

Machine learning reveals cryptic dialects that guide mate choice in a songbird

4 Daiping Wang^{*1,2}, Wolfgang Forstmeier^{*1}, Damien Farine^{*3,4,5}, Adriana A. Maldonado-
5 Chaparro^{3,4,6,7}, Katrin Martin¹, Yifan Pei¹, Gustavo Alarcón-Nieto^{3,8}, James A. Klarevas-
6 Irby^{4,5,6,9}, Shouwen Ma¹⁰, Lucy M. Aplin^{3,8}, Bart Kempenaers¹

7

⁸ ⁹ ¹Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany

10

11 ²Current address: CAS Key Laboratory of Animal Ecology and Conservation Biology,
12 Institute of Zoology, Chinese Academy of Sciences, Beijing, China

13

14 ³Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78457
15 Konstanz, Germany

16

¹⁷ ¹⁸ ⁴Center for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany

19

20 ⁵Current address: Department of Evolutionary Biology and Environmental Studies,
21 University of Zurich, 8047 Zurich, Switzerland

22

23 ⁶Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz,
24 Germany

25

⁷Current address: Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, D.C. Colombia

28

29 ⁸Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Beha
30 Radolfzell, Germany.

31

³² Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.
³³

34

34 Department of Behavioural Neuroscience, Max Planck Institute for Ornithology, Seewiesen
35 Gwinner-Straße 82319 Seewiesen, Germany

36

37 **Culturally transmitted communication signals – such as human language or bird song –**
38 **can change over time through a process of cultural drift, and may consequently enhance**
39 **the separation of populations, potentially leading to reproductive isolation¹⁻⁴. Local song**
40 **dialects have been identified in bird species with relatively simple songs where**
41 **individuals show high cultural conformity⁵⁻¹⁰. In contrast, the emergence of cultural**
42 **dialects has been regarded as unlikely¹¹⁻¹³ for species with more variable song, such as**
43 **the zebra finch (*Taeniopygia guttata*). Instead, it has been proposed that selection for**
44 **individual recognition and distinctiveness may lead to a complete spread across the**
45 **space of acoustic and syntactical possibilities¹¹⁻¹⁵. However, another possibility is that**
46 **analytical limitations have meant that subtle but possibly salient group differences have**
47 **not yet been discovered in such species. Here we show that machine learning can**
48 **distinguish the songs from multiple captive zebra finch populations with remarkable**
49 **precision, and that these ‘cryptic song dialects’ drive strong assortative mating in this**
50 **species. We studied mating patterns across three consecutive generations using captive**
51 **populations that have evolved in isolation for about 100 generations. Cross-fostering**
52 **eggs within and between these populations and quantifying social interactions of the**
53 **resulting offspring later in life revealed that mate choice primarily targets cultural**
54 **traits that are transmitted during a short developmental time window. Detailed social**
55 **networks showed that females preferentially approached males whose song resembled**
56 **that of their adolescent peers. Our study shows that birds can be surprisingly sensitive**
57 **to cultural traits for mating that have hitherto remained cryptic, even in this well-**
58 **studied species that is used as a model for song-learning^{13,14,16-28}.**

59 In many species, including in primates²⁹, cetaceans³⁰, and birds^{7,8}, individuals learn song or
60 contact vocalizations from social interactions with their parents or with other conspecifics^{3,31}.
61 From the receiver side, recognition of song is also learnt, typically involving sexual
62 imprinting either on parents or on other members of the population^{3,32-34}. Such culturally
63 inherited traits may be passed on from one generation to the next with imperfect fidelity,
64 leading to divergence between isolated populations via cultural drift^{35,36}. Just like human
65 languages and dialects have diversified across the planet^{37,38}, geographically separated
66 populations of animals with learnt vocalizations (mostly passerine birds) have diverged
67 culturally into geographically restricted song dialects^{7,8}. Cultural conformity within local
68 dialects ensures that the signal will be recognized by receivers. However, conformity may be
69 limited when sexual selection favours greater song complexity for individual males^{39,40} or
70 when benefits of signalling individual identity¹⁵ favour greater variability between males. In
71 such cases, the need for individual recognition and distinctiveness may alternatively lead to a
72 filling of the ‘acoustic space’, thereby eliminating the potential for local dialects^{6,13}.
73 However, in some such species, playback experiments have provided contradictory results,
74 with individuals still able to discriminate between local and non-local song despite no
75 apparent differences in measured song parameters⁴¹⁻⁴³.
76 For the zebra finch, the best-studied species in terms of song, the prevailing view is that the
77 large between-individual variation (i.e. the prominent individuality of songs) effectively
78 hinders the emergence of any salient group differences (i.e. between-population
79 divergence)^{6,13}. Song learning in zebra finches occurs within a short period during
80 adolescence after which songs are more or less fixed for life (closed-ended learning⁴⁴). Only
81 males sing, and sons mostly learn from their fathers^{16,24}. Since song plays an important role in
82 mate choice⁴⁵, it has been proposed that females might prefer songs similar to those they
83 grew up with³². Yet, in the wild, only limited geographic variation in song has been

84 found^{46,47}. Extending on earlier work⁴⁶⁻⁴⁸, a sophisticated and comprehensive study¹² of songs
85 of 12 captive and one wild zebra finch population concluded that population divergence in
86 song was minimal, and hence that “it seems unlikely that zebra finches would prefer an
87 unfamiliar song from their own population over a song from other populations”. This
88 conclusion was further supported by a simulation¹² showing that distinctive group signatures
89 cannot emerge in species where song learning is not characterized by a bias towards
90 conformity⁶, but rather by a high rate of innovation (concerning 15% to 50% of song
91 elements^{12,21-24}) and an anti-conformity bias to preferentially learn rare rather than common
92 song elements^{19,26}.

93 In contrast to this earlier work, we show that zebra finches are surprisingly sensitive to
94 population differences in song during the process of mate choice, and that a machine learning
95 algorithm can assign individual songs to our four captive populations with only little error,
96 suggesting the existence of ‘cryptic song dialects’.

97 We used multiple captive populations of zebra finches that have been isolated from one
98 another for different amounts of time. These include two domesticated populations (D_1 and
99 D_2) that have been in captivity for about 100 generations, and two populations (W_1 and W_2)
100 that came from the wild about 25 and 5 generations ago, respectively (Extended Data Fig. 1
101 and 2). Due to selective breeding by aviculturists, individuals from the domesticated
102 populations are distinctively larger than more recently wild-derived birds (about 16 vs 12
103 grams; Extended Data Table 1, Extended Data Fig. 3). An earlier methodological study⁴⁹
104 reported that when mixing groups of domesticated and wild-derived zebra finches, the
105 previously unfamiliar individuals paired assortatively by population (22 out of 27 pairs,
106 81%). The authors suggested that this pattern might be due to sexual imprinting “with
107 individuals preferring to mate with birds that resemble their parents in size and
108 morphology”⁴⁹. Alternatively, the populations used in that study may have undergone song

109 differentiation via cultural drift and individuals may have mated assortatively for song.
110 Hence, it remains to be clarified whether assortment occurred because of variation in
111 morphology or in culture (or both).

112 First, we trained a freely available sound-classifier tool that is based on machine learning⁵⁰
113 (Apple Create ML, Sound Classifier, <https://developer.apple.com/machine-learning/create-ml/>) with two sets of songs (coming from two of our four populations, going through all six
114 pair-wise combinations), such that the algorithms classified between 93% and 97% of the
115 training songs into the correct population category (Table 1). We then tested the validity of
116 these algorithms on an independent data set consisting of song recordings from the
117 subsequent offspring generation. Classification success varied between 85% and 95%, and
118 lies above 91% for all four pairs of populations that have been separated for roughly 100
119 generations (Table 1). These results suggest that zebra finch populations can differ
120 distinctively in their song.

122 We next test to what extent zebra finches mate assortatively for culturally inherited traits
123 (particularly song dialects) versus genetically inherited traits (body size and unmeasured
124 aspects of the morphotype). First, we verified that the previously reported⁴⁹ pattern of
125 assortative mating holds also for our domesticated and wild-derived populations. We created
126 four mixed-population groups (replicate 1: two groups containing birds from D₁ and W₁,
127 replicate 2: two groups containing D₂ and W₂) of unmated individuals and allowed them to
128 freely pair and build a nest over a 2-week period. Each group was housed in a large indoor
129 aviary and consisted of 36 individuals, with equal numbers of males and females, and equal
130 numbers of domesticated and wild-derived birds. All potential mates were unfamiliar to each
131 other, ensuring that mating patterns cannot be affected by familiarity. Social network analysis
132 of all observations of heterosexual interactions showed that most interactions occurred within
133 genetic population (Generation 1 in Fig. 1, Extended Data Table 3). The pairings that resulted

134 from those heterosexual interactions showed assortative mating in both replicates (90% and
135 83% of pairs, respectively; Generation 1 in Fig. 2; Extended Data Table 4). These results
136 confirm strong assortative mating for population of origin⁴⁹.

137 The observed assortment could be explained by different processes of mate choice and
138 intrasexual competition (Fig. 3). Hypothesis 1 assumes an innate preference for a genetic trait
139 (e.g. body size), such that all individuals prefer larger (domesticated) partners. Larger
140 individuals might have priority access to large partners because they are dominant, leaving
141 the non-preferred smaller birds to pair among themselves (i.e. competitive assortative mating
142 by size⁵¹). Hypothesis 2 assumes a learnt preference for a genetic trait, such that all
143 individuals prefer the morphotype of their foster parents on which they sexually
144 imprinted^{18,49,52}. Hypothesis 3 assumes a learnt preference for a cultural trait, such that all
145 birds prefer to mate with a partner from their own cultural population because of socially
146 transmitted variation in song characteristics^{3,16}.

