

1 The Size-Weight Illusion is unimpaired in individuals with a history of congenital
2 visual deprivation

¹Rashi Pant*, ¹Maria J. S. Guerreiro, ¹Pia Ley, ^{1,3}Davide Bottari, ²Idris Shareef, ²Ramesh Kekunnaya,
¹Brigitte Röder

5 Affiliations

¹*Biological Psychology and Neuropsychology, University of Hamburg, 20146 Hamburg, Germany*

⁷ *Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad,*
⁸ *Telangana 500034, India*

³*Molecular Mind Lab, IMT School for Advanced Studies, 55100 Lucca, Italy*

*Corresponding Author: rashi.pant@uni-hamburg.de

11

12

Abstract

13 Visual deprivation in childhood can lead to lifelong impairments in visual and multisensory processing.
14 Here, the Size-Weight-Illusion was used to test whether visuo-haptic integration recovers after sight
15 restoration. In Experiment 1, congenital (CC: 7 (3F), 8–35 years) and developmental cataract reversal
16 individuals (DC: 9 (2F), 8–37 years), as well as congenitally blind (CB: 2 (1F), 33 and 44 years) and
17 normally sighted individuals (SC: 10 (7F), 19–36 years) perceived larger objects as lighter than smaller
18 objects of the same weight. In Experiment 2, CC (6 (1F), 17–44.7 years) and SC (7 (5F), 21–29 years)
19 individuals performed identically when tested without haptic size cues. Together, this suggested that
20 early visual experience is not necessary to perceive the Size-Weight-Illusion.

21 **Keywords:** Size-Weight Illusion, sight recovery, cataract, blindness, multisensory integration,
22 multisensory development

23 Infants born with dense bilateral cataracts lack patterned vision until their sight is restored by
24 cataract removal surgery. When surgery is performed late, i.e. beyond the first few weeks from birth,
25 these individuals have been reported to suffer from permanent visual and multisensory impairments
26 (Birch, Stager, Leffler, & Weakley, 1998; de Heering et al., 2016; Lewis & Maurer, 2005; Lewkowicz &
27 Röder, 2015; Maurer, 2017). These impairments are hypothesized to be a behavioral consequence of
28 neural system changes, resulting from aberrant sensory input within a sensitive period of development
29 (Knudsen, 2004; Maurer, 2017). One way to assess visual and multisensory functional recovery in
30 cataract reversal individuals is to test their susceptibility to well-known perceptual illusions. Perceptual
31 illusions are typically extremely robust, suggesting that they arise from automatic processing principles
32 (Eagleman, 2001). Thus, the lack (or reduced likelihood) of perceiving a visual or multisensory illusion is
33 indicative of impaired visual or multisensory processing, respectively.

34 Putzar et al. (2007) tested the automatic detection of illusory contours in congenital cataract
35 reversal individuals who had undergone cataract surgery between 1 and 17 months of age (Putzar et al.,
36 2007). They observed deficits in individuals who experienced more than 5-6 months of visual
37 deprivation, and interpreted this result as evidence for impairments in the automatic binding of visual
38 features – i.e. visual feature binding. This finding was extended by McKyton et al (2015) to a population
39 of cataract reversal individuals who had undergone surgery only after the age of 5 years (McKyton et al.,
40 2015). These results suggested that early visual experience is required to acquire the neural circuits
41 necessary for visual feature binding, providing evidence in favor of the sensitive period hypothesis. While
42 this conclusion is compatible with the long developmental trajectory of illusory contour perception
43 (Hadad, Maurer, & Lewis, 2010), other studies replicated this finding for individuals treated for
44 monocular (but not binocular) congenital cataracts (Hadad, Maurer, & Lewis, 2017).

45 Gandhi et al. (2015) tested the Ponzo and Müller-Lyer illusions, wherein equally long lines are
46 perceived to be of different lengths depending on their surroundings (Gandhi, Kalia, Ganesh, & Sinha,
47 2015). Forty-eight hours after cataract surgery, they found a full recovery of this illusion, despite the fact
48 that sight was partially restored only at 8 years of age or later (Gandhi et al., 2015). Since both these
49 illusions were thought to arise from the interpretation of two-dimensional perspective cues as three-
50 dimensional depth, they concluded that this process did not depend on early childhood vision.

51 Illusions have additionally been used to investigate the extent of multisensory recovery following
52 cataract surgery. In an initial study, Putzar et al. (2007) employed an audio-visual temporal capture
53 effect, characterized as follows: if an auditory stimulus is presented with a short temporal offset with
54 respect to a visual stimulus, the visual stimulus is often perceived as temporally shifted towards the time

55 point when the sound was presented (Putzar, Goerendt, Lange, Rösler, & Röder, 2007). This effect was
56 significantly reduced in congenital cataract reversal individuals (Putzar, Goerendt, et al., 2007). The
57 residual visual impairments would have, according to the inverse efficiency rule of multisensory
58 integration, predicted a larger capture in this group, suggesting that the multisensory binding process
59 was impaired (Meredith & Stein, 1983). Similarly, cataract reversal individuals had a significantly reduced
60 likelihood of showing the McGurk effect (Putzar, Höttig, & Röder, 2010). In this illusion, auditory speech
61 presented concurrently with an incongruent visual lip movement produces a percept that matches
62 neither the auditory nor the visual input. The absence of the McGurk effect in congenital cataract
63 reversal individuals was subsequently shown to be related to a lack of multisensory enhancement in
64 superior temporal brain regions known to be essential for audio-visual speech perception (Kumar et al.,
65 2016; Nath & Beauchamp, 2012; Sams et al., 1991). Finally, visual motion after-effects (perception of
66 stationary stimuli as moving in the direction opposite to previously presented moving stimuli) were
67 found after auditory motion adaptation in cataract-reversal individuals, i.e., a cross-modal after-effect
68 which has not been found in normally sighted individuals (Guerreiro, Putzar, & Röder, 2016). These
69 results converge to the conclusion that multisensory binding processes do not fully recover after sight
70 restoration in individuals with a history of congenital cataracts. Although recent studies with cataract
71 reversal individuals have demonstrated recovery of multisensory redundancy effects (de Heering et al.,
72 2016; Putzar, Gondan, & Röder, 2012) and partially for auditory-visual simultaneity judgements (Chen,
73 Lewis, Shore, & Maurer, 2017), multisensory binding based on more complex features, such as speech
74 (Putzar, Goerendt, et al., 2007), seems to depend on early visual input.

75 It is currently unclear to what degree visuo-haptic and visuo-motor processing recovers after a
76 transient phase of congenital visual deprivation. A developmental study with children found that visuo-
77 haptic integration reaches adult-like performance only by 10 years of age (Gori, Del Viva, Sandini, & Burr,
78 2008). Prior to that, children show signs of either vision or touch dominating visuo-tactile perception.
79 Evidence from studies in a small number of individuals who had dense (but not necessarily congenital)
80 bilateral cataracts suggested a quick emergence of visuo-haptic interactions after surgery, when these
81 individuals were tested in vision-to-touch object matching tasks (n=1, Chen et al., 2016; n=5, Held et al.,
82 2011). However, later single case studies pointed towards impaired spatial representations for visuo-
83 tactile localization after at least two years of visual deprivation (Azañón, Camacho, Morales, & Longo,
84 2018; Ley, Bottari, Shenoy, Kekunnaya, & Röder, 2013). Further, a study testing sight recovery individuals
85 on an automatic imitation task, which mapped vision to motoric performance, found performance
86 deficits even two years after surgery (McKyton, Ben-Zion, & Zohary, 2018).

87 A phenomenon observed in typical visuo-haptic development is the perception of the size-
88 weight illusion (henceforth referred to as the SWI), which has been described as “immutable” (Murray,
89 Ellis, Bandomir, & Ross, 1999). The SWI is an illusion perceived when two unequally sized objects of the
90 same weight are compared - the smaller object is perceived as being heavier than the larger one.

91 The “classical” SWI is assumed to require the integration of visual and haptic input (for review,
92 see Dijker, 2014). Though the SWI has been documented for a long time, there is still a debate of
93 whether it occurs due to conflicting sensorimotor input, or is a purely cognitive effect due to a mismatch
94 in expectations (Flanagan, Bittner, & Johansson, 2008). At present, the contribution of early visual
95 experience to the occurrence of the illusion is unclear.

96 Several lines of evidence have suggested a crucial role of ongoing visual input in the perception
97 of the SWI. First, the SWI was reported to disappear when visual cues were not presented to normally
98 sighted participants, even if they were allowed to access them beforehand, suggesting a crucial role of
99 continued visual perception for the illusion, and providing a strong argument that the SWI reflects visuo-
100 haptic integration (Masin & Crestoni, 1988). Additionally, the SWI was observed to increase with an
101 increase in visual disparity between sizes; if two objects of the same weight had a greater difference
102 between their visually perceived sizes, the illusion perceived was stronger (Kawai, Henigman, MacKenzie,
103 Kuang, & Faust, 2007). This was found to be true even in the absence of haptically perceived size
104 differences, when visually perceived size was varied using objects with adjustable heights but constant
105 surface area (Plaisier & Smeets, 2015). Finally, in a rapid adaptation study using functional MRI with an
106 SWI task, the ventral premotor area (PMv) responded more when the SWI was perceived, i.e. when
107 participants compared the weights of two objects of different sizes and the same weight, than when
108 participants compared objects of the same size and weight (Chouinard, Large, Chang, & Goodale, 2009).
109 Importantly, the PMv did not show an independent adaptation to size and weight properties, but
110 adapted to the combination of these properties, therefore providing neural evidence for the integration
111 of concurrent but separate sensory input. These results suggest that early visual deprivation might affect
112 the SWI, if the ability to integrate visual and haptic cues does not recover.

