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Abstract

Neurological disorders share common high-level alterations, such as cognitive deficits, anxiety,
and depression. This raises the possibility of fundamental alterations in the way information
conveyed by neural firing is maintained and dispatched in the diseased brain. Using
experimental epilepsy as a model of neurological disorder we tested the hypothesis of altered
information processing, analyzing how neurons in the hippocampus and the entorhinal cortex
store and exchange information during slow and theta oscillations. We equate the storage and
sharing of information to low level, or primitive, information processing at the algorithmic level,
the theoretical intermediate level between structure and function. We find that these low-level
processes are organized into substates during brain states marked by theta and slow
oscillations. Their internal composition and organization through time are disrupted in epilepsy,
loosing brain state-specificity, and shifting towards a regime of disorder in a brain region
dependent manner. We propose that the alteration of information processing at an algorithmic
level may be a mechanism behind the emergent and widespread co-morbidities associated with

epilepsy, and perhaps other disorders.
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Introduction

Most, if not all, neurological pathologies, including Alzheimer’s disease, epilepsies, and
Parkinson’s disease, aside from their specificities, display commonalities in terms of cognitive
(e.g., memory) and mental (e.g., anxiety and depression) disorders (Hesdorffer, 2016).
Historically, attempts have been made to correlate higher-level changes to the underlying
structural alterations. However, structural alterations may be very different from one pathology
to the next, even within a given brain disorder. The origin of shared and generic deficits must
therefore be sought for at a level higher than the structural one. We hypothesize that diverse
pathological mechanisms can lead to similar modifications of information processing, emerging
from, and existing between, structural and functional levels. Whether information processing is
modified in a pathological context is not known. Furthermore, a formal framework for the

guantification of these processes is missing.

As a model of neurological disorder, we consider Temporal Lobe Epilepsy (TLE), the most
common form of epilepsy in adults (Tatum, 2012). TLE is itself highly heterogenous in terms of
differences of histopathology (Blumcke et al., 2013), semiology (Barba et al., 2007; Bartolomei et
al., 2008) and cognition and mental state (de Barros Lourenco et al.,, 2020; Holmes, 2015;
Krishnan, 2020). Such heterogeneity is also found in experimental models of TLE (Rusina et al.,
2021). Structural alterations may change several features that are relevant for information
processing, such as rate coding, temporal coding, synaptic plasticity, and network oscillations
(Lenck-Santini & Scott, 2015). In keeping with this proposal, hippocampal place cells are unstable,

firing becomes randomized during ripples, synaptic plasticity, and oscillations are altered, and
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these changes are correlated with deficits in hippocampus-dependent spatial memory in
experimental epilepsy (Chauviére et al., 2009; Inostroza et al., 2013; Lenck-Santini & Holmes,
2008; Lopez-Pigozzi et al., 2016; Suarez et al., 2012; Valero et al., 2017). Given this diversity of
deficits, it is reasonable to presume that in TLE local information processing is altered at a more

fundamental level, with widespread impacts on multiple functions.

It is difficult to link specific alterations at the structural level to high order cognitive deficits as we
do not know where information processing is localized, what is being processed, nor how it is
integrated into function. In other words, with reference to the notion of the algorithmic level
introduced by Marr and Poggio (1977), we do not know what are the “algorithms” that bridge
structure and function. The common axiomatic view is that neural information processing stems
from the spatiotemporal organization of the firing of neurons. Information theory was designed
to be agnostic to the content of information and thus provides useful metrics to track primitive,
or fundamental, information processing operations (Shannon, 1948). Neuronal firing intrinsically
carries information due to its statistical properties. Auto-correlations in firing actively maintain
this information through time - active information storage (Lizier et al., 2012; Wibral et al., 2014),
and cross-correlated firing between different neurons allows the sharing of this information
between themselves (Kirst et al., 2016). Focusing on such basic operations allows investigation
of how patterns of coordinated neural firing may translate into primitive low-level information
processing (Clawson et al., 2019), akin to the algorithmic level. Here, we hypothesize that the key
differences between control and epileptic networks are not only present at the structural level,

but also at a more general and core algorithmic level of quantifiable primitive operations.
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To test this hypothesis, a multilevel experimental approach is required (Scott et al., 2018). Multi-
channel electrode recordings of neural populations provide such a dataset which spans two levels
of analysis: the action potential at the neuronal level and oscillations at the population level. As
neural computation is brain state dependent (Quilichini & Bernard, 2012), we consider the global
brain states of theta (THE) and slow oscillations (SO), which can be recorded during anesthesia.
Previous work in control animals demonstrate that neuronal activity patterns in the hippocampus
and entorhinal cortex switch between different information processing substates (IPSs) (Clawson
et al., 2019). An IPS corresponds to an epoch in which primitive operations of information storage
and sharing in a local microcircuit remain temporally consistent. IPSs continuously switch from
one IPS to another, similarly to what has been described at higher level of organization, such as
the dynamics of resting state networks and EEG microstates (Calhoun et al., 2014; Van de Ville et
al., 2010). In the control hippocampus and entorhinal cortex, the sequences of IPSs are complex,

i.e. standing between order and disorder (Clawson et al., 2019).

Using an unbiased quantification of IPSs, we compare their properties and organization between
control and experimental epilepsy conditions. We focus on the hippocampus and the entorhinal
cortex, two major structures commonly affected in TLE (Curia et al., 2008). We find that IPS’
internal organization and switching dynamics, although not suppressed, shift toward a less
structured and more random spatiotemporal organization in experimental epilepsy than in
control. Such disruption of information processing at the algorithmic level itself could underly the

general performance impairments in TLE.
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88  Results
89  Design
90 We analyze the local field potentials (LFPs) and action potentials from individual neurons
91 measured in the hippocampus (CA1) and medial entorhinal cortex (mEC) from control (n =5) and
92  experimental epilepsy (n =6) rats under anesthesia (Figure 1A-B, see Methods for details).
93  Unsupervised clustering of the spectral content of LFPs reveals that field activity continuously
94  switches between two states: slow oscillations (SO, 0.5-3 Hz) and theta oscillations (THE, 3-6 Hz)
95  (Figure 1B, S1). As previously reported in freely moving animals (Chauviére et al., 2009), THE
96 power and peak frequency are decreased in CAl in experimental epilepsy (Figure S1). Although,
97  the peak frequencies of THE and SO are not modified in the mEC in epilepsy, their power is
98 decreased (Figure S1). However, both frequency and power ratios between SO and THE are
99  similar in control and epilepsy.
100
101  We extract three features from the spike trains using a sliding widow procedure (Figure 1B-C):
102 (1) firing, the number of times a neuron fired within a window, (2) storage, the information
103  theoretical measure of active information storage (Lizier et al., 2012; Wibral et al., 2014), which
104  captures temporal patterns of spiking for a single neuron within a window — notably in our case,
105 how regular or repetitive these patterns are — and (3) sharing, an information theoretical
106  measure of information sharing (Kirst et al., 2016), which captures spatiotemporal patterns of
107  coordinated spiking across neurons within a window. First, we examine whether these features
108 are dependent upon the brain state (THE versus SO), the region (CA1 versus mEC) and the

109  condition (control versus epilepsy).
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110  Epilepsy reduces firing, storage and sharing differences between THE and SO states

111  In control animals, we find that in both regions, average firing and storage of all neurons is larger
112 during THE than SO, while average sharing is lower (Figure 1D, see also S2), in keeping with the
113 idea that neuronal computation is brain state-dependent (Quilichini & Bernard, 2012). In
114  epilepsy, we find that average firing and storage are decreased during THE, but not during SO, as
115 compared to control in both mEC and HPC. As a consequence, the brain state-dependency of
116 firing and storage, which is consistent across controls, is reduced in both regions in epilepsy
117  (Figure 1D). There is thus, in epilepsy, a large deviation from the operating mode found in control
118  conditions.

