

1 **Data-driven analysis of COVID-19 reveals specific severity patterns distinct from the
2 temporal immune response**

3 Jackwee Lim^{1,15}, Kia Joo Puan^{1,15}, Liang Wei Wang^{1,15}, Karen Wei Weng Teng¹, Chiew Yee
4 Loh¹, Kim Peng Tan¹, Guillaume Carissimo^{1,2}, Yi-Hao Chan^{1,2}, Chek Meng Poh^{1,2}, Cheryl Yi-
5 Pin Lee^{1,2}, Siew-Wai Fong^{1,2,7}, Nicholas Kim-Wah Yeo^{1,2}, Rhonda Sin-Ling Chee^{1,2}, Siti
6 Naqiah Amrun^{1,2}, Zi Wei Chang^{1,2}, Matthew Zirui Tay^{1,2}, Anthony Torres-Ruesta^{1,2,9}, Norman
7 Leo Fernandez¹, Wilson How¹, Anand K. Andiappan¹, Wendy Lee¹, Kaibo Duan¹, Seow-Yen
8 Tan¹⁰, Gabriel Yan¹¹, Shirin Kalimuddin^{12,13}, David Chien Lye^{3,4,5,6}, Yee-Sin Leo^{3,4,5,6,8}, Sean
9 W. X. Ong^{3,4}, Barnaby E. Young^{3,4,5}, Laurent Renia^{1,2,16}, Lisa F.P. Ng^{1,2,9,14,16,*}, Bennett Lee^{1,16},
10 Olaf Rötzschke^{1,16,17,*}

11

12 ¹Singapore Immunology Network, Agency for Science, Technology and Research, 8A
13 Biomedical Grove, Immunos, Singapore 138648

14 ²A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, 8A
15 Biomedical Grove, Immunos, Singapore 138648

16 ³National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore 308442,
17 Singapore

18 ⁴Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng,
19 Singapore 308433, Singapore

20 ⁵Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road,
21 Singapore 308232, Singapore

22 ⁶Yong Loo Lin School of Medicine, National University of Singapore and National University
23 Health System, 10 Medical Drive, Singapore 117597, Singapore

24 ⁷Department of Biological Sciences, National University of Singapore

25 ⁸Saw Swee Hock School of Public Health, National University of Singapore and National
26 University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore

27 ⁹Department of Biochemistry, Yong Loo Lin School of Medicine, National University of
28 Singapore, 8 Medical Drive, Singapore 117596, Singapore

29 ¹⁰Department of Infectious Diseases, Changi General Hospital, 2 Simei Street 3, Singapore
30 529889, Singapore

31 ¹¹Department of Medicine, National University Hospital, 5 Lower Kent Ridge Road,
32 Singapore 119074, Singapore

33 ¹²Department of Infectious Diseases, Singapore General Hospital, Academia Level 3, 20
34 College Road, Singapore 169856, Singapore

35 ¹³Emerging Infectious Diseases Program, Duke-NUS Medical School, 8 College Road,
36 Singapore 169857, Singapore

37 ¹⁴Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool,
38 8 West Derby Street, Liverpool, L7 3EA, United Kingdom

39 ¹⁵First authors

40 ¹⁶Senior authors

41 ¹⁷Lead Contact

42

43 *Correspondence: olaf_rotzschke@immunol.a-star.edu.sg (O.R.); lisa_ng@immunol.a-
44 star.edu.sg

45 **Keywords:**

46 SARS-CoV-2, COVID-19, mass cytometry, CyTOF, Quanterix, Luminex, inflammation

47 **Abstract**

48 Key immune signatures of SARS-CoV-2 infection may associate with either adverse immune
49 reactions (severity) or simply an ongoing anti-viral response (temporality); how immune
50 signatures contribute to severe manifestations and/or temporal progression of disease and
51 whether longer disease duration correlates with severity remain unknown. Patient blood was
52 comprehensively immunophenotyped via mass cytometry and multiplex cytokine arrays,
53 leading to the identification of 327 basic subsets that were further stratified into more than
54 5000 immunotypes and correlated with 28 plasma cytokines. Low-density neutrophil
55 abundance was closely correlated with hepatocyte growth factor levels, which in turn
56 correlated with disease severity. Deep analysis also revealed additional players, namely
57 conventional type 2 dendritic cells, natural killer T cells, plasmablasts and CD16⁺ monocytes,
58 that can influence COVID-19 severity independent of temporal progression. Herein, we
59 provide interactive network analysis and data visualization tools to facilitate data mining and
60 hypothesis generation for elucidating COVID-19 pathogenesis.

61

62

63

64

65

66

67

68

69

70 **Introduction**

71 The pandemic coronavirus disease 2019 (COVID-19) is caused by the severe acute
72 respiratory syndrome coronavirus 2 (SARS-CoV-2). As of 25th January 2021, there are 100
73 million cases with more than 2 million deaths worldwide (Dong et al., 2020). While the
74 immunogenic responses in COVID-19 vaccinated individuals remain largely unknown, the
75 majority of the COVID-19 patients are asymptomatic or have mild flu-like symptoms, some
76 develop severe diseases, which may lead to death from respiratory failure or even multi-
77 organ failure from a hyperactivated immune system (Manson et al., 2020). The
78 immunopathology in severe COVID-19 is characterized by lymphopenia, a sustained loss of
79 CD4⁺ and CD8⁺ T cells, a dramatic increase in the number of immature neutrophils as well
80 as an altered myeloid cell compartment in severe COVID-19 cases (Carissimo et al., 2020;
81 Jouan et al., 2020; Kuri-Cervantes et al., 2020; Silvin et al., 2020). Another hallmark of
82 severe COVID-19 is the cytokine storm associated with elevated levels of cytokines (IL1 β ,
83 IL1R α , IL2, IL7, IL10, G-CSF, TNF α), chemokines (IP10, MCP1, MIP1 α) and endogenous
84 neutrophil calprotectin (Ragab et al., 2020; Silvin et al., 2020; Barnaby E. Young et al., 2020).

85 Although many studies have independently identified different immunotypes and
86 cytokines associated with SARS-CoV-2 infection and severe COVID-19, their interplay is still
87 largely unknown for distinguishing active infection, severity and post-infection aberrations. In
88 this work, we analyzed the blood samples of 77 hospitalized patients and 10 healthy controls.
89 Also, to obtain a more full-bodied approach, we have compiled the data and provided a
90 comprehensive COVID-19 resource, which integrates high dimensional mass cytometry and
91 bead-based cytokine/chemokine arrays. Network analyses between the key immune subsets
92 and the associated cytokine levels in the plasma were used to correlate clinical states and
93 disease trajectory of COVID-19. One of the key findings is the identification of a link between
94 hepatocyte growth factor (HGF) and low-density neutrophils (LD Neu). While both factors are
95 closely associated with disease severity, it represents only the tip of the iceberg; the network
96 of underlying pathways is complex and involves many players. By sharing these data

97 together with easy-to-use visualization tools, we provide a rich resource to study the
98 manifestation of COVID-19 as well as the particulars of the SARS-CoV-2 induced immune
99 response.

100 **Results**

101 **Study design and clinical characteristics of the cohort**

102 To determine the changes induced by SARS-CoV-2 infection in peripheral blood
103 mononuclear cell (PBMC) subsets, we assembled a comprehensive mass cytometry panel
104 of 40 antibodies against lineage-specific markers, adhesion molecules and other surface
105 molecules indicative of the functional state of the cells (Figure 1A). This panel divided the
106 entire PBMC population into 327 partly overlapping subsets, which consisted of both
107 extensively described immune cell populations such as T cells, B cells, dendritic cells,
108 monocytes, natural killer (NK) cells, basophils, mucosal-associated invariant T (MAIT) cells,
109 innate lymphoid cells (ILCs) and LD Neu, as well as lesser-known immune cell populations
110 such as CD56⁺ monocytes, CD56⁺⁻ MAIT and the PD-L1⁺ LD Neu subsets (Villani et al.,
111 2017). Cytokine bead arrays based on Luminex™ and ultra-sensitive Quanterix™
112 technologies were used to quantify the changes of twenty-eight cytokines in patient plasma
113 (Figure 1A). The interconnected databases generated by these approaches were then
114 subjected to network analysis to determine immune signatures of the anti-SARS-CoV-2
115 response as well as the cellular and molecular drivers of severe COVID-19.

116 In order to establish a timeline on the SARS-CoV-2 specific immune response, 87
117 blood samples were collected from 77 hospitalized COVID-19 patients at varying time points
118 (Figure 1B). The state of infection was determined by SARS-CoV-2 real-time reverse
119 transcriptase polymerase chain reaction (PCR) as previously described (Corman et al., 2020;
120 Barnaby E Young et al., 2020). PCR positive samples were grouped into early active
121 (median days post illness onset (PIO): 9) and late active (median days PIO: 20). PCR
122 negative samples were grouped into early convalescence (median days PIO: 25) and late
123 convalescence (median days PIO: 39) (Figure 1B). As a proxy for disease severity, the
124 samples were stratified based on treatment regime into three severity groups, namely mild
125 (symptomatic; n = 32), moderate (symptomatic with supplemental oxygen (suppl. O₂); n = 24)
126 and severe (suppl. O₂ and need for intensive care unit (ICU); n = 31). With the exception of

127 age and gender, most demographic variables did not differ significantly between COVID-19
128 patients and healthy donors, as well as between severity groups (Table S1). Severity was
129 associated with advanced age ($p < 0.0001$).

130 **Temporal variations in PBMC subsets during active and convalescent COVID-19**

131 Mass cytometry analysis allowed gating of total PBMCs into 38 non-overlapping basic
132 subsets from both the adaptive and innate arms of the immune system (Figure 2A and Table
133 S2). Uniform Manifold Approximation and Projection (UMAP) analysis segregated these cells
134 into distinct clusters of T cells, B cells, NK cells, monocytes and other antigen presenting
135 cells (Figure 2A, left). Surprisingly, large numbers of LD Neu were detected (Figure 2A, right).
136 Neutrophils are typically not present in the PBMC fraction of healthy donors but found in
137 abundance in COVID-19 samples. Subsequent analysis with a targeted mass cytometry
138 panel confirmed that these cells are indeed LD Neu by revealing an immunophenotype that
139 is consistent with neutrophils ($CD66b^+CD15^+CD16^{\text{high}}CD10^+CD24^+$) (Table S2).

140 Generalized lymphopenia was observed in the active phase relative to convalescent
141 COVID-19 (Figure 2A, right), particularly in various $CD4^+$ and $CD8^+$ T cell, most B cell, NKT
142 and MAIT cell subsets. A significant reduction was also observed for non-classical
143 monocytes (NC. Mono), while increased frequencies were detected for plasmablasts,
144 classical monocytes (C. Mono) and LD Neu. Closer inspection of the temporal profiles for
145 various subsets revealed a number of interesting trends (Figure 2B). For LD Neu, the
146 increase was largely restricted to the late active phase, while the plasmablast frequency
147 increased during the early active phase. The frequency of C. and intermediate (Int.)
148 monocytes rose throughout active infection before declining in the convalescent phase. In
149 contrast, the frequency of NC. Mono in the blood dropped sharply during the early active
150 phase but increased gradually until late convalescence (Figure 2B).

151 The timeline of events is particularly evident in a heatmap display (Figure 3A, left).
152 Based on the increase in subset frequencies, the earliest responders were NK cells followed

153 by plasmablasts, C./Int. Mono and LD Neu. Further, there was also a sharp decrease in
154 numbers, which may indicate the mobilization of subsets such as NC. Mono, T regulatory
155 (Treg), T follicular helper (T_{FH}) and $CD4^+$ T cells to the lung mucosa as front-line responses.
156 Their frequencies increased later during convalescence (Figures 2B and 3A). We also
157 observed a loss in blood MAIT cell frequency during active infection that was restored to
158 healthy levels during convalescence (Figure 3A), which is in line with a previous study
159 suggesting active recruitment of MAIT to the lung mucosa (Parrot et al., 2020). Also the
160 robust increase in the frequency of circulating plasmablasts during the active phase is
161 consistent with previous single-cell analysis of patients with severe COVID-19 (Wilk et al.,
162 2020). In contrast, non-class-switched memory (NSM), class-switched memory (CSM) and
163 IgM⁺ memory B cells showed decreased frequencies, which increased during convalescence
164 but did not recover to healthy levels.

165 Activation and differentiation of immune cells during the course of the SARS-CoV-2 infection
166 were indicated by changes in the expression levels of surface markers (Figure 3A, right).
167 The profiles of more than 5000 immunotypes derived from the 38 basic immune subsets can
168 be assessed by an interactive online viewer (see Materials and Methods: Data and Code
169 Availability and Table S2). Although expression of functional markers was highly
170 heterogeneous across immune subsets and disease phases, we observed some notable
171 trends. CD38 was upregulated across diverse immune subsets during active infection,
172 indicative of widespread cell activation in response to viral infection. CD169, an adhesin that
173 binds sialic acid, was also selectively upregulated in all monocyte subsets during the early
174 but not late active phase. Many T and B cell subsets – Treg TEM, NSM and CSM cells –
175 downregulated the lymph node homing molecule CCR6 over the course of disease, primarily
176 during active infection, which may impede homing to inflamed tissues and development of
177 germinal center responses (Figure S1). A range of cell subsets exhibited elevated levels of
178 CD57 from early active infection to early convalescence, indicative of immune senescence

179 (Figure 3A). Finally, CD16 (Fc γ RIII) was upregulated on MAIT cells in late active infection
180 and on LD Neu, all monocyte subsets and CD16 $^{+}$ NK cells during convalescence (Figure 3A).

181 Based on the observed phenotype variations, we defined and curated 327 partly
182 overlapping immunotypes and compared the frequencies of these subsets in each phase of
183 COVID-19 (Figure 3B and Table S3). High levels of CD169 $^{+}$ C. Mono were observed
184 exclusively during early active infection. The same also applied for CD38 $^{\text{high}}$ plasmacytoid
185 dendritic cell (pDC) subsets and IgA $^{+}$ plasmablasts, followed by IgA $^{-}$ plasmablasts. Notably,
186 four subsets of monocytes, namely CD141 $^{+}$ HLADR $^{-}$ C. Mono, CD56 $^{+}$ C. Mono, CD45RA $^{-}$ Int.
187 Mono and CD56 $^{+}$ Int. Mono peaked during late active SARS-CoV-2 infection and may
188 portend recovery (Figure 3B). The increase in the LD Neu population from early to late active
189 infection is reflected in both its PD-L1 $^{+}$ and CD5 $^{+}$ subsets. The active-phase lymphopenia
190 affected virtually all CD8 $^{+}$ central (CD8 TCM) and effector memory T subsets (CD8 TEM)
191 (Figure 3B). Significant losses of CD56 $^{+}$ CD8 $^{+}$ MAIT, CCR6 $^{+}$ CSM, HLA-DR $^{+}$ CD38 $^{-}$ CD4 $^{+}$ T,
192 CD57 $^{-}$ CD8 $^{+}$ and NKT subsets were also observed during active infection (Figure 3B). Next,
193 in convalescence, a frequency increase persisting into late phase was observed for T cells
194 (such as CD57 $^{+}$ CD4 $^{+}$ T, HLA-DR $^{+}$ CD38 $^{+}$ CD8 $^{+}$ T, CD38 $^{+}$ /ICOS $^{+}$ T_{FH} defined as circulatory
195 CXCR5 $^{+}$, Treg TCM/TEM), NC. Mono (IgA $^{+}$, CD45RO $^{-}$ and CD16 $^{+}$ CD169 $^{+}$) and CCR6 $^{-}$ CSM
196 above healthy levels. Also in this phase, the loss of CD5 $^{-}$ conventional type 2 DC (cDC2),
197 V δ 2 TCM, V δ 2 TEM, B cells memory CXCR5 $^{+}$, CCR6 $^{+}$ CSM and CD5 $^{-}$ transitional B cells
198 persisted into late convalescence below healthy levels (Figure 3B). These late-convalescent
199 immunotypes, which do not recover to healthy levels, may represent post-infection
200 aberrations.

201 **Alterations of immunotypes associated with disease severity**

202 Depending on the treatment given, active and convalescent patients were stratified into 'mild'
203 (symptomatic), 'moderate' (symptomatic with suppl. O₂) and 'severe' (suppl. O₂ and ICU
204 admission). Thus we obtained groups I, II and III denoting active mild, active moderate, and
205 active severe, respectively and groups IV (severe), V (moderate), and VI (mild) for patients

206 in the convalescent phase (Figure 1A). The global changes in the cell subset composition
207 are particularly evident in UMAP plots colored according to the fold change in reference to
208 healthy controls (Figure 3A). The most striking association was observed for LD Neu. While
209 a minor increase was observed in group I (active, mild), the numbers increased dramatically
210 in group II (active, moderate) and peaked in group III (active, severe). The numbers
211 persisted in group IV (conv., severe) and gradually declined from group V (conv., moderate)
212 to group VI (conv., mild) (Figures 4A, 4B and S2A). This was also reflected in the increased
213 LD Neu-to-lymphocyte ratios compared with group VI mild convalescent and healthy (Figure
214 S3A). The expansion of LD Neu was due to CD16⁺ neutrophils and CD16^{high} neutrophils.
215 CD16^{high} neutrophils (Figures S3B and S3C) described herein resemble pseudo-Pelger-Huet
216 cells, which were previously reported in other severe viral infections (Morrissey et al., 2020).

217 Two other immune cell subsets, which closely associated with severe COVID-19 are
218 V δ 2 T and NKT cells (Figures 4B and S2A). Their frequencies sharply declined in group
219 II/III/IV patients. Further analysis revealed that the loss of V δ 2 T is likely due to V δ 2 TCM
220 and V δ 2 TEM, which remained significantly reduced in frequency in groups IV/V compared
221 with healthy (Figures 4B, 5A and S4A). Similarly for NKT sub-populations, the CD57⁻ NKT
222 cell but not CD57⁺ NKT cell subset was reduced in frequency in groups II/III/IV (Figure S4D).
223 The loss of the CD57⁻ NKT cells included the CD4⁺, CD8⁺ and the double-negative (DN)
224 NKT sub-populations. Although reduced numbers were also detected for dendritic cell
225 subsets, the frequencies of pDC and cDC2 were only marginally suppressed across groups
226 II/III/IV/V (Figures 4B, S4B and S4C). For plasmablasts, a subtle increase in frequency was
227 observed in the active phase groups I to III but waned during convalescence (Figures 4A, 4B,
228 S5A, and S5B). Notably, IgA⁻ plasmablasts showed a higher increase compared with its IgA⁺
229 counterpart (6.53-fold vs 2.89-fold compared with HD) in group III (Figures 4B and S5B).

230 Among the T cells, the strongest association with severity was observed for
231 HLA DR^+ CD38⁺ CD8⁺ T cells. Unlike the frequencies of MAIT and NK cell subsets across
232 groups I/II/III and groups IV/V/VI, which were largely invariant across groups and thus did not

233 associate with severity (Figures S6A and S6B). The numbers of hyperactivated
234 HLA⁺CD38⁺ CD8⁺ T cells peaked in severity groups III/IV, whereby the highest frequency
235 was detected in group IV during convalescence (Figures 4B and S7A). Also, a number of
236 emerging studies suggested a role of inflammatory monocytes in the pathogenesis of
237 COVID-19. In line with these results, although our data also showed elevated numbers of C.
238 Mono and Int. Mono during the active phase, the increase with regard to severity was only
239 marginal. The reverse trend was evident for NC. Mono, which declined in the active groups
240 I/II/III but increased during convalescence (Figures 4B, 5A, S2A and S3D).

241 The association of the frequencies of the 38 basic immune subsets with the six
242 severity groups as well as the associated surface marker expression is summarized in
243 Figure S2. Their phenotypes can be assessed by using the online viewer (see Materials and
244 Methods: Data and Code Availability). Figure 5A shows the subsets out of the 327 common
245 immunotypes, which exhibited the most significant frequency changes with regard to the six
246 severity groups. Based on the frequency distribution, they were divided into five different
247 clusters (Figure 5A, left). Immune subsets in the first cluster positively associated with mild
248 infection such as CD161⁺ NKT and CD5⁺ cDC2, which only increased in group I and may
249 thus play a potential protective role (Figure 5A). The second cluster is positively associated
250 with active SARS-CoV-2 infection across mild to severe groups I/II/II. Besides the
251 plasmablasts, CD169⁺/CD38⁺ C. Mono and CD86⁺/CD45RA⁻/CD38⁺ Int. Mono but not total
252 monocytes remained elevated in groups II/III. Also, like CD169⁺ C. Mono, both
253 CD38^{high}CD45RA⁺ pDC and HLA-DR⁺CD56^{DIM} NK peaked in group I and remained high in
254 groups II/III above healthy levels. Notably, HLA-DR^{low}CD141⁺ C. Mono, which has been
255 reported to be over-represented in ICU patients did not show a pronounced association with
256 the most severe group III but was rather increased throughout the active phase (Silvin et al.,
257 2020). This suggests that the aforementioned subset is unlikely to be a marker for severity.
258 The third cluster is positively associated with severe COVID-19. In this cluster, CXCR5⁺ B
259 cells memory subset was only increased in more severe groups II/III but various LD Neu

260 subsets were elevated in both severity groups III and IV (Figures 5A and 5B). PD-L1⁺ LD
261 Neu are most abundant in groups II/III while CD5⁺ LD Neu peaked in group IV. Within group
262 IV, hyperactivated HLA-DR⁺CD38⁺ CD8⁺ T cell subset was also elevated (Figures 5A
263 and,5B). The fourth cluster consisted of mixed frequency distribution during convalescence.
264 Various NC. Mono subsets (CD38⁺/CD123⁺/CD86⁺/CD45RO⁻/IgA⁺) and Treg TEM and T_{FH}
265 subsets were increased in frequencies across groups IV/V/VI above healthy levels (Figures
266 5A and S3G). On the other hand, immune subsets of MAIT, CSM and NSM of more severe
267 COVID-19 patients often did not recover to healthy levels. Finally, the fifth cluster defined as
268 “severe inverse” included subsets exhibiting the greatest loss in frequency in patients with
269 most severe but not mild COVID-19. These were mostly cDC2, CD45RA⁺ pDC, CD57⁻ NKT
270 and V δ 2 memory T cells, which may indicate direct involvement in COVID-19 related
271 pathology (Figures 5A and S4).

272 The shifts in surface marker co-expression for some of the key populations are also
273 shown in Figure 5B. For LD Neu, besides the IgA⁺ marker, the PD-L1 co-expression was
274 particularly pronounced across the active and convalescent groups II to V. Additionally,
275 CD16^{high} LD Neu was more abundantly expressed during convalescence, which was not
276 seen in healthy donors (Figures 5B and S3C). Similarly for NC. Mono, besides IgA⁺ and
277 CD86⁺ markers, CD16 co-expression was strongly increased in convalescent phase groups
278 IV and V (Figures 5B, S3E and S3G). And for hyperactivated HLA-DR⁺CD38⁺ CD8⁺ T cells,
279 the co-expression of CD45RO marker was highly elevated in groups III and IV. Similarly, a
280 concomitant increase in the co-expression of CD11b⁺ and CD24⁺ markers by CD56^{dim}NK
281 was particular evident in groups III and IV (Figures 5B and S2B). Notably, this specific
282 immunotype has been reported to transdifferentiate into myeloid cells e.g. neutrophils (Song
283 et al., 2020).

284 **Dynamics of plasma cytokine levels in COVID-19 patients**

285 In order to correlate the shifts in frequency and phenotype with the cytokine/chemokine
286 environment, we have screened the corresponding COVID-19 plasma samples for 28

287 analytes using either Luminex or high-sensitivity Quanterix bead arrays. Of these, thirteen
288 cytokines showed statistically significant associations with the six severity groups (adjusted p
289 < 0.05) (Figure 6A). A comparison between the association with severity and the timing of
290 the immune response revealed that IFN α , while abundantly found in the early active phase,
291 had very little prognostic value with regard to severity (Figure 6B). While the levels of IL6
292 seem to better match disease severity, this applied only for the active phase. Also, IL6 was
293 mostly detected during the early active phase. The association with severity however
294 substantially improved for IP10, TNF α , HGF and VEGF-A. Especially the latter two were
295 detected in similar extent during both the active and convalescent phases.

