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ABSTRACT

Color perception relies on spatial comparisons of chromatic signals, but how the brain 
performs these comparisons is poorly understood. Here, we show that many V1 
neurons compare signals across their receptive fields (RF) using a common principle. 
We estimated the spatial-chromatic RFs of each neuron, and then measured neural 
selectivity to customized colored edges that were sampled using a novel closed-loop 
technique. We found that many double-opponent (DO) cells, which have spatially and 
chromatically opponent RFs, responded to chromatic contrast as a weighted sum, akin 
to how simple cells respond to luminance contrast. Other neurons integrated chromatic 
signals non-linearly, confirming that linear signal integration is not an obligate property 
of V1 neurons. The functional similarity of DO and simple cells suggests a common 
underlying neural circuitry, promotes the construction of image-computable models for 
full-color image representation, and sheds new light on V1 complex cells.
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INTRODUCTION

Color perception depends on the spectral composition and spatial organization of lights  
in a visual scene (Monnier and Shevell, 2003; Shevell and Monnier, 2005). Spectral 
signals across space are thought to contribute to scene segmentation as well as 
facilitating object recognition and enhancing visual memory (Wurm et al., 1993; Fine et 
al., 2003; Spence et al., 2006). Despite its importance for visual function, the spatial 
integration of spectral signals by neurons in the visual system is poorly understood. 

The first stage of the primate visual system at which spatial comparison of spectral 
signals is implemented by individual neurons is area V1; many neurons in V1 are tuned 
for orientation and spectral properties of edges. Simple and double-opponent (DO) cells 
are tuned for the orientation of luminance and chromatic edges, respectively (Ringach, 
2002; Conway and Livingstone, 2006; Johnson et al., 2008; De and Horwitz, 2020). 
Simple cells combine signals from the L- and M-cone photoreceptors with the same sign 
and are therefore cone non-opponent. They respond to light increments in one part of 
their receptive fields (RFs) and decrements in another, rendering them sensitive to 
spatial luminance contrast. DO cells are spatially opponent, like simple cells are, but 
they combine signals from at least two different cone photoreceptor types 
antagonistically within individual RF subfields (Daw, 1968; Conway, 2001; De and 
Horwitz, 2020).

Simple cells combine signals across their RFs approximately as a weighted sum (Hubel 
and Wiesel, 1959; Movshon et al., 1978b; Carandini et al., 1997). These neurons can 
therefore be thought of as linear filters that operate on the retinal image. This insight 
has propelled scientific progress in at least three ways. First, it facilitated the 
construction of image-computable models of achromatic image representation (Marr 
and Hildreth, 1980; Adelson and Bergen, 1991). Second, it shed light on cortical 
circuitry: simple cells receive excitation (“push”) and inhibition (“pull”) with opposite 
spatial tuning, which appears to be a critical step for establishing linearity in the face of 
nonlinear input from the lateral geniculate nucleus (Ferster, 1988; Hirsch et al., 1998; 
Ferster and Miller, 2000). Third, it provided an essential building block for quantitative 
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models of V1 complex cells (Movshon et al., 1978a; Adelson and Bergen, 1985), 
neurons in higher-order cortical areas (Simoncelli and Heeger, 1998; Cadieu et al., 
2007; Freeman et al., 2013), and a variety of psychophysical phenomena (Adelson and 
Bergen, 1985; Beaudot and Mullen, 2006; Graham, 2011). Currently, all of these 
advances have been restricted to the achromatic domain. A similar quantitative 
understanding of image representation in the chromatic domain is severely lagging and 
is necessary to extend these advances to natural, full-color images.

FIGURE 1 HERE

The nature of the spatial antagonism implemented by DO cells has important 
implications for their contributions to vision. For example, consider a hypothetical DO 
cell that compares cone-opponent signals between the left and right halves of its RF 
(Figure 1A). If the cell integrates signals linearly and with equal weight, then it is well 
suited for extracting vertical chromatic edges (Figure 1B–D). In this case, the excitation 
due to a preferred light in one half of the RF can be cancelled by the same light 
appearing in the neighboring half. On the other hand, if the cell integrates signals 
nonlinearly, for example, by weighting contrast increments more heavily than contrast 
decrements, it would encode both edges and surfaces (Figure 1C,F). In this case, a 
light in one half of the RF would fail to cancel the same light appearing in the 
neighboring half.

In this study, we measured the spatial integration of visual signals by individual V1 
neurons in awake, fixating monkeys. Neurons can combine signals in many ways, but 
we focus on linear combinations because of their theoretical significance. Linearity is a 
mathematical ideal that is never fully realized by neurons, so we do not ask whether 
neurons integrate visual information across their RFs linearly but instead quantify how 
well a linear model describes spatial integration relative to a more flexible model. 
Models were fit to data collected using a closed-loop stimulus generation technique 
(Bölinger and Gollisch, 2012; Horwitz and Hass, 2012). The closed-loop technique 
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involved the online construction of optimally oriented and positioned edges that varied in 
color but drove identical spike count responses. An advantage of this approach is that it 
is robust to output nonlinearities that complicate other approaches (DeAngelis et al., 
1993; Gollisch and Herz, 2012). It also avoids the necessity of adopting a single 
definition of stimulus contrast, which is particularly important when probing responses to 
chromatic stimuli because no universally accepted definition of contrast applies to all 
color directions and how linear a neuron appears depends on stimulus contrast 
(Albrecht and Hamilton, 1982; Mullen, 1985).

Using this technique, we found that many DO cells responded linearly to differences in 
cone-opponent signals across their RFs, in quantitive similarity to how simple cells 
respond to spatial differences in luminance. Other V1 neurons combined signals non-
linearly, confirming the existence of non-linear, cone-opponent neurons in V1 and the 
ability of the closed-loop technique to detect them. These results suggest that DO cells, 
like simple cells, are building blocks for complex cells, a proposal that explains several 
previous results and provides new insight into the functional role of color-sensitive V1 
complex cells.
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RESULTS

We analyzed the spiking responses of 98 V1 neurons in two awake, fixating male 
macaque monkeys (69 from Monkey 1, 29 from Monkey 2). Each neuron was 
stimulated with white noise, and data were analyzed by spike-triggered averaging to 
identify a pair of functionally distinct subfields within the classical RF. Visual stimulation 
was then targeted to these subfields to characterize their individual and joint impact on 
neuron’s firing rate.

FIGURE 2 HERE

RF characterization

Spike-triggered averages (STAs) of some neurons resembled uniform blobs, indicating 
consistent spectral sensitivity across the RF. Other STAs were spatially structured, for 
example, consisting of a set of yellow pixels adjacent to a set of blue pixels (Figure 2A). 
These structured STAs are a signature of neurons that compare spectral information 
across space. These neurons only were tested; if an STA did not reveal at least two 
distinct subfields, the neuron was passed over for data collection.

A major goal of these experiments was to characterize spatial integration within the RFs 
of V1 neurons. The white noise checkerboard stimulus is ill-suited for achieving this 
particular goal because it modulates V1 neurons weakly, and nonlinear spatial 
integration might appear linear in response to small perturbations. To drive the neurons 
more effectively, we customized the stimulus to each neuron studied. From the STA, we 
identified two contiguous groups of pixels, each covering a single RF subfield, and 
yoked each group into a “hyperpixel”. White noise modulation of the two hyperpixels 
stimulated the two subfields strongly and independently, driving a wide range of firing 
rates (Phase 2 of the protocol, see Experimental Protocol, Figure 2B & Figure S1). 
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Neurons with spatially opponent RFs were classified into three categories on the basis 
of their responses to the hyperpixel white noise stimulus. Twenty-six neurons were 
classified as simple cells, 27 were classified as DO cells, and 47 neurons were neither 
simple nor DO and were classified conservatively as “NSNDO” (neither simple nor 
double-opponent). For each neuron studied, the colors on the two sides of the 
hyperpixel STA were complementary or nearly so (Pearson’s r between the two sides : 
-0.94  0.11 (mean  SD) for simple cells, -0.76  0.23 for DO cells, and -0.77  0.24 
for NSNDO cells). Many neurons in the NSNDO category are likely to be complex cells 
although a decisive classification would require an analysis of F1/F0 response 
amplitude modulation which we did not measure (Skottun et al., 1991). Some NSNDO 
neurons might have been classified as DO in other studies, an issue to which we return 
in the Discussion.