119

120  We have previously shown that THE and SO states are in fact characterized by a complex dynamic
121  organization in terms of firing, storage or sharing features (Clawson et al., 2019). A feature value
122  (e.g., storage) can remain stable during a given time period (i.e., during successive windows),
123 before switching to a different feature value with its own period of stability. We called these
124  periods of stability substates of firing, storage or sharing. We begin by assessing the properties
125  of substates in control and in epilepsy, as substate switching constitutes an important qualitative
126  aspect of coordinated firing dynamics.

127
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130  Figure 1: Experimental and analytical design - (A) Cartoon representing the approximate recording

131  locations in mEC (orange) and CA1 (blue) in control and experimental epilepsy. (B) Example of LFP (top)
132 and firing (bottom, each line represents one neuron, a dot represents an action potential) data recorded
133 in control CA1 and mEC during SO and THE. Overlayed is a representation of our analytic method that
134  uses 10 s long sliding windows shifted by 1 s at each step. (C) Cartoon examples of the four acquired
135  data features. (D) Average values and difference of differences graphs for data features taken from

136  spiking data during epochs of THE and SO in mEC (top) and CA1 (bottom) in both control and epilepsy
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137  conditions. See S2 for the same graph represented as a function of region, rather than oscillatory state.
138  Circles and triangles represent the mean, and all bars represent a 99% bootstrapped confidence interval.
139  Significance is shown using the symbol (*) with their standard corresponding meaning (*, p<0.05; **,

140  p<0.01; ***, p<0.001). The numerical values are provided in Table S1.

141

142  Terminology, metrics, and methodology

143 Figure 2A illustrates an example of the procedure for a ~ 25 min long recording performed in the
144  mECin a control animal. Spectral analysis of the LFP reveals the alternation between THE and SO
145  states (upper row). Through an unsupervised substate extraction procedure based on k-means
146  clustering (see Methods), we identify in this example 4, 3, and 5 substates of stable patterns for
147  firing, storage and sharing, respectively. The four features together, seen as 4 rows in Fig 2A,
148  define a switching table. Each time point in the table corresponds to an information processing
149  state (IPS), i.e. a combination of global state, firing rate, storage, and sharing patterns at this time
150 point. By characterizing which neurons fire, how much, and with which correlation properties, an
151 IPS provides a robust characterization of the pattern of coordinated activity occurring within each
152  temporal window. Note that the switching transitions from one substate to the next are not
153  necessarily synchronous between the different features, a property found in all recordings. In
154  Figure 2B, we show, encoded as vertical color bars, the absolute values of firing, storage and
155  sharing features that different neurons assume in the different substates. For a given feature,
156 the values appear clearly different for a given neuron between substates. We will quantify these

157 differences in the next section.

158
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159 The switching table of Figure 2A is constructed using an unsupervised clustering algorithm, k-
160 means, guided by an a priori assumption that (1) there exist separable clusters of data and (2)
161 there are exactly k of these clusters (here 4, 3, and 5 for firing, storage and sharing, respectively).
162  Using a null model, we demonstrate that there exist separable clusters (Figure S3). However, as
163  the ground truth of how many clusters exist is unknown, statistical criteria can be used to find
164  the optimal number (as done in Clawson et al., 2019). Here, we use a more general approach
165 varying the k value for each firing, storage, and sharing feature while fixing k = 2 for the spectral
166  feature. Each quadruplet of k values will produce a specific switching table. Figure 2C illustrates
167  this concept, showing the resultant clustering of storage substates through time as k increases
168 from 3 to 10. A low value may underestimate the real number of substates, while a large number
169 may be an overestimate producing substates that rarely occur more than once (see Methods).
170  We therefore use a lower bound of k = 3, and a reasonable upper bound of k = 10, wherein the
171  clusters become too fine (Figure 2C, see Methods). We thus consider eight possible k values for
172  each feature, giving rise to 83=512 possible switching tables. Each switching table is
173  characterized by the total number of substates it contains: kit = 2 + Kfiring + Kstorage + Ksharing With a
174  maximum value of kmax = 32 (32 = 2, the number of spectral states + 3 features x 10). The
175  collection of all switching tables for a given recording defines a library of tables (Figure 2D). We
176  chose such a method with the intention that without an a priori approach on the underlying
177  principle, if we extract generic rules, they should be valid independently of the choice of number
178  of clusters, at least for a reasonable wide range of k values. Now, all analysis that can be done on
179  a switching table is performed for each library, which gives the added benefit of assessing the

180 robustness of the results regarding the number of clusters.
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181

182  Substates are more contrasted in epilepsy

183  The vertical color bars in Figure 2B qualitatively show that individual neurons can take different
184  firing, storage or sharing values across substates. In order to quantify these differences, we
185 measure how “contrasted” are different substates. If we consider the firing feature of a given
186  neuron, we first calculate its global mean firing rate (over the whole duration of the recording),
187 and its mean firing rate within each substate. The relative contrast is defined as the difference
188 between the substate mean firing rate and the global mean firing rate, normalized by the global
189  mean firing rate. Evaluating contrast allows better tracking of the differing compositions of
190 substates at the single neuron level. Figure 2B shows the relative contrast plots for the 44
191  recorded neurons and the various substates in the same dataset and substate decomposition we
192  use as an example in Figure 2A. The differences between substates for each feature now clearly
193  appear as large changes in the distributions of contrast values for the recorded neurons. Now,
194  we extract the substate contrast of each substate for each feature - the average of the absolute
195 values of the heights of the bars in the relative contrast plot. This substate contrast tells us how
196  much a given substate stands out from its feature’s global average. Increasing the number of k
197  substates may decrease the substate contrast.

198

199  Figure 2E shows the distributions of the differences in contrasts between control (n=5) and
200 epilepsy (n=6), for firing, storage, and sharing features in the mEC, for the chosen k values
201 (3 < Kfiring, Kstorage, ksharing < 10). For all values of k, for all features, the contrast differences lie

202  entirely below zero, demonstrating that substate contrast is generally higher in epilepsy than in
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control. We also see no clear dependence upon k values, i.e., the number of substates. The same
result is found in CA1, however higher bounds closer to the 99t percentile do cross 0 (Fig S4).
We thus identify another major alteration in epilepsy; substates are more contrasted, exhibiting
more marked differences with respect to the mean. This suggest that in epilepsy, substate
switching more strongly modulates the neural population with regards to firing, storage and
sharing. While this seems to stand in contrast with the previously described reduction of the
modulatory influence exerted by global oscillatory states, this may be explained by a disrupted

articulation between substate and global state, as we explain in the following section.
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212  Figure 2 — Clustering & contrast in control and epilepsy — (A) An example state table for the mEC
213  in a control animal with a total state count of k:«:= 14. The different substates are color coded.
214  Note that switching is not synchronized across the different features. (B) Relative contrast values
215  for the table given shown in (A). The substates shown in A are shown in B as a horizontal bar with
216  the same color. Each graph shows the relative contrast of each of the 44 neurons, for each
217  substate, and each feature. Below each graph is a visual indicator of a neuron’s feature values
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218  within the substate (vertical color bar). Here, the color scale varies from near 0, dark blue, to the
219  top 10% of all average activity within the state. Therefore, any neuron whose activity is within
220  this top 10% will be bright yellow. (C) Temporal dynamics (vertical axis) of storage substates as a
221  function of k (horizontal axis). The far-left column shows the dynamics of THE and SO spectral
222  states. (D) An example of a resulting state table library, or a collection of all possible combinations
223  of all clustering with a range of ki = 11 — 32. (E) Average contrast difference between control
224 and epilepsy is shown with respect to both feature and number of states, k. The circles represent
225 the mean difference, the thick black bars represent the 25-75% quantile and the thin black bars
226  represent the 1-99% quantile. The red dotted line is to add the null hypothesis line of no
227  significant difference between control and epilepsy.

