cells.
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Cell categorization criteria

We classified simple and DO cells on the basis of their responses to the hyperpixel
white noise stimulus. Specifically, we segregated simple from DO cells on the basis of
cone weights derived from the STA. By definition, simple cells have large, non-opponent
L- and M-cone weights, and DO cells have cone-opponent weights. We used the same
cone weight criteria that we used previously to facilitate comparison between studies
(De and Horwitz, 2020).

The cone weight criteria for inclusion into the simple cell and DO cell categories were
asymmetric for two reasons. First, cone non-opponent V1 cells (e.g. simple cells)
typically have smaller S-cone weights than do cone-opponent cells (e.g. DO cells)
(Johnson et al., 2004; Horwitz et al., 2007). Second, the variability in estimated L- and
M-cone weights is greater for non-opponent cells than opponent cells (Horwitz et al.,
2007). Reclassifying cells with different criteria did not change the main results of this
study (Figure S5).

Most other recent studies of DO cells used cone-isolating stimuli, which cannot reveal
interactions among cone types (Conway, 2001; Johnson et al., 2001, 2004; Conway and
Livingstone, 2006; Johnson et al., 2008). In contrast, we used a stimulus set that
modulated all three cone types together in a variety of proportions. Nonlinear
interactions between cone types complicate the interpretation of RF maps that are
separated by cone type. In further distinction from other studies, we stimulated DO cells

with colored edges to confirm the spatial and spectral sensitivity inferred from the STAs.

We classified neurons with nonlinear responses to white noise as NSNDO. This criterion
was necessary to satisfy the assumptions underlying the conversion of the STA to cone
weights. Importantly, this criterion did not force the result of linearity in DO cells. Spike-
triggered covariance (STC)—the technique we used to detect nonlinearities (see Spike-

triggered covariance analysis)—detects only a subset of nonlinearities, and
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nonlinearities that are clear with high-contrast, long-duration stimuli are not always
detectable with white noise (Tanabe and Cumming, 2008). Nevertheless, we found that
nonlinearities detected in Phase 2 of our experiment were a good indicator of
nonlinearity over the greater stimulus duration and range of contrasts in Phase 3,
principally for the NSNDO cells (Figure 3E).

We speculate that some cells that we classified as NSNDO on the basis of
nonlinearities in responses to white noise would have been classified as DO in other
studies (Conway and Livingstone, 2006; Johnson et al., 2008). Whether these neurons
are more usefully classified as nonlinear DO cells, partially rectified complex cells, or
something else entirely is an important question that is partly physiological and partly
semantic. In any case, the major finding of this study is that a population of DO cells
combines cone-opponent signals across their RFs approximately as linearly as simple
cells combine non-opponent signals, a result that stands despite the existence of other

V1 cells with nonlinear spatial integration.

FIGURE 4 HERE

DO and simple cells: Neural circuitry

Spatial linearity of V1 simple cells is based on excitatory and inhibitory pools of LGN
afferents that carry distinct signals (Ferster, 1988; Tolhurst and Dean, 1990; Hirsch et
al., 1998). The spectral sensitivity of a V1 neuron is determined by the afferents that
contribute to each of these pools. Pooling LGN afferents with the same sign (ON or
OFF) creates non-opponent spectral sensitivity. Simple cells are excited by L-ON and
M-ON afferents (and inhibited by L-OFF and M-OFF) in one part of their RFs and have
the reverse tuning in another part. In contrast, pooling the same afferent signals to
produce cone-opponency (e.g. L-OFF with M-ON) with otherwise identical circuitry

would produce a DO cell. This may be the primary difference between simple and DO
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cells. The implementation of the spatial differencing operation may be common to both

cell types.

