

Nse5/6 is a negative regulator of the ATPase activity of the Smc5/6 complex

Stephen T. Hallett¹, Pascale Schellenberger², Lihong Zhou¹,
Fabienne Beuron³, Ed Morris³,
Johanne M. Murray^{1*} and Antony W. Oliver^{1*}

1. Genome Damage and Stability Centre, School of Life Sciences,
University of Sussex, Falmer, UK
2. Electron Microscopy Imaging Centre, School of Life Sciences,
University of Sussex, Falmer, UK
3. The Institute of Cancer Research, London, UK

* Corresponding Authors

JMM; email: j.m.murray@sussex.ac.uk

AWO; email: antony.oliver@sussex.ac.uk

1 ABSTRACT

2 The multi-component Smc5/6 complex plays a critical role in the resolution of recombination
3 intermediates formed during mitosis and meiosis, and in the cellular response to replication
4 stress. Using recombinant proteins, we have reconstituted a series of defined *S. cerevisiae*
5 SMC5/6 complexes, visualised them by negative stain electron microscopy, and tested their
6 ability to function as an ATPase. We find that only the six protein 'holo-complex' is capable of
7 turning over ATP and that its activity is significantly increased by the addition of double-stranded
8 DNA to reaction mixes. Furthermore, stimulation is wholly dependent on functional ATP-binding
9 pockets in both Smc5 and Smc6. Importantly, we demonstrate that budding yeast Nse5/6 acts
10 as a negative regulator of Smc5/6 ATPase activity, binding to the head-end of the complex to
11 suppress turnover, irrespective of the DNA-bound status of the complex.

12

13 INTRODUCTION

14 The central scaffold of each eukaryotic Structural Maintenance of Chromosomes (SMC) complex
15 is formed by an obligate heterodimer, via specific pairings of the Smc1 + Smc3, Smc2 + Smc4,
16 and Smc5 + Smc6 proteins, creating cohesin, condensin and Smc5/6 respectively. Globular
17 domains found at the N- and C-termini of each SMC protein, contain Walker A and Walker B

18 ATP-binding motifs that are brought together in space to form a so-called 'head' domain (**see**
19 **Figure 1**). The two halves of the resulting ATPase are connected via a long anti-parallel coiled
20 coil insertion ('arm') that is capped by a 'hinge' domain; the hinge serving to both reverse the
21 directionality of the coiled coil as well as provide the major dimerisation interface between the
22 two SMC proteins¹⁻⁴. A second, more transitory interface is created between the head domains
23 of the two SMC proteins, regulated through binding and hydrolysis of ATP [for recent
24 comprehensive reviews, please see refs. 5,6].

25

26 Each SMC complex is then elaborated by binding of additional protein subunits highly specific to
27 each family member. In the Smc5/6 complex, these subunits are designated as Non-SMC-
28 Elements (NSMCE in humans, Nse in yeasts⁷). The SMC5/6 'holo-complex' includes four such
29 subunits: Nse2, an E3 SUMO Ligase, which associates with the arm of Smc5; plus Nse1 (E3
30 Ubiquitin Ligase), Nse3 (MAGE) and Nse4 (kleisin) that coalesce to form a defined sub-complex
31 that binds to the head domains (**Figure 1**).

32

33 The precise cellular roles of the Smc5/6 complex remain enigmatic, but mutations within its
34 component proteins have clear and definite impacts on DNA replication and DNA damage repair
35 processes, in particular acting to suppress inappropriate homologous recombination structures
36 that can be formed when replication forks stall or collapse, as well as assisting in resolution of
37 sister chromatids during meiosis [reviewed in refs. 8-11]. Smc5/6 is also known to be a viral
38 restriction factor for hepatitis B^{12,13}, herpes simplex-1¹⁴ and papillomavirus type 31 viruses^{15,16}.
39 Furthermore, mutations found within the coding sequences of Nse2 and Nse3 have also been
40 linked to human disease^{17,18}.

41

42 Two additional protein subunits are also known to associate with the Smc5/6 holo-complex: Nse5
43 and Nse6 form an obligate heterodimer (Nse5/6) and both proteins are essential for viability in a
44 range of different organisms, with the notable exception of fission yeast^{19,20}. Identification of
45 Nse5/6 orthologues has, however, been complicated by the lack of amino acid sequence identity
46 in both proteins across different species. There is also no unifying or clear consensus with respect
47 to their predicted domain composition, although structure-prediction programs have indicated
48 that in the yeasts Nse6 may contain alpha-helical solenoids belonging to either the armadillo or
49 HEAT repeat family²⁰. The 'functional equivalent' of Nse5/6 in humans, formed by the SLF1/SLF2
50 heterodimer (Smc5/6 localisation factors 1 and 2) has been identified in a proteomics-based
51 approach examining proteins recruited to psoralen-crosslinked chromatin²¹.

52

53 Nse5/6 is thought to promote recruitment to, or ‘loading’ of, the Smc5/6 complex onto
54 chromatin^{22,23} in a manner similar to that described for the cohesin ‘loader complex’ Scc2-Scc4²⁰
55 [reviewed in refs: 6,24]. In support of this hypothesis: *S. pombe* cells lacking Nse5/6 display a
56 drastic reduction in the amount of Smc5/6 associated with chromatin^{22,25}; in *S. cerevisiae*,
57 hypomorphic mutations of Nse5 lead to reduced levels of Smc5/6 associated with stalled
58 replication forks²⁶; in humans the SLF1-SLF2 complex has been shown to recruit Smc5/6 to
59 collapsed replication forks²¹.

60

61 At least part of the Smc5/6-recruitment function appears to be mediated by interaction of Nse5/6
62 with the multi-BRCT scaffold protein Rtt107 (Brc1 in *S. pombe*)²⁷, which itself is recruited to sites
63 of DNA damage via binding of its C-terminal BRCT-pair to γH2A. Notably, in fission yeast, Brc1
64 is a dosage compensator for a hypomorphic mutation of Smc6 known as *smc6-74* that leads to
65 sensitivity to genotoxic agents and reduced levels of chromatin loading of Smc5/6^{25,28}.
66 Suppression is however dependent on the activity of the structure specific endonucleases Slx1-
67 Slx4 and Mus81-Eme1²⁹. A recent X-ray crystal structure of the N-terminal region of Rtt107 has
68 revealed it to contain an unusual tetra-BRCT arrangement that can bind to a recognition
69 sequence found at the N-terminus of Nse6, as well as motifs found in Mms22 and Slx4³⁰. Thus,
70 overexpression of Brc1 likely leads to increased recruitment of either Smc5/6 and/or the
71 aforementioned structure-specific nucleases. However, it still remains unclear as to how binding
72 of the Nse5/6 heterodimer to Smc5/6 promotes its ‘loading’ and retention on chromatin. There is
73 also some ambiguity as to where its binds, with data from different organisms and laboratories
74 supporting binding of Nse5/6 to the hinge, arms, or head regions of Smc5/6³¹⁻³³.

75

76 Here we demonstrate that only the six protein Smc5/6 ‘holo-complex’ is capable of turning over
77 ATP and that this activity is preferentially stimulated in the presence of dsDNA. We identify
78 Nse5/6 as a negative regulator of the ATPase activity of the *S. cerevisiae* Smc5/6 complex, that
79 is insensitive to the DNA-bound status of the complex. Furthermore, association of Nse5/6
80 induces a conformational change consistent with dis-engagement of the head-domains to
81 prevent ATP-hydrolysis, compatible with its binding to the head-end of the Smc5/6 complex.

82 RESULTS

83 **Reconstitution of the *S. cerevisiae* Smc5/6 complex**

84 We co-expressed each of the known subunits of the *Saccharomyces cerevisiae* Smc5/6 complex
85 in insect cells, initially as three distinct sub-complexes: (1) Smc5, Smc6, Nse2 (S5-S6-N2); (2)
86 Nse1, Nse3, Nse4 (N1-N3-N4); and (3) Nse5, Nse6 (N5-N6) (**Figure 1B**). Using standard
87 chromatographic techniques, we purified each sub-complex and visualised them on colloidal
88 blue-stained SDS-PAGE gels (**Materials and Methods, Figure 1B**). We confirmed the identity
89 of each protein component and its migration position on SDS-PAGE gels, by western blot using
90 the various affinity / epitope tags incorporated into their respective expression cassettes
91 (**Supplementary Figure 1**). Nse3, which is untagged, migrates at its expected size of 34 kDa
92 (**Figure 1C, middle**).

93

94 **Negative stain transmission electron microscopy**

95 The S5-S6-N2 complex proved to be relatively unstable (under the experimental conditions
96 tested) but mild cross-linking with either glutaldehyde or BS3 greatly improved stability and aided
97 visualisation of the complex by uranyl acetate negative stain electron microscopy (**Materials and**
98 **Methods, Figure 1C**). The majority of S5-S6-N2 particles adopt an 'arms-together', 'rod-like' or
99 'I'-conformation that has been seen in other exemplars of the SMC-family, i.e., an extended,
100 predominantly linear conformation with an overall length of ~35 nm (**Figure 1C, middle**).
101 However, some level of flexibility is still evident, as indicated by the appearance of the selected
102 particles presented in the right-hand panel of **Figure 1C**. To produce the intact Smc5/6 'holo-
103 complex' we combined sub-complexes 1 and 2 into a single baculovirus (S5-S6-N2/N1-N3-N4).
104 Again, we were readily able to purify, cross-link and visualise the resultant complex by negative
105 stain electron microscopy (**Materials and Methods, Figure 1D**).

106

107 **2D class averages and 3D model**

108 Manual picking yielded 5397 particles with good levels of staining. Iterative classification and
109 particle selection through successive 2D-averages, yielded 4301 particles that were
110 subsequently used to generate a 3D model (**Materials and Methods, Table 1**). The resultant 2D
111 class averages and 3D model (**Figure 2**) had sufficient features to allow identification of the hinge
112 and head ends, and to determine an overall length of ~48 nm for the holo-complex. A protruding
113 lobe of density, found approximately halfway along the length of the complex, is compatible with
114 both the volume and expected position of Nse2 bound to the arm of Smc5 (**Figure 2 inset**; PDB:
115 3HTK^{34,35}).

116 However, we noted that detail evident in the 2D class averages was not fully represented by the
117 final model. To improve this, we pursued a focussed refinement strategy, splitting the holo-
118 complex into three separate sections corresponding to the Hinge, Arm, and Heads + NSE1/3/4
119 to produce a segmented 3D model that better recapitulated the detail evident in 2D classes
120 (**Figure 2 bottom**).

121

122 **ATPase activity assays with defined complexes**

123 We first validated a NADH-coupled regenerative ATPase assay³⁶ using recombinant RecQ5-HD
124 (helicase domain) as a positive control, observing robust stimulation of ATP turnover by addition
125 of a single-stranded 48mer oligonucleotide to the reaction mix (**Materials and Methods, Figure**
126 **3A**). We then examined the ATPase activity of purified S5-S6-N2 and S5-S6-N2/N1-N3-N4
127 complexes.

128

129 Whilst we saw hydrolysis by the holo-complex, S5-S6-N2 was inactive, even when tested at a 7-
130 fold higher concentration (**Figure 3B, Supplementary Figure 2**). Furthermore, whilst addition
131 of ssDNA or dsDNA to the reaction mix clearly increased turnover by the holo-complex it did not
132 elicit any effect on S5-S6-N2. Moreover, as hydrolysis could not be detected in purified
133 complexes containing Walker B catalytic site mutations in both SMC subunits ($5_m = E1015Q$, 6_m
134 = $E1048Q$) we were confident that the observed activity was not attributable to any potential co-
135 purifying contaminants. Titration experiments then allowed quantification of the effects of adding
136 either dsDNA or ssDNA to the holo-complex (**Figure 4A**). For titrations with dsDNA, the resultant
137 activity curve approached a maximum plateau, with a calculated EC_{50} value of $\sim 1.7 \mu M$ (**Figure**
138 **4B**). Over the concentration range tested, addition of ssDNA was far less stimulatory and a value
139 for EC_{50} could only be estimated at (or above) a value of $16 \mu M$.

140

141 Recently published data has demonstrated that the ability of the individual SMC proteins to turn
142 over ATP, within either condensin or cohesin, is not equivalent^{37,38}. To confirm if the same held
143 true for Smc5/6, we purified complexes where just Smc5 or Smc6 harboured the aforementioned
144 E-to-Q mutations and measured activity. With introduction of either mutation, a reduced basal
145 level of activity was evident, but this was approximately 2-fold higher when Smc6 was disabled
146 as compared to the Smc5 mutant (**Figure 4B**). We then repeated the titrations of ssDNA / dsDNA
147 into each of the mutated complexes, however this time observing no stimulation of ATPase
148 activity in either case. Instead, addition of nucleic acid resulted in a net decrease from basal
149 levels of activity, with dsDNA having the greater effect (**Figure 4C**).