147 To differentiate between these hypotheses, we carried out experiments across two subsequent
148 generations. Birds from each of the four populations (Generation 1) were allowed to breed in
149 large aviaries (each population separately), but we cross-fostered all eggs (soon after laying)
150 either within or between populations. This resulted in four types of offspring that differed
151 genetically as well as culturally (see Generation 2 in Fig. 2a), because cross-fostered birds
152 will inherit their morphotype from their genetic parents ('population of origin'), but their
153 song from their foster parents ('population or rearing'). We then placed equal numbers of
154 birds from each of the four cross-fostered types together in indoor aviaries and tested for
155 assortative mating (replicate 1: two groups of D₁ - W₁, replicate 2: two groups of D₂ - W₂,
156 each group consisting of 40 males and 40 females, except for one group which only had 32
157 males and 31 females, see Fig. 1). We used an automated barcode tracking system⁵³ to
158 capture the process of mate choice in each social group (Extended Data Fig. 4). Every two

159 seconds throughout the day (14.5 h during which the lights were turned on), we identified the
160 nearest male for each female, and constructed a daily social network for each group,
161 reflecting social preferences. After 30 days, we moved each group into a separate, larger
162 outdoor aviary with nest boxes and nesting material and determined which pairs subsequently
163 bred together over a two-month period.

164 The three hypotheses make contrasting predictions about which pair bonds should form
165 between the four types of males and females (16 possible combinations; Fig. 3). Birds from
166 Generation 2 showed strong associations (Fig. 1, Supplementary Video 1), positive
167 assortative mating with opposite-sex individuals from their population of rearing (Fig. 2b,
168 Extended Data Fig. 5), and strong negative assortment with regard to population of genetic
169 origin (Fig. 2b, Extended Data Fig. 5). The observed patterns were highly consistent between
170 replicate 1 (using D₁ and W₁ birds) and replicate 2 (D₂ and W₂ birds; Fig. 2b and Fig. 4a, b).
171 These results are clearly incompatible with Hypothesis 1 (innate preference for a genetic trait;
172 e.g. assortative mating by size), they provide little support for Hypothesis 2 (sexual
173 imprinting on the morphotype of the parents) and they fit best with Hypothesis 3 (learnt
174 preference for a cultural trait; Fig. 3). This conclusion is strengthened by the observation that
175 assortment by size did not occur within genetic populations (Extended Data Fig. 6). Analysis
176 of daily social networks within and between sexes revealed that the patterns of assortment by
177 song and dis-assortment by population of origin occurred only between sexes (Fig. 5a) but
178 not among same-sex individuals (Fig. 5b), and that the patterns gradually emerged and
179 strengthened over the course of the experiment (Fig. 5a). This indicates that the populations
180 were initially well-mixed and remained well-mixed in terms of same-sex relationships, but
181 slowly began to separate due to mate choice. The sex-specificity of the pattern suggests that
182 the population separation was caused by mate choice, rather than by a hypothetical alternative
183 mechanism based on differences in same-sex familiarity.

184 Although the results are most consistent with Hypothesis 3 ($r = 0.63$; Fig. 3), there is still
185 more unexplained variance than expected from measurement error alone (note the high
186 repeatability between replicate 1 and 2: $r = 0.92$; Fig. 4b). Thus, in the Supplementary Text
187 (Extended Data) we consider and discuss *post-hoc* explanations that describe the observed
188 data best (Extended Data Fig. 7). Briefly, the best-fitting explanation is one where assortative
189 mating by song plays the predominant role, but with an additional effect of imprinting on
190 parental morphotype and a tendency for wild-derived birds to prefer (genetically)
191 domesticated birds.

192 In the preceding analysis we used categorical predictors (e.g. same dialect or not) to explain
193 categorical outcomes (paired or not). We next analysed the extent to which individual-
194 specific phenotypes (on a continuous scale) can explain the variation in male-female social
195 behaviour (in terms of pair-wise proximity) during the 30 days of automated tracking ($n =$
196 5,561 male-female combinations with complete data). As continuous predictors we fitted (1)
197 the difference in body size between a male and a female, (2) the similarity of the male's song
198 to songs from the female's rearing aviary, as quantified by Sound Analysis Pro²⁶, and (3) the
199 corresponding song similarity measure, as quantified by the machine learning tool (the latter
200 two predictors are only weakly positively correlated; $r = 0.17$, $n = 584$; Fig. 6). These
201 continuous predictors were examined in combination with the categorical predictors, which
202 are not based on individual characteristics but treat all male-female combinations from one of
203 the 16 pairing categories in the same way. A first model without the individual-specific
204 predictors confirmed the previous results, i.e. assortative mating by song, an effect of
205 imprinting on parental morphotype and a tendency for wild-derived birds to prefer
206 domesticated ones; see Extended Data Table 5). Adding the individual-specific predictors
207 confirms that body size *per se* has no explanatory power. However, spatial proximity
208 between males and females is predicted by the similarity of a male's song to the songs of the

209 individuals with whom the female grew up. More specifically, it was the similarity to the
210 songs of the peers in her rearing aviary, and not the similarity to the songs of the adult males
211 that bred in the female's rearing aviary (the parental generation 1; Table 2). Intriguingly, both
212 methods of assessing song similarity independently confirm the conclusion of song-
213 imprinting on peers rather than fathers (Table 2). Even after accounting for song dialect as a
214 category, both measures of song similarity to the female's peers are significant predictors
215 (Table 2), presumably capturing different aspects of song similarity.

216 These analyses provide strong correlational support that song similarity to the female's
217 rearing environment is the predominant factor underlying female mate choice. However, the
218 evidence is observational rather than strictly experimental. Thus, we designed an experiment
219 to specifically test for the trans-generational effects of song culture within genetic
220 populations (Generation 3 in Fig. 2a).

221 Song learning in male zebra finches occurs within a short period during adolescence⁴⁴. This
222 implies that the cross-fostered birds from Generation 2 had acquired their songs from their
223 foster fathers (Generation 1), and passed on these songs to their offspring (Generation 3).
224 Thus, if variation in song is the underlying cause, the mating behaviour of Generation 3
225 individuals should still be explained by the original population of rearing (via the effect of the
226 foster grandparents from Generation 1 on the song of the Generation 2 fathers). In contrast, if
227 Generation 2 had acquired other behavioural traits relevant for mate choice while interacting
228 with birds from other populations during the three-month period they spent together (and
229 assuming open-ended learning for these traits), and passed these behaviours to their offspring,
230 we predict no or little influence of the foster grandparents (Generation 1) on the mating
231 behaviour of individuals from Generation 3. To test these alternatives, we mixed birds from
232 the two cultural lineages that had been established within each genetic population (see Fig.

233 2a). Thus, in this experiment, effects of morphological differences between populations are
234 excluded, because the tests were done within genetic populations.

235 Our results show that individuals from Generation 3 mated assortatively according to the
236 culture of their foster grandparents in Generation 1 (Fig. 1, Fig. 2b, Extended Data Table 3,
237 4), while pairings were again random with respect to body size variation within each genetic
238 population (Extended Data Fig. 6). These results further confirm that mate choice targets
239 cultural traits (i.e. songs, but potentially also learnt calls¹⁴ or display behaviours²⁸) that are
240 transmitted during a short developmental time window.

241 Our study shows that population-specific song dialects drive strong assortative mating in
242 zebra finches. Previous work on birds with unambiguous song dialects, i.e. clear geographical
243 transitions in vocal parameters⁸, already showed the importance of such dialects for mate
244 choice^{8,34,54}. However, our results contradict the view that each zebra finch population covers
245 the entire space of acoustic and syntactical possibilities defined by innate constraints^{12,13,20}
246 due to a high propensity to innovate^{12,13,21-24} and to preferentially learn rare rather than
247 common song elements^{19,26}. Instead, we show – using a new analytical technique – that zebra
248 finch populations do exhibit striking differences in song, and we reveal experimentally that
249 these ‘cryptic song dialects’ have real consequences for social behaviour.

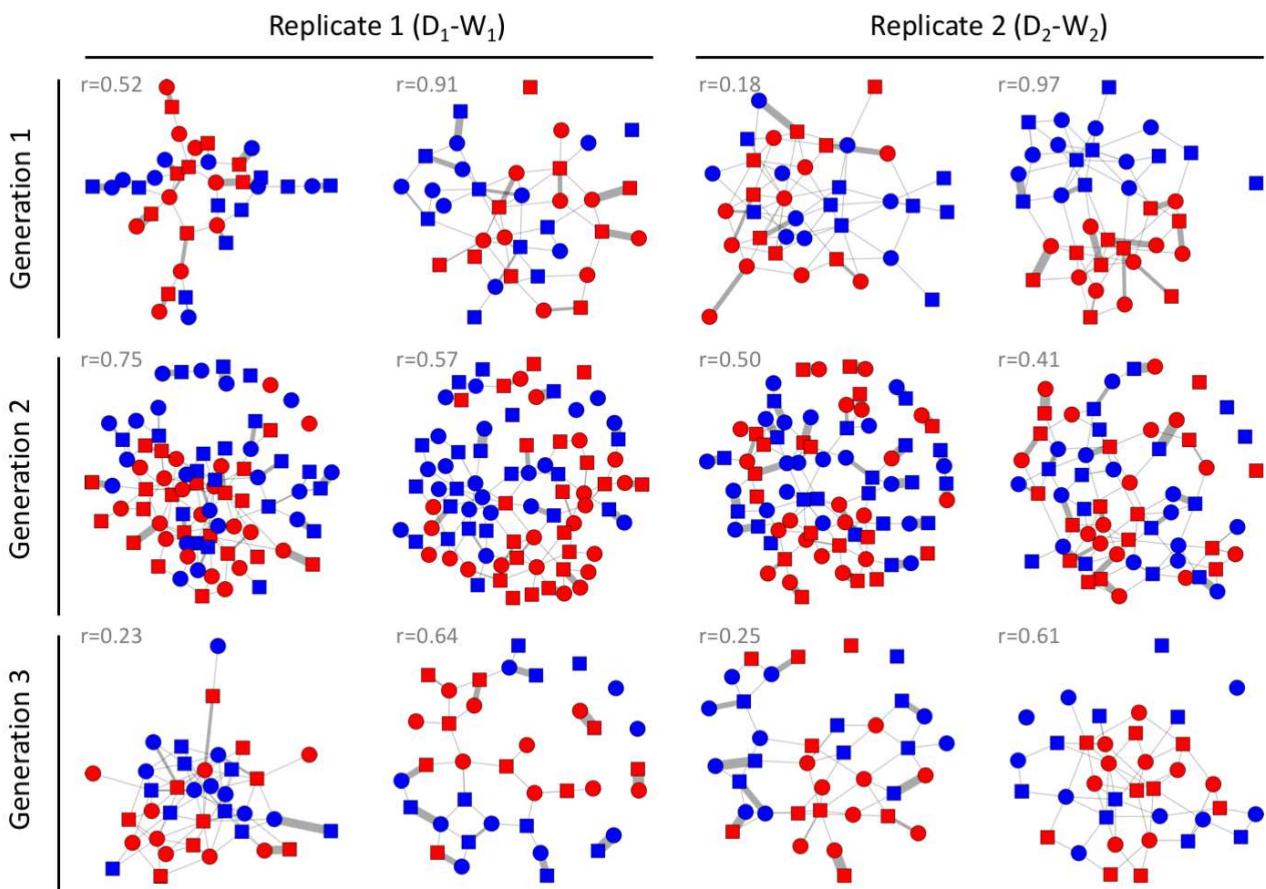
250 Only a minority of bird species with song learning show obvious dialects. The vast majority
251 of species with complex songs^{8,25} do not exhibit sharp geographical transitions in vocal
252 parameters – the hitherto defining, but also disputed, criterion of what constitutes ‘song
253 dialects’⁸. Studies on species with more complex song at best suggested that some hitherto
254 unquantifiable aspects of gradual geographical change may be salient to the birds^{42,43,55}, or
255 alternatively, that song may have evolved to signal male identity^{56,57} and contains no
256 information about group or population. Our results rather suggest that subtle population