296 To further identify the cytokine/immune cell associations during SARS-CoV-2
297 infection, we first correlated the cytokine levels with the frequencies of the 327 immunotypes.
298 The various plots for these correlations can be assessed in an interactive online viewer (see
299 Materials and Methods: Data and Code Availability). As the immune responses in different
300 phases of infection are vastly different, we carried out separate correlations for the active
301 and convalescent phases (Figure 6C, top). During active infection, IFN α , IP10, IL6 and HGF
302 showed a pleiotropic effect on a variety of immune cells. IFN α had a negative correlation
303 with various monocyte subsets such as NC. Mono but positively associated with ILC2,
304 CD38 $^+$ V δ 2 TCM, IgM $^+$ CD38 high B cells, CD5 $^-$ transitional B cells, CCR6 $^-$ transitional B cells
305 and CD25 $^+$ ILCs. IL6 was positively associated with B cells and various plasmablast subsets,
306 and HGF was positively associated with LD Neu but negatively with NKT.

307 During convalescence, a greater number of cytokines was associated with various
308 immunotypes, albeit the association was typically weaker as compared to the active phase
309 (Figure 6C, bottom). VEGF-A was strongly associated with HLA-DR $^+$ CD38 $^+$ CD8 $^+$ T cells but
310 negatively with CD8 $^+$ CD56 $^-$ MAIT cells. Interestingly, IgA $^+$, CD5 $^+$ and PD-L1 $^+$ LD Neu
311 positively associated with TNF α , which is known to promote neutrophil degranulation (Cross
312 et al., 2008; Salamone et al., 2001). Additionally, PIGF1 and IL17A positively associated with
313 CD38 $^+$ NKT and CXCR5 $^-$ B cells, respectively, while negative associations of both

314 proinflammatory TNF α and HGF with V δ 2 T cells were observed, as well as negative
315 associations of both IL6 and HGF with CD8 $^+$ CD56 $^-$ MAIT.

316 As cytokines can also directly influence the surface expression of biomarkers, we
317 carried out a similar correlation for the surface molecules detected during the active phase
318 on the 327 immunotypes (Figure 6D). While there were fewer cytokines found significant,
319 they often correlated with the same surface marker on a number of different cell subsets.
320 IFN α was positively associated with upregulated CD169 $^+$ on both C. and Int. Mono. The
321 same cytokine also triggered the upregulation of CD38 on various NC. Mono as well as
322 CD141 $^-$ CD11b $^-$ C. Mono and various B cell subsets. IFN α was also found negatively
323 associated with CD86 on B cells, while IL6 was negatively associated with CD4 on various C.
324 Mono populations. HGF was strongly associated only with the transdifferentiating
325 CD11b $^+$ CD56 $^{\text{dim}}$ NK cells, which expressed CD24 (Song et al., 2020). Also, these data can
326 be visualized using the online viewer (see Materials and Methods: Data and Code
327 Availability).

328 **Integrated network analysis of immune subsets and plasma cytokines**

329 Current data analysis so far has revealed a number of subsets and cytokines clearly linked
330 to COVID-19 but the interaction of these components as well as the underlying pathways
331 appear to be very complex and under-appreciated. To obtain a comprehensive overview of
332 the interplay of these key players, we performed Bayesian network analysis using the
333 complete sets of the mass cytometry data of the 327 cell subsets as well as the
334 corresponding bead array measurements of the 13 cytokines (Figure 7 and Table S3). In
335 order to separate the immune signatures of COVID-19 severity from those involved in anti-
336 viral immune response, the fluctuations in these datasets were correlated independently with
337 regard to the time point of sampling during the SARS-CoV-2 infection (Figures 7A and 7B)
338 and the severity score assigned to the respective patient (Figures 7C and 7D). Interactive

339 viewer for each of the networks is available as online resource (see Materials and Methods:
340 Data and Code Availability)

341 For the timing of the immune response in the active phase of SARS-CoV-2 infection,
342 the fold change of subset frequency and cytokine levels was determined independently for
343 the median day 9 PIO (“early active”; Figure 7A) and median day 24 PIO (“late active”;
344 Figure 7B). In the early active phase, the strongest correlation was observed for IFN α
345 (Figure 7A). The increase in levels of IFN α inversely correlated with a general decline in the
346 number of NC. Mono including the CD141 $^+$ CD11b $^-$, CD141 $^-$ HLA-DR1 $^-$, CD45RO $^-$ and
347 CD16 $^+$ CD11b $^-$ subsets. For these cells, the absolute fold change was between 5 to 8, and
348 the most pronounced reduction observed during the early active phase. The most substantial
349 increase was detected for CD38 $^{\text{high}}$ CD45RA $^+$ pDC and subsets of C. Mono expressing
350 CD169, a marker directly induced by IFN α (compare Figure 6D). Other subsets positively
351 associated with the early phase of infection included several subsets of plasmablasts,
352 activated B memory and V δ 2 T cells. Of these, IgA $^-$ plasmabasts positively correlated with
353 IL6, which is also significantly upregulated in the early phase. The increase in plasma IL6
354 was also associated with a loss of CD8 $^+$ T cells, MAIT and cDC2. In addition, elevated IP10
355 was a node associated with a depletion of MAIT and certain B cell subsets (NSM
356 CD27 $^+$ CD38 $^-$ and NSM CD27 $^-$ CD38 $^+$). However, we did not find any nodal association with
357 V δ 2 T cells, C. Mono and pDC populations to any of the cytokines, while SCF and IL1RA
358 were nonetheless early responders in the blood.

359 During the late active phase of SARS-CoV-2 infection, the IFN α levels dominating
360 the early phase strongly subsided (Figure 7B). Although the correlation with NC. Mono
361 nearly diminished, Int. and C. Mono strongly expanded in this phase, in particularly for the
362 CD169 $^+$ subsets with a 8-fold increase in frequency. Next, the correlation with IL6 levels
363 maintained at the late active phase but also two other cytokines, VEGF-A and TNF α , begun
364 to show multiple cellular associations corresponding to significant losses of $\gamma\delta$ T, ILC2 and

365 MAIT cells, while IL6 was a node associated with late increase in LD Neu and Int. Mono,
366 potentially linking these cytokines to the lymphopenia, neutrophilia and moncytosis, which
367 are characteristic of SARS-CoV-2 infection.

368 A strikingly different picture emerged when the network analysis was carried out in
369 reference to the severity of COVID-19 manifestation. Due to the different nature of the
370 immune response during active infection and convalescence, two independent networks
371 were generated for severity groups I to III ("active"; Figure 7C) and groups IV to VI ("conv.");//
372 Figure 7D). The degree of association was determined by a linear correlation of the subset
373 frequencies and cytokine levels in these groups and is expressed by their rho value. Notably
374 during the active phase, the strongest positive correlation was observed for LD Neu and its
375 CD38⁺, PD-L1⁺, IgA⁺ and CD5⁺ subsets (Figure 7C). With the exception of the latter, all of
376 them also positively correlated with HGF, which was also directly associated with disease
377 severity. While an increase in HGF correlated with an increased frequency of LD Neu
378 subsets, it was also associated with a loss of NKT cells, namely of the CD57⁻ subsets.
379 Although their frequencies were inversely associated with disease severity, this does not
380 necessarily indicate a beneficial effect, as the disappearance of these subsets from the
381 blood may likely be a consequence of their redistribution towards the inflamed tissue. Other
382 subsets, which positively associated with severity are IgA⁻ plasmablasts and CD16⁺CD11b⁻
383 C. Mono, possibly pointing to the role of IgG in the COVID-19 pathogenesis. Moreover,
384 plasmablast frequencies directly correlated with IL6 levels, which were also inversely
385 associated with cDC2. Similar to pDC and V δ 2 T cells, their frequencies in the blood also
386 inversely correlated with disease severity.

387 The direct association of the LD Neu subsets with severity was also observed during
388 convalescence, and no significant negative correlation was detected for any of the immune
389 subsets (Figure 7D). Positive correlations were found for IgA⁺ NC. Mono, several CD8⁺ TEM
390 subsets, as well as CD38⁺, CD5⁺, IgA⁺ and PD-L1⁺ LD Neu. Of the cytokines, VEGF-A, HGF
391 and TNF α correlated directly with severity, while fewer interactions between cytokines and

392 cell subsets were detected. At least during convalescence, the increase in TNF α but not
393 HGF was positively associated with IgA $^+$ LD Neu and PD-L1 $^+$ LD Neu subsets (Cross et al.,
394 2008). Additionally, elevated VEGF-A levels strongly associated with enriched HLA-
395 DR $^+$ CD38 $^+$ CD8 $^+$ T cells(Voron et al., 2015), which are also directly associated with severity.
396 While especially the early response against SARS-CoV-2 seems to be dominated by IFN α -
397 and IL6-driven immune responses (Figures 7A and 7B), network analysis did not provide any
398 evidence that the pathways and cellular components activated by these cytokines have a
399 major impact on the severity of the disease in either the active phase of infection (Figure 7C)
400 or during convalescence (Figure 7D).

401 **Discussion**

402 COVID-19 is triggered by viral infection whose pathology is mainly caused by
403 collateral or even autoimmune-like damage inflicted by a hyperactivated immune system. By
404 analyzing the blood samples of 77 hospitalized COVID-19 patients by mass cytometry and
405 cytokine bead arrays, we attempted to delineate the key factors driving the immune
406 pathology of COVID-19 from the genuine defense against SARS-CoV-2. To achieve this, we
407 segregated the PBMCs into 327 distinct immune cell subsets and determined the plasma
408 levels of 28 different chemokines and cytokines. The data were stratified with regard to
409 different phases of the viral infection and correlated with the severity score defined by the
410 clinical state of the patients. This generates a comprehensive data resource to analyze the
411 immune response triggered by the SARS-CoV-2 infection in an integrated and interactive
412 way.

413 A simplified timeline could be established by the breakdown of the infection into four
414 phases (early/late active and early/late convalescence). The time point of the given cell
415 subset was assessed by comparing their relative frequencies in these phases, and their
416 contribution to severity was quantified by the rho² parameter of the disease score correlation
417 (Figure S8). Based on this, we propose the following immune progression: infection with
418 SARS-CoV-2 leads to early IFN- α production, as evidenced by an early upregulation of
419 CD169 on monocytes. This drives the disappearance of NC. Mono from the blood, which
420 together with V δ 2 T, cDC2, pDC, NKT, CD8 $^{+}$ MAIT and CD8 $^{+}$ T cells appear to be recruited
421 to the inflamed tissues. In parallel, during this early active phase (median days PIO: 9) there
422 is also an expansion of activated memory B cells and importantly, antibody-producing
423 plasmablasts. The plasmablast frequency remains high during the late active phase, a
424 process associated with elevated levels of the proinflammatory cytokines IL6, IP10 and
425 TNF α .

426 The late active phase (median days PIO: 20) is also characterized by an expansion
427 of C. Mono, which likely differentiates into Int. and NC. Mono. The relative fraction of Int.

428 Mono remained high during convalescence, above healthy controls even at the late
429 convalescent phase (median days PIO: 39). In comparison, NC. Mono frequency was the
430 highest during convalescence (Figure 3A). The same applies for CD8⁺ TEM cells, in
431 particular for the HLADR⁺CD38⁺ subset, which has been found to be enriched in lungs of
432 deceased COVID-19 patients (Xu et al., 2020). Notably, major changes in the frequency of
433 NK subsets were only observed during convalescence, suggestive of a minor role during the
434 early phase of infection.

435 Disease resolution and convalescence usually result in the normalization of most cell
436 subsets. Notably, the late convalescent subsets, including hyperactivated HLADR⁺CD38⁺
437 CD8⁺ T cells, senescent CD57⁺ CD4⁺ T cells, Treg TCM/TEM, activated ICOS⁺/CD38⁺ T_{FH},
438 NC. Mono, V δ 2 TCM/TEM, lymph node homing CCR6⁺ CSM B cells, NSM B cells and IL12-
439 producing CD5⁻ cDC2 cells, persistently failed to recover to healthy levels, and may
440 contribute to the lingering symptoms associated to post-infection aberrations (Figure 3B).
441 Further studies would be needed to determine if alterations to these immune subsets
442 contribute to the long-term effects observed in some patients after recovery from severe
443 disease (Weerahandi et al., 2020).

444 While the involvement of immune cell subsets in anti-viral defense can be
445 heterogeneous, a clearer picture emerges when considering specific immunotypes related to
446 COVID-19 severity. Among the frequencies of subsets such as NC. Mono, V δ 2 T, cDC2,
447 pDC, CD57⁻ NKT, CD8⁺ MAIT, and CD8⁺ T cells showing depletion or enrichment for
448 plasmablasts during infection (Figures S3-S7), the most dramatic severity association was
449 observed for LD Neu (Figure S3). Although LD Neu is virtually absent in the blood of healthy
450 donors, extreme levels were often detected in the blood in the most severe group of patients
451 requiring supplemental O₂ and/or ICU. Due to their high density, neutrophils are not
452 expected to be part of the PBMC fraction. However, processes like neutrophil degranulation
453 can reduce the cell density, which allows them to 'contaminate' the lymphocyte/monocyte
454 fraction during Ficoll separation (Hacbarth and Kajdacsy-Balla, 1986). As degranulation is

455 an integral part of neutrophil biology, the number of LD Neu in the blood may indicate the
456 extent of ongoing neutrophil responses. Previous studies have reported increased numbers
457 of activated neutrophils inside the inflamed lung tissue (Barnes et al., 2020; Fox et al., 2020;
458 Wang et al., 2020; Yao et al., 2020) as well as elevated levels of immature neutrophils in the
459 blood circulation of COVID-19 patients (Carissimo et al., 2020). This is in line with another
460 recent study showing the presence of neutrophil extracellular traps (NETs) in the lungs of
461 deceased COVID-19 patients (Radermecker et al., 2020). Notably, LD Neu seems to have a
462 heightened capacity to release NETs (Yu and Su, 2013). In fact, LD Neu and NET formation
463 have been reported in a number of autoimmune diseases, such as antiphospholipid
464 syndrome (Mauracher et al., 2020), systemic lupus erythematosus (Van Den Hoogen et al.,
465 2020), and anti-neutrophil cytoplasm autoantibody vasculitis (Ui Mhaonaigh et al., 2019),
466 potentially consistent with autoimmune-like features of COVID-19 pathology (Woodruff et al.,
467 2020).

468 As monocytes has been implicated in COVID-19 pathology (Bedin et al., 2020; Guo
469 et al., 2020; Silvin et al., 2020; Zhou et al., 2020), we further characterized the monocyte
470 population into about 90 different subsets. As expected, IFN α is linked to the induction of
471 CD169 $^+$ C. Mono during the early active phase as well as the expansion of CD16 hi monocyte
472 populations, however we failed to observe any significant association with disease severity.
473 The only exception may be the expansion of CD16 $^+$ CD11b $^-$ C. Mono (Figure 7C) during the
474 active phase and possibly IgA $^+$ NC. Mono during convalescence (Figure 7D). Here, we could
475 neither confirm the protective effect of CD169 $^+$ C. Mono nor the increase of CD141 $^+$ HLADR $^-$
476 C Mono in severe cases as reported by Hadjadj et al. (Hadjadj et al., 2020). A possible
477 explanation for the discrepancy may be the difference in the timeline of sample taking or in
478 the respective definition of severity; in Hadjadi's study, 'mild' cases were essentially
479 asymptomatic but all of our patients were hospitalized.

480 Lastly, our study goes a step further by directly linking the neutrophil-specific immune
481 response to the pathology of COVID-19. One of the most striking results is the strong

482 association between LD Neu frequency and HGF plasma levels. Both factors are directly
483 associated with COVID-19 severity, suggesting that the cytokine may also play a key role in
484 the pathology. The associative nature of this study however does not allow us to draw direct
485 causal conclusions. Furthermore, the source of HGF is still controversial. While the bulk of
486 HGF seems to be released by mesenchymal cells, neutrophils may still play an important
487 role by acting as a source of matured HGF (Ohnishi et al., 2006; Small and Lung, 2006;
488 Wislez et al., 2003). HGF typically acts as anti-inflammatory and supports wound healing.
489 For instance, mesenchymal stem cells have been shown to alleviate acute lung injury via the
490 paracrine secretion of HGF (Lu et al., 2019). HGF and its receptor c-MET also play a crucial
491 role in various cancer where the neutrophil/HGF axis seems to mediate tumor growth by
492 eliciting immune-suppression (Glodde et al., 2017). However, depending on differentiation
493 and tissue environment, neutrophils can exert both pro- and anti-inflammatory effects
494 (Rosales, 2018). An earlier *in vitro* study even suggested that HGF stimulates neutrophil
495 degranulation (Kowanko et al., 1993). It is therefore likely that the presence of HGF in
496 severe COVID-19 may also promote the release of NETs (Radermecker et al., 2020). It may
497 thus be worth to evaluate existing HGF/c-MET drugs with regard to their ability to prevent or
498 stop deteriorating COVID-19 symptoms.

499 In summary, while the cellular and molecular interactions underlying COVID-19 are
500 very complex, we have identified some new candidates for potential treatment interventions.
501 Here, the HGF/LD Neu axis may represent a promising new lead for direct interventions, and
502 future studies have to show if HGF is actually a better pharmacological target than IFN α and
503 IL6. The trials with IL6 inhibitors have already failed and there is acute demand for effective
504 treatments. In support of this hunt, this study generates a database that could be used as a
505 crucial resource to evaluate the pathways and to validate, identify or exclude candidate
506 targets that could help to control the ongoing pandemic.

507

508 **Materials and Methods**

509 **Study design, sample size and participants**

510 For this study, 77 COVID-19 patients and 10 healthy donors were recruited. Enrollment of
511 COVID-19 patients was via PROTECT, a Singapore COVID-19 cohort study among seven
512 public health institutions. Healthy individuals were recruited under a Singapore Immunology
513 Network study entitled, "Study of blood cell subsets and their products in models of infection,
514 inflammation and immune regulation". Both studies had received prior approval from their
515 respective institutional review boards (IRBs). All individuals involved in this study were over
516 the age of 21, comprising 66 males and 21 females. Additional demographic details can be
517 found in Table S1.

518

519 **Sample collection**

520 Blood from healthy adult donors and COVID-19 patients were collected in BD Vacutainer
521 CPT Tubes and processed according to manufacturer's instructions to obtain the PBMC and
522 plasma fractions. Isolated PBMCs were then used for mass cytometry staining after two
523 washes with 1X phosphate buffer saline (PBS).

524

525 **Cytometry by time-of-flight (CyTOF) sample processing and data acquisition**

526 Freshly isolated ficoll-density centrifuged PBMCs were plated at $0.5 - 1 \times 10^6$ in a 96-well V
527 bottom plates and stained for viability with 100 μ L of 66 μ M of cisplatin (Sigma-Aldrich) for 5
528 minutes on ice. Cells were then washed with staining buffer (4% v/v fetal bovine serum, 0.05%
529 v/v sodium azide in 1X PBS) and stained with anti- $\gamma\delta$ TCR-PE and anti-V δ 1-FITC in 50 μ L
530 reaction volume for 15 minutes at room temperature. Cells were washed with staining buffer
531 and then stained with 50 μ L of metal isotope-labeled surface antibodies on ice. After 20
532 minutes, cells were washed with staining buffer, followed by PBS, and fixed in 4% v/v
533 paraformaldehyde (PFA, Electron Microscopy Sciences) at 4°C overnight. On the following

534 day, cells were incubated in staining buffer for 5 minutes. Cellular DNA was labeled at room
535 temperature with 170 nM iridium intercalator (Fluidigm) in 2% v/v PFA/PBS. After 20 minutes,
536 cells were washed twice with staining buffer.

537 Prior to CyTOF acquisition, cells were washed twice with water before final re-suspension in
538 water. Cells were enumerated, filtered and diluted to a final concentration of 0.6×10^6
539 cells/mL. EQ Four Element Calibration Beads (Fluidigm) were added to the samples at a
540 final concentration of 2% v/v prior to acquisition. Samples were acquired on a Helios Mass
541 Cytometer (Fluidigm) at an event rate of < 500 events per second. After CyTOF acquisition,
542 data were exported in flow-cytometry (FCS) format, normalized to 300,000 PBMCs and
543 events with parameters having zero values were randomized using a uniform distribution of
544 values between minus-one and zero. Subsequently, manual gating was performed to
545 exclude residual beads, debris and dead cells.

546

547 **Gating strategy for CyTOF**

548 We have designed a 40-plex antibodies panel for mass cytometry and performed non-
549 supervised Uniform Manifold Approximation and Projection (UMAP) or Triplet-constraint
550 (TriMAP) dimensionality reduction for larger dataset embedding of ficoll-density centrifuged
551 PBMCs obtained from both COVID-19 active and convalescent patients (Amid and Warmuth,
552 2019; McInnes et al., 2018). Iterative manual and UMAP clustering identified populations of
553 T cells, B cells, monocytes, NK, DC, ILCs, basophil as well as the LD neutrophils based on
554 their cell surface expression markers to generate 327 different immune cell subpopulations.

555

556 **Multiplex microbead-based Luminex immunoassays**

557 Plasma samples were treated by solvent/detergent based on TritonTM X-100 (1%) for virus
558 inactivation (Darnell and Taylor, 2006). Immune mediator levels in COVID-19 patient plasma
559 across different active and convalescent groups were measured with 24-plex Human

560 ProcartaPlex™ (ThermoFisher Scientific). The kit analyte detection panel included brain-
561 derived neurotrophic factor (BDNF), beta-nerve growth factor (bNGF), hepatocyte growth
562 factor (HGF), monocyte chemoattractant protein (MCP) 1, macrophage inflammatory protein
563 (MIP) 1 α , MIP1 β , RANTES (regulated on activation, normal T cell expressed and secreted),
564 stromal cell-derived factor 1 (SDF1 α), interferon (IFN) gamma-induced protein 10 (IP10),
565 IFN γ , interleukin (IL) IL1 β , IL1RA, IL2, IL5, IL6, IL7, IL18, IL12p70, leukemia inhibitory factor
566 (LIF), stem cell factor (SCF), tumor necrosis factor (TNF α), vascular endothelial growth
567 factor A (VEGF-A), platelet derived growth factor (PDGF-BB), and placental growth factor
568 (PLGF1).

569 Plasma from COVID-19 patients, healthy controls, as well as standards were incubated with
570 fluorescent-coded magnetic beads pre-coated with respective antibodies in a black 96-well
571 clear-bottom plate overnight at 4°C. After incubation, plates were washed 5 times with wash
572 buffer (PBS with 1% v/v bovine serum albumin (Capricorn Scientific) and 0.05% v/v Tween-
573 20 (Promega)). Sample-antibody-bead complexes were incubated with biotinylated detection
574 antibodies for 1 hour and washed 5 times with wash buffer. Subsequently, Streptavidin-PE
575 was added and incubated for another 30 minutes. Plates were washed 5 times again, before
576 sample-antibody-bead complexes were re-suspended in sheath fluid for acquisition on the
577 FLEXMAP® 3D (Luminex) using xPONENT® 4.0 (Luminex) software. Data analysis was
578 done on Bio-Plex Manager™ 6.1.1 (Bio-Rad). Standard curves were generated with a 5-PL
579 (5-parameter logistic) algorithm, reporting values for both mean fluorescence intensity (MFI)
580 and concentration data.

