

1 Environmental responsiveness of flowering time in cassava 2 genotypes and associated transcriptome changes

3 Oluwasanya, Deborah N.^{1,2}, Gisel, Andreas.^{2,3}, Stavolone, Livia.^{2,4}, *Setter, Tim L.¹

4

5 ¹Section of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University,
6 Ithaca, NY, USA

7 ²Bioscience Unit, International Institute of Tropical Agriculture, Ibadan, Oyo State, Nigeria

8 ³Institute for Biomedical Technologies, National Research Council (CNR), Bari, Italy

9 ⁴Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy

10

11 ***Correspondence:**

12 Tim L. Setter,

13 tls1@cornell.edu

14

15 **Abstract**

16 Cassava is an important food security crop in tropical regions of the world. Cassava
17 improvement by breeding is limited by its delayed and poor production of flowers, such that
18 cassava flowering under field conditions indirectly lengthens the breeding cycle. By studying
19 genotype and environment interaction under two Nigerian field conditions (Ubiaja and Ibadan)
20 and three controlled temperature conditions (22°C/18°C, 28/24°C and 34/30°C (day/night)), we
21 found that while early flowering genotypes flowered at similar times and rates under all growing
22 conditions (unfavorable and favorable field and controlled-temperature environments), late
23 flowering genotypes were environmentally sensitive such that they were substantially delayed in
24 unfavorable environments. Flowering times of late genotypes approached the flowering time of
25 early flowering genotypes under relatively cool Ubiaja field conditions and in growth chambers
26 at 22°C, whereas warmer temperatures elicited a delaying effect. Analysis of field and controlled
27 temperature transcriptomes in leaves revealed that conditions that promote early flowering in
28 cassava have low expression of the flowering repressor gene TEMPRANILLO 1 (TEM1), before

29 and after flowering, among others. Field transcriptomes showed that the balance between flower
30 promoting and inhibitory signaling, appeared to correlate with flowering time across the
31 environments and genotypes.

32

33 **Key words:** Cool ambient temperature, Cassava flowering, Field transcriptome,
34 TEMPRANILLO 1

35

36 1 Introduction

37 Cassava is a tropical plant originating from the Amazonian region, which is cultivated for
38 its starchy storage roots [1]. It is an important staple food in the tropics and ranks as the fifth
39 most important source of starch in the world [2]. Although it can be propagated asexually, to
40 develop improved cultivars through breeding requires sexual reproduction and associated genetic
41 recombination and selection for genetically superior traits [3]

42 Sexual reproduction in cassava is limited at multiple phenological stages ranging from
43 the transition to flowering to the development of fruits and seeds [4-8]. Flowering time is a very
44 critical factor in cassava's sexual reproduction because it determines the length of the cassava
45 breeding cycle. The development of new cultivars takes eight to ten years [9] due to the
46 difficulty of genetic recombination caused by delayed flowering or no flowering at all [3].
47 Cassava flower development is associated with the development of fork type branches
48 (sympodial branching) and in this paper forking is synonymous to flowering. A more detailed
49 description of cassava's reproductive development has been provided by [7]

50 Flowering induction is regulated by environmental cues (such as temperature and
51 photoperiod) to ensure that flowering occurs under the most optimal conditions for reproductive
52 success [10]. The role of temperature in regulating flowering time is particularly important for
53 cassava that is grown in the tropics where daylengths do not vary significantly throughout the
54 year. In cassava, flowering time is favored by long days and relatively cool (but not
55 vernalization) temperatures [5]. This is in contrast to the model plant *Arabidopsis thaliana*, in
56 which the time to flowering is hastened in warmer ambient temperatures [11], although it also
57 flowers in response to long days (short nights) [12]. The genetic control of flowering time has
58 been well characterized in *A. thaliana* and over 300 genes have been identified by forward and
59 reverse genetics to be involved in flowering time regulation, as documented in the flowering

60 database FLOR-ID [13]. The Flowering Locus T (FT) gene has been shown to be a flowering
61 integrator of multiple flower inductive pathways and is positively correlated with flowering time
62 in most species studied so far [14]. In cassava, as in many other species, the overexpression of
63 the Arabidopsis FT gene and native cassava FT gene has been shown to accelerate flowering
64 time in otherwise very late flowering genotypes [4, 15, 16]. This provides strong evidence for the
65 involvement of FT in regulating also cassava flowering time. In Arabidopsis, warm temperatures
66 are favorable for flower induction and, correspondingly, FT expression is elicited by long days
67 and warmer temperatures [11]. In cassava plants expressing two homologs of FT, MeFT1 and
68 MeFT2 [5], flowering is stimulated by long days, and correspondingly, long days elicit
69 expression of MeFT2 at the end of long days. However, while cool temperatures are favorable to
70 flower induction, increased expression of MeFT1 and MeFT2 in response to cool temperature is
71 not consistent among genotypes, suggesting that other signaling factors, such as inhibitory
72 factors, might be involved [5].

73 Researchers at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
74 had previously identified a field location (Ubiaja, Nigeria) under which flowering occurs earlier
75 and general flower development is enhanced [17, 18], independently of the soil characteristics of
76 the two environments [18]. Consistently with earlier cassava flowering, weather reports show
77 that temperature is generally cooler in Ubiaja.

78 We compared the flowering behaviors of eight genotypes (representing a range of
79 flowering times) under the ‘favourable’ Ubiaja field and the ‘unfavorable’ Ibadan field
80 conditions. In parallel, we studied the effect of temperatures (ranging from 22°C to 34°C) on the
81 flowering times of a subset of these genotypes comprising three genotypes under controlled
82 conditions. Finally, the transcriptome analysis of a selected pair of genotypes before forking and
83 seven days after forking, both in the field and in growth chamber conditions, demonstrated that
84 the expression of a group of flowering-related genes is consistently regulated under favorable
85 and unfavorable flowering conditions.

86 In the face of the world climate change challenges, understanding the molecular basis of
87 flowering time control in cassava is critical to enhance cassava breeding for crop improvement
88 and opens new possibilities to develop strategies and methodologies to allow cassava flowering
89 irrespective of the environmental growth conditions.

90

91 **2 Materials and methods**

92

93 **2.1 Plant Materials and Growing Conditions**

94 **(a) Field Station**

95 Field experiments were conducted from June 2017 to January 2018 at two field stations in
96 Nigeria: Ibadan (7.4° N and 3.9°E, 230 m asl) in Oyo State and Ubiaja (6.6° N and 6.4° E, 221 m
97 asl) in Edo State. Cassava stems of similar lengths (about 20 cm each), were planted
98 simultaneously in June 2017 at both locations so ages of plants were identical. Eight genotypes
99 were selected from the IITA diversity population named the Genetic Gain Population. These
100 genotypes were selected based on previous information about their flowering times. Three
101 categories were selected for our study, namely (i) early flowering (< 60 days after planting
102 [DAP]), represented by IITA-TMS-IBA010615 and IITA-TMS-IBA020516, (ii) middle (60 – 99
103 DAP), represented by IITA-TMS-IBA030275, IITA-TMS-IBA010085, and IITA-TMS-
104 IBA980002, and (iii) late (> 100 DAP), represented by IITA-TMS-IBA8902195, IITA-TMS-
105 IBA000350, and TMEB419. They are available from the IITA germplasm bank (Ibadan, Nigeria;
106 accession list: https://www.cassavabase.org/accession_usage). In this manuscript, these
107 genotypes will be referred to as '615, '516, '275, '085, '0002, '2195, '350, and '419,
108 respectively.

109 Plants in each location were grown in a randomized block design consisting of 6 blocks each
110 with the eight genotypes randomly assigned as plots. Each plot contained 8 plants grown in a 2x4
111 matrix at 1m x 1m spacing.

112 **(b) Growth Chamber**

113 One early genotype - IITA-TMS-IBA020516 and two late genotypes - IITA-TMS-IBA8902195
114 and IITA-TMS-IBA000350, were grown in tissue culture at the Genetic Resources Center,
115 International Institute of Tropical Agriculture, Nigeria. Plantlets were screened to ensure absence
116 of infection and other appropriate phytosanitary conditions. Tissue culture plants were shipped to

117 Cornell University, Ithaca, NY, USA and were transplanted to soil and grown several months to
118 form plants with stems >15 mm diameter. Stakes of about 15 cm length were cut from the stems
119 of established plants and used as propagules for experiments. Plants were grown in three growth
120 chambers set at 22°C/18°C, 28°C/24°C, and 34°C/30°C, day/ night temperatures, respectively.
121 Photoperiod was held constant at 12 h light and 12 h dark. Plants were completely randomized
122 in each growth chamber. Each chamber had two replicates of each genotype. Two independent
123 batches of this experiment were carried out. Growth chambers were Conviron Controlled
124 Environments, Ltd (Winnipeg, Manitoba, Canada) model PGW 36 walk-in growth rooms (135 X
125 245 X 180 cm [ht.]) with ten 400 W high pressure sodium and ten 400 W metal halide lamps
126 providing 600 μmol photons (400-700 nm) $\text{m}^{-2} \text{ s}^{-1}$. Root-zone potting mix and fertilization were
127 as previously described [5].

128

129 **2.2 Data collection**

130 At Ubiaja and Ibadan, daily temperature and rainfall were collected by temperature loggers,
131 Onset ® HOBO Pendant (<https://www.onsetcomp.com/products/data-loggers/mx2202> , Bourne,
132 MA, USA) placed in ventilated reflective shelters [19] at 1.1 m height and by an automated self-
133 emptying rain gauge – RainWise ® (<https://rainwise.com/rainlogger-complete-system> , Trenton,
134 ME, USA). Flowering time was recorded as the time (DAP) of appearance of the first
135 reproductive branching (forking). Number of nodes was counted from the soil surface to first
136 fork on each plant. Plant height, whole plant fresh weight, storage root fresh weight and number
137 of storage roots were recorded at 7 months after planting on the field and growth chamber. Data
138 was collected using Field Book software application [20]

139

140 **2.3 Statistical Analyses**

141 Field Data was modelled using a linear mixed model while growth chamber data was modelled
142 using a simple linear model. In the field study, locations and genotypes were fixed effects, while
143 blocks were random effects. In the growth chamber study, temperature (T), genotype (G), and T
144 \times G interaction were the modelled sources of variation. Both models were tested by analysis of
145 variance. Flowering time and fraction of plants flowered were subjected to survival analysis
146 using the Kaplan-Meier's curve [21]. Multiple means comparison was conducted in the emmeans
147 package [22] using the Tukey-HSD method. All analyses were conducted in R [23].

148

149 **2.4 Transcriptomic Analysis**

150 Genotypes '0002 and '419 were selected for field transcriptomics while genotypes '516,
151 '350, '2195 were selected for controlled temperature transcriptomics. These genotypes
152 represented the range of early and late flowering lines with varying degrees of environmental
153 responsiveness. Leaf tissue samples were collected from the youngest fully expanded leaf on
154 each plant. Three and five biological replicates were collected from field and growth chamber
155 plants, respectively. The field samples were collected at 21 DAP (preforking) and 7d post
156 forking (relative to genotype development). In the growth chamber, samples were collected at 47
157 and 96 DAP. Samples were obtained in the late afternoon (Ubiaja and Ibadan) or within 1.5 h of
158 the end-of-light period (growth chambers) and immediately placed in porous polyester tea bags
159 and immersed in liquid N₂ to freeze and for storage.