257 differences in song are highly salient to the birds. Hence, we coin the term ‘cryptic dialects’,
258 as they have not been and perhaps cannot be revealed with conventional methods (see Fig. 6
259 and ¹² for additional approaches, all suggesting little population divergence). Our use of the
260 word ‘dialect’ does not imply that they must be characterized by diagnostic population-
261 specific signatures. Familiarity with the songs experienced in the natal environment might be
262 a parsimonious and sufficient explanation for the observed heterosexual assortment by natal
263 dialect and for female preferences for males whose song resembles the songs of the female’s
264 peer environment.

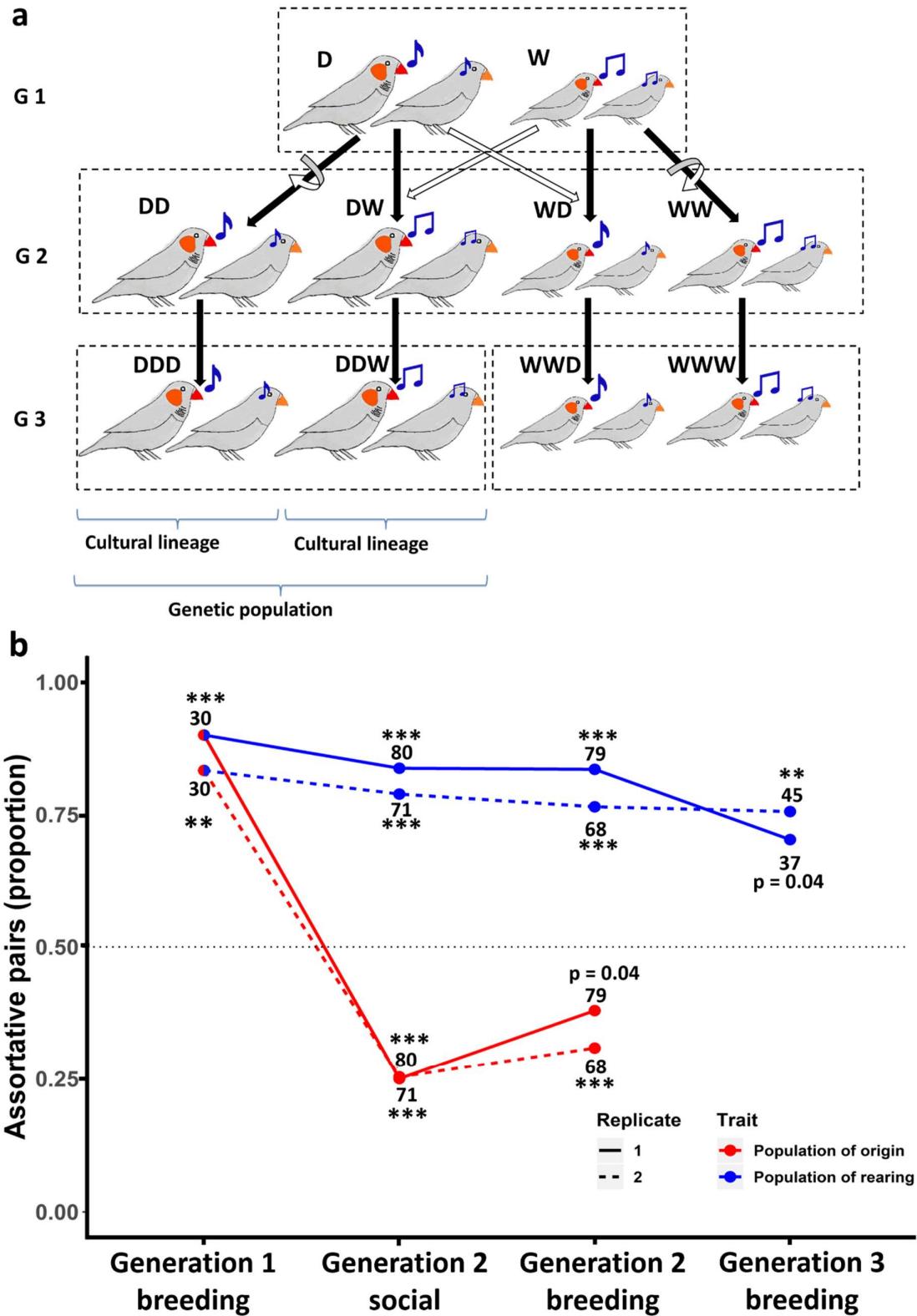
265 While behavioural assays that test the discrimination ability of the respective animals are the
266 most informative about the salience of signals, such assays are laborious and sometimes
267 practically impossible. Hence, as an alternative or additional test, a machine-learning
268 approach can be used to judge the potential for discrimination based on the signal properties
269 themselves. Such an approach has several advantages: it is (1) more sensitive, (2) closer to
270 the biological reality of training a neural network, and (3) less arbitrary than the conventional
271 approach of quantifying some measurable characteristics of the signal.

272 It remains unclear why differences in song evoke such strong responses in the mate choice of
273 zebra finches, reminiscent of language and cultural barriers in humans⁵⁹. Preferences for natal
274 dialects may arise as a by-product of mechanisms for species recognition⁶⁰. Alternatively,
275 female preferences for the local song dialect may help targeting males with knowledge of the
276 local environment. Further work is needed to determine whether these preferences are fixed,
277 how common such cryptic dialects are in passerines and whether they can lead to
278 reproductive isolation and play a role in speciation.

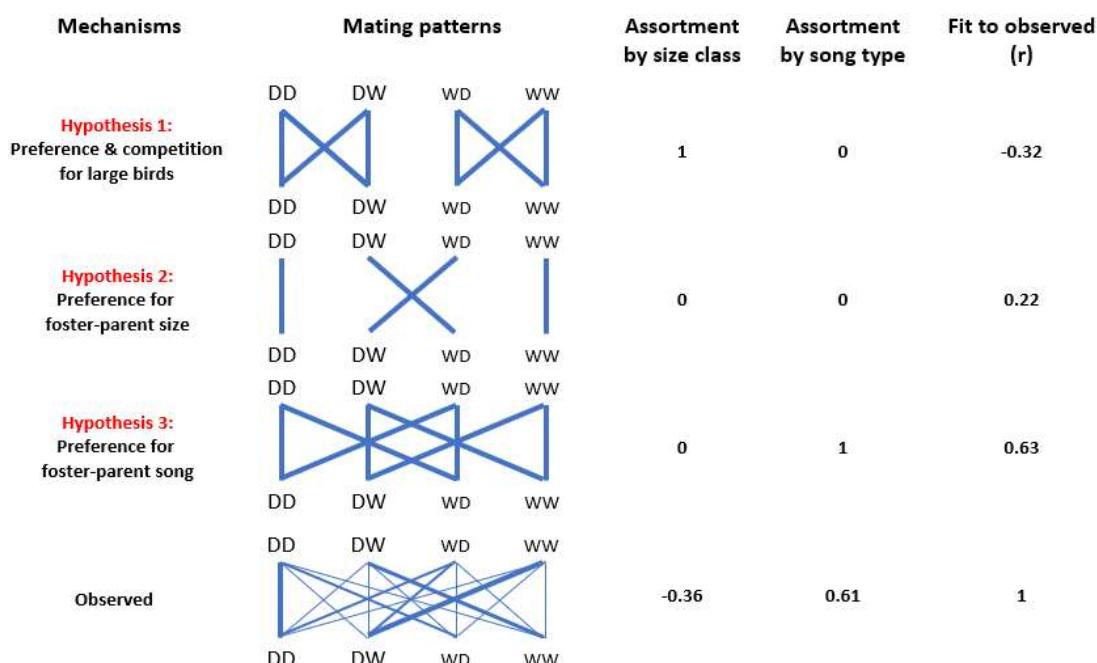
279 **Table 1 | Classification success of song recordings from four captive zebra finch populations**
280 **based on a machine-learning algorithm (left) and approximate time of population separation in**
281 **number of generations (right).** Classification success is the proportion of song recordings that is
282 classified correctly in pair-wise comparisons between populations (W₁, W₂: recently wild-derived; D₁,
283 D₂: domesticated). Below the diagonal is the classification success during validation based on the
284 training sample (individuals from Generation 1; 60-64 recordings per population; average length of
285 recording: 6.8 sec). Values above the diagonal show the classification success based on the
286 independent testing sample (individuals from Generation 2; 2 × 34-40 recordings per population pair,
287 including only birds that were not cross-fostered between populations, see Methods). The expected
288 random classification success equals 0.50. The matrix on the right shows the putative approximate
289 duration of population separation (in number of generations since common ancestor; see Extended
290 Data Fig. 1). Bold print highlights population pairs used in the cross-fostering study. Measures of
291 song differences between these four populations based on similarity scores from Sound Analysis Pro²⁷
292 (SAP, version 2011.10460) are given in Extended Data Table 2.