Measuring spatial integration using white noise 

We quantified interactions between RF subfields using an approach similar to one used 
previously to study interactions between the stimulus features that trigger spikes in 
complex cells (Touryan et al., 2002; Rust et al., 2005). In these previous studies, white 
noise stimuli were projected onto the plane spanned by the first and second principal 
components of the stimuli the drove spikes. Similarly, we projected the hyperpixel white 
noise stimuli onto the two halves of the STA (see White noise analysis of signal 
combination across subunits). These two projection values reveal how similar the 
stimulus was to the two halves of the STA; the larger the projection value, the more of 
the STA is present in the stimulus. We visualized a firing rate map by binning stimulus 
projections and calculating the proportion of stimuli in each bin that drove a spike 
(Figure 2C). The probability of spiking increased with the stimulus projection onto 
individual RF subfields, and it rose more steeply when both projections increased 
together.

± ± ± ±
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To analyze spatial integration between RF subfields, we fit the data with a generalized 
linear model (GLM) and a generalized quadratic model (GQM) (see White noise 
analysis of signal combination across subunits; Figure S2A). We then quantified 
the ability of the two models to classify stimuli as spike-triggering or not using ROC 
analysis (Figure S2B) (Green and Swets, 1966). Classification error rates of the GLM 
and GQM were summarized with a white noise non-linearity index (NLI) (see White 
noise non-linearity index). A white noise NLI < 0 indicates that the GLM provides more 
accurate predictions than the GQM, and an NLI > 0 indicates that the GQM provides 
more accurate predictions than the GLM. An NLI of 0 occurs if the GLM and GQM make 
identical predictions, which can occur because the GLM is a special case of the GQM 
with three parameters set to zero. Because of these extra parameters, the GQM always 
fits the training data as well or better than the GLM. To compare the two models fairly, 
we tested the model on data that had been held out from the fitting using 10-fold cross-
validation (Browne, 2000).

NLIs differed across the three cell types (median white noise NLI for simple cells = 
0.0009, DO cells = 0.0005, NSNDO cells = 0.0034; p=0.02, Kruskal-Wallis test;  Figure 
2D–F). Comparison between simple and DO cells revealed no significant difference 
between them (p=0.99, Mann-Whitney U test). To the contrary, NLIs of simple and DO 
cells were both lower than those of the NSNDO cells (p<0.05, Mann-Whitney U tests). 
We conclude that simple and DO cells are similarly linear and are more so than other 
V1 neurons that also have spatially structured STAs.

In interpreting these data, it is important to note that a lack of evidence for a difference 
between simple and DO cells is not evidence that a difference does not exist. This 
experiment probed neurons with low-contrast, rapidly modulated stimuli (Figure S1). 
The possibility remains that differences between simple and DO cells become evident 
when they are tested with stimuli of higher contrast or longer duration. We tested this 
possibility in Phase 3 of our experimental protocol, as described below.

FIGURE 3 HERE
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Measuring spatial integration using the isoresponse method

For each neuron, we found a collection of stimuli that evoked the same response. Each 
stimulus was spatially identical to the hyperpixel STA, but the contrast of the two 
hyperpixels was adjusted according to the algorithm described in Contrast staircase 
procedure. Negative contrasts were allowed.

To appreciate the necessity of this technique, it is useful to consider a classical 
alternative. A classic test of linearity is to present one stimulus at the receptive field of a 
recorded neuron, then another, and then both together. If the response to the combined 
stimulus does not equal the sum of responses to the two components, the neuron is not 
linear. However, this test is sensitive to nonlinearities that are logically distinct from the 
linearity of spatial summation and are present in otherwise linear cortical neurons (e.g. 
spike firing thresholds and saturating contrast-response functions). An alternative 
approach is to find a collection of stimuli that evoke the same response from an isolated 
neuron and analyze these stimuli to identify the features they share. This approach has 
been used previously to study signal integration in the salamander retina and locust 
auditory receptor cells (Gollisch et al., 2002; Bölinger and Gollisch, 2012). It has also 
been used previously in macaque V1 to analyze the linearity of signal integration across 
cone types by individual neurons (Horwitz and Hass, 2012), but it has not been used 
previously to analyze the linearity of signal integration across a V1 RF.

If a neuron combines cone-contrast signals linearly across its RF, then stimuli that drive 
the same response will lie on lines when represented in the stimulus space shown in 
Figure 2C. If the stimuli lie on a curve instead of a line, the hypothesis of linear spatial 
summation can be rejected. This approach makes no assumptions about static output 
nonlinearities downstream of spatial integration whereas the GLM and GQM assumed a 
logistic function. It also does not assume linearity of cone signal integration within 
individual RF subfields. This assumption was needed to reduce the RGB values that 
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identify each stimulus frame to two stimulus projections for the GLM and GQM 
analyses.

In Figure 2C, each point represents a stimulus, distance from the origin represents 
contrast relative to the background, and angle represents contrast between the two 
sides of the stimulus. Within this plane, a search was performed to find physically 
distinct stimuli that evoked the same neuronal response. Angles were selected pseudo-
randomly, and distances were titrated by a staircase procedure until a target firing rate 
was achieved (Figure S3). To mitigate the impact of spontaneous spiking activity on 
staircase procedure, target firing rates were well above baseline firing rates (95/98 
neurons had target firing rates that were greater than the 95th percentile value of their 
respective baseline firing rate distribution). Target firing rates did not differ across cell 
types (p=0.57, Kruskal-Wallis Test).

For some neurons, staircase termination points lay close to a line when plotted in the 
stimulus space (Figure 3A–B). This result shows that the excitation produced by a 
preferred light at one part of the RF can be cancelled by an anti-preferred light at a 
neighboring part with a fixed constant of proportionality over the entire gamut of our 
video display. This cancellation is consistent with linearity of spatial integration (Figure 
1A) and not with differential sensitivity to contrast increments and decrements (Figure 
1B). However, not all neurons behaved this way. For some neurons, staircase 
termination points lay on a curve (Figure 3C), indicating nonlinear spatial integration.

To determine quantitatively whether a line or a curve provided the better description of 
the staircase termination points for each neuron, we compared linear and quadratic 
models fits (see Evaluating model fits to staircase termination points; Figure S4). 
We defined an isoresponse non-linearity index (isoresponse NLI) similarly to the white 
noise NLI defined previously (see Isoresponse non-linearity index). An isoresponse 
NLI of 0 indicates that the linear and quadratic models made equally accurate response 
predictions, NLI < 0 indicates that the linear model predicts responses more accurately 
than the quadratic model, and NLI > 0 indicates that the quadratic model predicts 
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responses more accurately than the linear model. Cross validation ensured that the 
quadratic model does not achieve greater prediction accuracy simply by virtue of having 
more parameters.

NLIs of simple cells and DO cells were close to zero and did not differ significantly 
(median isoresponse NLI for DO cells = 0.1007, median isoresponse NLI for simple 
cells = -0.0097;  p=0.14, Mann-Whitney U test; Figure 3D). In contrast, NLIs were 
greater for the NSNDO neurons (median isoresponse NLI = 0.2822, p=0.02, Kruskal-
Wallis test). We conclude that simple and DO cells are similarly linear over the range 
that we were able to test given the limits of our display, and that they are more linear 
than other neurons in V1.