Simple cells are thought to provide the dominant input to complex cells (Hubel and
Wiesel, 1962). Under a standard model, complex cells pool signals from simple cells
with overlapping RFs and common preferred orientation (Figure 4A). One possibility is
that some complex cells also receive input from DO cells (Figure 4B). We speculate
that complex cells receiving simple cell input only are luminance-sensitive (Figure 4C)
whereas those that receive input from simple and DO cells are both color-and
luminance-sensitive (Figure 4D). This conjecture is consistent with the observations
that the preferred orientation of color-sensitive complex cells is maintained across color
directions (Johnson et al., 2001). It is also consistent with the observation that color-
sensitive complex cells have multiple preferred color directions by STC analysis
(Horwitz et al., 2007) and have no null directions in cone-contrast space (Horwitz and
Hass, 2012). An alternative possibility is that the spectral sensitivity of color-sensitive
complex cells arises entirely from their DO cell inputs (Michael, 1978), which have been
reported to be similarly responsive to chromatic and luminance contrast (Johnson et al.,
2001, 2004, 2008). In either case, DO cells are a likely basis for the chromatic
sensitivity of color-sensitive complex cells (Michael, 1978). Measuring functional

connectivity between DO and complex cells could test this hypothesis.

Analogous neural coding of color and stereopsis

The stereotyped microcircuitry of area V1 contributes to vision for form, color, depth,
and motion. These distinct visual modalities have distinct computational demands but
V1 circuitry may contribute to each via a small set of operations that process different
signals in similar ways. For example, parallels between the V1 processing of binocular
disparity and motion direction are well established (Adelson and Bergen, 1991). We
speculate that color and stereopsis have heretofore unappreciated parallels, and that
models of binocular disparity tuning may provide a useful guide for the study of cone-

opponent and non-opponent signal combination in V1.
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A fundamental component of binocular V1 models are simple cells that linearly sum
signals from the two eyes (Anzai et al., 1999b; Read and Cumming, 2003). Analogous
building blocks in the color domain are simple cells and DO cells, which sum cone non-
opponent and cone-opponent signals with a similar degree of linearity. Binocular simple
cells are thought to provide input to binocular complex cells that implement an energy
calculation (Anzai et al., 1999a; Read and Cumming, 2003). The analogous
convergence of simple cell and DO cell outputs would implement a spectral energy

calculation (Horwitz and Hass, 2012; Barnett et al., 2020).

The binocular energy model, while extremely successful in describing complex cell
responses, requires refinement (Haefner and Cumming, 2008). For one thing, it fails to
account for the attenuation of responses to anti-correlated signals between the two eyes
(Cumming and Parker, 1997). This specialization of real V1 cells is thought to reflect the
statistics of natural inputs to the visual system (Haefner and Cumming, 2008). Under
natural viewing conditions, binocularly correlated patterns are more common than anti-

correlated patterns, and V1 neurons appear specialized to encode them.

A parallel phenomenon may exist in the domain of color. Under natural viewing
conditions, luminance and chromatic spatial gradients tend to be aligned, and their
alignment (or misalignment) carries important information regarding the physical
sources of the gradients. Edges between different materials under fixed illumination
produce in-phase luminance and chromatic modulations, whereas uncorrelated
variations in illumination and pigmentation, such as produced by curved 3-dimensional
objects of non-uniform reflectance, produce out-of-phase modulations (Kingdom, 2003;
Kunsberg et al.,, 2018). The energy model in Figure 4B produces phase-invariant
responses and so does not account for these specializations. Whether real V1 neurons
respond in accordance with the energy model or show enhanced responses to natural
alignments between chromatic and luminance signals is an important and unanswered

question.
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In summary, DO cells and simple cells have much in common. As shown by the current
study, both cell types combine signals roughly linearly across their RFs and, as shown
previously, they share a Gabor-like RF structure (De and Horwitz, 2020). These
observations motivate the idea that simple cells and DO cells are closely related
neuronal types that may contribute similarly to downstream circuits that integrate cone-

opponent and cone-non-opponent signals for spatial image analysis.

18


https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.12.430975; this version posted February 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

MATERIALS & METHODS

Contact for Resource Sharing

Further information and requests for resources should be directed to and will be fulfilled

by the Lead Contact, Gregory D. Horwitz (ghorwitz@u.washington.edu).

Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models:

Organisms/Strains

Rhesus monkeys (Macaca Mulatta) Washington National N/A
Primate Research
Center

Software and Algorithms

MATLAB Mathworks https://
www.mathworks.c
om/products/
matlab.html RRID:
SCR_001622

Plexon Sort Client Plexon http://
www.plexon.com
RRID:
SCR_003170

Plexon Offline Sorter Plexon http://
www.plexon.com
RRID:
SCR_000012

General

All protocols conformed to the guidelines provided by the US National Institutes of
Health and the University of Washington Animal Care and Use Committee. Data were

collected from two adult male rhesus macaques (Macaca mulatta). Each monkey was
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surgically implanted with a titanium headpost and a recording chamber (Crist
Instruments) over area V1. Eye position was monitored continuously using either an
implanted monocular scleral search coil or a digital eye-tracking system (SMI iView X

Hi-Speed Primate, SensoMotoric Instruments).

Task

The monkeys sat in a primate chair 1 m from a cathode ray tube (CRT) monitor (Dell
Trinitron Ultrascan P991) in a dark room during the experiments. In a subset of
sessions, the distance was reduced to 0.7 m and the pixel size was changed
accordingly to preserve angular subtense. During white noise presentation, the
monkeys fixated a centrally located dot measuring 0.2 x 0.2° and maintained their gaze
within a 1.6 x 1.6° fixation window. During the closed-loop isoresponse measurements,
the monkeys maintained their gaze within a 0.8 x 0.8° window. Successful fixation was

rewarded with apple juice, and fixation breaks aborted trials.

Monitor Calibration

Monitor calibration routines were adapted from those included in Matlab Psychophysics
toolbox (Brainard, 1997; Pelli, 1997). The emission spectrum and voltage-intensity
relationship of each monitor phosphor were measured with a spectroradiometer
(PR650, PhotoResearch Inc.). Stimuli were gamma-corrected in software to
compensate for the non-linearity of these voltage-intensity relationships. The color
resolution of each channel was increased from 8 to 14 bits using a Bits++ video signal
processor (Cambridge Research Systems, Ltd.). The monitor refreshed at 75 Hz and

background was uniform gray (x = 0.3,y = 0.3, Y = 55-75 cd/m2).

Electrophysiological recordings
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We recorded from well-isolated V1 neurons (RF eccentricity: 1.3°-5.9°, median = 3.6°)
using extracellular tungsten microelectrodes (Frederick Haer, Inc.) lowered through the
dura mater via hydraulic microdrive (Stoelting Co.). Electrical signals were amplified,

digitized at 40 kHz (Plexon, Inc.), and recorded.

Experimental Protocol

Each experiment consisted of three phases. During the first phase, spatiochromatic
tuning was probed with a white noise checkerboard stimulus and data were analyzed
online by spike-triggered averaging. During the second phase, the white noise stimulus
was customized to the RF of each neuron. During the third phase, high-contrast images
with the same spatial structure used in Phase 2 were presented for relatively long

durations (300 ms). Each of these phases is detailed below.

Phase 1: Checkerboard white noise

Each stimulus frame contained a 10 x 10 grid of pixels each of which subtended 0.2 x
0.2° (Figure 2A) (Horwitz et al., 2007). The stimulus changed every 13.33 ms. The
intensity of each phosphor at each pixel was modulated independently according to a
Gaussian distribution with a standard deviation of 15% of the physically achievable
range. The space-time averaged intensity of each phosphor was equal to its

contribution to the background.

Neuronal responses to white noise stimuli were analyzed by spike triggered averaging
(Figure 2A). In this analysis, the 15 frames preceding every spike were collected and
averaged across spikes. From these 15 spike-triggered average (STA) frames, we
selected online the one that differed most from the background and identified pixels that
differed significantly from the background (p<0.05, z-tests performed on each phosphor

separately). These data were used to customize the white noise stimulus to the RF in
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Phase 2 of the experimental protocol (see below). We selected for additional study only
cells whose RFs consisted of at least two subfields with distinct chromatic preferences
(Figure 2A).