228

229 Loss of global state specificity of firing, sharing and storage substates in epilepsy

230  Since firing patterns are brain state-dependent, we assess whether this type of specificity is also
231  found at the level of information processing substates. For a given state table in a library, we
232  calculate the probability that a substate occurs during THE, SO or both. We name it state
233  specificity index (SSI), a metric bounded between 0 (a substate occurs equally in THE or SO) and
234 1 (a substate is exclusive to either THE or SO) (see Methods). In control animals (Figure 3, blue
235  curves), most substates are brain state specific in both mEC and CA1, independently of k. Most
236  SSl values are above 0.8, well above the null hypothesis 0.23 + 0.03 value of lack of global state
237  specificity. Global state specificity of substates is thus a robust result in control animals with

238  respect to k.
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The same analysis performed in epilepsy reveals a region dependent alteration in SSI (Figure 3,
red curves). There is a large decrease in SSI for all features in the mEC, indicating a loss of the
constraint exerted by global oscillatory states on the selection of possible substates, again
regardless to the chosen k’s. In contrast, there is no such large loss of brain state specificity in
CA1l, in particular no change for sharing. We conclude that the substate distribution becomes
“disordered”, i.e., a large proportion of substates now occur during both THE and SO in the mEC
in epilepsy. In contrast, CA1 retains the brain state specificity of the distribution of substates. The
alteration of brain state-specificity of firing, sharing and storage substates is therefore brain

region dependent in epilepsy.
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Figure 3 — Loss of brain state-dependency of substates in the mEC in epilepsy — State similarity
index (SSI) is shown here vs number of k states for each feature in mEC and CA1. Blue represents
the control data while red represents epilepsy. The bold lines represent the mean while the
shaded regions represent a 99% bootstrapped confidence interval. The bootstrapped null model
produced via randomizing gives an average SSI of 0.23 + 0.03 and is not shown here to increase

visual clarity.
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256

257 Computing hubs are more numerous but less substate-specific in the mEC in epilepsy

258  Within each substate/feature we extract computing hub neurons, i.e., neurons with on average,
259  exceptionally high firing, storage or sharing values with regard to the substate (see Methods). As
260  previously discussed in Clawson et al. (2019), it is important to stress that different substates are
261  associated to different sets of hubs and that a neuron acting as firing, storage or sharing hub in a
262  given substate will not necessarily do so in another substate. So, while the fraction of neurons
263  being hub in a given substate remains small, the fraction of neurons serving as hub at least in one
264  substate is much larger, approaching ~40% on average. Figure 4A illustrates an example of the
265  distribution of hubs (same recording as in Figure 2A).

266

267  In control animals, the percentage of hubs increases with ki in both mEC and CA1 (Figure 4B),
268  which is expected due to the arbitrary over-clustering as k increases. We observe furthermore
269 that the percentage of neurons serving as hubs at least once is significantly increased in epilepsy,
270 by 5% in the mEC and 2.5% in CA1 (Figure 4B). This result is in agreement with the increase in
271  substate contrast found in epilepsy: more neurons are more contrasted and therefore are
272  detected as hubs. Note that, for both control and epilepsy, the percentage of neurons marked as
273  hubs is significantly larger as compared to randomized state tables (grey dotted lines in Figure
274  4B), confirming that the emergence of hubs is a direct fingerprint of the existence of well distinct
275  substates.

276
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277  Figure 4A also shows that some computing hubs are shared by different substates, while others
278  are specific to one substate/one feature. In order to assess how substate-specific the computing
279  hubs are, we use a measure of similarity (see Methods). A null value indicates that every substate
280  has a unique hub set with no overlap between substates while a 1 value means that all substates
281  have an identical distribution. Figure 4C shows that, in control animals, a majority of hubs tend
282  to be substate-specific (similarity < 0.5). In CA1, the distribution of hubs is less substate-specific
283  than in the mEC (higher similarity). In epilepsy, the distribution of hubs does not change in CA1,
284  while hubs become significantly more substate-specific in the mEC. In other words, the status of
285  being hub is for a mEC neuron less stable in epilepsy than in control animals.

286

287  We conclude that, in epilepsy, the mEC and CA1 display an increase in the number of neurons
288 labeled as hubs at least once, and that the substate-specificity of hubs is increased in the mEC.
289  Taken together, these two findings suggest a more hectic and random-like emergence of
290 computing hubs in epilepsy as compared to control, albeit expressed in different ways; in mEC
291  there are more hubs that are simultaneously more specific than control and in CA1 there are
292  more hubs while staying the same, indicating a possible ‘shuffling’ of hubs. We believe this also

293  further confirms that alterations in information processing are brain-region dependent.
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295  Figure 4 — Computing Hubs and their distributions — (A) Example of computing hubs in the
296  control mEC extracted from a given state table. The y axis is unsorted neuron label, and the x axis
297  shows the substates for firing (5), storage (4) and sharing (6) features. A yellow bar indicates that
298  the given neuron is a computational hub during a substate. On the right is a summed version of
299  the graph on the left, visually showing the fraction of neurons that are a hub at least once (40%).

300 (B) The percentage of neurons that are hubs at least once is increased in epilepsy independently
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301  of kit The grey dotted line represents the mean of the shuffled, null model. (C) The similarity
302 index plotted as a function of k::. The hubs become less substate-specific in the mEC in epilepsy.
303  Blue and red are for control and epilepsy data, respectively. The bold lines are the mean, and the
304  shaded regions are the 99% bootstrapped confidence interval.

305
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306  Alterations in the core-periphery organization of CA1 computing hubs in epilepsy

307  The partners from whom a given neuron receives or to whom it sends information are
308  continuously changing (Clawson et al., 2019). At each time step, the instantaneous sharing
309  networks can be seen as having a dynamic core-periphery structure (Pedreschi et al., 2020), with
310 a core of tightly integrated neurons, surrounded by lightly connected periphery neurons. Two
311  key measures of the core-periphery structure are the coreness, how central or well-integrated
312  within a dense subnetwork — how “core”— a given neuron is, and the Jaccard index, a measure
313 indicating how similar (or, conversely, liquid) the connections are between the recorded neurons
314  between two time steps. We find that average coreness and the overall coreness distribution
315 shapes are not significantly changed in epilepsy for either mEC or CA1 (Fig S5). Thus, the core-
316  periphery architecture of information sharing networks within every substate is preserved in
317  epilepsy. However, during the SO state, the average Jaccard values in CAl are significantly
318 decreased in epilepsy as compared to control (Fig S5). Thus, in CAl there is enhanced connectivity
319  variance and more volatile recruitment of neurons in the core.

320

321  Assessing substate sequences

322  The analysis of individual features (firing, storage and sharing) revealed brain state- and brain
323  region-dependent alterations in epilepsy. We now focus on a more integrated view of the
324  informational patterns, in which we consider both the simultaneity of the ongoing types of
325  patterns and their articulation in sequences along time. We perform this higher-level exploration
326  using the notion of information processing states (IPS), driven by the idea of symbolization, as

327  shown in Figure 2A (Porta et al., 2015). From each analysis time window, we generate a four-
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328 letter word, with the letters representing the substate labels of the global state, firing, storage
329  and sharing features measured in this time window (see Methods). When the analysis window is
330 shifted by 1 s, another word is obtained, which is identical to the previous one if the substate
331  does not change. This procedure allows us to reduce the description of the complex simultaneous
332  variations of firing, storage and sharing patterns within the neuronal population to simple strings
333  of symbolic words, a sort of “neuronal language” built of sequences of possible words in a
334  dictionary. We can then assess how the properties of these strings are modified in epilepsy at the
335 level of their dictionary and syntax.