581 Internal control samples were included in each plate to remove any potential plate effects.
582 Readouts of these samples were then used to normalize the assayed plates. A correction
583 factor was obtained from the median concentration values observed across the multiple
584 assay plates and this correction factor was then used to normalize all the samples. The
585 concentrations were logarithmically transformed to ensure normality. Analytes that were not

586 detectable in patient samples were assigned the value of logarithmic transformation of the
587 Limit of Quantification (LOQ).

588

589 **Multiplex microbead-based Quanterix immunoassays**

590 Plasma immune mediator levels in selected active and convalescence phase of COVID-19
591 patients were measured using SIMOA Cytokine 3-Plex B (C3PB) assay kit (Quanterix) and
592 SIMOA IFN- α assay kit (Quanterix). C3PB kit analyte detection included interleukin (IL) IL6,
593 IL17A and tumor necrosis factor α (TNF α).

594 Standards and plasma from COVID-19 patients and healthy controls were pre-diluted in a
595 96-well plate before loading into the Simoa® HD-1 Analyzer (Quanterix) for data acquisition.
596 Reagents from the C3PB and IFN α assay kits were prepared according to the kit manual
597 and loaded into the analyzer. Fully automated data acquisition was done on Simoa® HD-1
598 Analyzer (Quanterix). Standard curves were generated with a 4-PL (4-parameter logistic)
599 algorithm, reporting values for concentration data.

600

601 **Quantification and Statistical Analysis**

602 Active and convalescence phase samples were defined by PCR positivity and serve as time
603 based clinical end points. Active phase samples were further divided into early (PIO \leq 14
604 days) and late (PIO $>$ 14 days). Convalescence phase samples were also further divided
605 into early (PIO \leq 28 days) and late (PIO $>$ 28 days). These provide a more granular time
606 based clinical end points.

607 Severity based clinical end points were defined for active and convalescence phase samples
608 separately. Three severity groups were defined for each phase consisting of symptomatic
609 patients, patients requiring oxygen supplementation and patients requiring oxygen
610 supplementation and awarded into intensive care unit as shown in Figure 1A.

611 Mass cytometry and cytokine measurements were associated to the clinical end points (time
612 based as well as severity based) using Kruskal-Wallis tests followed by Dunn's post hoc
613 tests. Correlations between mass cytometry and cytokine measurements were done using
614 Spearman Rank correlations. In the event that multiple samples from the same patient was
615 available for same time period, the earliest of the samples were used for analyses to ensure
616 that all samples used in the analyses are distinct. Multiple testing correction was done using
617 the method of Benjamini and Hochberg. P values less than 0.05 were deemed to be
618 significant. All statistical tests were two-sided (when appropriate) unless otherwise indicated.

619 Statistical analyses were done using the R statistical language version 3.6.2. All statistical
620 details are provided in the interactive viewers provided at
621 <https://data.mendeley.com/datasets/467s57xj8s/draft?a=15341765-e712-4eec-8107-a1d9c8da331a>

623 Overviews of the mass cytometry immune cell subpopulations were generated using UMAP
624 in R version 3.6.2 using the uwot package. Heat maps were generated in R version 3.6.2
625 using the ComplexHeatmap package. Graphs of the significant associations were generated
626 in R version 3.6.2 using the iGraph package and visualized in Cytoscape version 3.8.0.
627 Additional visualizations were done in TIBCO Spotfire.

628

629 **Data and Code Availability**

630 Data generated and/or analyzed during this study are available in the following public
631 repositories and also at <https://data.mendeley.com/datasets/467s57xj8s/draft?a=15341765-e712-4eec-8107-a1d9c8da331a>.

633 An interactive viewer of the mass cytometry data associations with clinical endpoints
634 (Figures 2A, 3, 5A and 5B and S2) are available at
635 https://www.dropbox.com/s/wz93vwn2vvjsjry/cytof_sample_group_association_results_page_r_vis_covid19_cytof_results_viewer.html?dl=1

637 An interactive viewer of the cytokine data associations with clinical endpoints (Figures 6A
638 and 6B) are available at
639 https://www.dropbox.com/s/4v107l3b65h5qfh/luminex_sample_group_association_results_v1
640 [covid19_cytof_results_viewer.html?dl=1](https://www.dropbox.com/s/covid19_cytof_results_viewer.html?dl=1)

641 The mass cytometry, cytokine and clinical data is available as an Excel file at
642 https://www.dropbox.com/s/yd2spn3lholhuv3/all_cytof_multimodal_data_paper.xlsx?dl=1

643 An interactive viewer of interaction network in Figure 7A is available at
644 https://www.dropbox.com/s/zm7a4s6nqelfnso/network_data_early_active_late_con_all_subset_percent_only_vis_bivariateTests.html?dl=1

645 [percent_only_vis_bivariateTests.html?dl=1](https://www.dropbox.com/s/yt8sf6uwhtte55y/network_data_late_active_late_con_all_subset_percent_only_vis_bivariateTests.html?dl=1)

646 An interactive viewer of interaction network in Figure 7B is available at
647 https://www.dropbox.com/s/yt8sf6uwhtte55y/network_data_late_active_late_con_all_subset_percent_only_vis_bivariateTests.html?dl=1

648 [percent_only_vis_bivariateTests.html?dl=1](https://www.dropbox.com/s/50tfhif6eqz3uo/network_data_active_all_subset_percent_only_icu_regression_vis_bivariateTests.html?dl=1)

649 An interactive viewer of interaction network in Figure 7C is available at
650 https://www.dropbox.com/s/50tfhif6eqz3uo/network_data_active_all_subset_percent_only_icu_regression_vis_bivariateTests.html?dl=1

651 [percent_only_icu_regression_vis_bivariateTests.html?dl=1](https://www.dropbox.com/s/q43bz8s294bwobu/network_data_con_all_subset_percent_only_icu_regression_vis_bivariateTests.html?dl=1)

652 An interactive viewer of interaction network in Figure 7D is available at
653 https://www.dropbox.com/s/q43bz8s294bwobu/network_data_con_all_subset_percent_only_icu_regression_vis_bivariateTests.html?dl=1

654 [percent_only_icu_regression_vis_bivariateTests.html?dl=1](https://www.dropbox.com/s/6y6bo7zl40qlm26/luminex_correlation_analysis_active_convalescence_group_active_results_vis_stats_results_viewer.html?dl=1)

655 An interactive viewer of cytokine data correlation with mass cytometry data at active phase
656 (Figures 6C and 6D) is available at
657 https://www.dropbox.com/s/6y6bo7zl40qlm26/luminex_correlation_analysis_active_convalescence_group_active_results_vis_stats_results_viewer.html?dl=1

658 [percent_only_icu_regression_vis_bivariateTests.html?dl=1](https://www.dropbox.com/s/6y6bo7zl40qlm26/luminex_correlation_analysis_active_convalescence_group_active_results_vis_stats_results_viewer.html?dl=1)

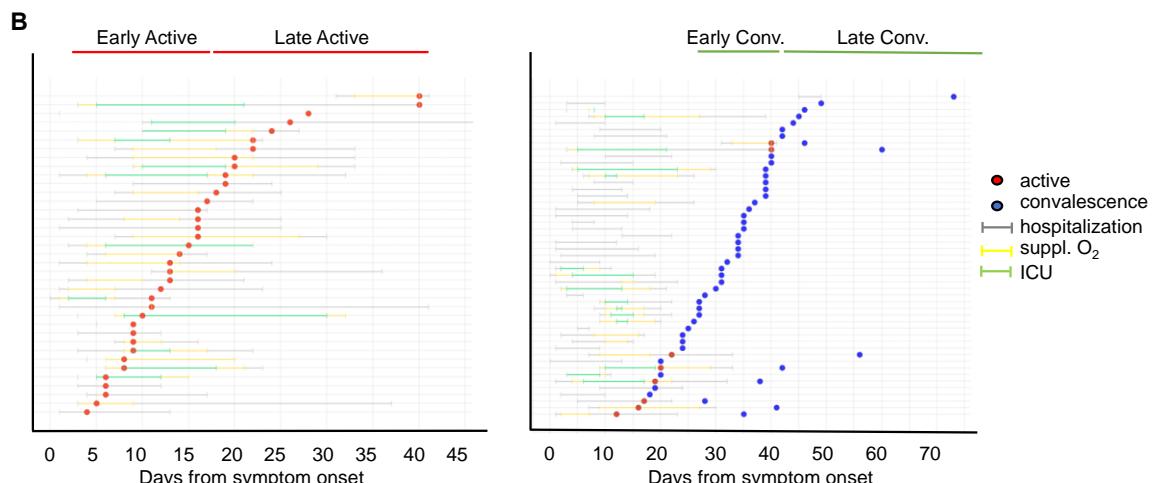
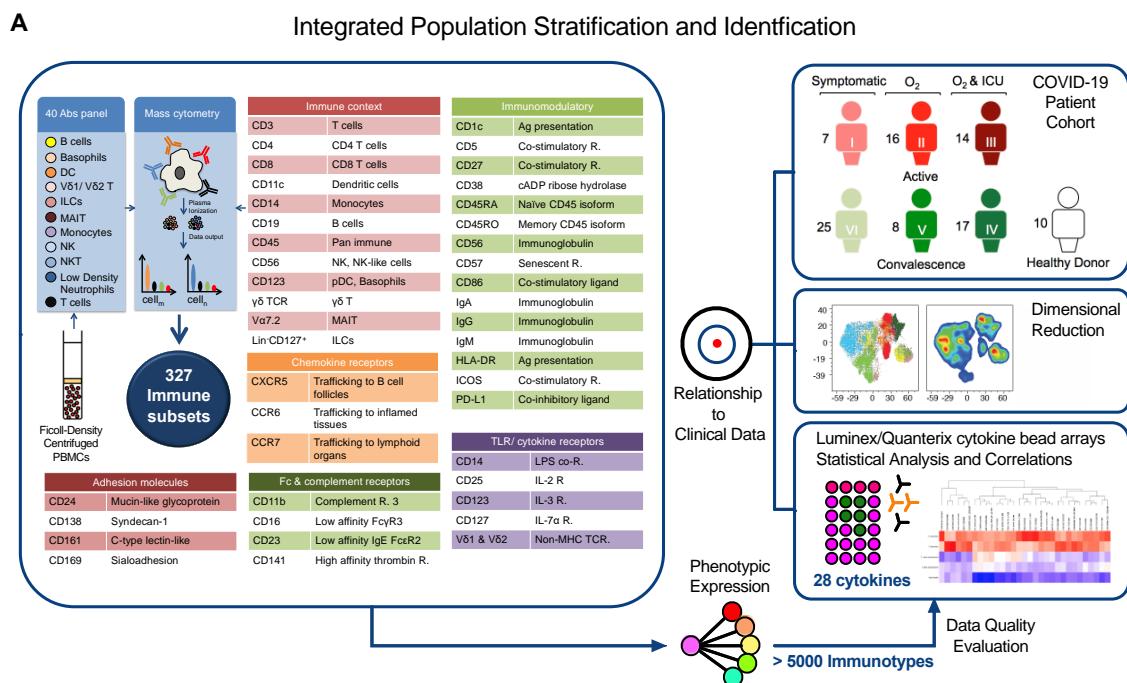
659 An interactive viewer of cytokine data correlation with mass cytometry data at convalescence
660 phase (Figure 6C) is available at

661 https://www.dropbox.com/s/2h0awk6l4rgzmn9/luminex_correlation_analysis_active_convale

662 https://www.dropbox.com/s/2h0awk6l4rgzmn9/luminex_group_convalescence_results_vis_stats_results_viewer.html?dl=1

663 **Acknowledgements:**

664 This study was funded by grants from Singapore's National Medical Research Council
665 (NMRC)'s COVID-19 Research Fund (grant numbers COVID19RF-001, COVID19RF-004,
666 and COVID19RF-007), as well as the Biomedical Research Council COVID-19 Fund (grant
667 number H20/04/g1/006) and the A*ccelerate GAP Fund (grant number ACCL/19-GAP064-
668 R20H-H) from the Agency of Science, Technology, and Research, Singapore. We thank
669 Etienne Raimondeau from LaPipette for the design of figure S8. We thank Mark I-Cheng
670 Chen from the National University of Singapore and National University Health System for
671 his support and patient cohort. We thank all clinical and nursing staff who provided medical
672 care to the patients, staff at the Communicable Diseases Division of the Ministry of Health,
673 Singapore, who contributed to the outbreak response and contact tracing, and staff at the
674 Singapore Infectious Disease Clinical Research Network and Infectious Disease Research
675 and Training Office of the National Centre for Infectious Diseases for coordinating patient
676 recruitment.

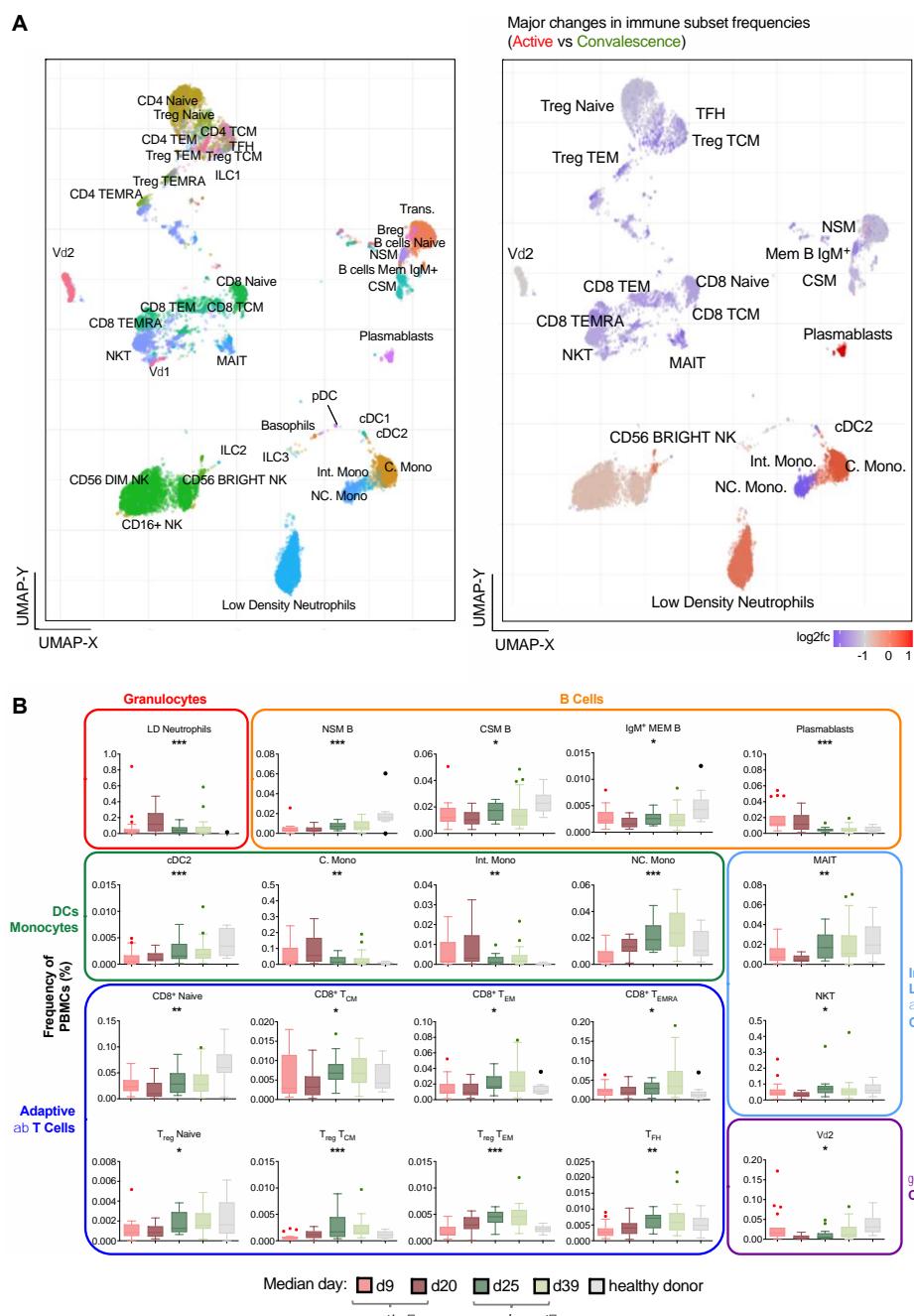


677 **Author Contributions:**

678 Conceptualization: J.L., P.K.J., L.F.P.N., B.L., O.R.; Methodology: J.L., K.W.W.T., C.Y.L.,
679 K.P.T., G.C., Y.H.C., C.M.P., C.Y-P.L., S.-W.F., N.K.-W.Y., R.S.-L.C., S.N.A., Z.W.C., M.Z.T.,
680 A.T.-R., N.L.F., W.H.; Software: K.D., B.L.; Validation: J.L., P.K.J.; Formal Analysis: J.L.,
681 P.K.J., L.W.W., K.D., B.L.; Resources: M.I.-C.C., S.-Y.T., L.Y.A.C., S.K., T.S.-Y.,
682 D.C.L., Y.-S.L., S.W.X.O., B.E.Y.; Data Curation: K.D., B.L.; Writing – Original Draft: J.L.,
683 P.K.J., L.W.W., B.L., O.R.; Writing – Review & Editing: J.L., P.K.J., L.W.W., B.L., O.R.;
684 Visualization: J.L., P.K.J., L.W.W., B.L., O.R.; Supervision: L.R., L.F.P.N., O.R.; Project
685 Administration: L.F.P.N., O.R.; Funding Acquisition: L.F.P.N.

686 **Competing Interests:**

687 The authors declare no competing interests

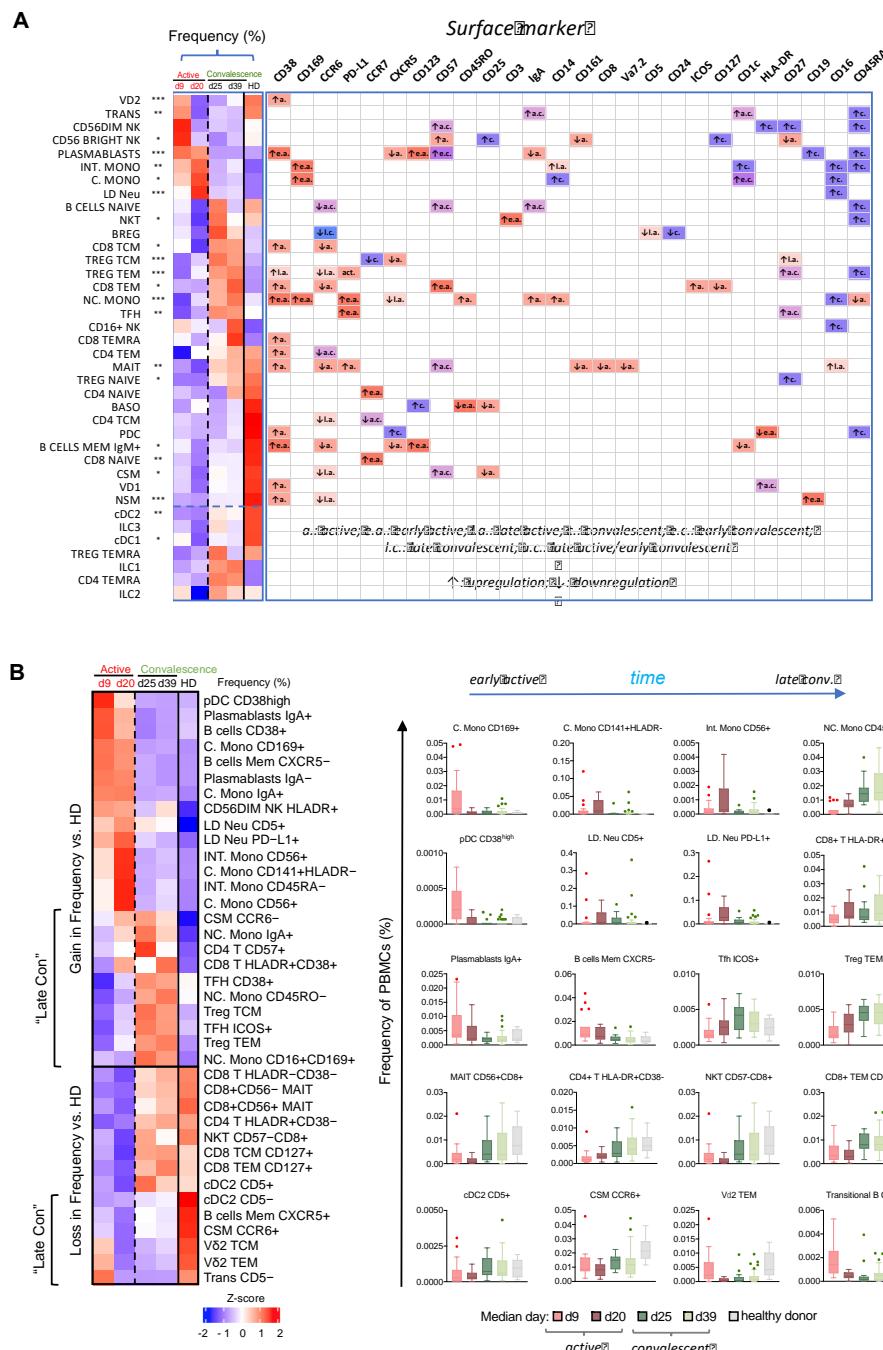
688 **Figures:**



689

690 **Figure 1.** Study design and clinical characteristics of the cohort. (A) Schematic showing the
691 pipeline for sample acquisition and analysis. A list of the antibody targets is presented. (B)
692 Timelines for individual COVID-19 cases, indicating points of sample collection and any
693 clinically pertinent detail e.g. duration of hospitalization, oxygen supplementation and
694 admission to the intensive care unit (ICU).

695


696

697

698 **Figure 2.** Frequency changes in 38 basic immune cell populations with SARS-CoV-2
 699 infection. (A) Uniform Manifold Approximation and Projection (UMAP) plots of 38 main
 700 immune cell populations detected by mass cytometry (left). Right: heat map representation
 701 of fold changes in the detected populations during active infection relative to convalescence,
 702 with color-coding done on a \log_2 scale. (B) Frequency-time plots of immune cell populations
 703 of interest over the course of disease.

704

706 **Figure 3.** Temporal changes in frequencies and surface marker expression profiles of
707 various immunotypes during active and convalescent COVID-19. (A) Left: heat map
708 representation of the frequencies of all 38 basic immune cell populations as a function of
709 days post illness onset (PIO) – d9 (early active; median: 9 days PIO), d20 (late active;
710 median: 20 days PIO), d25 (early convalescence; median: 25 days PIO), d39 (late
711 convalescence; median: 39 days PIO). Asterisks indicate statistical significance - *, p<0.05;
712 **, p<0.01; ***, p<0.001 (one-way ANOVA of all disease phases and healthy controls). Right:

713 up- or down-regulation of indicated surface markers for the 38 main immune cell populations
714 as a function of disease phase. (B) Left: heat map representation of the frequencies of the
715 top 38 immunotypes as a function of disease phase. Right: Box-and-whiskers plots of select
716 immunotypes showing the frequency-time relationships, with mean and IQR indicated. “Late
717 Con” refers to a group of immune subsets, which fail to recover to healthy levels even in late
718 convalescence as post-infection aberrations.