150 ***An inhibitory effect of adding Nse5/6***

151 We next added increasing concentrations of purified recombinant Nse5/6 to the holo-complex
152 (reaching 1.5 molar equivalents) and determined the effect on ATPase activity in both the
153 absence and presence of dsDNA (**Figure 5**). Addition of Nse5/6 to the reconstituted holo-
154 complex inhibited its ability to turn over ATP, even in the presence of two different stimulatory
155 concentrations of dsDNA (2 and 10 μ M). Plotting slope (decrease in absorbance per second)
156 versus molar equivalents of Nse5/6 revealed that generation of a 1:1 stoichiometric complex was
157 sufficient to fully inhibit ATP-turnover (**Figure 5**).

158

159 ***DNA-binding activity of reconstituted complexes***

160 To help define the mechanism of ATPase inhibition, we investigated the possibility that Nse5/6
161 might directly disrupt or compete with the ability of the holo-complex to bind to dsDNA. We first
162 performed a series of control experiments, confirming the ability of the purified holo-complex to
163 bind a fluorescently labelled 48nt dsDNA hairpin using electrophoretic mobility shift assays
164 (EMSA) (**Figure 6A**). On titration of the holo-complex, an initial complex was formed (I) which
165 was then super-shifted into a second, slightly slower migrating species (II) at higher protein
166 concentrations. Quantification of free and bound states allowed an overall dissociation constant
167 K_d of \sim 220 nM to be estimated for the interaction (**Figure 6B**). At this time, we also took the
168 opportunity to test the DNA-binding capability of the S5-S6-N2 'core-complex' under the same
169 set of experimental conditions. Whilst some low-level aggregation / precipitation of the complex
170 was evident at higher concentrations (manifested as fluorescent material stuck in the loading
171 pockets of the agarose gel) there was no compelling evidence for an interaction with the hairpin
172 (**Figure 6C**). Similarly, Nse5/6 also did not bind the hairpin over a more extensive concentration
173 range (**Figure 6D**).

174

175 A competition experiment (**Figure 6E**) in which increasing amounts of Nse5/6 were added to a
176 pre-formed complex — generated under conditions where the majority of the DNA hairpin is
177 bound (400 nM) — showed no disruption of dsDNA binding by the Smc5/6 holo-complex, even
178 in the presence of excess Nse5/6. We then repeated the EMSA using the purified 'super-
179 complex' containing Nse5/6 (see next section), seeing no significant perturbation or major
180 changes to the ability of the complex to bind the dsDNA hairpin (**Figure 6F**).

181 **Visualisation of the NSE5/6-bound SMC5/6 complex**

182 Initial negative stain experiments revealed a mix of unliganded (holo-complex) and liganded
183 (Nse5/6-containing) states in the applied sample (data not shown). Inclusion of an additional
184 purification step (C.tag affinity resin) allowed selective enrichment of the Nse5/6-containing
185 'super-complex' and greatly improved sample homogeneity (**Materials and Methods, Figure**
186 **7A**). After stabilisation by crosslinking and application to a size exclusion chromatography column
187 (**Materials and Methods**) we verified that Nse5/6 was present in the fraction selected for
188 negative-stain experiments by western blot, using an HRP-conjugated nanobody that recognises
189 the C.tag epitope on Nse5 (**Materials and Methods, Figure 7B**, lane X2). We then used the
190 same visualisation / focussed refinement strategy as before to produce a 3D model (**Figure 7,**
191 **panels C to E, Table 1**).

192

193 A change in the conformation of the complex was immediately evident (**Figure 7E and 7F**). By
194 using the lower section of the 'arms' as a vertical reference axis, we could measure an apparent
195 increase in the tilt angle of the hinge, from $\sim 30^\circ$ in the holo-complex to $\sim 40^\circ$ in the Nse5/6-
196 containing super-complex, which also manifests as an apparent reduction in its overall length to
197 around 45 nm. A more drastic change was observed at the head end of the complex, with a
198 broadening of its overall width combined with a compaction in height (**Figure 7F, right**). Another
199 angle, used to relate the head-end of the complex to the reference axis, also changes from $\sim 90^\circ$
200 in the holo-complex to $\sim 115^\circ$ in the super-complex (**Figure 6F**).

201

202 It was not possible, however, to unambiguously identify a region of density that matched the
203 globular shape of the isolated Nse5/6 heterodimer, that we had also visualised by negative stain
204 (**Supplementary Figure 3A**). We therefore remade our Nse5/6 baculovirus, engineering a C-
205 terminal fusion between Nse5 and Maltose Binding Protein (that also carried the C.tag epitope;
206 MBP / C.tag). We confirmed that the protein-fusion was still able to bind to the holo-complex by
207 a pull-down experiment on amylose chromatography resin (**Figure 7G**), and then once again
208 selectively purified, stabilised and visualised the resulting complex (**Table 1**).

209

210 No major differences or changes to either the 'arm' or the 'hinge' regions were evident but
211 focussed 3D refinement revealed an increased volume at the 'head' end of the complex
212 (**Supplementary Figure 3B**). Side-by-side comparison of the two Nse5/6-containing complexes
213 allowed identification of a lobe of additional density, compatible with the expected volume for
214 MBP, thus serving to localise bound Nse5/6 to the 'head' end of the Smc5/6 complex (**Figure**
215 **7H**).

216 DISCUSSION

217 We have reconstituted a set of defined budding yeast Smc5/6 complexes using recombinant
218 proteins expressed in insect cells. By taking this 'bottom up' approach we are able to carefully
219 control and examine different subunit compositions and stoichiometries, plus the ability to
220 introduce mutations that would otherwise be incompatible with viability of the native host.

221

222 Biochemical experiments with our reconstituted complexes reveal that the 6-component holo-
223 complex (formed of Smc5, Smc6, Nse1, Nse2, Nse3 and Nse4) is capable of hydrolysing ATP
224 and binding to a short dsDNA hairpin, whereas the minimal 3-component 'core' complex is not
225 (Smc5, Smc6, Nse2). We observe that ATP hydrolysis by the holo-complex is strongly stimulated
226 by the addition of a dsDNA substrate to reaction mixes, and that the two ATPase activities of
227 Smc5/6 are not equivalent — consistent with other studies of heterodimeric SMC-complexes³⁷⁻⁴²
228 — the basal hydrolysis rate of Smc5 being approximately 2-fold higher than that of Smc6. DNA-
229 dependent stimulation of ATPase activity is, however, wholly dependent on functional active sites
230 in both SMC proteins, as it is precluded when Walker B, E-to-Q mutations are introduced into
231 one or other subunit. Taken as a whole, our data confirm that there is a high degree of functional
232 coupling between the two active sites of Smc5/6 that is directly linked to dsDNA binding, and
233 which is dependent on the Nse1-Nse3-Nse4 subcomplex being bound to the 'head' end of the
234 Smc5/6 complex.

235

236 Visualisation of our reconstituted Smc5/6 complexes by negative stain electron microscopy
237 reveal that they adopt a predominantly rod-like or 'extended' conformation, with no acute bend
238 at an 'elbow' as has been recently observed for *E. coli* MukBEF as well as the cohesin and
239 condensin complexes⁴³⁻⁴⁹. However, the appearance of individual particles, plus the requirement
240 for focussed refinement of 3D models, indicates that there is still a degree of conformational
241 flexibility (**Figures 1C, 1D and 7C**). We estimate the overall length of the holo-complex to be 49
242 nm, with an arm length of approximately 27 nm; distances compatible with a computational study
243 that has indicated an overall shortening of the 'arm' length within the Smc5/6-family, when
244 compared to cohesin and condensin complexes⁵⁰.

245

246 We have located the position of Nse5/6 binding to the 'head-end' of the complex (**Figure 7H**), in
247 contrast to a previous study that indicated binding to the hinge³². Pleasingly, this now serves to
248 unify the architecture of the *S. cerevisiae* Smc5/6 complex with its *S. pombe* orthologue³³.
249 Concomitant with association of Nse5/6 is a significant change in conformation at the head-end
250 of the complex, plus an overall reduction in its length to ~45 nm (**Figure 7**).

251

252 Nse5/6 has been identified as a factor required for recruitment of Smc5/6 to collapsed replication
253 forks and for recruitment and/or retention of the complex at defined chromatin sites, which include
254 highly repetitive sequences such as centrosomes, telomeres and the ribosomal DNA array^{51,52}.
255 It has been proposed to function in a manner similar to the Scc2-Scc4 cohesin loader complex²²,
256 but it is worth noting here that Scc2-Scc4 has been shown to stimulate (rather than inhibit) the
257 ATPase activity of cohesin and is capable of binding directly to DNA^{53,54}. Nse5/6 therefore cannot
258 work in exactly the same manner, as we show here that it serves to inhibit ATPase activity and
259 has no intrinsic ability to bind DNA. So, whilst Nse5/6 can act as an intermediary, bringing
260 Smc5/6 to sites of replication stress through its own interaction with Rtt107 (Brc1 in *S. pombe*),
261 which itself binds to γH2A via its C-terminal BRCT-pair⁵⁵⁻⁵⁷, it is still not clear how it works to
262 promote chromatin-binding and retention.

263

264 Another requirement for stable chromatin association of the Smc5/6 complex is the ability of the
265 Nse3 subunit to bind dsDNA, as revealed by ChIP experiments carried out in fission yeast⁵⁸.
266 Whilst mutations that fully disrupt DNA-binding are lethal when introduced into *S. pombe*, those
267 that act to reduce DNA-binding are tolerated. Strains carrying such hypomorphic mutations have
268 reduced viability, display sensitivity to a range of different genotoxic agents, and have a global
269 reduction in the levels of Smc5/6 precipitated at a range of different chromatin loci⁵⁸. Recent
270 single-molecule live cell imaging experiments, also carried out in fission yeast, show that
271 mutations which perturb the ability of the Smc5/6 complex to turn over ATP result in a decreased
272 level of chromatin association, as does introduction of the hypomorphic nse3-R254E allele
273 identified by Zabrady *et al.* (ref. 58), that disrupts (but does not abolish) dsDNA binding.
274 Furthermore, deletion of the gene encoding Nse6 results in an almost complete loss of chromatin
275 associated Smc5/6²⁵.

276

277 A complex, likely allosteric, mechanism that involves the interplay of dsDNA-binding and ATP-
278 hydrolysis by the Smc5/6 holo-complex, plus binding (and release?) of the Nse5/6 heterodimer
279 appears to be at play, serving to promote chromatin-binding and/or retention of the Smc5/6
280 complex. Our discovery that Nse5/6 negatively regulates ATP-hydrolysis by the *S. cerevisiae*
281 Smc5/6 complex provides a new and potentially important piece of information.

282

283 A caveat of our study is that we do not know the nucleotide-bound status of our purified
284 complexes and therefore cannot unambiguously assign 3D models to defined states i.e., apo,
285 ATP- or ADP-bound. However, when present at 1:1 stoichiometry (relative to the holo-complex)
286 binding of Nse5/6 prevents all ATP-hydrolysis, at both basal and DNA-stimulated levels. Invoking
287 Occam's razor, the simplest explanation is that binding of Nse5/6 blocks the ability of the two
288 head domains of Smc5/6 to engage productively with each other: a hypothesis compatible at

289 least with its observed position of binding. However, to fully understand the molecular details of
290 the interface between Nse5/6 and the Smc5/6 complex, and the resultant set of conformational
291 changes that appear to underpin function, obtaining structural data at higher resolution is now a
292 desirable goal.

293

294 **ACKNOWLEDGEMENTS**

295 **General:** The authors would like to thank Prof. Laurence Pearl (Uni. of Sussex/ICR) and Prof.
296 Antony Carr (Uni. of Sussex) for constructive criticism and proof-reading of this manuscript. They
297 would also like to thank Dr. Neil Kad (Uni. of Kent) for providing details of the NADH-coupled
298 regenerative ATPase assay.

299

300 **Funding:** this work was supported by funding from the Medical Research Council
301 MR/P018955/1 (JMM and AWO).

302

303 **Competing interests:** The authors declare no competing interests.

304

305 **Author Contributions:** Conceptualisation: JMM, AWO; Methodology: STH, PS, FB, EM, JMM,
306 AWO; Investigation: STT, PS, LZ, FB, AWO; Writing — Original Draft: STH, AWO; Writing —
307 Review and Editing: STH, PS, FB, EM, JMM, AWO; Visualisation: AWO; Supervision: PS, FB,
308 EM, JMM, AWO; Funding Acquisition: JMM, AWO.

309

310 **MATERIALS AND METHODS**

311

312 **Expression constructs**

313 *Smc5/6*

314 Synthetic genes codon-optimised for expression in *Spodoptera frugiperda*, for each of the
315 proteins forming the *Saccharomyces cerevisiae* Smc5/6 complex, were purchased from GeneArt
316 [ThermoFisher Scientific, Loughborough, UK]. In each case, the coding sequence was
317 subcloned into the vector pLIB of the biGBac system at the BamHI and HindIII sites within the
318 multiple cloning site⁵⁹. With the exception of Nse3, amino acids encoding in-frame affinity/epitope
319 tags were added at either the start or end of the coding sequence.