336

337  We defined all possible state tables generated through our k-means procedure as a library (Fig
338  2). Now, as tables are considered as a sequence of words, we define the sequence of words
339 generated as a book. The number of letters, and therefore the number of words, depend upon
340 ki As a result, we label our differently generated books by ki All 512 possible books per
341  recording are grouped together to form a library. For each library, we build two sister libraries
342  for comparison: one in which we sort every book internally to be highly ordered, and one in which
343  we randomize every book internally to be highly disordered (see Methods). Using this word/book
344  analogy, we begin to explore the organization of the language of the information processing
345  contained in the books held within the library — What words are expressed? Is there a syntax, or

346  organizational rules? And how does epilepsy change these measures?

347
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348  Impoverishment of the Dictionary in the mEC in Epilepsy

349  For each kit there is a fixed number of potential words that can be generated and possibly
350 appear within the associated book (see cartoon in Figure 5A). As in any language, only a fraction
351  of all possible words is expressed. For each book, we measure the used dictionary fraction, or
352  relative dictionary (see Methods). Figure 5A illustrates two end cases. The low relative dictionary
353  (left) uses a small number of expressed words, while the high relative dictionary (right) uses a
354  much richer vocabulary, wherein almost all of the potential dictionary is expressed. While the
355  measure of relative dictionary in and of itself is informative, it is difficult to use such a measure
356 to assess meaningful changes (i.e., before control and epilepsy) without having comparative
357  baselines. Therefore, we compute not only the relative dictionary of our libraries, but also that
358 of the ordered and random sister libraries (which correspond to the null hypotheses of order and
359 disorder in the ‘language’ of the book, respectively). We then apply a linear transformation to
360 the relative dictionary measure, resulting in 0 representing the relative dictionary measure of
361 ordered books, and a value of 1 representing a relative dictionary measure identical to that of
362 randomized books. Such a normalized relative dictionary measure tracks not only the richness of
363 the used dictionary but also its position between order and disorder.

364

365  Figure 5B shows that for both the mEC and CA1 in control and epilepsy conditions, the normalized
366 relative dictionaries lie much closer to 0 than to 1, meaning that their relative dictionaries are
367  much more similar to a system with organization that is ordered than disordered. In epilepsy, the
368 relative dictionary is reduced with respect to control in the mEC (Figure 5B). Thus, the dictionary

369  of state dynamics language seems impoverished in the mEC in epilepsy. There is also a reduction
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in CA1, but only for books with low k:o: values whereas it is increased for kit > 15. This 'crossing'
of control and epileptic near kit = 15 may be potentially explained by the strength of clustering for sharing

features (Fig S3). Contrary to all features, there exists only a small window of k for sharing in CA1 in which
k_means clusters the feature better than a null model. Therefore, dictionaries made with poor clustering

may drive the dictionary too high for low values of k. This is the first instance for which the generic
rule that results should be independent of the choice of k, fails. However, this characterization

of dictionaries further demonstrates that the alterations are brain region dependent.

The relative dictionary provides important information about the words, but not how words are
organized in time. This is similar to the grammar, or syntax, of a traditional sentence. To analyze
this syntax (how words are organized from one window not the next), we quantify the level of
organization present in the state tables as a whole, i.e., the overall dynamics of a system moving

though IPSs (Figure 2A).
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Figure 5 — Relative dictionaries within the libraries — (A) Fictional cartoons representing two
extremes for the measure of relative dictionary. Each row represents a feature (firing, storage,
sharing); for simplicity we do not take into account the brain states (THE and SO). We consider
three substates (light blue, dark blue, green) per feature (using the same color code for
simplicity), which makes a total of 33 = 27 words (the representation is similar to counting in
base 3 with color, increasing from left to right). Words that are not observed are shaded. A low
relative dictionary (left) contains a low fraction of all possible words, while a high relative
dictionary (right) contains a high fraction. (B) Relative dictionary values as a function of k:ot. As
expected, the fraction of words used in control decreases as the number of possible words
increases. The relative dictionaries are similar in mEC and CA1 in controls. There is a marked
decrease in the relative dictionary in the mEC in epilepsy. In CA1, the relative dictionary in

increased or decreased as compared to control as a function of k::. Blue is representative of
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396 control data and red is representative of epileptic data. The bold lines are the mean, and the
397  shaded regions are the 99% bootstrapped confidence interval.

398

399  The syntax of substate sequences is less regular in epilepsy

400 Compressibility is a key property of an object as it represents the degree of internal order of the
401  object. This is because any regularity within may be described by simply referencing its previous
402  occurrence. Again, our state tables are bordered by two extreme cases: order and randomness
403  (Figure 6A). An ordered table is dominated by a highly structured syntax, typically dominated by
404  a lower dictionary and long periods of sustained words. Therefore, an ordered table is very
405 compressible due to this internal order. A random table, on the other hand, typically contains an
406  exceedingly high number of words, which follow each other in a disorderly (random) manner.
407  This results in non-compressibility. A complex table is one that lies between those extremes. In
408 order to characterize the complexity of the state tables, we compute a tailored form of
409  description length complexity (Clawson et al., 2019; Rissanen, 1978), which is scaled to the sister
410 libraries of order and disorder. Thus, in Figure 6B, 0 represents the complexity of the ordered
411 library, something very compressible, while 1 represents the complexity of our disordered library,
412  something very uncompressible (as shown in Figure 6A). In controls, the complexity is similar in
413 mEC and CA1, close to an ordered table. In epilepsy, the complexity is significantly increased for
414  all kior values, while it is increased in the mEC at the high end of our library.

415

416  Combining the results from Figures 5 & 6, we can propose the following interpretation. In CA1,

417  theincrease in complexity found in epilepsy, at least for books with sufficiently large k::, can be
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418  explained, at least in part, by an enriched dictionary, since enrichment of the relative dictionary
419  positively correlate with complexity (Clawson et al., 2019). In the mEC, the relative dictionary
420  decreases while the complexity mildly increases. Thus, mEC books have a less regular syntax

421  despite being constructed out of a lesser number of words.
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422

423  Figure 6 — Order, disorder, and complexity — (A) Examples of state tables, similar to that of Fig
424  2A, from the mEC showing the two extremes of order and disorder as well as one of the possible
425  state tables taken from the state table library. (B) Complexity values for both the mEC and CA1
426  as a function of kiwr. The complexity is similar in mEC and CA1 in controls. In epilepsy, the
427  complexityis largely increased in CA1, and only for large k:o: values for mEC. Blue is representative
428  of control data and red is representative of epileptic data. The bold lines are the mean, and the

429  shaded regions are the 99% bootstrapped confidence interval.
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430 Discussion

431  This study provides evidence that epileptic conditions alter information processing in its simplest
432  sense, the primitive storage and sharing operations as we introduce here, in a brain-region
433 dependent manner. As these basic processes are necessarily involved in a variety of neural
434  computations, their alterations may indirectly impact numerous cognitive functions.

435

436  The main limitation to our study is that it is made under anesthesia, versus for example, goal-
437  directed behavior to assess cognitive function. The type of analysis we performed is powerful as
438 it allows unraveling basic properties of information processing without needing to know which
439  computations are ongoing. However, it requires long-duration, stable recordings with large state
440  sampling to obtain enough data points to perform reliable statistics. We did not record during
441  natural sleep, because seizures and interictal spikes (which would act as strong confounding
442  factors) mostly occur during the light phase, while they do not occur under anesthesia. However,
443  a similar type of analysis performed in control animals led to similar results during sleep and
444  anesthesia (Clawson et al., 2019), suggesting that the anesthesia procedure we use does not
445  significantly alter core information dynamics.