Despite the many methodological differences between Phases 2 and 3 of the 
experiment, the results were similar for individual neurons (Figure 3E). Isoresponse 
NLIs were positively correlated with the white noise NLIs (r = 0.30, p = 0.001, 
Spearman’s correlation between isoresponse NLI and white noise NLI). This correlation 
was driven primarily by NSNDO cells (r = 0.41, p = 0.004, Spearman’s rank correlation) 
and not by DO (r = 0.01, p = 0.95, Spearman’s rank correlation) or simple cells (r = 
-0.19, p = 0.34, Spearman’s rank correlation). We conclude that some nonlinearities that 
manifest in responses to white noise also manifest in responses to more classical 
stimuli, and that nonlinearities that were not manifested in responses to white noise 
were similarly common among simple and DO cells. 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DISCUSSION

A fundamental goal of visual neuroscience is to characterize the transformation from 
light stimulation of individual neurons to spiking responses. In this study, we 
characterized the spatial integration by individual V1 neurons using a combination of 
white noise RF mapping, closed-loop isoresponse measurements, and statistical model 
comparisons. We found that DO cells integrate signals across their RFs roughly linearly, 
like simple cells and in contrast to other V1 neurons, which were less linear on average. 
Below, we compare our results to those of previous studies and discuss the impact of 
our cell classification criteria on the results. We then discuss the implications of our 
results on the circuitry that underlies DO and simple cells and how each cell type may 
contribute to downstream image processing. We conclude with speculations on parallels 
between the processing of color and other stimulus features in  V1 by complex cells.

Relationship to previous work 

Linearity in the visual system is "a rare and (apparently) prized commodity in neural 
signal processing” (Shapley, 2009). The linearity of V1 simple cells is not an accident of 
random convergence of LGN afferents but rather the product of specialized excitatory 
and inhibitory circuitry (Ferster, 1988; Tolhurst and Dean, 1990; Hirsch et al., 1998). The 
discovery that V1 simple cells combine signals linearly across their RFs contributed to 
scientific progress in many ways. It provided a valuable bridge between 
neurophysiology and the fields of psychophysics and computer vision. It provided 
guidance for how to characterize neuronal stimulus tuning efficiently. It served a basis 
for more elaborate models; all V1 neurons exhibit some degree of nonlinearity, but the 
linear model remains a cornerstone of even nonlinear V1 models (Carandini et al., 
2005; Carandini, 2006). 

Color can be quantified in many ways. In this study, we used the intensity of individual  
(display-specific) phosphor channels relative to the background. The fact that DO cells 
and simple cells combined light intensities across space approximately linearly in this 
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representation shows that it is a reasonable one for analyzing V1 neurons. We note that 
any color representation that is a linear transformation of this device-specific color 
space would also have this property (e.g. cone-contrast, cone-excitation-differences-
from-background, Derrington-Krauskopf-Lennie, etc).

Nearly all quantitative studies of V1 RFs have used achromatic stimuli. Extending 
quantitative RF mapping to color is complicated by the curse of dimensionality. As the 
dimensionality of the color space increases from 1-D (achromatic) to 3-D (full color), the 
number of possible spatial combinations grows exponentially. Classic workarounds 
include the use of gratings, which have a highly constrained spatial structure and/or 
cone isolating stimuli, which are most useful for analyzing neurons that combine signals 
linearly across cone type. Our solution was to map the RF of each neuron with white 
noise and then customize spatiochromatic patterns on the basis of these maps.

Two previous studies investigated spatial integration by DO cells. Using the 2-bar 
interaction technique, Conway et al. (2002) found that most color-sensitive V1 neurons 
responded maximally when a pair of different cone-isolating bars appeared side-by-side 
inside the RF. This maximal response exceeded the response to either bar in isolation, 
consistent with linearity as well as with other models. Conway and Livingstone (2006) 
measured the responses of DO neurons to cone-isolating stimuli at individual RF 
locations. They assumed that the excitatory response to a contrast increment had the 
same magnitude, but opposite sign, as the suppression to a contrast decrement. This 
need not be the case; retinal and LGN ON and OFF pathways are asymmetric, and 
some cone-opponent pathways particularly so (De Valois et al., 2000; Chichilnisky and 
Kalmar, 2002; Chatterjee and Callaway, 2003; Tailby et al., 2008). Nevertheless, most of 
the DO cells they studied showed clear signs of push-pull inhibition, which is consistent 
with linearity (Tolhurst and Dean, 1990; Ferster, 1994; Hirsch et al., 1998; Ferster and 
Miller, 2000). Our findings extend these results by demonstrating the linearity of spatial 
integration directly through simultaneous stimulation of functionally distinct RF subfields, 
and they suggest that the assumption made by Conway and Livingstone (2006) is a 
reasonable one for V1 DO cells.
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Cell categorization criteria

We classified simple and DO cells on the basis of their responses to the hyperpixel 
white noise stimulus. Specifically, we segregated simple from DO cells on the basis of 
cone weights derived from the STA. By definition, simple cells have large, non-opponent 
L- and M-cone weights, and DO cells have cone-opponent weights. We used the same 
cone weight criteria that we used previously to facilitate comparison between studies 
(De and Horwitz, 2020). 

The cone weight criteria for inclusion into the simple cell and DO cell categories were 
asymmetric for two reasons. First, cone non-opponent V1 cells (e.g. simple cells) 
typically have smaller S-cone weights than do cone-opponent cells (e.g. DO cells) 
(Johnson et al., 2004; Horwitz et al., 2007). Second, the variability in estimated L- and 
M-cone weights is greater for non-opponent cells than opponent cells (Horwitz et al., 
2007). Reclassifying cells with different criteria did not change the main results of this 
study (Figure S5).

Most other recent studies of DO cells used cone-isolating stimuli, which cannot reveal 
interactions among cone types (Conway, 2001; Johnson et al., 2001, 2004; Conway and 
Livingstone, 2006; Johnson et al., 2008). In contrast, we used a stimulus set that 
modulated all three cone types together in a variety of proportions. Nonlinear 
interactions between cone types complicate the interpretation of RF maps that are 
separated by cone type. In further distinction from other studies, we stimulated DO cells 
with colored edges to confirm the spatial and spectral sensitivity inferred from the STAs.

We classified neurons with nonlinear responses to white noise as NSNDO. This criterion 
was necessary to satisfy the assumptions underlying the conversion of the STA to cone 
weights. Importantly, this criterion did not force the result of linearity in DO cells. Spike-
triggered covariance (STC)—the technique we used to detect nonlinearities (see Spike-
triggered covariance analysis)—detects only a subset of nonlinearities, and 
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nonlinearities that are clear with high-contrast, long-duration stimuli are not always 
detectable with white noise (Tanabe and Cumming, 2008). Nevertheless, we found that 
nonlinearities detected in Phase 2 of our experiment were a good indicator of 
nonlinearity over the greater stimulus duration and range of contrasts in Phase 3, 
principally for the NSNDO cells (Figure 3E).

We speculate that some cells that we classified as NSNDO on the basis of 
nonlinearities in responses to white noise would have been classified as DO in other 
studies (Conway and Livingstone, 2006; Johnson et al., 2008). Whether these neurons 
are more usefully classified as nonlinear DO cells, partially rectified complex cells, or 
something else entirely is an important question that is partly physiological and partly 
semantic. In any case, the major finding of this study is that a population of DO cells 
combines cone-opponent signals across their RFs approximately as linearly as simple 
cells combine non-opponent signals, a result that stands despite the existence of other 
V1 cells with nonlinear spatial integration.

FIGURE 4 HERE

DO and simple cells: Neural circuitry

Spatial linearity of V1 simple cells is based on excitatory and inhibitory pools of LGN 
afferents that carry distinct signals (Ferster, 1988; Tolhurst and Dean, 1990; Hirsch et 
al., 1998). The spectral sensitivity of a V1 neuron is determined by the afferents that 
contribute to each of these pools. Pooling LGN afferents with the same sign (ON or 
OFF) creates non-opponent spectral sensitivity. Simple cells are excited by L-ON and 
M-ON afferents (and inhibited by L-OFF and M-OFF) in one part of their RFs and have 
the reverse tuning in another part. In contrast, pooling the same afferent signals to 
produce cone-opponency (e.g. L-OFF with M-ON) with otherwise identical circuitry 
would produce a DO cell. This may be the primary difference between simple and DO 
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cells. The implementation of the spatial differencing operation may be common to both 
cell types.