320

321 Expression constructs were then generated via PCR amplification / Gibson Assembly reactions
322 following the procedures and protocols published in ref. 59.

323

- 324 1. [S5S6N2]: pBIG1a, containing Smc5-FLAG, Smc6-AVI-HIS and HA-Nse2
- 325 2. [N1N3N4]: pBIG1b, containing HIS-TEV-Nse1, Nse3, Nse4-HALO-Myc

326 3. [N5N6]: pBIG1c, Nse5-C.tag, HIS-3C-Nse6
327 4. [S5S6N2-N1N3N4]; pBIG2ab, generated by combining constructs 1 and 2
328 5. [N5MBPN6]: pBIG1c, Nse5-MBP-C.tag, HIS-3C-Nse6
329
330 AVI-HIS: combined Avi⁶⁰ + His₆ affinity tag with spacer; GLNDIFEAQKIEWHEGSASGHHHHHH
331 C.tag: GAAEPEA⁶¹
332 FLAG: DYKDDDDK
333 HALO: HaloTag; modified haloalkane dehalogenase⁶²
334 HA: YPYDVPDYA
335 HIS: HHHHHH
336 MBP: Maltose-binding protein
337 MYC: EQKLISEEEDL
338 TEV: Tobacco Etch Protease cleavage site; ENLYFQG
339 3C: Human Rhinovirus 3C protease cleavage site; LEVLFQGP
340
341 *C.tag nanobody*
342 A synthetic gene, codon-optimised for expression in *E.coli*, was purchased from GeneArt. The
343 coding sequence was subcloned into the Ncol and Xhol restrictions sites of the expression
344 vector pCDF-1b [Merck KGaA, Darmstadt, Germany] in-frame with a C-terminal non-cleavable
345 6xHis affinity tag.
346
347 **Expression in insect cells**
348 Recombinant viruses were generated using the Bac-to-Bac Baculovirus Expression System
349 [ThermoFisher Scientific]. All expression was carried out in Sf9 insect cells, as suspension
350 culture in 2 L bottles containing 500 ml Insect-Xpress media [Lonza Bioscience, Slough, UK]
351 supplemented with penicillin and streptomycin. Cells at a density of 2 x 10⁶ cells/ml were infected
352 with the appropriate viral stock at a multiplicity-of-infection of 2, then grown in an orbital shaking
353 incubator set at 27 °C and 150 rpm, for a period of 72 hours. Cells were harvested by
354 centrifugation at 1500 x g for 10 minutes and the resulting cell pellet stored at -80°C until required.
355
356 **Expression in *E. coli***
357 *E. coli* strain BL21(DE3) [New England Biolabs, Hitchin, UK] was transformed with the C.tag-
358 nanobody expression vector, selected by plating on LB-agar plates supplemented with 50 µg/ml
359 spectinomycin. Transformed cells were used to inoculate a 250 ml conical flask containing 50
360 ml Turbo-broth [Molecular Dimensions, Sheffield, UK] supplemented with antibiotic as before.
361 The culture was grown at 37°C in an orbital-shaker incubator until an OD₆₀₀ of 1.5 was reached,
362 it was then stored at 4°C overnight. 12 ml from this 'starter culture' was then used to inoculate

363 a 2L conical flask containing 1L of Turbo-broth media, supplemented with antibiotic as before.
364 This culture was incubated at 37°C in an orbital-shaker incubator, as before, until an OD₆₀₀ of 1.5
365 was reached. The flask containing the culture was chilled on a bed of ice for a period of 1 hour
366 before induction of recombinant protein expression by the addition of 0.2 mM isopropyl β-D-1-
367 thiogalactopyranoside [Generon Ltd., Slough, UK]. Cultures were then incubated at a lower
368 temperature of 20°C in an orbital-shaker incubator for a period of ~16 hours, before harvesting
369 of cells by centrifugation at 4000 x g for 20 minutes. The resultant cell pellet was stored at -80°C
370 until required.

371

372 **Protein purification**

373 *Buffer Composition*

374 A: 50 mM HEPES.NaOH pH 7.5, 250 mM NaCl, 10 mM imidazole, 0.5 mM TCEP
375 B: 50 mM HEPES.NaOH pH 7.5, 250 mM NaCl, 300 mM imidazole, 0.5 mM TCEP
376 C: 20 mM HEPES.NaOH pH 7.5, 100 mM NaCl, 0.5 mM TCEP
377 D: 20 mM HEPES.NaOH pH 7.5, 150 mM NaCl, 0.5 mM TCEP
378 E: 20 mM HEPES.NaOH pH 7.5, 750 mM NaCl, 0.5 mM TCEP
379 F: 20 mM HEPES.NaOH pH 7.5, 0.5 mM TCEP
380 G: 20 mM MES.NaOH pH 6.5, 100 mM NaCl, 0.5 mM TCEP
381 H: 20 mM MES.NaOH pH 6.5, 1000 mM NaCl, 0.5 mM TCEP
382 I: 20 mM HEPES.NaOH pH 7.5, 250 mM NaCl, 0.5 mM TCEP

383

384 *Peptides*

385 3 x FLAG: MDYKDHDG DYKDHDIDYKDDDDK
386 SEPEA: SEPEA

387

388 *Smc5/6 complexes*

389 The cell pellet from 1L of Sf9 cell culture was resuspended on ice, in BUFFER A supplemented
390 with protease inhibitors [Roche, Burgess Hill, UK]. Cells were lysed though a combination of the
391 thawing process and hand-homogenisation, and insoluble material removed by high-speed
392 centrifugation at 40,000 x g for a period of 1 hour at 4°C. A protamine sulphate precipitation step
393 was also included to remove excess nucleic acid. The soluble supernatant was then filtered
394 through a 5 µm filter [Sartorius Stedim, Epsom, UK] then applied to a batch/gravity column
395 containing 2 ml Amintra CoHIS resin [Expedeon, Over, UK], pre-equilibrated in BUFFER A. The
396 resin was washed with 10 column volumes (CV) of BUFFER A, then the retained protein eluted
397 by application of 5 CV of BUFFER B. The eluate from this step was diluted 2-fold with BUFFER
398 C in order to reduce the overall NaCl and imidazole concentration, and then incubated with 0.5
399 ml ANTI-FLAG M2 Affinity Gel [Sigma-Aldrich Company Ltd, Gillingham, UK] pre-equilibrated in

400 BUFFER D for a period of 1 hour with rolling at 4°C. The resin was collected in a gravity flow
401 column and then washed with 5 CV BUFFER D, with bound protein eluted by application of the
402 same buffer containing 0.2 mg/ml 3xFLAG peptide [Peptide Protein Research Ltd, Waltham, UK].
403

404 Pooled fractions were loaded onto a 1 ml Heparin column [Cytiva, UK] to concentrate the complex
405 and to remove any peptide from the previous chromatography step. The column was washed
406 with 5 CV BUFFER D, before elution of retained protein with BUFFER E.
407

408 Finally, the eluate was applied to a Superose 6 Increase GL size exclusion chromatography (GE
409 Healthcare Life Sciences, Little Chalfont, UK) pre-equilibrated in BUFFER D. Throughout the
410 purification procedure, samples were analysed by SDS-PAGE in order to monitor yield and purity.
411

412 Enrichment of complexes containing the C.tag epitope was achieved by inclusion of the following
413 chromatography step, placed after the initial capture by IMAC and dilution with BUFFER C. The
414 diluted eluate was incubated with 0.3 ml CaptureSelect C-tag XL Affinity Matrix [ThermoFisher
415 Scientific] pre-equilibrated in BUFFER D for a period of 1 hour with rolling at 4°C. The resin was
416 collected in a gravity flow column and then washed with 5 CV BUFFER D, with bound protein
417 eluted by application of the same buffer containing 2 mM 'SEPEA' peptide [Peptide Protein
418 Research]. Samples were then applied sequentially to the heparin and size exclusion
419 chromatography columns as before.
420

421 *C-tag nanobody*

422 The cell pellet from 1 L of cell culture was resuspended in BUFFER A supplemented with
423 protease inhibitors [Roche]. Cells were disrupted, on ice, by sonication at 40 % amplitude in
424 bursts of 5 seconds on and 20 seconds off, for a total of 5 minutes [Vibra-Cell VCX500 Ultrasonic
425 Processor], with insoluble material removed by centrifugation. The resulting supernatant was
426 filtered through a 5 µm sterile syringe filter [Sartorius Stedim] and then loaded onto a 5 ml HiTrap
427 TALON crude column [Cytiva, Little Chalfont, UK] pre-equilibrated in BUFFER A. Unbound
428 material was removed by washing with 5 CV BUFFER A, before retained protein was eluted by
429 application of BUFFER B.
430

431 Pooled fractions were concentrated using Vivaspin 20 (10 000 MWCO) centrifugal concentrators
432 [Sartorius] before buffer-exchange into BUFFER F, and then application to a 5 ml HiTrap SP FF
433 cation exchange column [Cytiva] pre-equilibrated in the same buffer. Unbound material was
434 removed by washing with 5 CV BUFFER F, before eluting the retained protein with a linear salt
435 gradient made with BUFFER H over ~12 CV. Fractions containing the desired protein were
436 pooled and concentrated to a final volume of 5 ml using centrifugal concentrators as before, then

437 applied to Superdex 75 26/600 size exclusion column [Cytiva] pre-equilibrated with BUFFER I as
438 the final purification step. Fractions containing the protein complex were identified by SDS-PAGE,
439 pooled and concentrated as before to a final concentration of 6.5 mg/ml. The purified protein
440 was then flash frozen in liquid N₂ and stored at -80°C until required.

441

442 **HRP Conjugation**

443 The C.tag-nanobody was conjugated to horseradish peroxidase, using HRP Conjugation Kit –
444 Lightning-Link from Abcam [Ab102890, Cambridge, UK] as per manufacturer's instructions. The
445 resulting C-tag-nanobody-HRP conjugate was stored at 4°C until required.

446

447 **Cross-linking**

448 Complexes used in negative stain experiments were cross-linked either with 0.1% glutaldahyde
449 [Agar Scientific Ltd, Stansted, UK] for a period of 10 minutes at room temperature or overnight
450 (~15 hours) at 4°C with 1 mM BS3 (bis(sulfosuccinimidyl)suberate) [Fisher Scientific UK Ltd.,
451 Loughborough, UK]. Reactions were stopped by the addition of 50 mM Tris pH 7.5. Samples
452 were then concentrated using Vivaspin 6 (50 000 MWCO) centrifugal concentrators [Sartorius
453 Stedim] to a volume of 0.5 ml before being applied to a Superose 6 Increase GL size exclusion
454 chromatography [Cytiva] pre-equilibrated in BUFFER D, as the final purification step. Samples
455 were used immediately for both assays and negative stain grid preparation.