446

447  We refer to the elementary information storage and sharing operations as primitive (or low level)
448  information processing operations, as we consider them as fundamental building blocks within
449  an algorithm to reach an end condition (like a function), similar to the “algorithmic level”,
450  introduced by Marr & Poggio (1977). Algorithm is used here in its most generic meaning, as we

451  do not claim that the brain is analogous to a computer. Such primitive processing operations, as
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452  we define them, represent nothing else than the emergent “informational effect” of very
453  concrete neurophysiological phenomena. Storage and sharing of information directly derive from
454  auto- and cross-correlations in firing, which widely vary in neuronal populations (Schneidman et
455  al,, 2006), and can be directly measured from spiking activity of neurons. Other primitive
456  processing operations exist, such as information transfer (Palmigiano et al., 2017; Schreiber,
457  2000) or information modification (Lizier et al., 2013; Wibral et al., 2017). Our recordings and
458  choice of a time-resolved approach do not provide enough data to track these more sophisticated
459  operations. However, the processing functions of storage and sharing are especially important as
460 they represent statistical measures of information flow in time, and spacetime, respectively.
461

462 We show that primitive information processes are organized in temporal sequences of
463 information processing substates (IPSs), which are extracted via a cluster analysis. We have used
464  a non-biased approach, spanning many possible combinations of numbers of clusters. The fact
465  that most results are independent from the choice of the number of clusters provides a strong
466  argument for the genericity of our conclusions. With this approach, we demonstrate a
467  degradation of complexity due to enhanced randomness in epilepsy. This conclusion stems from
468 the convergence of complementary analyses. First, storage and sharing hubs are less robust,
469  waxing and waning in a more erratic manner across substates and the recruitment of neurons
470  into the integrated core of sharing networks is more volatile. Second, average storage and
471  sharing strength are more similar between brain states, and this “dedifferentiation” occurs
472  despite the higher contrast between substates. Third, the state specificity of IPS is reduced, i.e.,

473  many IPSs are now redundant between THE or SO. Together, these results imply that a change in
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474 brain state is no longer associated to strong specificity in information processing. Fourth, freed
475  from the constraint of being strongly state-specific, the relative dictionary in epilepsy could, in
476  principle, be increased. However, mEC has a decreased relative dictionary, which instead implies
477  an ability to form unique IPSs. Yet, the description complexity of IPS sequences tends to be larger
478  in epilepsy than control. In other words, IPS sequences have a less regular syntax despite being
479  assembled out of less unique words.

480

481  The IPS dynamics of CAl show, in general, less alterations than that of mEC. The fact that
482 information processing is affected in brain region-dependent manner is an important result. The
483 mECand CA1 have distinct cytoarchitectures and different fates following an epileptogenic insult.
484  Most striking is the loss of layer 3 in the mEC, and the injury of many pyramidal cells and
485 interneurons in the CA1 region (Curia et al., 2008). It is not possible to assign a given alteration
486 ininformation processing to a given morpho-functional changes in the mEC or CA1. Global brains
487  states (THE and SO) and IPSs are emergent properties. Any change in any brain region can
488  potentially affect neuronal dynamics anywhere from the local to the global scale. Therefore, the
489  morpho-functional alterations in mEC or CA1 may contribute to any combination of local and
490 global changes. However, changes in terms of information processing do not necessarily have to
491 be homogenous across brain regions. In fact, brain region-specific modifications are expected as
492  each region is embedded in different functional networks. How these brain-region specific
493  changes contribute to comorbidities (such as cognitive deficit, anxiety, and depression) remain
494  to be determined.

495
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496  Our measure of complexity is that of compressibility, accounting for the internal structure, i.e.,
497  how internally ordered are IPS syntaxes. Any change in this internal organization would thus
498  imply an underlying change in algorithmic operation, resulting in different computation in control
499  and epilepsy conditions. Our measure of complexity does not allow distinguishing beween an
500 increase in processing versus an increase in noise, as complexity would grow in both cases. Other
501 measures can be used, but they would require more data (Crutchfield, 2011). However, in CA1,
502  books with large k::have an increased, rather than decreased dictionary size, which may explain
503 the strongincrease in sequence complexity. It is not clear, however, that this dictionary increase
504 is a positive factor as it may reflect a more irregular IPS selection, with rare IPSs indicating
505  dysfunction in IPS sequential production. Another possibility is that boosted IPS sequence
506 complexity in CAl and, at a lesser extent, mEC is a compensatory mechanism to generate a more
507  sophisticated syntax to compensate for other shortages, such as reduced hub stability and
508 degraded state-specificity of IPS.

509

510 Inabiological context, the algorithmic level change comes as a result of altered collective, spiking
511  activity and could lead to an entirely different expression of higher-level behavior, such as
512  cognition. However, the question of whether this increase of complexity (decrease of internal
513  order) observed in epilepsy is the source of cognitive deficits or not remains ultimately open. It
514  has been theorized that “biological systems manipulate spatial and temporal structure to
515 produce order — low variance — at local scales” in an effort to adapt and survive (Flack, 2019).
516 Therefore, if networks are still functional in epilepsy conditions, are these manipulations now

517 less effective? Or is the resulting low variance order now too difficult to sustain due to a


https://doi.org/10.1101/2021.02.11.430768
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.11.430768; this version posted February 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

518 combination of physiological and functional changes? These issues remain to be addressed.
519 Nevertheless, the approaches presented here introduce valuable insight into aspects of the
520 collective behavior of neural populations, and provide a quantitative framework to answer such
521  questions.

522

523  In conclusion, the framework we introduce here to compare information processing between
524  control and epilepsy, can be generalized to neurological disorders. Since most, if not all, of the
525 latter, including migraine, Alzheimer’s disease, and Parkinson’s disease are associated with co-
526  morbidities, it will be particularly interesting to determine whether information processing at the
527  algorithmic level is also affected in these disorders. Following the principle of degeneracy (Prinz
528 et al., 2004), very different structural alterations, which characterize different neurological
529 disorders, may produce similar alterations in information processing, providing an explanation

530 for the commonalities of co-morbidities across different disorders.

531

532  Methods

533  Ethics

534  All experiments were conducted in accordance with Aix-Marseille Université and Inserm
535 Institutional Animal Care and Use Committee guidelines. The protocol was approved by the
536  French Ministry of National Education, Superior Teaching, and Research, under the authorization
537  number 01451-02. All surgical procedures were performed under anesthesia and every effort
538 was made to minimize suffering and maximize the animals’ wellbeing from their arrival to their

539  death. All the animals were housed in pairs in large cages with minimal enrichment, food and
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540  water at libitum, in a room with controlled environment (temperature: 22 + 1 °C; 12 h light/dark
541  schedule with lights off at 8:00 pm; hygrometry: 55%; ventilation: 15-20 vol/h).

542  Data information.

543  We use in this work a portion of the data (5 out of 7 original experiments) initially published by
544  Clawson et al. 2019 as control data, which includes local field potentials (LFPs) and single-unit
545  recordings obtained from the dorsomedial entorhinal cortex (mEC) and the dorsal hippocampus
546  (HPC) of anesthetized rats. Six recordings are original data, which includes LFPs and single-units
547  recorded in the mEC and HPC recorded simultaneously under anesthesia in epileptic condition.
548  See Figures S1 for details on recordings, number of cells, and layers recorded.