Simple cells are thought to provide the dominant input to complex cells (Hubel and 
Wiesel, 1962). Under a standard model, complex cells pool signals from simple cells 
with overlapping RFs and common preferred orientation (Figure 4A). One possibility is 
that some complex cells also receive input from DO cells (Figure 4B). We speculate 
that complex cells receiving simple cell input only are luminance-sensitive (Figure 4C) 
whereas those that receive input from simple and DO cells are both color-and 
luminance-sensitive (Figure 4D). This conjecture is consistent with the observations 
that the preferred orientation of color-sensitive complex cells is maintained across color 
directions (Johnson et al., 2001). It is also consistent with the observation that color-
sensitive complex cells have multiple preferred color directions by STC analysis 
(Horwitz et al., 2007) and have no null directions in cone-contrast space (Horwitz and 
Hass, 2012). An alternative possibility is that the spectral sensitivity of color-sensitive 
complex cells arises entirely from their DO cell inputs (Michael, 1978), which have been 
reported to be similarly responsive to chromatic and luminance contrast (Johnson et al., 
2001, 2004, 2008). In either case, DO cells are a likely basis for the chromatic 
sensitivity of color-sensitive complex cells (Michael, 1978). Measuring functional 
connectivity between DO and complex cells could test this hypothesis.

Analogous neural coding of color and stereopsis

The stereotyped microcircuitry of area V1 contributes to vision for form, color, depth, 
and motion. These distinct visual modalities have distinct computational demands but 
V1 circuitry may contribute to each via a small set of operations that process different 
signals in similar ways. For example, parallels between the V1 processing of binocular 
disparity and motion direction are well established (Adelson and Bergen, 1991). We 
speculate that color and stereopsis have heretofore unappreciated parallels, and that 
models of binocular disparity tuning may provide a useful guide for the study of cone-
opponent and non-opponent signal combination in V1. 

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


A fundamental component of binocular V1 models are simple cells that linearly sum 
signals from the two eyes (Anzai et al., 1999b; Read and Cumming, 2003). Analogous 
building blocks in the color domain are simple cells and DO cells, which sum cone non-
opponent and cone-opponent signals with a similar degree of linearity. Binocular simple 
cells are thought to provide input to binocular complex cells that implement an energy 
calculation (Anzai et al., 1999a; Read and Cumming, 2003). The analogous 
convergence of simple cell and DO cell outputs would implement a spectral energy 
calculation (Horwitz and Hass, 2012; Barnett et al., 2020).

The binocular energy model, while extremely successful in describing complex cell 
responses, requires refinement (Haefner and Cumming, 2008). For one thing, it fails to 
account for the attenuation of responses to anti-correlated signals between the two eyes 
(Cumming and Parker, 1997). This specialization of real V1 cells is thought to reflect the 
statistics of natural inputs to the visual system (Haefner and Cumming, 2008). Under 
natural viewing conditions, binocularly correlated patterns are more common than anti-
correlated patterns, and V1 neurons appear specialized to encode them.  

A parallel phenomenon may exist in the domain of color. Under natural viewing 
conditions, luminance and chromatic spatial gradients tend to be aligned, and their 
alignment (or misalignment) carries important information regarding the physical 
sources of the gradients. Edges between different materials under fixed illumination 
produce in-phase luminance and chromatic modulations, whereas uncorrelated 
variations in illumination and pigmentation, such as produced by curved 3-dimensional 
objects of non-uniform reflectance, produce out-of-phase modulations (Kingdom, 2003; 
Kunsberg et al., 2018). The energy model in Figure 4B produces phase-invariant 
responses and so does not account for these specializations. Whether real V1 neurons 
respond in accordance with the energy model or show enhanced responses to natural 
alignments between chromatic and luminance signals is an important and unanswered 
question.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


In summary, DO cells and simple cells have much in common. As shown by the current 
study, both cell types combine signals roughly linearly across their RFs and, as shown 
previously, they share a Gabor-like RF structure (De and Horwitz, 2020). These 
observations motivate the idea that simple cells and DO cells are closely related 
neuronal types that may contribute similarly to downstream circuits that integrate cone-
opponent and cone-non-opponent signals for spatial image analysis. 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MATERIALS & METHODS

Contact for Resource Sharing 

Further information and requests for resources should be directed to and will be fulfilled 
by the Lead Contact, Gregory D. Horwitz (ghorwitz@u.washington.edu).

Resources Table 

General 

All protocols conformed to the guidelines provided by the US National Institutes of 
Health and the University of Washington Animal Care and Use Committee. Data were 
collected from two adult male rhesus macaques (Macaca mulatta). Each monkey was 

REAGENT or RESOURCE SOURCE IDENTIFIER
Experimental Models: 
Organisms/Strains
Rhesus monkeys (Macaca Mulatta) Washington National 

Primate Research 
Center

N/A

Software and Algorithms

MATLAB Mathworks https://
www.mathworks.c
om/products/
matlab.html RRID: 
SCR_001622

Plexon Sort Client Plexon http://
www.plexon.com 
RRID: 
SCR_003170

Plexon Offline Sorter Plexon http://
www.plexon.com 
RRID: 
SCR_000012
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surgically implanted with a titanium headpost and a recording chamber (Crist 
Instruments) over area V1. Eye position was monitored continuously using either an 
implanted monocular scleral search coil or a digital eye-tracking system (SMI iView X 
Hi-Speed Primate, SensoMotoric Instruments). 

Task

The monkeys sat in a primate chair 1 m from a cathode ray tube (CRT) monitor (Dell 
Trinitron Ultrascan P991) in a dark room during the experiments. In a subset of 
sessions, the distance was reduced to 0.7 m and the pixel size was changed 
accordingly to preserve angular subtense. During white noise presentation, the 
monkeys fixated a centrally located dot measuring 0.2 x 0.2° and maintained their gaze 
within a 1.6 x 1.6° fixation window. During the closed-loop isoresponse measurements, 
the monkeys maintained their gaze within a 0.8 x 0.8° window. Successful fixation was 
rewarded with apple juice, and fixation breaks aborted trials.

Monitor Calibration

Monitor calibration routines were adapted from those included in Matlab Psychophysics 
toolbox (Brainard, 1997; Pelli, 1997). The emission spectrum and voltage-intensity 
relationship of each monitor phosphor were measured with a spectroradiometer 
(PR650, PhotoResearch Inc.). Stimuli were gamma-corrected in software to 
compensate for the non-linearity of these voltage-intensity relationships. The color 
resolution of each channel was increased from 8 to 14 bits using a Bits++ video signal 
processor (Cambridge Research Systems, Ltd.). The monitor refreshed at 75 Hz and 
background was uniform gray (x = 0.3, y = 0.3, Y = 55–75 cd/m2).

Electrophysiological recordings
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We recorded from well-isolated V1 neurons (RF eccentricity: 1.3°–5.9°, median = 3.6°) 
using extracellular tungsten microelectrodes (Frederick Haer, Inc.) lowered through the 
dura mater via hydraulic microdrive (Stoelting Co.). Electrical signals were amplified, 
digitized at 40 kHz (Plexon, Inc.), and recorded.

Experimental Protocol

Each experiment consisted of three phases. During the first phase, spatiochromatic 
tuning was probed with a white noise checkerboard stimulus and data were analyzed 
online by spike-triggered averaging. During the second phase, the white noise stimulus 
was customized to the RF of each neuron. During the third phase, high-contrast images 
with the same spatial structure used in Phase 2 were presented for relatively long 
durations (300 ms). Each of these phases is detailed below.

Phase 1: Checkerboard white noise

Each stimulus frame contained a 10 x 10 grid of pixels each of which subtended 0.2 x 
0.2° (Figure 2A) (Horwitz et al., 2007). The stimulus changed every 13.33 ms. The 
intensity of each phosphor at each pixel was modulated independently according to a 
Gaussian distribution with a standard deviation of 15% of the physically achievable 
range. The space-time averaged intensity of each phosphor was equal to its 
contribution to the background.