113 The SWI was observed to occur when size information was perceived exclusively visually (i.e.
114 using a string set-up to weigh objects, preventing individuals from using haptic cues to estimate size) or
115 exclusively haptically (i.e. blindfolding individuals to prevent them from accessing visual estimates of
116 size) (Ellis & Lederman, 1993; Pick & Pick, 1967). However, both these studies reported that the SWI was
117 smaller when the task presented sighted individuals with size cues that were exclusively visual, as
118 compared to when the task was haptic or visuo-haptic. Moreover, congenitally blind individuals have

119 been reported to experience the SWI as well (Ellis & Lederman, 1993; Rice, 1898). These results would
120 lead us to hypothesize that the SWI emerges independent of visual input and thus, should manifest
121 unimpaired in sight-recovery individuals too - at least if the objects are perceived exclusively haptically.
122 However, there might be some competition between the belatedly available visual input and other
123 sensory modalities (Guerreiro, Putzar, & Röder, 2015; Singh, Phillips, Merabet, & Sinha, 2018) which
124 might worsen visual performance (Guerreiro, Putzar, & Röder, 2016; Putzar, Goerendt, et al., 2010).
125 Consistent with this assumption, a reduced visuo-haptic SWI was reported in visually impaired
126 individuals with some residual visual capabilities (Furth, 1961). Therefore, it could be hypothesized that
127 the visuo-haptic SWI, both with and without haptic size information, is reduced in individuals who
128 recover from transient congenital or developmental visual deprivation.

129 The second account for the occurrence of the SWI has proposed that this illusion is a result of
130 violated expectations, and originates from top-down rather than bottom up processes (Buckingham &
131 Goodale, 2010; Chouinard et al., 2019; Peters, Balzer, & Shams, 2015; Ross, 1966). If the SWI is a result of
132 exclusively visual statistics gathered over the lifespan – i.e. an increased amount of force on the larger
133 object because of the belief that smaller objects should weigh less – then individuals who have not had
134 access to vision early in life, when tested with and without haptic size information, should either not
135 manifest the illusion, or perceive it to a lower degree.

136 In order to test for the dependence of visuo-haptic interactions on early visual input, we
137 performed two experiments using an SWI paradigm employed by Buckingham and Goodale (2010),
138 wherein subjects were asked to rate cubes on how heavy they thought they were (Buckingham &
139 Goodale, 2010). The first experiment tested the “classic” visuo-haptic SWI, that is the SWI when
140 simultaneously receiving visual and haptic size information. A group of dense bilateral congenital
141 cataract reversal individuals (CC) as well as a group of individuals who had suffered developmental
142 cataracts (DC) were tested, and compared to a group of normally sighted controls (SC). We additionally
143 ran and separately analyzed data from two congenitally blind (CB) individuals to pilot whether we would
144 replicate the findings from Ellis and Lederman (1993). The second experiment used a string set-up to
145 ensure only visual size cues were available to participants, in order to isolate the visual contribution to
146 the SWI (Buckingham, Milne, Byrne, & Goodale, 2015; Ellis & Lederman, 1993; Pick & Pick, 1967). A
147 group of congenital cataract reversal individuals (CC) and a group of normally sighted controls (SC) were
148 compared. We hypothesized that in Experiment 1, the SWI would be impaired in CC compared to SC and
149 DC individuals, due to aberrant visual experience interfering with multisensory integration (Guerreiro et

150 al., 2015; Putzar, Goerendt, et al., 2007), and that in Experiment 2, CC individuals would not experience
151 the SWI when deprived of haptic size information (Buckingham et al., 2015; Ellis & Lederman, 1993).

152 Methods

153 Ethical Approval

154 All participants, as well as their legal guardians in case of minors, provided written and informed
155 consent. Testing was conducted after obtaining ethical approval from the German Psychological Society
156 (DGP) and the local ethics board of the Hyderabad Eye Research Foundation. All methods and tests were
157 performed in accordance with the relevant guidelines and regulations of both collaborating institutions.

158 Experiment 1

159 Participants.

160 We tested three groups of individuals. The first group consisted of seven individuals born with
161 dense bilateral cataracts, who subsequently underwent cataract removal surgery (referred to as CC
162 group: 3 females, 4 males; Age = 8 – 35 years, $M = 21.2$ years, $SD = 9.8$, Table 1). The CC individuals were
163 diagnosed by ophthalmologists and optometrists at the LV Prasad Eye Institute (LVPEI) in Hyderabad
164 (India). They were tested by some of the authors, partially with the help of a translator, in English,
165 Hindi or Telugu. The data from four additional CC individuals were excluded due to unwillingness to
166 cooperate ($n = 2$) or a documented developmental delay ($n = 2$). Individuals were categorized as part of
167 this group based on the presence of dense bilateral cataracts at birth, a pre-surgery visual acuity of
168 counting fingers at 1m or less (barring absorption of lenses), presence of nystagmus, occlusion of
169 fundus/retina, and immediate family members who had also been diagnosed with dense bilateral
170 congenital cataracts. Duration of blindness was calculated by subtracting the date of birth from the date
171 of the first eye surgery ($M = 13.21$ years, $SD = 8.24$, Range = 2 – 23.05 years). One individual did not have
172 his precise date of surgery information available (operated after 6 months of age), and was excluded
173 from duration calculations. Visual acuity pre-surgery in the better eye ranged from a minimum of light
174 perception (PL+) to a maximum of counting fingers close to the face (CFCF). One participant had been
175 able to count fingers at a distance of 3m pre-surgery. We included this participant due to clearly partially
176 absorbed lenses (OD Visual Acuity: counting fingers at 1.5m, OS Visual Acuity: counting fingers at 3m). All
177 other criteria such as nystagmus and family history pointed towards the presence of dense bilateral
178 cataracts at birth. Visual acuity post-surgery in the better eye in this group ranged from a minimum of
179 counting fingers at a distance of 1 m to a maximum of 20/40. All individuals included in this group lacked

180 patterned vision at birth, in accordance with the criteria set by the WHO (World Health Organisation,
181 2019).

182 The second group consisted of nine individuals who had either partial congenital cataracts or
183 developmental cataracts, and were subsequently operated upon to remove the cataracts (referred to as
184 DC group: 2 females, 7 males; Age = 8 – 37 years, M = 14.8 years, SD = 9.2, Table 1) The testing
185 procedure was the same as that of the CC group. Comparing this group with the CC individuals allowed
186 us to isolate effects caused by transient patterned visual deprivation from birth, from effects due to
187 general visual impairments caused by a changed periphery. Visual acuity pre-surgery in the better eye
188 ranged from following light to a maximum of 20/80. Visual acuity post-surgery in the better eye ranged
189 from 20/1200 to 20/20. All individuals included in this group did not lack patterned vision at birth, but
190 suffered from degraded visual input for some or all of their early childhood, therefore providing a control
191 group for the possibility that any observed impairments of the CC group were not specific to visual input
192 at birth, but due to degraded visual input at any stage of life.

193 The third group consisted of 10 individuals with normal or corrected-to-normal vision and who
194 had no history of visual deficits or eye injuries (referred to as SC group: 7 females 3 males; Age = 19-36
195 years, M = 25.8 years, SD = 5.3). SC individuals were tested at the University of Hamburg, Hamburg,
196 Germany, in German.

197 In addition to these three groups, we ran two congenitally blind individuals who had no more
198 than light perception since birth and at the time of the study (referred to as CB group: 1 female, 1 male;
199 Ages = 33 and 44 years). They were tested at the University of Hamburg, Germany, using German. Their
200 data were analyzed separately due to the small group size. The purpose of including these two
201 participants was to replicate the presence of the SWI in individuals who totally lack vision since birth, but
202 not for statistical comparisons between groups (Ellis and Lederman 1993, Buckingham et al 2015). Such
203 an illusion would necessarily be based on exclusively haptic estimates of size.

204 All individuals included in the data analysis reported no history of neurological or cognitive
205 impairments. All participants were right handed, and used that hand to perform the task.

206 **Stimuli and Apparatus.**

207 Participants were tested using a free-rating, absolute-magnitude-estimation procedure: they
208 freely chose a rating scale of their preference and estimated how much an object weighed on that scale
209 (Buckingham & Goodale, 2010). This scale was adjustable during the course of the experiment.

210 Participants rated one of 6 gray plastic cubes that were placed on their palms. The cubes were
211 small (5 cm^3), medium (7.5 cm^3) or large (10 cm^3), and had one of two different weights (either 350g or
212 700g) (Figure 1). The weight was invisibly fixed in one corner, with the rest of the inside being hollow to
213 ensure the same distribution of weight in each cube. Participants were instructed to hold the dominant
214 arm bent at 90 degrees, and for each trial, the cube was placed on the palm of their dominant hand such
215 that it was clearly visible. Participants were required to lift each cube for approximately 15 seconds, and
216 to judge its weight. Upon the rating response, the experimenter removed the cube from the participants'
217 hand.

218 We used random orders, and in one run, each cube was lifted 5 times. We repeated this across
219 two runs, leading to a total of 60 trials. For participants who did not complete 60 trials, we used only the
220 completed run of 30 trials (CC: n=1; DC: n=3). Participants were instructed not to rotate the arm for
221 additional sensory cues, and not to throw the cube in the air and catch it again. This procedure took
222 around 30 minutes in total.

223 **Data Analysis.**

224 In order to compare subjective judgements across participants, rating scores were z-transformed
225 within each participant. This was done by subtracting the individual's mean weight judgement from each
226 weight judgement, and dividing by the standard deviation (Buckingham & Goodale, 2010). Due to this z-
227 scoring, all weight judgements reflect deviations from the same mean (zero), with higher z values
228 indicating heavier weight judgements. In order to be included in the data analysis, participants had to
229 consistently rate the 350g cubes as lighter than the 700g cubes, to exclude the possibility of a response
230 bias as opposed to a principled difference in perceived weight due to size. This was true of all
231 participants in Experiment 1.

