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Abstract 7 

Neurological disorders share common high-level alterations, such as cognitive deficits, anxiety, 8 

and depression. This raises the possibility of fundamental alterations in the way information 9 

conveyed by neural firing is maintained and dispatched in the diseased brain. Using 10 

experimental epilepsy as a model of neurological disorder we tested the hypothesis of altered 11 

information processing, analyzing how neurons in the hippocampus and the entorhinal cortex 12 

store and exchange information during slow and theta oscillations. We equate the storage and 13 

sharing of information to low level, or primitive, information processing at the algorithmic level, 14 

the theoretical intermediate level between structure and function. We find that these low-level 15 

processes are organized into substates during brain states marked by theta and slow 16 

oscillations. Their internal composition and organization through time are disrupted in epilepsy, 17 

loosing brain state-specificity, and shifting towards a regime of disorder in a brain region 18 

dependent manner. We propose that the alteration of information processing at an algorithmic 19 

level may be a mechanism behind the emergent and widespread co-morbidities associated with 20 

epilepsy, and perhaps other disorders. 21 
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Introduction 22 

Most, if not all, neurological pathologies, including Alzheimer’s disease, epilepsies, and 23 

Parkinson’s disease, aside from their specificities, display commonalities in terms of cognitive 24 

(e.g., memory) and mental (e.g., anxiety and depression) disorders (Hesdorffer, 2016). 25 

Historically, attempts have been made to correlate higher-level changes to the underlying 26 

structural alterations. However, structural alterations may be very different from one pathology 27 

to the next, even within a given brain disorder. The origin of shared and generic deficits must 28 

therefore be sought for at a level higher than the structural one. We hypothesize that diverse 29 

pathological mechanisms can lead to similar modifications of information processing, emerging 30 

from, and existing between, structural and functional levels. Whether information processing is 31 

modified in a pathological context is not known. Furthermore, a formal framework for the 32 

quantification of these processes is missing.  33 

 34 

As a model of neurological disorder, we consider Temporal Lobe Epilepsy (TLE), the most 35 

common form of epilepsy in adults (Tatum, 2012). TLE is itself highly heterogenous in terms of 36 

differences of histopathology (Blumcke et al., 2013), semiology (Barba et al., 2007; Bartolomei et 37 

al., 2008) and cognition and mental state (de Barros Lourenco et al., 2020; Holmes, 2015; 38 

Krishnan, 2020). Such heterogeneity is also found in experimental models of TLE (Rusina et al., 39 

2021). Structural alterations may change several features that are relevant for information 40 

processing, such as rate coding, temporal coding, synaptic plasticity, and network oscillations 41 

(Lenck-Santini & Scott, 2015). In keeping with this proposal, hippocampal place cells are unstable, 42 

firing becomes randomized during ripples, synaptic plasticity, and oscillations are altered, and 43 
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these changes are correlated with deficits in hippocampus-dependent spatial memory in 44 

experimental epilepsy (Chauvière et al., 2009; Inostroza et al., 2013; Lenck-Santini & Holmes, 45 

2008; Lopez-Pigozzi et al., 2016; Suarez et al., 2012; Valero et al., 2017). Given this diversity of 46 

deficits, it is reasonable to presume that in TLE local information processing is altered at a more 47 

fundamental level, with widespread impacts on multiple functions. 48 

 49 

It is difficult to link specific alterations at the structural level to high order cognitive deficits as we 50 

do not know where information processing is localized, what is being processed, nor how it is 51 

integrated into function. In other words, with reference to the notion of the algorithmic level 52 

introduced by Marr and Poggio (1977), we do not know what are the “algorithms” that bridge 53 

structure and function. The common axiomatic view is that neural information processing stems 54 

from the spatiotemporal organization of the firing of neurons. Information theory was designed 55 

to be agnostic to the content of information and thus provides useful metrics to track primitive, 56 

or fundamental, information processing operations (Shannon, 1948). Neuronal firing intrinsically 57 

carries information due to its statistical properties. Auto-correlations in firing actively maintain 58 

this information through time - active information storage (Lizier et al., 2012; Wibral et al., 2014), 59 

and cross-correlated firing between different neurons allows the sharing of this information 60 

between themselves (Kirst et al., 2016). Focusing on such basic operations allows investigation 61 

of how patterns of coordinated neural firing may translate into primitive low-level information 62 

processing (Clawson et al., 2019), akin to the algorithmic level. Here, we hypothesize that the key 63 

differences between control and epileptic networks are not only present at the structural level, 64 

but also at a more general and core algorithmic level of quantifiable primitive operations.  65 
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 66 

To test this hypothesis, a multilevel experimental approach is required (Scott et al., 2018). Multi-67 

channel electrode recordings of neural populations provide such a dataset which spans two levels 68 

of analysis: the action potential at the neuronal level and oscillations at the population level. As 69 

neural computation is brain state dependent (Quilichini & Bernard, 2012), we consider the global 70 

brain states of theta (THE) and slow oscillations (SO), which can be recorded during anesthesia. 71 

Previous work in control animals demonstrate that neuronal activity patterns in the hippocampus 72 

and entorhinal cortex switch between different information processing substates (IPSs) (Clawson 73 

et al., 2019). An IPS corresponds to an epoch in which primitive operations of information storage 74 

and sharing in a local microcircuit remain temporally consistent. IPSs continuously switch from 75 

one IPS to another, similarly to what has been described at higher level of organization, such as 76 

the dynamics of resting state networks and EEG microstates (Calhoun et al., 2014; Van de Ville et 77 

al., 2010). In the control hippocampus and entorhinal cortex, the sequences of IPSs are complex, 78 

i.e. standing between order and disorder (Clawson et al., 2019). 79 

 80 

Using an unbiased quantification of IPSs, we compare their properties and organization between 81 

control and experimental epilepsy conditions. We focus on the hippocampus and the entorhinal 82 

cortex, two major structures commonly affected in TLE (Curia et al., 2008). We find that IPS’ 83 

internal organization and switching dynamics, although not suppressed, shift toward a less 84 

structured and more random spatiotemporal organization in experimental epilepsy than in 85 

control. Such disruption of information processing at the algorithmic level itself could underly the 86 

general performance impairments in TLE.  87 
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Results 88 

Design 89 

We analyze the local field potentials (LFPs) and action potentials from individual neurons 90 

measured in the hippocampus (CA1) and medial entorhinal cortex (mEC) from control (n = 5) and 91 

experimental epilepsy (n = 6) rats under anesthesia (Figure 1A-B, see Methods for details). 92 

Unsupervised clustering of the spectral content of LFPs reveals that field activity continuously 93 

switches between two states: slow oscillations (SO, 0.5-3 Hz) and theta oscillations (THE, 3-6 Hz) 94 

(Figure 1B, S1). As previously reported in freely moving animals (Chauvière et al., 2009), THE 95 

power and peak frequency are decreased in CA1 in experimental epilepsy (Figure S1). Although, 96 

the peak frequencies of THE and SO are not modified in the mEC in epilepsy, their power is 97 

decreased (Figure S1). However, both frequency and power ratios between SO and THE are 98 

similar in control and epilepsy. 99 

 100 

We extract three features from the spike trains using a sliding widow procedure (Figure 1B-C): 101 

(1) firing, the number of times a neuron fired within a window, (2) storage, the information 102 

theoretical measure of active information storage (Lizier et al., 2012; Wibral et al., 2014), which 103 

captures temporal patterns of spiking for a single neuron within a window – notably in our case, 104 

how regular or repetitive these patterns are – and (3) sharing, an information theoretical 105 

measure of information sharing (Kirst et al., 2016), which captures spatiotemporal patterns of 106 

coordinated spiking across neurons within a window. First, we examine whether these features 107 

are dependent upon the brain state (THE versus SO), the region (CA1 versus mEC) and the 108 

condition (control versus epilepsy). 109 
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Epilepsy reduces firing, storage and sharing differences between THE and SO states 110 