549  Epilepsy model and surgery.

550  We induced status epilepticus (SE) on 6 male Wistar (250—400 g; Charles Rivers) by a single
551 intraperitoneal (IP) injection of pilocarpine (320 mg/kg; Sigma-Aldrich), one week after receiving
552  the animals from the vendor. To reduce peripheral effects, rats were pre-treated with methyl-
553  scopolamine (1 mg/kg, IP; Sigma-Aldrich) 30 min before the pilocarpine injection. SE was stopped
554 by diazepam (10 mg/kg, IP, two doses within a 15-min interval) after 60 min. Then the animals
555  were hydrated with saline (2 ml, IP, twice within 2 h) and fed with a porridge made of soaked
556  pellets, until they resumed normal feeding behavior.

557  Atleast 8 weeks after SE induction, we performed acute recordings. Rats were first quickly placed
558 inisoflurane (4% in 2I/min O;) and injected IP with urethane (1.5 g/kg) and ketamine/xylazine (20
559  and 2 mg/kg, IM), additional doses of ketamine/xylazine (2 and 0.2 mg/kg) being supplemented
560  during the electrophysiological recordings. At all times the body temperature was monitored and

561  kept constant with a heating pad. Heart rate, breathing rate, pulse distension, and arterial oxygen
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562  saturation were also monitored with an oximeter (MouseOX; StarrLife Sciences) during the
563  duration of the experiment to ensure the stability of the anesthesia and monitor the vital
564  constants. The head was fixed in a stereotaxic frame (Kopf) and the skull was exposed and
565  cleaned. Two miniature stainless-steel screws driven into the skull above the cerebellum served
566 as ground and reference electrodes. Two craniotomies were performed to reach the mEC and
567 the CA1 field of the HPC, respectively: from bregma: -7.0 mm AP and +4.0 mm ML; and from
568  bregma:-3.0 mm AP and +2.5 mm ML. We chose these coordinates to respect known anatomical
569  and functional connectivity in the cortico-hippocampal circuitry (Witter et al., 1988; Witter et al.,
570  1989). Two 32-site silicon probes (NeuroNexus) were mounted on a stereotaxic arm each. A
571  H1x32-10mm-50-177 was lowered at 5.0-5.2 mm from the brain surface with a 20° angle to reach
572  the dorso-medial portion of the mEC, and a H4x8-5mm-50-200-177 probe was lowered at 2.5
573 mm from the brain surface with a 20° angle to reach dorsal CAl. The on-line positioning of the
574  probes was assisted by: the presence of unit activity in cell body layers and the reversal of theta
575  ([3 6] Hz in anesthesia) oscillations when passing from layer 2 to 1 for the mEC probe, and the
576  presence in stratum pyramidale either of unit activity and ripples (80-150 Hz) for the HPC probe.
577 At the end of the recording, the animals were injected with a lethal dose of Pentobarbital Na
578  (150mk/kg, i.p.) and perfused intracardially with 4% paraformaldehyde solution. We confirmed
579 the position of the electrodes (DilC18(3) (catalog #46804A, InterChim) was applied on the back
580 ofthe probe before insertion) histologically on 40 um Nissl-stained section as reported previously
581 indetail (Ferraris et al., 2018; Quilichini et al., 2010). We used only experiments with appropriate
582  position of the probe for analysis.

583  Data collection and spike sorting.
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584  Extracellular signal recorded from the silicon probes was amplified (1000x), bandpass filtered (1
585  Hz to 5 kHz) and acquired continuously at 32 kHz with a 64-channel DigitalLynx (Neuralynx) at
586  16-bit resolution. We preprocessed the raw data using a custom-developed suite of programs
587  (Csicsvari et al., 1999). The signals were down-sampled to 1250 Hz for the local field potential
588  (LFP) analysis. Spike sorting was performed automatically, using KLUSTAKWIK
589  (http://klustakwik.sourceforge.net (Harris et al., 2000)), followed by manual adjustment of the
590 clusters, with the help of auto-correlogram, cross-correlogram and spike waveform similarity
591  matrix (KLUSTERS software package, http://klusters.source-forge.net (Hazan et al., 2006)). After
592  spike sorting, we plotted the spike features of units as a function of time, and we discarded the
593  units with signs of significant drift over the period of recording. Moreover, only units with clear
594  refractory periods and well-defined cluster were included in the analyses (Harris et al., 2000).
595  Recording sessions were divided into brain states of theta (THE) and slow oscillation (SO) periods
596  using a visual selection from the ratios of the whitened power in the HPC LFP [3 6] Hz theta band
597  and the power of the mEC LFP neighboring bands ([1 3] Hz and [7 14] Hz), and assisted by visual
598 inspection of the raw traces (Ferraris et al., 2018; Quilichini et al., 2010). We then used band-
599 averaged powers over the same frequency ranges of interest as features for the automated
600 extraction of spectral states via unsupervised clustering, which confirmed our manual
601 classification. We determined the layer assignment of the neurons from the approximate location
602  of their soma relative to the recording sites (with the largest- amplitude unit corresponding to
603  the putative location of the soma), the known distances between the recording sites, and the
604  histological reconstruction of the recording electrode tracks. Animals were recorded for at least

605  two hours in order to get few alternations of THE and SO episodes.
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606 Feature Computation

607  As in our previous work, for each region recorded we computed 4 main features from the
608 electrophysiological data: global oscillatory band, neuronal firing sets, active information storage
609 and the information sharing. We also keep the same sliding window paradigm where each
610 feature is computed within a 10 second window, and then the window is then moved forward in
611 time 1 second, which gives a 9 second overlap. Therefore, when features are computed as
612  described below, they are computed in this windowed fashion. The global oscillatory band
613 features were computed by examining the LFP from both EC and CA1 and computing spectral
614  power within 8 unequally sized frequency ranges (0—1.5 Hz, 1.5-2 Hz, 2-3 Hz, 3-5 Hz, 5-7 Hz, 7—
615 10 Hz, 10-23 Hz and 23-50 Hz), averaged over all channels within each of the recorded layers.
616 Firing sets, active information storage, and the information sharing networks were all computed
617  using a binarized raster built from the temporal labeling of spike firing (see Data Collection and
618  Spike Sorting). Spiking data was binned using a 50 ms bin; if a neuron fired within a given bin the
619 outputisa ‘1’, and if not, a ‘0’. This, for example would mean that a 2-hour recording would be
620 transformed from a 7200 second x N neuron matrix to a 7200000 x N neuron matrix that is
621 composed solely of 0’s and 1’s. Firing sets were computed by computing the average firing
622  density for each neuron within a window, and after these averages were compiled into time-
623  dependent vectors. This resulting matrix is the Firing Features. Active information storage was
624  computed by measuring the mutual information of a neuron’s binarized spike train between a
625 given window and the window previous. What active information storage seeks to capture is the
626 temporal ordering of individual spiking neurons, rather than capturing neurons that fire

627  temporally close to one another (such as in the firing features). The resulting matrix is the Storage
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628  Features. Information sharing is computed by measuring the mutual information between a given
629 neuron’s binarized spike train within a window and another neuron’s binarized spike train in the
630 window previous. This process is iterated over all possible neuron pairs. Information sharing
631 captures asimilar metric to that of active information storage, although the key difference is that
632  information sharing captures not just the temporal ordering, but the spatio-temporal ordering of
633  spike timing, as it is computed across neuron pairs, rather than individual neurons. The resulting
634  matrix is the Information Sharing. Although these measures have only been briefly described
635 here, we suggest to the interested reader to examine the methods presented in our previous
636  work [REF] where they have been rigorously defined.