456

457 **Antibodies (Western blot)**

458 *Primary antibodies*

459 Anti-His₆; mouse monoclonal at 1:10,000 dilution (631212, Merck)
460 Anti-FLAG M2; mouse monoclonal at 1:10,000 dilution (F3165, Merck)
461 HA-Tag antibody; mouse monoclonal at 1:10,000 dilution (sc-7392, Santa Cruz Biotechnology)
462 Anti-Myc tag antibody; mouse monoclonal at 1:10,000 dilution (ab32, Abcam)
463 CaptureSelect Biotin Anti-C-tag conjugate; camelid antibody fragment at 1:10,000 dilution
464 (7103252100, ThermoFisher)
465 C.tag HRP-conjugate; nanobody at 1:20,000 (in house)

466

467 *Secondary antibodies*

468 Amersham ECL mouse IgG HRP-linked whole Ab; sheep polyclonal at 1:10,000 dilution
469 (NA931V, Cytiva)
470 Streptavidin-Horseradish Peroxidase Conjugate at 1:10,000 dilution (RPN1231, Cytiva)

471

472 **Biochemical and Biophysical Assays**

473 *Oligonucleotide Sequences*

474 A: 5' -ATCAGCGTTCGATGCTTCCGACTAATCAGCCATATCAGCTTACGACTA-3' (48mer)
475 B: 5' -TAGTCGTAAGCTGATATGGCTGATTAGTCGGAAGCATCGAACGCTGAT-3' (48mer)
476 C: 5' -ATCAGTACTTGTCAACACGAGCAGCCGTATATTCTCCTACAGCACTAAA
477 /iFT/ATAGTGCTGTAGGAGAATATACGGGCTGCTCGTGTGACAAGTACTGAT-3'
478 Where iFT = fluorescein attached to position 5 of the thymine ring by a 6-carbon spacer.
479 All experiments with ssDNA use oligonucleotide A. Those with dsDNA use a DNA duplex formed
480 by annealing oligonucleotide A with B, with the exception of DNA-binding experiments (EMSA)
481 that used self-annealed oligonucleotide C.
482
483 Purified unlabelled DNA oligonucleotides used in NADH-coupled ATPase assays were
484 purchased from Merck. Purified fluorescein-labelled DNA oligonucleotides used in EMSA
485 experiments were purchased from Integrated DNA Technologies [Leuven, Belgium].
486
487 **NADH-coupled regenerative ATPase assay**
488 Methodology is based on that previously reported by Barnett and Kad³⁶. All reagents were
489 purchased from Merck. Assays were performed in 96 well UV-transparent plates at 25°C in
490 BUFFER D. 143 nM of each complex was incubated with a 1/60 dilution of Pyruvate Kinase /
491 Lactic dehydrogenase (PK/LDH; P0294), 0.42 mM Phosphoenolpyruvate (PEP;10108294001),
492 0.83 mM ATP-MgCl₂ and 0.176 mM beta-Nicotinamide adenine dinucleotide hydrogen
493 (NADH;10128023001) in a total volume of 120 µl. Absorbance at 340 nm was then measured
494 every 30 seconds for a total of 5400 seconds using a CLARIOstar multimode plate reader [BMG
495 Labtech GmbH, Baden-Württemberg, Germany]. Data were processed and analysed using
496 GraphPad Prism [v. 9.0, GraphPad Software LLC, San Diego, US].
497
498 **EMSA**
499 Self-annealed oligonucleotide C (at a concentration of 200 nM) was pre-incubated with the
500 indicated dilution series of each complex, in BUFFER D for a period of 30 minutes at 4°C.
501 NativePAGE 4x loading buffer [Fisher Scientific, Loughborough, UK] was then added to each
502 sample, before being applied to 0.8% w/v tris-borate-EDTA (TBE)-agarose gel. Electrophoresis
503 was carried out by application of 50V for a period of 3 hours at 4°C, in 0.5 % v/v TBE (Novex
504 TBE Running Buffer, Fisher Scientific). Separated species were visualised using a Fuji FLA-5100
505 Fluorescent Image Analyser, using excitation with a 473 nm laser.
506
507 **MBP Pull-down**
508 Pull-down experiments were performed in BUFFER D. 300 µl of the indicated complex at 1 µM
509 was incubated with 100 µl Amylose Resin [New England Biolabs, Hitchin, UK] for a period of 1
510 hour at 4 °C with rolling/agitation. The resin was then collected by centrifugation at 100 x g for 1

511 minute at 4 °C, in a 500 µl Corning Costar Spin-X Plastic Centrifuge Tube [0.45 µm, Merck,
512 Gillingham, UK]. The resin was washed 3 times by application of 500 µl BUFFER D, before bound
513 material was eluted through application of BUFFER D supplemented with 20mM maltose.

514

515 **Uranyl Acetate Negative Stain Transmission Electron Microscopy**

516 *Grid preparation*

517 Copper grids (continuous carbon film on 300 mesh, Agar Scientific Ltd, Stansted, UK) were
518 treated by glow discharge for 60 to 90 secs at 15 mA (PELCO EasyGlow). 3 µl of sample was
519 placed onto the glow-discharged grids for a period of 1 min before excess liquid was removed by
520 gently blotting with filter paper. Grids were then washed 3 times with either ultrapure water or
521 BUFFER D, then stained with 2% uranyl acetate for 30 secs and dried thoroughly with filter paper.

522

523 **Data collection**

524 S5-S6-N2/N1-N3-N4 dataset was collected on a Tecnai TF20 transmission electron microscope,
525 equipped with a TemCam F416 CMOS camera at the Institute of Cancer Research (London, UK)
526 at an excitation voltage of 200 kV. In total, 416 images were collected at 50,000x magnification
527 and a pixel size of 1.732 Å.

528

529 Nse5/Nse6-containing datasets were collected in house, on a JEOL JEM-1400-plus transmission
530 electron microscope, at 120 kV, equipped with a OneView camera (Gatan, Inc). Acquisition was
531 performed at 25 fps with 1 sec integration time and drift correction performed automatically using
532 the Gatan Microscopy suite (GMS3, Gatan, Inc). In total, 234 and 102 images were collected at
533 60,000x magnification and a pixel size of 1.8 Å.

534

535 **Data processing**

536 Micrographs were processed with RELION (v3.1; ^{63,64}). Individual particles were picked manually
537 and extracted using box sizes of 352 and 328 pixels for S5/S6/N2-N1/N3/N4 and Nse5/6-
538 containing complexes respectively. 2D classification was used an initial ‘polishing’ step, to select
539 particles to take forward into 3D classification. Particles that converged into a single class, were
540 then used in 3D refinement. A mask diameter of 550 Å was used in both 2D and 3D classification
541 steps. Masks for the ‘Head’, ‘Arm’ and ‘Hinge’ regions of each complex were generated from 3D
542 volumes using Chimera (v1.14; ⁶⁵, and then used for 3D refinement to improve particle alignment
543 within these regions. See Table I for additional information.

544

545 **Figures**

546 Molecular images were generated using either PyMOL ⁶⁶ or Chimera ⁶⁵.

	Holo-complex	Super-complex	MBP-labelled Super-complex
Figure #	2	7E	7H, S4
Components	S5-S6-N2 N1-N3-N4	S5-S6-N2 N1-N3-N4 + N5-N6	S5-S6-N2 N1-N3-N4 + N5-N6 (MBP)
Microscope	Tecnai F20	JEOL JEM-1400-plus	
Detector	TemCam F416 CMOS (TVIPS)	OneView Camera (Gatan)	
Voltage (kV)	200	120	
Magnification	50,000	60,000	
Pixel size (Å/pix)	1.732	1.8	
Grid type	Quantifoil R1.2/1.3 copper 300 mesh grids (Agar Scientific) with an additional layer of supporting carbon added in house	Continuous Carbon Film on 300 mesh copper grids (Agar Scientific)	
# Micrographs	416	234	102
# Particles picked	5397	4469	5279
# Particles in 3D model	4301	3107	3990
nominal resolution (Å); as reported by RELION / 3D-refine			
Overall	29	33	31
“Hinge”	25	28	30
“Arm”	22	31	27
“Heads”	27	28	31

Table 1. Data summary for Transmission Electron Microscopy

REFERENCES

- 547 1. Alt, A. et al. Specialized interfaces of Smc5/6 control hinge stability and DNA association. *Nat Commun* **8**, 14011 (2017).
- 548 2. Griese, J.J., Witte, G. & Hopfner, K.P. Structure and DNA binding activity of the mouse
- 549 condensin hinge domain highlight common and diverse features of SMC proteins. *Nucleic*
- 550 *Acids Res* **38**, 3454-65 (2010).
- 551 3. Haering, C.H., Lowe, J., Hochwagen, A. & Nasmyth, K. Molecular architecture of SMC
- 552 proteins and the yeast cohesin complex. *Mol Cell* **9**, 773-88 (2002).
- 553 4. Kurze, A. et al. A positively charged channel within the Smc1/Smc3 hinge required for
- 554 sister chromatid cohesion. *EMBO J* **30**, 364-78 (2011).
- 555 5. Hassler, M., Shaltiel, I.A. & Haering, C.H. Towards a Unified Model of SMC Complex
- 556 Function. *Curr Biol* **28**, R1266-R1281 (2018).
- 557 6. Uhlmann, F. SMC complexes: from DNA to chromosomes. *Nat Rev Mol Cell Biol* **17**, 399-
- 558 412 (2016).
- 559 7. Taylor, E.M., Copsey, A.C., Hudson, J.J., Vidot, S. & Lehmann, A.R. Identification of the
- 560 proteins, including MAGEG1, that make up the human SMC5-6 protein complex. *Mol Cell*
- 561 *Biol* **28**, 1197-206 (2008).
- 562 8. Aragon, L. The Smc5/6 Complex: New and Old Functions of the Enigmatic Long-Distance
- 563 Relative. *Annu Rev Genet* **52**, 89-107 (2018).
- 564 9. Diaz, M. & Pecinka, A. Scaffolding for Repair: Understanding Molecular Functions of the
- 565 SMC5/6 Complex. *Genes (Basel)* **9**(2018).
- 566 10. Palecek, J.J. SMC5/6: Multifunctional Player in Replication. *Genes* **10**(2019).
- 567 11. Sole-Soler, R. & Torres-Rosell, J. Smc5/6, an atypical SMC complex with two RING-type
- 568 subunits. *Biochemical Society Transactions* **48**, 2159-2171 (2020).
- 569 12. Decorsiere, A. et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host
- 570 restriction factor. *Nature* **531**, 386-9 (2016).
- 571 13. Murphy, C.M. et al. Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to
- 572 Enhance HBV Replication. *Cell Rep* **16**, 2846-2854 (2016).
- 573 14. Xu, W. et al. PJA1 Coordinates with the SMC5/6 Complex To Restrict DNA Viruses and
- 574 Episomal Genes in an Interferon-Independent Manner. *J Virol* **92**(2018).
- 575 15. Bentley, P., Tan, M.J.A., McBride, A.A., White, E.A. & Howley, P.M. The SMC5/6 Complex
- 576 Interacts with the Papillomavirus E2 Protein and Influences Maintenance of Viral
- 577 Episomal DNA. *J Virol* **92**(2018).
- 578 16. Gibson, R.T. & Androphy, E.J. The SMC5/6 Complex Represses the Replicative Program of
- 579 High-Risk Human Papillomavirus Type 31. *Pathogens* **9**(2020).
- 580 17. Payne, F. et al. Hypomorphism in human NSMCE2 linked to primordial dwarfism and
- 581 insulin resistance. *The Journal of clinical investigation* **124**, 4028-4038 (2014).
- 582 18. van der Crabben, S.N. et al. Destabilized SMC5/6 complex leads to chromosome breakage
- 583 syndrome with severe lung disease. *The Journal of clinical investigation* **126**, 2881-2892
- 584 (2016).
- 585 19. Hazbun, T.R. et al. Assigning function to yeast proteins by integration of technologies.
- 586 *Mol Cell* **12**, 1353-65 (2003).
- 587 20. Pebernard, S., Wohlschlegel, J., McDonald, W.H., Yates, J.R., 3rd & Boddy, M.N. The Nse5-
- 588 Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. *Mol Cell Biol* **26**, 1617-
- 589 30 (2006).
- 590 21. Raschle, M. et al. DNA repair. Proteomics reveals dynamic assembly of repair complexes
- 591 during bypass of DNA cross-links. *Science* **348**, 1253671 (2015).

593 22. Oravcova, M. & Boddy, M.N. Recruitment, loading, and activation of the Smc5-Smc6
594 SUMO ligase. *Curr Genet* **65**, 669-676 (2019).

595 23. Oravcova, M. et al. Brc1 Promotes the Focal Accumulation and SUMO Ligase Activity of
596 Smc5-Smc6 during Replication Stress. *Mol Cell Biol* **39**(2019).

597 24. Litwin, I., Pilarczyk, E. & Wysocki, R. The Emerging Role of Cohesin in the DNA Damage
598 Response. *Genes (Basel)* **9**(2018).

599 25. Etheridge, T.J. et al. Single-molecule live cell imaging of the Smc5/6 DNA repair complex.
600 *bioRxiv*, 2020.06.19.148106 (2020).

601 26. Bustard, D.E. et al. During replication stress, non-SMC element 5 (NSE5) is required for
602 Smc5/6 protein complex functionality at stalled forks. *J Biol Chem* **287**, 11374-83 (2012).

603 27. Ohouo, P.Y., Bastos de Oliveira, F.M., Almeida, B.S. & Smolka, M.B. DNA damage signaling
604 recruits the Rtt107-Slx4 scaffolds via Dpb11 to mediate replication stress response. *Mol
605 Cell* **39**, 300-6 (2010).

606 28. Verkade, H.M., Bugg, S.J., Lindsay, H.D., Carr, A.M. & O'Connell, M.J. Rad18 is required
607 for DNA repair and checkpoint responses in fission yeast. *Mol Biol Cell* **10**, 2905-18 (1999).

608 29. Sheedy, D.M. et al. Brc1-mediated DNA repair and damage tolerance. *Genetics* **171**, 457-
609 68 (2005).

610 30. Wan, B., Wu, J., Meng, X., Lei, M. & Zhao, X. Molecular Basis for Control of Diverse
611 Genome Stability Factors by the Multi-BRCT Scaffold Rtt107. *Mol Cell* **75**, 238-251 e5
612 (2019).

613 31. Adamus, M. et al. Molecular Insights into the Architecture of the Human SMC5/6
614 Complex. *J Mol Biol* **432**, 3820-3837 (2020).

615 32. Duan, X. et al. Architecture of the Smc5/6 Complex of *Saccharomyces cerevisiae* Reveals
616 a Unique Interaction between the Nse5-6 Subcomplex and the Hinge Regions of Smc5
617 and Smc6. *J Biol Chem* **284**, 8507-15 (2009).