Classification success				Population separation					
	W ₁	W ₂	D ₁	D ₂		W ₁	W ₂	D ₁	D ₂
W ₁		0.85	0.95	0.91	W ₁		25	100	100
W ₂	0.95		0.92	0.91	W ₂	25		100	100
D ₁	0.96	0.97		0.91	D ₁	100	100		>2*
D ₂	0.96	0.94	0.93		D ₂	100	100	>2*	

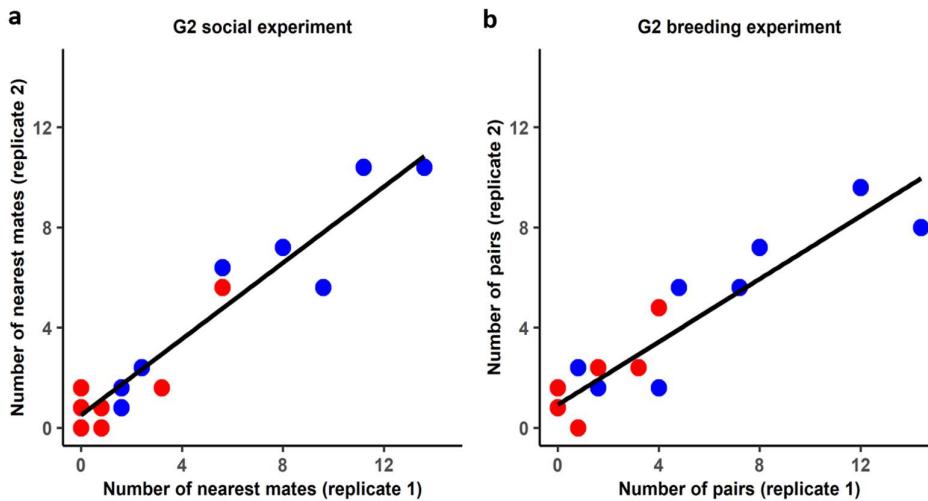
293 * Note that population D₁ received a 50% admixture of birds from population D₂ two generations
294 before Generation 1 of the present study, and after a longer period of isolation (>30 generations). The
295 admixture event may not have eliminated all population differences.


296 **Table 2 | Mixed-effect model explaining variation in daily distances between all possible male-
297 female pairs across four experimental aviaries with automated tracking of individuals.** Daily
298 mean distance (measured in mm, ln-transformed) of each female-male combination was used as the
299 response variable (N = 165,422). As random effects we fitted male and female identity, pair identity,
300 and the combination of the identities of the female's and the male's rearing aviaries (Pair rearing
301 aviaries). The first three fixed effect predictors (H1W, H2, H3) are based on the best supported
302 hypotheses in Extended Data Fig. 7 (see legend of Extended Data Table 5 for a detailed explanation
303 of these predictors). The other two covariates are measures of the similarity of the song of a given
304 male to the songs of the males with whom the focal female grew up (peer group members in the
305 female's rearing aviary), one assessed by a machine-learning algorithm (ML, in terms of confidence
306 of belonging to the same dialect as sung in the female's rearing aviary), the other by the Sound
307 Analysis Pro software (SAP, using the values illustrated on the x-axes of Fig. 6). Non-significant,
308 excluded predictors are the difference between male and female body size (see Extended Data Fig. 6),
309 and song similarities to the set of eight parental males in a female's rearing aviary (y-axes of Fig. 6)
310 and to the song of a female's foster father. The negative sign of the included fixed effect estimates
311 reflects greater proximity (smaller distance) to males whose song resembles those of a female's peer
312 group and who fulfil the categorical criteria (e.g. male matches the morphotype that the female
313 imprinted on) as illustrated in Fig. 3. Note that the predictors 'Imprinting on song (H3)' and 'ML song
314 similarity to peers' are strongly correlated ($r = 0.81$; see Fig. 6). If one of those two predictors is taken
315 out, the other one takes up most of its effect. The three excluded song parameters show the following
316 correlations with included parameters: $ML_{parents} \sim ML_{peers} r = 0.82$, $SAP_{parents} \sim SAP_{peers} r = 0.68$,
317 $SAP_{fosterfather} \sim SAP_{peers} r = 0.24$. Despite the high correlation, $ML_{parents}$ is not a significant predictor ($p =$
318 0.87) if included instead of ML_{peers} .

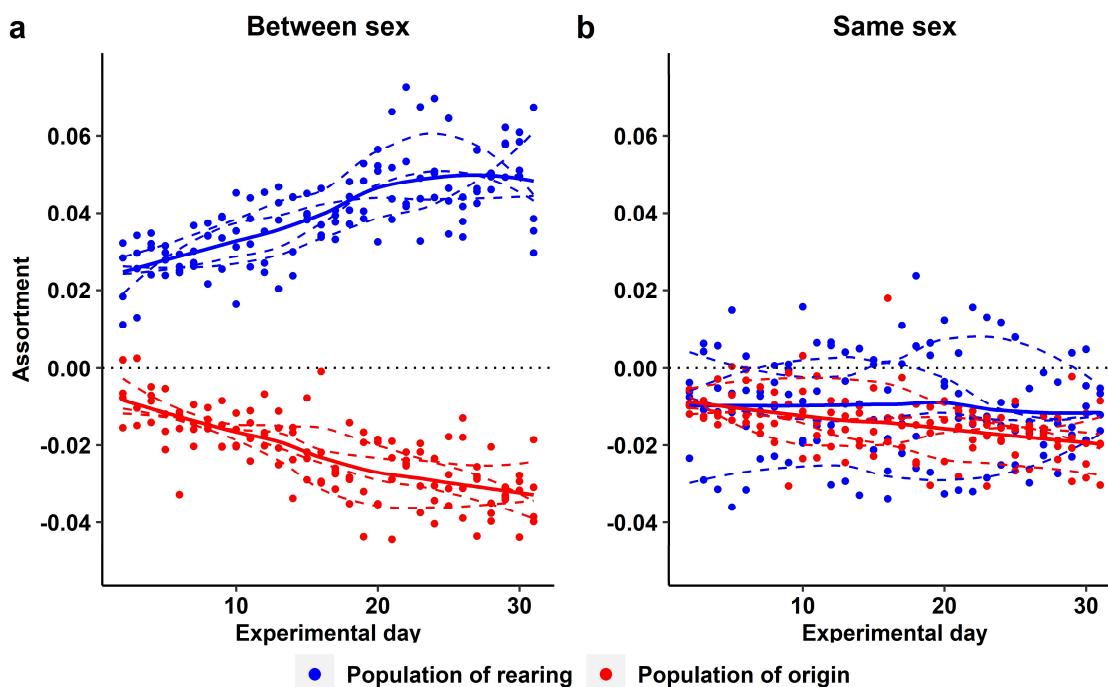
	N	Estimate	95% CI		df	t	p
			Lower	Upper			
Random effects (% variance explained)							
Pair identity	5561	41.1%					
Male identity	146	2.7%					
Female identity	151	2.7%					
Pair rearing aviaries	64	1.7%					
Residual		51.7%					
Fixed effects							
Intercept	-0.007						
W prefer D (H1W)	-0.057	-0.093	-0.022	43	-3.1	0.003	
Imprinting on morphotype (H2)	-0.068	-0.104	-0.033	44	-3.7	0.0005	
Imprinting on song (H3)	-0.068	-0.113	-0.023	101	-3.0	0.004	
ML song similarity to peers	-0.044	-0.077	-0.011	4376	-2.6	0.008	
SAP song similarity to peers	-0.044	-0.073	-0.014	438	-2.9	0.004	
Excluded fixed effects							
Male-female difference in body size	0.004	-0.024	0.032	3542	0.3	0.78	
ML song similarity to parents	0.033	-0.006	0.071	4086	1.6	0.10	
SAP song similarity to parents	-0.015	-0.047	0.017	1683	-0.9	0.36	
SAP song similarity to foster father	0.011	-0.010	0.033	3979	1.0	0.30	


319 **Figure 1 | Social networks of all experimental groups across three generations.** Each network
320 depicts one aviary with equal numbers of males and females from different backgrounds (as shown in
321 Fig. 2a). Symbols (nodes) represent individual males (squares) and females (circles). Lines between
322 the nodes (links) represent the number of associations reflecting pair bonding (alopreening, sitting in
323 bodily contact, and visiting a nest box together). Colours represent the cultural background:
324 domesticated (D, red) and wild-derived (W, blue). The r -values are the assortativity coefficients with
325 regard to cultural background (see Extended Data Table 3 for details). Group sizes are 36 in
326 Generations 1 and 3, and 80 in Generation 2 (except for one aviary with only 32 males and 31
327 females).