719

720

721

722

723

724

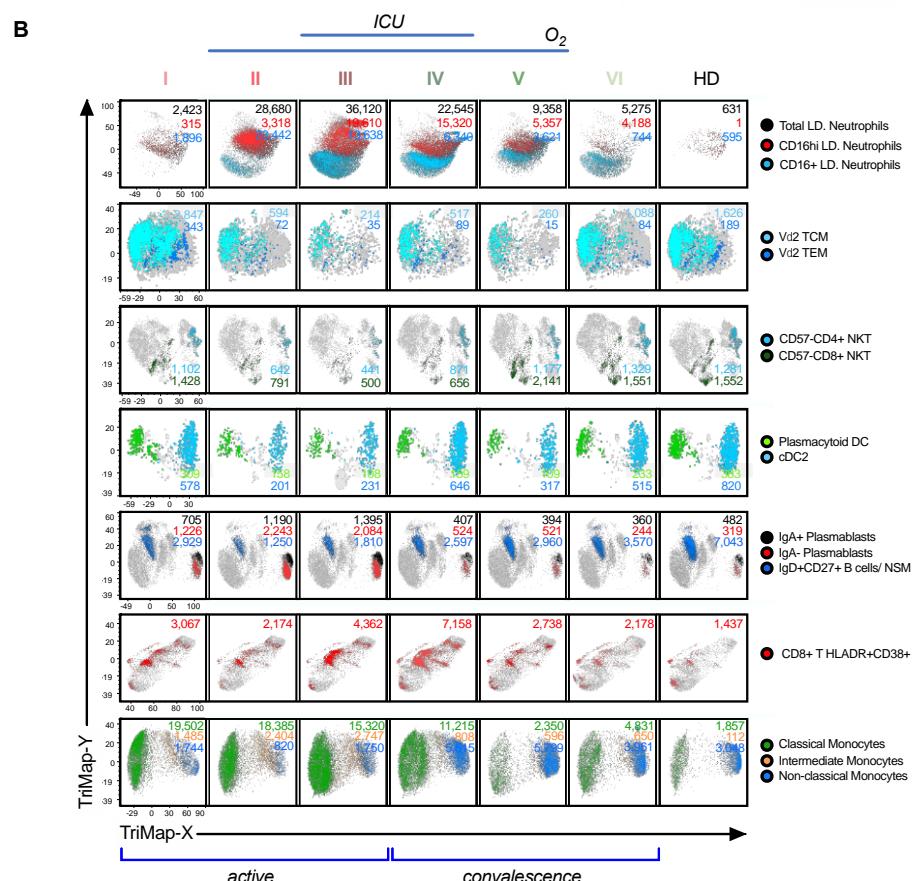
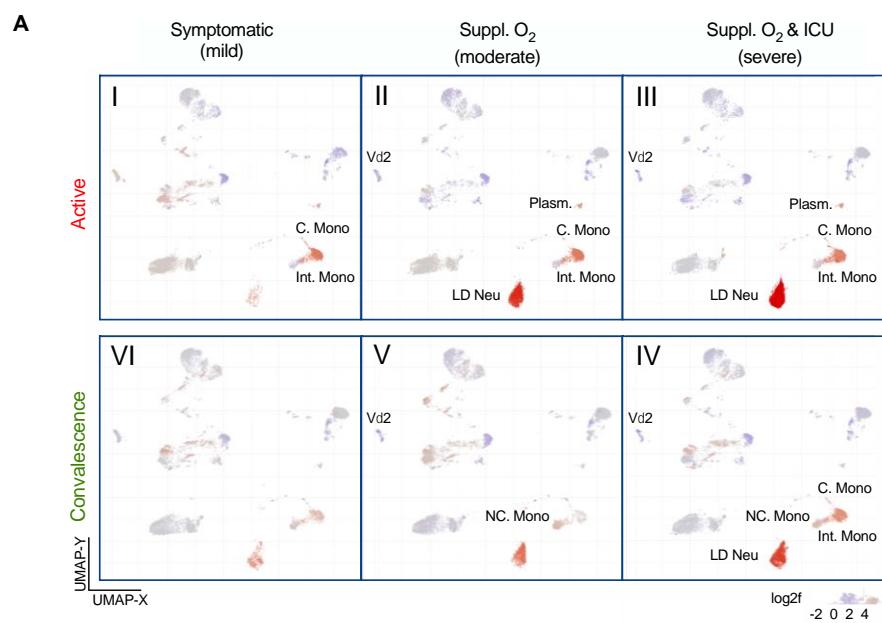
725

726

727

728

729



730

731

732

733

734

735

736 **Figure 4.** Alterations of immunotypes associated with the six-group disease severity states.

737 (A) Distribution of 38 immune cell subsets among group I active mild symptomatic, group II

738 active suppl. O₂ group III active suppl. O₂ ICU, group IV convalescent suppl. O₂ ICU, group V

739 convalescent Suppl. O₂ and group VI convalescent mild symptomatic using UMAP clustering.

740 Color indicates the log2 fold change in the frequency against healthy donors. (B) TriMap
741 clustering of PD-L1⁺ LD Neu, V δ 2 TCM, V δ 2 TEM, pan-CD57⁻ NKT, pDC, cDC2, IgA⁺/
742 plasmablasts, IgD⁺CD27⁺ NSM, HLA-DR⁺CD38⁺ CD8 T cells, C. Mono, Int. Mono and NC.
743 Mono among 6 groups of SAR-CoV-2 patients and healthy donors (HD). The absolute
744 number shown for the immune cells has been normalized per 300,000 PBMCs and thus
745 reflects its frequency.

746

747

748

749

750

751

752

753

754

755

756


757

758

759

760

761

762

763 **Figure 5.** Association of immune cell types and immunotypes with disease severity. (A) Left:
764 Heat map representation of frequencies of 53 immune cell populations with mild active,
765 severe, and mild convalescence among the 6 group severity stratifications and divided into
766 five clusters. Right: Box-and-whiskers plots showing means and IQR increased and reduced
767 frequency of immune cell populations with disease severity. (B) Scatterplots of subsets of IgA⁺
768 LD Neu, CD86⁺ NC. Mono, HLA-DR⁺ CD8⁺ T and C56^{Dim} NK cells with each cell population
769 additionally showing co-expression of CD16, PD-L1, IgA, CD45RO, CD38, CD24 and CD11b

770 frequencies. The absolute number shown for the gated immune cells has been normalized
771 per 300,000 PBMCs and thus reflects its frequency.

772

773

774

775

776

777

778

779

780

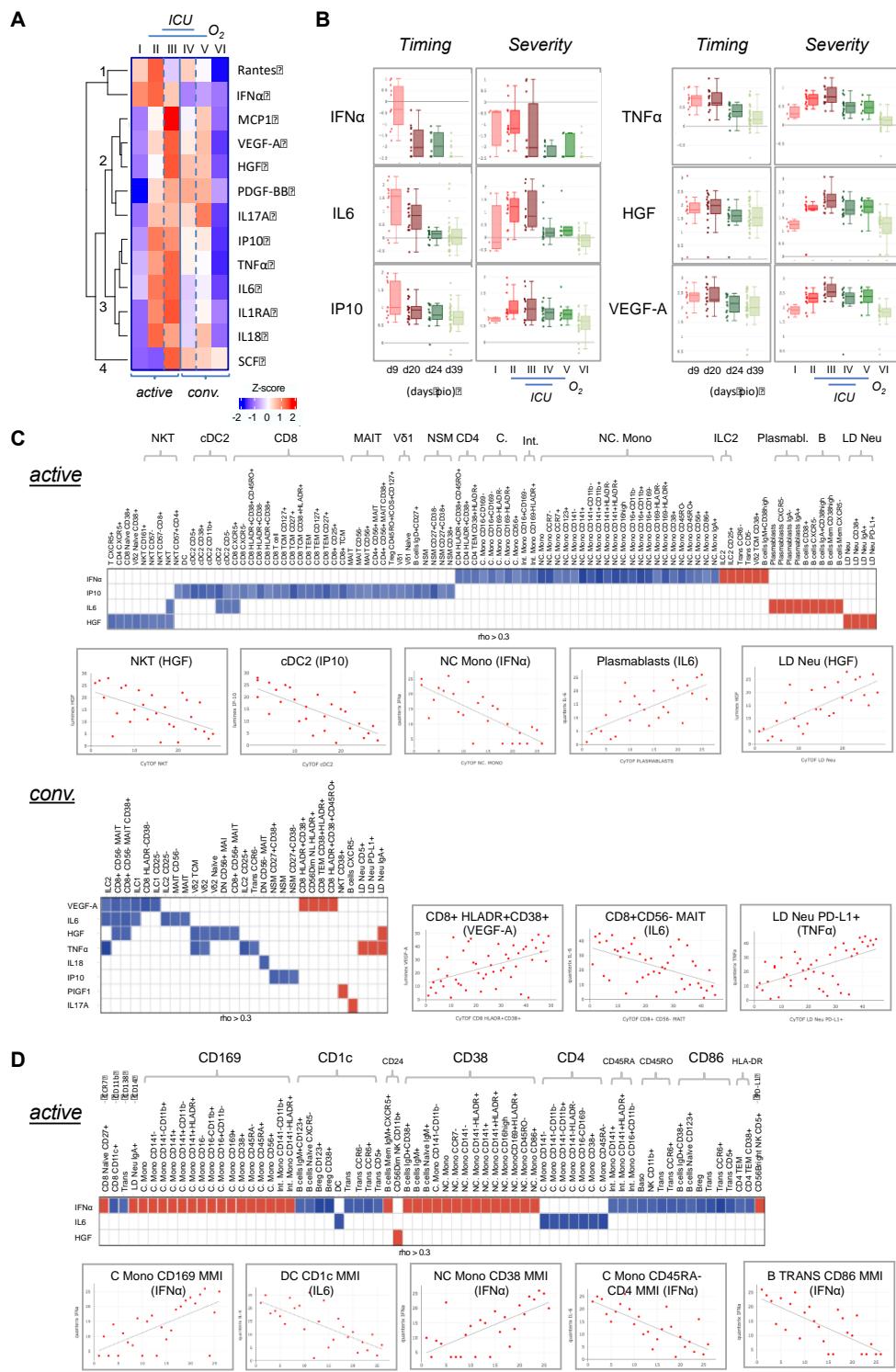
781

782

783

784

785


786

787

788

789

790

791

792 **Figure 6. Characterization of cytokines in COVID-19 patients. (A)** Changes in cytokine levels
793 among COVID-19 patients based on timing and severity. The heatmap shows the z-scores
794 of the mean logarithmically transformed concentration of the 13 cytokines (of a total of 28)
795 showing significant differences between any of the 6 severity groups. The z-scores are

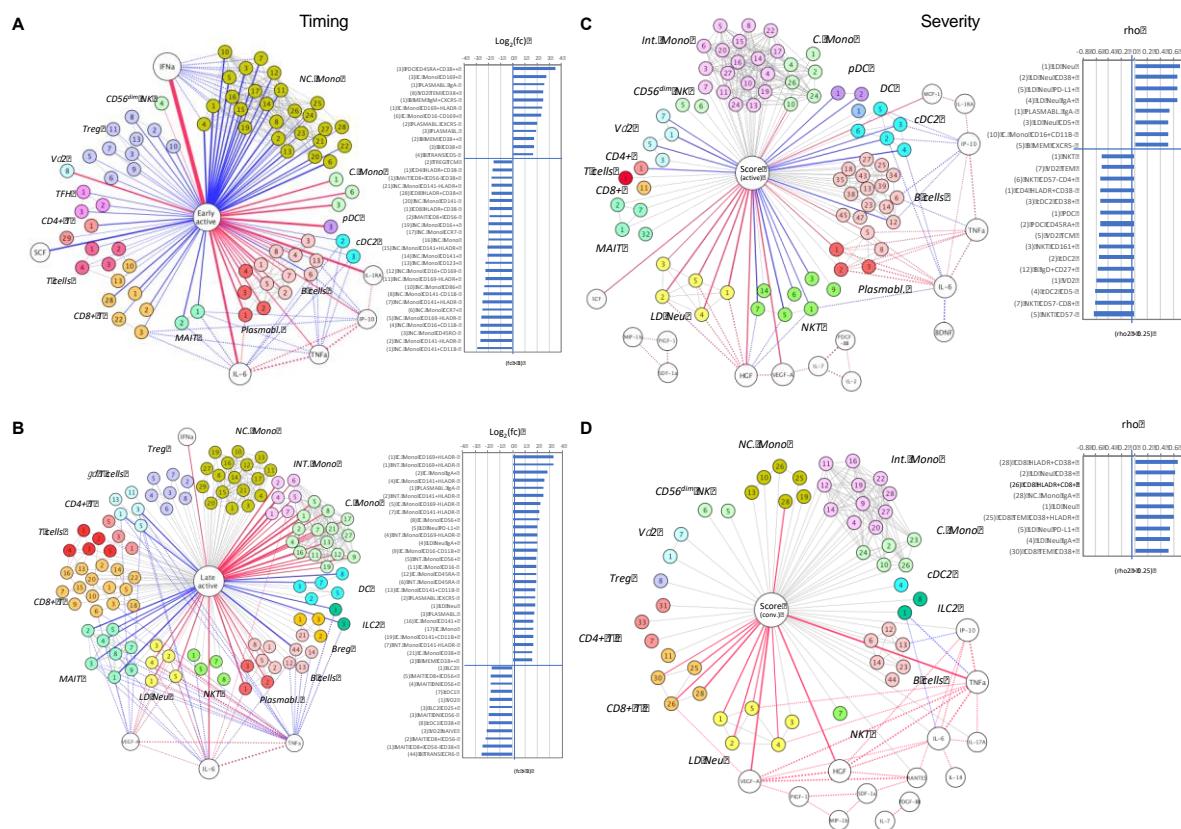
796 colored in red for positive values and in blue for negative values. The cytokines are clustered
797 using hierarchical clustering using Euclidean distances into four clusters, which are labeled 1
798 to 4 in the figure. (B) Box plots of selected cytokines showing differences in timing and/or
799 severity. The timing (left panels) refers to the plasma cytokine levels detected on the
800 respective day post illness onset (PIO), the severity (right panels) to the levels detected in
801 the 6 severity groups. Red colors refer to samples from the active phase, green to
802 convalescence phase. An interactive viewer is available in the online content: data
803 availability section. (C) Associations between cytokine level and cell frequency during active
804 and convalescent phase. The heatmap displays the strength of the association indicated by
805 the correlation coefficient (rho). Color indicated the direction (Red: positive, blue: negative).
806 Only associations $\text{abs}(\text{rho}) > 0.3$ and $p < 0.05$ are shown. Selected examples of these
807 correlations are shown in the scatter plots. An interactive viewer is available in the online
808 content: data availability section. (D) Associations between cytokine level and cell surface
809 marker expression during the active phase. The plots are arranged as in Figure 6C except
810 that the correlation was carried out with the MMI values of the various cell surface marker
811 instead of the percentage value of the cell populations.

812

813

814

815


816

817

818

819

820

821
822 **Figure 7.** A node-edge interaction network of the cytokine level and immune cellular
823 frequencies in COVID-19 patients. Association are shown with regard to the timing (A, B)
824 and the severity (C, D). Nodes represent either cytokines (white) or immune subsets
825 (colored). The central node represents the “comparison of interest”. The edges represent
826 significant associations between two nodes with the thickness indicating the strength either
827 based on fold change or correlation coefficient (rho). Color indicates the direction (Red:
828 positive, blue: negative), dotted lines indicate associations with cytokines. For the central
829 node, only associations with $\text{abs}(\text{rho}) > 0.3$ and $p < 0.05$ are colored and shown as bar
830 charts on the right. For the timing (A, B) these bar charts indicate the fold changes in the
831 early active (A) and late active state (B) in reference to late convalescent state while for the
832 severity (C, D) they represent the correlation coefficient (rho) in reference to the severity
833 groups in the active (C) and convalescent state (D). The number code of the cell subsets is
834 listed in table S3, an interactive network viewer is available in the Materials and Methods:
835 data and code availability subsection and Key Resource Table. ⁺⁺ denotes highly stained
836 immunotype.

837 **References**

838 Amid E, Warmuth MK. 2019. TriMap: large-scale dimensionality reduction using triplets.
839 *arXiv*.

840 Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM,
841 Daßler-Plenker J, Guerci P, Huynh C, Knight JS, Loda M, Looney MR, McAllister F,
842 Rayes R, Renaud S, Rousseau S, Salvatore S, Schwartz RE, Spicer JD, Yost CC,
843 Weber A, Zuo Y, Egeblad M. 2020. Targeting potential drivers of COVID-19: Neutrophil
844 extracellular traps. *J Exp Med.* doi:10.1084/jem.20200652

845 Bedin A-S, Makinson A, Picot M-C, Mennechet F, Malergue F, Pisoni A, Nyiramigisha E,
846 Montagnier L, Bollore K, Debiesse S, Morquin D, Bourgoin P, Veyrenche N, Renault C,
847 Foulongne V, Bret C, Bourdin A, Le Moing V, Van de Perre P, Tuailon E. 2020.
848 Monocyte CD169 expression as a biomarker in the early diagnosis of COVID-19. *J
849 Infect Dis.* doi:10.1093/infdis/jiaa724

850 Carissimo G, Xu W, Kwok I, Abdad MY, Chan YH, Fong SW, Puan KJ, Lee CYP, Yeo NKW,
851 Amrun SN, Chee RSL, How W, Chan S, Fan BE, Andiappan AK, Lee B, Rötzschke O,
852 Young BE, Leo YS, Lye DC, Renia L, Ng LG, Larbi A, Ng LF. 2020. Whole blood
853 immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early
854 marker for severe COVID-19. *Nat Commun.* doi:10.1038/s41467-020-19080-6

855 Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, Bleicker T, Brünink S,
856 Schneider J, Schmidt ML, Mulders DGJC, Haagmans BL, Van Der Veer B, Van Den
857 Brink S, Wijsman L, Goderski G, Romette JL, Ellis J, Zambon M, Peiris M, Goossens H,
858 Reusken C, Koopmans MPG, Drosten C. 2020. Detection of 2019 novel coronavirus
859 (2019-nCoV) by real-time RT-PCR. *Eurosurveillance.* doi:10.2807/1560-
860 7917.ES.2020.25.3.2000045

861 Cross A, Moots RJ, Edwards SW. 2008. The dual effects of TNF α on neutrophil apoptosis
862 are mediated via differential effects on expression of Mcl-1 and Bfl-1. *Blood.*
863 doi:10.1182/blood-2007-05-087833

864 Darnell MER, Taylor DR. 2006. Evaluation of inactivation methods for severe acute
865 respiratory syndrome coronavirus in noncellular blood products. *Transfusion.*
866 doi:10.1111/j.1537-2995.2006.00976.x

867 Dong E, Du H, Gardner L. 2020. An interactive web-based dashboard to track COVID-19 in
868 real time. *Lancet Infect Dis* **20**:533–534. doi:10.1016/S1473-3099(20)30120-1

869 Fox S, Akmatbekov A, Harbert J, Li G, Brown JQ, Vander Heide R. 2020. Pulmonary and
870 Cardiac Pathology in Covid-19: The First Autopsy Series from New Orleans. *Lancet
871 Respir Med.* doi:10.1101/2020.04.06.20050575

872 Glodde N, Bald T, van den Boorn-Konijnenberg D, Nakamura K, O'Donnell JS, Szccepanski
873 S, Brandes M, Eickhoff S, Das I, Shridhar N, Hinze D, Rogava M, van der Sluis TC,
874 Ruotsalainen JJ, Gaffal E, Landsberg J, Ludwig KU, Wilhelm C, Riek-Burchardt M,
875 Müller AJ, Gebhardt C, Scolyer RA, Long G V., Janzen V, Teng MWL, Kastenmüller W,
876 Mazzone M, Smyth MJ, Tüting T, Hözel M. 2017. Reactive Neutrophil Responses
877 Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy.
878 *Immunity.* doi:10.1016/j.immuni.2017.09.012

879 Guo C, Li B, Ma H, Wang X, Cai P, Yu Q, Zhu L, Jin L, Jiang C, Fang J, Liu Q, Zong D,
880 Zhang W, Lu Y, Li K, Gao X, Fu B, Liu L, Ma X, Weng J, Wei H, Jin T, Lin J, Qu K.
881 2020. Single-cell analysis of two severe COVID-19 patients reveals a monocyte-
882 associated and tocilizumab-responding cytokine storm. *Nat Commun.*
883 doi:10.1038/s41467-020-17834-w

884 Hacbarth E, Kajdacsy-Balla A. 1986. Low density neutrophils in patients with systemic lupus
885 erythematosus, rheumatoid arthritis, and acute rheumatic fever. *Arthritis Rheum.*
886 doi:10.1002/art.1780291105

887 Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, Péré H, Charbit B, Bondet
888 V, Chenevier-Gobeaux C, Breillat P, Carlier N, Gauzit R, Morbieu C, Pène F, Marin N,
889 Roche N, Szwebel TA, Merkling SH, Treluyer JM, Veyer D, Mounthou L, Blanc C,
890 Tharaux PL, Rozenberg F, Fischer A, Duffy D, Rieux-Laukat F, Kernéis S, Terrier B.
891 2020. Impaired type I interferon activity and inflammatory responses in severe COVID-
892 19 patients. *Science* (80-). doi:10.1126/science.abc6027

893 Jouan Y, Guillou A, Gonzalez L, Perez Y, Ehrmann S, Ferreira M, Daix T, Jeannet R,
894 Francois B, Dequin P-F, Si-Tahar M, Baranek T, Paget C. 2020. Functional alteration of
895 innate T cells in critically ill Covid-19 patients. *medRxiv* 2020.05.03.20089300.
896 doi:10.1101/2020.05.03.20089300

897 Kowanko IC, Ferrante A, Nakamura T. 1993. Hepatocyte growth factor stimulates neutrophil
898 degranulation but not respiratory burst. *Mediators Inflamm.*
899 doi:10.1155/S0962935193000195

900 Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, Ittner CAG, Weisman AR,
901 Agyekum RS, Mathew D, Baxter AE, Vella LA, Kuthuru O, Apostolidis SA, Bershad L,
902 Dougherty J, Greenplate AR, Pattekar A, Kim J, Han N, Gouma S, Weirick ME, Arevalo
903 CP, Bolton MJ, Goodwin EC, Anderson EM, Hensley SE, Jones TK, Mangalmurti NS,
904 Luning Prak ET, Wherry EJ, Meyer NJ, Betts MR. 2020. Comprehensive mapping of
905 immune perturbations associated with severe COVID-19. *Sci Immunol.*
906 doi:10.1126/sciimmunol.abd7114

907 Lu Z, Chang W, Meng S, Xu X, Xie J, Guo F, Yang Y, Qiu H, Liu L. 2019. Mesenchymal
908 stem cells induce dendritic cell immune tolerance via paracrine hepatocyte growth
909 factor to alleviate acute lung injury. *Stem Cell Res Ther.* doi:10.1186/s13287-019-1488-
910 2

911 Manson JJ, Crooks C, Naja M, Ledlie A, Goulden B, Liddle T, Khan E, Mehta P, Martin-
912 Gutierrez L, Waddington KE, Robinson GA, Ribeiro Santos L, McLoughlin E, Snell A,
913 Adeney C, Schim van der Loeff I, Baker KF, Duncan CJA, Hanrath AT, Lendrem BC,
914 De Soya A, Peng J, J'Bari H, Greenwood M, Hawkins E, Peckham H, Marks M,
915 Rampling T, Luintel A, Williams B, Brown M, Singer M, West J, Jury EC, Collin M,
916 Tattersall RS. 2020. COVID-19-associated hyperinflammation and escalation of patient
917 care: a retrospective longitudinal cohort study. *Lancet Rheumatol.* doi:10.1016/S2665-
918 9913(20)30275-7

919 Mauracher L-M, Krall M, Roiß J, Hell L, Koder S, Hofbauer TM, Gebhart J, Hayden H,
920 Brostjan C, Ay C, Pabinger I. 2020. Neutrophil subpopulations and their activation
921 potential in patients with antiphospholipid syndrome and healthy individuals.
922 *Rheumatology*. doi:10.1093/rheumatology/keaa532

923 McInnes L, Healy J, Melville J. 2018. UMAP: Uniform manifold approximation and projection
924 for dimension reduction. *arXiv*.