160

161 Total RNA was extracted from each sample by a modified CTAB protocol. For field samples
162 about 0.2g of frozen leaf tissue were ground with mortar and pestle after which it was transferred
163 to 1.5ml Eppendorf tubes to which 1 mL of preheated (65°C) CTAB extraction buffer was added
164 (Buffer comprised of 2% [w/v] CTAB detergent, autoclaved 0.1M Tris-HCl pH 8, 20mM EDTA,
165 1.4M NaCl and 2% PVP, with pH adjusted to 8.0). Samples were warmed at 65°C for 15 mins
166 with vortexing at 5-minute interval after which they were centrifuged at maximum speed for 5
167 minutes. To 1 mL of supernatant in a fresh Eppendorf tube, 1 mL of chloroform Isoamyl alcohol
168 (24:1) was added, vortexed and centrifuged for 10 min. Supernatant was collected in a clean
169 Eppendorf tube to which cold 2-propanol was added (0.6 volume of supernatant) and mixed by
170 inverting gently. Samples were centrifuged for 10 min at maximum speed to collect pellets
171 which were washed in 70% ethanol and air dried. Pellets were redissolved in RNase free water,
172 treated with DNase I and cleaned with RNA Clean and Concentrator (Zymogen). RNA quality
173 was determined by gel electrophoresis and RNA was bound to matrix in RNAsatable® and
174 shipped to Cornell University, Ithaca, NY. RNase free water was added to RNAsatable® to
175 recover RNA for downstream assay. Growth chamber samples were ground to a fine powder in a
176 mortar and pestle chilled with liquid N₂; about 0.5 g of the powder was vigorously mixed for 5
177 min with 1 mL of CTAB extraction buffer; 0.2 mL of chloroform was added and mixed for 15 s,
178 tubes were centrifuged at 14,000 g for 10 min and the top layer was removed to a new tube. To

179 these samples was added 700 μ L of Guanidine Buffer (4M guanidine thiocyanate, 10 mM
180 MOPS, pH 6.7) and 500 μ L of ethanol (100%). This mixture was applied to a silica RNA
181 column (RNA mini spin column, Epoch Life Science, Missouri City, TX, USA), then alternately
182 centrifuged and washed with 750 μ L of 1) Tris-ethanol buffer (10 mM Tris-HCl [pH 7.6], 1 mM
183 EDTA, containing 80% [v/v] ethanol), 2) 80% ethanol (twice), and 3) 15 μ L RNAase-free water
184 (to elute the RNA). The RNA quality of field and growth chamber samples were evaluated for
185 quality with a gel system (TapeStation 2200, Agilent Technologies, Santa Clara, CA, USA).
186 Other downstream assays were same for both field and growth chamber samples.

187 cDNA libraries were prepared using the Lexogen Quantseq FWD kit [24] and DNA was
188 sequenced by the 3' RNASeq method [25] using an Illumina NextSeq500 sequencer at the
189 Genomics Facility, Cornell Institute for Biotechnology. Software was used to remove Illumina
190 adapters, poly-A tails, poly-G stretches [26]. The trimmed reads were aligned to the *Manihot*
191 *esculenta* genome assembly 520_v7 using the STAR aligner (version 2.7.0f) [27].

192 Differential Gene expression analysis was conducted using the DESeq2 package by
193 Bioconductor [28]. Each transcript was annotated by the best match between *Manihot esculenta*
194 genome v7 and the *Arabidopsis* genome as presented at Phytozome13 [29].

195 Gene ontology and enrichment analysis were carried out using the ShinyGO app
196 (<http://bioinformatics.sdstate.edu/go/>) [30]. A combined list of *Arabidopsis* flowering genes were
197 obtained from the Max Planck Institute (<https://www.mpiipz.mpg.de/14637/>
198 *Arabidopsis_flowering_genes*) and Flowering Interactive Database (FLOR-ID)
199 (<http://www.phytosystems.ulg.ac.be/florid/>) [31] and a list of hormone signaling genes sourced
200 through the Database for Annotation, Visualization and Integrated Discovery (DAVID)
201 (<https://david.ncifcrf.gov/>) [32] were used to examine the expression profiles of flowering and
202 hormone signaling genes.

203

204 **3 Results**

205

206 **3.1 Field Experiment**

207 **3.1.1 Weather**

208 Weather data collected from field sites in Ibadan and Ubiaja are shown in Figure 1. Cumulative
209 rainfall at the two sites were similar in the first month, then diverged for the next two months
210 with Ubiaja receiving more rainfall than Ibadan (Figure 1a). Day-time temperatures, as indicated
211 by daily maxima, were generally cooler in Ubiaja than Ibadan with the largest temperature
212 difference in the shaded and ventilated shelters housing the weather instrumentation did not
213 exceed 3°C (Figure 1b). Nighttime temperatures were essentially the same at the two sites.

214

215 **3.1.2 Vegetative growth patterns under field environments of Ibadan and Ubiaja**

216 Survival of plants generally differed between field environments (Figure 2a). For all eight
217 genotypes, plants grown in Ibadan were between 80 and 130% taller than plants grown in Ubiaja
218 (Figure 2b). The partitioning index (i.e. storage root weight/total plant weight on a fresh weight
219 basis) was significantly higher in Ubiaja than Ibadan, differing by at least 15% between locations
220 (Figure 2c). The lower partitioning index in Ibadan was due to substantially greater above
221 ground fresh weight (about double) than in Ubiaja (Figure S1a). Storage root fresh weight tended
222 to also be greater in Ibadan with some genotypes having as much as 90% higher storage root
223 fresh weight (Figure S1b). Similarly, storage root numbers were significantly higher for all
224 genotypes in Ibadan relative to Ubiaja (Figure 2d). On average across all genotypes, there was
225 1.7-fold more storage roots in Ibadan than Ubiaja. This increase was similar to the 2-fold higher
226 above-ground fresh weight in Ibadan relative to Ubiaja (Figure 2a). The pattern of vegetative
227 growth between both field locations shows that plants were generally larger and more vigorous
228 in Ibadan.

229

230 **3.1.3 Flowering phenotype under field environments of Ibadan and Ubiaja**

231 Using the flowering time in plants that attained flowering within experimental period (i.e.,
232 observed flowering time) or age of plants surviving to the end of experiment that did not flower,
233 we plotted Kaplan Meier curves showing the probability of flowering (or the decline in the
234 probability of not flowering) as a function of time (Figure 3a). Genotypes differed in their
235 flowering response between the two locations. Genotypes '2195, '085, and '419 tended to be
236 earlier in Ubiaja. For some genotypes ('0002, '615, and '275), rates of progress in flowering

237 with time were nearly identical between locations. In Ibadan, in most of the lines almost all the
238 plants eventually flowered; however, in Ubiaja for '0002, '275, '350 and '419 between 10 and
239 15% of the lines failed to flower during the period of observation (up to 200 dap) (Figure 3a).
240 This phenomenon resulted in cross overs of the flowering curves late in the season (Figure 3a).
241 Genotypes '516 and '350 were unique because flowering was slightly (but not significantly)
242 delayed in Ubiaja by chronological age (DAP). To provide another measure of the
243 developmental time until flowering, we counted the number of nodes from the soil surface to the
244 flowering fork. There were large differences in the number of nodes for genotypes '350, '2195,
245 '085, and '419 and smaller differences in genotypes '0002, '615, and '275 (Figure 3b). In both
246 cases plants in Ibadan had more nodes, indicating later flowering. The number of nodes to
247 flowering were not significantly different between locations in genotype '516 (Figure 3c). In
248 Ubiaja, the number of nodes to flowering were relatively similar in all lines (early and late lines
249 averaged 16 and 19 nodes, respectively). In contrast, genotypes differed substantially in Ibadan,
250 (early and late lines flowered averaged 18 and 35 nodes, respectively). It is noteworthy that these
251 flowering differences in genotypic response to environment were not correlated with the
252 differences in shoot or root growth, or partitioning index in Ubiaja and Ibadan (Figure 2c),
253 showing that across this set of genotypes, flowering was not closely related to resource
254 availability, vegetative growth, or partitioning.

255

256 **3.2 Controlled temperature experiment**

257 Given that one of the environmental differences between the field locations was temperature,
258 especially day-time temperature, we tested a set of genotypes for their flowering response to
259 three temperatures in growth chambers. The genotypes selected for this experiment represented
260 the range of response: '350 and '2195, which developed many more nodes in Ibadan than Ubiaja
261 before flowering, and '516, which flowered after approximately the same number of nodes in
262 both environments. In the growth chamber, there was a 100% survival for genotypes.

263

264 **3.2.1 Vegetative growth patterns under controlled temperatures**

265 In all three genotypes, plant height increased substantially with temperature from 22°C to 34°C
266 (Figure 4a). There were no differences in the partitioning index at all temperatures for genotype
267 '350 (similar to field observation (Figure 2c)), none for genotypes '516 and '2195 between 22°C

268 and 28°C, but a significant reduction between 28°C and 34°C (Figure 4b). In addition, the
269 partitioning index was significantly reduced in genotype '2195 between 22°C and 34°C. Overall,
270 the partitioning index tended to be highest at 28°C. This observation in partitioning index arose
271 from the above ground fresh weight being less responsive to temperatures (Figure S2a); while
272 storage root fresh weight increased between 22°C and 28°C; and either plateaued or declined
273 between 28°C and 34°C (Figure S2b). Warmer temperatures in the growth chamber tended to
274 decrease the number of storage roots per plant, especially between 22°C and 34°C where effect
275 was significant ($P \leq 0.05$) for '516 and '350 (Figure 4c).

276

277 **3.2.2 Flowering phenotype under controlled temperatures**

278 In the growth chamber we modelled the probability of flowering (or the decline in the probability
279 of not flowering) as a function of time using the Kaplan Meier method, from the observed
280 flowering time (where flowering occurred within the duration of experiment) or the maximum
281 duration of experiment for plants that did not attain flowering (Figure 5a). At 22°C, all genotypes
282 attained 100% of the plants flowering. In contrast, at warmer temperatures (28 and 34°C) only
283 genotype '516 attained 100% flowering, and its flowering was only slightly delayed at 28°C
284 (Figure 5a). In contrast to the other two genotypes, '516 had little response to the delaying effect
285 of warmer temperatures. Genotypes '350 and '2195, however, flowered poorly at warmer
286 temperatures – flowering was completely absent at 34°C, while flowering was between 20 and
287 30% at 28°C within the period of experiment (Figure 5a). Data on the number of nodes to
288 forking, an alternative measure of developmental timing, confirmed the genotypic differences in
289 temperature responsiveness. The number of nodes to forking in '516 did not differ statistically
290 ($P \leq 0.05$) amongst temperatures (Figure 5b), confirming this genotype's insensitivity to a
291 delaying effect by warm temperatures. This finding was analogous to '516's insensitivity of
292 number of nodes to fork among the different environments of Ibadan and Ubiaja (Figure 3b). In
293 contrast, using nodes to fork (or maximum number of nodes countable) as an index of
294 development, flowering in '350 and '2195 was substantially delayed at warmer temperatures.
295 These genotypes flowered after significantly ($P \leq 0.01$) fewer nodes at 22°C than at 28°C and
296 34°C where flowering was partial or completely absent (Figure 5b).

297

298 **3.3 Transcriptomics**

299 Transcriptomes were analyzed in mature leaves of plants from our two studies (Field
300 Environments and Growth Chamber) with respect to the following variables: 1) Environment
301 (Ubiaja versus Ibadan in the field study; three temperatures in the growth chamber study); 2)
302 Stage of plant development relative to flowering, where the early stage was before flowering and
303 the later stage was post flower appearance, and 3) Genotype, where lines were chosen to
304 represent a range of environmental responsiveness and earliness of flowering. Samples with
305 fewer than 150,000 demultiplexed reads (were excluded from the gene counting analysis. For the
306 remaining samples, Illumina adapters, Poly-A tails and poly-G stretches were removed. Reads
307 with at least 18 bases in length after trimming were kept.

308

309

310 **3.3.1 Field Transcriptome**

311 Under field conditions, in mature leaves for the combined genotypes and sampling dates, 1074
312 genes were differentially expressed between the two locations with Ibadan as reference. At 5%
313 FDR, 390 genes had higher expression in Ubiaja while 684 genes had lower expression in Ubiaja
314 (Figure 6). Enrichment analysis indicated that the categories of genes that were significantly
315 overrepresented among the genes that had higher expression in Ibadan than Ubiaja were several
316 that relate to abiotic environmental stress, including “Response to abiotic stimulus” (85 genes,
317 $p=8.97e-7$), “Response to abscisic acid” (29 genes, $p=1.81e-3$), and “Response to ethylene” (25
318 genes, $5.74e-7$).