In control animals, we find that in both regions, average firing and storage of all neurons is larger 111 

during THE than SO, while average sharing is lower (Figure 1D, see also S2), in keeping with the 112 

idea that neuronal computation is brain state-dependent (Quilichini & Bernard, 2012). In 113 

epilepsy, we find that average firing and storage are decreased during THE, but not during SO, as 114 

compared to control in both mEC and HPC. As a consequence, the brain state-dependency of 115 

firing and storage, which is consistent across controls, is reduced in both regions in epilepsy 116 

(Figure 1D). There is thus, in epilepsy, a large deviation from the operating mode found in control 117 

conditions.  118 

 119 

We have previously shown that THE and SO states are in fact characterized by a complex dynamic 120 

organization in terms of firing, storage or sharing features (Clawson et al., 2019). A feature value 121 

(e.g., storage) can remain stable during a given time period (i.e., during successive windows), 122 

before switching to a different feature value with its own period of stability. We called these 123 

periods of stability substates of firing, storage or sharing. We begin by assessing the properties 124 

of substates in control and in epilepsy, as substate switching constitutes an important qualitative 125 

aspect of coordinated firing dynamics.  126 

  127 
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 128 

 129 

Figure 1: Experimental and analytical design - (A) Cartoon representing the approximate recording 130 

locations in mEC (orange) and CA1 (blue) in control and experimental epilepsy. (B) Example of LFP (top) 131 

and firing (bottom, each line represents one neuron, a dot represents an action potential) data recorded 132 

in control CA1 and mEC during SO and THE. Overlayed is a representation of our analytic method that 133 

uses 10 s long sliding windows shifted by 1 s at each step. (C) Cartoon examples of the four acquired 134 

data features. (D) Average values and difference of differences graphs for data features taken from 135 

spiking data during epochs of THE and SO in mEC (top) and CA1 (bottom) in both control and epilepsy 136 
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conditions. See S2 for the same graph represented as a function of region, rather than oscillatory state. 137 

Circles and triangles represent the mean, and all bars represent a 99% bootstrapped confidence interval. 138 

Significance is shown using the symbol (*) with their standard corresponding meaning (*, p<0.05; **, 139 

p<0.01; ***, p<0.001). The numerical values are provided in Table S1. 140 

 141 

Terminology, metrics, and methodology 142 

Figure 2A illustrates an example of the procedure for a ~ 25 min long recording performed in the 143 

mEC in a control animal. Spectral analysis of the LFP reveals the alternation between THE and SO 144 

states (upper row). Through an unsupervised substate extraction procedure based on k-means 145 

clustering (see Methods), we identify in this example 4, 3, and 5 substates of stable patterns for 146 

firing, storage and sharing, respectively.  The four features together, seen as 4 rows in Fig 2A, 147 

define a switching table. Each time point in the table corresponds to an information processing 148 

state (IPS), i.e. a combination of global state, firing rate, storage, and sharing patterns at this time 149 

point. By characterizing which neurons fire, how much, and with which correlation properties, an 150 

IPS provides a robust characterization of the pattern of coordinated activity occurring within each 151 

temporal window. Note that the switching transitions from one substate to the next are not 152 

necessarily synchronous between the different features, a property found in all recordings. In 153 

Figure 2B, we show, encoded as vertical color bars, the absolute values of firing, storage and 154 

sharing features that different neurons assume in the different substates. For a given feature, 155 

the values appear clearly different for a given neuron between substates. We will quantify these 156 

differences in the next section. 157 

 158 
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The switching table of Figure 2A is constructed using an unsupervised clustering algorithm, k-159 

means, guided by an a priori assumption that (1) there exist separable clusters of data and (2) 160 

there are exactly k of these clusters (here 4, 3, and 5 for firing, storage and sharing, respectively). 161 

Using a null model, we demonstrate that there exist separable clusters (Figure S3). However, as 162 

the ground truth of how many clusters exist is unknown, statistical criteria can be used to find 163 

the optimal number (as done in Clawson et al., 2019). Here, we use a more general approach 164 

varying the k value for each firing, storage, and sharing feature while fixing k = 2 for the spectral 165 

feature. Each quadruplet of k values will produce a specific switching table. Figure 2C illustrates 166 

this concept, showing the resultant clustering of storage substates through time as k increases 167 

from 3 to 10. A low value may underestimate the real number of substates, while a large number 168 

may be an overestimate producing substates that rarely occur more than once (see Methods). 169 

We therefore use a lower bound of k = 3, and a reasonable upper bound of k = 10, wherein the 170 

clusters become too fine (Figure 2C, see Methods). We thus consider eight possible k values for 171 

each feature, giving rise to 83 = 512 possible switching tables. Each switching table is 172 

characterized by the total number of substates it contains: ktot = 2 + kfiring + kstorage + ksharing with a 173 

maximum value of kmax = 32 (32 = 2, the number of spectral states + 3 features x 10). The 174 

collection of all switching tables for a given recording defines a library of tables (Figure 2D). We 175 

chose such a method with the intention that without an a priori approach on the underlying 176 

principle, if we extract generic rules, they should be valid independently of the choice of number 177 

of clusters, at least for a reasonable wide range of k values. Now, all analysis that can be done on 178 

a switching table is performed for each library, which gives the added benefit of assessing the 179 

robustness of the results regarding the number of clusters.  180 
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 181 

Substates are more contrasted in epilepsy 182 

The vertical color bars in Figure 2B qualitatively show that individual neurons can take different 183 

firing, storage or sharing values across substates. In order to quantify these differences, we 184 

measure how “contrasted” are different substates. If we consider the firing feature of a given 185 

neuron, we first calculate its global mean firing rate (over the whole duration of the recording), 186 

and its mean firing rate within each substate. The relative contrast is defined as the difference 187 

between the substate mean firing rate and the global mean firing rate, normalized by the global 188 

mean firing rate. Evaluating contrast allows better tracking of the differing compositions of 189 

substates at the single neuron level. Figure 2B shows the relative contrast plots for the 44 190 

recorded neurons and the various substates in the same dataset and substate decomposition we 191 

use as an example in Figure 2A. The differences between substates for each feature now clearly 192 

appear as large changes in the distributions of contrast values for the recorded neurons. Now, 193 

we extract the substate contrast of each substate for each feature - the average of the absolute 194 

values of the heights of the bars in the relative contrast plot. This substate contrast tells us how 195 

much a given substate stands out from its feature’s global average. Increasing the number of k 196 

substates may decrease the substate contrast.  197 

 198 

Figure 2E shows the distributions of the differences in contrasts between control (n=5) and 199 

epilepsy (n=6), for firing, storage, and sharing features in the mEC, for the chosen k values 200 

(3 ≤ kfiring, kstorage, ksharing ≤ 10). For all values of k, for all features, the contrast differences lie 201 

entirely below zero, demonstrating that substate contrast is generally higher in epilepsy than in 202 
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control. We also see no clear dependence upon k values, i.e., the number of substates. The same 203 

result is found in CA1, however higher bounds closer to the 99th percentile do cross 0 (Fig S4). 204 

We thus identify another major alteration in epilepsy; substates are more contrasted, exhibiting 205 

more marked differences with respect to the mean. This suggest that in epilepsy, substate 206 

switching more strongly modulates the neural population with regards to firing, storage and 207 

sharing. While this seems to stand in contrast with the previously described reduction of the 208 

modulatory influence exerted by global oscillatory states, this may be explained by a disrupted 209 

articulation between substate and global state, as we explain in the following section. 210 
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 211 

Figure 2 – Clustering & contrast in control and epilepsy – (A) An example state table for the mEC 212 

in a control animal with a total state count of ktot = 14. The different substates are color coded. 213 

Note that switching is not synchronized across the different features. (B) Relative contrast values 214 

for the table given shown in (A). The substates shown in A are shown in B as a horizontal bar with 215 

the same color. Each graph shows the relative contrast of each of the 44 neurons, for each 216 

substate, and each feature. Below each graph is a visual indicator of a neuron’s feature values 217 
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within the substate (vertical color bar). Here, the color scale varies from near 0, dark blue, to the 218 

top 10% of all average activity within the state. Therefore, any neuron whose activity is within 219 

this top 10% will be bright yellow. (C) Temporal dynamics (vertical axis) of storage substates as a 220 

function of k (horizontal axis). The far-left column shows the dynamics of THE and SO spectral 221 

states. (D) An example of a resulting state table library, or a collection of all possible combinations 222 

of all clustering with a range of ktot = 11 – 32. (E) Average contrast difference between control 223 

and epilepsy is shown with respect to both feature and number of states, k. The circles represent 224 

the mean difference, the thick black bars represent the 25-75% quantile and the thin black bars 225 

represent the 1-99% quantile. The red dotted line is to add the null hypothesis line of no 226 

significant difference between control and epilepsy. 227 

   228 

Loss of global state specificity of firing, sharing and storage substates in epilepsy 229 