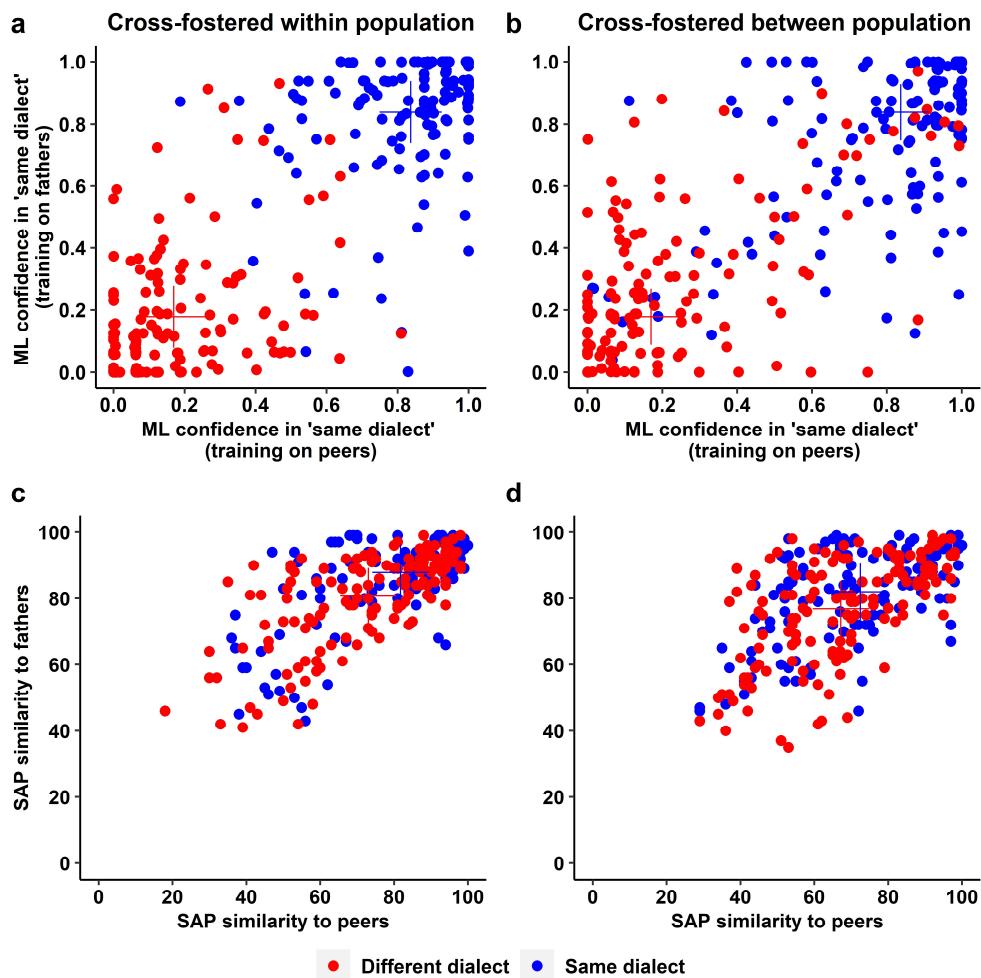
329 **Figure 2 | Schematic representation of the experimental groups across three generations and the**
330 **results of tests for assortative mating. a,** In Generation 1, assortative mating was tested in groups
331 (indicated by the dashed rectangle) consisting of birds from two populations (one domesticated, D,
332 and one wild-derived, W) that differ genetically (e.g. in body size, indicated by the size of the birds)
333 and culturally (e.g. in song, indicated by the shape of the notes). After testing, the two populations
334 were housed separately and four lineages were created by cross-fostering (solid arrows reflect genetic
335 descent, open arrows indicate rearing parents, whereby the curved and straight arrows reflect the
336 within- and between-population cross-fostering, respectively). These four lineages (Generation 2) are
337 denoted as DD, DW, WD, WW; the first letter indicates the genetic population of origin and the
338 second indicates the population of the rearing parents. In Generation 2 assortative mating was tested
339 in groups that contained equal numbers of all four types of males and females. After testing, the four
340 lineages were again housed separately and bred without cross-fostering, such that they passed on their
341 culturally acquired traits to Generation 3. In this generation, assortative mating was tested in groups of
342 males and females with a similar genetic background, but that differed in the cultural traits transmitted
343 through the foster grandparents (indicated by the third letter; e.g. DDW corresponds to birds with
344 genetic background D, raised by parents DW from Generation 2). All experiments were performed
345 with two domestic and two wild-derived populations (replicate 1: D₁-W₁, replicate 2: D₂-W₂). **b,**
346 Patterns of assortative mating over three experimental generations (see also Extended Data Table 4).
347 The y-axis shows the proportion of social pairs that were assortative with regard to traits that can only
348 have been culturally transmitted such as song (blue) and traits that have been genetically inherited
349 such as body size (red). The black dotted line marks the random expectation of 50% assortative pairs
350 given an equal number of birds in each category. The two replicates, 1 and 2, are indicated by solid
351 and dashed lines, respectively. The total number of pairs in each of the two replicates are indicated
352 above or below the dots. *** (p < 0.0001); ** (p < 0.001); * (p < 0.01). In Generation 1, where
353 populations differed culturally and genetically, most individuals paired assortatively by population. In
354 Generation 2, after cross-fostering, individuals mated assortatively by cultural background
355 (population of their rearing parents) and disassortatively by genetic background (population of origin;
356 Extended Data Fig. 6). In Generation 3, where tests were carried out within each genetic background
357 but included groups that differed in cultural background, pairs formed assortatively by cultural as
358 opposed to genetic background.



360 **Figure 3 | Expected versus observed mating patterns in the cross-fostered Generation 2.** The first
 361 column indicates three *a priori* hypotheses (1, 2, 3) and the observed mating pattern (N = 147 nesting
 362 pairs). The second column shows mating patterns between four types of females (top) and males
 363 (bottom): DD, DW, WD, WW (the first letter indicates the genetic population of origin, the second
 364 letter indicates the population of the rearing parents; see Fig. 2a). The thickness of the blue lines
 365 corresponds to the numbers of expected or observed pairs of each male-female combination. The
 366 smaller font size for wild-derived birds illustrates their smaller body size. The third and fourth
 367 columns show the expected or observed overall correlation between partners with regard to their size
 368 category (large D or small W) and song type (D or W, as learnt from foster parents). The last column
 369 shows the Pearson correlation coefficient between expected and observed numbers of pairs across the
 370 16 pair combinations. See also Extended Data Fig. 7 for *post-hoc* combinations of multiple
 371 hypotheses explaining the observed data.


372

373 **Figure 4 | Repeatability of pairing behaviour between replicates.** Shown are the number of
374 associations for each of the 16 possible pair categories (each dot refers to one category, e.g. DD-DW,
375 see Fig. 2a and 3). Blue dots refer to pair combinations that share the same song dialect, while red
376 dots represent disassortative pairings with regard to song. **a.** Pairings defined as the nearest individual
377 of the opposite sex (distances averaged across 118 million observations over a period of 30 days, $n =$
378 151 pairs) in replicates 1 versus 2 (Pearson $r = 0.95$, $p < 0.00001$) in the social experiment with
379 barcode tracking but no nesting opportunities. **b.** Observed pairs during the breeding experiment ($n =$
380 147 pairs) in replicate 1 versus 2 ($r = 0.92$, $p < 0.00001$).


381

382 **Figure 5 | Temporal changes in level of assortment between individuals from the same and**
383 **opposite sex in Generation 2.** Daily values of assortativity coefficients with regard to population of
384 rearing (cultural background, blue) and population of origin (genetic background, red) in each of the
385 four replicate groups. Coefficients are calculated using the distances between all male-female pairs
386 (between sex, **a**) or using the distances between all male-male and all female-female pairs (same sex,
387 **b**). Positive and negative coefficient values indicate assortative and disassortative association,
388 respectively. Dashed lines are fitted to each of the four groups separately; the bold lines indicate the
389 fit to the entire data set. Note how in **a** heterosexual relationships (based on proximity) progressively
390 become more assortative for the cultural background and more disassortative for the genetic
391 background, while same-sex relationships show no clear deviation from randomness.

392

393 **Figure 6 | Classification scores from a machine-learning algorithm (ML; a, b) and similarity**
394 **scores from Sound Analysis Pro (SAP; c, d).** **a, b,** A machine-learning algorithm was trained on
395 independent sets of zebra finch song recordings to discriminate between ‘same’ and ‘different’ dialect
396 from the perspective of an individual female in Generation 2 given her experiences in a rearing aviary.
397 In the training data set ‘same’ is represented either by the songs of the set of 8 fathers (Generation 1)
398 or the set of 10 peer members (Generation 2) in the rearing aviary; ‘different’ is represented by the
399 respective songs from an aviary of another population type (domestic D or wild-derived W, by males
400 that will not be encountered in the social or breeding experiment). The 40 males that a female will
401 encounter in the social and breeding experiment (20 of the same song dialect, shown in blue; 20 of a
402 different song dialect, in red) are then classified by ML as either ‘same’ or ‘different’ with
403 complementary confidence scores that add up to one. Note that each male contributes 4 data points (2
404 ‘same’ and 2 ‘different’) because he encounters 4 types of females (DD, DW, WD, WW) from
405 different rearing aviaries. **c, d,** Similarity scores from SAP using the same representation as in **a** and **b**
406 (similarity to the songs of the peers or fathers of a female’s rearing aviary, which the focal male never
407 met, such that any similarity is indirect). The machine-learning algorithm (**a, b**) achieves much clearer
408 differentiation compared to the traditional SAP software (**c, d**). Males that were cross-fostered within
409 population (DD or WW; **a, c**) are discriminated with slightly higher confidence than DW or WD
410 males (**b, d**; see the crosses that mark the group means).

412 **Acknowledgments:** We thank Henryk Milewski and Tomas Cordoba for carrying out the
413 machine-learning analysis, Klaus Pichler and Felix Hartl for technical support, Nikolas
414 Heinecke and Michael Harbich for IT support, Mihai Valcu for help with statistics and setting
415 up the virtual machine, Sonja Bauer, Edith Bodendörfer, Jane Didsbury, Annemarie Grötsch,
416 Andrea Kortner, Frank Lehmann, Petra Neubauer, Katharina Piehler, Frances Weigel and
417 Barbara Wörle for animal care, and Jochen Wolf and Henrik Brumm for comments on the
418 manuscript. This study was funded by the Max Planck Society (to BK). DW was supported
419 by the CAS pioneer hundred talents program (E1516511). DRF and LMA received additional
420 funding from the Deutsche Forschungsgemeinschaft (DFG) Centre of Excellence 2117
421 “Centre for the Advanced Study of Collective Behaviour” under Germany’s Excellence
422 Strategy – EXC2117 – 422037984. DRF received additional funding from a DFG grant (FA
423 1420/4-1 awarded to DRF) and the European Research Council (ERC) under the European
424 Union’s Horizon 2020 research and innovation programme (grant agreement No. 850859).

425 **Author contributions:** DW initiated the study. WF and BK designed the study. DW and WF
426 designed the experiments with input from DF and BK. DW collected the data with input from
427 KM and YP. DW recorded and analysed song with input from SM, WF and YP. DF, AMC,
428 GAN and JK helped build the tracking system. DW, WF and DF analysed the data. DW, WF,
429 DF, BK, LMA and AMC wrote the manuscript.

430 **Author information:** Reprints and permissions information is available at
431 www.nature.com/reprints. The authors declare no competing financial interests. Readers are
432 welcome to comment on the online version of the paper. Correspondence and requests for
433 materials should be addressed to DW (dwang@orn.mpg.de), WF (forstmeier@orn.mpg.de),
434 DF (dfarine@orn.mpg.de) or BK (b.kempenaers@orn.mpg.de).

435 **Methods**

436 **Study populations.** We used four zebra finch populations that are genetically differentiated
437 due to founder effects and selection (see Extended Data Fig.1 & Fig. 2): two domesticated
438 populations (D_1 and D_2) that have been maintained in captivity in Europe for about 150 years
439 and two populations (W_1 and W_2) that have been taken from the wild about 10-30 years ago
440 (see Extended Data Fig. 1). We ran all experiments in two independent replicates. We used
441 individuals from populations D_1 and W_1 for replicate 1 and individuals from D_2 and W_2 for
442 replicate 2.