925 Morrissey SM, Geller AE, Hu X, Tieri D, Cooke EA, Ding C, Woeste M, Zhang H, Cavallazzi
926 R, Clifford SP, Chen J, Kong M, Watson CT, Huang J, Yan J. 2020. Emergence of Low-
927 density Inflammatory Neutrophils Correlates with Hypercoagulable State and Disease
928 Severity in COVID-19 Patients. *medRxiv* 2020.05.22.20106724.
929 doi:10.1101/2020.05.22.20106724

930 Ohnishi T, Kakimoto K, Bandow K, Lowenstein CJ, Daikuhara Y, Matsuguchi T. 2006.
931 Mature Hepatocyte Growth Factor/Scatter Factor on the Surface of Human

932 Granulocytes Is Released by a Mechanism Involving Activated Factor Xa. *J Immunol*
933 **176**:6945–6953. doi:10.4049/jimmunol.176.11.6945

934 Parrot T, Gorin JB, Ponzetta A, Maleki KT, Kammann T, Emgård J, Perez-Potti A, Sekine T,
935 Rivera-Ballesteros O, Gredmark-Russ S, Rooyackers O, Folkesson E, Eriksson LI,
936 Norrby-Teglund A, Ljunggren HG, Björkström NK, Aleman S, Buggert M, Klingström J,
937 Strålin K, Sandberg JK, Sandberg JT, Bergsten H, Björkström NK, Brightenti S, Buggert
938 M, Butrym M, Chambers BJ, Chen P, Cornillet M, Cuapio A, Lozano ID, Dzidic M,
939 Emgård J, Flodström-Tullberg M, Gorin JB, Gredmark-Russ S, Haroun-Izquierdo A,
940 Hertwig L, Kalsum S, Klingström J, Kokkinou E, Kvedaraite E, Ljunggren HG, Lourda M,
941 Maleki KT, Malmberg KJ, Michaëlsson J, Mjösberg J, Moll K, Muvva JR, Norrby-
942 Teglund A, Palma Medina LM, Parrot T, Radler L, Ringqvist E, Sandberg JK, Sekine T,
943 Soini T, Svensson M, Tynell J, Von Kries A, Wullimann D, Perez-Potti A, Rivera-
944 Ballesteros O, Maucourant C, Varnaite R, Akber M, Berglin L, Brownlie D, Loreti MG,
945 Sohlberg E, Kammann T, Henriksson E, Marquardt N, Strålin K, Aleman S, Sönerborg
946 A, Dillner L, Färnert A, Glans H, Nauclér P, Rooyackers O, Mårtensson J, Eriksson LI,
947 Persson BP, Grip J, Unge C. 2020. MAIT cell activation and dynamics associated with
948 COVID-19 disease severity. *Sci Immunol*. doi:10.1126/SCIMMUNOL.ABE1670

949 Radermecker C, Detrembleur N, Guiot J, Cavalier E, Henket M, d'Emal C, Vanwinge C,
950 Cataldo D, Oury C, Delvenne P, Marichal T. 2020. Neutrophil extracellular traps
951 infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. *J
952 Exp Med*. doi:10.1084/jem.20201012

953 Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. 2020. The COVID-19 Cytokine
954 Storm; What We Know So Far. *Front Immunol*. doi:10.3389/fimmu.2020.01446

955 Rosales C. 2018. Neutrophil: A cell with many roles in inflammation or several cell types?
956 *Front Physiol*. doi:10.3389/fphys.2018.00113

957 Salamone G, Giordano M, Trevani AS, Gamberale R, Vermeulen M, Schettinni J, Geffner JR.
958 2001. Promotion of Neutrophil Apoptosis by TNF- α . *J Immunol*.
959 doi:10.4049/jimmunol.166.5.3476

960 Silvin A, Chapuis N, Dunsmore G, Goubet AG, Dubuisson A, Derosa L, Almire C, Hénon C,
961 Kosmider O, Droin N, Rameau P, Catelain C, Alfaro A, Dussau C, Friedrich C,
962 Sourdeau E, Marin N, Szwebel TA, Cantin D, Mounthon L, Borderie D, Deloger M,
963 Bredel D, Mouraud S, Drubay D, Andrieu M, Lhonneur AS, Saada V, Stoclin A,
964 Willekens C, Pommeret F, Griscelli F, Ng LG, Zhang Z, Bost P, Amit I, Barlesi F,
965 Marabelle A, Pène F, Gachot B, André F, Zitvogel L, Ginhoux F, Fontenay M, Solary E.
966 2020. Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe
967 from Mild COVID-19. *Cell*. doi:10.1016/j.cell.2020.08.002

968 Small N, Lung C. 2006. Correspondence.

969 Song B, Lee JM, Park YJ, Kim IK, Kim BS, Shin KS, Jeon I, Koh CH, Bae EA, Seo H, Byun
970 Y, Kang CY. 2020. Differentiation of c-Kit+CD24+ natural killer cells into myeloid cells in
971 a GATA-2-dependent manner. *FASEB J*. doi:10.1096/fj.201902662R

972 Ui Mhaonaigh A, Coughlan AM, Dwivedi A, Hartnett J, Cabral J, Moran B, Brennan K, Doyle
973 SL, Hughes K, Lucey R, Floudas A, Fearon U, McGrath S, Cormican S, De Bhailis A,
974 Molloy EJ, Brady G, Little MA. 2019. Low Density Granulocytes in ANCA Vasculitis Are
975 Heterogenous and Hypo-Responsive to Anti-Myeloperoxidase Antibodies. *Front
976 Immunol*. doi:10.3389/fimmu.2019.02603

977 Van Den Hoogen LL, Van Der Linden M, Meyaard L, Fritsch-Stork RDE, Van Roon JA,
978 Radstake TRDJ. 2020. Neutrophil extracellular traps and low-density granulocytes are
979 associated with the interferon signature in systemic lupus erythematosus, but not in

980 antiphospholipid syndrome. *Ann Rheum Dis.* doi:10.1136/annrheumdis-2019-215781

981 Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A,
982 Zheng S, Lazo S, Jardine L, Dixon D, Stephenson E, Nilsson E, Grundberg I, McDonald
983 D, Filby A, Li W, De Jager PL, Rozenblatt-Rosen O, Lane AA, Haniffa M, Regev A,
984 Hacohen N. 2017. Single-cell RNA-seq reveals new types of human blood dendritic
985 cells, monocytes, and progenitors. *Science* (80-). doi:10.1126/science.aah4573

986 Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, Latreche S, Bergaya S,
987 Benhamouda N, Tanchot C, Stockmann C, Combe P, Berger A, Zinzindohoue F, Yagita
988 H, Tartour E, Taieb J, Terme M. 2015. VEGF-A modulates expression of inhibitory
989 checkpoints on CD8++ T cells in tumors. *J Exp Med.* doi:10.1084/jem.20140559

990 Wang J, Li Q, Yin Y, Zhang Y, Cao Y, Lin X, Huang L, Hoffmann D, Lu M, Qiu Y. 2020.
991 Excessive Neutrophils and Neutrophil Extracellular Traps in COVID-19. *Front Immunol.*
992 doi:10.3389/fimmu.2020.02063

993 Weerahandi H, Hochman KA, Simon Emma, Blaum C, Chodosh J, Duan E, Garry K, Kahan
994 T, Karmen-Tuohy S, Karpel H, Mendoza F, Prete AM, Quintana L, Rutishauser J,
995 Santos Martinez L, Shah K, Sharma S, Simon Elias, Stirniman A, Horwitz L. 2020.
996 Post-discharge health status and symptoms in patients with severe COVID-19.
997 *medRxiv Prepr Serv Heal Sci.* doi:10.1101/2020.08.11.20172742

998 Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martínez-Colón GJ, McKechnie JL, Ivison GT,
999 Ranganath T, Vergara R, Hollis T, Simpson LJ, Grant P, Subramanian A, Rogers AJ,
1000 Blish CA. 2020. A single-cell atlas of the peripheral immune response in patients with
1001 severe COVID-19. *Nat Med.* doi:10.1038/s41591-020-0944-y

1002 Wislez M, Rabbe N, Marchal J, Milleron B, Crestani B, Mayaud C, Antoine M, Soler P,
1003 Cadranel J. 2003. Hepatocyte growth factor production by neutrophils infiltrating
1004 bronchioloalveolar subtype pulmonary adenocarcinoma: Role in tumor progression and
1005 death. *Cancer Res.*

1006 Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, Ley AM, Kyu
1007 S, Howell JC, Ozturk T, Lee S, Suryadevara N, Case JB, Bugrovsky R, Chen W,
1008 Estrada J, Morrison-Porter A, Derrico A, Anam FA, Sharma M, Wu HM, Le SN, Jenks
1009 SA, Tipton CM, Staitieh B, Daiss JL, Ghosn E, Diamond MS, Carnahan RH, Crowe JE,
1010 Hu WT, Lee FEH, Sanz I. 2020. Extrafollicular B cell responses correlate with
1011 neutralizing antibodies and morbidity in COVID-19. *Nat Immunol.* doi:10.1038/s41590-
1012 020-00814-z

1013 Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C,
1014 Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. 2020. Pathological findings of
1015 COVID-19 associated with acute respiratory distress syndrome. *Lancet Respir Med.*
1016 doi:10.1016/S2213-2600(20)30076-X

1017 Yao XH, Li TY, He ZC, Ping YF, Liu HW, Yu SC, Mou HM, Wang LH, Zhang HR, Fu WJ, Luo
1018 T, Liu F, Chen C, Xiao HL, Guo HT, Lin S, Xiang DF, Shi Y, Li QR, Huang X, Cui Y, Li
1019 XZ, Tang W, Pan PF, Huang XQ, Ding YQ, Bian XW. 2020. [A pathological report of
1020 three COVID-19 cases by minimally invasive autopsies]. *Zhonghua bing li xue za zhi =*
1021 *Chinese J Pathol.* doi:10.3760/cma.j.cn112151-20200312-00193

1022 Young Barnaby E., Ong SWX, Ng LF, Anderson DE, Chia WN, Chia PY, Ang LW, Mak T-M,
1023 Kalimuddin S, Chai LY, Pada S, Tan SY, Sun L, Parthasarathy P, Fong S-W, Chan Y-
1024 H, Tan CW, Lee B, Rötzschke O, Ding Y, Tambyah P, Low JG, Cui L, Barkham T, Lin
1025 RTP, Leo Y-S, Renia L, Wang L-F, Lye DC. 2020. Immunological and Viral Correlates
1026 of COVID-19 Disease Severity: A Prospective Cohort Study of the First 100 Patients in
1027 Singapore. *SSRN Electron J.* doi:10.2139/ssrn.3576846

1028 Young Barnaby E, Ong SWX, Ng LFP, Anderson DE, Chia WN, Chia PY, Ang LW, Mak T-M,
1029 Kalimuddin S, Chai LYA, Pada S, Tan SY, Sun L, Parthasarathy P, Fong S-W, Chan Y-
1030 H, Tan CW, Lee B, Rötzschke O, Ding Y, Tambyah P, Low JGH, Cui L, Barkham T, Lin
1031 RTP, Leo Y-S, Renia L, Wang L-F, Lye DC, Lim PL, Peng Ang BS, Lee CC, U Lee LS,
1032 Ling LM, Ng OT, Chan M, Marimuthu K, Vasoo S, Wong CS, Lee TH, Sadarangani S,
1033 Lin RJ, Sadasiv MS, Ling Ng DH, Choy CY, En Tan GS, Tan YK, Sutjipto S, Lee PH,
1034 Tay JY, Yeo TW, Khoo BY, Tay WC, Ng G, Mah YY, Tan W, De PP, Pooja R, Chia
1035 JWZ, Constance Chen YY, Mendis S, Toh BK, Choon Fong RK, Lin Oh HM, Fong
1036 Chien JM, Shafi H, Cheong HY, Tan TY, Tan TT, Tan BH, Wijaya L, Venkatachalam I,
1037 Chua YY, Zhi Cherng BP, Zi Chan YF, Wong HM, Thien SY, Meng Goh KC, Ling Tan
1038 SY, Ean Oon LL, Chan KS, Lin L, Gin Chan DS, Ooi ST, Narayana DR, Somani J, Ling
1039 Oon JE, Yan GZ, Allen DM, Jureen R, Yan B, Foo R, Kang A, Sivalingam V, How W,
1040 Fernandez NL, Yeo NK-W, Chee RS-L, Amrun SN, Lim PL, Peng Ang BS, Lee CC, U
1041 Lee LS, Ling LM, Ng OT, Chan M, Marimuthu K, Vasoo S, Wong CS, Lee TH,
1042 Sadarangani S, Lin RJ, Sadasiv MS, Ling Ng DH, Choy CY, En Tan GS, Tan YK,
1043 Sutjipto S, Lee PH, Tay JY, Yeo TW, Khoo BY, Tay WC, Ng G, Mah YY, Tan W, De PP,
1044 Pooja R, Chia JWZ, Constance Chen YY, Mendis S, Toh BK, Choon Fong RK, Lin Oh
1045 HM, Fong Chien JM, Shafi H, Cheong HY, Tan TY, Tan TT, Tan BH, Wijaya L,
1046 Venkatachalam I, Chua YY, Zhi Cherng BP, Zi Chan YF, Wong HM, Thien SY, Meng
1047 Goh KC, Ling Tan SY, Ean Oon LL, Chan KS, Lin L, Gin Chan DS, Ooi ST, Narayana
1048 DR, Somani J, Ling Oon JE, Yan GZ, Allen DM, Jureen R, Yan B, Foo R, Kang A,
1049 Sivalingam V, How W, Fernandez NL, Yeo NK-W, Chee RS-L, Amrun SN. 2020. Viral
1050 Dynamics and Immune Correlates of Coronavirus Disease 2019 (COVID-19) Severity.
1051 *Clin Infect Dis.* doi:10.1093/cid/ciaa1280

1052 Yu Y, Su K. 2013. Neutrophil Extracellular Traps and Systemic Lupus Erythematosus. *J Clin*
1053 *Cell Immunol.* doi:10.4172/2155-9899.1000139

1054 Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, Sun R, Tian Z, Xu X, Wei H. 2020.
1055 Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe
1056 COVID-19 patients. *Natl Sci Rev.* doi:10.1093/nsr/nwaa041

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072 **Supplemental Information**

1073

1074 **Data-driven analysis of COVID-19 reveals specific severity patterns distinct from the**
1075 **temporal immune response**

1076 Jackwee Lim, Kia Joo Puan, Liang Wei Wang, Karen Wei Weng Teng, Chiew Yee Loh, Kim
1077 Peng Tan, Guillaume Carissimo, Yi-Hao Chan, Chek Meng Poh, Cheryl Yi-Pin Lee, Siew-
1078 Wai Fong, Nicholas Kim-Wah Yeo, Rhonda Sin-Ling Chee, Siti Naqiah Amrun, Zi Wei Chang,
1079 Matthew Zirui Tay, Anthony Torres-Ruesta, Norman Leo Fernandez, Wilson How, Anand K.
1080 Andiappan, Wendy Lee, Kaibo Duan, Seow-Yen Tan, Gabriel Yan, Shirin Kalimuddin, David
1081 Chien Lye, Yee-Sin Leo, Sean W. X. Ong, Barnaby E. Young, Laurent Renia, Lisa F.P. Ng,
1082 Bennett Lee, Olaf Rötzschke

1083

1084

1085

1086

1087

1088

1089


1090

1091

1092

1093

1094

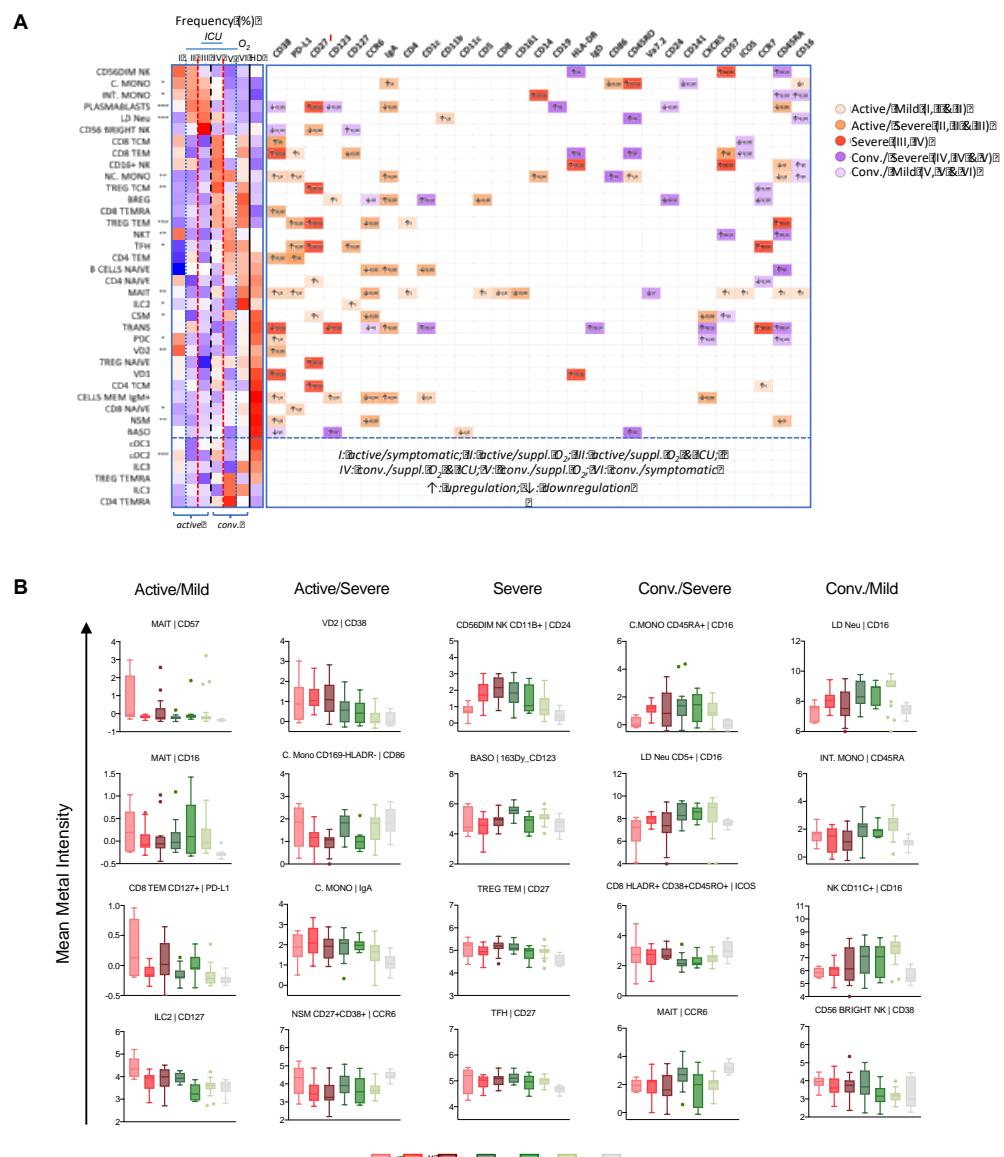
1095

1096 **Figure S1.** Temporal changes in surface marker expression profiles of various immune cell
1097 subsets during active and convalescent COVID-19.

1098

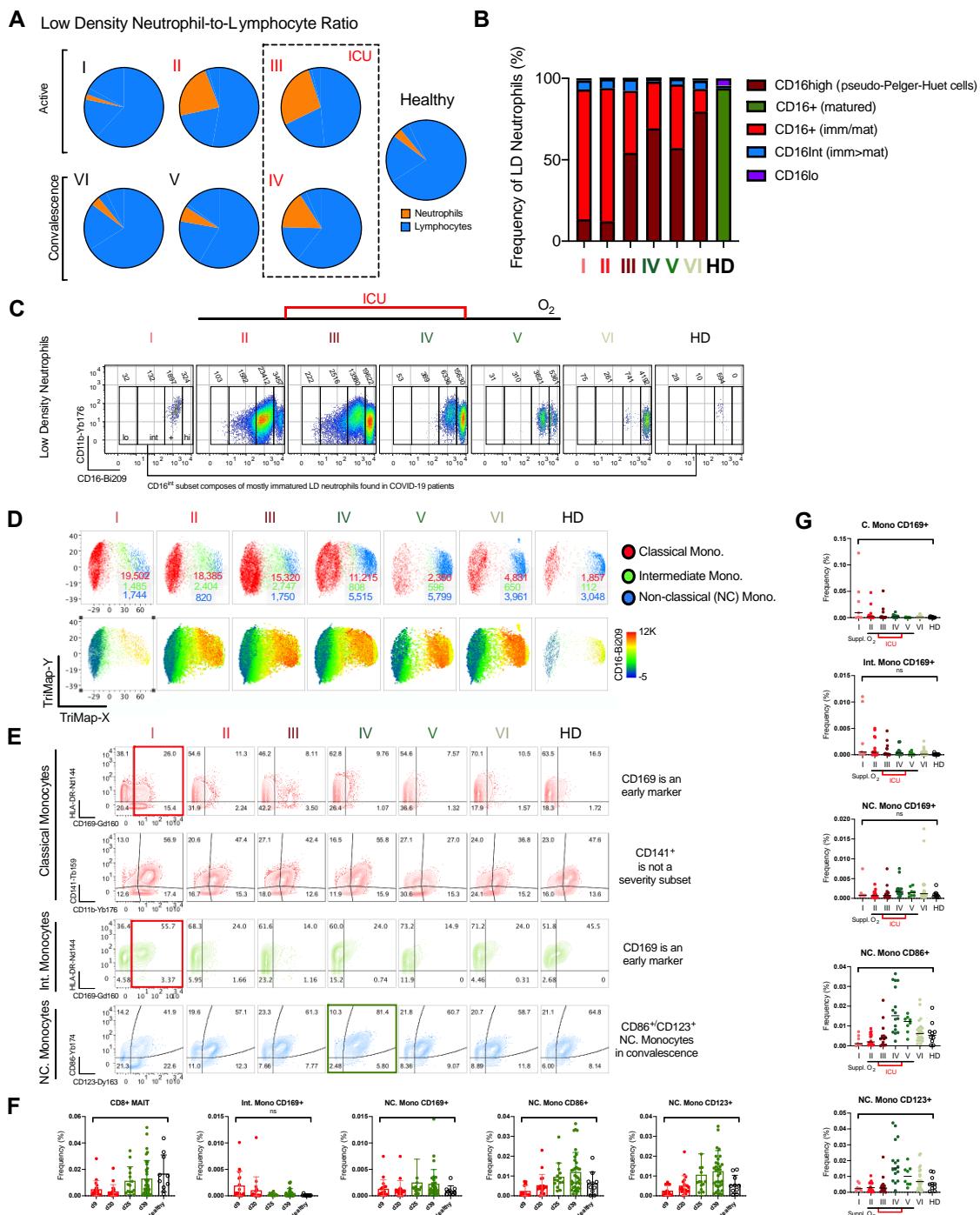
1099

1100


1101

1102

1103


1104

1105

1106

1107 **Figure S2.** Alterations of immune cell types dynamics and immunotypes associated with
1108 mild and severe during active and convalescent infection. (A) Left: Heat map representation
1109 of frequencies of 38 main immune cell populations among the 6 groups severity
1110 stratifications. Right: up- or down-regulation of indicated surface markers for the 38 main
1111 immune cell populations among 6 group severity stratifications. Asterisks indicate statistical
1112 significance - *, p<0.05; **, p<0.01; ***, p<0.001 (one-way ANOVA of all disease phases and
1113 healthy controls). (B) Box-and-whiskers plots of selected immunotypes showing means and
1114 IQR up-regulation and down-regulation of surface markers associated with active/mild,
1115 active/severe, severe, conv./severe, and conv./mild clinical states.