Since firing patterns are brain state-dependent, we assess whether this type of specificity is also 230 

found at the level of information processing substates. For a given state table in a library, we 231 

calculate the probability that a substate occurs during THE, SO or both. We name it state 232 

specificity index (SSI), a metric bounded between 0 (a substate occurs equally in THE or SO) and 233 

1 (a substate is exclusive to either THE or SO) (see Methods). In control animals (Figure 3, blue 234 

curves), most substates are brain state specific in both mEC and CA1, independently of k. Most 235 

SSI values are above 0.8, well above the null hypothesis 0.23 ± 0.03 value of lack of global state 236 

specificity. Global state specificity of substates is thus a robust result in control animals with 237 

respect to k. 238 
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The same analysis performed in epilepsy reveals a region dependent alteration in SSI (Figure 3, 239 

red curves). There is a large decrease in SSI for all features in the mEC, indicating a loss of the 240 

constraint exerted by global oscillatory states on the selection of possible substates, again 241 

regardless to the chosen k’s. In contrast, there is no such large loss of brain state specificity in 242 

CA1, in particular no change for sharing. We conclude that the substate distribution becomes 243 

“disordered”, i.e., a large proportion of substates now occur during both THE and SO in the mEC 244 

in epilepsy. In contrast, CA1 retains the brain state specificity of the distribution of substates. The 245 

alteration of brain state-specificity of firing, sharing and storage substates is therefore brain 246 

region dependent in epilepsy. 247 

 248 
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  249 

Figure 3 – Loss of brain state-dependency of substates in the mEC in epilepsy – State similarity 250 

index (SSI) is shown here vs number of k states for each feature in mEC and CA1. Blue represents 251 

the control data while red represents epilepsy. The bold lines represent the mean while the 252 

shaded regions represent a 99% bootstrapped confidence interval. The bootstrapped null model 253 

produced via randomizing gives an average SSI of 0.23 ± 0.03 and is not shown here to increase 254 

visual clarity.  255 
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 256 

Computing hubs are more numerous but less substate-specific in the mEC in epilepsy 257 

Within each substate/feature we extract computing hub neurons, i.e., neurons with on average, 258 

exceptionally high firing, storage or sharing values with regard to the substate (see Methods). As 259 

previously discussed in Clawson et al. (2019), it is important to stress that different substates are 260 

associated to different sets of hubs and that a neuron acting as firing, storage or sharing hub in a 261 

given substate will not necessarily do so in another substate. So, while the fraction of neurons 262 

being hub in a given substate remains small, the fraction of neurons serving as hub at least in one 263 

substate is much larger, approaching ~40% on average. Figure 4A illustrates an example of the 264 

distribution of hubs (same recording as in Figure 2A).  265 

 266 

In control animals, the percentage of hubs increases with ktot in both mEC and CA1 (Figure 4B), 267 

which is expected due to the arbitrary over-clustering as k increases. We observe furthermore 268 

that the percentage of neurons serving as hubs at least once is significantly increased in epilepsy, 269 

by 5% in the mEC and 2.5% in CA1 (Figure 4B). This result is in agreement with the increase in 270 

substate contrast found in epilepsy: more neurons are more contrasted and therefore are 271 

detected as hubs. Note that, for both control and epilepsy, the percentage of neurons marked as 272 

hubs is significantly larger as compared to randomized state tables (grey dotted lines in Figure 273 

4B), confirming that the emergence of hubs is a direct fingerprint of the existence of well distinct 274 

substates. 275 

 276 
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Figure 4A also shows that some computing hubs are shared by different substates, while others 277 

are specific to one substate/one feature. In order to assess how substate-specific the computing 278 

hubs are, we use a measure of similarity (see Methods). A null value indicates that every substate 279 

has a unique hub set with no overlap between substates while a 1 value means that all substates 280 

have an identical distribution. Figure 4C shows that, in control animals, a majority of hubs tend 281 

to be substate-specific (similarity < 0.5). In CA1, the distribution of hubs is less substate-specific 282 

than in the mEC (higher similarity). In epilepsy, the distribution of hubs does not change in CA1, 283 

while hubs become significantly more substate-specific in the mEC. In other words, the status of 284 

being hub is for a mEC neuron less stable in epilepsy than in control animals. 285 

 286 

We conclude that, in epilepsy, the mEC and CA1 display an increase in the number of neurons 287 

labeled as hubs at least once, and that the substate-specificity of hubs is increased in the mEC. 288 

Taken together, these two findings suggest a more hectic and random-like emergence of 289 

computing hubs in epilepsy as compared to control, albeit expressed in different ways; in mEC 290 

there are more hubs that are simultaneously more specific than control and in CA1 there are 291 

more hubs while staying the same, indicating a possible ‘shuffling’ of hubs. We believe this also 292 

further confirms that alterations in information processing are brain-region dependent. 293 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.430768doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430768
http://creativecommons.org/licenses/by-nc-nd/4.0/


 294 

Figure 4 – Computing Hubs and their distributions – (A) Example of computing hubs in the 295 

control mEC extracted from a given state table. The y axis is unsorted neuron label, and the x axis 296 

shows the substates for firing (5), storage (4) and sharing (6) features. A yellow bar indicates that 297 

the given neuron is a computational hub during a substate. On the right is a summed version of 298 

the graph on the left, visually showing the fraction of neurons that are a hub at least once (40%). 299 

(B) The percentage of neurons that are hubs at least once is increased in epilepsy independently 300 
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of ktot. The grey dotted line represents the mean of the shuffled, null model. (C) The similarity 301 

index plotted as a function of ktot. The hubs become less substate-specific in the mEC in epilepsy. 302 

Blue and red are for control and epilepsy data, respectively. The bold lines are the mean, and the 303 

shaded regions are the 99% bootstrapped confidence interval.  304 

305 
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Alterations in the core-periphery organization of CA1 computing hubs in epilepsy 306 

The partners from whom a given neuron receives or to whom it sends information are 307 

continuously changing (Clawson et al., 2019). At each time step, the instantaneous sharing 308 

networks can be seen as having a dynamic core-periphery structure (Pedreschi et al., 2020), with 309 

a core of tightly integrated neurons, surrounded by lightly connected periphery neurons. Two 310 

key measures of the core-periphery structure are the coreness, how central or well-integrated 311 

within a dense subnetwork – how “core”– a given neuron is, and the Jaccard index, a measure 312 

indicating how similar (or, conversely, liquid) the connections are between the recorded neurons 313 

between two time steps. We find that average coreness and the overall coreness distribution 314 

shapes are not significantly changed in epilepsy for either mEC or CA1 (Fig S5). Thus, the core-315 

periphery architecture of information sharing networks within every substate is preserved in 316 

epilepsy. However, during the SO state, the average Jaccard values in CA1 are significantly 317 

decreased in epilepsy as compared to control (Fig S5). Thus, in CA1 there is enhanced connectivity 318 

variance and more volatile recruitment of neurons in the core. 319 

 320 

Assessing substate sequences 321 

The analysis of individual features (firing, storage and sharing) revealed brain state- and brain 322 

region-dependent alterations in epilepsy. We now focus on a more integrated view of the 323 

informational patterns, in which we consider both the simultaneity of the ongoing types of 324 

patterns and their articulation in sequences along time. We perform this higher-level exploration 325 

using the notion of information processing states (IPS), driven by the idea of symbolization, as 326 

shown in Figure 2A (Porta et al., 2015). From each analysis time window, we generate a four-327 
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letter word, with the letters representing the substate labels of the global state, firing, storage 328 

and sharing features measured in this time window (see Methods). When the analysis window is 329 

shifted by 1 s, another word is obtained, which is identical to the previous one if the substate 330 

does not change. This procedure allows us to reduce the description of the complex simultaneous 331 

variations of firing, storage and sharing patterns within the neuronal population to simple strings 332 

of symbolic words, a sort of “neuronal language” built of sequences of possible words in a 333 

dictionary. We can then assess how the properties of these strings are modified in epilepsy at the 334 

level of their dictionary and syntax. 335 

 336 

We defined all possible state tables generated through our k-means procedure as a library (Fig 337 