618 33. Palecek, J., Vidot, S., Feng, M., Doherty, A.J. & Lehmann, A.R. The Smc5-Smc6 DNA repair
619 complex. bridging of the Smc5-Smc6 heads by the KLEISIN, Nse4, and non-Kleisin
620 subunits. *J Biol Chem* **281**, 36952-9 (2006).

621 34. Duan, X. et al. Structural and functional insights into the roles of the Mms21 subunit of
622 the Smc5/6 complex. *Mol Cell* **35**, 657-68 (2009).

623 35. Duan, X. & Ye, H. Purification, crystallization and preliminary X-ray crystallographic
624 studies of the complex between Smc5 and the SUMO E3 ligase Mms21. *Acta Crystallogr
625 Sect F Struct Biol Cryst Commun* **65**, 849-52 (2009).

626 36. Barnett, J.T. & Kad, N.M. Understanding the coupling between DNA damage detection
627 and UvrA's ATPase using bulk and single molecule kinetics. *FASEB J* **33**, 763-769 (2019).

628 37. Elbatsh, A.M.O. et al. Distinct Roles for Condensin's Two ATPase Sites in Chromosome
629 Condensation. *Mol Cell* **76**, 724-737 e5 (2019).

630 38. Hassler, M. et al. Structural Basis of an Asymmetric Condensin ATPase Cycle. *Mol Cell* **74**,
631 1175-1188 e9 (2019).

632 39. Fousteri, M.I. & Lehmann, A.R. A novel SMC protein complex in *Schizosaccharomyces
633 pombe* contains the Rad18 DNA repair protein. *EMBO J* **19**, 1691-702 (2000).

634 40. Kanno, T., Berta, D.G. & Sjogren, C. The Smc5/6 Complex Is an ATP-Dependent
635 Intermolecular DNA Linker. *Cell Rep* **12**, 1471-82 (2015).

636 41. Kimura, K. & Hirano, T. ATP-dependent positive supercoiling of DNA by 13S condensin: a
637 biochemical implication for chromosome condensation. *Cell* **90**, 625-34 (1997).

638 42. Murayama, Y. & Uhlmann, F. Biochemical reconstitution of topological DNA binding by
639 the cohesin ring. *Nature* **505**, 367-71 (2014).

640 43. Anderson, D.E., Losada, A., Erickson, H.P. & Hirano, T. Condensin and cohesin display
641 different arm conformations with characteristic hinge angles. *J Cell Biol* **156**, 419-24
642 (2002).

643 44. Burmann, F. et al. A folded conformation of MukBEF and cohesin. *Nat Struct Mol Biol* **26**,
644 227-236 (2019).

645 45. Collier, J.E. et al. Transport of DNA within cohesin involves clamping on top of engaged
646 heads by Scc2 and entrapment within the ring by Scc3. *Elife* **9**(2020).

647 46. Higashi, T.L. et al. A Structure-Based Mechanism for DNA Entry into the Cohesin Ring.
648 *Mol Cell* **79**, 917-933 e9 (2020).

649 47. Kong, M. et al. Human Condensin I and II Drive Extensive ATP-Dependent Compaction of
650 Nucleosome-Bound DNA. *Mol Cell* **79**, 99-114 e9 (2020).

651 48. Lee, B.G. et al. Cryo-EM structures of holo condensin reveal a subunit flip-flop
652 mechanism. *Nat Struct Mol Biol* **27**, 743-751 (2020).

653 49. Shi, Z., Gao, H., Bai, X.C. & Yu, H. Cryo-EM structure of the human cohesin-NIPBL-DNA
654 complex. *Science* **368**, 1454-1459 (2020).

655 50. Burmann, F. et al. Tuned SMC Arms Drive Chromosomal Loading of Prokaryotic
656 Condensin. *Mol Cell* **65**, 861-872 e9 (2017).

657 51. Lindroos, H.B. et al. Chromosomal association of the Smc5/6 complex reveals that it
658 functions in differently regulated pathways. *Molecular Cell* **22**, 755-767 (2006).

659 52. Pebernard, S., Schaffer, L., Campbell, D., Head, S.R. & Boddy, M.N. Localization of Smc5/6
660 to centromeres and telomeres requires heterochromatin and SUMO, respectively. *EMBO J*
661 **27**, 3011-23 (2008).

662 53. Minamino, M., Higashi, T.L., Bouchoux, C. & Uhlmann, F. Topological in vitro loading of
663 the budding yeast cohesin ring onto DNA. *Life Sci Alliance* **1**(2018).

664 54. Petela, N.J. et al. Scc2 Is a Potent Activator of Cohesin's ATPase that Promotes Loading
665 by Binding Scc1 without Pds5. *Mol Cell* **70**, 1134-1148 e7 (2018).

666 55. Leung, G.P., Lee, L., Schmidt, T.I., Shirahige, K. & Kobor, M.S. Rtt107 is required for
667 recruitment of the SMC5/6 complex to DNA double strand breaks. *J Biol Chem* **286**,
668 26250-7 (2011).

669 56. Li, X. et al. Structure of C-terminal tandem BRCT repeats of Rtt107 protein reveals critical
670 role in interaction with phosphorylated histone H2A during DNA damage repair. *J Biol
671 Chem* **287**, 9137-46 (2012).

672 57. Williams, J.S. et al. gammaH2A binds Brc1 to maintain genome integrity during S-phase.
673 *EMBO J* **29**, 1136-48 (2010).

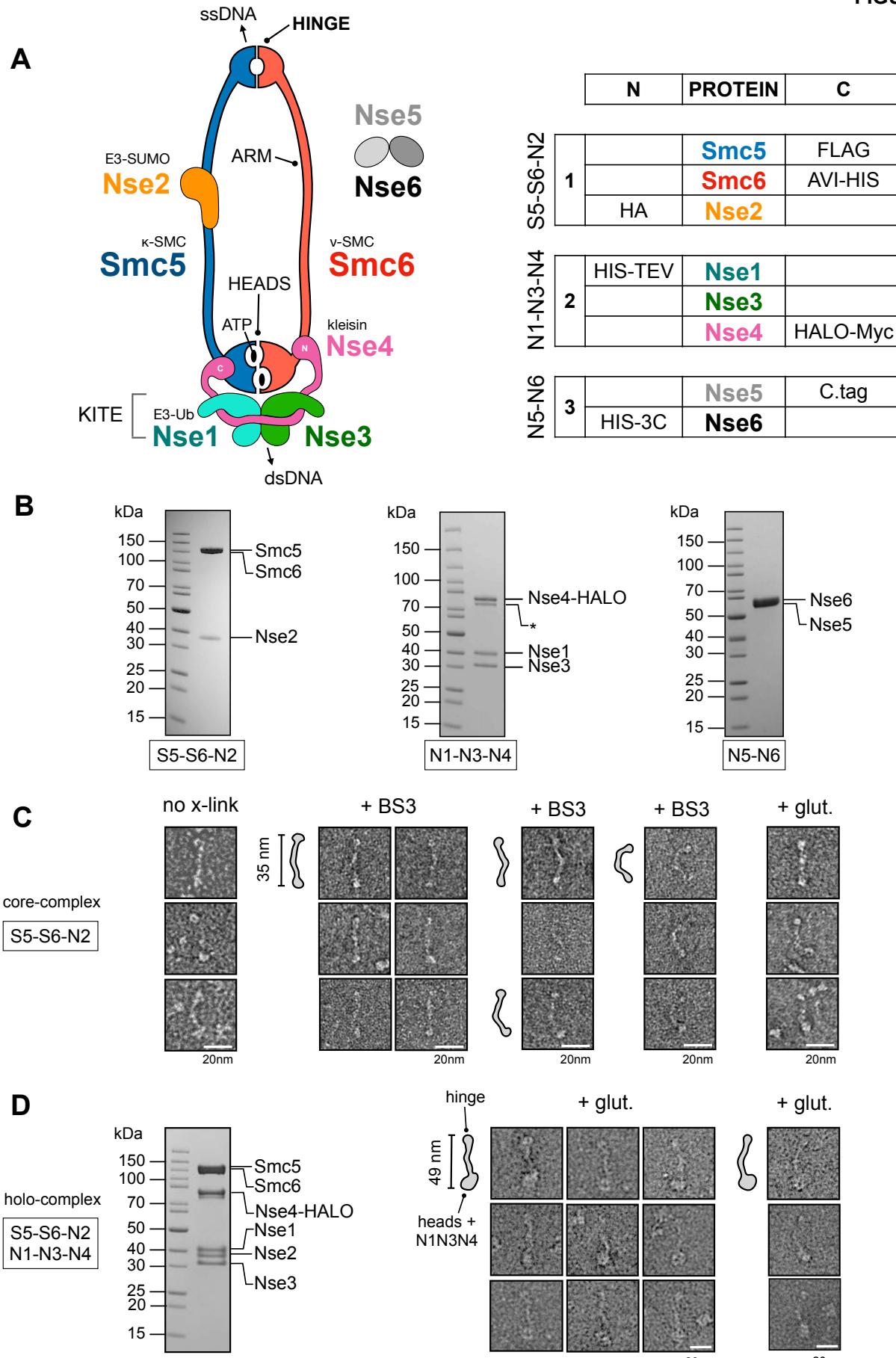
674 58. Zabradly, K. et al. Chromatin association of the SMC5/6 complex is dependent on binding
675 of its NSE3 subunit to DNA. *Nucleic Acids Res* **44**, 1064-79 (2016).

676 59. Weissmann, F. et al. biGBac enables rapid gene assembly for the expression of large
677 multisubunit protein complexes. *Proc Natl Acad Sci U S A* **113**, E2564-9 (2016).

678 60. Fairhead, M. & Howarth, M. Site-specific biotinylation of purified proteins using BirA.
679 *Methods Mol Biol* **1266**, 171-84 (2015).

680 61. Djender, S., Beugnet, A., Schneider, A. & De Marco, A. The Biotechnological Applications
681 of Recombinant Single-Domain Antibodies are Optimized by the C-Terminal Fusion to the
682 EPEA Sequence (C Tag). *Antibodies* **3**(2014).

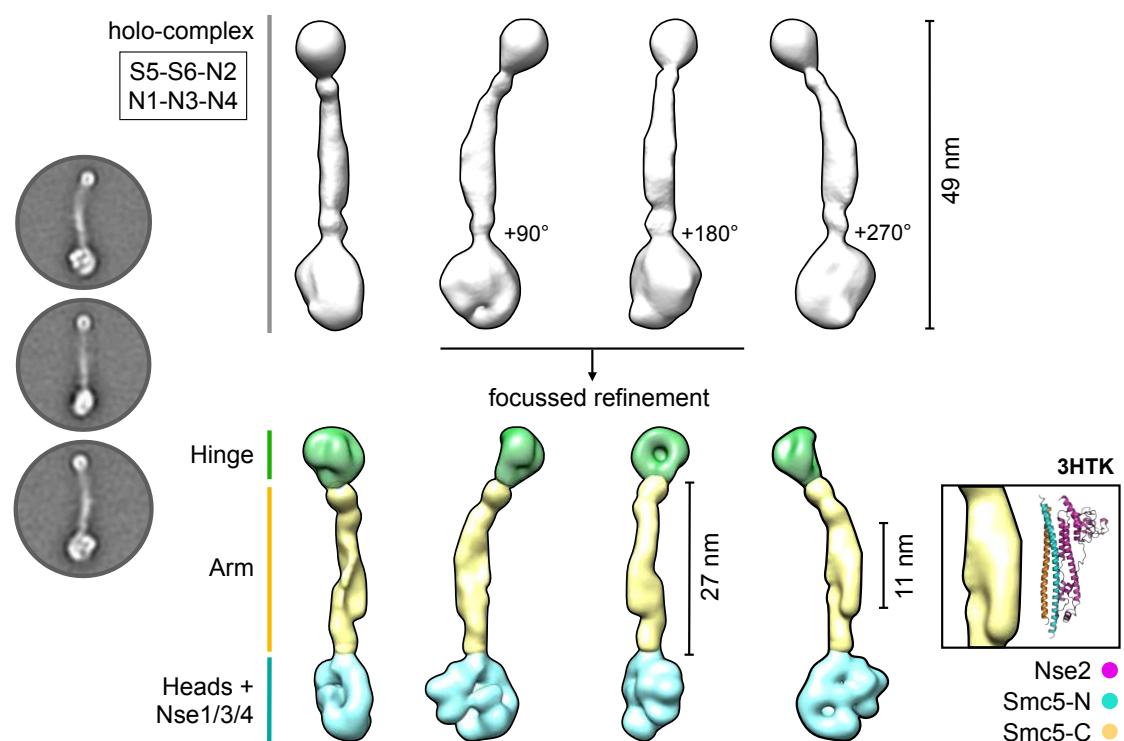
683 62. Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein
684 analysis. *ACS Chem Biol* **3**, 373-82 (2008).