1116

1117 **Figure S3.** Neutrocytosis and monocytosis during SARS-CoV-2 infection. (A) Neutrocytosis
 1118 due to SARS-CoV-2 infection is mild among symptomatic group I patients but persisted in
 1119 severe convalescence group. A higher Low-Density Neutrophil-to-Lymphocyte Ratio is
 1120 associated with disease severity. (B) Frequency distribution of Low-Density Neutrophil
 1121 subsets whereby the CD16⁺ LD neutrophils are mostly mature neutrophils in healthy donors
 1122 but co-mixed with immature neutrophils from the CD16^{int} LD neutrophil subset in COVID-19

1123 patients. The presence of CD16^{+++/high} LD neutrophils described as pseudo-Pelger-Huet cells,
1124 are absent in healthy donors. (C) The pseudo-coloured plots of LD neutrophil gated as
1125 CD16^{lo}, left shift CD16^{int}, CD16⁺ and CD16^{high} subsets and their indicated cell count out of
1126 210K human PBMCs. (D) Monocytosis is apparent even in symptomatic group I and
1127 decreases with convalescence with CD16 marker upregulation in NC. Monocytes. (E)
1128 Comparison of NC. monocytes and other monocytes associated with convalescence and
1129 COVID-19 disease severity. Scatter plots depict the means with SEM. ns: not significant, *, p
1130 <0.03; **, p <0.002; ***, p <0.0002, ****, p <0.0001 (Kruskal-Wallis test with multiple
1131 comparisons performed on each disease severity group versus total healthy). (F-G)
1132 Frequency changes of representing monocyte subsets associated with surface markers
1133 during (F) SARS-CoV-2 infection and (G) COVID-19 severity.

1134

1135

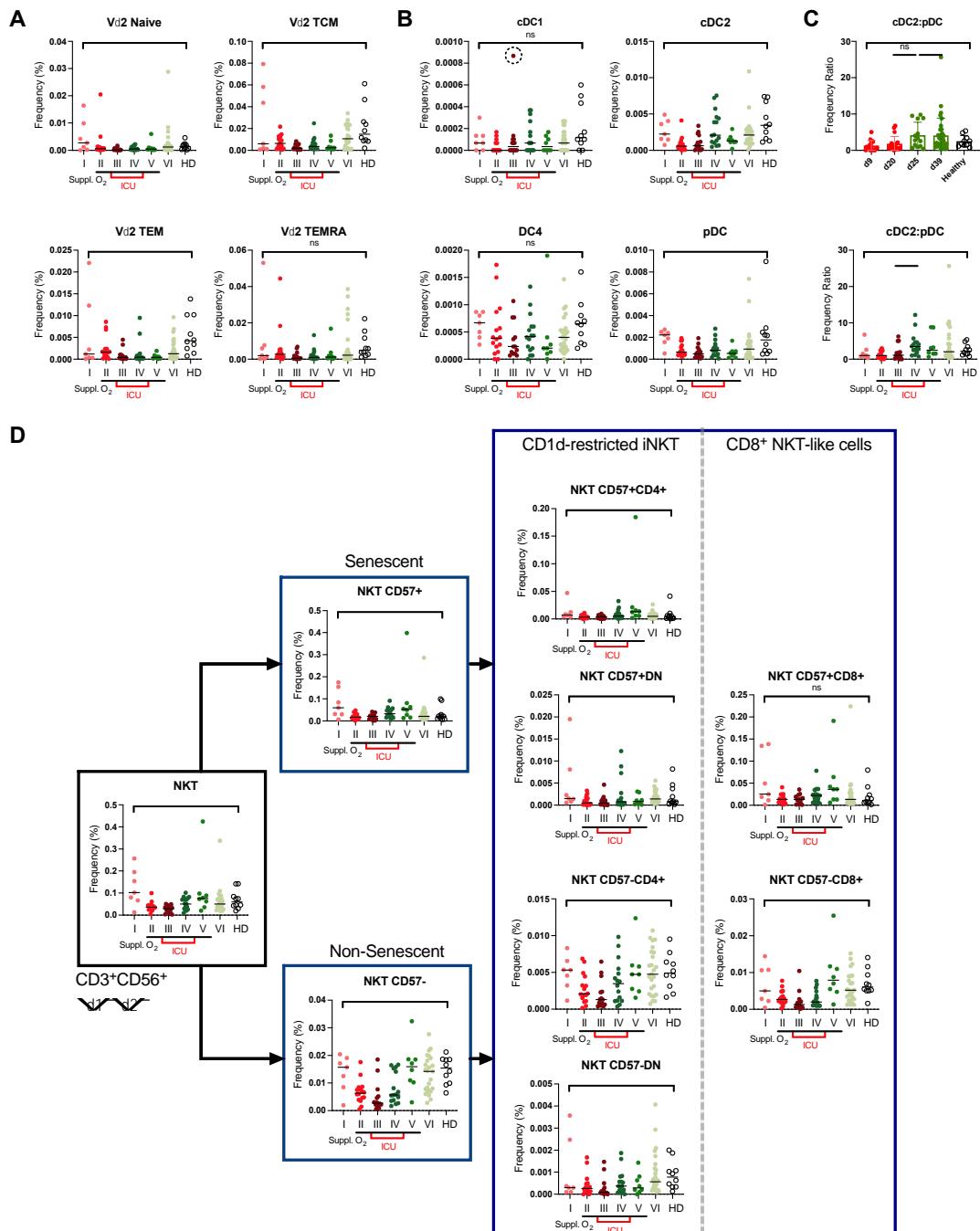
1136

1137

1138

1139

1140


1141

1142

1143

1144

1145

1146

1147 **Figure S4.** COVID-19 severity is specific to selected V δ 2 T, dendritic cell and non-senescent
 1148 NKT cell subsets. Overview of frequency changes across the (A) V δ 2 T cells and (B)
 1149 dendritic cells showing insignificance of subsets selected based on p-values. Scatter plots
 1150 depict the means with SEM. ns: not significant, *, p <0.03; **, p <0.002; ***, p <0.0002, ****, p
 1151 <0.0001 (Kruskal-Wallis test with multiple comparisons performed on each disease severity
 1152 group versus total healthy). An extreme outlier due to a single patient in cDC1 is encircled.

1153 V δ 1 T cell subsets are insignificant and thus not shown. (C) The ratio of cDC2: pDC
1154 frequency during COVID-19 infection. (D) Clustering of NKT gated based on
1155 CD3 $^+$ CD56 $^+$ V δ 1 $^+$ V δ 2 $^+$ T cell subsets into invariant NKT (iNKT) and CD1d-unrestricted CD8+
1156 NKT-like cells gated based on senescent marker CD57. The three human NKT subsets
1157 (CD4 $^+$, CD8 $^+$ and CD4 $^-$ CD8 $^-$ /DN) also consist of Type I presenting invariant V α 24J α 18 TCR
1158 and Type II presenting a diverse TCR repertoire, which are undefined in this work.

1159

1160

1161

1162

1163

1164

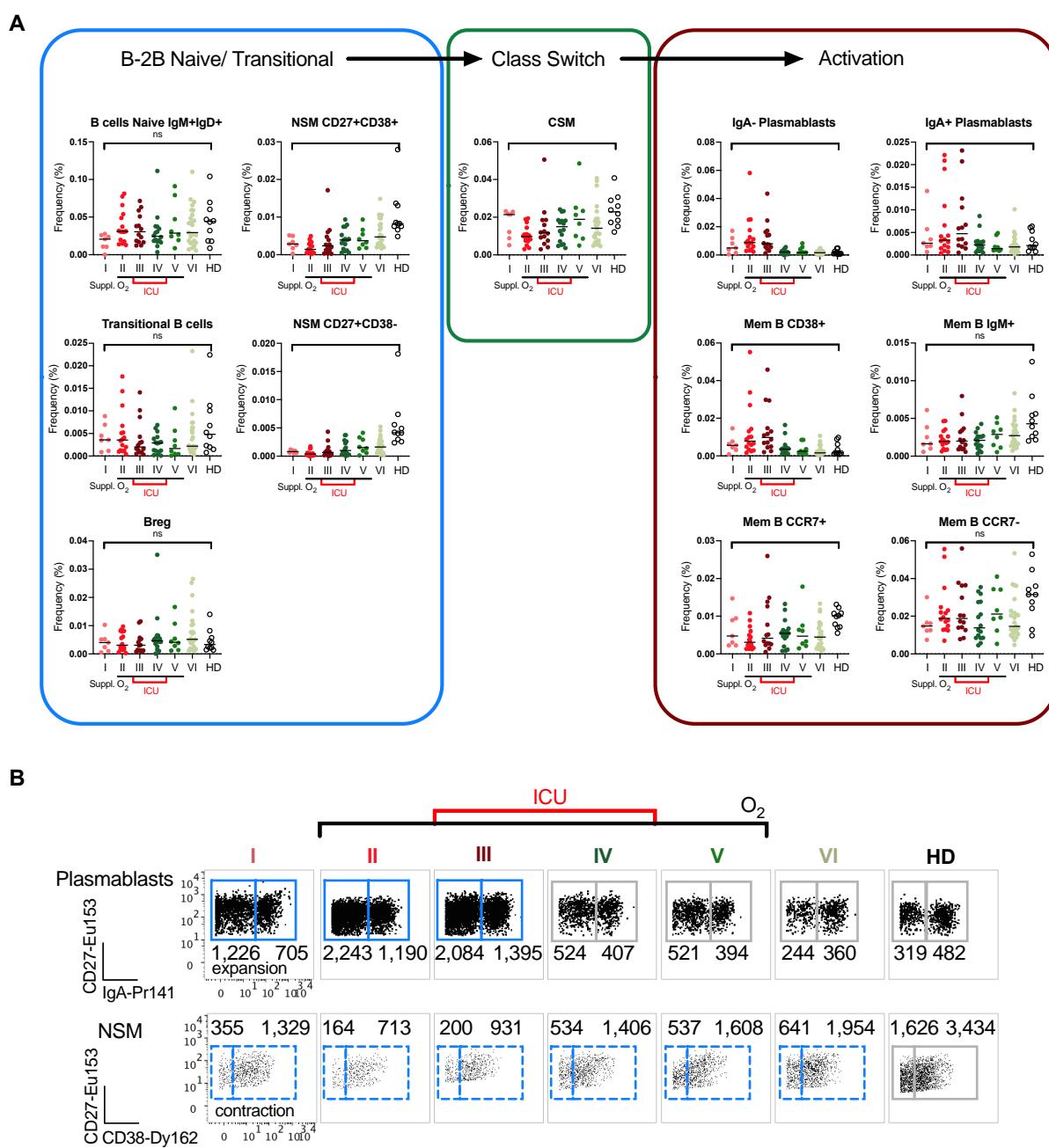
1165

1166

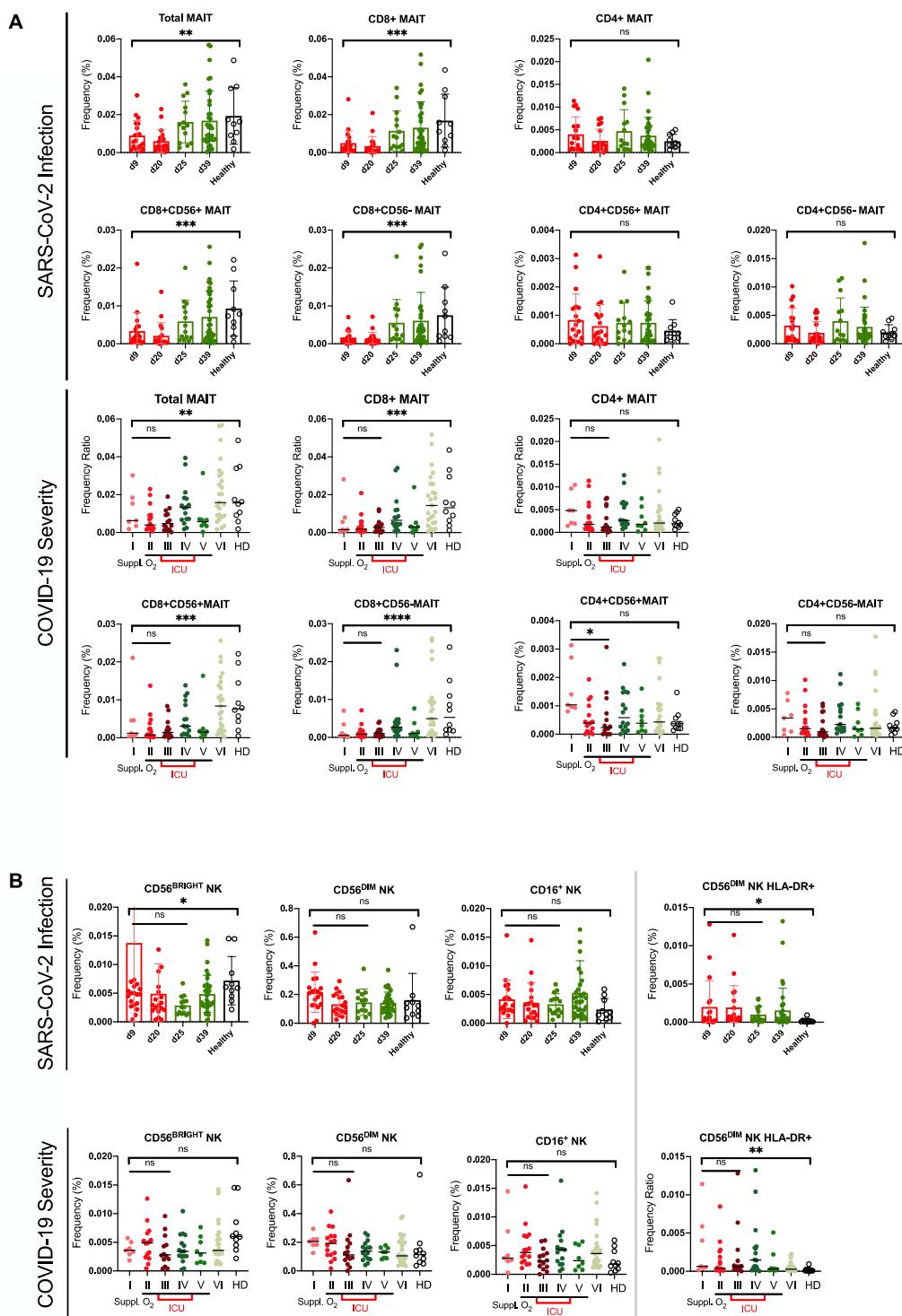
1167

1168

1169


1170

1171


1172

1173

1174

1176 **Figure S5.** Heterogeneous B cell subset development during SARS-CoV-2 infection. (A)
1177 Scatterplots of B cell subset frequencies from Naïve to Memory based on COVID-19 severity.
1178 Scatterplots depict the means with SEM. ns: not significant, *, p <0.03; **, p <0.002; ***, p
1179 <0.0002, ****, p <0.0001 (Kruskal-Wallis test with multiple comparisons performed on each
1180 disease severity group versus total healthy). (B) Dotplots of representative B cell subsets for
1181 either expanded or contracted cell population in response to SARS-CoV-2 infection. The
1182 absolute numbers of cells out of 300,000 PBMCs are shown.

1183

1184 **Figure S6.** Loss of CD8⁺ MAIT and CD56^{Bright} NK cells are innate-like responses to SARS-
 1185 CoV-2 infection but not severity. (A) Frequencies of MAIT cell subsets based on disease
 1186 stage from early active to late convalescence. CD8⁺ but not CD4⁺ MAIT cells are significantly
 1187 reduced during SARS-CoV-2 infection, which recover with health. Also, frequencies of
 1188 different MAIT cell subsets with disease severity. There is little or no significance among

1189 severity groups I, II and III. (B) The depletion of CD56^{Bright} NK subpopulation when compared
1190 to healthy does not associate with COVID-19 disease severity. Also, CD56^{Dim} NK HLA-DR⁺
1191 subset is not strongly correlated to disease severity. Scatter plots depict the means with
1192 SEM. ns: not significant, *, p <0.03; **, p <0.002; ***, p <0.0002, ****, p <0.0001 (Kruskal-
1193 Wallis test with multiple comparisons performed on each disease severity group versus total
1194 healthy).

1195

1196

1197

1198

1199

1200

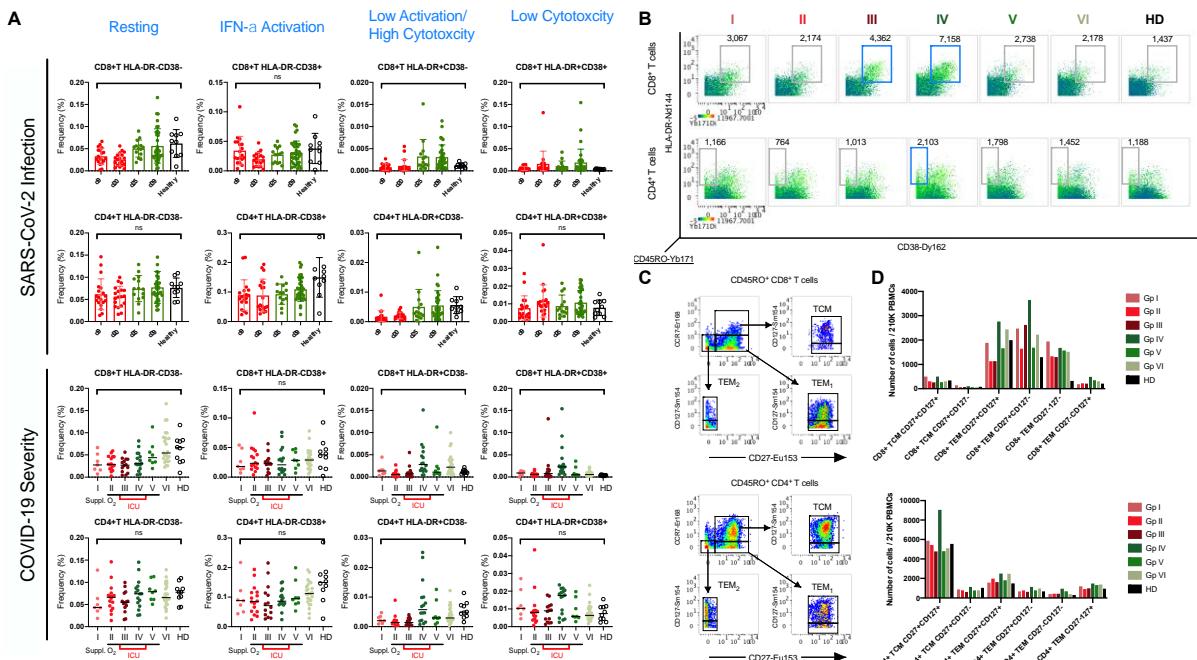
1201

1202

1203

1204

1205

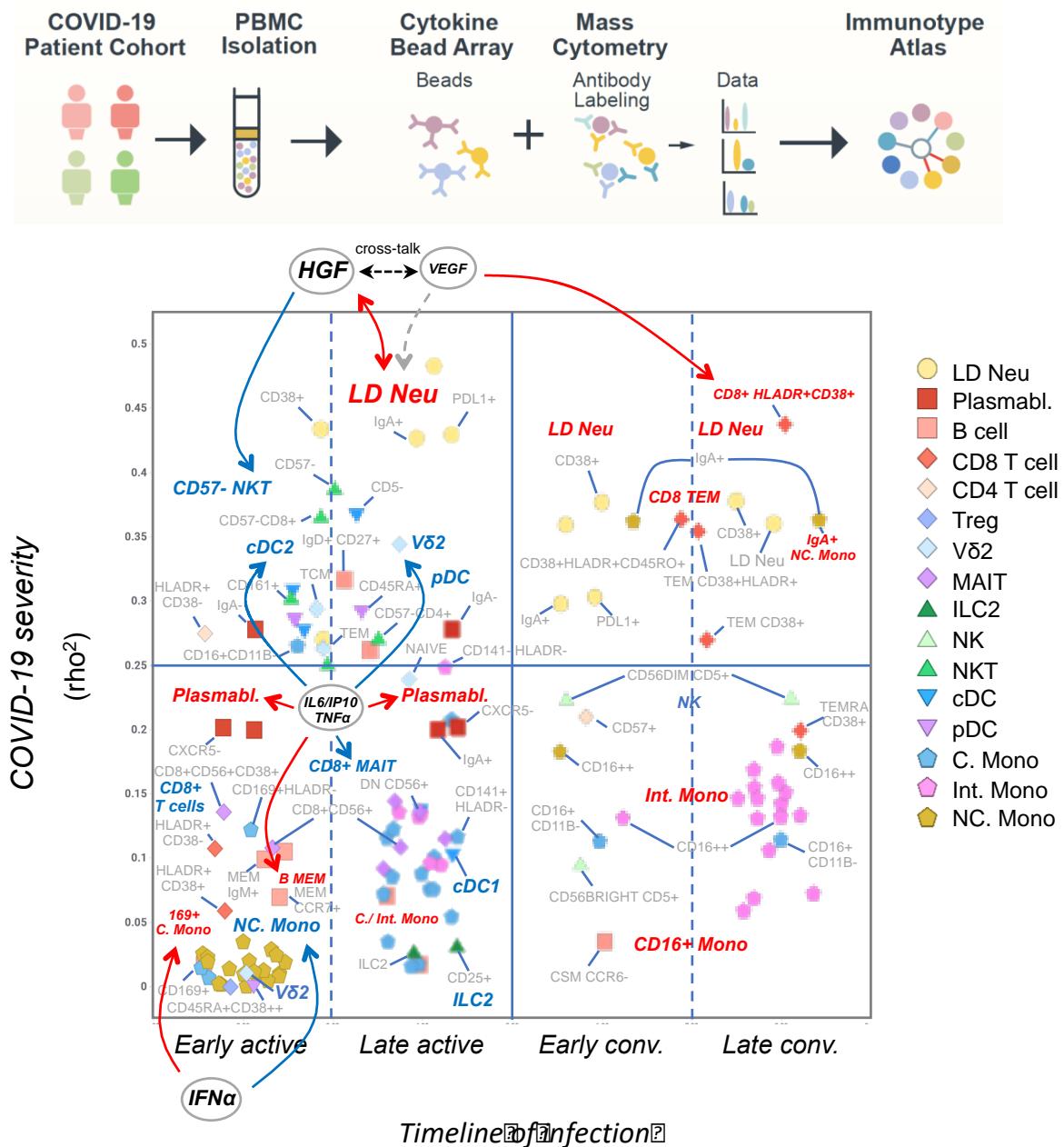

1206

1207

1208

1209

1210


1211

1212

1213 **Figure S7.** Heterogeneous T cell activation during SARS-CoV-2 infection. (A) Frequencies
 1214 of CD4⁺ and CD8⁺ T cells based on HLA-DR and CD38 cell surface markers. Lymphopenia
 1215 is apparent during active SARS-CoV-2 infection and T lymphocyte number increases in
 1216 convalescence. Disease severity grouping further delineates finer structures. The CD8⁺ T
 1217 cell subpopulations e.g. HLA-DR⁺CD38⁺ CD8⁺ T subsets are elevated in COVID-19 severity
 1218 group IV. Scatter plots depict the means with SEM. ns: not significant, *, p <0.03; **, p
 1219 <0.002; ***, p <0.0002, ****, p <0.0001 (Kruskal-Wallis test with multiple comparisons
 1220 performed on each disease severity group versus total healthy). (B) 3-dimensional dotplots
 1221 of statistically significant HLA-DR⁺CD38⁺ CD8⁺ and HLA-DR⁺CD38⁻ CD4⁺ T subset against
 1222 memory CD45RO⁺ antigen. (C) Gating strategies for memory T subsets. (D) Barplot of total
 1223 memory CD8⁺/CD4⁺ T subsets (TCM and TEM) and the CD27 and CD127 surface markers
 1224 across disease severity groups showing similarities and differences among COVID-19
 1225 patients and healthy donors.