232 We used frequentist statistics to analyze the data. Z-scores across participants were submitted
233 to a mixed ANOVA. Our model considered two within-group factors – namely, weight (2 levels: 350g,
234 700g) and size (3 levels: small, medium, large), and one between-group factor – group (3 levels: CC, DC,
235 and SC) in a repeated measures ANOVA. Levene's test for Homogeneity of Variance was performed on
236 the z-score data to ensure that the scores do not violate the assumption of equal variance for parametric
237 testing, due to unequal sample sizes between groups ($F(2,23)=0.27, p=0.764$). Post-hoc ANOVAs and t-
238 tests were performed according to the resulting interactions, and post-hoc equivalence testing was
239 conducted to confirm the results (Supplementary Information S1).

240 All analyses were conducted in R (version 3.3.2), using the ez-package (<https://github.com/mike-lawrence/ez>). This package corrects for violations of sphericity when there are more than 2 levels in the
241 within subject variable (size) via the Greenhouse-Geisser correction. All effect sizes reported are
242 generalized eta squared (η_g^2) values.

244 This study was not pre-registered, and sample sizes were limited by strict inclusion criteria within
245 a special population.

246 Results

247 **Sight-recovery individuals show an intact visuo-haptic SWI (Experiment 1)**

248 When z-scored weight ratings were assessed in a size-by-weight-by-group analysis of variance
249 (ANOVA with repeated measures), all groups performed the task in a principled manner, as indicated by
250 a main effect of weight, wherein the 700g weight was rated as heavier than the 350g weight
251 ($F(1,23)=639.15$, $p<0.001$, $\eta_g^2=0.85$). There was a main effect of size, demonstrating the presence of the
252 SWI ($F(2,46)=147.11$, $p<0.001$, $\eta_g^2=0.74$), that is, participants perceived smaller sized objects of the same
253 weight to be heavier. Crucially, the group-by-size ($F(4,46)=0.96$, $p=0.419$, $\eta_g^2=0.03$), group-by-weight
254 ($F(2,23)=2.63$, $p=0.094$, $\eta_g^2=0.04$), and size-by-weight-by-group interactions ($F(4,46)=1.64$, $p=0.181$,
255 $\eta_g^2=0.05$) were all not significant. Therefore, CC individuals displayed an indistinguishable SWI from DC
256 and SC individuals (Figure 2, Figure 3).

257 We found a size-by-weight interaction, indicating that the illusion was stronger for the 700g than
258 the 350g weight ($F(2,46)=11.82$, $p=0.001$, $\eta_g^2=0.15$). In order to follow up on this effect, two post-hoc 3
259 (size) X 3 (group) repeated measures ANOVAs were conducted, separated by the weight condition. There
260 was a main effect of size for both the 350g ($F(2,46)=59.08$, $p<0.001$, $\eta_g^2=0.66$) and the 700g
261 ($F(2,46)=108.24$, $p<0.001$, $\eta_g^2=0.79$) weights, demonstrating that the SWI was highly significant for both
262 weights in all groups. Again, we found no group-by-size interaction (350g: $F(4,46)=0.57$, $p=0.63$, $\eta_g^2=0.04$;
263 700g: $F(4,46)=1.74$, $p=0.179$, $\eta_g^2=0.11$), indicating that the degree to which the three groups experienced
264 the SWI was indistinguishable.

265 Paired t-tests across the three groups confirmed that participants experienced the smaller cube
266 as heavier than the medium (350g: $t(24)=8.28$, $p<0.001$; 700g: $t(24)=7.64$, $p<0.001$) and large cube
267 (350g: $t(24)=9.95$, $p<0.001$; 700g: $t(24)=11.52$, $p<0.001$) of the same weight, and the medium sized
268 cube as heavier than the large cube of the same weight (350g: $t(24)=5.97$, $p<0.001$; 700g: $t(24)=8.49$,
269 $p<0.001$).

270 Both CB individuals tested showed an impressively clear SWI (Figure 2). We found their z-scores
271 (Figure 2) to fall within the core range of the remaining groups. Thus, these two participants replicated
272 the results of Ellis and Lederman (1993).

273 **1.1 SWI Index.**

274 In order to obtain a measure of illusion strength for each individual, we calculated an SWI Index
275 by subtracting the mean z-scored weight judgment of the largest cube from that of the smallest cube,
276 separately for each weight.

277 We conducted separate one way ANOVAs for the 350g and 700g weights to assess the effect of
278 group on the calculated SWI Index. The CC, DC, and SC groups did not differ in the strength of the illusion
279 - neither for the 350g ($F(2,23)=0.72, p=0.497, \eta_g^2=0.06$) nor the 700g weights ($F(2,23)=0.74, p=0.487,$
280 $\eta_g^2=0.06$) (Figure 6). We further tested these null findings against effect sizes obtained from studies in
281 the literature. Based on a comparable study and task found for the 700g weight, we used equivalence
282 analyses to confirm that the SWI index was equivalent in the CC, DC and SC groups – i.e. the SWI indices
283 were within the bounds obtained by Buckingham and Goodale (2010) (the presence of any meaningful
284 effect of group was rejected with all p's < 0.024, see Supporting Information S1) (Buckingham & Goodale,
285 2010; Lakens, 2017).

286 The two CB individuals tested showed SWI indices within the range of the other groups (350g: -
287 1.145 and -1.034; 700g: -1.507 and -0.646), demonstrating a full strength SWI (Figure 6).

288 **Methods**

289 **Experiment 2**

290 Experiment 2 was performed as a follow up to the results from Experiment 1, in order to assess
291 the occurrence of the SWI in the absence of haptic size cues. Since we found no group differences in
292 Experiment 1, and our a priori hypothesis was restricted to the effects of transient congenital patterned
293 visual deprivation on the development of the SWI, we ran two groups: CC and SC individuals. Further,
294 given the limitations on recruitment of special populations, as our goal with this experiment was to
295 isolate the visual contribution to the full-sized SWI observed in CC individuals, DC individuals were not
296 tested. In light of the occurrence of a full-sized SWI with (necessarily) exclusively haptic size cues in CB
297 individuals in Experiment 1 and prior studies, we did not repeat an additional haptics-only condition (Ellis
298 and Lederman 1993, Buckingham et al 2015).

299 Data for this experiment was collected at LVPEI, Hyderabad, India, by the some of the authors,
300 partially with the help of a translator, in English, Hindi or Telugu.

301 **Participants.**

302 The CC group consisted of six individuals defined and classified the same way as in Experiment 1
303 (referred to as CC: 1 female, 5 males; Age = 17 – 44.7 years, M = 27.67 years, SD = 12.37; Duration of
304 blindness = 2 – 22.01 years, M = 12.98 years, SD = 7.28, Table 1). An additional CC participant was
305 excluded as they did not consistently rate the 350g cubes as less heavy than the 700g cubes, indicating
306 that they were not performing the task in a principled manner, possibly due to translation issues (see
307 Supporting Information S2). For four out of six included participants, visual acuity pre-surgery in the
308 better eye ranged from a minimum of counting fingers at 1m to a maximum of 20/300, with a history of
309 partially absorbed lenses in all four of them. All other criteria, such as presence of nystagmus and family
310 history, pointed towards the presence of dense bilateral cataracts at birth. For the remaining two
311 participants, visual acuity pre-surgery was unknown, but based on the combination of a family history of
312 dense congenital cataracts, very poor visual acuity post-surgery, nystagmus and esotropia, these
313 participants were classified as having dense bilateral congenital cataracts. Visual acuity post-surgery in
314 the better eye in this group ranged from a minimum of 20/400 to a maximum of 20/125.

315 The SC group consisted of seven individuals with normal or corrected-to-normal vision, with no
316 history of eye injuries or abnormalities (5 females, 2 males; Age = 21-29 years, M = 24.13, SD = 3.08).

317 **Stimuli and Apparatus.**

318 Participants used a white, smooth ribbon to hold and lift one of the same six cubes used in
319 Experiment 1, by pulling it with their dominant hand. The ribbon was wrapped around a metal ring fixed
320 to a wall, in order to minimize friction that could possibly affect weight judgements, and allow
321 participants to estimate the weight of the cube while it was suspended at eye level (Figure 1). An
322 important experimental consideration for the use of a string/handle set-up to test the SWI in sight
323 recovery individuals was to control for the precision of the visual cues provided, due to residual visual
324 impairments in visually impaired individuals (Lewis & Maurer, 2005). Therefore, viewing distance was
325 determined by each CC and SC participant based on how comfortable they were seeing the cube.
326 However, viewing distance was not significantly different between groups ($t(4) = 1.656$, $p = 0.137$; CC:
327 Mean = 58 cm, SD = 8.69 cm, Range = 50 – 70 cm; SC: Mean = 64.71 cm, SD = 5.19 cm, Range = 60 – 73
328 cm). This was done to minimize the possibility of potential differences in illusion size being confounded
329 with differences in visual acuity, due to viewing at a fixed distance. Participants were instructed

330 identically to Experiment 1 described above, and the experimenter placed and removed the cubes from
331 the apparatus for each trial to prevent the participant from having any haptic contact with the stimuli.

332 Participants were not permitted to haptically handle the cubes at any time, before or during the
333 course of the task, and were naïve to how many sizes and weights were presented. A post-study
334 questionnaire recorded their estimates for how many weights and sizes were presented (see Supporting
335 Information S3).

336 The same random trial orders used in Experiment 1 were used for Experiment 2, and 60 trials
337 were completed per participant.

338 **Data Analysis.**

339 Z-scores were calculated using a procedure identical to the one described for Experiment 1
340 above.

341 The ANOVA model comprised two within-group factors (Size: 3 levels, Weight: 2 levels) and one
342 between groups factor with 2 levels (CC, SC). Post-hoc ANOVAs and t-tests were performed according to
343 the resulting interactions.