319 **Flowering time genes**

320 Although the leaf transcriptome in this study is likely to have numerous differentially
321 expressed genes among the tested environments for factors that relate to leaf stress,
322 photosynthesis and metabolic processes, we focused our analysis on genes related to flowering
323 and related signaling. From a list of 240 flowering time genes (see Materials and Methods), nine
324 flowering time genes were differentially expressed in the field transcriptome (Figure 7a). These
325 genes generally showed location sensitivity and had similar expression profiles at the postforking
326 stage (Figure 7a).

327

328 **Hormone signaling genes**

329 From a list of 160 select hormone signaling genes spread across eight plant hormones
330 (see Materials and Methods), 10 hormone signaling genes were differentially expressed in the
331 field transcriptome (Figure 7b). These genes were involved in abscisic acid (4 genes: PYR1,
332 PYL6, SNRK2-8, ABF3), auxin (2 genes: IAA9, LAX3), cytokinin (CYCD3), ethylene (ETR2),
333 jasmonic acid (JAS1) and brassinosteroid signaling (BRI1).

334

335 **3.3.2 Controlled temperature Transcriptome**

336 Our analysis of weather in Ubiaja and Ibadan indicated that day-time temperature Ubiaja
337 was cooler than Ibadan (Figure 1). We hypothesized that the cooler temperatures might be a
338 factor influencing earlier flowering in Ubiaja, and that the genotypic differences in flowering
339 (Figure 5) would relate to their transcriptomes. Under controlled conditions with 22°C as
340 reference, 7253 genes were differentially expressed (5% FDR) in response to the three
341 temperatures studied. 3940 had higher expression and 3313 lower expression at warmer
342 temperatures of 28 and 34°C at a 5% FDR (Figure 8). Notably enriched among genes with
343 higher expression at 28 and/or 34°C were stress responsive processes ($p = 1.2 \text{ e-17}$) similar to
344 Ibadan.

345

346 **Flowering time genes**

347 Ninety-six known flowering time genes were differentially expressed under controlled
348 temperature, split nearly evenly between positive and negative effectors, 49 and 47 genes
349 respectively (Figure 9a,b). The flowering enhancing genes (based on characterization in
350 *Arabidopsis*) GA2ox1, SPL3, LNK1, PRR8, PGM1, FUL, ADG1 and LNK2 had higher
351 expression at 22°C than at warmer temperatures (28°C and 34°C) for both timepoints (47 and 96
352 dap) (Figure 9a). Most genes known to negatively influence flowering time in *Arabidopsis* had
353 lower expression at 22°C than at warmer temperatures. Some of these genes had higher
354 expression under 22°C (Figure 9b).

355

356 **Hormone signaling genes**

357 Most hormone signaling genes (from a selected list, see Materials and Methods) differentially
358 expressed under controlled temperature had lower expression at 22°C and higher expression at
359 warmer temperatures (Figure 10). Just like in the field experiment, several abscisic acid (OST1,

360 ABI1, SNRK2-8, AREB3) and auxin (SAUR-like, IAA16, ARF7, IAA30, IAA29, GH3.9)
361 related genes were differentially expressed. In addition, other hormone signaling involve in stress
362 like jasmonic acid signaling genes (JAS1, JAZ12), GA receptor (GID1C), bzip transcription
363 factors involved in multiple hormone signaling pathways (TGA1,PAN), and translation
364 terminator ERF1-3 were differentially expressed. Also, the negative regulator of ethylene stress-
365 hormone pathway, ethylene receptor ETR2, had higher expression at 22°C. Cytokinin signaling
366 was regulated in the direction of suppressed signaling at 22°C: the cytokinin receptor AHK2 and
367 A-type response regulators (ARR8 and ARR9), which function as negative regulators of
368 cytokinin signaling, had higher expression levels at 22°C, whereas B-type cytokinin response
369 regulators (ARR12 and ARR2) mediating cytokinin positive effects had lower expression levels
370 at 22°C.

371

372 **3.4 Comparison of overlapping flowering time and hormone signaling DEGs under field
373 and controlled temperature conditions.**

374 We compared the expression profiles of flowering and hormone signaling genes that were
375 differentially expressed under both field and controlled temperatures

376

377 Four flowering time genes, TEMPRANILLO1 (TEM1), ULTRAPETALA1 (ULT1),
378 PHYTOCHROME E (PHYE) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), were
379 differentially expressed ($P < 0.05$) under both field and controlled temperature conditions (Figure
380 11a,b. TEM1, however, had the most consistent expression profile under field and controlled
381 temperature conditions. In the Ubiaja field and at 22°C, TEM1 had the lowest expression levels
382 for all genotypes and irrespective of timepoint. In the Ibadan field, TEM1 expression levels were
383 highest pre-forking and declined post-forking whereas at 28 and 34°C, expression levels were
384 generally high compared with the cooler 22°C.

385

386 Three hormone signaling genes, SNRK2-8, ETR2, and JAS1, were differentially expressed under
387 both field and controlled temperature conditions. JAS1 had the most consistent pattern of
388 expression between the field and controlled temperatures. In the Ubiaja field and at 22°C, its
389 expression levels were generally lower than in the Ibadan field and at warmer temperatures
390 (Figure 11c,d). The expression patterns for SNRK2-8 and ETR2 were not consistent between

391 field and controlled temperature given observed flowering time. SNRK2-8 generally had higher
392 expression in Ubiaja, than in Ibadan whereas under controlled temperatures, expression levels
393 were generally lowest at 22°C. ETR2 on the other hand generally had lower expression in the
394 Ubiaja than Ibadan while at controlled temperatures its expression levels were generally higher
395 at 22°C than at warmer temperatures (Figure 11c,d).

396

397 **4 Discussion**

398

399 **Vegetative growth showed complexity between field and controlled temperatures**

400 The current study and previously published work have indicated that flowering is earlier and
401 flower production is better in Ubiaja than Ibadan [17, 18, 33, 34]. One goal of the present study
402 was to provide insight on the underlying basis of this difference. Plant growth was generally
403 more vigorous in Ibadan than Ubiaja (as evidenced by plant height, shoot weight and storage root
404 numbers). However the partitioning index, showing shoot weight per plant total weight was
405 higher in Ubiaja, suggesting more resource focused on storage root development (Figure 2).
406 Under controlled temperatures, plant vegetative growth response was not linear as observed on
407 the field. Plant height increased with increase in temperature, storage root numbers tended to be
408 higher at 140oler temperatures and partitioning index tended to be highest at the intermediate
409 temperature (28°C) (Figure 4). Although the temperatures in Ibadan were somewhat warmer than
410 in Ubiaja (Figure 1), the comparison of field and controlled temperature plant growth indicate
411 that temperature alone does not explain the differences between vegetative growth in the Ibadan
412 and Ubiaja field environments. An earlier study by [18] indicated that the percent nitrogen
413 content in Ubiaja soil (0.131) was lower than that in Ibadan soil (0.167). It is known that nitrogen
414 limitation induces plants to invest in root development at the expense of shoots [35] and this is in
415 line with a higher partitioning index in Ubiaja (storage root weight/whole plant weight). A
416 possible hypothesis for the earlier flowering in Ubiaja is that the environment in Ubiaja might
417 suppress vegetative growth and as a consequence provide better photosynthate supply flower
418 development. Shoot growth was indeed smallest in Ubiaja and at 22°C (temperature with earliest
419 flowering). The complex relationship between root growth and temperature however challenges
420 this hypothesis. Water status (Rainfall) and differing soil nitrogen levels under field conditions
421 were interacting factors not accounted in controlled temperature study. [36] showed that in

422 cassava root partitioning index was not significantly affected by water limitation; unless water
423 limitation was prolonged to the point of remobilization from stem and root storage reserves [37].
424 This was contrary to the root partitioning observed in Ubiaja as it received more rainfall.
425 Previously [18] suggested that the difference in soil type or fertility did not explain the
426 considerably better flowering in Ubiaja. The effect of the interaction between temperature, water
427 status and soil nutrient on cassava flowering time should be investigated.

428

429 **Early flowering genotypes were relatively insensitive to the environment while in late
430 flowering genotypes, the Ibadan environment and warmer temperatures had a delaying
431 effect**

432 Genotypes such as '0002, '275, '615 and '516 flowered early and had fewer nodes to forking
433 (about 18 or less under field conditions or about 30 or less under controlled temperatures). The
434 number of nodes to forking was independent of plant height (Figures 2 - 5). The flowering rates
435 were similar for these genotypes in Ubiaja and Ibadan fields with a 0.5 probability corresponding
436 to a chronological age of about 60 to 70 dap. Similarly, under controlled environments with day-
437 time temperatures between 22 and 34°C, the 0.5 flowering probability was also about 70 dap in
438 '516.

439 Genotypes such as '350, '2195, '085 and '419 showed very large responses to the environment
440 with respect to their flowering time and were especially late in the Ibadan field and at warmer
441 temperatures. They had significantly more nodes to forking in Ibadan and higher probability of
442 not flowering when grown at warmer temperatures (28°C and 34°C), compared to the Ubiaja
443 field and at the cooler 22°C. In Ubiaja or at 22°C, the number of nodes to flowering in late-
444 flowering lines were reduced to values approaching those of early flowering genotypes under
445 those conditions (Figures 3, 5).

446 A meta-analysis of flowering time data on of over 700 genotypes in grown at Ubiaja and Ibadan
447 [33] showed that modal flowering time in both locations was also between 60 and 70 dap (Figure
448 S2). It is therefore likely that the flowering times of early genotypes represent the minimal or
449 most probable flowering time of cassava in the absence of environmental conditions such as
450 warmer temperatures that induce regulatory systems which delay flowering. Our studies indicate
451 that later genotypes primarily differ from early ones in the extent to which their flowering is
452 delayed in unfavorable environments, i.e. Ibadan and warm growth chambers.

453

454 The overexpression of *Arabidopsis* FT in cassava [4, 16] and of a native FT gene in cassava [15]
455 resulted in significantly earlier flowering in late cassava genotypes. These early flowering
456 phenotypes were accompanied by significantly reduced number of nodes to forking [4, 15], thus
457 confirming that earliness is associated with a reduction number of nodes to fork type branching.
458 Furthermore, [5] showed that the late-flowering genotype '419 initiates flowers at 22°C but not
459 at warmer temperatures, which is in agreement with the current findings.

460

461 Several members of the Euphorbiaceae family, to which cassava belongs, are known to flower
462 more readily at moderately cool temperatures than at warmer temperatures, including rubber tree
463 (*Hevea brasiliensis*) [38] poinsettia (*Euphorbia pulcherrima*) [39], and leafy spurge (*Euphorbia*
464 *esula*) [40]. Other tropical perennials are also known to be induced to flower by cool ambient
465 temperature, notably Lychee (*Litchi chinensis*) and Mango (*Mangifera indica*). In Lychee, warm
466 temperatures stimulate vegetative growth while cool temperatures of 20°C or less promote
467 reproductive growth [41, 42]. In mango, cool temperatures of 15°C stimulated flowering [43].
468 Furthermore, in mango, water stress at cool temperatures causes profuse flowering but water
469 stress under warm temperatures did not induce flowers [43]. This stimulation of flower induction
470 by cool temperature in the tropics has been suggested to be related to the drop in temperature
471 preceding the onset of rains, thus serving as an environmental cue [44].

472

473 **Flowering repressors are highly expressed in Ibadan before forking**

474 The current study determined the transcriptome of expressed genes in recently matured leaves of
475 the Ibadan-Ubiaja field experiment, and of the temperature comparison in the growth chamber
476 experiment. In the favorable-flowering Ubiaja environment, cassava homologues of known
477 *Arabidopsis* flowering repressors, including GIBBERELLIC ACID 2 OXIDASE 1 (GA2ox1),
478 GIBBERELLIC ACID 2 OXIDASE 8 (GA2ox8), TEMPRANILLO 1 (TEM1) and
479 PHYTOCHROME E (PHYE) [13] generally had low expression levels before and after forking.
480 In contrast, these genes were highly expressed in poor-flowering Ibadan environment before
481 forking, but their expression declined after forking. On the other hand, a cassava homolog
482 Flowering Locus T (MeFT1), was generally expressed at higher levels before in Ubiaja than
483 Ibadan. [5] first established that MeFT1 expression was related to flowering tendency as it was

484 expressed at higher levels in '0002 (early genotype) than in '419 (late genotype) while the over
485 expression studies of MeFT1 by [15] further confirmed its florigenic properties. The role of FT
486 as a mobile long distance signaling peptide that moves from leaf to shoot apical meristem to
487 induce flowering has long been established in *Arabidopsis* [14, 45]. The current expression
488 profiles are sensible for the earlier flowering times in Ubiaja relative to Ibadan (Figure 3) as it
489 corresponds with the continuously low expression of flowering time repressors and relatively
490 higher expression of a florigen at both developmental stages studied.