637

638  Feature-Based Substate Extraction

639  State extraction for each recording were also computed using the methods of our previous work,
640 namely based around k-means clustering of each feature. The exception here, is we no longer
641 choose a stable number of K clusters in k-means. Rather we cluster our 3 raster-based computed
642  features (firing, storage, sharing) 3 separate times with K ranging from K = 3, 4, ... 10. The function
643  ‘kmeans’ was used from the default MATLAB toolbox. More information can be found on the
644  Mathworks website. These K values were chosen as they represented a clustering range of too
645  gross to too fine based on previous findings. K <= 2 would represent the same, or less, number
646  of states as global states, which was previously established to be too small (Clawson et al., 2019).
647  The clustering became too fine when K >= 10, wherein many substates only appeared for brief
648 time periods, and never re-occurred. For each feature there are 8 different clustering results,

649  done in an unsupervised manner 3 times to ensure that our results do not rely on single instance
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650  of clustering. This gave our analysis an opportunity to compute all metrics defined below over a
651 robust range of K, ensuring that we can investigate how our substate stable metrics and results
652  vary with arbitrarily too little or too many substates.

653

654  To compute the null model for substate extraction the process detailed above was repeated with
655 the time stamps of all firing, storage and sharing jittered. This therefore retains the global mean
656 and variance. Then, k-means was run on this jittered dataset 3 times, to produce 3 different
657  clustering of the randomized dataset. These were not modified after this step and were used in
658 any instances where a null model was needed (i.e. for silhouette and contrast).

659

660  Substate Tables

661  Our main meta-object of study is a state table, a combination of our four features into a matrix
662 (4 x number of windows). Table generation is an iterative process, as we have 8 possible substate
663  configurations per feature. First, k = 3 in cluster attempt 1 for firing (FIRE k3c1), k = 3 in cluster
664  attempt 1 for storage (STOREksc1), and k = 3 in cluster attempt 1 for sharing (SHAREksc1), are used
665 in conjunction with the clustered spectral substates to form substate table 1 (Figure 2A).

666

667  Then, FIRE k3c1, STOREksc1, and SHAREkac1 are used in conjunction with the clustered spectral
668  substates to form substate table 2. After, FIRE 3c1, STOREksc1, and SHAREksc1 used in conjunction
669  with the clustered spectral substates to form substate table 3. This process continues such that
670 all combinations of possible k values have been saved for a total of 512 different substate tables,

671  with the final table having FIRE kioc1, STOREkioc1, and SHAREkioca. It is important to note that all
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672 tables have the same spectral clustering, as the 2 substates of SO and THE are extremely robust
673  as discussed above. This entire process is then repeated for each clustering attempt, resulting in
674 3 sets of our 512 substate tables for each region for each recording. Where applicable, all results
675 are given as a function of total k states per table (i.e. for state table 1, there are 2 global states,
676 3 firing, 3 storage and 3 sharing for a total ktotal = 11).

677

678 To produce the ordered tables for the ‘ordered’ null model, each substate table was sorted such
679 that all substates with label ‘1’ appeared first, label ‘2’ was second, and so on and so forth. This
680 can easily be achieved with the MATLAB function sort. Note that there is only one possible
681  version of this type of ordering, and therefore the sample size for ordered tables is the same as
682  recordings (n = 5 for control, n = 6 for epilepsy). To produce the randomized tables, substate
683 labels were randomly permuted in time. For this process, we used bootstrapping to produce as
684 5000 randomizations to ensure the random null model was as strong as possible. To do this, 90%
685  of each table was taken, randomly permuted and saved. These resulting tables were used as the
686 random null model for relative dictionary and complexity seen in Figure 5 & 6.

687

688  Contrast

689  To calculate contrast for a given feature we first calculate its global mean for each neuron (i.e.,
690 global mean firing per neuron). Here, ‘global’ refers to the entire recording. We then calculate
691 the substate mean for each neuron by concatenating all periods of a given substate and

692  calculating the mean across the ‘entire’ substate. The formula for contrast is then defined as the
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693 difference between the substate mean firing rate and the global mean firing rate, normalized by

694  the global mean firing rate.

Usubstate — Hglobal

695 contrast =
.uglobal

696  This allows the contrast to be either positive or negative. This process was done for all 3 features
697  of firing, storage and sharing such that there are contrast values for each. This process was
698 repeated for all possible clustering, therefore a contrast value per feature per k.

699

700  Substate-Specificity

701  To compute the distribution of substates within periods of SO and THE we counted the number
702  of times a substate appeared within a given epoch. Some substates exclusively appeared in only
703 SO or THE, while others occurred in both. From these frequencies we estimated p(THE) and
704  p(SO), i.e. the probability of a given substate occurring in either THE or SO, respectively. SSl is
705  then:

706 SSI = |p(THE) — p(S0)|

707  This equation results in SSI bound between 0 and 1, where 1 represents a state who exclusively
708  occurs in either THE or SO and 0 represents a state that occurs equally in THE and SO.

709

710  Hubs & Hub Stability

711  In this work we define a hub neuron in the same way as our previous work. Namely, for a given
712  feature if a neuron’s activity within a given substate was higher than the 90" percentile it was
713  marked as a hub for the feature for that state. We compute hubs for every iteration of state table

714  as defined above, such that we have a graph, or matrix, (see FIG 4A) for each state table. These


https://doi.org/10.1101/2021.02.11.430768
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.11.430768; this version posted February 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

715  matrices are Neuron x ktotal Where each entry is either a ‘0’ for non-hub or ‘1’ for hub. To compute
716  how stable each of these matrices are as a function of k, we compute the normalized hamming
717  distance of each matrix using the pdist2 function in MATLAB but modified so that it gives a sense
718  of how stable hubs are across states, where perfect similarity would result in a ‘1’, and no
719  similarity at all would give a ‘0’.

720

721  Coreness & Jaccard

722  The values for coreness & Jaccard were computed using the methods presented in Pedreschi et
723  al. (2020). These were then analyzed using the same sliding window technique as presented in
724  ‘Feature Computation’. After, periods of THE and SO were analyzed with similar techniques as
725  that of Figure 1.

726

727  Dictionary & Complexity

728 To compare sequences of substates of different types or in different regions we introduced a
729  symbolic description of substate switching. With this description, each substate label acts as a
730 letter symbol s, where (p) can indicate firing, sharing or storage. For example, the firing features
731  from the example substate table 1 [FIG 2A] would have the integer labels 1, 2, 3, and 4 (they can
732  also arbitrarily be assigned letters as well, i.e. A, B, and C). We can therefore describe the
733  temporal sequences of the visited substates of each feature as an ordered list of integers s/(t).
734  Once substate labels are thought of as letters, we define the combination of firing, storage and
735  sharing letters in each state table from a given window as 3 letter words. Using the formalism of

736 linguistics, we can then compute the dictionary, or the number of words expressed, of a given
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737  recording within a region. We can also compute the used dictionary fraction, or the number of
738  words found in the dictionary divided by the number of theoretically possible words given the
739  number of substates per feature. For example, substate table 1 could have expressed 27 unique
740  words. The used dictionary fraction was computed in an identical way to that of Clawson et al
741  2019. Specially, see ‘Complexity of substates sequences.

742

743  Using these methods, we compute the complexity of the sequences expressed using the notions
744  of Kolmogorov-Chaitin complexity and minimum description length approaches (Crutchfield,
745  2011). While further discussion of method can be found here (Clawson et al., 2019) — the aspects
746  of this complexity measure that is relevant for this work is that a random sequence of letters (and
747  words) produces a higher complexity, while an ordered sequence of letters (and words) would
748  produce a low complexity.