344 Additionally, a cross-experiment ANOVA with group and experimental task as between subject
345 factors and weight as a within subject factor (group: 2 levels for SC and CC; task: 2 levels for Experiment
346 1 and 2) was performed.

347 **Results**

348 **2. Sight recovery individuals show an SWI with exclusively visual size estimates (Experiment 2)**

349 In a group-by-weight-by-size ANOVA performed for Experiment 2, we obtained a main effect of
350 weight ($F(1,11) = 110.80, p < 0.001, \eta_g^2 = 0.833$), indicating that participants performed the task in a
351 principled manner. Additionally, the main effect of size was significant ($F(2,22) = 8.82, p = 0.009, \eta_g^2 =$
352 0.203), confirming an SWI with this task across groups (Figure 4, Figure 5). The CC participants did not
353 differ from the SC group in their performance on this task, as evidenced by the lack of a significant main
354 effect of group ($F(1,11) = 0.158, p = 0.999, \eta_g^2 < 0.001$), and of significant group-level interactions
355 (group-by-size: $F(2,22) = 0.048, p = 0.861, \eta_g^2 = 0.002$; group-by-weight: $F(1,11) = 1.866, p = 0.199, \eta_g^2 =$
356 0.077; group-by-size-by-weight: $F(2,22) = 0.556, p = 0.509, \eta_g^2 = 0.009$).

357 Across groups, participants experienced the smaller cube as heavier than the medium cube
358 (350g: $t(12) = 2.03, p = 0.056$; 700g: $t(12) = 2.02, p = 0.066$) as well as the large cube (350g: $t(12) = 2.74, p$

359 = 0.018; 700g: $t(12) = 2.86, p = 0.014$) of the same weight, and the medium sized cube as heavier than
360 the large cube of the same weight (350g: $t(12) = 2.62, p = 0.023$; 700g: $t(12) = 3.03, p = 0.010$),
361 confirming the presence of the SWI with this paradigm.

362 **2.1 SWI Index.**

363 The CC and SC groups did not differ in the strength of the illusion for either the 350g ($F(1,11) =$
364 $0.169, p = 0.688, \eta_g^2 = 0.015$), or the 700g weights ($F(1,11) = 0.001, p = 0.971, \eta_g^2 < 0.001$) (Figure 6).
365 When compared using equivalence testing for the 700g weight, conducted based on available effect sizes
366 in the literature, we found the SWI indices to be equivalent, significantly rejecting any effect of group
367 (both p 's < 0.006 , see Supporting Information S1).

368 **3. The visual contribution to the SWI is identical in sight recovery and sighted individuals**

369 We additionally compared the SC and CC groups of Experiment 1 and 2 in a group-by-weight-by-
370 experimental task ANOVA, in order to assess whether the groups differed between how they performed
371 when both visual and haptic size estimates were available, compared to when only visual size
372 information was available. We confirmed that the SWI was significantly stronger in Experiment 1
373 compared to Experiment 2 (main effect of Experimental Task: $F(1,26) = 56.396, p < 0.001, \eta_g^2 = 0.511$),
374 and stronger for the 700g than the 350g weight (main effect of Weight: $F(1,26) = 9.089, p = 0.006, \eta_g^2 =$
375 0.153). The group-by-experiment interaction ($F(1,26) = 0.357, p = 0.555, \eta_g^2 = 0.006$), group-by-weight
376 interaction ($F(1,26) = 1.083, p = 0.307, \eta_g^2 = 0.021$), and group-by-weight-by-experiment interaction were
377 all non-significant ($F(1,26) = 0.631, p = 0.424, \eta_g^2 = 0.012$), confirming that in both experiments CC
378 individuals perceived an indistinguishably strong SWI from SC individuals, suggesting that the “visual”
379 contribution to the SWI did not differ in the two groups.

380 **3.1 Relationship between strength of the SWI and the duration of visual deprivation.**

381 To test for a possible effect of duration of patterned visual deprivation on the strength of the
382 SWI, we calculated the correlation between age at surgery and the average SWI Index (across 350g and
383 700g) for CC individuals. This correlation was not significant neither for Experiment 1 ($r=0.05, t(4)=0.10,$
384 $p=0.463$), nor did the correlation reach significance for Experiment 2 ($r = -0.76, t(4) = -2.357, p = 0.078$).
385 Additionally, no correlation was observed between illusion size and age at time tested in either group
386 (see Supporting Information S4.3).

388

Discussion

389 The present study investigated whether the manifestation of the size-weight illusion (SWI)
390 depends on patterned visual experience after birth. We tested sight recovery individuals with a history of
391 dense bilateral congenital cataracts, and compared this group to sight recovery individuals with a history
392 of developmental cataracts, as well as a group of normally sighted controls. Our results demonstrated a
393 significant “classical” SWI (with visual and haptic size information available) in all groups; indeed, the size
394 of the SWI was indistinguishable between the three groups. Furthermore, we replicated previous results
395 from Ellis and Lederman and showed that two permanently congenitally blind individuals experienced
396 the SWI to a degree that fell within the range of all the other participants (Ellis & Lederman, 1993).

397 We additionally used a string set-up in Experiment 2 to test whether the CC group used visual
398 size cues, rather than relying only on haptic size cues in Experiment 1 (Buckingham et al., 2015). As in
399 Experiment 1, the SWI experienced with exclusively visual size information was equivalent across sight
400 recovery individuals with a history of congenital cataracts, and sighted controls. Together, these results
401 suggest that the visuo-haptic SWI is resilient to atypical visual experience after birth.

402 **No sensitive period effects for visuo-haptic integration as tested by the SWI**

403 A previous study of individuals who were operated upon for dense bilateral congenital cataracts
404 reported that in an object matching task conducted two days-post-surgery - while unimodal tactile and
405 visual performance was observed to be at ceiling, tactile to visual mapping was found to be severely
406 impaired (Held et al., 2011, n = 5). However, the authors observed that this ability rapidly improved over
407 the next five days. A subsequent case study of sight recovery suggested that visuo-tactile processing
408 recovers in object recognition and object matching tasks within three days of sight restoration, despite a
409 lack of visual experience after birth (Chen et al., 2016, n = 1). As these studies tested participants closer
410 to the date of surgery, and given that the sight recovery individuals in the present study were all tested
411 one year from surgery in order to exclude acute but transient surgery effects, our findings are consistent
412 with these existing studies on visuo-haptic object recognition. However, both Held et al and Chen et al
413 tested visuo-haptic transfer through object matching tasks. By contrast, we provide evidence for the
414 recovery of visuo-haptic *integration* (i.e. a unified percept by fusing input from both sensory modalities)
415 despite early patterned visual deprivation, therefore extending these studies (Singh et al., 2018; Stein et
416 al., 2010). Our findings might be considered surprising in light of two prospective studies, which
417 suggested a protracted developmental pathway for the SWI. I. The first study observed that the SWI
418 increased in size after the age of 5 years (Chouinard et al., 2019) They related this increase to the

419 development of abstract reasoning skills. However, abstract reasoning explained no more than about
420 10% of the effect, and the SWI existed even in the youngest group. A second study showed that typically
421 developing children did not optimally integrate visuo-haptic input in an adult-like manner until the age of
422 10 years (Gori et al., 2008). However, optimal integration is typically defined as optimal cue integration
423 as predicted by forced fusion models. These models weight individual cues according to their relative
424 reliability to derive a multisensory outcome. It has more recently been demonstrated that in situations
425 where it is ambiguous whether or not to integrate sensory information, the data from children as young
426 as 5 years of age, like those of adults, are better explained by causal inference models (Rohlf, Li, Bruns,
427 & Röder, 2020). Given that some (n=4) of our CC participants had been older than 10 years of age at the
428 time of surgery, our results suggest that patterned vision during this period of multisensory development
429 was not crucial for the typical manifestation of the SWI with either visuo-haptic or only visual size
430 information.

431 These results showing an indistinguishable SWI in sight recovery individuals, both with a
432 congenital as well as a developmental history of transient blindness, provide evidence that the
433 multisensory processes underlying the SWI are resilient to atypical visual experience. First, participants
434 of both cataract groups still suffered visual impairments at the time of testing. Nevertheless, the SWI was
435 not smaller in magnitude in either group, compared to normally sighted individuals. A smaller SWI in
436 sight recovery individuals would have been expected from an the aforementioned reliability-based
437 optimal integration account (Ernst & Banks, 2002). Second, neither years of blindness nor the timing of
438 the transient phase of blindness (developmental vs. congenital) had a significant influence on the size of
439 the SWI. Finally, the extent of the “visual” contribution to the SWI was indistinguishable between sight
440 recovery and sighted individuals. This identical behavioral performance, regardless of atypical visual
441 history across groups and tasks, provides strong evidence that visuo-haptic processing, as assessed with
442 the SWI, does not rely on sensitive period plasticity to develop normally.

443 It is possible that different underlying neural mechanisms support the identically sized SWI in
444 sight recovery individuals (Bedny, 2017). As sensitive periods are properties of neural circuits , further
445 neuroimaging studies need to confirm whether visuo-haptic processing develops normally in the absence
446 of typical visual experience (Knudsen, 2004; Takesian & Hensch, 2013). Additionally, the absence of
447 sensitive period effects in one tested behavior does not contradict the general role of sensitive period
448 plasticity (Hadad, Maurer, & Lewis, 2012; Lewis & Maurer, 2005; Röder, Kekunnaya, & Guerreiro, 2020;
449 Röder, Ley, Shenoy, Kekunnaya, & Bottari, 2013; Takesian & Hensch, 2013). Disengaging functions which

450 do and do not develop within sensitive periods will, in the long run, be essential to uncovering the
451 general principles of functional brain development.