491 In Ibadan, the expression profiles of flowering repressor genes correlated well with
492 developmental stage but the florigen generally had low expression at all timepoints. In this case
493 flowering may be promoted by obtaining an optimal ratio between flowering enhancers and
494 repressors rather than only an increased expression of enhancers. This observation is in line with
495 a previously described model in tomatoes, in which flowering, and plant architecture is
496 determined by the local balance of florigenic and anti-florigenic signals in respective organs [46,
497 47].

498

499 **Expression of some cassava homologues of flowering time genes correlates with
500 temperature rather than flowering response.**

501 Under both field and controlled temperature conditions, some floral regulatory genes were
502 expressed in a direction contrary to what was expected for their role in flowering (Figure 7,
503 Figure 9). Some flowering repressors had higher expression levels in Ubiaja and at 22°C, which
504 are conditions at which cassava flowering is earlier e.g., CONSTITUTIVE
505 PHOTOMORPHOGENIC 1 (COP1). Some flowering enhancers had higher expression levels in
506 Ibadan and at warmer temperatures which had a delaying effect on cassava flowering time. It is
507 notable that a majority of the known flowering time genes were assigned a positive or negative
508 role based on the flowering time phenotype of *Arabidopsis* mutants. While both *Arabidopsis* and
509 cassava are long day plants [5, 12], *Arabidopsis* flowers earlier at warm ambient temperatures
510 [48] while cassava flowers earlier at cooler temperatures [5].

511 As an example, both LHY and COP1 have been defined as flowering repressors in *Arabidopsis*.
512 [49, 50]. But these genes are known to be involved in plant temperature sensing and
513 thermomorphogenesis [51, 52]. The distinct temperature response profiles of these genes which

514 did not correlate with flowering response may reflect their activity cassava's perception of the
515 environment.

516

517 **Expression profiles of hormone signaling genes responds to plant growth environments.**

518 Several Abscisic Acid signaling genes were modulated in response to field environments and
519 controlled temperatures, genotypes and developmental stages. The SNRK2-8 in particular was
520 differentially expressed under both field and controlled temperatures but the pattern of
521 expression was however very complex. SNRK2-8 had higher expression levels in Ubiaja,
522 compared to Ibadan and lower expression levels at 22°C compared to warmer temperatures 28
523 and 34°C (Figure 11). SNRK2-8 phosphorylates and thus activates other ABA response genes
524 [53, 54]. Apart from Abscisic acid signaling, other hormone genes were modulated but notable is
525 the Ethylene receptor ETR1 and Jasmonic signalling JAS1. Like SNRK2-8, ETR1 showed a
526 complex expression pattern between field and controlled temperatures. The expression pattern of
527 JAS1 was the most consistent between field and controlled temperatures. These complex
528 expression profiles possibly reflect plant adaptation to growth environment as needed.

529

530 **Flowering phenotype correlates with TEM1 expression under field and controlled
531 temperature conditions.**

532 Flowering time genes, TEM1 (the *Arabidopsis* homologue specifically on chromosome 6 in
533 cassava), and COP1 had the most similar expression patterns between field and controlled
534 temperatures environments (Figure 11). The TEM1 expression pattern, however, was most
535 correlated with observed flowering times under all environmental conditions. Flowering
536 repressor TEM1 had low expression levels under all conditions in which cassava flowering is
537 earlier for all genotypes (i.e. Ubiaja environment and 22°C) (Figure 3 and 5). This low
538 expression was observed early in plant life (before forking in the field and at 47d in the growth
539 chamber) and was maintained even after forking on the field or at 96d in the growth chamber
540 (when at least 70% of all genotypes had forked). In *Arabidopsis*, TEM1 has a role in regulating
541 juvenility [55]. So low expression levels early in plant life will reduce length of juvenile phase as
542 seen in our study. TEM1 also directly represses FT expression under conditions that delay
543 flowering – in TEM1 knock out mutants, FT expression was consistently higher than wild type
544 while in overexpression lines there was barely any FT expression [56]. In the field, MeFT1

545 expression was generally higher when the expression of TEM1 was low in line with [56]. In the
546 growth chamber both FT homologues in cassava were not significantly differentially expressed
547 in line with [5] observation that cassava FTs were not be clearly temperature responsive. The
548 expression pattern of indicates that it is an important flowering inhibitor in cassava. Its
549 relationship with FT in cassava especially under controlled temperatures merits further
550 investigation.

551

552

553 **5 Conclusion**

554 We have analyzed the flowering time and transcriptome of cassava under field and controlled
555 conditions and found that in the Ubiaja field conditions and cool ambient temperatures of about
556 22°C cassava flowered early. Late flowering genotypes were much more sensitive to their
557 growth environments than early flowering genotypes and their delayed flowering time was
558 pronounced in the Ibadan field and at warmer temperatures. The transcriptomes we revealed
559 under field and controlled-temperature conditions indicated that some flowering time genes were
560 expressed in a temperature dependent manner rather than in relation to a flowering time. The
561 flowering repressor gene TEM1 had consistently low expression levels under conditions in
562 which cassava flowering time was early (i.e. at 22°C and at Ubiaja) indicating that it is an
563 important flowering inhibitor in cassava.

564 **5 Literature Cited**

565

566 1. Olsen KM, Schaal BA. Evidence on the origin of cassava: phylogeography of *Manihot*
567 *esculenta*. Proceedings of the National Academy of Sciences. 1999;96(10):5586-91.

568 2. Jansson C, Westerbergh A, Zhang J, Hu X, Sun C. Cassava, a potential biofuel crop in
569 (the) People's Republic of China. Applied Energy. 2009;86:S95-S9.

570 3. Ceballos H, Rojanaridpiched C, Phumichai C, Becerra LA, Kittipadakul P, Iglesias C, et
571 al. Excellence in cassava breeding: Perspectives for the future. Crop Breeding, Genetics and
572 Genomics. 2020;2(2).

573 4. Adeyemo OS, Chavarriaga P, Tohme J, Fregene M, Davis SJ, Setter TL. Overexpression
574 of *Arabidopsis* FLOWERING LOCUS T (FT) gene improves floral development in cassava
575 (*Manihot esculenta*, Crantz). Plos One. 2017;12(7):e0181460. Epub 2017/07/29. doi:
576 10.1371/journal.pone.0181460. PubMed PMID: 28753668; PubMed Central PMCID:
577 PMCPMC5533431.

578 5. Adeyemo OS, Hyde PT, Setter TL. Identification of FT family genes that respond to
579 photoperiod, temperature and genotype in relation to flowering in cassava (*Manihot esculenta*,
580 Crantz). Plant reproduction. 2018;1-11.

581 6. Hyde PT, Guan X, Abreu V, Setter TL. The anti-ethylene growth regulator silver
582 thiosulfate (STS) increases flower production and longevity in cassava (*Manihot esculenta*
583 Crantz). Plant Growth Regul. 2020;90(3):441-53.

584 7. Perera PI, Quintero M, Dedicova B, Kularatne J, Ceballos H. Comparative morphology,
585 biology and histology of reproductive development in three lines of *Manihot esculenta* Crantz
586 (Euphorbiaceae: Crotonoideae). Aob Plants. 2013;5.

587 8. Ramos Abril LN, Pineda L, Wasek I, Wedzony M, Ceballos H. Reproductive biology in
588 cassava: stigma receptivity and pollen tube growth. Communicative & integrative biology.
589 2019;12(1):96-111.

590 9. Andrade LRBd, Sousa MBe, Oliveira EJ, Resende MDVd, Azevedo CF. Cassava yield
591 traits predicted by genomic selection methods. Plos One. 2019;14(11):e0224920.

592 10. Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cellular
593 and molecular life sciences. 2011;68(12):2013-37.

594 11. Blazquez MA, Ahn JH, Weigel D. A thermosensory pathway controlling flowering time
595 in *Arabidopsis thaliana*. *Nat Genet*. 2003;33(2):168-71. Epub 2003/01/28. doi: 10.1038/ng1085.
596 PubMed PMID: 12548286.

597 12. Goto N, Kumagai T, Koornneef M. Flowering responses to light-breaks in
598 photomorphogenic mutants of *Arabidopsis thaliana*, a long-day plant. *Physiol Plantarum*.
599 1991;83(2):209-15.

600 13. Bouche F, Lobet G, Tocquin P, Perilleux C. FLOR-ID: an interactive database of
601 flowering-time gene networks in *Arabidopsis thaliana*. *Nucleic Acids Res*. 2016;44(D1):D1167-
602 71. Epub 2015/10/18. doi: 10.1093/nar/gkv1054. PubMed PMID: 26476447; PubMed Central
603 PMCID: PMCPMC4702789.

604 14. Turck F, Fornara F, Coupland G. Regulation and identity of florigen: FLOWERING
605 LOCUS T moves center stage. *Annu Rev Plant Biol*. 2008;59:573-94.

606 15. Odipio J, Getu B, Chauhan RD, Alicai T, Bart R, Nusinow DA, et al. Transgenic
607 overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early
608 flowering in cassava. *Plos One*. 2020;15(1):e0227199. Epub 2020/01/29. doi:
609 10.1371/journal.pone.0227199. PubMed PMID: 31990916; PubMed Central PMCID:
610 PMCPMC6986757.

611 16. Bull SE, Alder A, Barsan C, Kohler M, Hennig L, Gruisse W, et al. FLOWERING
612 LOCUS T triggers early and fertile flowering in glasshouse cassava (*Manihot esculenta* Crantz).
613 *Plants*. 2017;6(2):22.

614 17. Diebiru E KP, Setter T, Asante I, Blay E, Danquah E. Genetic and physiological analysis
615 of cassava flowering. Paper presented at the World Congress on Root and Tuber Crops, GCP21-
616 III and ISTRC, Nanning, China, January 10–15, 2016 2016.

617 18. Simwambana M, Ekanayaka I, Ferguson T. Growth and flowering behaviour of four
618 cassava genotypes in two soil types and locations in southern Nigeria. *TROPICAL
619 AGRICULTURE-LONDON THEN TRINIDAD-*. 1998;75:160-5.

620 19. Hatfield P, Wright G, Tapsall W. A large, retractable, low cost and re-locatable rain out
621 shelter design. *Exp Agr*. 1990;26(1):57-62.

622 20. Rife TW, Poland JA. Field Book: An Open-Source Application for Field Data Collection
623 on Android. *Crop Sci*. 2014;54(4):1624-7. doi: 10.2135/cropsci2013.08.0579. PubMed PMID:
624 WOS:000338773100032.

625 21. Bland JM, Altman DG. Survival probabilities (the Kaplan-Meier method). *Bmj*.
626 1998;317(7172):1572-80.

627 22. Lenth R. emmeans: Estimated marginal means, aka least-squares means. R package
628 version 1.4. 3.01. 2019.

629 23. Team RC. R: A language and environment for statistical computing. 2013.

630 24. Ma F, Fuqua BK, Hasin Y, Yukhtman C, Vulpe CD, Lusis AJ, et al. A comparison
631 between whole transcript and 3'RNA sequencing methods using Kapa and Lexogen library
632 preparation methods. *BMC genomics*. 2019;20(1):9.

633 25. Kremling KA, Chen S-Y, Su M-H, Lepak NK, Romay MC, Swarts KL, et al.
634 Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. *Nature*.
635 2018;555(7697):520-3.

636 26. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
637 data. *Bioinformatics*. 2014;30(15):2114-20.