685 63. Scheres, S.H. RELION: implementation of a Bayesian approach to cryo-EM structure
686 determination. *J Struct Biol* **180**, 519-30 (2012).

687 64. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure
688 determination in RELION-3. *Elife* **7**(2018).

689 65. Pettersen, E.F. et al. UCSF Chimera--a visualization system for exploratory research and
690 analysis. *J Comput Chem* **25**, 1605-12 (2004).

691 66. Schrödinger, L. The PyMOL Molecular Graphics System, v2.3.2.


FIGURE 1

692 **Figure 1. Purification and visualisation of the *S. cerevisiae* Smc5/6 complex**

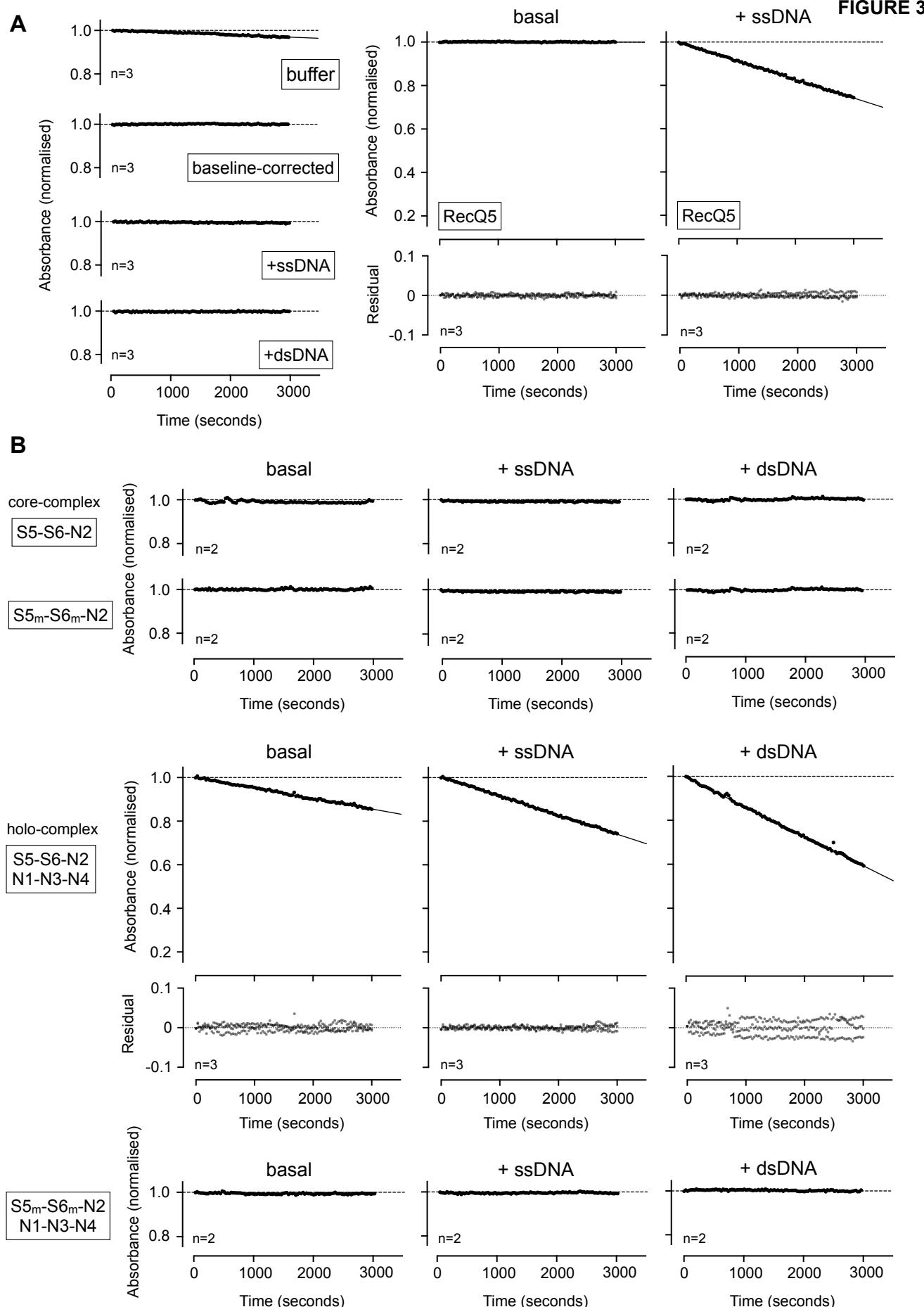
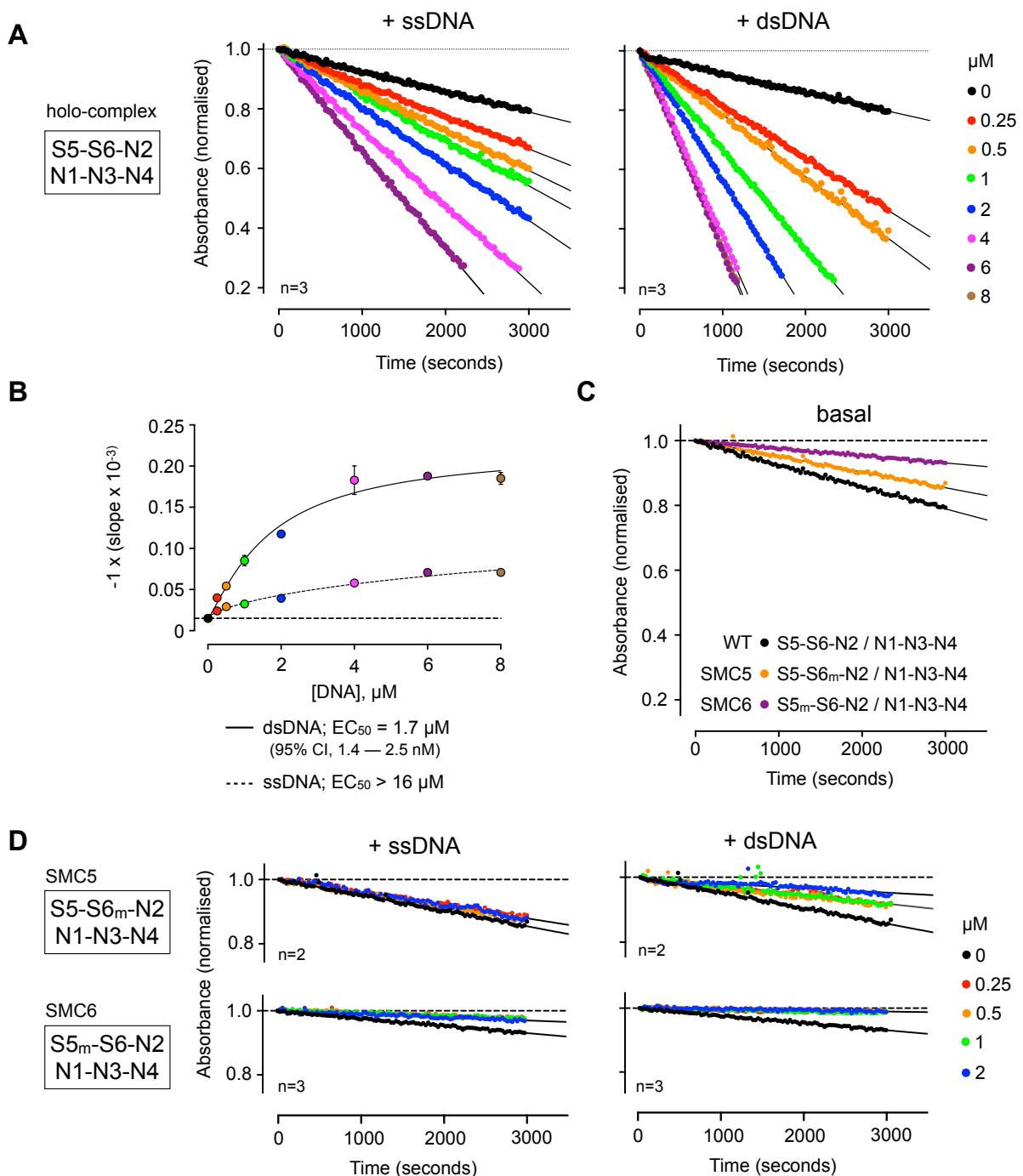

693 **(A, left)** Cartoon schematic showing the known subunits of the *Saccharomyces cerevisiae*
694 Smc5/6 complex and their spatial relationships. A heterodimer of Smc5 and Smc6 is formed
695 through an obligate interface formed at the so-called ‘hinge’. Nse2, a SUMO E3-ligase binds to
696 the coiled coil ‘arm’ of Smc5. The kleisin subunit Nse4, serves to connect and join the Nse1 /
697 Nse3 KITE subcomplex (kleisin-interacting tandem winged-helix elements) to the ATP-binding
698 ‘heads’ of Smc5 and Smc6, through separate interactions at its N- and C-termini; providing the κ -
699 and ν -SMC designation for Smc5 and Smc6, respectively. The Nse1 subunit provides Ubiquitin
700 E3-ligase activity. Two additional subunits, Nse5 and Nse6 form an obligate heterodimer that can
701 bind to the Smc5/6 holo-complex. Single-stranded DNA-binding activity has been shown for the
702 hinge region of Smc5/6¹, whilst a separate and distinct double-stranded DNA binding activity has
703 been shown for the Nse3 subunit⁵⁸ **(A, right)** Details of components in each baculovirus construct
704 generated using the biGBac system⁵⁹: S5-S6-N2 (1; pBIG1a), N1-N3-N4 (2; pBIG1b) and N5-
705 N6 (3; pBIG1c) and their respective N or C-terminal affinity / epitope tags. **(B)** Representative
706 colloidal-blue stained SDS-PAGE gels for each of the indicated subcomplexes. **(C)**
707 Representative images of particles, from micrographs of uranyl acetate negative-stained S5-S6-
708 N2, with either no crosslinking (left) or mild-crosslinking with BS3 or glutaldehyde (glut.). **(D)**
709 Colloidal-blue stained SDS-PAGE gel of the purified Smc5/6 holo-complex (S5-S6-N2 / N1-N3-
710 N3; pBIG2ab). **(E)** Representative images of particles, taken from micrographs of uranyl acetate
711 negative-stained holo-complex. Particle outlines are provided to aid visualisation, with overall
712 lengths estimated from micrographs for extended ‘l’-conformations of S5-S6-N2 and holo-
713 complex.

FIGURE 2

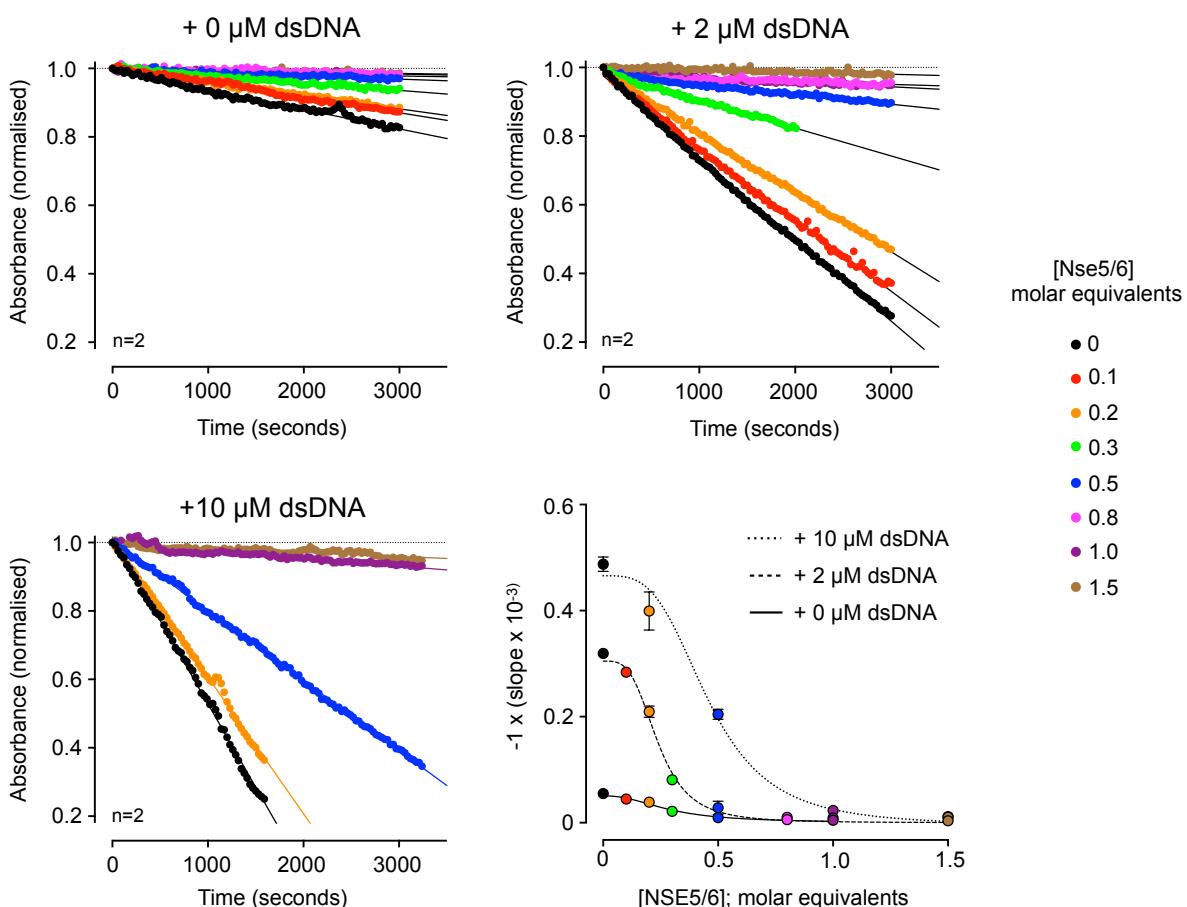
714 **Figure 2. 2D class averages and 3D model of the Smc5/6 holo-complex**

715 **(Left)** Representative 2D class averages **(Top right)** Initial 3D reconstruction. **(Bottom Right)**
716 3D reconstruction from focussed refinement; splitting the model into masked sections
717 corresponding to the ‘hinge’, ‘arm’ and ‘heads + NSE1/3/4’ regions of the holo-complex (coloured
718 in green, yellow and cyan respectively). **(Inset)** A section of density protruding from the ‘arm’
719 region is consistent with the dimensions of the X-ray crystal structure of budding yeast Nse2 in
720 complex with a short section of the Smc5 coiled-coil ‘arm’ (PDB ID: 3HTK). See associated key
721 for additional details.