Neuronal responses to white noise stimuli were analyzed by spike triggered averaging 
(Figure 2A). In this analysis, the 15 frames preceding every spike were collected and 
averaged across spikes. From these 15 spike-triggered average (STA) frames, we 
selected online the one that differed most from the background and identified pixels that 
differed significantly from the background (p<0.05, z-tests performed on each phosphor 
separately). These data were used to customize the white noise stimulus to the RF in 
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Phase 2 of the experimental protocol (see below). We selected for additional study only 
cells whose RFs consisted of at least two subfields with distinct chromatic preferences 
(Figure 2A).

The checkerboard white noise stimulus modulated neurons weakly for three reasons. 
First, individual stimulus pixels were small relative to V1 RFs. This was necessary to 
distinguish one RF subfield from another but resulted in each subfield being stimulated 
by independent pixel modulations that tended to cancel. Second, the pixels modulated 
rapidly, so multiple frames were effectively averaged together in the early visual system, 
prior to V1. Third, phosphor intensities were drawn from Gaussian distributions. Most of 
the probability mass of a Gaussian distribution is near the mean, which was identical to 
the background, so high contrast pixels were improbable (Figure S1A–B).

Phase 2: Hyperpixel white noise 

For each neuron with an STA containing at least two spatially distinct subregions (with 
distinct chromatic preferences), we created a custom white noise stimulus by yoking the 
pixels within each of the two subfields (Figure 2B). Phosphor intensities at the two 
yoked collections of pixels (the two hyperpixels) were modulated according to the same 
Gaussian distribution used in Phase 1. Pixels outside of the RF were not modulated.

To examine how signals were combined across the two targeted subfields, we 
represented hyperpixel stimulus frames as a six-dimensional vectors of background-
subtracted RGB values and then projected each of these segment of vectors onto the 
two halves of the temporo-chromatic STA. This operations produces two scalar values 
that indicated how strongly short, overlapping segments of the stimulus movie drove the 
two RF subfields. We visualized a firing rate map from these projections by computing 
the ratio of spike-triggered stimuli to the total stimuli (Chichilnisky, 2001). We also fit the 
data with linear and non-linear models and compared the fits to examine spatial 

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


integration quantitatively. The details of this analysis can be found in the section: White 
noise analysis of signal combination across subfields.

Phase 3: Isoresponse measurement

We selected the STA frame that differed most from the background and separated it into 
its two hyperpixels, each of which selectively stimulated one RF subfield with its 
preferred light (represented along the 45° and 135° directions in Figure 3A). We then 
linearly combined these two images in different proportions to create a family of stimuli 
that can be represented in the same plane used to construct the firing rate map in 
Phase 2 (Figure 2C). The origin of the coordinate system represents the gray 
background of the display. Direction represents the overall contrast between the two 
halves of the stimulus, and distance from the origin represents stimulus contrast relative 
to the background. No universally accepted definition of contrast applies to all color 
directions. Therefore, for convenience, we defined contrast along the 45° direction as 
the projection of the RGB values onto one half of the STA. Contrast along the 135° 
direction was defined similarly using the other half of the STA.

Contrast staircase procedure

To examine interactions between subfields, we identified collections of stimuli described 
above that evoked the same number of spikes using the following procedure. On each 
trial, the computer presented a stimulus and counted spikes from the onset response 
latency, defined as the peak frame of the STA from Phase 2, until the end of the 
stimulus presentation. This spike count was compared to an experimenter-defined 
target response (Figure S3A). If the spike count was lower than the target response, 
the contrast of the image was increased by a factor of 1.35. If the spike count exceeded 
the target response, the contrast of the image was decreased by a factor of 0.65. This 
process continued until a reversal occurred. A reversal is a response that exceeded the 
target response after having fallen below it on the previous stimulus presentation or a 
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response that fell below the target having exceeded it on the previous stimulus 
presentation. After each reversal, the change in contrast per trial decreased by 75% 
(Figure S3B). The staircase halted after seven reversals or whenever the contrast 
exceeded the physical limitations of the display. Staircase termination points were taken 
as estimates of the contrast that evoked the target response. Presentations of stimuli in 
pairs of directions in the stimulus space were randomly interleaved to mitigate non-
stationarity due to adaptation. Each stimulus was presented for 300 ms and was 
separated from the preceding and subsequent stimuli by more than 1 s.

Cell Screening

We recorded from 232 well-isolated V1 neurons and made isoresponse measurements 
from 98 of them. Neurons were classified as “simple”, “double-opponent” or 
“NSNDO” (neither simple nor double-opponent) on the basis of responses to white 
noise as described below.

Cone weights 

Cone weights were calculated from Phase 2 of the experimental protocol. For each cell, 
we identified the STA frame that differed maximally from the background and computed 
a weighted average of this frame and the two flanking frames. The weight of each frame 
was proportional to the sum of squared red, green and blue intensities relative to the 
background. We decomposed this weighted STA by singular value decomposition into a 
color weighting function and a spatial weighting function, defined as the first row and 
column singular vectors, respectively (De and Horwitz, 2020). Together, the color and 
spatial weighting functions captured 96.7±5.0% (mean±SD) of the variance in the 
weighted STAs. The color weighting function was converted to cone weights that are 
assumed to act on cone contrast signals (Weller and Horwitz, 2018). The spatial 
weighting function of every cell consisted of one positive and one negative weight, 
because only neurons with spatially opponent RFs were recorded.
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Spike-triggered covariance analysis

Cone weights are interpretable only under a linear model of signal combination across 
cone types (Weller and Horwitz, 2018). One way to test this assumption is by analysis of 
spike-triggered covariance. To implement such a test, we computed the first principal 
component (PC1) of the spike-triggering stimuli orthogonal to the STA (Touryan et al., 
2002; Horwitz et al., 2005; Rust et al., 2005). A PC1 that is larger than expected by 
chance reveals a nonlinear component of the cell’s response to the white noise 
stimulus. We assessed the significance of the PC1 by randomly shifting spike trains in 
time relative to the Phase 2 stimulus movie, recalculating the PC1, and obtaining its 
eigenvalue (Rust et al., 2005). This procedure was repeated 1000 times. If the largest 
eigenvalue from the unrandomized data exceeded 95% of the largest eigenvalues from 
the randomized data sets, we concluded that the PC1 was significant at the 0.05 level. 
Neurons with a significant PC1 were classified as NSNDO.

Neurons lacking a significant PC1 were classified as simple if their L- and M-cone 
weights had the same sign, accounted for 80% of the total cone weight and individually 
accounted for at least 10%. None of the simple cells we studied showed evidence of 
opponent input from the S-cones, but some appeared to receive a small non-opponent 
S-cone input. Twenty-six cells in our data set were categorized as simple. Our criteria 
for DO cells were a lack a significant PC1 and a pair of cone weights of opposite sign.  
To ensure that all DO cells were truly cone-opponent, weights of small absolute value 
were ignored; to be classified as DO, a neuron had to have an S-cone weight that 
accounted for at least 20% of the total or L- and M-cone weights that accounted for at 
least 80% jointly and 20% individually. Twenty-five cells were categorized as DO. The 
47 neurons that did not meet the DO or simple cell criteria were classified as NSNDO. 
These criteria are arbitrary but the central results of this study are robust to these 
particulars (Figure S5). We describe the cell classification criteria below that was used 
for obtaining the results in Figure S5.
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Luminance tuning index

A luminance tuning index was obtained by projecting the normalized cone weights of 
each cell to the cone weights of a luminance mechanism. The luminance cone weights 
were estimated by regressing the Stockman-Macleod-Johnson 2° cone fundamentals 
onto the Judd-Vos 1978 2° photopic luminosity function to find the best-fitting 
coefficients (0.83 L + 0.55 M + 0.03 S) (Vos, 1978; Stockman et al., 1993). The 
luminance tuning index ranged from 0 to 1. Cells were classified as DO if their index 
value was < 0.33 and they lacked a significant PC1. Twenty-two cells were classified as 
DO. Cells were classified as simple if their index value was > 0.67 and they lacked a 
significant PC1. Twenty-seven cells were classified as simple. The remaining 49 
neurons were classified as NSNDO. 