638 27. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
639 universal RNA-seq aligner. *Bioinformatics*. 2013;29(1):15-21.

640 28. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
641 RNA-seq data with DESeq2. *Genome biology*. 2014;15(12):550.

642 29. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: a
643 comparative platform for green plant genomics. *Nucleic acids research*. 2012;40(D1):D1178-
644 D86.

645 30. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and
646 plants. *Bioinformatics*. 2020;36(8):2628-9.

647 31. Bouché F, Lobet G, Tocquin P, Périlleux C. FLOR-ID: an interactive database of
648 flowering-time gene networks in *Arabidopsis thaliana*. *Nucleic Acids Research*.
649 2016;44(D1):D1167-D71.

650 32. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database
651 for annotation, visualization, and integrated discovery. *Genome biology*. 2003;4(9):1-11.

652 33. Diebiru-Ojo EM. Genetic and Physiological Analysis of Flowering in Cassava (*Manihot*
653 *esculenta* Crantz). PhD Thesis, West African Centre for Crop Improvement (WACCI),
654 University of Ghana. 2017.

655 34. Simwambana MSC. Environmental factors modifying the growth and flowering
656 behaviour of four cassava cultivars in Nigeria: The University of the West Indies, St. Augustine,
657 Trinidad; 1993.

658 35. Oldroyd GE, Leyser O. A plant's diet, surviving in a variable nutrient environment.
659 Science. 2020;368(6486).

660 36. Duque LO, Setter TL. Partitioning index and non-structural carbohydrate dynamics
661 among contrasting cassava genotypes under early terminal water stress. Environmental and
662 Experimental Botany. 2019;163:24-35.

663 37. Duque LO, Setter TL. Cassava response to water deficit in deep pots: root and shoot
664 growth, ABA, and carbohydrate reserves in stems, leaves and storage roots. Tropical Plant
665 Biology. 2013;6(4):199-209.

666 38. Bi Z, Huang H, Hua Y. Cloning and Characterization of Two FLOWERING LOCUS T-
667 like Genes from Rubber Tree (*Hevea brasiliensis*). J Plant Growth Regul. 2019;38(3):919-30.

668 39. Kofranek AM, Hackett WP, editors. Influence of daylength and night temperature on
669 flowering of poinsettia cultivar paul mikkelsen. PROCEEDINGS OF THE AMERICAN
670 SOCIETY FOR HORTICULTURAL SCIENCE; 1965: AMER SOC HORTICULTURAL
671 SCIENCE 701 NORTH SAINT ASAPH STREET, ALEXANDRIA, VA

672 40. Doğramacı M, Foley ME, Chao WS, Christoffers MJ, Anderson JV. Induction of
673 endodormancy in crown buds of leafy spurge (*Euphorbia esula* L.) implicates a role for ethylene
674 and cross-talk between photoperiod and temperature. Plant Mol Biol. 2013;81(6):577-93.

675 41. Menzel C, Simpson D. Effect of temperature on growth and flowering of litchi (*Litchi*
676 *chinensis* Sonn.) cultivars. J Hortic Sci. 1988;63(2):349-60.

677 42. Menzel C, Simpson D. Temperatures above 20 C reduce flowering in lychee (*Litchi*
678 *chinensis* Sonn.). J Hortic Sci. 1995;70(6):981-7.

679 43. Núñez-Elisea R, Davenport TL. Flowering of mango trees in containers as influenced by
680 seasonal temperature and water stress. Sci Hortic-Amsterdam. 1994;58(1-2):57-66.

681 44. MCP. DICK J. Flower induction in tropical and subtropical forest trees. The
682 Commonwealth Forestry Review. 1995:115-20.

683 45. Zeevaart JA. Florigen coming of age after 70 years. The Plant Cell. 2006;18(8):1783-9.

684 46. Lifschitz E, Ayre BG, Eshed Y. Florigen and anti-florigen - a systemic mechanism for
685 coordinating growth and termination in flowering plants. *Front Plant Sci.* 2014;5:465. doi:
686 ARTN 465
687 10.3389/fpls.2014.00465. PubMed PMID: WOS:000343857800001.

688 47. Shalit A, Rozman A, Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y, et al. The
689 flowering hormone florigen functions as a general systemic regulator of growth and termination.
690 *P Natl Acad Sci USA.* 2009;106(20):8392-7. doi: 10.1073/pnas.0810810106. PubMed PMID:
691 WOS:000266209000055.

692 48. Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, et al. Transcription
693 factor PIF4 controls the thermosensory activation of flowering. *Nature.* 2012;484(7393):242.

694 49. Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, et al. LHY
695 and CCA1 are partially redundant genes required to maintain circadian rhythms in *Arabidopsis*.
696 *Dev Cell.* 2002;2(5):629-41. Epub 2002/05/23. doi: 10.1016/s1534-5807(02)00170-3. PubMed
697 PMID: 12015970.

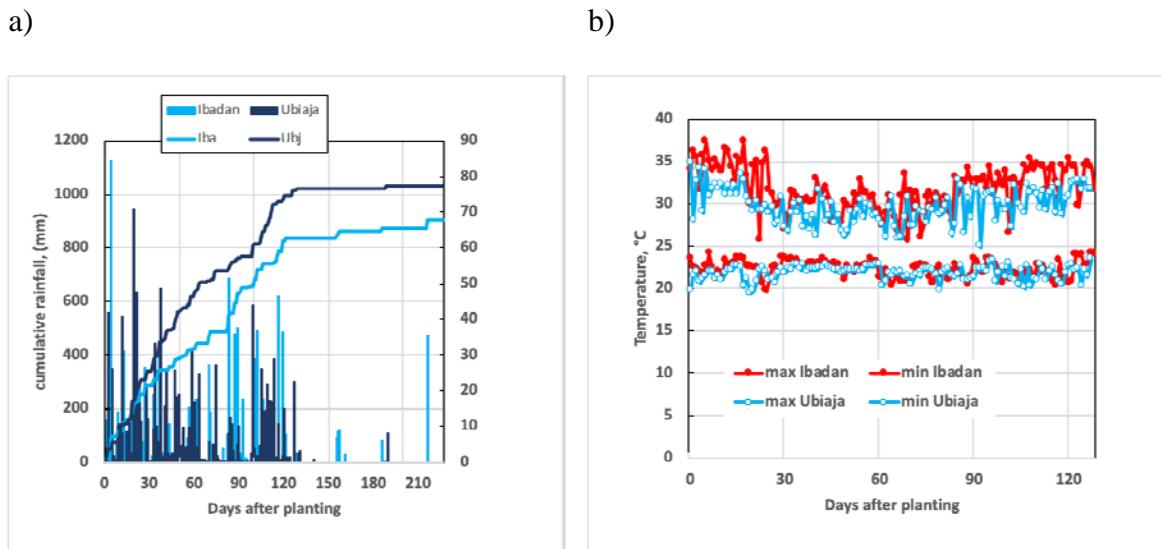
698 50. Jang K, Lee HG, Jung S-J, Paek N-C, Seo PJ. The E3 ubiquitin ligase COP1 regulates
699 thermosensory flowering by triggering GI degradation in *Arabidopsis*. *Sci Rep-Uk.*
700 2015;5:12071.

701 51. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, et al. Abscisic acid inhibits
702 type 2C protein phosphatases via the PYR/PYL family of START proteins. *Science.*
703 2009;324(5930):1068-71. Epub 2009/05/02. doi: 10.1126/science.1173041. PubMed PMID:
704 19407142; PubMed Central PMCID: PMCPMC2827199.

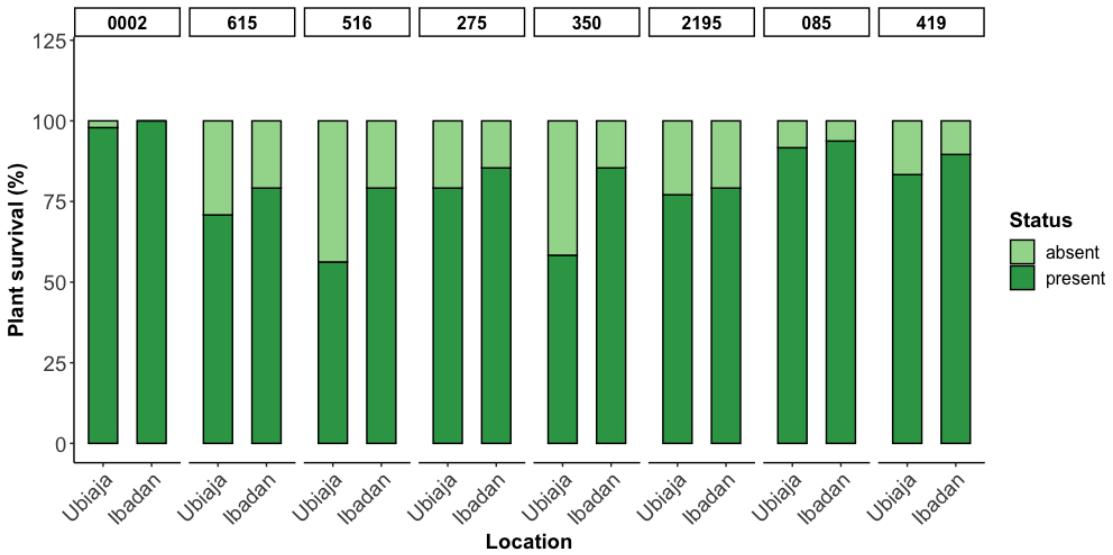
705 52. Wigge PA. Ambient temperature signalling in plants. *Curr Opin Plant Biol.*
706 2013;16(5):661-6.

707 53. Ng LM, Melcher K, Teh BT, Xu HE. Abscisic acid perception and signaling: structural
708 mechanisms and applications. *Acta Pharmacol Sin.* 2014;35(5):567-84. Epub 2014/05/03. doi:
709 10.1038/aps.2014.5. PubMed PMID: 24786231; PubMed Central PMCID: PMCPMC4813750.

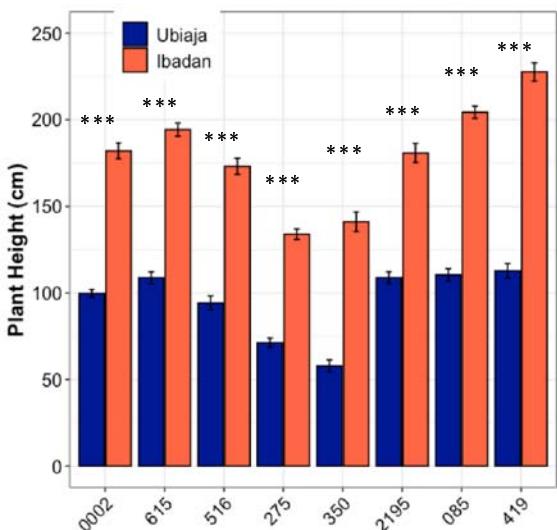
710 54. Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. Abscisic acid dynamics,
711 signaling, and functions in plants. *J Integr Plant Biol.* 2020;62(1):25-54. Epub 2019/12/19. doi:
712 10.1111/jipb.12899. PubMed PMID: 31850654.