749

750 Ordered & Random Substate Tables

751  To have relevant points of reference in our measures, each substate table was ordered and
752  randomized. For the case of ordering, all substate labels for all features were sorted in ascending
753  order which keeps the total lifetime of any state constant, while removing the temporal
754  organization in an ordered fashion. In the case of randomization, all substate labels for all features
755  were randomized 500 times, which again keeps the total lifetime of any state constant, while
756  removing the temporal organization in a random fashion.

757  To compute the relative minimums and maximums for comparisons between order and random

758  the MATLAB function ‘rescale’ was used. The minimums were computed using the average (of a
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759  given measure) of all ordered state tables for a given kiotal and the maximums were computed
760  using the average (of a given measure) of all random substate tables for a given kiotal.

761  Plotting

762  Various tools were used for plotting. While mostly done via MATLAB, other tools were also

763  used from ‘Moving Beyond p-values’ (Ho et al., 2019).

764
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S1 - Frequency and Power Relationships in mEC and CA1 in control and epilepsy conditions —

(A) (Far Left) A comparison of ratios between peak frequencies during periods of SO and THE in

both control and epileptic conditions for mEC and CA1. (Middle and Right) Peak frequencies

used in the previous graph for periods of SO and THE in control and epilepsy for mEC and CA1.

There was a strong and smaller effect size on THE and SO peak frequency in CA1 in TLE,

respectively. In these Cumming estimation plots, circles represent the mean, and all bars

represent a 99% bootstrapped confidence interval. (B) The average power found in periods of

SO and THE shown next to their ratio for both mEC and CA1. Note the strong effect size on THE
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974  and SO power in the mEC, and to a lesser extent on THE power in CA1. For all graphs, 5000

975  bootstrap samples were taken; the confidence interval is bias-corrected and accelerated.
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976
977 S2 - Average feature values presented as a function of mEC and CA1 in control and
978 epilepsy conditions — The same graph as Figure 1D presented in an alternate format to
979 highlight regional differences in control and epilepsy. The differences between mEC and
980 CA1 during THE and SO are similar in control and epilepsy for average firing and average
981 storage. The difference tends to increase for average sharing, but the effect size is
982 consistent Circles and triangles represent the mean, and all bars represent a 99%

983 bootstrapped confidence interval.
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984

985  S3 — Null model with mean silhouette difference — The mean silhouette difference between a
986 randomized null clustering model and the silhouettes found using k-means on non-shuffled
987  data. Each point was calculated by computing mean silhouette values from a random selection
988  of the randomized and normal clustering and taking the difference. This was done 500 times to
989  produce error bars, but the error bars were so small that they appear to be squares on the

990 graph. The blue line is representative of control data and the red line represents epilepsy data.
991 Thereis a very large difference for firing and storage modalities from the null model for all k
992  values in both CA1 and mEC in control and epilepsy conditions. Of special note is the sharing

993  states found within CA1 (bottom right). We find that for both control and epilepsy conditions,
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our measure crosses 0 at k=5 and k=7, respectively, but fluctuates back above 0 until k=9 states
in control and k=10 in epilepsy. This would indicate that the clustering only weakly holds in
these intermediate values of k before not separating states better than a null, shuffled model
up until the higher k values. Therefore, it may be that the states are either less definable in CA1
or, that on average there tend to be more states for sharing in both the control and epileptic

states in CAl and would therefore require higher k, on average.
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S4 - Contrast Values for Control vs Epilepsy in CA1 — Average contrast difference between

control and epilepsy is shown with respect to both feature and number of states, k. The circles
represent the mean difference, the thick blue bars represent the 25-75% quantile and the thin
blue bars represent the 1-99% quantile. The red dotted line is to add the null hypothesis line of

no significant difference between control and epilepsy.
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1005
1006 S5 — Coreness and Jaccard Values — Average values and difference of differences graphs for
1007 data features taken from sharing networks, found using the sharing feature, for both
1008 control and epileptic animals. Circles and triangles represent the mean, and all bars
1009 represent a 99% bootstrapped confidence interval. Note the very large effect size in the
1010 decrease of the Jaccard index in CA1 during SO. Accordingly, the brain state specificity of
1011 connectivity variance is lost. Significance is shown using the symbol (*) with their standard

1012 corresponding meaning (*, p<0.05; **, p<0.01; ***, p<0.001).
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1013  ST1 - P value reporting: THE/SO unpaired mean difference
mEC CAl
Firing mean Cl P mean Cl P value
difference value difference
Control [-0.0815, - [-0.0823, -
-0.0593 0.0365] 0 -0.0475 0.0162] 0.0002
Epilepsy [-0.0432, - [-0.0226,
-0.0217 2.55¢-05] 0.008 0.00082 0.0263] 0.00082
Storage
Control [-0.18, - [-0.146, -
-0.133 0.0859] 0 -0.0828 0.0214] 0.0002
Epilepsy [-0.0933, - [-0.0452,
-0.0584 0.0224] 0 0.0034 0.0528] 0.0034
Sharing
Control [0.0643, [0.0369,
0.109 0.16] 0 0.0582 0.0814] 0
Epilepsy [-0.022, [0.0105,
0.0535 0.128] 0.0594 0.0285 0.0435] 0
1014
1015 The p-value reported here is from a two-sided permutation t-test with Cl intervals at 99%. 5000
1016  bootstrap samples were taken; the confidence interval is bias-corrected and accelerated. The P
1017  value(s) reported are the likelihood(s) of observing the effect size(s) if the null hypothesis of
1018  zero difference is true. For each permutation P value, 5000 reshuffles of the control and test
1019 labels were performed. They are included here to satisfy a common requirement of scientific
1020  journals. (Ho et al., 2019)
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ST2 — P value reporting: Difference of Difference Graphs

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.11.430768; this version posted February 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

mEC HPC
Effect Cl P Effect Cl P
value value
Firing
Control v Epilepsy -0.025 [-0.043, -0.007] <0.001 | -0.031 [-0.051, - <0.001
0.011]
THE v SO -0.044 [-0.062, -0.026] <0.001 | -0.023 [-0.044, - 0.003
0.003]
Diff of Diff 0.0377 [0.001, 0.0744] 0.008 | 0.048 [0.0072, 0.002
0.0889]
Storage
Control v Epilepsy -0.126 [-0.161, -0.092] <0.001 | -0.107 [-0.147, - <0.001
0.068]
THE v SO -0.104 [-0.138, -0.069] <0.001 | -0.041 [-0.081, - 0.007
0.002]
Diff of Diff 0.0783 [0.0099, 0.1467] 0.003 | 0.083 [0.0041, 0.007
0.1619]
Sharing
Control v Epilepsy 0.0122 [-0.032, 0.0563] 0.474 | -0.033 [-0.047, - <0.001
0.018]
THE v SO 0.0844 [0.0443,0.1325] | <0.001 | 0.0433 [0.029, <0.001
0.0576]
Diff of Diff -0.052 [-0.141, 0.0359] 0.126 | -0.03 | [-0.-58,-0.001] | 0.007
Coreness
Control v Epilepsy -0.003 [-0.019, 0.0124] 0.578 | 0.001 [-0.012, 0.849
0.0143]
THE v SO 0.0126 [-0.003, 0.0285] 0.04 | 0.0056 [-0.008, 0.28
0.0188]
Diff of Diff 0.0099 [-0.022, 0.0416] 0.42 | 0.0205 | [-0.006, 0.047] | 0.047
Jaccard
Control v Epilepsy 0.0158 [0.0074, 0.0241] | <0.001 | -0.046 [-0.051, - <0.001
0.042]
THE v SO 0.0615 [0.0615, 0.0782] | <0.001 | 0.0325 [0.028, <0.001
0.0369]
Diff of Diff -0.009 [-0.026, 0.0076] 0.16 -0.084 [-0.093, - <0.001
0.075]
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