452 To the best of our knowledge, the present study is the first to conclusively show the
453 manifestation of a full-strength SWI in sight recovery individuals, both for the condition with visual and
454 haptic size information, as well as the condition with only visual size information. Further, strict criteria
455 were used for the inclusion of sight recovery participants, in order to ensure high homogeneity of
456 etiology within the CC and DC group. We chose a retrospective, developmental approach with individuals
457 who underwent cataract reversal surgery before the age of 23 years, and were older than 8 years of age
458 at the time of testing. After the age of 8 years, no further increase in the SWI had been observed in
459 prospective studies (Chouinard et al., 2019). The present study did not find any difference in the size of
460 the SWI, neither for the visuo-haptic nor for the visual experiment. A significant, equivalent SWI was
461 consistently perceived by individual participants across all groups, despite the fact that in the cataract
462 groups, age at surgery, time since surgery and visual acuity at time of testing varied, potentially
463 increasing between group differences. Our stringent inclusion criteria restricted the sample size within a
464 special population, however, all individual subjects showed the SWI with established paradigms in a
465 consistent pattern (Figures 2,3), allowing us to interpret the lack of group differences and confirming
466 them with equivalence testing. We consider these results to be highly robust evidence against the
467 dependence of the SWI on early visual input, therefore suggesting the lack of a sensitive period for the
468 development of the SWI.

469 **Mechanisms of the SWI**

470 What are the possible mechanisms by which the SWI could manifest in CC individuals? While our
471 study does not allow us to disentangle the models explaining the occurrence of the SWI, interpreting our
472 results in light of these hypotheses can shed light on the mechanisms of the SWI. Below, we engage with
473 the dominant models of the SWI.

474 On one hand, it could be assumed that the SWI is a purely haptic process, as was consistent with
475 earlier reports of the SWI manifesting in congenitally blind adults, and replicated in two congenitally blind
476 adults in the present study (Ellis & Lederman, 1993; Rice, 1898). However, a purely haptic account of the
477 SWI would have predicted the absence of the SWI when haptic size cues are unavailable to sight
478 recovery individuals. In fact, prior studies employing a string set-up in congenitally blind individuals, as
479 expected, did not observe an SWI (Buckingham et al., 2015; Ellis & Lederman, 1993). Instead, in the
480 present study, sight recovery individuals perceived an SWI even when only visual size cues were

481 available. Additionally, a recent study observed that congenitally blind individuals experience the SWI
482 without haptic size cues, but when size estimates were obtained through echolocation (Buckingham et
483 al., 2015). Together, this evidence strongly argues against an exclusively haptic account of the SWI.

484 On the other hand, it has been suggested that the SWI is a multisensory phenomenon occurring
485 due to a conflict between concurrent visual (size) and haptic (weight) sensory input (Dijker, 2014; Grandy
486 & Westwood, 2006; Kawai et al., 2007). Within this framework, our data suggest that while the SWI can
487 develop through haptic input alone, it might nevertheless be modulated by visual input, due to the
488 recovery of visuo-haptic processing despite atypical visual experience. (Chen et al., 2016; Chen et al.,
489 2017; Held et al., 2011) Indeed, full or partial recovery of visuo-tactile functions have been reported,
490 depending on the task. While prior studies have shown that in a simultaneity judgement task designed to
491 test a unified multisensory percept, visuo-tactile performance was unimpaired despite a lack of early
492 visual experience (Chen et al., 2017; Putzar et al., 2012), sight recovery individuals did not show normal
493 visuo-tactile temporal order biases (Badde et al., 2020; Ley et al., 2013). Additionally, our findings of a
494 larger SWI when both visual and haptic size information was available than when only a visual size
495 estimate was possible, in both sight recovery and sighted individuals, fit with a multisensory framework
496 for the occurrence of the SWI (Ellis & Lederman, 1993; Pick & Pick, 1967).

497 **Conclusions**

498 The occurrence of the Size-Weight Illusion (SWI), both when visual and haptic size information
499 was available, as well as when only visual size information was assessable, was resilient to atypical visual
500 experience within the first months and years of life. These results provide strong evidence that the visuo-
501 haptic processes underlying the SWI do not require typical visual experience within a sensitive period for
502 normal development. Further studies are needed to explore whether the SWI is supported by the same
503 neural mechanisms in typical and atypical development by employing neuroscience techniques
504 (Chouinard et al., 2009).

505

506

507 **Data Availability Statement**

508 The datasets generated/analyzed during this study are available from the corresponding author
509 upon reasonable request.

510 **Competing Interests Statement**

511 The authors declare no competing interests.

512 **Author Contributions**

513 RP designed and collected data for Experiment 2, analyzed the data for both experiments, made
514 the figures and tables and wrote the paper. MG, PL and DB designed and collected data for Experiment
515 1, MG analyzed the data for both experiments and wrote the paper. IS recruited, counselled and
516 diagnosed sight recovery individuals and assisted in data collection for Experiment 2. RK counselled and
517 diagnosed sight recovery individuals for all experiments and supervised the work. BR designed the study,
518 collected the data for Experiment 1 and wrote the paper. All authors edited the manuscript.

519 **Acknowledgements**

520 We are grateful to D. Balasubramanian and the LVPEI for supporting the study at the LVPEI in
521 Hyderabad. We thank Kabilan Pitchaimuthu, Sven Leach and Sudha Sourav for helping with the data
522 acquisition. Dirk Waschätz provided technical assistance. The study was funded by the German Research
523 Foundation (DFG Ro 2625/10-1) and the European Research Council grant ERC-2009-AdG 249425-
524 CriticalBrainChanges to Brigitte Röder. Rashi Pant was supported by a PhD student fellowship from the
525 Hector Fellow Academy gGmbH.

526

527

References

529 Azañón, E., Camacho, K., Morales, M., & Longo, M. R. (2018). The Sensitive Period for Tactile Remapping
530 Does Not Include Early Infancy. *Child Development*. <https://doi.org/10.1111/cdev.12813>

531 Badde, S., Ley, P., Rajendran, S. S., Shareef, I., Kekunnaya, R., & Röder, B. (2020). Sensory experience
532 during early sensitive periods shapes cross-modal temporal biases. *ELife*.
533 <https://doi.org/10.7554/ELIFE.61238>

534 Bedny, M. (2017). Evidence from Blindness for a Cognitively Pluripotent Cortex. *Trends in Cognitive
535 Sciences*. <https://doi.org/10.1016/j.tics.2017.06.003>

536 Birch, E. E., Stager, D., Leffler, J., & Weakley, D. (1998). Early treatment of congenital unilateral cataract
537 minimizes unequal competition. *Investigative Ophthalmology and Visual Science*.

538 Buckingham, G., & Goodale, M. A. (2010). Lifting without seeing: The role of vision in perceiving and
539 acting upon the size weight illusion. *PLoS ONE*. <https://doi.org/10.1371/journal.pone.0009709>

540 Buckingham, G., Milne, J. L., Byrne, C. M., & Goodale, M. A. (2015). The Size-Weight Illusion Induced
541 Through Human Echolocation. *Psychological Science*. <https://doi.org/10.1177/0956797614561267>

542 Chen, J., Wu, E. De, Chen, X., Zhu, L. H., Li, X., Thorn, F., ... Qu, J. (2016). Rapid Integration of Tactile and
543 Visual Information by a Newly Sighted Child. *Current Biology*.
544 <https://doi.org/10.1016/j.cub.2016.02.065>

545 Chen, Y. C., Lewis, T. L., Shore, D. I., & Maurer, D. (2017). Early Binocular Input Is Critical for Development
546 of Audiovisual but Not Visuotactile Simultaneity Perception. *Current Biology*.
547 <https://doi.org/10.1016/j.cub.2017.01.009>

548 Chouinard, P. a., Large, M. E., Chang, E. C., & Goodale, M. a. (2009). Dissociable neural mechanisms for
549 determining the perceived heaviness of objects and the predicted weight of objects during lifting:
550 An fMRI investigation of the size-weight illusion. *NeuroImage*.
551 <https://doi.org/10.1016/j.neuroimage.2008.08.023>

552 Chouinard, P. A., Matheson, K. G., Royals, K. A., Landry, O., Buckingham, G., Saccone, E. J., & Hocking, D.
553 R. (2019). The development of the size-weight illusion in children coincides with the development
554 of nonverbal cognition rather than motor skills. *Journal of Experimental Child Psychology*.