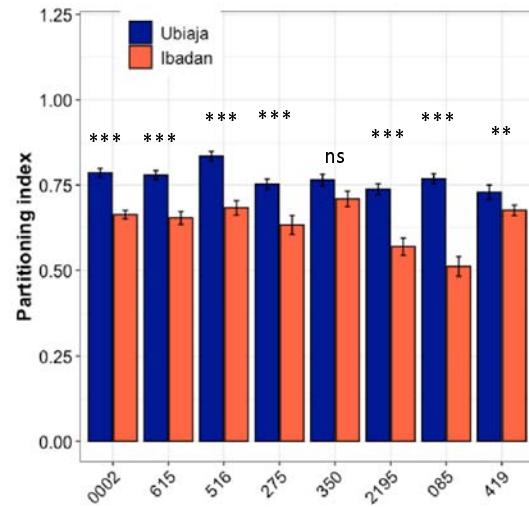

713 55. Sgamma T, Jackson A, Muleo R, Thomas B, Massiah A. TEMPRANILLO is a regulator
714 of juvenility in plants. *Sci Rep-Uk.* 2014;4:3704. doi: ARTN 3704

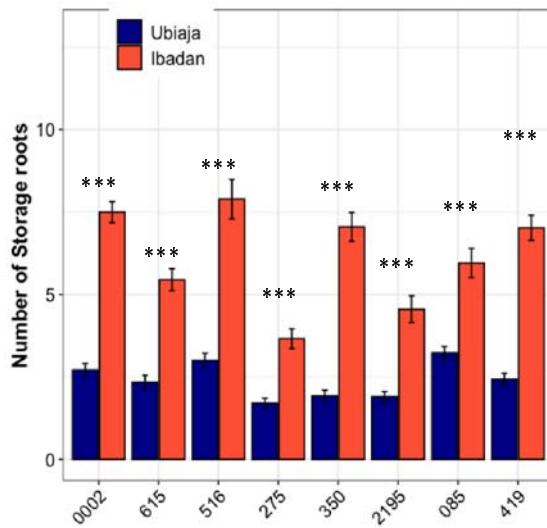
715 10.1038/srep03704. PubMed PMID: WOS:000329847100012.

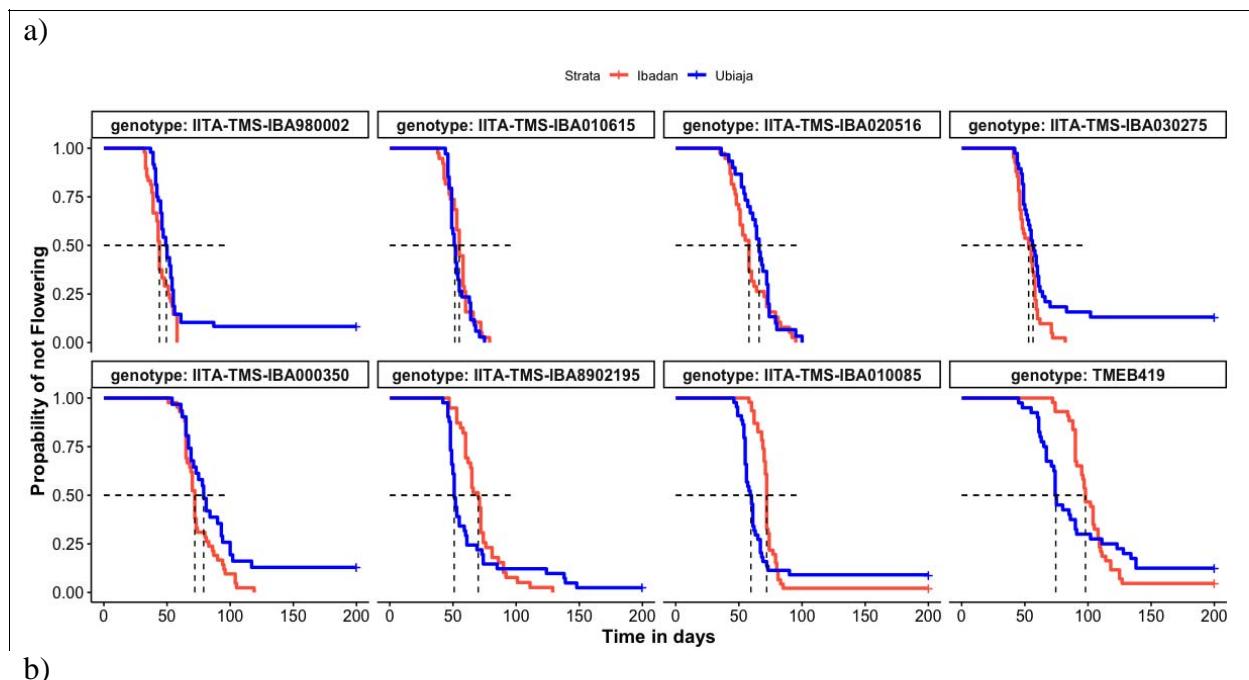

716 56. Castillejo C, Pelaz S. The balance between CONSTANS and TEMPRANILLO activities

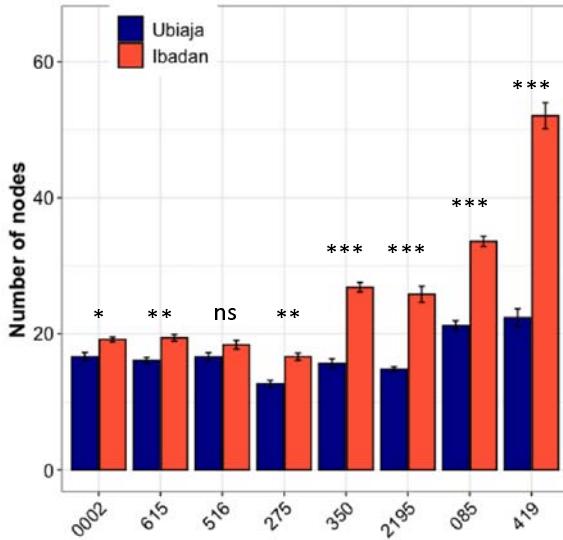
717 determines FT expression to trigger flowering. *Curr Biol.* 2008;18(17):1338-43.


718


a)


b)


c)



d)

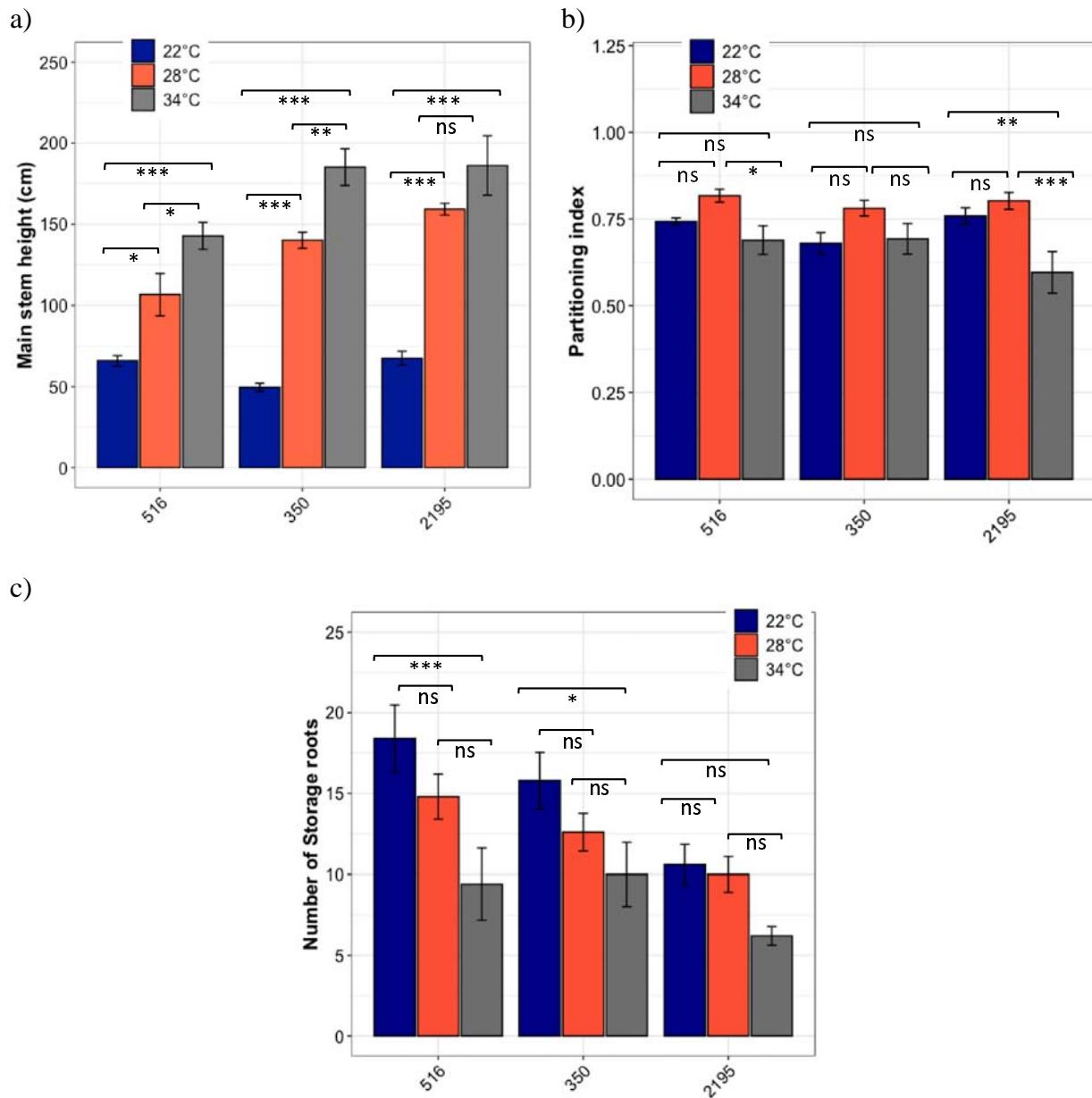


Figure 2 Vegetative growth under field conditions a) Percent plant survival in Ubiaja and Ibadan b) Plant Height (cm) measured from soil surface to highest shoot apex. c) Partitioning index (storage root FW/total plant FW). d) Number of storage roots. *, ** and *** indicate statistical significance on pairwise comparisons between locations for each genotype at 0.05, 0.01, and 0.001 significance levels. Mean partitioning index are reported while data were third order transformed (cubes) for statistical analysis.

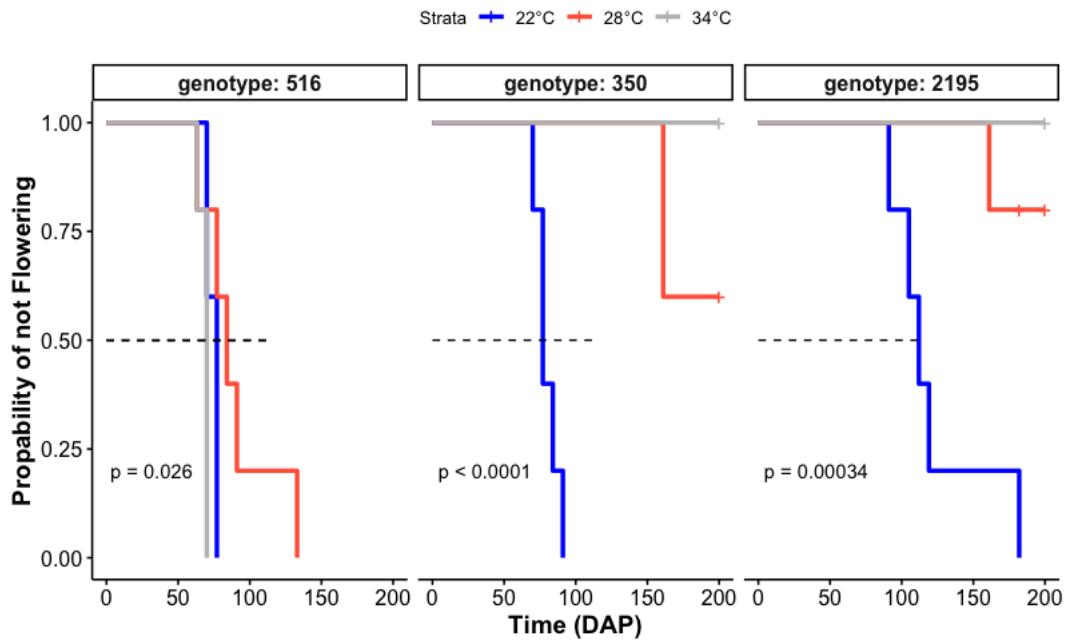


Figure 3 Flowering time responses in Ubiaja and Ibadan a) Kaplan-Meier curves of distinct genotype flowering times in field locations. b) Number of nodes on main stem (counted from soil surface to last node before fork branch) as a developmental time score on field. *, ** and *** indicate statistical significance on pairwise comparisons between locations for each genotype at 0.05, 0.01, and 0.001 significance levels. Mean number of nodes are reported while data was square root transformed for statistical analysis.