2). Now, as tables are considered as a sequence of words, we define the sequence of words 338 

generated as a book. The number of letters, and therefore the number of words, depend upon 339 

ktot. As a result, we label our differently generated books by ktot. All 512 possible books per 340 

recording are grouped together to form a library. For each library, we build two sister libraries 341 

for comparison: one in which we sort every book internally to be highly ordered, and one in which 342 

we randomize every book internally to be highly disordered (see Methods). Using this word/book 343 

analogy, we begin to explore the organization of the language of the information processing 344 

contained in the books held within the library – What words are expressed? Is there a syntax, or 345 

organizational rules? And how does epilepsy change these measures? 346 

  347 
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Impoverishment of the Dictionary in the mEC in Epilepsy 348 

For each ktot, there is a fixed number of potential words that can be generated and possibly 349 

appear within the associated book (see cartoon in Figure 5A). As in any language, only a fraction 350 

of all possible words is expressed. For each book, we measure the used dictionary fraction, or 351 

relative dictionary (see Methods). Figure 5A illustrates two end cases. The low relative dictionary 352 

(left) uses a small number of expressed words, while the high relative dictionary (right) uses a 353 

much richer vocabulary, wherein almost all of the potential dictionary is expressed. While the 354 

measure of relative dictionary in and of itself is informative, it is difficult to use such a measure 355 

to assess meaningful changes (i.e., before control and epilepsy) without having comparative 356 

baselines. Therefore, we compute not only the relative dictionary of our libraries, but also that 357 

of the ordered and random sister libraries (which correspond to the null hypotheses of order and 358 

disorder in the ‘language’ of the book, respectively). We then apply a linear transformation to 359 

the relative dictionary measure, resulting in 0 representing the relative dictionary measure of 360 

ordered books, and a value of 1 representing a relative dictionary measure identical to that of 361 

randomized books. Such a normalized relative dictionary measure tracks not only the richness of 362 

the used dictionary but also its position between order and disorder. 363 

 364 

Figure 5B shows that for both the mEC and CA1 in control and epilepsy conditions, the normalized 365 

relative dictionaries lie much closer to 0 than to 1, meaning that their relative dictionaries are 366 

much more similar to a system with organization that is ordered than disordered. In epilepsy, the 367 

relative dictionary is reduced with respect to control in the mEC (Figure 5B). Thus, the dictionary 368 

of state dynamics language seems impoverished in the mEC in epilepsy. There is also a reduction 369 
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in CA1, but only for books with low ktot values whereas it is increased for ktot > 15. This 'crossing' 370 

of control and epileptic near ktot = 15 may be potentially explained by the strength of clustering for sharing 371 

features (Fig S3). Contrary to all features, there exists only a small window of k for sharing in CA1 in which 372 

k_means clusters the feature better than a null model. Therefore, dictionaries made with poor clustering 373 

may drive the dictionary too high for low values of k. This is the first instance for which the generic 374 

rule that results should be independent of the choice of k, fails. However, this characterization 375 

of dictionaries further demonstrates that the alterations are brain region dependent. 376 

 377 

The relative dictionary provides important information about the words, but not how words are 378 

organized in time. This is similar to the grammar, or syntax, of a traditional sentence. To analyze 379 

this syntax (how words are organized from one window not the next), we quantify the level of 380 

organization present in the state tables as a whole, i.e., the overall dynamics of a system moving 381 

though IPSs (Figure 2A). 382 
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 383 

Figure 5 – Relative dictionaries within the libraries – (A) Fictional cartoons representing two 384 

extremes for the measure of relative dictionary. Each row represents a feature (firing, storage, 385 

sharing); for simplicity we do not take into account the brain states (THE and SO). We consider 386 

three substates (light blue, dark blue, green) per feature (using the same color code for 387 

simplicity), which makes a total of 33 = 27 words (the representation is similar to counting in 388 

base 3 with color, increasing from left to right). Words that are not observed are shaded. A low 389 

relative dictionary (left) contains a low fraction of all possible words, while a high relative 390 

dictionary (right) contains a high fraction. (B) Relative dictionary values as a function of ktot. As 391 

expected, the fraction of words used in control decreases as the number of possible words 392 

increases. The relative dictionaries are similar in mEC and CA1 in controls. There is a marked 393 

decrease in the relative dictionary in the mEC in epilepsy. In CA1, the relative dictionary in 394 

increased or decreased as compared to control as a function of ktot. Blue is representative of 395 
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control data and red is representative of epileptic data. The bold lines are the mean, and the 396 

shaded regions are the 99% bootstrapped confidence interval. 397 

 398 

The syntax of substate sequences is less regular in epilepsy 399 

Compressibility is a key property of an object as it represents the degree of internal order of the 400 

object. This is because any regularity within may be described by simply referencing its previous 401 

occurrence. Again, our state tables are bordered by two extreme cases: order and randomness 402 

(Figure 6A). An ordered table is dominated by a highly structured syntax, typically dominated by 403 

a lower dictionary and long periods of sustained words. Therefore, an ordered table is very 404 

compressible due to this internal order. A random table, on the other hand, typically contains an 405 

exceedingly high number of words, which follow each other in a disorderly (random) manner. 406 

This results in non-compressibility. A complex table is one that lies between those extremes. In 407 

order to characterize the complexity of the state tables, we compute a tailored form of 408 

description length complexity (Clawson et al., 2019; Rissanen, 1978), which is scaled to the sister 409 

libraries of order and disorder. Thus, in Figure 6B, 0 represents the complexity of the ordered 410 

library, something very compressible, while 1 represents the complexity of our disordered library, 411 

something very uncompressible (as shown in Figure 6A). In controls, the complexity is similar in 412 

mEC and CA1, close to an ordered table. In epilepsy, the complexity is significantly increased for 413 

all ktot values, while it is increased in the mEC at the high end of our library.  414 

 415 

Combining the results from Figures 5 & 6, we can propose the following interpretation. In CA1, 416 

the increase in complexity found in epilepsy, at least for books with sufficiently large ktot , can be 417 
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explained, at least in part, by an enriched dictionary, since enrichment of the relative dictionary 418 

positively correlate with complexity (Clawson et al., 2019). In the mEC, the relative dictionary 419 

decreases while the complexity mildly increases. Thus, mEC books have a less regular syntax 420 

despite being constructed out of a lesser number of words.  421 

 422 

Figure 6 – Order, disorder, and complexity – (A) Examples of state tables, similar to that of Fig 423 

2A, from the mEC showing the two extremes of order and disorder as well as one of the possible 424 

state tables taken from the state table library. (B) Complexity values for both the mEC and CA1 425 

as a function of ktot. The complexity is similar in mEC and CA1 in controls. In epilepsy, the 426 

complexity is largely increased in CA1, and only for large ktot values for mEC. Blue is representative 427 

of control data and red is representative of epileptic data. The bold lines are the mean, and the 428 

shaded regions are the 99% bootstrapped confidence interval.  429 
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Discussion 430 

This study provides evidence that epileptic conditions alter information processing in its simplest 431 

sense, the primitive storage and sharing operations as we introduce here, in a brain-region 432 

dependent manner. As these basic processes are necessarily involved in a variety of neural 433 

computations, their alterations may indirectly impact numerous cognitive functions.  434 