White noise analysis of signal combination across subfields

We fit the data from Phase 2 of the experimental protocol with a generalized linear 
model (GLM) and a generalized quadratic model (GQM).

The GLM was defined as:
 

 

where  is the predicted response of the neuron and  and  are the 
projection magnitudes of the short segments of the stimulus movie onto the two halves 
of the hyperpixel STA. , , and  were fit using the MATLAB routine (fitglm) to 
maximize the binomial likelihood of a spike.

The GQM was defined similarly as: 

pred resp =
1

e−(w1P1+w2P2+c)
Eq.1

pred resp P1 P2

w1 w2 C
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Evaluating the performance of generalized linear and quadratic models 

We quantified the ability of the fitted models to predict whether or not each stimulus 
segment evoked a spike using receiver operating characteristic (ROC) analysis (Green 
and Swets, 1966). Classification error was defined as 1 minus the area under the ROC 
curve (Figure S2B). To avoid overfitting, the model was fit with 90% of the data and 
tested on the remaining 10%. The white noise non-linearity index (white noise NLI) for 
each cell was defined as:

where the median is taken is taken across 10 cross-validation data partitions.

Model fits to isoresponse staircase termination points 

To assess the linearity of signal integration across the gamut of our video display, we fit 
the staircase termination points from Phase 3 with linear and quadratic models. Fitting 
was performed using a standard inbuilt MATLAB routine for function minimization 
(fmincon) to minimize the Tukey-bisquare objective function (Fox, 2002).

Searches for the stimuli that produced the target response were conducted in multiple 
directions of the stimulus space (e.g. Figure 3A–C), but angles were fixed. We 
therefore fit the data with a model that assumes radial error. The linear model can be 
written as:

 

pred resp =
1

e−(w1P2
1 +w2P2

2 +w3P1P2+w4P1+w5P2+c)
Eq.2

White noise NLI = log10 (median (
Classi f icat ion errorGLM

Classi f icat ion errorGQM
)) Eq.3

Ar cos θ + Br sin θ = 1 Eq.4
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where  

 represents the projection of each image onto one hyperpixel of the STA and  
represents the projection onto the other hyperpixel.  and  are fitted parameters.

The quadratic model can be written as:

Where , , ,  and  are fitted parameters.

Evaluating model fits to staircase termination points 

We evaluated the quality of model fits by calculating the sum of Tukey-bisquared errors 
between the data and the model predictions. To avoid overfitting, we used leave-one-out 
cross validation. The isoresponse non-linearity index (isoresponse NLI) was defined as 
the median of the ratio of cross-validated linear model errors and quadratic model errors 
in logarithmic units.

 

Drifting gratings

Two neurons were stimulated with drifting, sinusoidal gratings (2 cycles per degree, 3 
Hz, 1° diameter circular aperture) that modulated the L- and M-cones with identical 

r = x2 + y2, θ = tan−1 y
x

Eq.5

x y
A B

A(r cos θ )2 + B(r sin θ )2 + Cr2 cos θ sin θ + Dr cos θ + Er sin θ = 1 Eq.6

A B C D E

Isoresponse NLI = log10 (median (
Cross validated errorLinear model

Cross validated errorQuadratic model
)) Eq.7
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contrasts either in phase (L+M) or in anti-phase (L-M) (Figure 4). These neurons were 
not tested with the standard protocol.
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FIGURE LEGENDS

Figure 1. Linear and non-linear image filtering A. A hypothetical V1 DO cell that is 
excited by a red light on one side of its receptive field and a green light on the other. S1 
and S2 represent stimulation of the two subfields of the receptive field. B. A linear 
spatial filter that sums the stimulation of each subfield and generates a response via a  
spiking non-linearity. Note that the drive from each of the subfields is combined linearly 
before being transformed by the spiking non-linearity. C. A non-linear spatial filter that 
partially rectifies S1 and S2 prior to summation. D. An example natural image. E. Output 

of the linear spatial filter of the input image. F. Same as E but for the non-linear filter. 

Figure 2. White noise analysis of RF structure and spatial integration A. Checkerboard 
white noise stimulus (left), spike-triggered average (STA; right). Two sets of contiguous 
pixels were yoked to create two hyperpixels, each of which stimulated one RF subfield 
(white outlines). B. The customized white noise stimulus (left) and STA at the peak 
frame (middle). Red, green, and blue curves (right) represent the average red, green, 
and blue phosphor intensities, relative to background, as a function of time before a 
spike. C. A firing rate map for the example DO cell. The probability of spiking (gray 
scale) is plotted as a function of projection magnitudes of the stimulus onto the right and 
left halves of the STA (along the 45 and 135  ̊ directions, respectively). Dashed white 
lines are contours of constant spiking probability from a GLM fit to the data. D. 
Histogram of white noise NLIs for DO cells. The NLI of the example neuron is marked 
with a tick, and the median is marked with a triangle︎︎ E. Same as D but for simple cells. 

F. Same as D but for the cells that were neither simple nor DO. 

Figure 3. Analysis of isoresponse contours. A. Data from the example DO cell shown in 
Figures 2A–C. Dots indicate staircase terminations (target firing rate = 30 ips) and gray 
dashed lines indicate staircases that exceeded the monitor gamut. Linear (green) and 
non-linear (orange) fits to the data are similar. B. Same as A but for a simple cell (target 
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firing rate = 50 ips). L+M spectral sensitivity manifests as bright green (ON) or dark 
purple (OFF) when probed with the RGB white noise (Chichilnisky and Kalmar, 2002). 
C. Same as A but for a cell that was neither simple nor DO (target firing rate = 20 ips). 
D. Histogram of isoresponse NLIs. NLIs of example neurons are marked with ticks, and 
medians are marked with triangles. E. Scatter plot of isoresponse NLIs and white noise 

NLIs. Example neurons are marked with white asterisks. 

Figure 4. Proposed signal convergence of simple cells and DO cells onto complex cells 
A. A hypothetical complex cell receiving input from simple cells with overlapping odd- 
and even-symmetric receptive fields. B. A hypothetical color-sensitive complex cell 
receiving input from simple and DO cells. C. Response of a complex cell to a drifting 
sinusoidal grating that modulates L- and M-cones at 3 Hz with identical contrast in 
phase (top) and in anti-phase (bottom). D. Same as C but for a color-sensitive complex 
cell. Gray overlays indicate stimulus duration.
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SUPPLEMENTARY FIGURE LEGENDS

Figure S1. Comparison of the effective stimulus contrast in the three phases of the 
experiment. A. Stimuli from Phase 1 (black) and Phase 2 (red) were projected onto the 
spatial–temporal–chromatic STA shown in Figure 2B. Projection magnitudes of both 
stimuli occupy only a small region of the display gamut (dashed gray box). ︎︎︎︎B. Two-

dimensional histogram of the Phase 1 projections shown in A. C. Same as B but for the 
Phase 2 stimuli. D. The probability of spiking as a function of hyperpixel stimulus 
projections onto the two halves of the STA. Projection magnitudes from the 5th to the 
95th percentile are shown. Within this range, the probability of spike increases 
approximately as a a linear combination of the stimulus projections, but this range is a 
small fraction of what can be achieved on the display.

Figure S2. Analysis of neuronal spatial integration of white noise stimuli A. Probability 
of spiking was predicted as a function of projection magnitudes onto the two halves of 
the STA (Proj 1 and Proj 2) using a generalized linear model (GLM) or a generalized 
quadratic model (GQM). B. An ROC analysis was used to assess the ability of the GLM 
and GQM to classify stimuli into those that did not evoke a spike (inset, gray) and those 
that did (inset, black).