The checkerboard white noise stimulus modulated neurons weakly for three reasons.
First, individual stimulus pixels were small relative to V1 RFs. This was necessary to
distinguish one RF subfield from another but resulted in each subfield being stimulated
by independent pixel modulations that tended to cancel. Second, the pixels modulated
rapidly, so multiple frames were effectively averaged together in the early visual system,
prior to V1. Third, phosphor intensities were drawn from Gaussian distributions. Most of
the probability mass of a Gaussian distribution is near the mean, which was identical to

the background, so high contrast pixels were improbable (Figure S1A-B).

Phase 2: Hyperpixel white noise

For each neuron with an STA containing at least two spatially distinct subregions (with
distinct chromatic preferences), we created a custom white noise stimulus by yoking the
pixels within each of the two subfields (Figure 2B). Phosphor intensities at the two
yoked collections of pixels (the two hyperpixels) were modulated according to the same

Gaussian distribution used in Phase 1. Pixels outside of the RF were not modulated.

To examine how signals were combined across the two targeted subfields, we
represented hyperpixel stimulus frames as a six-dimensional vectors of background-
subtracted RGB values and then projected each of these segment of vectors onto the
two halves of the temporo-chromatic STA. This operations produces two scalar values
that indicated how strongly short, overlapping segments of the stimulus movie drove the
two RF subfields. We visualized a firing rate map from these projections by computing
the ratio of spike-triggered stimuli to the total stimuli (Chichilnisky, 2001). We also fit the

data with linear and non-linear models and compared the fits to examine spatial
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integration quantitatively. The details of this analysis can be found in the section: White

noise analysis of signal combination across subfields.

Phase 3: Isoresponse measurement

We selected the STA frame that differed most from the background and separated it into
its two hyperpixels, each of which selectively stimulated one RF subfield with its
preferred light (represented along the 45° and 135° directions in Figure 3A). We then
linearly combined these two images in different proportions to create a family of stimuli
that can be represented in the same plane used to construct the firing rate map in
Phase 2 (Figure 2C). The origin of the coordinate system represents the gray
background of the display. Direction represents the overall contrast between the two
halves of the stimulus, and distance from the origin represents stimulus contrast relative
to the background. No universally accepted definition of contrast applies to all color
directions. Therefore, for convenience, we defined contrast along the 45° direction as
the projection of the RGB values onto one half of the STA. Contrast along the 135°

direction was defined similarly using the other half of the STA.

Contrast staircase procedure

To examine interactions between subfields, we identified collections of stimuli described
above that evoked the same number of spikes using the following procedure. On each
trial, the computer presented a stimulus and counted spikes from the onset response
latency, defined as the peak frame of the STA from Phase 2, until the end of the
stimulus presentation. This spike count was compared to an experimenter-defined
target response (Figure S3A). If the spike count was lower than the target response,
the contrast of the image was increased by a factor of 1.35. If the spike count exceeded
the target response, the contrast of the image was decreased by a factor of 0.65. This
process continued until a reversal occurred. A reversal is a response that exceeded the

target response after having fallen below it on the previous stimulus presentation or a
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response that fell below the target having exceeded it on the previous stimulus
presentation. After each reversal, the change in contrast per trial decreased by 75%
(Figure S3B). The staircase halted after seven reversals or whenever the contrast
exceeded the physical limitations of the display. Staircase termination points were taken
as estimates of the contrast that evoked the target response. Presentations of stimuli in
pairs of directions in the stimulus space were randomly interleaved to mitigate non-
stationarity due to adaptation. Each stimulus was presented for 300 ms and was

separated from the preceding and subsequent stimuli by more than 1 s.

Cell Screening

We recorded from 232 well-isolated V1 neurons and made isoresponse measurements
from 98 of them. Neurons were classified as “simple”, “double-opponent” or
“NSNDO” (neither simple nor double-opponent) on the basis of responses to white

noise as described below.