555 <https://doi.org/10.1016/j.jecp.2019.03.006>

556 de Heering, A., Dormal, G., Pelland, M., Lewis, T., Maurer, D., & Collignon, O. (2016). A Brief Period of
557 Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention. *Current
558 Biology*. <https://doi.org/10.1016/j.cub.2016.10.014>

559 Dijker, A. J. M. (2014). The role of expectancies in the size-weight illusion: A review of theoretical and
560 empirical arguments and a new explanation. *Psychonomic Bulletin and Review*.
561 <https://doi.org/10.3758/s13423-014-0634-1>

562 Eagleman, D. M. (2001). Visual illusions and neurobiology. *Nature Reviews Neuroscience*.
563 <https://doi.org/10.1038/35104092>

564 Ellis, R. R., & Lederman, S. J. (1993). The role of haptic versus visual volume cues in the size-weight
565 illusion. *Perception & Psychophysics*. <https://doi.org/10.3758/BF03205186>

566 Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically
567 optimal fashion. *Nature*. <https://doi.org/10.1038/415429a>

568 Flanagan, J. R., Bittner, J. P., & Johansson, R. S. (2008). Experience Can Change Distinct Size-Weight Priors
569 Engaged in Lifting Objects and Judging their Weights. *Current Biology*.
570 <https://doi.org/10.1016/j.cub.2008.09.042>

571 Furth, H. G. (1961). Effect of Training on the Adaptation Level of the Size-Weight Illusion with Normal,
572 Deaf, and Blind Subjects. *Perceptual and Motor Skills*, 13, 155–160.
573 <https://doi.org/10.2466/pms.1961.13.2.155>

574 Gandhi, T., Kalia, A., Ganesh, S., & Sinha, P. (2015). Immediate susceptibility to visual illusions after sight
575 onset. *Current Biology*. <https://doi.org/10.1016/j.cub.2015.03.005>

576 Gori, M., Del Viva, M., Sandini, G., & Burr, D. C. (2008). Young Children Do Not Integrate Visual and
577 Haptic Form Information. *Current Biology*. <https://doi.org/10.1016/j.cub.2008.04.036>

578 Grandy, M. S., & Westwood, D. A. (2006). Opposite perceptual and sensorimotor responses to a size-
579 weight illusion. *Journal of Neurophysiology*. <https://doi.org/10.1152/jn.00851.2005>

580 Guerreiro, M. J. S., Putzar, L., & Roder, B. (2016). The Effect of Early Visual Deprivation on the Neural
581 Bases of Auditory Processing. *Journal of Neuroscience*, 36(5), 1620–1630.
582 <https://doi.org/10.1523/JNEUROSCI.2559-15.2016>

583 Guerreiro, Maria J.S., Putzar, L., & Röder, B. (2015). The effect of early visual deprivation on the neural
584 bases of multisensory processing. *Brain*. <https://doi.org/10.1093/brain/awv076>

585 Guerreiro, Maria J.S., Putzar, L., & Röder, B. (2016). Persisting Cross-Modal Changes in Sight-Recovery
586 Individuals Modulate Visual Perception. *Current Biology*. <https://doi.org/10.1016/j.cub.2016.08.069>

587 Hadad, B. S., Maurer, D., & Lewis, T. L. (2010). The development of contour interpolation: Evidence from
588 subjective contours. *Journal of Experimental Child Psychology*.
589 <https://doi.org/10.1016/j.jecp.2010.02.003>

590 Hadad, B. S., Maurer, D., & Lewis, T. L. (2012). Sparing of sensitivity to biological motion but not of global
591 motion after early visual deprivation. *Developmental Science*. <https://doi.org/10.1111/j.1467-7687.2012.01145.x>

593 Hadad, B. S., Maurer, D., & Lewis, T. L. (2017). The role of early visual input in the development of
594 contour interpolation: the case of subjective contours. *Developmental Science*.
595 <https://doi.org/10.1111/desc.12379>

596 Held, R., Ostrovsky, Y., Degelder, B., Gandhi, T., Ganesh, S., Mathur, U., & Sinha, P. (2011). The newly
597 sighted fail to match seen with felt. *Nature Neuroscience*. <https://doi.org/10.1038/nn.2795>

598 Kawai, S., Henigman, F., MacKenzie, C. L., Kuang, A. B., & Faust, P. H. (2007). A reexamination of the size-
599 weight illusion induced by visual size cues. *Experimental Brain Research*.
600 <https://doi.org/10.1007/s00221-006-0803-1>

601 Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. *J Cogn Neurosci*,
602 16(8), 1412–1425. <https://doi.org/10.1162/0898929042304796>

603 Kumar, G. V., Halder, T., Jaiswal, A. K., Mukherjee, A., Roy, D., & Banerjee, A. (2016). Large scale
604 functional brain networks underlying temporal integration of audio-visual speech perception: An
605 eeg study. *Frontiers in Psychology*. <https://doi.org/10.3389/fpsyg.2016.01558>

606 Lakens, D. (2017). Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-Analyses.
607 *Social Psychological and Personality Science*. <https://doi.org/10.1177/1948550617697177>

608 Lewis, T. L., & Maurer, D. (2005). Multiple sensitive periods in human visual development: Evidence from
609 visually deprived children. *Developmental Psychobiology*, 46(3), 163–183.
610 <https://doi.org/10.1002/dev.20055>

611 Lewkowicz, D. J., & Röder, B. (2015). The effects of experience on the development of multisensory
612 processing. *The New Handbook of Multisensory Processes*, (September).

613 Ley, P., Bottari, D., Shenoy, B. H., Kekunnaya, R., & Röder, B. (2013). Partial recovery of visual-spatial
614 remapping of touch after restoring vision in a congenitally blind man. *Neuropsychologia*.
615 <https://doi.org/10.1016/j.neuropsychologia.2013.03.004>

616 Masin, S. C., & Crestoni, L. (1988). Experimental demonstration of the sensory basis of the size-weight
617 illusion. *Perception & Psychophysics*. <https://doi.org/10.3758/BF03210411>

618 Maurer, D. (2017). Critical periods re-examined: Evidence from children treated for dense cataracts.
619 *Cognitive Development*. <https://doi.org/10.1016/j.cogdev.2017.02.006>

620 McKyton, A., Ben-Zion, I., Doron, R., & Zohary, E. (2015). The Limits of Shape Recognition following Late
621 Emergence from Blindness. *Current Biology*. <https://doi.org/10.1016/j.cub.2015.06.040>

622 McKyton, A., Ben-Zion, I., & Zohary, E. (2018). Lack of Automatic Imitation in Newly Sighted Individuals.
623 *Psychological Science*. <https://doi.org/10.1177/0956797617731755>

624 Meredith, M., & Stein, B. (1983). Interactions among converging sensory inputs in the superior colliculus.
625 *Science*. <https://doi.org/10.1126/science.6867718>

626 Murray, D. J., Ellis, R. R., Bandomir, C. A., & Ross, H. E. (1999). Charpentier (1891) on the size-weight
627 illusion. *Perception & Psychophysics*. <https://doi.org/10.3758/BF03213127>

628 Nath, A. R., & Beauchamp, M. S. (2012). A neural basis for interindividual differences in the McGurk
629 effect, a multisensory speech illusion. *NeuroImage*.
630 <https://doi.org/10.1016/j.neuroimage.2011.07.024>

631 Peters, M. A. K., Balzer, J., & Shams, L. (2015). Smaller = denser, and the brain knows it: Natural statistics
632 of object density shape weight expectations. *PLoS ONE*.
633 <https://doi.org/10.1371/journal.pone.0119794>

634 Pick, H. L., & Pick, A. D. (1967). A developmental and analytic study of the size-weight illusion. *Journal of*
635 *Experimental Child Psychology*. [https://doi.org/10.1016/0022-0965\(67\)90064-1](https://doi.org/10.1016/0022-0965(67)90064-1)

636 Plaisier, M. A., & Smeets, J. B. J. (2015). Object size can influence perceived weight independent of visual
637 estimates of the volume of material. *Scientific Reports*. <https://doi.org/10.1038/srep17719>

638 Putzar, L., Goerendt, I., Heed, T., Richard, G., Büchel, C., & Röder, B. (2010). The neural basis of lip-

639 reading capabilities is altered by early visual deprivation. *Neuropsychologia*.
640 <https://doi.org/10.1016/j.neuropsychologia.2010.04.007>

641 Putzar, L., Goerendt, I., Lange, K., Rösler, F., & Röder, B. (2007). Early visual deprivation impairs
642 multisensory interactions in humans. *Nature Neuroscience*. <https://doi.org/10.1038/nn1978>

643 Putzar, L., Gondan, M., & Röder, B. (2012). Basic multisensory functions can be acquired after congenital
644 visual pattern deprivation in humans. *Developmental Neuropsychology*.
645 <https://doi.org/10.1080/87565641.2012.696756>

646 Putzar, L., Höttig, K., & Röder, B. (2010). Early visual deprivation affects the development of face
647 recognition and of audio-visual speech perception. *Restorative Neurology and Neuroscience*.
648 <https://doi.org/10.3233/RNN-2010-0526>

649 Putzar, L., Höttig, K., Rösler, F., & Röder, B. (2007). The development of visual feature binding processes
650 after visual deprivation in early infancy. *Vision Research*.
651 <https://doi.org/10.1016/j.visres.2007.07.002>

652 Rice, J. (1898). The size-weight illusion among the blind. *Amm Psychol Assn*, (27), 81–87.

653 Röder, B., Kekunnaya, R., & Guerreiro, M. J. S. (2020). Neural mechanisms of visual sensitive periods in
654 humans. *Neuroscience & Biobehavioral Reviews*. <https://doi.org/10.1016/j.neubiorev.2020.10.030>

655 Röder, B., Ley, P., Shenoy, B. H., Kekunnaya, R., & Bottari, D. (2013). Sensitive periods for the functional
656 specialization of the neural system for human face processing. *Proceedings of the National
657 Academy of Sciences of the United States of America*. <https://doi.org/10.1073/pnas.1309963110>

658 Rohlf, S., Li, L., Bruns, P., & Röder, B. (2020). Multisensory Integration Develops Prior to Crossmodal
659 Recalibration. *Current Biology*. <https://doi.org/10.1016/j.cub.2020.02.048>

660 Ross, H. E. (1966). Sensory information necessary for the size-weight illusion [58]. *Nature*.
661 <https://doi.org/10.1038/212650a0>

662 Sams, M., Aulanko, R., Hamalainen, M., Hari, R., Lounasmaa, O. V., Lu, S.-T., & Simola, J. (1991). Seeing
663 speech: Visual information in the human auditory cortex. *Neuroscience Letters*.