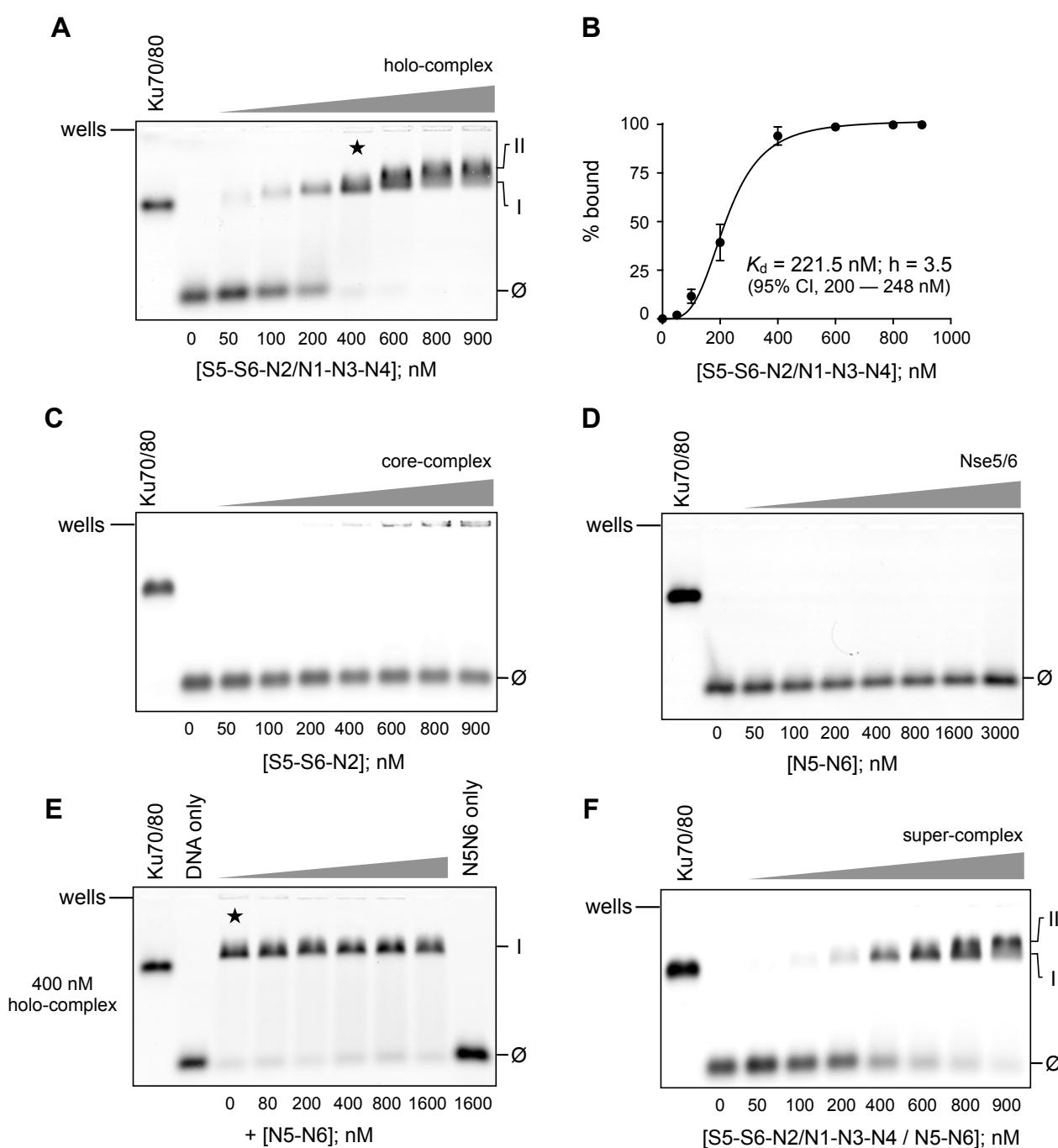
722 **Figure 3. Measuring ATP-hydrolysis by defined Smc5/6 complexes**

723 **(A, left)** Control experiments for the NADH-coupled regenerative ATPase assay. A highly
724 consistent and reproducible baseline-drift is observed with buffer only controls [buffer], which can
725 be corrected for by simple subtraction [baseline-corrected]. All subsequent data have been
726 baseline-corrected in this manner. Addition of nucleic acid to the experimental buffer does not
727 affect the baseline level of ATP consumption. **(A, right)** Addition of a single-stranded DNA
728 oligonucleotide (48-mer) stimulates ATP turnover by recombinant human RecQ5 (helicase
729 domain). **(B)** Neither purified S5-S6-N2, nor S5m-6m-N2 (containing inactivating Walker B
730 mutations in both SMC subunits; respectively) turn over ATP. No stimulation of activity is
731 observed with the addition of nucleic acid. **(C)** Purified Smc5/6 holocomplex (S5-S6-N2 / N1-N3-
732 N4) has a basal level of ATP-turnover that can be stimulated by the addition of nucleic acid. The
733 equivalent inactivated complex (S5m-S6m-N2 / N1-N3-N4) cannot turn over ATP. In each case,
734 plotted data represent the mean of the indicated number of experiments (n=X). For experiments
735 showing activity, residual plots are also shown, generated by fitting experimental data to a
736 straight-line equation by non-linear regression (solid black line); residuals are shown for data
737 points generated in each experimental repeat (filled circles, coloured light, medium and dark
738 grey). 5_m = Smc5-E1015Q, 6_m = Smc6-E1048Q.


FIGURE 4

739 **Figure 4. ATP turnover is preferentially stimulated by addition of double-stranded DNA**

740 (A) Titration of single-stranded or double-stranded DNA into the Smc5/6 holo-complex,
741 stimulates ATP turnover in a NADH-coupled regenerative ATPase assay. Least-squares fitting
742 of a straight-line equation to experimental data provides a 'slope' parameter for each titration
743 point (change in absorbance over time; solid black line). (B) Estimation of EC₅₀ for titrations, by
744 fitting of a stimulatory dose-response model to experimental data by non-linear regression. 95%
745 CI = confidence interval. (C) The basal level of ATP turnover by SMC5 is greater than SMC6, as
746 judged by experiments using purified holo-complexes containing a single Walker B mutation in
747 one or another SMC subunit. (D) The stimulation of ATPase activity generated by addition of
748 nucleic acid is lost in reconstituted holo-complexes that contain a single Walker B mutation in
749 one or another SMC subunit. 5_m = SMC5-E1015Q, 6_m = SMC6-E1048Q.


FIGURE 5

750 **Figure 5. Addition of Nse5/6 to the Smc5/6 holo-complex inhibits ATPase activity**

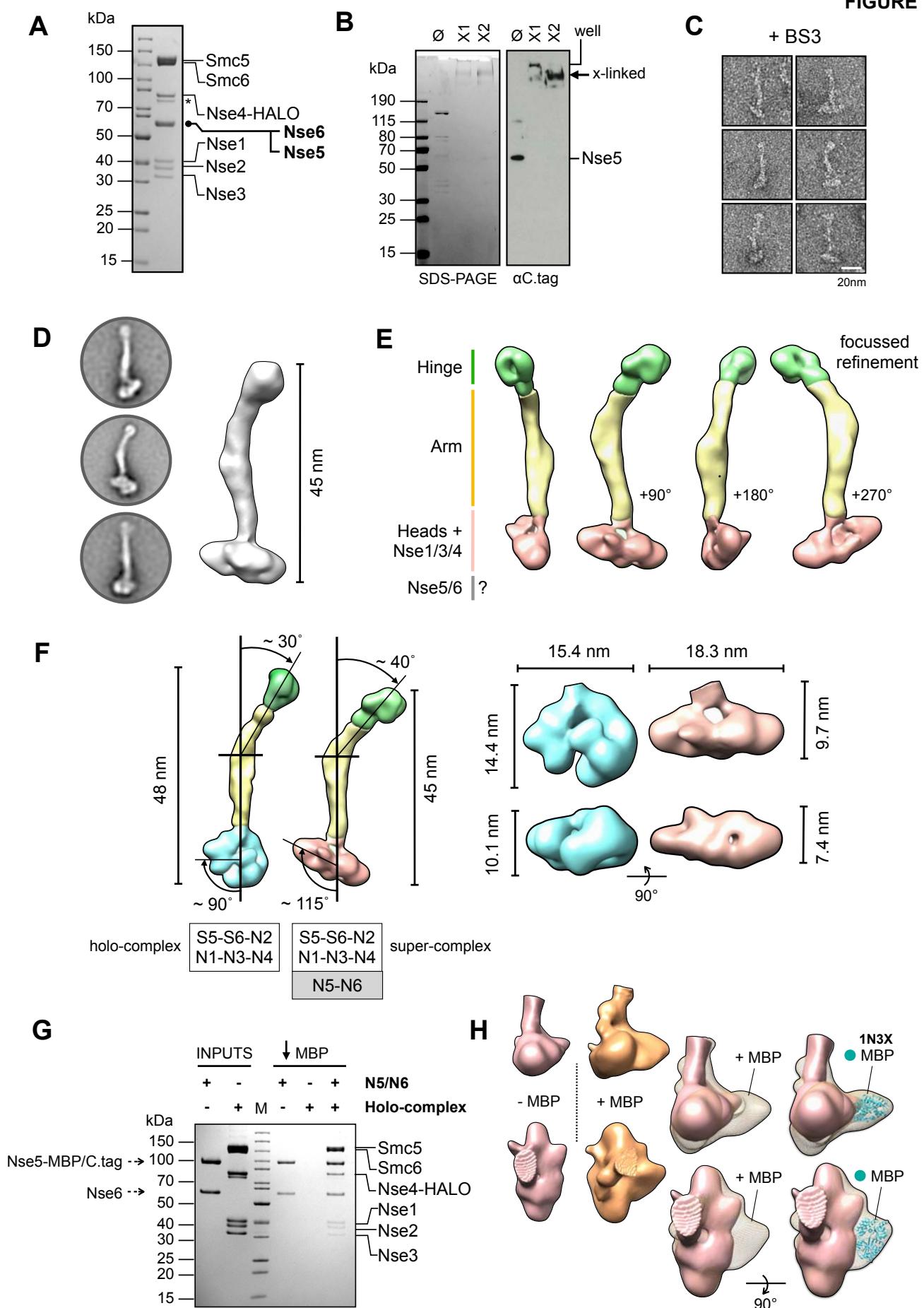
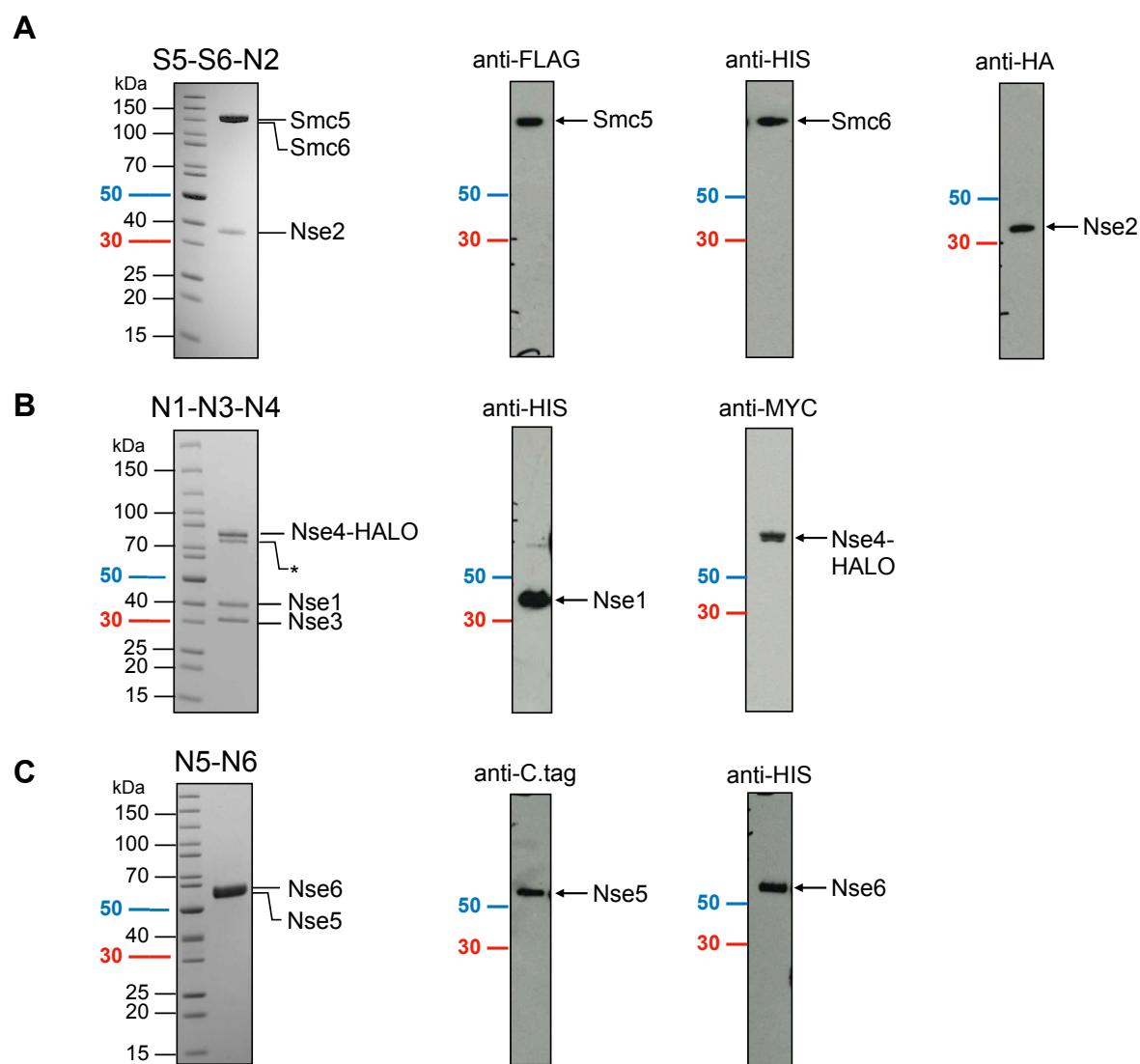