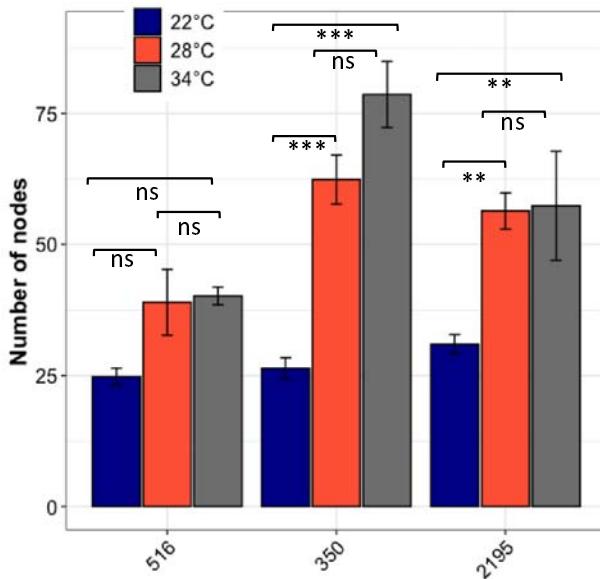
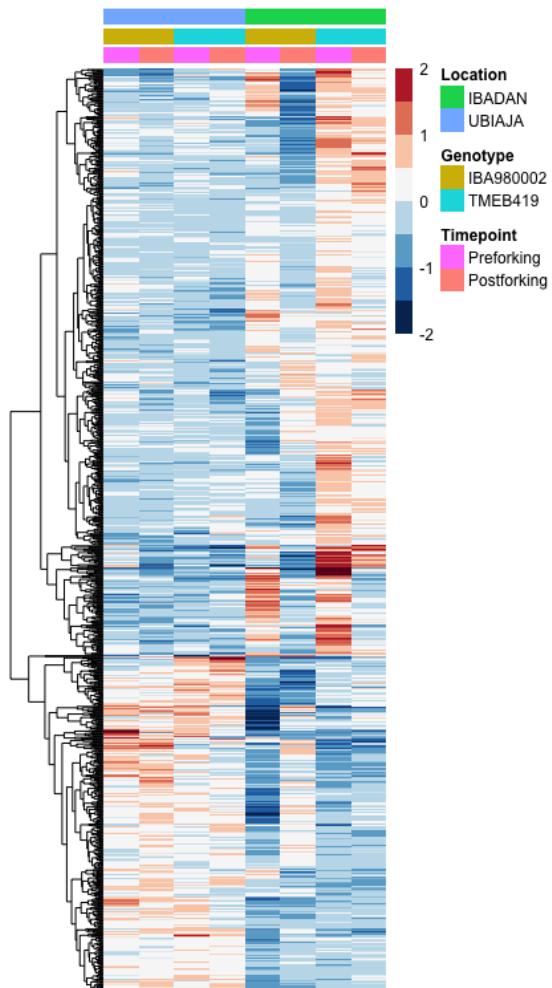
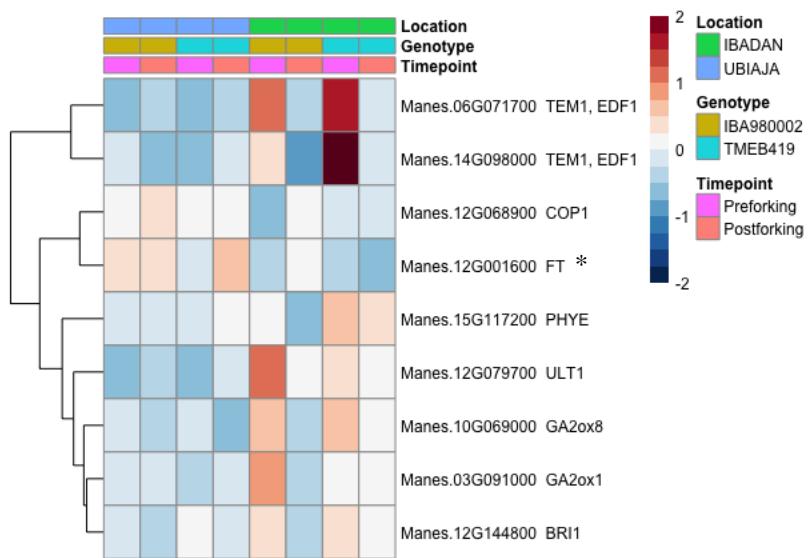


Figure 4 Vegetative growth under controlled temperatures. a) Main stem height (cm) measured from soil surface to highest point in plant before forking. b) Partitioning index (storage root FW/total plant FW) c) Number of storage roots *, ** and *** indicate statistical significance on pairwise comparisons between temperatures for each genotype at 0.05, 0.01, and 0.001 significance levels.

a)



b)


Figure 5 Flowering time responses to controlled temperatures a) Kaplan-Meier curves of distinct genotype flowering times at different temperatures. b) Number of nodes on main stem (counted from soil surface to last node before fork branch or maximum countable where no forking occurred). *, ** and *** indicate statistical significance on pairwise comparisons between locations for each genotype at 0.05, 0.01, and 0.001 significance levels.

a) All DEGs

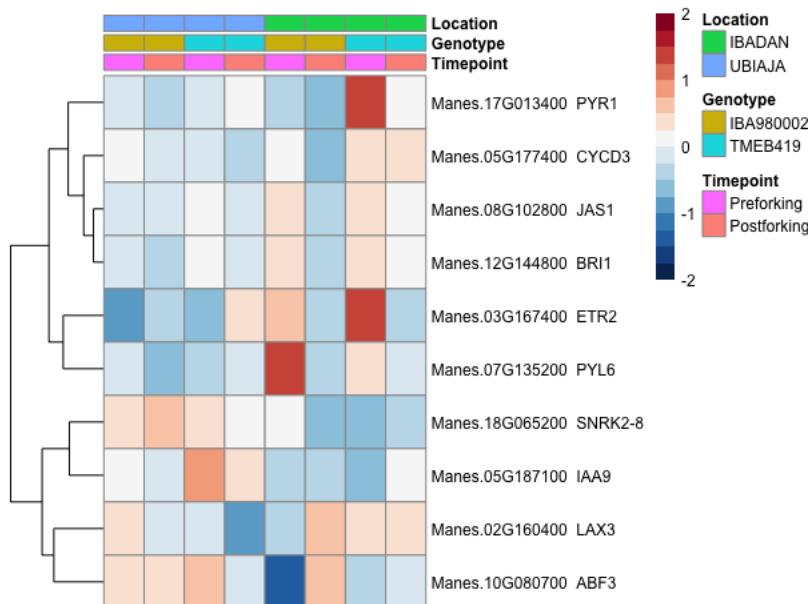
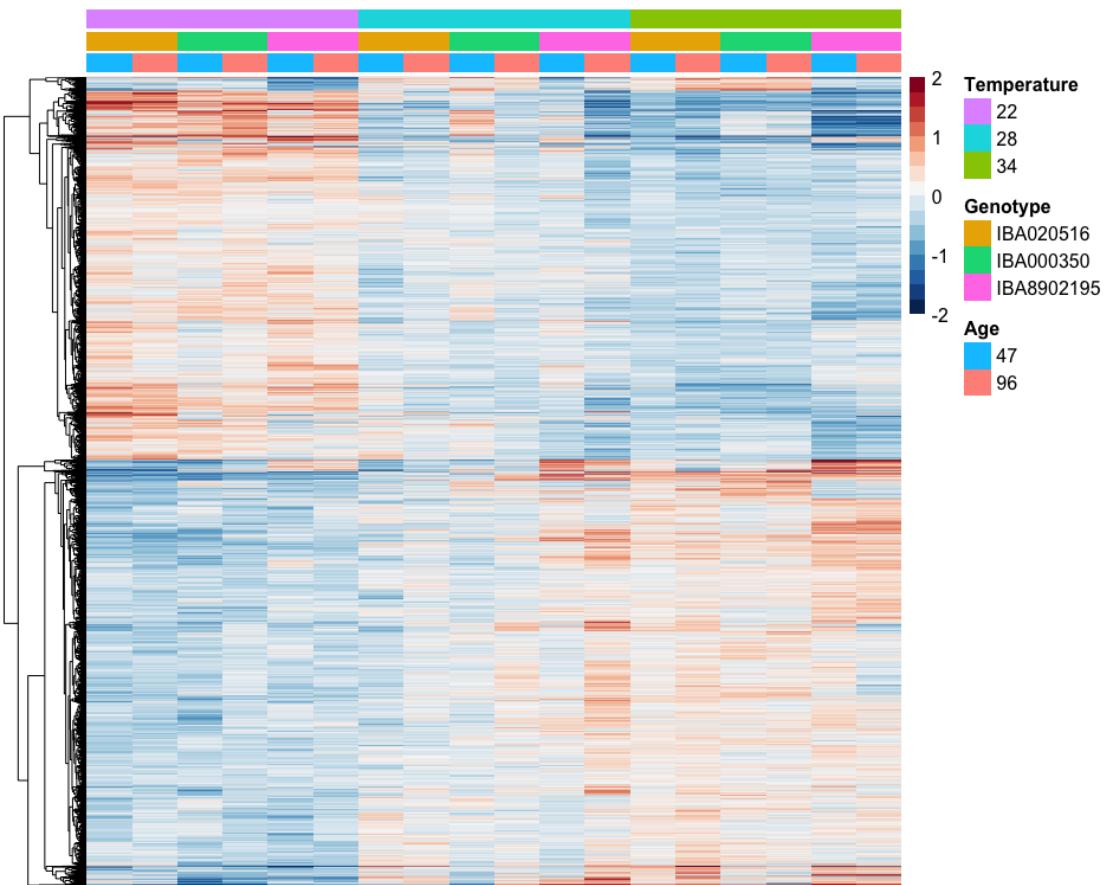
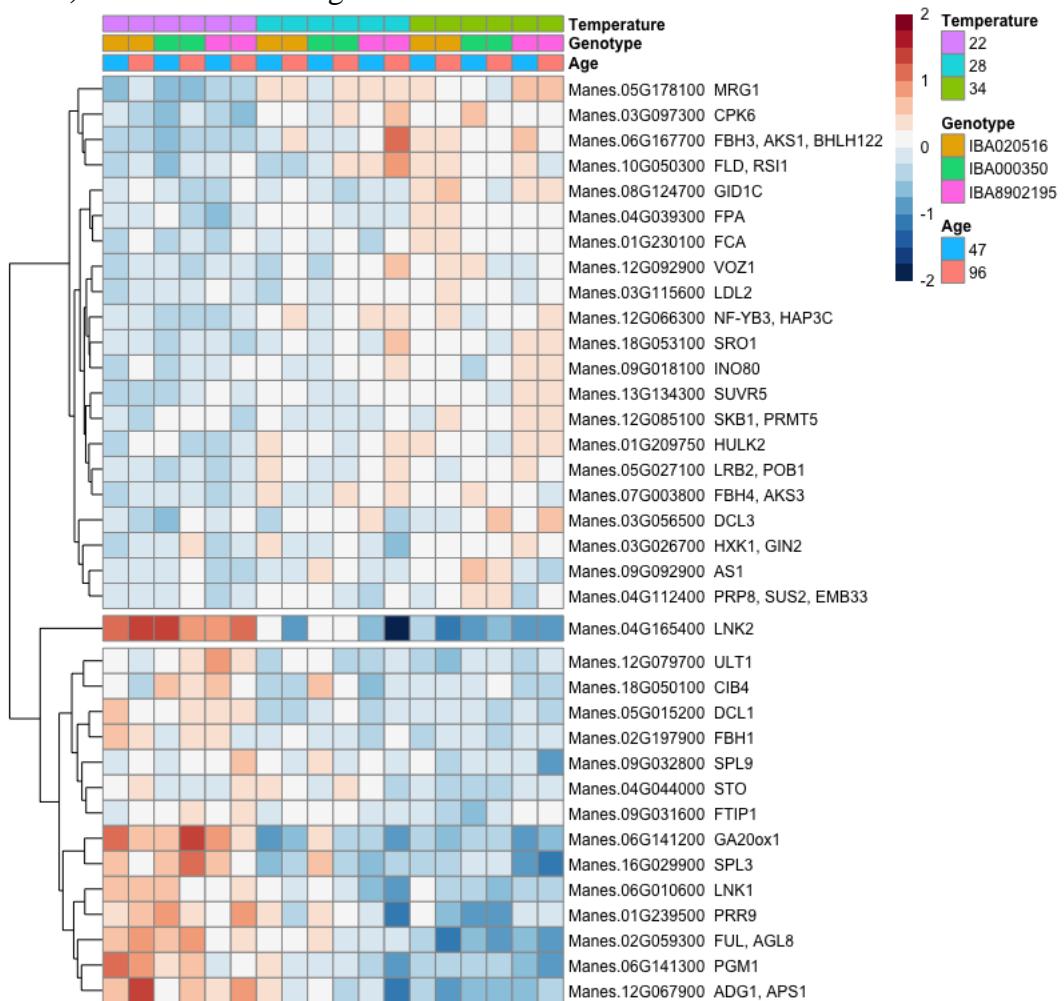