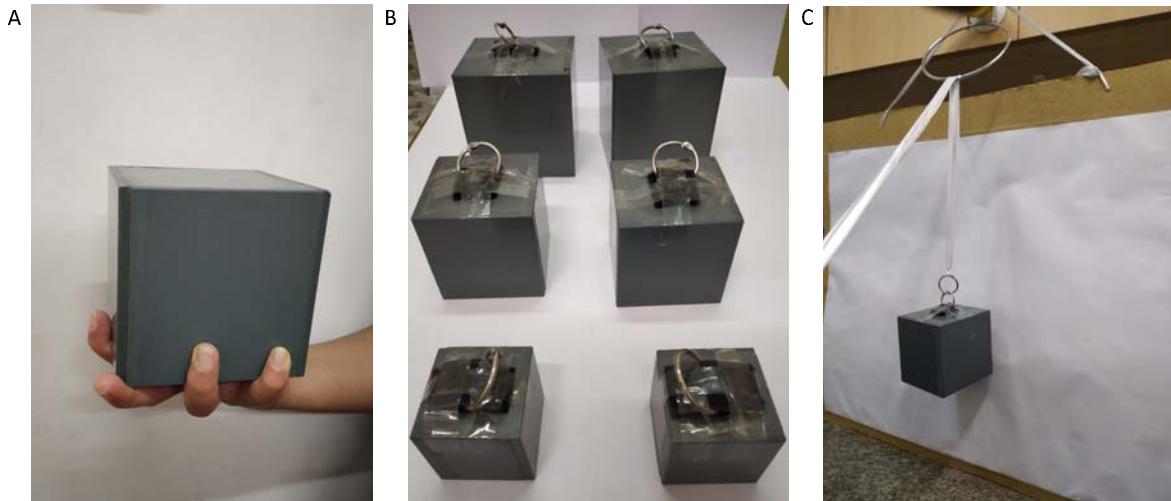
664 Singh, A. K., Phillips, F., Merabet, L. B., & Sinha, P. (2018). Why Does the Cortex Reorganize after Sensory
665 Loss? *Trends in Cognitive Sciences*. <https://doi.org/10.1016/j.tics.2018.04.004>

666 Stein, B. E., Burr, D., Constantinidis, C., Laurienti, P. J., Alex Meredith, M., Perrault, T. J., ... Lewkowicz, D.

667 J. (2010). Semantic confusion regarding the development of multisensory integration: A practical
668 solution. *European Journal of Neuroscience*. <https://doi.org/10.1111/j.1460-9568.2010.07206.x>

669 Takesian, A. E., & Hensch, T. K. (2013). Balancing plasticity/stability across brain development. In
670 *Progress in Brain Research*. <https://doi.org/10.1016/B978-0-444-63327-9.00001-1>

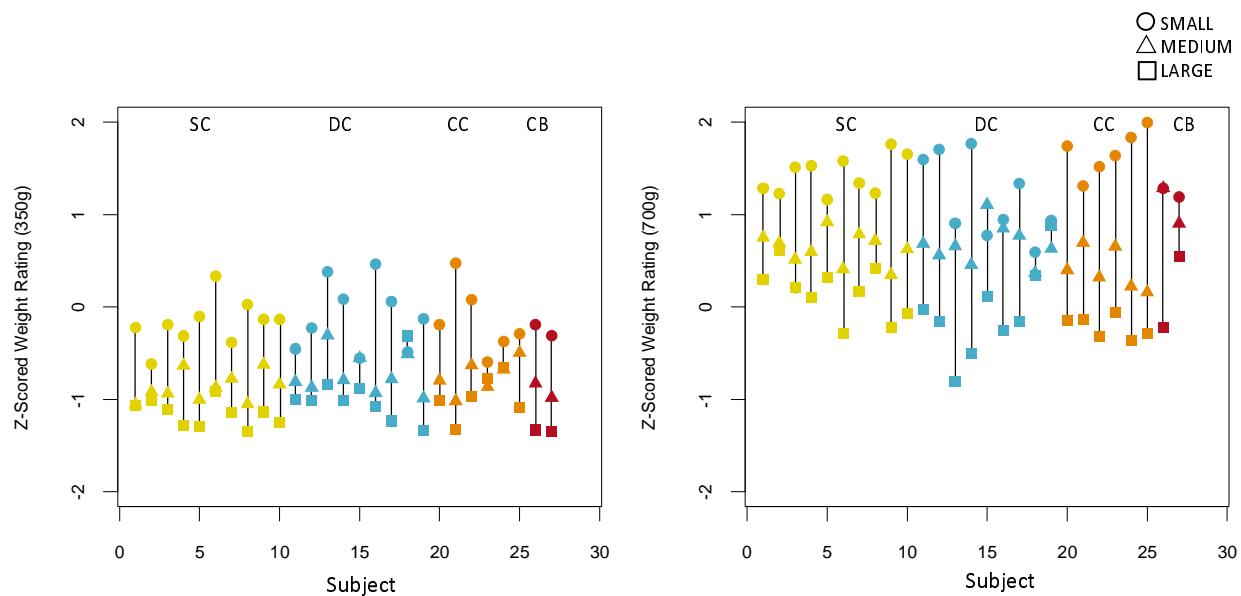
671 World Health Organisation. (2019). *World report on vision*. World health Organisation.


672

673

674

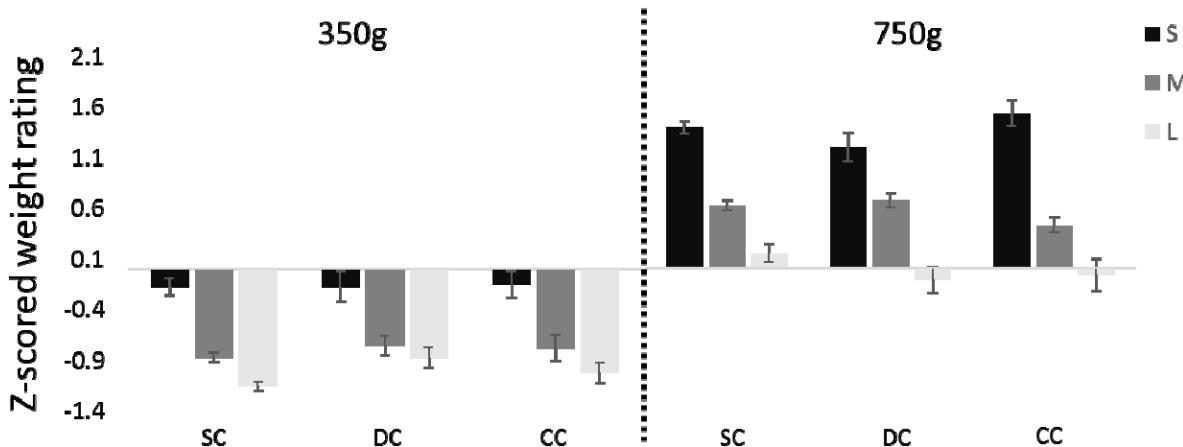
Figures and Tables


675

676

677 *Figure 1: A: Large-sized cube stimulus placed in the dominant hand, demonstrating the procedure for*
678 *Experiment 1. B: The six stimuli used in the study (front to back: Small, Medium, Large, 350g and 700g*
679 *respectively), with attachments for Experiment 2. C: String set-up of Experiment 2. A smooth ribbon is*
680 *used to lift the cube during each trial, ensuring that only visual size cues are available to the participant.*