Cone weights

Cone weights were calculated from Phase 2 of the experimental protocol. For each cell,
we identified the STA frame that differed maximally from the background and computed
a weighted average of this frame and the two flanking frames. The weight of each frame
was proportional to the sum of squared red, green and blue intensities relative to the
background. We decomposed this weighted STA by singular value decomposition into a
color weighting function and a spatial weighting function, defined as the first row and
column singular vectors, respectively (De and Horwitz, 2020). Together, the color and
spatial weighting functions captured 96.7+5.0% (mean+SD) of the variance in the
weighted STAs. The color weighting function was converted to cone weights that are
assumed to act on cone contrast signals (Weller and Horwitz, 2018). The spatial
weighting function of every cell consisted of one positive and one negative weight,

because only neurons with spatially opponent RFs were recorded.
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Spike-triggered covariance analysis

Cone weights are interpretable only under a linear model of signal combination across
cone types (Weller and Horwitz, 2018). One way to test this assumption is by analysis of
spike-triggered covariance. To implement such a test, we computed the first principal
component (PC1) of the spike-triggering stimuli orthogonal to the STA (Touryan et al.,
2002; Horwitz et al., 2005; Rust et al., 2005). A PC1 that is larger than expected by
chance reveals a nonlinear component of the cell’'s response to the white noise
stimulus. We assessed the significance of the PC1 by randomly shifting spike trains in
time relative to the Phase 2 stimulus movie, recalculating the PC1, and obtaining its
eigenvalue (Rust et al., 2005). This procedure was repeated 1000 times. If the largest
eigenvalue from the unrandomized data exceeded 95% of the largest eigenvalues from
the randomized data sets, we concluded that the PC1 was significant at the 0.05 level.

Neurons with a significant PC1 were classified as NSNDO.

Neurons lacking a significant PC1 were classified as simple if their L- and M-cone
weights had the same sign, accounted for 80% of the total cone weight and individually
accounted for at least 10%. None of the simple cells we studied showed evidence of
opponent input from the S-cones, but some appeared to receive a small non-opponent
S-cone input. Twenty-six cells in our data set were categorized as simple. Our criteria
for DO cells were a lack a significant PC1 and a pair of cone weights of opposite sign.
To ensure that all DO cells were truly cone-opponent, weights of small absolute value
were ignored; to be classified as DO, a neuron had to have an S-cone weight that
accounted for at least 20% of the total or L- and M-cone weights that accounted for at
least 80% jointly and 20% individually. Twenty-five cells were categorized as DO. The
47 neurons that did not meet the DO or simple cell criteria were classified as NSNDO.
These criteria are arbitrary but the central results of this study are robust to these
particulars (Figure S5). We describe the cell classification criteria below that was used

for obtaining the results in Figure S5.
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Luminance tuning index

A luminance tuning index was obtained by projecting the normalized cone weights of
each cell to the cone weights of a luminance mechanism. The luminance cone weights
were estimated by regressing the Stockman-Macleod-Johnson 2° cone fundamentals
onto the Judd-Vos 1978 2° photopic luminosity function to find the best-fitting
coefficients (0.83 L + 0.55 M + 0.03 S) (Vos, 1978; Stockman et al., 1993). The
luminance tuning index ranged from 0 to 1. Cells were classified as DO if their index
value was < 0.33 and they lacked a significant PC1. Twenty-two cells were classified as
DO. Cells were classified as simple if their index value was > 0.67 and they lacked a
significant PC1. Twenty-seven cells were classified as simple. The remaining 49

neurons were classified as NSNDO.

White noise analysis of signal combination across subfields

We fit the data from Phase 2 of the experimental protocol with a generalized linear

model (GLM) and a generalized quadratic model (GQM).

The GLM was defined as:

1

e—(w1P1+w2P2+c)

pred resp = Eq.1

where pred resp is the predicted response of the neuron and P; and P, are the
projection magnitudes of the short segments of the stimulus movie onto the two halves
of the hyperpixel STA. w;, w,, and C were fit using the MATLAB routine (fitgim) to

maximize the binomial likelihood of a spike.