Figure 6 Heat map showing relative expression of differentially expressed genes in response to field location (Ibadan vs Ubiaja), genotype ('0002 vs '419), and timepoint of development (preforking and postforking). Figure shows 1074 genes significantly differentially expressed ($\alpha = 0.05$) (averages of biological replicates per time point, genotype and location). Colour scale indicates log2 Fold Changes.

a)



b)


Figure 7 Flowering time and hormone signaling genes differentially expressed under field conditions. The heat map shows relative expression across location (Ubiaja vs Ibadan), genotype ('0002 vs '419), and timepoint of development (preforking and postforking) a) Flowering time genes b) Hormone signaling genes *Cassava homologue of Arabidopsis FT gene – Manes.12G001600 has been named MeFT1 as in (Adeyemo et al. 2018; Odipio et al. 2020)

a) All DEGs

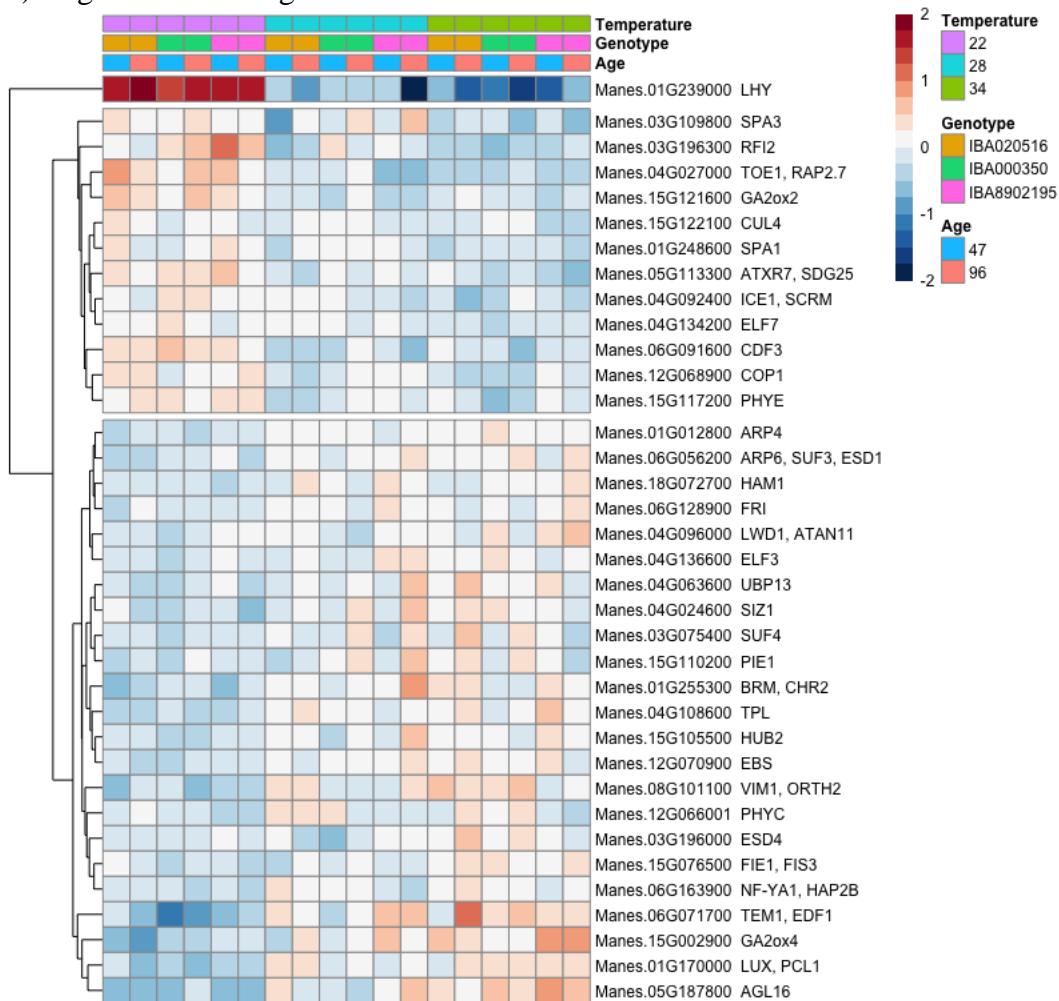
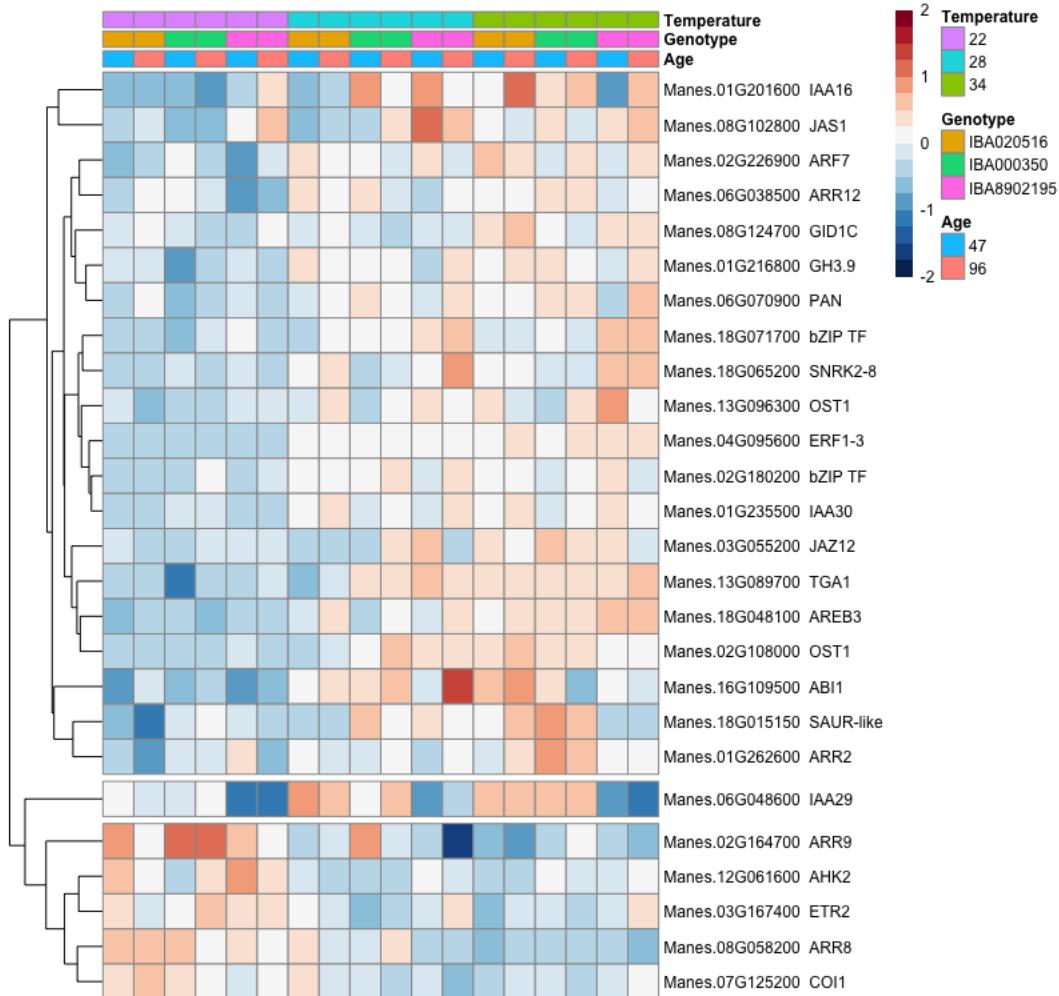
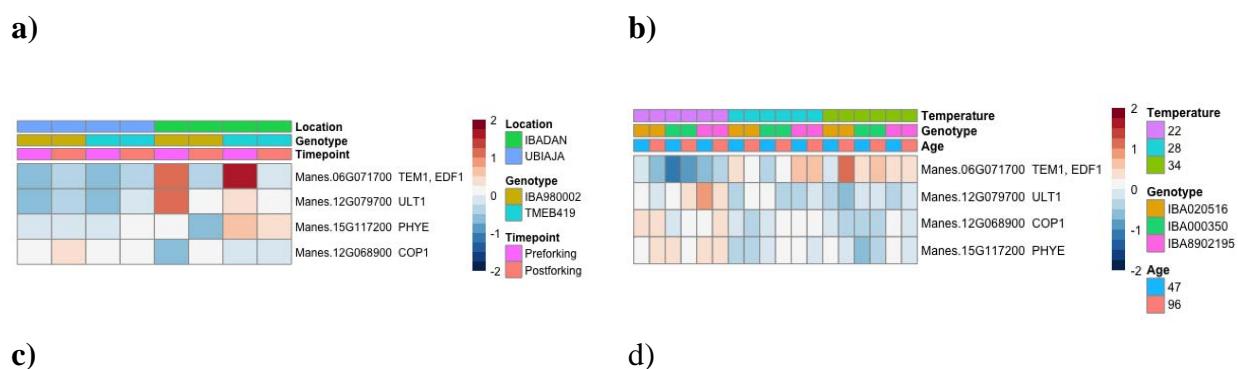


Figure 8 Heat map showing relative expression of differentially expressed genes in temperature (22, 28 and 34°C), genotype (516, 350, 2195), and timepoint of development (47 and 96 dap). Figure shows 7253 genes significantly differentially expressed ($\alpha = 0.05$) (averages of biological replicates per time point, genotype and location). Colour scale indicates log2 Fold Changes.


a) Positive Flowering effectors


b) Negative Flowering effectors

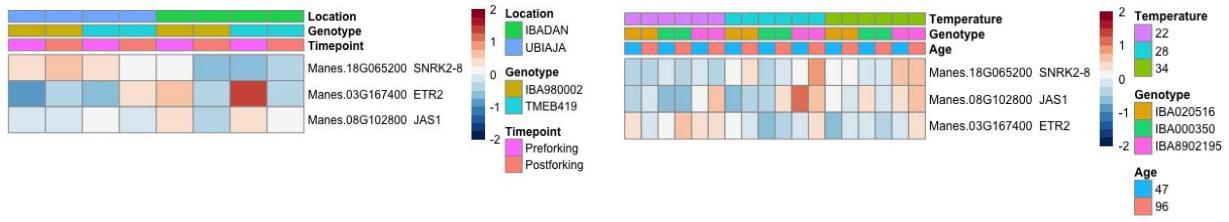


Figure 9 Flowering time genes differentially expressed in the growth chamber study in response to temperature, genotype, and time of development. The heat map shows relative expression across both times of development. a) Positive flowering genes at b) Negative flowering genes

Figure 10 Select hormone signaling genes differentially expressed in the growth chamber study in response to temperature, genotype, and time of development. The heat map shows relative expression across both times of development.

Figure 11 Flowering time and hormone signaling genes commonly expressed between field and controlled temperatures a) flowering time genes on field b) flowering time genes in growth chamber c) hormone signaling genes on field d) hormone signaling genes in Growth chamber.