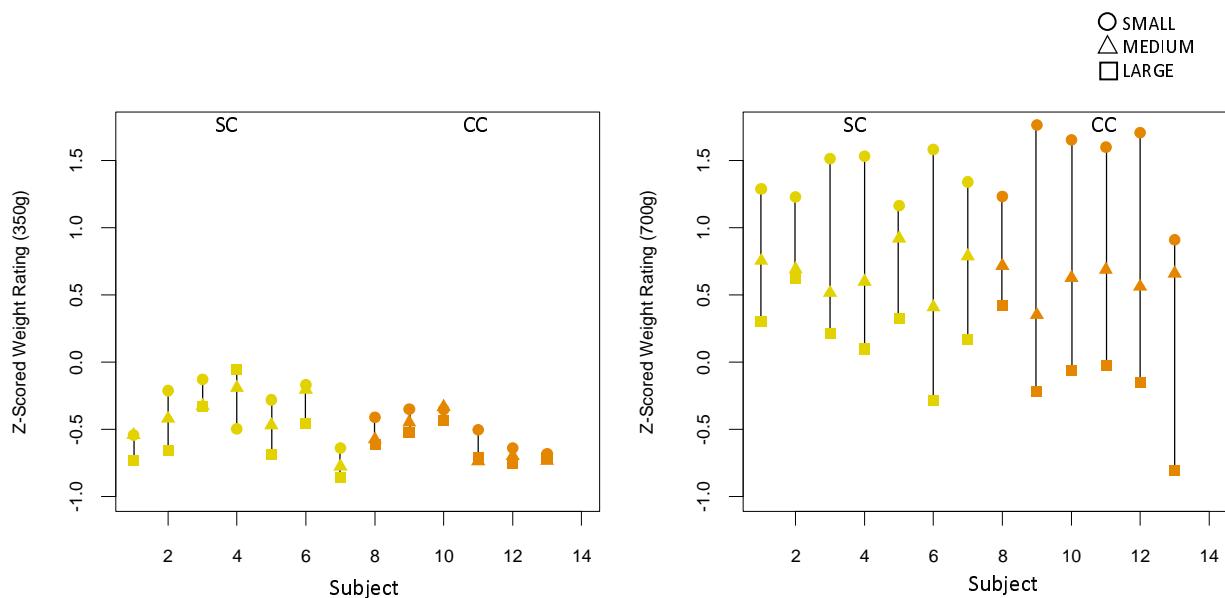
681



682

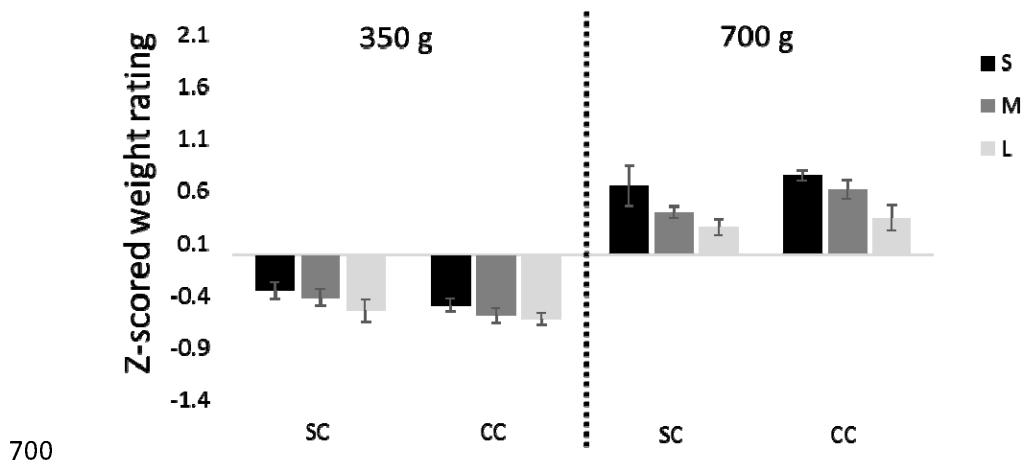
683 *Figure 2: Experiment 1 (with visual and haptic size information); z-scored weight ratings of all individuals*
684 *in the Sighted Control (SC, yellow), the Developmental Cataract group (DC, blue), the Congenital Cataract*
685 *group (CC, orange), and two Congenitally Blind (CB, red) individuals, t (A) for the 350g and (B) for 700g*
686 *weights (Experiment 1).*

687


688

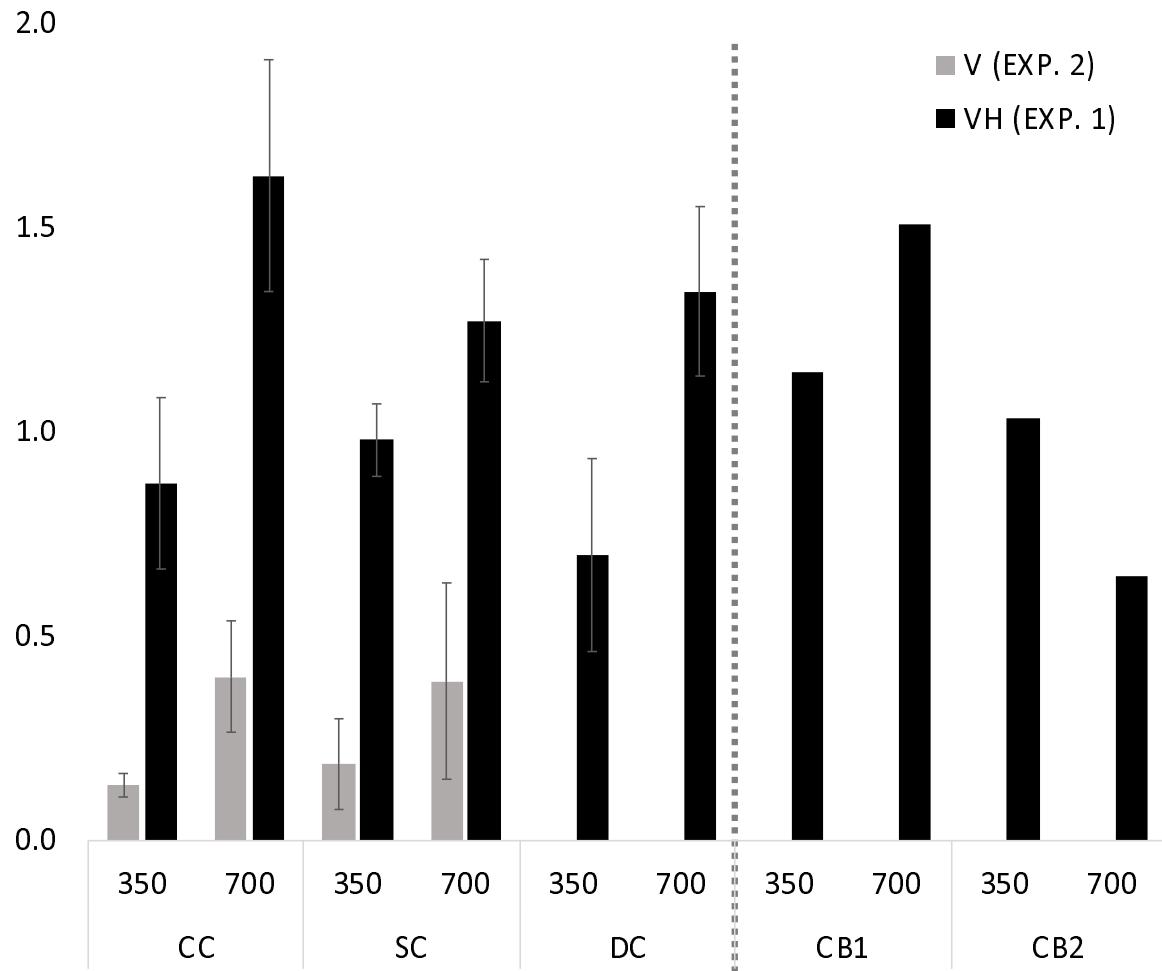
689

690 *Figure 3: Experiment 1 (with visual and haptic size information); average z-scored weight ratings for the*
691 *Small (S), Medium (M) and Large (L) cubes across the Sighted Control (SC), Developmental Cataract (DC)*
692 *and Congenital Cataract (CC) groups, for the 350g and 700g weights (Experiment 1). Error bars depict*
693 *standard error of mean (SEM).*


694

695

696 *Figure 4: Experiment 2 (with only visual size information); z-scored weight ratings of all individuals in the*
697 *Sighted Control group (SC, yellow) and Congenital Cataract group (CC, orange) groups (A) for the 350g*
698 *and (B) for 700g weights (Experiment 2).*


699

700
701 *Figure 5: Experiment 2 (with only visual size information); average z-scored weight ratings for the Small*
702 *(S), Medium (M) and Large (L) cubes for the Sighted Control group (SC) and Congenital Cataract group*
703 *(CC), for the 350g and 700g weights. Error bars depict standard error of mean (SEM).*

704

705

706

707 *Figure 6: Size-Weight Illusion Indices across groups and for the two CB individuals for Experiment 1 (with*
708 *visual and haptic size information, black bars) and Experiment 2 (with only visual size information, gray*
709 *bars), for the 350g and 700g weights. The y-Axis depicts the difference in z-scores between the large and*
710 *small cubes of each weight, averaged for each group (CC, DC, and SC). Error bars depict the SEM.*

711

SUB	AGE (YEARS)	GROUP	GENDER	ABSORBED LENSES	PRESENCE OF NYSTAGMUS	PRE-SURGERY VISUAL ACUITY		POST-SURGERY VISUAL ACUITY		DURATION OF BLINDNESS (YEARS)	TIME SINCE SURGERY (YEARS)
						RIGHT	LEFT	RIGHT	LEFT		
EXPERIMENT 1											
1	23.25	CC	Male	No	Yes	Unknown	Unknown	CF (close to face)	20/126	Unknown	
2	35.54	CC	Male	No	Yes	Unknown	Unknown	20/120	20/40	2.00	33.54
3	21.78	CC	Female	Yes	Yes	Unknown	Unknown	20/317	20/252	21.02	0.76
4	16.97	CC	Female	No	Yes	PL+ PR+	CF (Close to Face)	PL+ PR+	CF at 1m	16.05	0.92
5	30.76	CC	Male	No	Yes	Unknown	Unknown	20/400	20/800	23.05	7.72
6	11.24	CC	Female	No	Yes	PL+	PL+	20/125	CF at 0.5m	10.16	1.08
7	8.62	CC	Male	Yes	Yes	CF at 1.5 m	CF at 3 m	20/500	20/126	7.00	1.62
8	18.34	DC	Female		No	FL+	FL+	20/60	20/30	--	--
9	37.02	DC	Male		Yes	20/200	20/300	20/200	20/200	--	--
10	10.05	DC	Male		Yes	PL+ PR inaccurate	PL+ PR inaccurate	20/1200	20/1200	--	--
11	8.62	DC	Male		No	20/100	20/100	20/20	20/20	--	--
12	8.01	DC	Male		No	20/80	20/100	20/40	20/40	--	--
13	10.15	DC	Female		No	PL+ PR+	CF at 2m	20/170	20/16	--	--
14	17.71	DC	Male		No	6/60	CF at 1m	20/63	CF at 0.5m	--	--
15	14.24	DC	Male		Yes	FL+	Poor fixation	20/40	CF at 0.5m	--	--
EXPERIMENT 2											
1	33.09	CC	Male	No	Yes	Unknown	Unknown	CF at 1m	20/200	14.00	19.10
2	15.24	CC	Male	Yes	Yes	CF at 1.5m	CF at 3m	20/500	20/126	7.00	8.24
3	18.30	CC	Male	Yes	Yes	20/500	20/800	20/125	20/500	16.45	1.85
4	17.28	CC	Female	Yes	Yes	20/600	CF at 1m	20/250	20/500	15.42	1.85
5	37.39	CC	Male	No	Yes	Unknown	Unknown	20/400	20/800	23.05	14.34
6	44.74	CC	Male	Yes	Yes	20/300	Unknown	20/125	20/200	22.02	22.72

712

713 *Table 1: Participant characteristics for all sight recovery participants in Experiments 1 and 2. Age was*
 714 *calculated on the day of testing, and duration of blindness was calculated by subtracting date of birth*
 715 *from date of first surgery. Time since surgery was calculated by subtracting date of first surgery from*
 716 *date of testing. Visual acuity is reported separately for each eye (CF: Counting Fingers, PL: Perception of*
 717 *light, PR: Projection of Rays in all quadrants, FL: Fixate and Follow Light).*