 435 

The main limitation to our study is that it is made under anesthesia, versus for example, goal-436 

directed behavior to assess cognitive function. The type of analysis we performed is powerful as 437 

it allows unraveling basic properties of information processing without needing to know which 438 

computations are ongoing. However, it requires long-duration, stable recordings with large state 439 

sampling to obtain enough data points to perform reliable statistics. We did not record during 440 

natural sleep, because seizures and interictal spikes (which would act as strong confounding 441 

factors) mostly occur during the light phase, while they do not occur under anesthesia. However, 442 

a similar type of analysis performed in control animals led to similar results during sleep and 443 

anesthesia (Clawson et al., 2019), suggesting that the anesthesia procedure we use does not 444 

significantly alter core information dynamics.  445 

 446 

We refer to the elementary information storage and sharing operations as primitive (or low level) 447 

information processing operations, as we consider them as fundamental building blocks within 448 

an algorithm to reach an end condition (like a function), similar to the “algorithmic level”, 449 

introduced by Marr & Poggio (1977). Algorithm is used here in its most generic meaning, as we 450 

do not claim that the brain is analogous to a computer. Such primitive processing operations, as 451 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.430768doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430768
http://creativecommons.org/licenses/by-nc-nd/4.0/


we define them, represent nothing else than the emergent “informational effect” of very 452 

concrete neurophysiological phenomena. Storage and sharing of information directly derive from 453 

auto- and cross-correlations in firing, which widely vary in neuronal populations (Schneidman et 454 

al., 2006), and can be directly measured from spiking activity of neurons. Other primitive 455 

processing operations exist, such as information transfer (Palmigiano et al., 2017; Schreiber, 456 

2000) or information modification (Lizier et al., 2013; Wibral et al., 2017). Our recordings and 457 

choice of a time-resolved approach do not provide enough data to track these more sophisticated 458 

operations. However, the processing functions of storage and sharing are especially important as 459 

they represent statistical measures of information flow in time, and spacetime, respectively.  460 

 461 

We show that primitive information processes are organized in temporal sequences of 462 

information processing substates (IPSs), which are extracted via a cluster analysis. We have used 463 

a non-biased approach, spanning many possible combinations of numbers of clusters. The fact 464 

that most results are independent from the choice of the number of clusters provides a strong 465 

argument for the genericity of our conclusions. With this approach, we demonstrate a 466 

degradation of complexity due to enhanced randomness in epilepsy. This conclusion stems from 467 

the convergence of complementary analyses. First, storage and sharing hubs are less robust, 468 

waxing and waning in a more erratic manner across substates and the recruitment of neurons 469 

into the integrated core of sharing networks is more volatile.  Second, average storage and 470 

sharing strength are more similar between brain states, and this “dedifferentiation” occurs 471 

despite the higher contrast between substates. Third, the state specificity of IPS is reduced, i.e., 472 

many IPSs are now redundant between THE or SO. Together, these results imply that a change in 473 
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brain state is no longer associated to strong specificity in information processing. Fourth, freed 474 

from the constraint of being strongly state-specific, the relative dictionary in epilepsy could, in 475 

principle, be increased. However, mEC has a decreased relative dictionary, which instead implies 476 

an ability to form unique IPSs. Yet, the description complexity of IPS sequences tends to be larger 477 

in epilepsy than control. In other words, IPS sequences have a less regular syntax despite being 478 

assembled out of less unique words.  479 

 480 

The IPS dynamics of CA1 show, in general, less alterations than that of mEC. The fact that 481 

information processing is affected in brain region-dependent manner is an important result. The 482 

mEC and CA1 have distinct cytoarchitectures and different fates following an epileptogenic insult. 483 

Most striking is the loss of layer 3 in the mEC, and the injury of many pyramidal cells and 484 

interneurons in the CA1 region (Curia et al., 2008). It is not possible to assign a given alteration 485 

in information processing to a given morpho-functional changes in the mEC or CA1. Global brains 486 

states (THE and SO) and IPSs are emergent properties. Any change in any brain region can 487 

potentially affect neuronal dynamics anywhere from the local to the global scale. Therefore, the 488 

morpho-functional alterations in mEC or CA1 may contribute to any combination of local and 489 

global changes. However, changes in terms of information processing do not necessarily have to 490 

be homogenous across brain regions. In fact, brain region-specific modifications are expected as 491 

each region is embedded in different functional networks. How these brain-region specific 492 

changes contribute to comorbidities (such as cognitive deficit, anxiety, and depression) remain 493 

to be determined. 494 

 495 
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Our measure of complexity is that of compressibility, accounting for the internal structure, i.e., 496 

how internally ordered are IPS syntaxes. Any change in this internal organization would thus 497 

imply an underlying change in algorithmic operation, resulting in different computation in control 498 

and epilepsy conditions. Our measure of complexity does not allow distinguishing beween an 499 

increase in processing versus an increase in noise, as complexity would grow in both cases. Other 500 

measures can be used, but they would require more data (Crutchfield, 2011). However, in CA1, 501 

books with large ktot have an increased, rather than decreased dictionary size, which may explain 502 

the strong increase in sequence complexity. It is not clear, however, that this dictionary increase 503 

is a positive factor as it may reflect a more irregular IPS selection, with rare IPSs indicating 504 

dysfunction in IPS sequential production. Another possibility is that boosted IPS sequence 505 

complexity in CA1 and, at a lesser extent, mEC is a compensatory mechanism to generate a more 506 

sophisticated syntax to compensate for other shortages, such as reduced hub stability and 507 

degraded state-specificity of IPS.  508 

 509 

In a biological context, the algorithmic level change comes as a result of altered collective, spiking 510 

activity and could lead to an entirely different expression of higher-level behavior, such as 511 

cognition. However, the question of whether this increase of complexity (decrease of internal 512 

order) observed in epilepsy is the source of cognitive deficits or not remains ultimately open. It 513 

has been theorized that “biological systems manipulate spatial and temporal structure to 514 

produce order – low variance – at local scales” in an effort to adapt and survive (Flack, 2019). 515 

Therefore, if networks are still functional in epilepsy conditions, are these manipulations now 516 

less effective? Or is the resulting low variance order now too difficult to sustain due to a 517 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.430768doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430768
http://creativecommons.org/licenses/by-nc-nd/4.0/


combination of physiological and functional changes? These issues remain to be addressed. 518 

Nevertheless, the approaches presented here introduce valuable insight into aspects of the 519 

collective behavior of neural populations, and provide a quantitative framework to answer such 520 

questions.  521 

 522 

In conclusion, the framework we introduce here to compare information processing between 523 

control and epilepsy, can be generalized to neurological disorders. Since most, if not all, of the 524 

latter, including migraine, Alzheimer’s disease, and Parkinson’s disease are associated with co-525 

morbidities, it will be particularly interesting to determine whether information processing at the 526 

algorithmic level is also affected in these disorders. Following the principle of degeneracy (Prinz 527 

et al., 2004), very different structural alterations, which characterize different neurological 528 

disorders, may produce similar alterations in information processing, providing an explanation 529 

for the commonalities of co-morbidities across different disorders.  530 

 531 

Methods 532 

Ethics 533 

All experiments were conducted in accordance with Aix-Marseille Université and Inserm 534 

Institutional Animal Care and Use Committee guidelines. The protocol was approved by the 535 

French Ministry of National Education, Superior Teaching, and Research, under the authorization 536 

number 01451-02. All surgical procedures were performed under anesthesia and every effort 537 

was made to minimize suffering and maximize the animals’ wellbeing from their arrival to their 538 

death. All the animals were housed in pairs in large cages with minimal enrichment, food and 539 
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water at libitum, in a room with controlled environment (temperature: 22 ± 1 °C; 12 h light/dark 540 

schedule with lights off at 8:00 pm; hygrometry: 55%; ventilation: 15-20 vol/h).   541 

Data information.  542 

We use in this work a portion of the data (5 out of 7 original experiments) initially published by 543 

Clawson et al. 2019 as control data, which includes local field potentials (LFPs) and single-unit 544 

recordings obtained from the dorsomedial entorhinal cortex (mEC) and the dorsal hippocampus 545 

(HPC) of anesthetized rats. Six recordings are original data, which includes LFPs and single-units 546 

recorded in the mEC and HPC recorded simultaneously under anesthesia in epileptic condition. 547 

See Figures S1 for details on recordings, number of cells, and layers recorded.   548 