443 **Breeding experiment Generation 1.** We created four groups of 36 individuals (9 males and
444 9 females from both a domesticated and a wild-derived population, two groups within each
445 replicate) and put each group separately in an indoor aviary (5m \times 2.0m \times 2.5m). All
446 individuals had been reared normally by their genetic parents in similar breeding aviaries,
447 were inexperienced (never mated before) and unfamiliar to all opposite-sex individuals. In
448 replicate 1 ($W_1 - D_1$, starting December 2016), birds were 142 ± 32 days old at the start of
449 the experiment (range: 101-191 days); in replicate 2 ($W_2 - D_2$, starting March 2017), birds
450 were 241 ± 47 days old (range: 151-306 days). In each aviary, we provided nest material and
451 nest boxes to stimulate breeding and observed pair-bonding behaviour for ca. 60 hours spread
452 over 14 days. Two observers recorded all instances of allopreening, sitting in bodily contact,
453 and visiting a nest box together, which reflects pair bonding⁶¹.

454 In total, we observed 3,166 instances of heterosexual association among the 4×36
455 individuals (Extended Data Table 3). We defined a pair-bond between two opposite-sex
456 individuals if they were recorded in pair-bonding behaviour at least five times (mean: 22 ± 14
457 SD, range: 5 – 73). This cut-off was chosen (blind to the outcome of data analysis) based on
458 the frequency distribution showing a clear deviation from a random, zero-truncated Poisson
459 distribution (Supplementary Figure 1). Using this definition, we identified a total of 60 pairs
460 (30 in each replicate). Of all females, 48 and 6 had a pair-bond with one and two males,
461 respectively (18 females remained unpaired). Conversely, 34, 10, and 2 males had a pair-
462 bond with one, two, and three females, respectively (26 males remained unpaired).

463 **Cross-fostering for Generation 2 experiments.** After the breeding experiment of
464 Generation 1, in 2017, we established two different cultural lineages within each genetic
465 population by cross-fostering eggs, either within or between populations (Fig. 2a). For this
466 purpose, we used 16 aviaries (four per population), each containing 8 males and 8 females of

467 the same population (Generation 1). Individuals were allowed to freely form pairs and breed.
468 We reciprocally exchanged eggs shortly after laying between two aviaries per population
469 (within-population cross-fostering) and between pairs of aviaries from different populations
470 (between-population cross-fostering). This resulted in four cultural lineages per replicate
471 (DD, DW, WD, and WW; Fig. 2a). Each lineage was maintained in two separate breeding
472 aviaries to ensure the availability of unfamiliar opposite-sex Generation 2 individuals from
473 the same line. Offspring remained with their foster parents until they reached sexual maturity,
474 when the following experiment started.

475 **Social experiment Generation 2.** Between December 2017 and March 2018, we put 4
476 groups of individuals (two groups for each replicate) in indoor aviaries (same as in
477 Generation 1 experiment). Each group consisted of 10 males and 10 females from each of the
478 cross-fostered groups DD, WW, DW and WD, i.e. a total of 80 birds per aviary, except that
479 one aviary of replicate 2 only consisted of 63 individuals (7DD, 8WW, 8DW and 8WD) due
480 to a shortage of birds. In replicate 1 ($W_1 - D_1$, starting December 2017), birds were 170 ± 25
481 days old at the start of the experiment (range: 105-199 days); in replicate 2 ($W_2 - D_2$, starting
482 January 2018), birds were 200 ± 29 days old (range: 120-241 days). We recorded the position
483 of individuals using an automated barcode-based tracking system³¹. We fitted each individual
484 with a unique machine-readable barcode (Extended Data Fig. 4a) and placed eight cameras
485 (8-megapixel Camera Module V2; RS Components Ltd and Allied Electronics Inc.), each
486 connected to a Raspberry Pi (Raspberry Pi 3 Model Bs; Raspberry Pi Foundation) in each
487 aviary. For 30 consecutive days, the cameras recorded individuals at six perches and at two
488 feeders (Extended Data Fig. 4b, c). Between 05:30 and 20:00, when lights were switched on,
489 each camera took a picture every two seconds.

490 Each day, pictures stored on the Raspberry Pis were downloaded to a central server and
491 processed using customized scripts. The customized software used the PinPoint library in
492 Python⁶² to identify each barcode in each picture, allowing us to simultaneously track the
493 position and orientation of each individual (Extended Data Fig. 4b) for the duration of the
494 experiment. The tracking system generated 118 million observations across all four aviaries
495 (Extended Data Fig. 4c). From these data, we extracted the average distance between the
496 male and the female (in mm) for each male-female dyad, either daily or across the entire 30-
497 day period (for comparison, such distance data were also extracted for all male-male and all
498 female-female dyads). We used this dataset to identify the nearest opposite-sex individual for
499 each of 151 males and females (55% of these 151 associations were reciprocal). Out of 151

500 nearest males to females, 74 (49%) paired with that female in the following breeding
501 experiment (see below) and this proportion strongly increased as the average distance
502 between partners decreased (Supplementary Figure 2).

503 **Breeding experiment Generation 2.** Immediately after the social experiment, we moved
504 each group into a separate semi-outdoor aviary (5 m × 2.5 m × 2.5 m) and provided nest
505 material and nest boxes. During the next two months, three observers scored heterosexual
506 associations to identify pair bonds as described for ‘breeding experiment Generation 1’ (ca
507 300 h per replicate). In total, we observed 6,072 associations involving 284 individuals
508 (Extended Data Table 3). Consistent with the previous experiment, we defined a pair-bond
509 when a male-female dyad was observed in pair-bonding behaviour at least five times during
510 the entire experiment (mean: 18 ± 13 SD range: 5 - 61; Supplementary Figure 2). Using this
511 definition, we identified 147 pairs (79 pairs in replicate 1 and 68 in replicate 2). Of all males,
512 97, 22 and 2 had a pair-bond with 1, 2 and 3 females, respectively (27 males remained
513 unpaired). Conversely, 99, 21 and 2 females had a pair-bond with 1, 2 and 3 males (26
514 females remained unpaired).

515 **Breeding experiment Generation 3.** Between April and December 2018, we housed the four
516 cultural lineages (DD, WW, DW and WD) separately again. We placed 8 males and 8
517 females in each of 16 breeding aviaries (four per lineage) and allowed them to freely form
518 pairs and breed. The offspring belong to four lineages (Fig. 2a): two lineages with individuals
519 that were raised by parents that had not been cross-fostered between the domestic and wild-
520 derived population (DDD and WWW) and two lineages with individuals from the same
521 genetic background, but where their parents had been cross-fostered and raised by the other
522 population (DDW and WWD).

523 Between December 2018 and February 2019, we put four groups of 36 birds (two per
524 replicate, i.e. 2 with 18 DDD and 18 DDW individuals and 2 with 18 WWW and 18 WWD
525 individuals; 9 males and 9 females per lineage; Extended Data Table 3) in an outdoor aviary
526 (same as above). In replicate 1 (W₁ – D₁, starting December 2018), birds were 172 ± 44 days
527 old at the start of the experiment (range: 131-195 days); in replicate 2 (W₂ – D₂, starting
528 January 2019), birds were 191 ± 40 days old (range: 122-230 days). During 14 days, two
529 observers recorded all pair-bond behaviours as described under ‘breeding experiment
530 Generation 1’. In total, we observed 3,378 instances of pair-bond behaviour involving 137
531 individuals (Extended Data Table 3). As above, we defined a pair-bond when a male-female

532 dyad was observed in pair-bonding behaviour at least five times during the entire experiment
533 (mean: 18 ± 11 SD, range: 5 - 47; Supplementary Figure 2). We identified 82 pair bonds (37
534 in replicate 1 and 45 in replicate 2). Of all males, 34, 16, 4 and 1 had a pair-bond with 1, 2, 3
535 and 4 females (17 males remained unpaired), respectively. Conversely, 42, 16, 1 and 1
536 females had a pair-bond with 1, 2, 3 and 5 males (12 females remained unpaired).

537 **Morphological measurements.** After birds had reached sexual maturity (> 100 days of age),
538 we measured body mass (to the nearest 0.1g), tarsus length (to the nearest 0.1mm), and wing
539 length (to the nearest 0.5mm) of all individuals (all measured by WF). We included these
540 three variables in a principle component analysis (PCA) and used the first principle
541 component (PC1, 67% of variation explained) as a measure of body size.

542 **Song recording and analysis approach.** We recorded the songs of the parental males from
543 Generation 1 (16 aviaries \times 8 males = 128 males, of which 122 were successfully recorded
544 between November and December in 2017) and of their offspring (Generation 2; 146 out of
545 152 males were successfully recorded between March and May 2018). To elicit courtship
546 song, each male was placed together with an unfamiliar female in a metal wire cage (50 cm \times
547 30 cm \times 40 cm) equipped with three perches and containing food and water. The cage was
548 placed within one of two identical sound-attenuated chambers. We mounted a Behringer
549 condenser microphone (TC20, Earthworks, USA) at a 45° angle between the ceiling and the
550 side wall of the chamber, such that the distance to each perch was approximately 35 cm. The
551 microphone was connected to a PR8E amplifier (SM Pro Audio, Melbourne, Australia) from
552 which we recorded directly through a M-Audio Delta 44 sound card (AVID Technology
553 GmbH, Hallbergmoos, Germany) onto the hard drive of a computer.

554 Previous studies that quantified differentiation of songs between zebra finch populations
555 using specific song parameters (e.g. duration and frequency measures) largely failed to detect
556 prominent differences^{12,47,48}. We therefore used the following two approaches (Sound
557 Analysis Pro and Machine Learning) in order to quantify the extent to which a given male's
558 song resembled the songs of other males.