751 Titration of Nse5/6 inhibits the ability of the Smc5/6 holo-complex to turn over ATP, even in the
752 presence of stimulating concentrations of double-stranded DNA (2 and 10 μ M); as shown by
753 experiments carried out in an NADH-coupled regenerative ATPase assay. A plot showing
754 change in absorbance with time (slope) against molar equivalents of Nse5/6 added, reveals that
755 formation of a 1:1 equimolar complex between Nse5/6 and Smc5/6 holo-complex is sufficient to
756 prevent ATP-hydrolysis. Fitted curves are for visualisation purposes only.

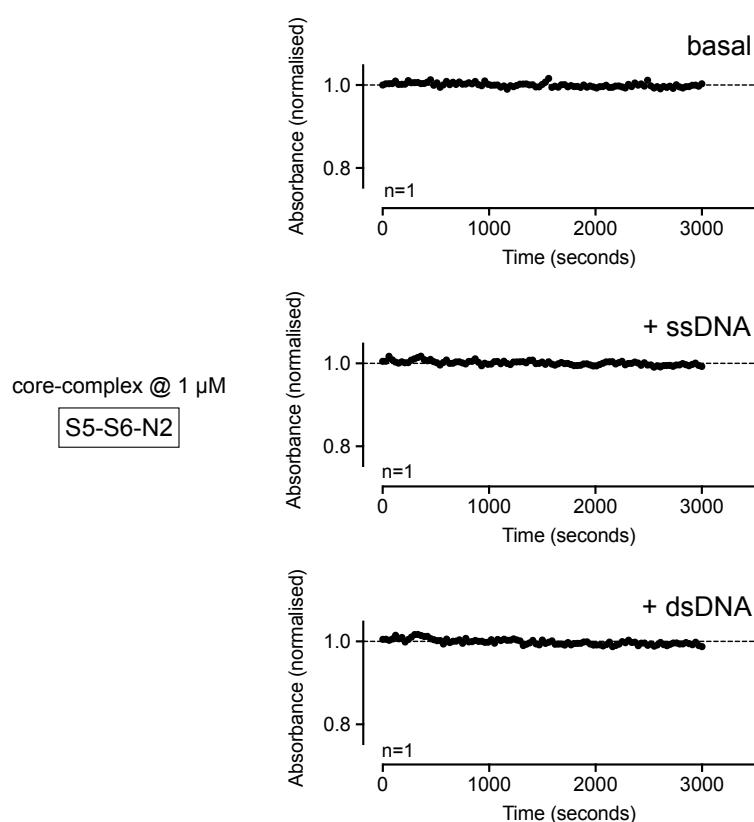
FIGURE 6

757 **Figure 6. Nse5/6 does not perturb the ability of the Smc5/6 holo-complex to bind dsDNA**
758 **(A)** Electrophoretic mobility shift assay (EMSA) showing binding of the Smc5/6 holo-complex to
759 a fluorescently labelled double-stranded DNA hairpin. An initial complex is formed (labelled as
760 'I') which at higher concentrations is then super-shifted into a second, slightly slower migrating
761 complex ('II'). **(B)** Quantification of free and bound species allows a dissociation constant (K_d) of
762 ~ 220 nM to be estimated, with a hill-slope parameter (h) of 3.5. Errors bars represent 1 standard
763 deviation across 3 experimental repeats. 95% CI = confidence interval for value of K_d obtained
764 by least-squares fitting of a binding model to the experimental data. **(C)** The 'core' complex
765 comprised of just Smc5, Smc6 and Nse2 is not able to bind to the dsDNA harpin, as judged by
766 EMSA. At higher concentrations, some aggregated or precipitated fluorescent material can,
767 however, be visualised in the wells of the agarose gel. **(D)** Purified Nse5/6 heterodimer does not
768 bind to the dsDNA hairpin, as judged by EMSA. **(E)** In a competition experiment, increasing
769 concentrations of Nse5/6 were added to a pre-formed complex made between the Smc5/6 holo-
770 complex and the dsDNA hairpin (400 nM, as marked by the five-pointed star in panel A).
771 However, no disruption to the ability of the holo-complex to bind dsDNA was evident. **(F)** The
772 Nse5/6 containing 'super-complex' is still capable of binding to the dsDNA hairpin, as judged by
773 EMSA. Ku70/80 heterodimer is included as a positive control in each experiment. \emptyset marks the
774 migration position of the unbound dsDNA hairpin.


FIGURE 7

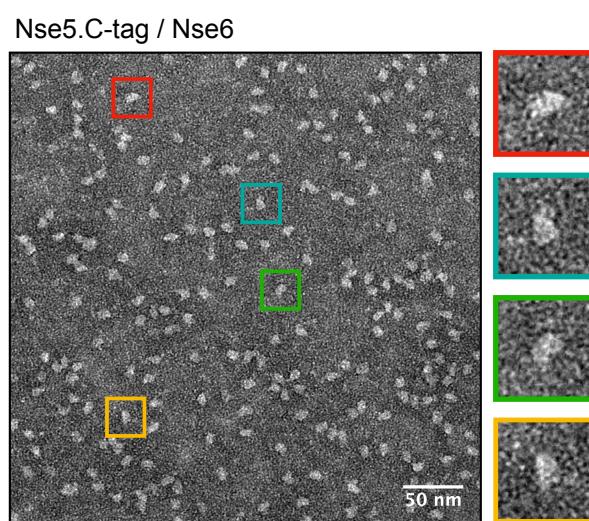
775 **Figure 7. Addition of the NSE5/6 heterodimer to the Smc5/6 holo-complex**

776 (A) Colloidal-blue stained SDS-PAGE gel of the purified Nse5/6-containing ‘super-complex’. (B)
777 SDS-PAGE gel and associated western blot showing the super-complex before and after
778 crosslinking with BS3. Nse5, which carries a C-terminal C.tag epitope is detected by a nanobody
779 coupled to horse-radish peroxidase (α C.tag). \emptyset = uncrosslinked. X1 and X2 = successive elution
780 fractions from a size exclusion chromatography column. (C) Representative images of particles,
781 taken from micrographs of uranyl acetate negative-stained super-complex. (D) Representative
782 2D class averages and initial 3D reconstruction. (E) Segmented 3D reconstruction resulting from
783 focussed refinement strategy (F) Side-by-side comparison of 3D volumes for both the Smc5/6
784 holo-complex and Nse5/6-containing ‘super-complex’. Using a section of the ‘arm’ closest to the
785 ‘head-end’ of the complex to define a vertical axis, allows changes in overall conformation to be
786 described by the indicated angles (G) Colloidal-blue stained SDS-PAGE for a pull-down
787 experiment on amylose chromatography beads, demonstrating that C-terminal fusion of Nse5 to
788 Maltose-binding protein (MBP) does not affect its ability to bind to the holo-complex, in the context
789 of the Nse5/6 heterodimer. (H) Side-by-side comparison of 3D volumes obtained by focussed
790 refinement, for the head-end of super-complexes containing either Nse5-C.tag (coloured pink) or
791 Nse5-MBP/C.tag (orange). The additional protruding lobe of density is consistent the dimensions
792 of the X-ray crystal structure of *E. coli* MBP (PDB ID: 1N3X).


SUPPLEMENTARY FIGURE 1

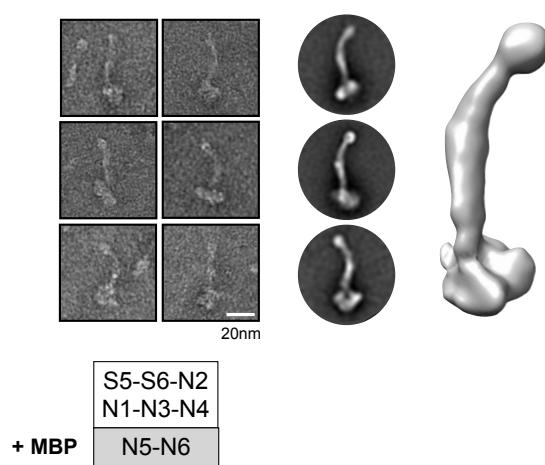
793 **Figure S1. Confirmation of protein identity and migration position on SDS/PAGE gels by**
794 **western blot**

795 Representative colloidal-blue stained SDS-PAGE gel (left) and associated western blots (right)
796 for each of the purified sub-complexes, expressed by the indicated recombinant baculovirus. **(A)**
797 S5-S6-N2. **(B)** N1-N3-N4. **(C)** N5-N6. The epitope recognised by the primary antibody in each
798 western blot is indicated. To aid comparison, the migration position of the 50 (coloured blue) and
799 30 kDa (red) molecular mass markers is also highlighted.


SUPPLEMENTARY FIGURE 2

800 **Figure S2. The Smc5/6 ‘core-complex’ does not turnover ATP**

801 Purified Smc5/6 ‘core’ complex, comprising Smc5, Smc6 and Nse2, does not turn over ATP in a
802 NADH-coupled regenerative ATPase assay, even when tested at a final concentration of 1 μ M
803 (7-fold higher than the data presented in Figure 5B). Addition of either ssDNA or dsDNA still has
804 no stimulatory effect.


SUPPLEMENTARY FIGURE 3

805 **Figure S3. Visualisation of the Nse5/6 heterodimer**

806 Representative micrograph showing particles of purified Nse5/6 heterodimer, negatively stained
807 by uranyl acetate. Selected particles (as indicated by boxes with different coloured borders) are
808 shown at increased magnification on the right-hand side.

SUPPLEMENTARY FIGURE 4

809 **Figure S4. 2D class averages and 3D model of the Smc5/6 ‘super-complex’ containing**
810 **Nse5 fused to MBP**
811 (Left) Representative images of individual particles. (Middle) 2D class averages (Right) Initial 3D
812 reconstruction.