1226

1227

1228

1229 **Figure S8.** Timeline of infection and impact on COVID-19 disease severity. The figure is a
1230 summary of the timeline of infection versus the severity of COVID-19. The timeline is broken
1231 down into four phases (early active, late active, early conv. and late conv.), which were used
1232 to bin the extended set of 327 immune cells. The disease severity is expressed as the ρ^2
1233 value from the correlation of their cell frequencies with the severity score. Shown are only
1234 cell subsets which have at least a 3-fold change in frequency in the respective phase
1235 (compare figures 7A and 7B) and/or a ρ^2 value > 0.25 for the disease correlation (compare
1236 figures 7C and 7D). The name of key cell subsets with increased blood frequencies are

1237 labeled in red, subsets with decreased frequency in blue. Cell subset/cytokine interactions
1238 are taken from figure 7.

Variables	Healthy Control (N = 10)	COVID-19					
		Total (N = 77)	Statistical testing of total COVID-19 vs healthy controls (two-tailed p-value)	MILD (No O ₂ Supplementation) - Groups I and VI (N = 31)	MODERATE (O ₂ Supplementation) - Groups II and V (N = 20)	SEVERE (O ₂ Supplementation + ICU) - Groups III and IV (N = 26)	Statistical testing of severity groups (two-tailed p-value, if applicable)
Sex - No. (%)							
Male	6 (60.0)	60 (77.9)	0.2128 (χ^2 test)	20 (64.5)	17 (85.0)	23 (88.5)	0.0814 (χ^2 test)
Female	4 (40.0)	17 (22.1)		11 (35.5)	3 (15.0)	3 (11.5)	
Age - Years							
Mean \pm SD.	36.6 \pm 9.2	50.4 \pm 14.7	0.007 (MW U test)	43.0 \pm 13.0	52.9 \pm 13.6	57.4 \pm 13.9	<0.0001 (KW test with Dunn's multiple comparison)
Median (IQR)	34.0 (30.75-41.25)	51.0 (39.5-62.0)		44.0 (30.0-54.0)	53.0 (42.5-62.5)	60.5 (45.0-66.5)	
Range	25.0-56.0	24.0-82.0		24.0-65.0	28.0-80.0	29.0-82.0	
Time from Onset to Admission, Days							
Mean \pm SD.				5.0 \pm 8.1	5.4 \pm 6.6	4.8 \pm 3.4	0.528 (KW test with Dunn's multiple comparison)
Median (IQR)				3.0 (1.0-5.0)	4.0 (2.0-7.0)	3.0 (2.0-9.0)	
Range				0.0-45.0	1.0-31.0	0.0-10.0	

Time from Admission to ICU, Days							
Mean ± SD.						2.4 ± 1.8	
Median (IQR)						2.0 (1.0-4.0)	
Range						0.0-6.0	
Duration under Intubation, Days							
Mean ± SD.						7.9 ± 18.8	
Median (IQR)						1.5 (0.0-7.75)	
Range						0.0-95.0*	
Significant Medical History - No. (%)							
Myocardial infarction		12 (15.6)		2 (6.5)	5 (25.0)	5 (19.2)	0.1673 (χ^2 test)
Comorbidity - No. (%)†							
Hypertension		27 (35.1)		5 (16.1)	9 (45.0)	13 (50.0)	0.8734 (χ^2 test)
Hyperlipidemia/ dyslipidemia		26 (33.8)		3 (9.7)	11 (55.0)	12 (46.2)	0.4603 (χ^2 test)
Diabetes mellitus		18 (23.4)		1 (3.2)	6 (30.0)	11 (42.3)	0.5487 (χ^2 test)

1239 **Table S1.** Demographic details of the study subjects. Population variables (sex and age at admission)
1240 and clinical variables (time from symptom onset to hospital admission, time from hospital admission to
1241 ICU entry, period of intubation, significant medical history and existing comorbidities) are shown. IQR,
1242 interquartile range; KW test, Kruskal-Wallis test; MW U test, Mann-Whitney U test; SD, standard
1243 deviation. * Includes the sole outlier who was intubated for 95 days before passing away from COVID-
1244 19. † Each instance of comorbidity was counted, even in cases where a patient had multiple
1245 comorbidities.

	B cells	Abbrev.	CD45⁺CD3⁻
1	Naïve	-	CD19 ⁺ CD27 ⁺ IgM ⁺ IgD ⁺
2	Transitional	Trans.	CD19 ⁺ CD27 ⁺ IgM ^{+/bright} CD38 ⁺ CD24 ⁺
3	Non-class-switched memory	NSM	CD19 ⁺ CD27 ⁺ IgM ⁺ IgD ⁺ CD38 ⁺⁻
4	Class switched memory	CSM	CD19 ⁺ CD27 ⁺ IgM ⁺ IgD ⁺ CD38 ^{+/dim}
5	IgM memory	IgM Mem	CD19 ⁺ CD27 ⁺ IgM ⁺ IgD ⁻
6	Plasmablasts	-	CD19 ⁺ CD27 ^{+/bright} IgM ⁺ IgD ⁺ CD38 ^{+/bright} or TriMAP cluster
7	B regulatory	Breg	CD19 ⁺ CD27 ⁺ IgM ^{+/bright} CD24 ^{+/bright} CD5 ⁺
	T cells	Abbrev.	CD45⁺CD3⁺
8,9	Naïve	-	CD4 ⁺ or CD8 ⁺ CD45RA ⁺ CD45RO ⁻ CCR7 ⁺ CD27 ⁺
10,11	Central memory	CM	CD4 ⁺ or CD8 ⁺ CD45RA ⁻ CD45RO ⁺ CCR7 ⁺
12,13	Effector memory	EM	CD4 ⁺ or CD8 ⁺ CD45RA ⁻ CD45RO ⁺ CCR7 ⁻
14,15	Terminally differentiated effector memory	TEMRA	CD4 ⁺ or CD8 ⁺ CD45RA ⁺ CD45RO ⁻ CCR7 ⁻ CD27 ⁻
-	T regulatory	Treg	CD4 ⁺ CD25 ⁺ CD127 ^{-dim}
16	Treg naive	-	Treg CD45RA ⁺ CD45RO ⁻ CCR7 ⁺ CD27 ⁺
17	Treg CM	Treg CM	Treg CD45RA ⁻ CD45RO ⁺ CCR7 ⁺
18	Treg EM	Treg EM	Treg CD45RA ⁻ CD45RO ⁺ CCR7 ⁻
19	Treg Terminally differentiated effector memory	Treg TEMRA	Treg CD45RA ⁺ CD45RO ⁻ CCR7 ⁻ CD27 ⁻
20	V δ 1 T	-	CD4 ⁺ CD8 ⁺ TCR γ δ ⁺ V δ 1 ⁺
21	V δ 2 T	-	CD4 ⁺ CD8 ⁺ TCR γ δ ⁺ V δ 2 ⁺ or TriMAP cluster
22	Germinal center resident T follicular helper	T _{FH}	CD4 ⁺ CD25 ⁺ CXCR5 ⁺ CCR7 ⁻ CD127 ⁺
23	Mucosal associated invariant T cells	MAIT	CD14 ⁻ CD19 ⁺ V α 7.2 ⁺ CD161 ^{+/bright} CD56 ⁺⁻
24	NKT	NKT	CD14 ⁻ CD19 ⁺ V α 7.2 ⁺ CD56 ⁺
	TriMAP gating	Abbrev.	From TriMAP clustering
25	CD56 ^{Dim} NK	-	TriMAP CD19 ⁻ CD14 ⁺ CD56 ⁺ CD16 ⁺
26	CD56 ^{Bright} NK	-	TriMAP CD19 ⁻ CD14 ⁺ CD56 ⁺ CD16 ⁻
27	CD16 ⁺ NK	-	TriMAP CD19 ⁻ CD14 ⁺ CD56 ⁺ CD16 ⁺
28	Classical Monocytes	C. Mono.	TriMAP CD19 ⁻ CD14 ^{+/bright} CD16 ⁻
29	Intermediate Monocytes	Int. Mono.	TriMAP CD19 ⁻ CD14 ^{+/bright} CD16 ⁺
30	Non-classical Monocytes	NC. Mono.	TriMAP CD19 ⁻ CD14 ^{+/dim} CD16 ^{+/bright}
31	Plasmacytoid dendritic cells	pDC	TriMAP HLA-DR ⁺ CD11c ⁺ CD123 ^{+/bright} CD45RA ⁺
32	Conventional type 1 dendritic cells	cDC1	TriMAP HLA-DR ⁺ CD11c ⁺ CD1c ⁺ CD141 ⁺
33	Conventional type 2 dendritic cells	cDC2	TriMAP HLA-DR ⁺ CD11c ⁺ CD141 ⁺ CD1c ⁺
34	Low-density neutrophils	LD. Neu	TriMAP CD11b ⁺ CD24 ⁺ or CD66b ⁺ CD15 ⁺ CD16 ^{high} CD10 ⁺ CD24 ⁺
	Lineage-negative	Lin-	CD3⁻CD56⁺CD19⁻HLA-DR⁻CD14⁻CD123⁻CD16⁻
35	Basophils	Baso.	Lin ⁻ CD38 ⁺ CD123 ⁺
36	Innate lymphoid cell type 1	ILC1	Lin ⁻ CD5 ⁺ CD11c ⁻⁽ CD4 ⁺ , CD8 ⁺ , CD4 ⁺ CD8 ⁻)
37	Innate lymphoid cell type 2	ILC2	Lin ⁻ CD5 ⁺ CD11c ⁺ CD161 ^{+/bright}
38	Innate lymphoid cell type 3	ILC3	Lin ⁻ CD5 ⁺ CD11c ⁺
	Exclusion		
-	Monocytic dendritic cell 4	DC4	TriMAP HLA-DR ⁺ CD11c ⁺ CD141 ⁺ CD1c ⁻

1246

1247 **Table S2.** Gating strategy used for 38 basic immune subsets. For TriMAP gated subpopulations, the
 1248 distinct clusters are calculated using TripMAP algorithm and confirmed based on their surface
 1249 markers. (-) DC4 subset is excluded in analysis due to extreme low frequency.

Index	Alphabetical Order	Short name	Rank_num	Rank_name
1	CyTOF B CELLS	B CELLS	45	(45) B cells
2	CyTOF B CELLS CCR7-	B CELLS CCR7-	27	(27) B CCR7-
3	CyTOF B CELLS CCR7+	B CELLS CCR7+	18	(18) B CCR7+
4	CyTOF B CELLS CD38+	B CELLS CD38+	3	(3) B CD38+
5	CyTOF B CELLS CXCR5-	B CELLS CXCR5-	8	(8) B CXCR5-
6	CyTOF B CELLS CXCR5+	B CELLS CXCR5+	47	(47) B CXCR5+
7	CyTOF B CELLS IgA+CD38++	B CELLS IgA+CD38high	7	(7) B IgA+CD38++
8	CyTOF B CELLS IgD-CD27-	B CELLS IgD-CD27-	16	(16) B IgD-CD27-
9	CyTOF B CELLS IgD+	B CELLS IgD+	46	(46) B IgD+
10	CyTOF B CELLS IgD+CD27+	B CELLS IgD+CD27+	12	(12) B IgD+CD27+
11	CyTOF B CELLS IgD+CD38+	B CELLS IgD+CD38+	40	(40) B IgD+CD38+
12	CyTOF B CELLS IgM+	B CELLS IgM+	41	(41) B IgM+
13	CyTOF B CELLS IgM+CD123+	B CELLS IgM+CD123+	28	(28) B IgM+CD123+
14	CyTOF B CELLS IgM+CD38++	B CELLS IgM+CD38high	10	(10) B IgM+CD38++
15	CyTOF B CELLS IgA+	B CELLS IgA+	32	(32) B IgA+
16	CyTOF B CELLS MEM CCR7-	B CELLS MEM CCR7-	24	(24) B MEM CCR7-
17	CyTOF B CELLS MEM CCR7+	B CELLS MEM CCR7+	19	(19) B MEM CCR7+
18	CyTOF B CELLS MEM CD38++	B CELLS MEM CD38high	2	(2) B MEM CD38++
19	CyTOF B CELLS MEM CXCR5-	B CELLS MEM CXCR5-	5	(5) B MEM CXCR5-
20	CyTOF B CELLS MEM CXCR5+	B CELLS MEM CXCR5+	35	(35) B MEM CXCR5+
21	CyTOF B CELLS MEM IgM+	B CELLS MEM IgM+	36	(36) B MEM IgM+
22	CyTOF B CELLS MEM IgM+CXCR5-	B CELLS MEM IgM+CXCR5-	1	(1) B MEM IgM+CXCR5-
23	CyTOF B CELLS MEM IgM+CXCR5+	B CELLS MEM IgM+CXCR5+	25	(25) B MEM IgM+CXCR5+
24	CyTOF B CELLS NAIIVE	B CELLS NAIIVE	42	(42) B NAIIVE
25	CyTOF B CELLS NAIIVE CCR7-	B CELLS NAIIVE CCR7-	37	(37) B NAIIVE CCR7-
26	CyTOF B CELLS NAIIVE CCR7+	B CELLS NAIIVE CCR7+	15	(15) B NAIIVE CCR7+
27	CyTOF B CELLS NAIIVE CD123+	B CELLS NAIIVE CD123+	30	(30) B NAIIVE CD123+
28	CyTOF B CELLS NAIIVE CD5-	B CELLS NAIIVE CD5-	17	(17) B NAIIVE CD5-
29	CyTOF B CELLS NAIIVE CD5+	B CELLS NAIIVE CD5+	22	(22) B NAIIVE CD5+
30	CyTOF B CELLS NAIIVE CXCR5-	B CELLS NAIIVE CXCR5-	20	(20) B NAIIVE CXCR5-
31	CyTOF B CELLS NAIIVE IgM-	B CELLS NAIIVE IgM-	33	(33) B NAIIVE IgM-
32	CyTOF B CELLS NAIIVE IgM+	B CELLS NAIIVE IgM+	26	(26) B NAIIVE IgM+
33	CyTOF B MEM	B CELLS MEM	34	(34) B MEM
34	CyTOF BASO	BASO	1	(1) BASO
35	CyTOF BREG	BREG	3	(3) BREG
36	CyTOF BREG CD123+	BREG CD123+	1	(1) BREG CD123+
37	CyTOF BREG CD38+	BREG CD38+	2	(2) BREG CD38+
38	CyTOF BREG PDL1	BREG PDL1	4	(4) BREG PDL1
39	CyTOF C. MONO	C. MONO	17	(17) C. Mono
40	CyTOF C. Mono CD141-	C. Mono CD141-	20	(20) C. Mono CD141-

41	CyTOF C. Mono CD141-CD11B-	C. Mono CD141-CD11B-	15	(15) C. Mono CD141-CD11B-
42	CyTOF C. Mono CD141-CD11B+	C. Mono CD141-CD11B+	18	(18) C. Mono CD141-CD11B+
43	CyTOF C. Mono CD141-HLADR-	C. Mono CD141-HLADR-	7	(7) C. Mono CD141-HLADR-
44	CyTOF C. Mono CD141-HLADR+	C. Mono CD141-HLADR+	31	(31) C. Mono CD141-HLADR+
45	CyTOF C. Mono CD141+	C. Mono CD141+	16	(16) C. Mono CD141+
46	CyTOF C. Mono CD141+CD11B-	C. Mono CD141+CD11B-	13	(13) C. Mono CD141+CD11B-
47	CyTOF C. Mono CD141+CD11B+	C. Mono CD141+CD11B+	19	(19) C. Mono CD141+CD11B+
48	CyTOF C. Mono CD141+HLADR-	C. Mono CD141+HLADR-	4	(4) C. Mono CD141+HLADR-
49	CyTOF C. Mono CD141+HLADR+	C. Mono CD141+HLADR+	27	(27) C. Mono CD141+HLADR+
50	CyTOF C. Mono CD16-	C. Mono CD16-	11	(11) C. Mono CD16-
51	CyTOF C. Mono CD16-CD11B-	C. Mono CD16-CD11B-	22	(22) C. Mono CD16-CD11B-
52	CyTOF C. Mono CD16-CD11B+	C. Mono CD16-CD11B+	9	(9) C. Mono CD16-CD11B+
53	CyTOF C. Mono CD16-CD169-	C. Mono CD16-CD169-	14	(14) C. Mono CD16-CD169-
54	CyTOF C. Mono CD16-CD169+	C. Mono CD16-CD169+	6	(6) C. Mono CD16-CD169+
55	CyTOF C. Mono CD16+	C. Mono CD16+	24	(24) C. Mono CD16+
56	CyTOF C. Mono CD16+CD11B-	C. Mono CD16+CD11B-	10	(10) C. Mono CD16+CD11B-
57	CyTOF C. Mono CD16+CD11B+	C. Mono CD16+CD11B+	26	(26) C. Mono CD16+CD11B+
58	CyTOF C. Mono CD16+CD169-	C. Mono CD16+CD169-	23	(23) C. Mono CD16+CD169-
59	CyTOF C. Mono CD16+CD169+	C. Mono CD16+CD169+	25	(25) C. Mono CD16+CD169+
60	CyTOF C. Mono CD169-HLADR-	C. Mono CD169-HLADR-	5	(5) C. Mono CD169-HLADR-
61	CyTOF C. Mono CD169-HLADR+	C. Mono CD169-HLADR+	28	(28) C. Mono CD169-HLADR+
62	CyTOF C. MONO CD169+	C. MONO CD169+	3	(3) C. Mono CD169+
63	CyTOF C. Mono CD169+HLADR-	C. Mono CD169+HLADR-	1	(1) C. Mono CD169+HLADR-
64	CyTOF C. Mono CD169+HLADR+	C. Mono CD169+HLADR+	29	(29) C. Mono CD169+HLADR+
65	CyTOF C. MONO CD38+	C. MONO CD38+	21	(21) C. Mono CD38+
66	CyTOF C. MONO CD45RA-	C. MONO CD45RA-	12	(12) C. Mono CD45RA-
67	CyTOF C. MONO CD45RA+	C. MONO CD45RA+	30	(30) C. Mono CD45RA+
68	CyTOF C. MONO CD56+	C. MONO CD56+	8	(8) C. Mono CD56+
69	CyTOF C. MONO CD86+	C. MONO CD86+	32	(32) C. Mono CD86+
70	CyTOF C. MONO IgA+	C. MONO IgA+	2	(2) C. Mono IgA+
71	CyTOF CD141+HLADR-Cells	CD141+HLADR-Cells	1	(1) CD141+HLADR- Cells
72	CyTOF CD16+ NK	CD16+ NK	1	(1) CD16+ NK
73	CyTOF CD16+ NK CD38+	CD16+ NK CD38+	2	(2) CD16+ NK CD38+
74	CyTOF CD4 CD11C+	CD4 CD11C+	10	(10) CD4 CD11C+
75	CyTOF CD4 CD127+	CD4 CD127+	18	(18) CD4 CD127+
76	CyTOF CD4 CD38+	CD4 CD38+	24	(24) CD4 CD38+
77	CyTOF CD4 CD57+	CD4 CD57+	33	(33) CD4 CD57+
78	CyTOF CD4 CXCR5-	CD4 CXCR5-	20	(20) CD4 CXCR5-
79	CyTOF CD4 CXCR5+	CD4 CXCR5+	13	(13) CD4 CXCR5+
80	CyTOF CD4 HLADR-CD38+CD45RO+	CD4 HLADR- CD38+CD45RO+	34	(34) CD4 HLADR-CD38+CD45RO+
81	CyTOF CD4 HLADR-CD38-	CD4 HLADR-CD38-	12	(12) CD4 HLADR-CD38-
82	CyTOF CD4 HLADR-CD38+	CD4 HLADR-CD38+	21	(21) CD4 HLADR-CD38+

83	CyTOF CD4 HLADR+ CD38+CD45RO+	CD4 HLADR+ CD38+CD45RO+	7	(7) CD4 HLADR+ CD38+CD45RO+
84	CyTOF CD4 HLADR+CD38-	CD4 HLADR+CD38-	1	(1) CD4 HLADR+CD38-
85	CyTOF CD4 HLADR+CD38+	CD4 HLADR+CD38+	30	(30) CD4 HLADR+CD38+
86	CyTOF CD4 NAIIVE	CD4 NAIIVE	15	(15) CD4 NAIIVE
87	CyTOF CD4 NAIIVE CD127+	CD4 NAIIVE CD127+	16	(16) CD4 NAIIVE CD127+
88	CyTOF CD4 NAIIVE CD27+	CD4 NAIIVE CD27+	14	(14) CD4 NAIIVE CD27+
89	CyTOF CD4 NAIIVE CD38+	CD4 NAIIVE CD38+	4	(4) CD4 NAIIVE CD38+
90	CyTOF CD4 T	CD4 T	19	(19) CD4 T
91	CyTOF CD4 TCM	CD4 TCM	27	(27) CD4 TCM
92	CyTOF CD4 TCM CD127+	CD4 TCM CD127+	22	(22) CD4 TCM CD127+
93	CyTOF CD4 TCM CD27+	CD4 TCM CD27+	25	(25) CD4 TCM CD27+
94	CyTOF CD4 TCM CD38+	CD4 TCM CD38+	28	(28) CD4 TCM CD38+
95	CyTOF CD4 TCM CD38+HLADR+	CD4 TCM CD38+HLADR+	3	(3) CD4 TCM CD38+HLADR+
96	CyTOF CD4 TEM	CD4 TEM	29	(29) CD4 TEM
97	CyTOF CD4 TEM CD127+	CD4 TEM CD127+	26	(26) CD4 TEM CD127+
98	CyTOF CD4 TEM CD38+	CD4 TEM CD38+	8	(8) CD4 TEM CD38+
99	CyTOF CD4 TEM CD38+HLADR+	CD4 TEM CD38+HLADR+	5	(5) CD4 TEM CD38+HLADR+
100	CyTOF CD4 TEMRA	CD4 TEMRA	17	(17) CD4 TEMRA
101	CyTOF CD4 TEMRA CD27-	CD4 TEMRA CD27-	2	(2) CD4 TEMRA CD27-
102	CyTOF CD4 TEMRA CD38+	CD4 TEMRA CD38+	31	(31) CD4 TEMRA CD38+
103	CyTOF CD4+ CD56- MAIT	CD4+ CD56- MAIT	6	(6) CD4+ CD56- MAIT
104	CyTOF CD4+ CD56- MAIT CD38+	CD4+ CD56- MAIT CD38+	9	(9) CD4+ CD56- MAIT CD38+
105	CyTOF CD4+ CD56+ MAIT	CD4+ CD56+ MAIT	23	(23) CD4+ CD56+ MAIT
106	CyTOF CD4+ CD56+ MAIT CD38+	CD4+ CD56+ MAIT CD38+	32	(32) CD4+ CD56+ MAIT CD38+
107	CyTOF CD4+CD25+	CD4+CD25+	11	(11) CD4+CD25+
108	CyTOF CD56 BRIGHT NK	CD56 BRIGHT NK	1	(1) CD56 BRIGHT NK
109	CyTOF CD56 BRIGHT NK CD11B+	CD56 BRIGHT NK CD11B+	4	(4) CD56 BRIGHT NK CD11B+
110	CyTOF CD56 BRIGHT NK CD11C+	CD56 BRIGHT NK CD11C+	6	(6) CD56 BRIGHT NK CD11C+
111	CyTOF CD56 BRIGHT NK CD38+	CD56 BRIGHT NK CD38+	5	(5) CD56 BRIGHT NK CD38+
112	CyTOF CD56 BRIGHT NK CD5+	CD56 BRIGHT NK CD5+	2	(2) CD56 BRIGHT NK CD5+
113	CyTOF CD56 BRIGHT NK HLADR+	CD56 BRIGHT NK HLADR+	3	(3) CD56 BRIGHT NK HLADR+
114	CyTOF CD56DIM NK	CD56DIM NK	1	(1) CD56DIM NK
115	CyTOF CD56DIM NK CD11B+	CD56DIM NK CD11B+	2	(2) CD56DIM NK CD11B+
116	CyTOF CD56DIM NK CD11C+	CD56DIM NK CD11C+	3	(3) CD56DIM NK CD11C+
117	CyTOF CD56DIM NK CD38+	CD56DIM NK CD38+	4	(4) CD56DIM NK CD38+
118	CyTOF CD56DIM NK CD5+	CD56DIM NK CD5+	5	(5) CD56DIM NK CD5+
119	CyTOF CD56DIM NK HLADR+	CD56DIM NK HLADR+	6	(6) CD56DIM NK HLADR+
120	CyTOF CD8 CD11C+	CD8 CD11C+	12	(12) CD8 CD11C+
121	CyTOF CD8 CD38+	CD8 CD38+	23	(23) CD8 CD38+
122	CyTOF CD8 CXCR5-	CD8 CXCR5-	16	(16) CD8 CXCR5-
123	CyTOF CD8 CXCR5+	CD8 CXCR5+	10	(10) CD8 CXCR5+
124	CyTOF CD8 HLADR-	CD8 HLADR- CD38+CD45RO+	24	(24) CD8 HLADR-