559 **Song similarity analysis with SAP.** Using Sound Analysis Pro (SAP) version 2011.104²⁷ we
560 quantified song similarity (ranging from 0 to 100) by direct pairwise comparison of song
561 motifs (the main part of a male's song that is stereotypically repeated and about 0.8 sec long,
562 excluding introductory syllables). Pairwise comparisons of two males (based on one
563 representative motif recording per male) revealed higher within-population similarity than

564 between-population similarity (Extended Data Table 2, data from Generation 1). Further, for
565 offspring that were cross-fostered between populations (N = 73 males from Generation 2)
566 song similarity to their foster father was higher than song similarity to their genetic father (80
567 versus 68, paired t-test: $p < 0.0001$). For each of the 146 recorded males of Generation 2, we
568 calculated three measures of song similarity with regard to each of the females encountered in
569 the social experiment with automated tracking of birds. (1) ‘SAP song similarity to foster
570 father’: the pairwise similarity between the motif of the focal male and the motif of the foster
571 father of the focal female. (2) ‘SAP song similarity to parents’: we first combined the song
572 motifs of all 8 parental males that were present in the female’s rearing aviary (Generation 1)
573 into a single ‘super-motif’ (simply placing all recordings into a single sound file) and then
574 calculated the similarity of the motif of the focal male to this super-motif from the female’s
575 rearing aviary. (3) ‘SAP song similarity to peers’: we combined the song motifs of all 7-10
576 recorded peer males present in the female’s rearing aviary (Generation 2) into a single ‘super-
577 motif’ and calculated the similarity of the motif of a focal male to this super-motif.

578 **Song categorization based on machine learning.** We used the Sound Classifier tool in
579 Apple Create ML (<https://developer.apple.com/machine-learning/create-ml/>) to (1) assess the
580 proportion of individual song recordings that can be correctly assigned to their population
581 (Table 1), and (2) to quantify the confidence with which songs of individual males are
582 assigned to a given population (Fig. 6). We interpret the former as a measure of overall
583 divergence between two populations and the latter as a measure of song similarity of an
584 individual to a population. As input we used two recordings for each individual male (mean \pm
585 SD duration per recording: 6.8 ± 1.6 sec, range 4.5 – 10.2 sec; n = 536).

586 To quantify the overall classification success, we first trained the sound classifier on two
587 categories of songs (e.g. songs of population W₁ versus D₁) using all available recordings
588 from individuals from Generation 1 (i.e. 30-32 males per population, represented by 60-64
589 song recordings). After the training phase, the software reports a validation statistic, which is
590 the proportion of training songs that are classified correctly with the algorithms derived from
591 the training set (this value has to be interpreted cautiously, see below). For independent
592 validation, we then tested the classification success (proportion of tested songs that are
593 classified correctly) on recordings from individuals from Generation 2 (i.e. 17-20 males per
594 population, using 34-40 songs). We did this separately for the males that had been cross-
595 fostered within and between populations. All steps (training, validation, and testing) were

596 carried out for all six pairwise combinations of the four captive populations used in this
597 study.

598 Besides reporting a classification result for each tested recording, the sound classifier also
599 reports a confidence statistic (complementary likelihoods of belonging to each of the two
600 classes) for each 1 sec interval of the recording in a sliding window with 50% overlap. As the
601 classification success and overall confidence may increase with the length of recording, we
602 trimmed all recordings to 4.5 sec and averaged for each recording the confidence scores for a
603 given class from the first (0 to 1 sec) to the last (3.5 to 4.5 sec) time interval. We interpret this
604 mean confidence value in belonging to a certain class as a measure of similarity to that class.
605 In analogy to the similarity values from SAP (see above) we retrieved 'ML similarity values'
606 from the perspective of each female from Generation 2 with regard to the males from her
607 rearing aviary. Hence, we trained the sound classifier to distinguish the songs of the 8
608 parental males (Generation 1) of a female's rearing aviary from those of the other population
609 type which the female would later encounter (e.g. W₁ vs D₁, 16 parental recordings each).
610 The classifier was then tested with each of the songs of the (usually 40) males that the female
611 would later encounter, to obtain values of their song similarity to the parents in her rearing
612 aviary ('ML song similarity to parents'). The similarity values from each of the two
613 recordings of a male were averaged (repeatability: $r = 0.88$, $n = 584$ pairs of values from 146
614 males, each combined with four female rearing aviaries). Similarly, we trained the sound
615 classifier using the respective peer males of Generation 2 (males with whom females grew up
616 in their rearing aviary) in contrast to peers from the other population type, to obtain values of
617 similarity of males to those peer members ('ML song similarity to peers', repeatability $r =$
618 0.91 , $n = 584$).

619 To further validate the classification procedure we ran a negative control by training on two
620 sets of 25 songs (mean duration 16.4 sec per recording) from a single population.
621 Classification success was 49.5% in the testing phase, which is close to the 50% chance level.
622 Note that validation after training indicated a 80% classification ability within the training
623 set, indicating that the utility of a trained classifier should be judged by independent testing
624 and not from the validation percentages. We recorded all birds in one of two identical sound-
625 proof chambers (see above), which ensured that classification success during testing stemmed
626 from properties of the recorded songs rather than from idiosyncratic background noises. For
627 example, such background noises might differ when wild populations would be recorded in
628 their respective natural habitats.

629 **Data analysis.** To investigate whether pair-bonding and heterosexual social associations
630 depended on culture (population of rearing) or on genetic background (population of origin),
631 we used two statistical approaches. First, for the data set of identified pairs, we tested whether
632 the observed degree of mating assortment by either population of rearing or by population of
633 origin differed from expectations under random mating (50:50), using an exact binomial test.
634 We tested each replicate separately for each of the three generations.

635 Second, for the data set on heterosexual interactions (also including individuals that were
636 defined as unpaired, see above), we constructed a social network, where nodes represented
637 individuals and edges represented pair-bonding interactions between individuals. We did this
638 separately for each aviary and for each breeding experiment (Generations 1-3). We then
639 quantified the extent to which social interactions were clustered by culture by calculating the
640 assortativity coefficient for each social network⁶³. The assortativity coefficient is a network
641 version of the Pearson's correlation coefficient, where the value from -1 to 1 reflects the
642 tendency for individuals with similar attributes (here: population of rearing) to be associated
643 in the network ($r=1$), randomly associated ($r=0$), or disassociated ($r=-1$). We used
644 permutation tests to assess whether the association by culture was significantly non-random⁴⁴.
645 To obtain a p-value, we randomly re-allocated the phenotype value (population of rearing)
646 across the nodes in the network (10,000 times) and calculated the assortativity coefficient for
647 each permuted network. The p-value then equals the proportion of assortativity coefficients
648 that were larger than the observed coefficient.

649 For the 'social experiment generation 2', we derived a daily social network using the pair-
650 wise distance data and compiled this into a dynamic network video across the 30 days to
651 visualise the association pattern. We also calculated the corresponding assortativity
652 coefficients by culture for each day. Further, we analysed these daily social networks across
653 30 days within and between sexes to reveal the temporal patterns of assortment by song or by
654 population of origin (genetic background) of each sex. This is for investigating the
655 differences of social patterns between heterosexual relationships and same-sex relationships.

656 We tested whether the daily pair-wise distance (from the social experiment Generation 2) can
657 be explained by cultural (song) similarity and by genetic (size) similarity between females
658 and males that participated in this social experiment. We used generalized mixed-effect
659 models⁶⁴ with distance of each male-female combination as the response variable and with
660 female identity (151 levels), male identity (151 levels), the combination of male and female

661 identity (pair ID: 5,752 levels), and the combination of the male's and the female's rearing
662 aviaries (64 levels) as random effects. As fixed effects of interest, we fitted several
663 categorical predictors that distinguish different types of male-female combinations (for
664 details see Extended Data Table 5) and several continuous predictors (measures of body size
665 and song similarity, see above) that reflect individual-specific traits in a male-female
666 combination.

667

668 **References**

- 669 1 Lachlan, R. F. *et al.* The progressive loss of syntactical structure in bird song along an island
670 colonization chain. *Current Biology* **23**, 1896-1901 (2013).
- 671 2 Parker, K. A., Anderson, M. J., Jenkins, P. F. & Brunton, D. H. The effects of translocation-
672 induced isolation and fragmentation on the cultural evolution of bird song. *Ecology Letters*
673 **15**, 778-785 (2012).
- 674 3 Verzijden, M. N. *et al.* The impact of learning on sexual selection and speciation. *Trends Ecol
675 Evol* **27**, 511-519 (2012).
- 676 4 Williams, H., Levin, I. I., Norris, D. R., Newman, A. E. & Wheelwright, N. T. Three decades of
677 cultural evolution in Savannah sparrow songs. *Anim Behav* **85**, 213-223 (2013).
- 678 5 Baker, M. C. & Cunningham, M. A. The biology of bird-song dialects. *Behav Brain Sci* **8**, 85-
679 100 (1985).
- 680 6 Lachlan, R. F., Ratmann, O. & Nowicki, S. Cultural conformity generates extremely stable
681 traditions in bird song. *Nat Commun* **9**, doi:ARTN 241710.1038/s41467-018-04728-1 (2018).
- 682 7 Marler, P. & Tamura, M. Culturally transmitted patterns of vocal behavior in sparrows.
683 *Science* **146**, 1483-1486 (1964).
- 684 8 Podos, J. & Warren, P. S. The evolution of geographic variation in birdsong. *Advances in the
685 Study of Behavior* **37**, 403-458 (2007).
- 686 9 Slabbekoorn, H. & Smith, T. B. Bird song, ecology and speciation. *Philosophical Transactions
687 of the Royal Society of London. Series B: Biological Sciences* **357**, 493-503 (2002).
- 688 10 Toews, D. P. L. From song dialects to speciation in white-crowned sparrows. *Mol Ecol* **26**,
689 2842-2844, doi:10.1111/mec.14104 (2017).
- 690 11 Goodfellow, D. & Slater, P. A model of bird song dialects. *Anim Behav* (1986).
- 691 12 Lachlan, R. F., van Heijningen, C. A. A., ter Haar, S. M. & ten Cate, C. Zebra Finch Song
692 Phonology and Syntactical Structure across Populations and Continents-A Computational
693 Comparison. *Front Psychol* **7**, doi:ARTN 98010.3389/fpsyg.2016.00980 (2016).
- 694 13 Tchernichovski, O., Feher, O., Fimiarz, D. & Conley, D. How social learning adds up to a
695 culture: from birdsong to human public opinion. *Journal of experimental biology* **220**, 124-
696 132 (2017).
- 697 14 Forstmeier, W., Burger, C., Temnow, K. & Derégnaucourt, S. The genetic basis of zebra finch
698 vocalizations. *Evolution: International Journal of Organic Evolution* **63**, 2114-2130 (2009).
- 699 15 Tibbetts, E. A. & Dale, J. Individual recognition: it is good to be different. *Trends Ecol Evol* **22**,
700 529-537 (2007).
- 701 16 Boogert, N. J., Lachlan, R. F., Spencer, K. A., Templeton, C. N. & Farine, D. R. Stress
702 hormones, social associations and song learning in zebra finches. *Philos T R Soc B* **373**,
703 doi:ARTN 2017029010.1098/rstb.2017.0290 (2018).
- 704 17 Campbell, D. & Hauber, M. Behavioural correlates of female zebra finch (*Taeniopygia
705 guttata*) responses to multimodal species recognition cues. *Ethology Ecology & Evolution* **22**,
706 167-181 (2010).