Epilepsy model and surgery.  549 

We induced status epilepticus (SE) on 6 male Wistar (250–400 g; Charles Rivers) by a single 550 

intraperitoneal (IP) injection of pilocarpine (320 mg/kg; Sigma-Aldrich), one week after receiving 551 

the animals from the vendor. To reduce peripheral effects, rats were pre-treated with methyl-552 

scopolamine (1 mg/kg, IP; Sigma-Aldrich) 30 min before the pilocarpine injection. SE was stopped 553 

by diazepam (10 mg/kg, IP, two doses within a 15-min interval) after 60 min. Then the animals 554 

were hydrated with saline (2 ml, IP, twice within 2 h) and fed with a porridge made of soaked 555 

pellets, until they resumed normal feeding behavior.  556 

At least 8 weeks after SE induction, we performed acute recordings. Rats were first quickly placed 557 

in isoflurane (4% in 2l/min O2) and injected IP with urethane (1.5 g/kg) and ketamine/xylazine (20 558 

and 2 mg/kg, IM), additional doses of ketamine/xylazine (2 and 0.2 mg/kg) being supplemented 559 

during the electrophysiological recordings. At all times the body temperature was monitored and 560 

kept constant with a heating pad. Heart rate, breathing rate, pulse distension, and arterial oxygen 561 
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saturation were also monitored with an oximeter (MouseOX; StarrLife Sciences) during the 562 

duration of the experiment to ensure the stability of the anesthesia and monitor the vital 563 

constants. The head was fixed in a stereotaxic frame (Kopf) and the skull was exposed and 564 

cleaned. Two miniature stainless-steel screws driven into the skull above the cerebellum served 565 

as ground and reference electrodes. Two craniotomies were performed to reach the mEC and 566 

the CA1 field of the HPC, respectively: from bregma: -7.0 mm AP and +4.0 mm ML; and from 567 

bregma: -3.0 mm AP and +2.5 mm ML. We chose these coordinates to respect known anatomical 568 

and functional connectivity in the cortico-hippocampal circuitry (Witter et al., 1988; Witter et al., 569 

1989). Two 32-site silicon probes (NeuroNexus) were mounted on a stereotaxic arm each. A 570 

H1x32-10mm-50-177 was lowered at 5.0-5.2 mm from the brain surface with a 20° angle to reach 571 

the dorso-medial portion of the mEC, and a H4x8-5mm-50-200-177 probe was lowered at 2.5 572 

mm from the brain surface with a 20° angle to reach dorsal CA1. The on-line positioning of the 573 

probes was assisted by: the presence of unit activity in cell body layers and the reversal of theta 574 

([3 6] Hz in anesthesia) oscillations when passing from layer 2 to 1 for the mEC probe, and the 575 

presence in stratum pyramidale either of unit activity and ripples (80-150 Hz) for the HPC probe. 576 

At the end of the recording, the animals were injected with a lethal dose of Pentobarbital Na 577 

(150mk/kg, i.p.) and perfused intracardially with 4% paraformaldehyde solution. We confirmed 578 

the position of the electrodes (DiIC18(3) (catalog #46804A, InterChim) was applied on the back 579 

of the probe before insertion) histologically on 40 µm Nissl-stained section as reported previously 580 

in detail (Ferraris et al., 2018; Quilichini et al., 2010). We used only experiments with appropriate 581 

position of the probe for analysis.  582 

Data collection and spike sorting. 583 
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Extracellular signal recorded from the silicon probes was amplified (1000x), bandpass filtered (1 584 

Hz to 5 kHz) and acquired continuously at 32 kHz with a 64-channel DigitalLynx (NeuraLynx) at 585 

16-bit resolution. We preprocessed the raw data using a custom-developed suite of programs 586 

(Csicsvari et al., 1999). The signals were down-sampled to 1250 Hz for the local field potential 587 

(LFP) analysis. Spike sorting was performed automatically, using KLUSTAKWIK 588 

(http://klustakwik.sourceforge.net (Harris et al., 2000)), followed by manual adjustment of the 589 

clusters, with the help of auto-correlogram, cross-correlogram and spike waveform similarity 590 

matrix (KLUSTERS software package, http://klusters.source-forge.net (Hazan et al., 2006)). After 591 

spike sorting, we plotted the spike features of units as a function of time, and we discarded the 592 

units with signs of significant drift over the period of recording. Moreover, only units with clear 593 

refractory periods and well-defined cluster were included in the analyses (Harris et al., 2000). 594 

Recording sessions were divided into brain states of theta (THE) and slow oscillation (SO) periods 595 

using a visual selection from the ratios of the whitened power in the HPC LFP [3 6] Hz theta band 596 

and the power of the mEC LFP neighboring bands ([1 3] Hz and [7 14] Hz), and assisted by visual 597 

inspection of the raw traces (Ferraris et al., 2018; Quilichini et al., 2010). We then used band-598 

averaged powers over the same frequency ranges of interest as features for the automated 599 

extraction of spectral states via unsupervised clustering, which confirmed our manual 600 

classification. We determined the layer assignment of the neurons from the approximate location 601 

of their soma relative to the recording sites (with the largest- amplitude unit corresponding to 602 

the putative location of the soma), the known distances between the recording sites, and the 603 

histological reconstruction of the recording electrode tracks. Animals were recorded for at least 604 

two hours in order to get few alternations of THE and SO episodes. 605 
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 Feature Computation 606 

As in our previous work, for each region recorded we computed 4 main features from the 607 

electrophysiological data: global oscillatory band, neuronal firing sets, active information storage 608 

and the information sharing. We also keep the same sliding window paradigm where each 609 

feature is computed within a 10 second window, and then the window is then moved forward in 610 

time 1 second, which gives a 9 second overlap. Therefore, when features are computed as 611 

described below, they are computed in this windowed fashion. The global oscillatory band 612 

features were computed by examining the LFP from both EC and CA1 and computing spectral 613 

power within 8 unequally sized frequency ranges (0–1.5 Hz, 1.5–2 Hz, 2–3 Hz, 3–5 Hz, 5–7 Hz, 7–614 

10 Hz, 10–23 Hz and 23–50 Hz), averaged over all channels within each of the recorded layers. 615 

 Firing sets, active information storage, and the information sharing networks were all computed 616 

using a binarized raster built from the temporal labeling of spike firing (see Data Collection and 617 

Spike Sorting). Spiking data was binned using a 50 ms bin; if a neuron fired within a given bin the 618 

output is a ‘1’, and if not, a ‘0’. This, for example would mean that a 2-hour recording would be 619 

transformed from a 7200 second × N neuron matrix to a 7200000 × N neuron matrix that is 620 

composed solely of 0’s and 1’s. Firing sets were computed by computing the average firing 621 

density for each neuron within a window, and after these averages were compiled into time-622 

dependent vectors. This resulting matrix is the Firing Features. Active information storage was 623 

computed by measuring the mutual information of a neuron’s binarized spike train between a 624 

given window and the window previous. What active information storage seeks to capture is the 625 

temporal ordering of individual spiking neurons, rather than capturing neurons that fire 626 

temporally close to one another (such as in the firing features). The resulting matrix is the Storage 627 
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Features. Information sharing is computed by measuring the mutual information between a given 628 

neuron’s binarized spike train within a window and another neuron’s binarized spike train in the 629 

window previous. This process is iterated over all possible neuron pairs. Information sharing 630 

captures a similar metric to that of active information storage, although the key difference is that 631 

information sharing captures not just the temporal ordering, but the spatio-temporal ordering of 632 

spike timing, as it is computed across neuron pairs, rather than individual neurons. The resulting 633 

matrix is the Information Sharing. Although these measures have only been briefly described 634 

here, we suggest to the interested reader to examine the methods presented in our previous 635 

work [REF] where they have been rigorously defined. 636 

 637 

Feature-Based Substate Extraction 638 

State extraction for each recording were also computed using the methods of our previous work, 639 

namely based around k-means clustering of each feature. The exception here, is we no longer 640 

choose a stable number of K clusters in k-means. Rather we cluster our 3 raster-based computed 641 

features (firing, storage, sharing) 3 separate times with K ranging from K = 3, 4, … 10. The function 642 