Figure S3. An example staircase from the closed-loop procedure used to study the DO 
cell in Figure 2A. Neuronal response (in impulses per second, ips) is plotted as a 
function of trial number (intervening stimuli skipped). The target firing rate was 30 ips 
(dashed line). B. The projection magnitude as a function of trial number for the same 
staircase. The staircase termination point is defined as the projection magnitude of the 
stimulus presented in the final (17th) trial. 
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Figure S4. Cross-validated errors from linear and non-linear fits to data from Phase 3 
for DO cells (red), simple cells (black), and NSNDO cells (gray). Example neurons from 
Figure 3 are marked with white asterisks.

Figure S5. Reclassification of neurons with a different cone weight criteria. A luminance 
tuning index was calculated for each cell by weighting and summing normalized cone 
weights (0.83 L + 0.55 M + 0.03 S). This index ranges from 0 to 1. Cells were classified 
as DO if their index value was < 0.33 and they had an insignificant PC1. Cells were 
classified as simple if their index value was > 0.67  and they had an insignificant PC1. 
Remaining cells were classified as NSNDO. Histograms of white noise NLIs for DO (A), 
simple (B) and NSNDO (C) cells classified this way. White noise NLIs of DO and simple 
cells were similar (p=0.78, Mann-Whitney U Test), and were lower than NSNDO 
neurons (p=0.004, Mann-Whitney U test). D–F. Identical to A–C. but showing 
isoresponse NLIs. Isoresponse NLIs of DO and simple cells were lower than NSNDO 
neurons (p=0.06, Mann-Whitney U test).

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES

1. Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of 
motion. J Opt Soc Am A 2:284-299.

2. Adelson EH, Bergen JR (1991) The plenoptic function and the elements of early 
vision (Vol. 2). Vision and Modeling Group, Media Laboratory, Massachusetts 
Institute of Technology.

3. Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast 
response function. Journal of Neurophysiology 48:217-237.

4. Anzai A, Ohzawa I, Freeman RD (1999a) Neural mechanisms for processing 
binocular information II. Complex cells. Journal of Neurophysiology 82:909-924.

5. Anzai A, Ohzawa I, Freeman RD (1999b) Neural mechanisms for processing 
binocular information I. Simple cells. Journal of Neurophysiology 82:891-908.

6. Barnett MA, Aguirre GK, Brainard DH (2020) A Quadratic Model Captures the 
Human V1 Response to Variations in Chromatic Direction and Contrast. bioRxiv.

7. Beaudot WH, Mullen KT (2006) Orientation discrimination in human vision: 
Psychophysics and modeling. Vision research 46:26-46.

8. Bölinger D, Gollisch T (2012) Closed-loop measurements of iso-response stimuli 
reveal dynamic nonlinear stimulus integration in the retina. Neuron 73:333-346.

9. Brainard DH (1997) The Psychophysics Toolbox. Spat Vis 10:433-436.
10. Browne MW (2000) Cross-validation methods. Journal of mathematical psychology 

44:108-132.
11. Cadieu C, Kouh M, Pasupathy A, Connor CE, Riesenhuber M, Poggio T (2007) A 

model of V4 shape selectivity and invariance. Journal of Neurophysiology 
98:1733-1750.

12. Carandini M (2006) What simple and complex cells compute. Journal of Physiology 
577.

13. Carandini M, Heeger DJ, Movshon JA (1997) Linearity and normalization in simple 
cells of the macaque primary visual cortex. Journal of Neuroscience 17:8621-8644.

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


14. Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y, Olshausen BA, Gallant JL, 
Rust NC (2005) Do we know what the early visual system does?. Journal of 
Neuroscience 25:10577-10597.

15. Chatterjee S, Callaway EM (2003) Parallel colour-opponent pathways to primary 
visual cortex. Nature 426:668-671.

16. Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses. 
Network 12:199-213.

17. Chichilnisky EJ, Kalmar RS (2002) Functional asymmetries in ON and OFF ganglion 
cells of primate retina. Journal of Neuroscience 22:2737-2747.

18. Conway BR (2001) Spatial structure of cone inputs to color cells in alert macaque 
primary visual cortex (V-1). Journal of Neuroscience 21:2768-2783.

19. Conway BR, Livingstone MS (2006) Spatial and temporal properties of cone signals 
in alert macaque primary visual cortex. Journal of Neuroscience 26:10826-10846.

20. Conway BR, Hubel DH, Livingstone MS (2002) Color contrast in macaque V1. 
Cerebral cortex (New York, NY: 1991) 12:915-925.

21. Cumming BG, Parker AJ (1997) Responses of primary visual cortical neurons to 
binocular disparity without depth perception. Nature 389.

22. Daw NW (1968) Colour‐coded ganglion cells in the goldfish retina: extension of their 
receptive fields by means of new stimuli. Journal of Physiology 197:567-592.

23. De A, Horwitz GD (2020) Spatial receptive field structure of double-opponent cells in 
macaque V1. In: Journal of Neurophysiology.

24. De Valois RL, Cottaris NP, Elfar SD, Mahon LE, Wilson JA (2000) Some 
transformations of color information from lateral geniculate nucleus to striate cortex. 
Proceedings of the National Academy of Science USA 97:4997-5002.

25. DeAngelis GC, Ohzawa I, Freeman RD (1993) Spatiotemporal organization of 
simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and 
spatial summation. Journal of Neurophysiology 69:1118-1135.

26. Ferster D (1988) Spatially opponent excitation and inhibition in simple cells of the 
cat visual cortex. Journal of Neuroscience 8:1172-1180.

27. Ferster D (1994) Linearity of synaptic interactions in the assembly of receptive fields 
in cat visual cortex. Current opinion in neurobiology 4:563-568.

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


28. Ferster D, Miller KD (2000) Neural mechanisms of orientation selectivity in the visual 
cortex. Annual review of neuroscience 23:441-471.

29. Fine I, MacLeod DI, Boynton GM (2003) Surface segmentation based on the 
luminance and color statistics of natural scenes. JOSA A 20:1283-1291.

30. Fox J, & Weisberg, S. (2002) Robust regression. An R and S-Plus companion to 
applied regression 91.

31. Freeman J, Ziemba CM, Heeger DJ, Simoncelli EP, Movshon JA (2013) A functional 
and perceptual signature of the second visual area in primates. Nature 
Neuroscience 16:974-981.

32. Gollisch T, Herz AV (2012) The iso-response method: measuring neuronal stimulus 
integration with closed-loop experiments. Frontiers in neural circuits 6:104.

33. Gollisch T, Schütze H, Benda J, Herz AV (2002) Energy integration describes sound-
intensity coding in an insect auditory system. Journal of Neuroscience 
22:10434-10448.

34. Graham NV (2011) Beyond multiple pattern analyzers modeled as linear filters (as 
classical V1 simple cells): Useful additions of the last 25 years. Vision Research 
51:1397-1430.

35. Green DM, Swets JA (1966) Signal detection theory and psychophysics. New York: 
Wiley.

36. Haefner RM, Cumming BG (2008) Adaptation to natural binocular disparities in 
primate V1 explained by a generalized energy model. Neuron 57:147-158.

37. Hirsch JA, Alonso JM, Reid RC, Martinez LM (1998) Synaptic integration in striate 
cortical simple cells. Journal of Neuroscience 18:9517-9528.

38. Horwitz GD, Hass CA (2012) Nonlinear analysis of macaque V1 color tuning reveals 
cardinal directions for cortical color processing. Nature Neuroscience 15:913-919.

39. Horwitz GD, Chichilnisky EJ, Albright TD (2005) Blue-yellow signals are enhanced 
by spatiotemporal luminance contrast in macaque V1. Journal of Neurophysiology 
93:2263-2278.

40. Horwitz GD, Chichilnisky EJ, Albright TD (2007) Cone inputs to simple and complex 
cells in V1 of awake macaque. Journal of Neurophysiology 97:3070-3081.

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


41. Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat's striate 
cortex. Journal of Physiology 148:574-591.

42. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional 
architecture in the cat's visual cortex. Journal of Physiology 160:106-154.