The GQM was defined similarly as:
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1
pred resp = Eq.2
e—(W1P12+W2P22+W3P1P2+W4P1+W5P2+C)

Evaluating the performance of generalized linear and quadratic models

We quantified the ability of the fitted models to predict whether or not each stimulus
segment evoked a spike using receiver operating characteristic (ROC) analysis (Green
and Swets, 1966). Classification error was defined as 1 minus the area under the ROC
curve (Figure S2B). To avoid overfitting, the model was fit with 90% of the data and
tested on the remaining 10%. The white noise non-linearity index (white noise NLI) for

each cell was defined as:

, , _ Classification errorgpy
White noise NLI = log,, (median ( —— ) Eq.3
Classification errorggy

where the median is taken is taken across 10 cross-validation data partitions.

Model fits to isoresponse staircase termination points

To assess the linearity of signal integration across the gamut of our video display, we fit
the staircase termination points from Phase 3 with linear and quadratic models. Fitting
was performed using a standard inbuilt MATLAB routine for function minimization

(fmincon) to minimize the Tukey-bisquare objective function (Fox, 2002).

Searches for the stimuli that produced the target response were conducted in multiple
directions of the stimulus space (e.g. Figure 3A-C), but angles were fixed. We
therefore fit the data with a model that assumes radial error. The linear model can be

written as:

Arcosf@ + Brsinf =1 Eqg.4
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where r =4/x*+y%, 0 =tan™! Y Eq.5
X

X represents the projection of each image onto one hyperpixel of the STA and y

represents the projection onto the other hyperpixel. A and B are fitted parameters.

The quadratic model can be written as:

A(r cos 0)?> + B(r sin0)> + Cr?cos 0 sin@ + Dr cos @ + Er sin0 = 1 Eq.6

Where A, B, C, D and E are fitted parameters.

Evaluating model fits to staircase termination points

We evaluated the quality of model fits by calculating the sum of Tukey-bisquared errors
between the data and the model predictions. To avoid overfitting, we used leave-one-out
cross validation. The isoresponse non-linearity index (isoresponse NLI) was defined as
the median of the ratio of cross-validated linear model errors and quadratic model errors

in logarithmic units.

Cross validated errory;
Isoresponse NLI = log,, (median ( - Linear model ) Eq.7
Cross validated errory,qdrasic model

Drifting gratings

Two neurons were stimulated with drifting, sinusoidal gratings (2 cycles per degree, 3

Hz, 1° diameter circular aperture) that modulated the L- and M-cones with identical
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contrasts either in phase (L+M) or in anti-phase (L-M) (Figure 4). These neurons were

not tested with the standard protocol.
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FIGURE LEGENDS

Figure 1. Linear and non-linear image filtering A. A hypothetical V1 DO cell that is
excited by a red light on one side of its receptive field and a green light on the other. S1
and S2 represent stimulation of the two subfields of the receptive field. B. A linear
spatial filter that sums the stimulation of each subfield and generates a response via a
spiking non-linearity. Note that the drive from each of the subfields is combined linearly
before being transformed by the spiking non-linearity. C. A non-linear spatial filter that
partially rectifies S1 and S2 prior to summation. D. An example natural image. E. Output

of the linear spatial filter of the input image. F. Same as E but for the non-linear filter.

Figure 2. White noise analysis of RF structure and spatial integration A. Checkerboard
white noise stimulus (left), spike-triggered average (STA; right). Two sets of contiguous
pixels were yoked to create two hyperpixels, each of which stimulated one RF subfield
(white outlines). B. The customized white noise stimulus (left) and STA at the peak
frame (middle). Red, green, and blue curves (right) represent the average red, green,
and blue phosphor intensities, relative to background, as a function of time before a
spike. C. A firing rate map for the example DO cell. The probability of spiking (gray
scale) is plotted as a function of projection magnitudes of the stimulus onto the right and
left halves of the STA (along the 45 and 135’ directions, respectively). Dashed white
lines are contours of constant spiking probability from a GLM fit to the data. D.
Histogram of white noise NLIs for DO cells. The NLI of the example neuron is marked

with a tick, and the median is marked with a triangle E. Same as D but for simple cells.