‘kmeans’ was used from the default MATLAB toolbox. More information can be found on the 643 

Mathworks website. These K values were chosen as they represented a clustering range of too 644 

gross to too fine based on previous findings. K <= 2 would represent the same, or less, number 645 

of states as global states, which was previously established to be too small (Clawson et al., 2019). 646 

The clustering became too fine when K >= 10, wherein many substates only appeared for brief 647 

time periods, and never re-occurred. For each feature there are 8 different clustering results, 648 

done in an unsupervised manner 3 times to ensure that our results do not rely on single instance 649 
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of clustering. This gave our analysis an opportunity to compute all metrics defined below over a 650 

robust range of K, ensuring that we can investigate how our substate stable metrics and results 651 

vary with arbitrarily too little or too many substates.  652 

 653 

To compute the null model for substate extraction the process detailed above was repeated with 654 

the time stamps of all firing, storage and sharing jittered. This therefore retains the global mean 655 

and variance. Then, k-means was run on this jittered dataset 3 times, to produce 3 different 656 

clustering of the randomized dataset. These were not modified after this step and were used in 657 

any instances where a null model was needed (i.e. for silhouette and contrast).  658 

 659 

Substate Tables 660 

Our main meta-object of study is a state table, a combination of our four features into a matrix 661 

(4 x number of windows). Table generation is an iterative process, as we have 8 possible substate 662 

configurations per feature. First, k = 3 in cluster attempt 1 for firing (FIRE K3C1), k = 3 in cluster 663 

attempt 1 for storage (STOREK3C1), and k = 3 in cluster attempt 1 for sharing (SHAREK3C1), are used 664 

in conjunction with the clustered spectral substates to form substate table 1 (Figure 2A).  665 

 666 

Then, FIRE K3C1, STOREK3C1, and SHAREK4C1 are used in conjunction with the clustered spectral 667 

substates to form substate table 2. After, FIRE K3C1, STOREK3C1, and SHAREK5C1 used in conjunction 668 

with the clustered spectral substates to form substate table 3. This process continues such that 669 

all combinations of possible k values have been saved for a total of 512 different substate tables, 670 

with the final table having FIRE K10C1, STOREK10C1, and SHAREK10C1. It is important to note that all 671 
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tables have the same spectral clustering, as the 2 substates of SO and THE are extremely robust 672 

as discussed above. This entire process is then repeated for each clustering attempt, resulting in 673 

3 sets of our 512 substate tables for each region for each recording. Where applicable, all results 674 

are given as a function of total k states per table (i.e. for state table 1, there are 2 global states, 675 

3 firing, 3 storage and 3 sharing for a total ktotal = 11).  676 

 677 

To produce the ordered tables for the ‘ordered’ null model, each substate table was sorted such 678 

that all substates with label ‘1’ appeared first, label ‘2’ was second, and so on and so forth. This 679 

can easily be achieved with the MATLAB function sort. Note that there is only one possible 680 

version of this type of ordering, and therefore the sample size for ordered tables is the same as 681 

recordings (n = 5 for control, n = 6 for epilepsy). To produce the randomized tables, substate 682 

labels were randomly permuted in time. For this process, we used bootstrapping to produce as 683 

5000 randomizations to ensure the random null model was as strong as possible. To do this, 90% 684 

of each table was taken, randomly permuted and saved. These resulting tables were used as the 685 

random null model for relative dictionary and complexity seen in Figure 5 & 6.  686 

 687 

Contrast 688 

To calculate contrast for a given feature we first calculate its global mean for each neuron (i.e., 689 

global mean firing per neuron). Here, ‘global’ refers to the entire recording. We then calculate 690 

the substate mean for each neuron by concatenating all periods of a given substate and 691 

calculating the mean across the ‘entire’ substate. The formula for contrast is then defined as the 692 
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difference between the substate mean firing rate and the global mean firing rate, normalized by 693 

the global mean firing rate. 694 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  
𝜇𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑒 − 𝜇𝑔𝑙𝑜𝑏𝑎𝑙

𝜇𝑔𝑙𝑜𝑏𝑎𝑙
 695 

This allows the contrast to be either positive or negative. This process was done for all 3 features 696 

of firing, storage and sharing such that there are contrast values for each. This process was 697 

repeated for all possible clustering, therefore a contrast value per feature per k.  698 

 699 

Substate-Specificity 700 

To compute the distribution of substates within periods of SO and THE we counted the number 701 

of times a substate appeared within a given epoch. Some substates exclusively appeared in only 702 

SO or THE, while others occurred in both.  From these frequencies we estimated p(THE) and 703 

p(SO), i.e. the probability of a given substate occurring in either THE or SO, respectively. SSI is 704 

then: 705 

𝑆𝑆𝐼 =  |𝑝(𝑇𝐻𝐸) − 𝑝(𝑆𝑂)| 706 

This equation results in SSI bound between 0 and 1, where 1 represents a state who exclusively 707 

occurs in either THE or SO and 0 represents a state that occurs equally in THE and SO.  708 

 709 

Hubs & Hub Stability 710 

In this work we define a hub neuron in the same way as our previous work. Namely, for a given 711 

feature if a neuron’s activity within a given substate was higher than the 90th percentile it was 712 

marked as a hub for the feature for that state. We compute hubs for every iteration of state table 713 

as defined above, such that we have a graph, or matrix, (see FIG 4A) for each state table. These 714 
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matrices are Neuron × ktotal where each entry is either a ‘0’ for non-hub or ‘1’ for hub. To compute 715 

how stable each of these matrices are as a function of k, we compute the normalized hamming 716 

distance of each matrix using the pdist2 function in MATLAB but modified so that it gives a sense 717 

of how stable hubs are across states, where perfect similarity would result in a ‘1’, and no 718 

similarity at all would give a ‘0’.  719 

 720 

Coreness & Jaccard 721 

The values for coreness  & Jaccard were computed using the methods presented in Pedreschi et 722 

al. (2020). These were then analyzed using the same sliding window technique as presented in 723 

‘Feature Computation’. After, periods of THE and SO were analyzed with similar techniques as 724 

that of Figure 1.  725 

 726 

Dictionary & Complexity 727 

To compare sequences of substates of different types or in different regions we introduced a 728 

symbolic description of substate switching. With this description, each substate label acts as a 729 

letter symbol s(p), where (p) can indicate firing, sharing or storage. For example, the firing features 730 

from the example substate table 1 [FIG 2A] would have the integer labels 1, 2, 3, and 4 (they can 731 

also arbitrarily be assigned letters as well, i.e. A, B, and C).  We can therefore describe the 732 

temporal sequences of the visited substates of each feature as an ordered list of integers s(p)(t). 733 

Once substate labels are thought of as letters, we define the combination of firing, storage and 734 

sharing letters in each state table from a given window as 3 letter words. Using the formalism of 735 

linguistics, we can then compute the dictionary, or the number of words expressed, of a given 736 
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recording within a region. We can also compute the used dictionary fraction, or the number of 737 

words found in the dictionary divided by the number of theoretically possible words given the 738 

number of substates per feature. For example, substate table 1 could have expressed 27 unique 739 

words.  The used dictionary fraction was computed in an identical way to that of Clawson et al 740 

2019. Specially, see ‘Complexity of substates sequences.  741 

 742 

Using these methods, we compute the complexity of the sequences expressed using the notions 743 

of Kolmogorov-Chaitin complexity and minimum description length approaches (Crutchfield, 744 

2011). While further discussion of method can be found here (Clawson et al., 2019) – the aspects 745 

of this complexity measure that is relevant for this work is that a random sequence of letters (and 746 

words) produces a higher complexity, while an ordered sequence of letters (and words) would 747 

produce a low complexity.   748 

 749 

Ordered & Random Substate Tables 750 

To have relevant points of reference in our measures, each substate table was ordered and 751 

randomized. For the case of ordering, all substate labels for all features were sorted in ascending 752 

order which keeps the total lifetime of any state constant, while removing the temporal 753 

organization in an ordered fashion. In the case of randomization, all substate labels for all features 754 

were randomized 500 times, which again keeps the total lifetime of any state constant, while 755 

removing the temporal organization in a random fashion.  756 

To compute the relative minimums and maximums for comparisons between order and random 757 

the MATLAB function ‘rescale’ was used. The minimums were computed using the average (of a 758 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.430768doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430768
http://creativecommons.org/licenses/by-nc-nd/4.0/


given measure) of all ordered state tables for a given ktotal and the maximums were computed 759 

using the average (of a given measure) of all random substate tables for a given ktotal.  760 