43. Johnson EN, Hawken MJ, Shapley R (2001) The spatial transformation of color in 
the primary visual cortex of the macaque monkey. Nature Neuroscience 4:409-416.

44. Johnson EN, Hawken MJ, Shapley R (2004) Cone inputs in macaque primary visual 
cortex. Journal of Neurophysiology 91:2501-2514.

45. Johnson EN, Hawken MJ, Shapley R (2008) The orientation selectivity of color-
responsive neurons in macaque V1. Journal of Neuroscience 28:8096-8106.

46. Kingdom FA (2003) Color brings relief to human vision. Nature Neuroscience 6.
47. Kunsberg B, Holtmann-Rice D, Alexander E, Cholewiak S, Fleming R, Zucker SW 

(2018) Colour, contours, shading and shape: flow interactions reveal anchor 
neighbourhoods. Interface focus 8.

48. Marr D, Hildreth E (1980) Theory of edge detection. Proceedings of the Royal 
Society of London Series B Biological Sciences 207:187-217.

49. Michael CR (1978) Color-sensitive complex cells in monkey striate cortex. Journal of 
Neurophysiology 41:1250-1266.

50. Monnier P, Shevell SK (2003) Large shifts in color appearance from patterned 
chromatic backgrounds. Nature Neuroscience 6:801-802.

51. Movshon JA, Thompson ID, Tolhurst DJ (1978a) Receptive field organization of 
complex cells in the cat's striate cortex. Journal of Physiology 283:79-99.

52. Movshon JA, Thompson ID, Tolhurst DJ (1978b) Spatial summation in the receptive 
fields of simple cells in the cat's striate cortex. Journal of Physiology 283:53-77.

53. Mullen KT (1985) The contrast sensitivity of human colour vision to red-green and 
blue-yellow chromatic gratings. Journal of Physiology 359:381-400.

54. Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming 
numbers into movies. Spatial Vision 10:437-442.

55. Read JC, Cumming BG (2003) Testing quantitative models of binocular disparity 
selectivity in primary visual cortex. Journal of Neurophysiology 90:2795-2817.

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


56. Ringach DL (2002) Spatial structure and symmetry of simple-cell receptive fields in 
macaque primary visual cortex. Journal of Neurophysiology 88:455-463.

57. Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Spatiotemporal elements 
of macaque v1 receptive fields. Neuron 46:945-956.

58. Shapley R (2009) Linear and nonlinear systems analysis of the visual system: Why 
does it seem so linear?: A review dedicated to the memory of Henk Spekreijse. 
Vision Research 49:907-921.

59. Shevell SK, Monnier P (2005) Color shifts from S-cone patterned backgrounds: 
contrast sensitivity and spatial frequency selectivity. Vision Research 45:1147-1154.

60. Simoncelli EP, Heeger DJ (1998) A model of neuronal responses in visual area MT. 
Vision Research 38:743-761.

61. Skottun BC, De Valois RL, Grosof DH, Movshon JA, Albrecht DG, Bonds AB (1991) 
Classifying simple and complex cells on the basis of response modulation. Vision 
Research 31:1079-1086.

62. Spence I, Wong P, Rusan M, Rastegar N (2006) How color enhances visual memory 
for natural scenes. Psychological Science 17:1-6.

63. Stockman A, MacLeod DI, Johnson NE (1993) Spectral sensitivities of the human 
cones. J Opt Soc Am A Opt Image Sci Vis 10:2491-2521.

64. Tailby C, Solomon SG, Lennie P (2008) Functional asymmetries in visual pathways 
carrying S-cone signals in macaque. Journal of Neuroscience 28:4078-4087.

65. Tanabe S, Cumming BG (2008) Mechanisms underlying the transformation of 
disparity signals from V1 to V2 in the macaque. Journal of Neuroscience 
28:11304-11314.

66. Tolhurst DJ, Dean AF (1990) The effects of contrast on the linearity of spatial 
summation of simple cells in the cat's striate cortex. Experimental Brain Research 
79:582-588.

67. Touryan J, Lau B, Dan Y (2002) Isolation of relevant visual features from random 
stimuli for cortical complex cells. Journal of Neuroscience 22:10811-10818.

68. Vos JJ (1978) Colorimetric and photometric properties of a 2 fundamental observer. 
Color Research & Application 3:125-128.

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


69. Weller JP, Horwitz GD (2018) Measurements of neuronal color tuning: Procedures, 
pitfalls, and alternatives. Vision Research 151:53-60.

70. Wurm LH, Legge GE, Isenberg LM, Luebker A (1993) Color improves object 
recognition in normal and low vision. Journal of Experimental Psychology: Human 
perception and performance 19.

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1

Receptive field center

S1  S2  S1  S2

Spiking
non-linearity

 S1  S2

 A.  B.  C.

 D.  E.  F.

Linear integration Non-linear integration

f(S1,S2) f(S1,S2)

Linearly filtered image Non-linearly filtered imageInput image

Low

High

Output 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2

STA
time

STA
time

 A.

 B.

 C.

0.0 0.3

Probability of spiking

0.3

0.3

-0.3

projection magnitude

0
time [ms]

-200 -67-134

0
+

-

0

+

-

NSNDO cells [47]

 D.

Simple cells [26]

0

10

20

DO cells [27]# 
ce

lls

-0.02 0.00 0.02 0.08
White noise NLI

0.04 0.06

 E.

 F.
0

10

20

# 
ce

lls

0

10

20

# 
ce

lls

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


 B.

-0.8 0.8

0.8

Simple cell50 ips

NSNDO cell

0.15

0.15

-0.15

 C.
20 ips

projection magnitude

 E.

 A.
DO cell30 ips

1.0-1.0

1.0 Linear fit
Non-linear fit

-1.0 0.0 1.0 2.0
Isoresponse NLI

 D.

0

5

10

15
# 

ce
lls

0

5

10

15

Simple cells

0

5

10

DO cells

NSNDO cells

-1.0 0.0 1.0 2.0
Isoresponse NLI

*

-0.02

-0.00

0.02

0.04

0.06

0.08

W
hi

te
 n

oi
se

 N
LI

**

Figure 3
.CC-BY-NC-ND 4.0 International licenseavailable under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


Time [ms]
0 1000200 400 600 800

Time [ms]
0 1000200 400 600 800

Stimuli

L+M

L-M

 A.  B.

 C.  D.

Simple cell

Simple cell

DO cellComplex cell Color-sensitive
complex cell

Figure 4
.CC-BY-NC-ND 4.0 International licenseavailable under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1
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Figure S2
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Figure S3
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Figure S4
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Figure S5

-1.0 0.0 1.0 2.0
Isoresponse NLI

DO cells [22]

Simple cells [27]

NSNDO cells [49]

-1.0 0.0 1.0 2.0

-1.0 0.0 1.0 2.0

-0.02 0.00 0.02 0.04 0.06 0.08
White noise NLI

-0.02 0.00 0.02 0.04 0.06 0.08

-0.02 0.00 0.02 0.04 0.06 0.08

0

5

10

15

20

0

5

10

15

20

0

5

10

15

0

5

10

15

0

5

10

0

5

10

# 
ce

lls
# 

ce
lls

# 
ce

lls

# 
ce

lls
# 

ce
lls

# 
ce

lls

 A.

B.

C.

 D.

E.

F.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430975
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Coding of chromatic spatial contrast by macaque V1 neurons
	ABSTRACT
	INTRODUCTION
	RESULTS
	Measuring spatial integration using the isoresponse method
	DO and simple cells: Neural circuitry
	MATERIALS & METHODS
	General
	Task
	Monitor Calibration
	Electrophysiological recordings
	Experimental Protocol
	Contrast staircase procedure
	Cell Screening
	Cone weights
	Spike-triggered covariance analysis
	Luminance tuning index
	White noise analysis of signal combination across subfields
	Evaluating the performance of generalized linear and quadratic models
	Model fits to isoresponse staircase termination points
	The quadratic model can be written as:
	Evaluating model fits to staircase termination points
	Drifting gratings