707 18 Campbell, D. L. M. & Hauber, M. E. The Disassociation of Visual and Acoustic Conspecific
708 Cues Decreases Discrimination by Female Zebra Finches (*Taeniopygia guttata*). *J Comp*
709 *Psychol* **123**, 310-315, doi:10.1037/a0015837 (2009).

710 19 Chen, Y., Matheson, L. E. & Sakata, J. T. Mechanisms underlying the social enhancement of
711 vocal learning in songbirds. *Proceedings of the National Academy of Sciences* **113**, 6641-6646
712 (2016).

713 20 Fehér, O., Wang, H., Saar, S., Mitra, P. P. & Tchernichovski, O. De novo establishment of wild-
714 type song culture in the zebra finch. *Nature* **459**, 564-568 (2009).

715 21 Holbeck, M.-J., Vieira de Castro, A. C., Lachlan, R. F., ten Cate, C. & Riebel, K. Accuracy of
716 song syntax learning and singing consistency signal early condition in zebra finches. *Behav*
717 *Ecol* **19**, 1267-1281 (2008).

718 22 Houx, A. B. & ten Cate, C. Song learning from playback in zebra finches: is there an effect of
719 operant contingency? *Anim Behav* **57**, 837-845 (1999).

720 23 Jones, A. E., Ten Cate, C. & Slater, P. J. Early experience and plasticity of song in adult male
721 Zebra Finches (*Taeniopygia guttata*). *J Comp Psychol* **110**, 354 (1996).

722 24 Mann, N. & Slater, P. Song tutor choice by zebra finches in aviaries. *Anim Behav* **49**, 811-820
723 (1995).

724 25 Slater, P. J. Bird song learning: causes and consequences. *Ethology Ecology & Evolution* **1**, 19-
725 46 (1989).

726 26 Tchernichovski, O., Lints, T., Mitra, P. P. & Nottebohm, F. Vocal imitation in zebra finches is
727 inversely related to model abundance. *Proceedings of the National Academy of Sciences* **96**,
728 12901-12904 (1999).

729 27 Tchernichovski, O., Nottebohm, F., Ho, C. E., Pesaran, B. & Mitra, P. P. A procedure for an
730 automated measurement of song similarity. *Anim Behav* **59**, 1167-1176, doi:DOI
731 10.1006/anbe.1999.1416 (2000).

732 28 Williams, H. Choreography of song, dance and beak movements in the zebra finch
733 (*Taeniopygia guttata*). *Journal of Experimental Biology* **204**, 3497-3506 (2001).

734 29 Whiten, A. Culture extends the scope of evolutionary biology in the great apes. *P Natl Acad*
735 *Sci USA* **114**, 7790-7797, doi:10.1073/pnas.1620733114 (2017).

736 30 Rendell, L. & Whitehead, H. Culture in whales and dolphins. *Behav Brain Sci* **24**, 309-+,
737 doi:Doi 10.1017/S0140525x0100396x (2001).

738 31 Tramm, N. A. & Servedio, M. R. Evolution of mate-choice imprinting: competing strategies.
739 *Evolution: International Journal of Organic Evolution* **62**, 1991-2003 (2008).

740 32 Riebel, K. Developmental influences on auditory perception in female zebra finches-is there
741 a sensitive phase for song preference learning? *Animal Biology* **53**, 73-87 (2003).

742 33 Riebel, K. The "mute" sex revisited: vocal production and perception learning in female
743 songbirds. (2003).

744 34 Ten Cate, C. & Vos, D. R. Sexual imprinting and evolutionary processes. *Advances in the*
745 *Study of Behavior* **28**, 1-31 (1999).

746 35 Grant, B. R. & Grant, P. R. Cultural inheritance of song and its role in the evolution of
747 Darwin's finches. *Evolution* **50**, 2471-2487, doi:Doi 10.2307/2410714 (1996).

748 36 Potvin, D. A. & Clegg, S. M. The relative roles of cultural drift and acoustic adaptation in
749 shaping syllable repertoires of island bird populations change with time since colonization.
750 *Evolution* **69**, 368-380 (2015).

751 37 Cavalli-Sforza, L. L. & SY, W. Spatial distance and lexical replacement. *Language*, 38-55
752 (1986).

753 38 Holman, E. W., Schulze, C., Stauffer, D. & Wichmann, S. On the relation between structural
754 diversity and geographical distance among languages: observations and computer
755 simulations. *Linguistic typology* **11**, 393-421 (2007).

756 39 Catchpole, C. K. & Slater, P. J. *Bird song: biological themes and variations*. (Cambridge
757 University Press, 2003).

758 40 Krebs, J. Habituation and song repertoires in the great tit. *Behavioral Ecology and*
759 *Sociobiology* **1**, 215-227 (1976).

760 41 Freeman, B. G. & Montgomery, G. A. Using song playback experiments to measure species
761 recognition between geographically isolated populations: A comparison with acoustic trait
762 analyses. *The Auk: Ornithological Advances* **134**, 857-870 (2017).

763 42 Searcy, W. A., Nowicki, S. & Hughes, M. The response of male and female song sparrows to
764 geographic variation in song. *The Condor* **99**, 651-657 (1997).

765 43 Searcy, W. A., Nowicki, S., Hughes, M. & Peters, S. Geographic song discrimination in relation
766 to dispersal distances in song sparrows. *The American Naturalist* **159**, 221-230 (2002).

767 44 Beecher, M. D. & Brenowitz, E. A. Functional aspects of song learning in songbirds. *Trends*
768 *Ecol Evol* **20**, 143-149, doi:10.1016/j.tree.2005.01.004 (2005).

769 45 Tomaszycki, M. L. & Adkins-Regan, E. Experimental alteration of male song quality and
770 output affects female mate choice and pair bond formation in zebra finches. *Anim Behav* **70**,
771 785-794 (2005).

772 46 Runciman, D., Zann, R. A. & Murray, N. D. Geographic and temporal variation of the male
773 zebra finch distance call. *Ethology* **111**, 367-379 (2005).

774 47 Zann, R. Variation in song structure within and among populations of Australian zebra
775 finches. *The Auk* **110**, 716-726 (1993).

776 48 Slater, P. & Clayton, N. Domestication and song learning in zebra finches *Taeniopygia*
777 *guttata*. *Emu-Austral Ornithology* **91**, 126-128 (1991).

778 49 Rutstein, A. N., Brazill-Boast, J. & Griffith, S. C. Evaluating mate choice in the zebra finch.
779 *Anim Behav* **74**, 1277-1284, doi:10.1016/j.anbehav.2007.02.022 (2007).

780 50 Mishra, A. *Machine learning for iOS developers*. (Wiley, 2020).

781 51 Wang, D. P. *et al.* Scrutinizing assortative mating in birds. *Plos Biol* **17**, doi:ARTN
782 e300015610.1371/journal.pbio.3000156 (2019).

783 52 Grant, P. R. & Grant, B. R. Role of sexual imprinting in assortative mating and premating
784 isolation in Darwin's finches. *P Natl Acad Sci USA* **115**, E10879-E10887,
785 doi:10.1073/pnas.1813662115 (2018).

786 53 Alarcón-Nieto, G. *et al.* An automated barcode tracking system for behavioural studies in
787 birds. **9**, 1536-1547 (2018).

788 54 Baker, M. C., Spitler-Nabors, K. J. & Bradley, D. C. Early experience determines song dialect
789 responsiveness of female sparrows. *Science* **214**, 819-821 (1981).

790 55 Baker, M. C., McGregor, P. K. & Krebs, J. R. Sexual response of female great tits to local and
791 distant songs. *Ornis Scandinavica*, 186-188 (1987).

792 56 Gess, A., Schneider, D. M., Vyas, A. & Woolley, S. M. Automated auditory recognition
793 training and testing. *Anim Behav* **82**, 285-293 (2011).

794 57 Miller, D. B. The acoustic basis of mate recognition by female zebra finches (*Taeniopygia*
795 *guttata*). *Anim Behav* **27**, 376-380 (1979).

796 58 Riebel, K. & Smallegange, I. M. Does zebra finch (*Taeniopygia guttata*) preference for the
797 (familiar) father's song generalize to the songs of unfamiliar brothers? *J Comp Psychol* **117**,
798 61 (2003).

799 59 Stevens, G. & Swicegood, G. The Linguistic Context of Ethnic Endogamy. *Am Sociol Rev* **52**,
800 73-82, doi:Doi 10.2307/2095393 (1987).

801 60 Nelson, D. Geographic variation in song of Gambel's white-crowned sparrow. *Behaviour* **135**,
802 321-342 (1998).

803 61 Wang, D. P., Forstmeier, W. & Kempenaers, B. No mutual mate choice for quality in zebra
804 finches: Time to question a widely held assumption. *Evolution* **71**, 2661-2676,
805 doi:10.1111/evo.13341 (2017).

806 62 Graving, J. M. *et al.* DeepPoseKit, a software toolkit for fast and robust animal pose
807 estimation using deep learning. *Elife* **8**, doi:ARTN e4799410.7554/eLife.47994 (2019).

808 63 Farine, D. R. Measuring phenotypic assortment in animal social networks: weighted
809 associations are more robust than binary edges. *Anim Behav* **89**, 141-153,
810 doi:10.1016/j.anbehav.2014.01.001 (2014).
811 64 Bates, D., Mächler, M., Bolker, B. & Walker, S. J. a. p. a. Fitting linear mixed-effects models
812 using lme4. (2014).

813