Plotting 761 

Various tools were used for plotting. While mostly done via MATLAB, other tools were also 762 

used from ‘Moving Beyond p-values’ (Ho et al., 2019). 763 

 764 
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Supplementary Figures 964 

 965 

S1 – Frequency and Power Relationships in mEC and CA1 in control and epilepsy conditions – 966 

(A) (Far Left) A comparison of ratios between peak frequencies during periods of SO and THE in 967 

both control and epileptic conditions for mEC and CA1. (Middle and Right) Peak frequencies 968 

used in the previous graph for periods of SO and THE in control and epilepsy for mEC and CA1. 969 

There was a strong and smaller effect size on THE and SO peak frequency in CA1 in TLE, 970 

respectively. In these Cumming estimation plots, circles represent the mean, and all bars 971 

represent a 99% bootstrapped confidence interval. (B) The average power found in periods of 972 

SO and THE shown next to their ratio for both mEC and CA1. Note the strong effect size on THE 973 
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and SO power in the mEC, and to a lesser extent on THE power in CA1. For all graphs, 5000 974 

bootstrap samples were taken; the confidence interval is bias-corrected and accelerated.   975 
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 976 

S2 – Average feature values presented as a function of mEC and CA1 in control and 977 

epilepsy conditions – The same graph as Figure 1D presented in an alternate format to 978 

highlight regional differences in control and epilepsy. The differences between mEC and 979 

CA1 during THE and SO are similar in control and epilepsy for average firing and average 980 

storage. The difference tends to increase for average sharing, but the effect size is 981 

consistent Circles and triangles represent the mean, and all bars represent a 99% 982 

bootstrapped confidence interval.   983 
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 984 

S3 – Null model with mean silhouette difference – The mean silhouette difference between a 985 

randomized null clustering model and the silhouettes found using k-means on non-shuffled 986 

data. Each point was calculated by computing mean silhouette values from a random selection 987 

of the randomized and normal clustering and taking the difference. This was done 500 times to 988 

produce error bars, but the error bars were so small that they appear to be squares on the 989 

graph. The blue line is representative of control data and the red line represents epilepsy data. 990 

There is a very large difference for firing and storage modalities from the null model for all k 991 

values in both CA1 and mEC in control and epilepsy conditions. Of special note is the sharing 992 

states found within CA1 (bottom right). We find that for both control and epilepsy conditions, 993 
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our measure crosses 0 at k=5 and k=7, respectively, but fluctuates back above 0 until k=9 states 994 

in control and k=10 in epilepsy. This would indicate that the clustering only weakly holds in 995 

these intermediate values of k before not separating states better than a null, shuffled model 996 

up until the higher k values. Therefore, it may be that the states are either less definable in CA1 997 

or, that on average there tend to be more states for sharing in both the control and epileptic 998 

states in CA1 and would therefore require higher k, on average. 999 
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 S4 – Contrast Values for Control vs Epilepsy in CA1 – Average contrast difference between 1000 

control and epilepsy is shown with respect to both feature and number of states, k. The circles 1001 

represent the mean difference, the thick blue bars represent the 25-75% quantile and the thin 1002 

blue bars represent the 1-99% quantile. The red dotted line is to add the null hypothesis line of 1003 

no significant difference between control and epilepsy.  1004 
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 1005 

S5 – Coreness and Jaccard Values – Average values and difference of differences graphs for 1006 

data features taken from sharing networks, found using the sharing feature, for both 1007 

control and epileptic animals. Circles and triangles represent the mean, and all bars 1008 

represent a 99% bootstrapped confidence interval. Note the very large effect size in the 1009 

decrease of the Jaccard index in CA1 during SO. Accordingly, the brain state specificity of 1010 

connectivity variance is lost. Significance is shown using the symbol (*) with their standard 1011 

corresponding meaning (*, p<0.05; **, p<0.01; ***, p<0.001).  1012 
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ST1 – P value reporting: THE/SO unpaired mean difference 1013 

 mEC CA1 

Firing mean 
difference 

CI P 
value 

mean 
difference 

CI P value 

Control  
-0.0593 

[-0.0815, -
0.0365] 

0 -0.0475 
[-0.0823, -

0.0162] 
0.0002 

Epilepsy  
-0.0217 

[-0.0432, -
2.55e-05] 

0.008 0.00082 
[-0.0226, 
0.0263] 

0.00082 

Storage       
Control  

-0.133 
[-0.18, -
0.0859] 

0 -0.0828 
[-0.146, -
0.0214] 

0.0002 

Epilepsy  
-0.0584 

[-0.0933, -
0.0224] 

0 0.0034 
[-0.0452, 
0.0528] 

0.0034 

Sharing       
Control  

0.109 
[0.0643, 

0.16] 
0 0.0582 

[0.0369, 
0.0814] 

0 

Epilepsy  
0.0535 

[-0.022, 
0.128] 

0.0594 0.0285 
[0.0105, 
0.0435] 

0 

 1014 

The p-value reported here is from a two-sided permutation t-test with CI intervals at 99%. 5000 1015 

bootstrap samples were taken; the confidence interval is bias-corrected and accelerated. The P 1016 

value(s) reported are the likelihood(s) of observing the effect size(s) if the null hypothesis of 1017 

zero difference is true. For each permutation P value, 5000 reshuffles of the control and test 1018 

labels were performed. They are included here to satisfy a common requirement of scientific 1019 

journals. (Ho et al., 2019)  1020 
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ST2 – P value reporting: Difference of Difference Graphs 1021 

 mEC HPC 

 Effect CI P 
value 

Effect CI P 
value 

Firing       

Control v Epilepsy -0.025 [-0.043, -0.007] <0.001 -0.031 [-0.051, -
0.011] 

<0.001 

THE v SO -0.044 [-0.062, -0.026] <0.001 -0.023 [-0.044, -
0.003] 

0.003 

Diff of Diff 0.0377 [0.001, 0.0744] 0.008 0.048 [0.0072, 
0.0889] 

0.002 

Storage       

Control v Epilepsy -0.126 [-0.161, -0.092] <0.001 -0.107 [-0.147, -
0.068] 

<0.001 

THE v SO -0.104 [-0.138, -0.069] <0.001 -0.041 [-0.081, -
0.002] 

0.007 

Diff of Diff 0.0783 [0.0099, 0.1467] 0.003 0.083 [0.0041, 
0.1619] 

0.007 

Sharing       

Control v Epilepsy 0.0122 [-0.032, 0.0563] 0.474 -0.033 [-0.047, -
0.018] 

<0.001 

THE v SO 0.0844 [0.0443, 0.1325] <0.001 0.0433 [0.029, 
0.0576] 

<0.001 

Diff of Diff -0.052 [-0.141, 0.0359] 0.126 -0.03 [-0.-58, -0.001] 0.007 

Coreness       

Control v Epilepsy -0.003 [-0.019, 0.0124] 0.578 0.001 [-0.012, 
0.0143] 

0.849 

THE v SO 0.0126 [-0.003, 0.0285] 0.04 0.0056 [-0.008, 
0.0188] 

0.28 

Diff of Diff 0.0099 [-0.022, 0.0416] 0.42 0.0205 [-0.006, 0.047] 0.047 

Jaccard       

Control v Epilepsy 0.0158 [0.0074, 0.0241] <0.001 -0.046 [-0.051, -
0.042] 

<0.001 

THE v SO 0.0615 [0.0615, 0.0782] <0.001 0.0325 [0.028, 
0.0369] 

<0.001 

Diff of Diff -0.009 [-0.026, 0.0076] 0.16 -0.084 [-0.093, -
0.075] 

<0.001 

 1022 
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