F. Same as D but for the cells that were neither simple nor DO.

Figure 3. Analysis of isoresponse contours. A. Data from the example DO cell shown in
Figures 2A—C. Dots indicate staircase terminations (target firing rate = 30 ips) and gray
dashed lines indicate staircases that exceeded the monitor gamut. Linear (green) and

non-linear (orange) fits to the data are similar. B. Same as A but for a simple cell (target
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firing rate = 50 ips). L+M spectral sensitivity manifests as bright green (ON) or dark
purple (OFF) when probed with the RGB white noise (Chichilnisky and Kalmar, 2002).
C. Same as A but for a cell that was neither simple nor DO (target firing rate = 20 ips).
D. Histogram of isoresponse NLIs. NLIs of example neurons are marked with ticks, and

medians are marked with triangles. E. Scatter plot of isoresponse NLIs and white noise

NLIs. Example neurons are marked with white asterisks.

Figure 4. Proposed signal convergence of simple cells and DO cells onto complex cells
A. A hypothetical complex cell receiving input from simple cells with overlapping odd-
and even-symmetric receptive fields. B. A hypothetical color-sensitive complex cell
receiving input from simple and DO cells. C. Response of a complex cell to a drifting
sinusoidal grating that modulates L- and M-cones at 3 Hz with identical contrast in
phase (top) and in anti-phase (bottom). D. Same as C but for a color-sensitive complex

cell. Gray overlays indicate stimulus duration.
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SUPPLEMENTARY FIGURE LEGENDS

Figure S1. Comparison of the effective stimulus contrast in the three phases of the
experiment. A. Stimuli from Phase 1 (black) and Phase 2 (red) were projected onto the
spatial-temporal-chromatic STA shown in Figure 2B. Projection magnitudes of both
stimuli occupy only a small region of the display gamut (dashed gray box). B. Two-
dimensional histogram of the Phase 1 projections shown in A. C. Same as B but for the
Phase 2 stimuli. D. The probability of spiking as a function of hyperpixel stimulus
projections onto the two halves of the STA. Projection magnitudes from the 5th to the
95th percentile are shown. Within this range, the probability of spike increases
approximately as a a linear combination of the stimulus projections, but this range is a

small fraction of what can be achieved on the display.

Figure S2. Analysis of neuronal spatial integration of white noise stimuli A. Probability
of spiking was predicted as a function of projection magnitudes onto the two halves of
the STA (Proj 1 and Proj 2) using a generalized linear model (GLM) or a generalized
quadratic model (GQM). B. An ROC analysis was used to assess the ability of the GLM
and GQM to classify stimuli into those that did not evoke a spike (inset, gray) and those
that did (inset, black).

Figure S3. An example staircase from the closed-loop procedure used to study the DO
cell in Figure 2A. Neuronal response (in impulses per second, ips) is plotted as a
function of trial number (intervening stimuli skipped). The target firing rate was 30 ips
(dashed line). B. The projection magnitude as a function of trial number for the same
staircase. The staircase termination point is defined as the projection magnitude of the

stimulus presented in the final (17t) trial.
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Figure S4. Cross-validated errors from linear and non-linear fits to data from Phase 3
for DO cells (red), simple cells (black), and NSNDO cells (gray). Example neurons from

Figure 3 are marked with white asterisks.

Figure S5. Reclassification of neurons with a different cone weight criteria. A luminance
tuning index was calculated for each cell by weighting and summing normalized cone
weights (0.83 L + 0.55 M + 0.03 S). This index ranges from 0 to 1. Cells were classified
as DO if their index value was < 0.33 and they had an insignificant PC1. Cells were
classified as simple if their index value was > 0.67 and they had an insignificant PC1.
Remaining cells were classified as NSNDO. Histograms of white noise NLIs for DO (A),
simple (B) and NSNDO (C) cells classified this way. White noise NLIs of DO and simple
cells were similar (p=0.78, Mann-Whitney U Test), and were lower than NSNDO
neurons (p=0.004, Mann-Whitney U test). D-F. Identical to A-C. but showing
isoresponse NLlIs. Isoresponse NLIs of DO and simple cells were lower than NSNDO

neurons (p=0.06, Mann-Whitney U test).
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