	CD38+CD45RO+			CD38+CD45RO+
125	CyTOF CD8 HLADR-CD38-	CD8 HLADR-CD38-	6	(6) CD8 HLADR-CD38-
126	CyTOF CD8 HLADR-CD38+	CD8 HLADR-CD38+	21	(21) CD8 HLADR-CD38+
127	CyTOF CD8 HLADR+ CD38+CD45RO+	CD8 HLADR+ CD38+CD45RO+	26	(26) CD8 HLADR+ CD38+CD45RO+
128	CyTOF CD8 HLADR+CD38-	CD8 HLADR+CD38-	1	(1) CD8 HLADR+CD38-
129	CyTOF CD8 HLADR+CD38+	CD8 HLADR+CD38+	28	(28) CD8 HLADR+CD38+
130	CyTOF CD8 NAIVE	CD8 NAIVE	15	(15) CD8 NAIVE
131	CyTOF CD8 NAIVE CD127+	CD8 NAIVE CD127+	19	(19) CD8 NAIVE CD127+
132	CyTOF CD8 NAIVE CD27+	CD8 NAIVE CD27+	17	(17) CD8 NAIVE CD27+
133	CyTOF CD8 NAIVE CD38+	CD8 NAIVE CD38+	7	(7) CD8 NAIVE CD38+
134	CyTOF CD8 T CELL	CD8 T CELL	13	(13) CD8 T CELL
135	CyTOF CD8 TCM CD127+	CD8 TCM CD127+	5	(5) CD8 TCM CD127+
136	CyTOF CD8 TCM CD27+	CD8 TCM CD27+	14	(14) CD8 TCM CD27+
137	CyTOF CD8 TCM CD38+	CD8 TCM CD38+	29	(29) CD8 TCM CD38+
138	CyTOF CD8 TCM CD38+HLADR+	CD8 TCM CD38+HLADR+	27	(27) CD8 TCM CD38+HLADR+
139	CyTOF CD8 TEM	CD8 TEM	20	(20) CD8 TEM
140	CyTOF CD8 TEM CD127+	CD8 TEM CD127+	3	(3) CD8 TEM CD127+
141	CyTOF CD8 TEM CD27+	CD8 TEM CD27+	22	(22) CD8 TEM CD27+
142	CyTOF CD8 TEM CD38+	CD8 TEM CD38+	30	(30) CD8 TEM CD38+
143	CyTOF CD8 TEM CD38+HLADR+	CD8 TEM CD38+HLADR+	25	(25) CD8 TEM CD38+HLADR+
144	CyTOF CD8 TEMRA	CD8 TEMRA	8	(8) CD8 TEMRA
145	CyTOF CD8 TEMRA CD127+	CD8 TEMRA CD127+	2	(2) CD8 TEMRA CD127+
146	CyTOF CD8 TEMRA CD27-	CD8 TEMRA CD27-	4	(4) CD8 TEMRA CD27-
147	CyTOF CD8 TEMRA CD38+	CD8 TEMRA CD38+	11	(11) CD8 TEMRA CD38+
148	CyTOF CD8+ CD25+	CD8+ CD25+	9	(9) CD8+ CD25+
149	CyTOF CD8+ CD56- MAIT	CD8+ CD56- MAIT	2	(2) MAIT CD8+ CD56-
150	CyTOF CD8+ CD56- MAIT CD38+	CD8+ CD56- MAIT CD38+	1	(1) MAIT CD8+ CD56- CD38+
151	CyTOF CD8+ CD56+ MAIT	CD8+ CD56+ MAIT	5	(5) MAIT CD8+ CD56+
152	CyTOF CD8+ CD56+ MAIT CD38+	CD8+ CD56+ MAIT CD38+	10	(10) MAIT CD8+ CD56+ CD38+
153	CyTOF CD8+ TCM	CD8+ TCM	18	(18) CD8+ TCM
154	CyTOF cDC1	cDC1	7	(7) cDC1
155	CyTOF cDC1 CD38+	cDC1 CD38+	8	(8) cDC1 CD38+
156	CyTOF cDC2	cDC2	2	(2) cDC2
157	CyTOF cDC2 CD11B+	cDC2 CD11B+	6	(6) cDC2 CD11B+
158	CyTOF cDC2 CD38+	cDC2 CD38+	3	(3) cDC2 CD38+
159	CyTOF cDC2 CD5-	cDC2 CD5-	4	(4) cDC2 CD5-
160	CyTOF cDC2 CD5+	cDC2 CD5+	5	(5) cDC2 CD5+
161	CyTOF CSM	CSM	43	(43) B CSM
162	CyTOF CSM CCR6-	CSM CCR6-	29	(29) B CSM CCR6-
163	CyTOF CSM CCR6+	CSM CCR6+	39	(39) B CSM CCR6+
164	CyTOF CSM CXCR5-	CSM CXCR5-	31	(31) B CSM CXCR5-
165	CyTOF CSM CXCR5+	CSM CXCR5+	38	(38) B CSM CXCR5+

166	CyTOF DC	DC	1	(1) DC
167	CyTOF DC4	DC4	9	(9) cDC4
168	CyTOF DC4 CD38+	DC4 CD38+	10	(10) cDC4 CD38+
169	CyTOF DN CD56- MAIT	DN CD56- MAIT	3	(3) MAIT DN CD56-
170	CyTOF DN CD56- MAIT CD38+	DN CD56- MAIT CD38+	6	(6) MAIT DN CD56- CD38+
171	CyTOF DN CD56+ MAIT	DN CD56+ MAIT	4	(4) MAIT DN CD56+
172	CyTOF DN CD56+ MAIT CD38+	DN CD56+ MAIT CD38+	11	(11) MAIT DN CD56+ CD38+
173	CyTOF ICOS+ TFH	ICOS+ TFH	3	(3) TFH ICOS+
174	CyTOF ILC1	ILC1	5	(5) ILC1
175	CyTOF ILC1 CD25-	ILC1 CD25-	6	(6) ILC1 CD25-
176	CyTOF ILC1 CD25+	ILC1 CD25+	7	(7) ILC1 CD25+
177	CyTOF ILC1 CD38+	ILC1 CD38+	8	(8) ILC1 CD38+
178	CyTOF ILC2	ILC2	1	(1) ILC2
179	CyTOF ILC2 CD25-	ILC2 CD25-	2	(2) ILC2 CD25-
180	CyTOF ILC2 CD25+	ILC2 CD25+	3	(3) ILC2 CD25+
181	CyTOF ILC2 CD38+	ILC2 CD38+	4	(4) ILC2 CD38+
182	CyTOF ILC3	ILC3	9	(9) ILC3
183	CyTOF ILC3 CD25-	ILC3 CD25-	10	(10) ILC3 CD25-
184	CyTOF ILC3 CD25+	ILC3 CD25+	11	(11) ILC3 CD25+
185	CyTOF INT. MONO	INT. MONO	14	(14) INT. Mono
186	CyTOF Int. Mono CD141-	Int. Mono CD141-	24	(24) INT. Mono CD141-
187	CyTOF Int. Mono CD141-CD11B-	Int. Mono CD141-CD11B-	18	(18) INT. Mono CD141-CD11B-
188	CyTOF Int. Mono CD141-CD11B+	Int. Mono CD141-CD11B+	17	(17) INT. Mono CD141-CD11B+
189	CyTOF Int. Mono CD141-HLADR-	Int. Mono CD141-HLADR-	7	(7) INT. Mono CD141-HLADR-
190	CyTOF Int. Mono CD141-HLADR+	Int. Mono CD141-HLADR+	21	(21) INT. Mono CD141-HLADR+
191	CyTOF Int. Mono CD141+	Int. Mono CD141+	11	(11) INT. Mono CD141+
192	CyTOF Int. Mono CD141+CD11B-	Int. Mono CD141+CD11B-	10	(10) INT. Mono CD141+CD11B-
193	CyTOF Int. Mono CD141+CD11B+	Int. Mono CD141+CD11B+	16	(16) INT. Mono CD141+CD11B+
194	CyTOF Int. Mono CD141+HLADR-	Int. Mono CD141+HLADR-	2	(2) INT. Mono CD141+HLADR-
195	CyTOF Int. Mono CD141+HLADR+	Int. Mono CD141+HLADR+	19	(19) INT. Mono CD141+HLADR+
196	CyTOF Int. Mono CD16+	Int. Mono CD16+	8	(8) INT. Mono CD16+
197	CyTOF Int. Mono CD16++	Int. Mono CD16++	22	(22) INT. Mono CD16++
198	CyTOF Int. Mono CD16+CD11B-	Int. Mono CD16+CD11B-	13	(13) INT. Mono CD16+CD11B-
199	CyTOF Int. Mono CD16+CD11B+	Int. Mono CD16+CD11B+	15	(15) INT. Mono CD16+CD11B+
200	CyTOF Int. Mono CD16+CD169-	Int. Mono CD16+CD169-	9	(9) INT. Mono CD16+CD169-
201	CyTOF Int. Mono CD16+CD169+	Int. Mono CD16+CD169+	25	(25) INT. Mono CD16+CD169+
202	CyTOF Int. Mono CD169-HLADR-	Int. Mono CD169-HLADR-	4	(4) INT. Mono CD169-HLADR-
203	CyTOF Int. Mono CD169-HLADR+	Int. Mono CD169-HLADR+	12	(12) INT. Mono CD169-HLADR+
204	CyTOF INT. MONO CD169+	INT. MONO CD169+	23	(23) INT. Mono CD169+

205	CyTOF Int. Mono CD169+HLADR-	Int. Mono CD169+HLADR-	1	(1) INT. Mono CD169+HLADR-
206	CyTOF Int. Mono CD169+HLADR+	Int. Mono CD169+HLADR+	26	(26) INT. Mono CD169+HLADR+
207	CyTOF INT. MONO CD38+	INT. MONO CD38+	20	(20) INT. Mono CD38+
208	CyTOF INT. MONO CD45RA-	INT. MONO CD45RA-	6	(6) INT. Mono CD45RA-
209	CyTOF INT. MONO CD45RA+	INT. MONO CD45RA+	28	(28) INT. Mono CD45RA+
210	CyTOF INT. MONO CD56+	INT. MONO CD56+	5	(5) INT. Mono CD56+
211	CyTOF INT. MONO CD86+	INT. MONO CD86+	27	(27) INT. Mono CD86+
212	CyTOF INT. MONO IgA+	INT. MONO IgA+	3	(3) INT. Mono IgA+
213	CyTOF LD Neu	LD Neu	1	(1) LD Neu
214	CyTOF LD Neu CD38+	LD Neu CD38+	2	(2) LD Neu CD38+
215	CyTOF LD Neu CD5+	LD Neu CD5+	3	(3) LD Neu CD5+
216	CyTOF LD Neu IgA+	LD Neu IgA+	4	(4) LD Neu IgA+
217	CyTOF LD Neu PD-L1+	LD Neu PD-L1+	5	(5) LD Neu PD-L1+
218	CyTOF MAIT	MAIT	8	(8) MAIT
219	CyTOF MAIT CD38+	MAIT CD38+	13	(13) MAIT CD38+
220	CyTOF MAIT CD56-	MAIT CD56-	9	(9) MAIT CD56-
221	CyTOF MAIT CD56- CD38+	MAIT CD56- CD38+	14	(14) MAIT CD56- CD38+
222	CyTOF MAIT CD56+	MAIT CD56+	7	(7) MAIT CD56+
223	CyTOF MAIT CD56+ CD38+	MAIT CD56+ CD38+	12	(12) MAIT CD56+ CD38+
224	CyTOF NC. MONO	NC. MONO	16	(16) NC. Mono
225	CyTOF NC. MONO CCR7-	NC. MONO CCR7-	17	(17) NC. Mono CCR7-
226	CyTOF NC. MONO CCR7+	NC. MONO CCR7+	6	(6) NC. Mono CCR7+
227	CyTOF NC. MONO CD123+	NC. MONO CD123+	13	(13) NC. Mono CD123+
228	CyTOF NC. Mono CD141-	NC. Mono CD141-	20	(20) NC. Mono CD141-
229	CyTOF NC. Mono CD141-CD11B-	NC. Mono CD141-CD11B-	8	(8) NC. Mono CD141-CD11B-
230	CyTOF NC. Mono CD141-CD11B+	NC. Mono CD141-CD11B+	24	(24) NC. Mono CD141-CD11B+
231	CyTOF NC. Mono CD141-HLADR-	NC. Mono CD141-HLADR-	2	(2) NC. Mono CD141-HLADR-
232	CyTOF NC. Mono CD141-HLADR+	NC. Mono CD141-HLADR+	21	(21) NC. Mono CD141-HLADR+
233	CyTOF NC. Mono CD141+	NC. Mono CD141+	14	(14) NC. Mono CD141+
234	CyTOF NC. Mono CD141+CD11B-	NC. Mono CD141+CD11B-	1	(1) NC. Mono CD141+CD11B-
235	CyTOF NC. Mono CD141+CD11B+	NC. Mono CD141+CD11B+	23	(23) NC. Mono CD141+CD11B+
236	CyTOF NC. Mono CD141+HLADR-	NC. Mono CD141+HLADR-	7	(7) NC. Mono CD141+HLADR-
237	CyTOF NC. Mono CD141+HLADR+	NC. Mono CD141+HLADR+	15	(15) NC. Mono CD141+HLADR+
238	CyTOF NC. Mono CD16++	NC. Mono CD16++	19	(19) NC. Mono CD16++
239	CyTOF NC. Mono CD16+CD11B-	NC. Mono CD16+CD11B-	4	(4) NC. Mono CD16+CD11B-
240	CyTOF NC. Mono CD16+CD11B+	NC. Mono CD16+CD11B+	25	(25) NC. Mono CD16+CD11B+
241	CyTOF NC. Mono CD16+CD169-	NC. Mono CD16+CD169-	12	(12) NC. Mono CD16+CD169-
242	CyTOF NC. Mono CD16+CD169+	NC. Mono CD16+CD169+	29	(29) NC. Mono CD16+CD169+

243	CyTOF NC. Mono CD169-HLADR-	NC. Mono CD169-HLADR-	5	(5) NC. Mono CD169-HLADR-
244	CyTOF NC. Mono CD169-HLADR+	NC. Mono CD169-HLADR+	11	(11) NC. Mono CD169-HLADR+
245	CyTOF NC. Mono CD169+HLADR-	NC. Mono CD169+HLADR-	18	(18) NC. Mono CD169+HLADR-
246	CyTOF NC. Mono CD169+HLADR+	NC. Mono CD169+HLADR+	27	(27) NC. Mono CD169+HLADR+
247	CyTOF NC. Mono CD16lo	NC. Mono CD16lo	9	(9) NC. Mono CD16lo
248	CyTOF NC. MONO CD38+	NC. MONO CD38+	26	(26) NC. Mono CD38+
249	CyTOF NC. MONO CD45RO-	NC. MONO CD45RO-	3	(3) NC. Mono CD45RO-
250	CyTOF NC. MONO CD45RO+	NC. MONO CD45RO+	30	(30) NC. Mono CD45RO+
251	CyTOF NC. MONO CD56+	NC. MONO CD56+	22	(22) NC. Mono CD56+
252	CyTOF NC. MONO CD86+	NC. MONO CD86+	10	(10) NC. Mono CD86+
253	CyTOF NC. MONO IgA+	NC. MONO IgA+	28	(28) NC. Mono IgA+
254	CyTOF NK CD11B+	NK CD11B+	1	(1) NK CD11B+
255	CyTOF NK CD11C+	NK CD11C+	2	(2) NK CD11C+
256	CyTOF NKT	NKT	1	(1) NKT
257	CyTOF NKT CD161-	NKT CD161-	2	(2) NKT CD161-
258	CyTOF NKT CD161+	NKT CD161+	3	(3) NKT CD161+
259	CyTOF NKT CD38+	NKT CD38+	4	(4) NKT CD38+
260	CyTOF NKT CD57-	NKT CD57-	5	(5) NKT CD57-
261	CyTOF NKT CD57-CD4+	NKT CD57-CD4+	6	(6) NKT CD57-CD4+
262	CyTOF NKT CD57-CD8+	NKT CD57-CD8+	7	(7) NKT CD57-CD8+
263	CyTOF NKT CD57-DN	NKT CD57-DN	8	(8) NKT CD57-DN
264	CyTOF NKT CD57-DP	NKT CD57-DP	9	(9) NKT CD57-DP
265	CyTOF NKT CD57+	NKT CD57+	10	(10) NKT CD57+
266	CyTOF NKT CD57+CD4+	NKT CD57+CD4+	11	(11) NKT CD57+CD4+
267	CyTOF NKT CD57+CD8+	NKT CD57+CD8+	12	(12) NKT CD57+CD8+
268	CyTOF NKT CD57+DN	NKT CD57+DN	13	(13) NKT CD57+DN
269	CyTOF NKT CD57+DP	NKT CD57+DP	14	(14) NKT CD57+DP
270	CyTOF NSM	NSM	14	(14) B NSM
271	CyTOF NSM CD27+CD38-	NSM CD27+CD38-	6	(6) B NSM CD27+CD38-
272	CyTOF NSM CD27+CD38+	NSM CD27+CD38+	13	(13) B NSM CD27+CD38+
273	CyTOF NSM CD38+	NSM CD38+	23	(23) B NSM CD38+
274	CyTOF PDC	PDC	1	(1) PDC
275	CyTOF PDC CD45RA+	PDC CD45RA+	2	(2) PDC CD45RA+
276	CyTOF PDC CD45RA+CD38++	PDC CD45RA+CD38high	3	(3) PDC CD45RA+CD38++
277	CyTOF PLASMABLASTS	PLASMABLASTS	3	(3) PLASMABL.
278	CyTOF PLASMABLASTS CXCR5-	PLASMABLASTS CXCR5-	2	(2) PLASMABL. CXCR5-
279	CyTOF PLASMABLASTS CXCR5+	PLASMABLASTS CXCR5+	5	(5) PLASMABL. CXCR5+
280	CyTOF PLASMABLASTS IgA-	PLASMABLASTS IgA-	1	(1) PLASMABL. IgA-
281	CyTOF PLASMABLASTS IgA+	PLASMABLASTS IgA+	4	(4) PLASMABL. IgA+
282	CyTOF T CD38+	T CD38+	6	(6) T CD38+
283	CyTOF T cells	T cells	3	(3) T cells

284	CyTOF T cells CCR7-	T cells CCR7-	1	(1) T CCR7-
285	CyTOF T cells CCR7+	T cells CCR7+	5	(5) T CCR7+
286	CyTOF T CXCR5-	T CXCR5-	4	(4) T CXCR5-
287	CyTOF T CXCR5+	T CXCR5+	2	(2) T CXCR5+
288	CyTOF TFH	TFH	1	(1) TFH
289	CyTOF TFH CD38+	TFH CD38+	2	(2) TFH CD38+
290	CyTOF TRANS	TRANS	11	(11) B TRANS
291	CyTOF TRANS CCR6-	TRANS CCR6-	44	(44) B TRANS CCR6-
292	CyTOF TRANS CCR6+	TRANS CCR6+	9	(9) B TRANS CCR6+
293	CyTOF TRANS CD5-	TRANS CD5-	4	(4) B TRANS CD5-
294	CyTOF TRANS CD5+	TRANS CD5+	21	(21) B TRANS CD5+
295	CyTOF TREG	TREG	3	(3) TREG
296	CyTOF TREG CD11C+	TREG CD11C+	1	(1) TREG CD11C+
297	CyTOF TREG CD38+	TREG CD38+	11	(11) TREG CD38+
298	CyTOF TREG CD45RO- ICOS+CD127+	TREG CD45RO-ICOS+CD127+	6	(6) TREG CD45RO- ICOS+CD127+
299	CyTOF TREG CD45RO+ICOS+CD127+	TREG CD45RO+ICOS+CD127+	9	(9) TREG CD45RO+ICOS+CD127+
300	CyTOF TREG ICOS+	TREG ICOS+	7	(7) TREG ICOS+
301	CyTOF TREG NAIIVE	TREG NAIIVE	4	(4) TREG NAIIVE
302	CyTOF TREG NAIIVE CD38+	TREG NAIIVE CD38+	5	(5) TREG NAIIVE CD38+
303	CyTOF TREG TCM	TREG TCM	2	(2) TREG TCM
304	CyTOF TREG TCM CD38+	TREG TCM CD38+	10	(10) TREG TCM CD38+
305	CyTOF TREG TEM	TREG TEM	8	(8) TREG TEM
306	CyTOF TREG TEM CD38+	TREG TEM CD38+	13	(13) TREG TEM CD38+
307	CyTOF TREG TEMRA	TREG TEMRA	12	(12) TREG TEMRA
308	CyTOF VD1	VD1	11	(11) VD1
309	CyTOF VD1 CD38+	VD1 CD38+	12	(12) VD1 CD38+
310	CyTOF VD1 NAIIVE	VD1 NAIIVE	13	(13) VD1 NAIIVE
311	CyTOF VD1 NAIIVE CD38+	VD1 NAIIVE CD38+	14	(14) VD1 NAIIVE CD38+
312	CyTOF VD1 TCM	VD1 TCM	15	(15) VD1 TCM
313	CyTOF VD1 TCM CD38+	VD1 TCM CD38+	16	(16) VD1 TCM CD38+
314	CyTOF VD1 TEM	VD1 TEM	17	(17) VD1 TEM
315	CyTOF VD1 TEM CD38+	VD1 TEM CD38+	18	(18) VD1 TEM CD38+
316	CyTOF VD1 TEMRA	VD1 TEMRA	19	(19) VD1 TEMRA
317	CyTOF VD1 TEMRA CD38+	VD1 TEMRA CD38+	20	(20) VD1 TEMRA CD38+
318	CyTOF VD2	VD2	1	(1) VD2
319	CyTOF VD2 CD38++	VD2 CD38high	2	(2) VD2 CD38++
320	CyTOF VD2 NAIIVE	VD2 NAIIVE	3	(3) VD2 NAIIVE
321	CyTOF VD2 NAIIVE CD38+	VD2 NAIIVE CD38+	4	(4) VD2 NAIIVE CD38+
322	CyTOF VD2 TCM	VD2 TCM	5	(5) VD2 TCM
323	CyTOF VD2 TCM CD38+	VD2 TCM CD38+	6	(6) VD2 TCM CD38+
324	CyTOF VD2 TEM	VD2 TEM	7	(7) VD2 TEM

325	CyTOF VD2 TEM CD38+	VD2 TEM CD38+	8	(8) VD2 TEM CD38+
326	CyTOF VD2 TEMRA	VD2 TEMRA	9	(9) VD2 TEMRA
327	CyTOF VD2 TEMRA CD38+	VD2 TEMRA CD38+	10	(10) VD2 TEMRA CD38+

1250

1251 **Table S3.** Definition of nodes used in timing and severity COVID-19 networks.

1252