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Abstract

Motivation: DNA methylation is a common epigenetic modification, which is widely associated with
various biological processes, such as gene expression, aging, and disease. Nanopore sequencing
provides a promising methylation detection approach through monitoring abnormal signal shifts for
detecting modified bases in target motif regions. Recently, model-based approaches, especially those
with deep learning models, have achieved significant performance improvements on nanopore methylation
detection. In this work, we explore using bidirectional encoder representations from transformers (BERT)
for doing the task, which can provide non-recurrent neural structures for fast parallel computation.
Results: We find original BERT architecture does not work as well as the bidirectional recurrent neural
network (biRNN) on the nanopore methylation prediction task. Through further analysis, we observe
recurrent patterns of positional-signal-shift in the context window surrounding target 5-methylcytosine
(5mC) and N6-methyladenine (6mA) motifs. We propose a refined BERT with relative position
representation and center hidden units concatenation, which takes account of task-specific characters into
modeling. We perform systematic evaluations in-sample and cross-sample. The experiment results show
that the refined BERT model can achieve competitive or even better results than the state-of-the-art biRNN
model, while the model inference speed is about 6x faster. Besides, on the cross-sample evaluation
of datasets from the different research groups, BERT models demonstrate a good generalization
performance.

Availability: The source code and data are available at https:/github.com/yaozhong/methBERT
Contact:yaozhong@ims.u-tokyo.ac.jp

1 Introduction reads in low-complex regions and analyze methylation patterns in a long-

Methylation of DNA/RNA/histone is commonly observed in developmental range. The data processing of WGBS is sophisticated and time-consuming.

disorders, aging, and genomic disease, such as cancer. Fast and
accurately detecting methylation status has a fundamental requirement

Various biases (e.g. GC and fragment length) including those introduced
by bisulfite treatment are required to be dealt with in the data analysis.

to find distinctive biomarkers for aging/disease profiling. For a WGBS can only be used for DNA samples, which limits its application

virome/metagenome study, quick and accurate epi-transcriptome detection
also plays an important role in understanding unseen strains (Kim et al.,

of detecting RNA methylation. Single-molecule sequencing (e.g., PacBio
and Nanopore) provides a promising approach through detecting abnormal

2020). One commonly used DNA methylation detection approach is signals in target motif regions, as modified bases usually have different

Whole-Genome Bisulfite Sequencing (WGBS). To detect modified bases,
WGBS first takes sodium bisulfite conversion before sequencing. As the

current signals. Compared with the sodium bisulfite approach, no extra
chemical treatment is required, which helps to reduce potential biases.

pre-chemical bisulfite conversion is a relatively harsh process, it makes Currently exist nanopore methylation detection methods can be
categorized into two types. One is testing-based (e.g., Tombo (Stoiber et al.,
2016)), the other is model-based (e.g., nanopolish (Simpson et al., 2017),
deepMod(Liu et al., 2019) and deepSignal (Ni et al., 2019)). A testing-
based approach performs statistical test on paired signals (candidate and
reference) and does not require any training process. Also, it can be applied
for any chemical modifications. A model-based approach trains a model

DNA sequences more fragmental and a large amount of DNA is usually
required. Also, limited to the read length, it is difficult to align short
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Fig. 1: Basic BERT’s and refined BERT’s model structure used for methylation detection. Compared with the basic BERT, enhanced constraints and

additional edges are highlighted in red color.

on known chemical modifications and makes predictions whether a signal
sequence contains methylation signals or not. Sequential models, such as
hidden Markov model (HMM) and bidirectional recurrent neural network
(biRNN), are commonly used in the model-based approach.

Although model-based approaches have already achieved competitive
results, the sequential computational order makes them difficult to be
optimized in parallel for fast inference. Meanwhile, finding discriminative
signal patterns for identifying methylated signals is also important for
developing novel detection algorithms. In this work, based on the
bidirectional encoder representations from transformers (BERT), we
explore the non-recurrent modeling approach for nanopore methylation
detection. Though analyzing nucleotide sequences with both methylated
and unmethylated signals, we profile positional signal-shift for different
motifs and methyltransferases. We find +3bp region surrounding the
center methylation candidate shows significant signal-shifts. Different
methylation types, such as 5-methylcytosine (SmC) and N6-methyladenine
(6mA), also demonstrate different signal-shift patterns. We hence propose
a refined BERT model to take account of signal-shift patterns in the
modeling. We evaluate the proposed methods on the publicly available
benchmark dataset. In both in-sample and cross-sample evaluation, the
proposed refined BERT model achieves a competitive or even better result
when compared with the state-of-the-art biRNN model, while its model
inference speed is about 6x faster. In the cross-sample evaluation, BERT
models also demonstrate their transfer learning ability across different
datasets.

2 Methods

In this section, we introduce BERT (Devlin et al., 2018) and refined BERT
applied for nanopore methylation detection. The BERT is built on the base
of Transformer (Vaswani et al., 2017), which employs self-attention as
the core module in its stacked network structure. It is proposed to replace
recurrent and convolution operation with purely attention mechanisms. A
typical transformer network consists of encoding and decoding module.

BERT only uses the encoding module of a typical transformer for pre-
training on the unsupervised data. BERT has achieved break-through
results on many natural language understanding tasks. In this work, we
explore applying the BERT model for the nanopore methylation detection
task to leverage the power of advanced deep learning models.

2.1 BERT and refined BERT model

Figure 1 shows the model structures of BERT models used for nanopore
methylation detection. We explore two types of BERT models. One is the
most commonly used BERT (Figure 1(a)), the other is the refined BERT
(Figure 1(b)), which is optimized for nanopore methylation detection.

2.1.1 Embedding module

Given extracted features for each position in a sequence, the embedding
layer maps input vectors into hidden spaces. In the embedding layer,
besides event embedding, positional embedding (PE) is also included. As
a BERT is used to learn bidirectional contextual information, positional
information is important in the modeling. The original PE (Vaswani et al.,
2017) uses a sinusoid embedding, which is fixed and not learnable.

N sin_ oS
PE(pOS, 2Z) = sin 1000027/ dmodel

) = s PO

PE(pOS, 21 + 1) = cos 100002i/dmodcl ’

where pos is the position and 4 is the embedding dimension. For any
fixed offset k, PE),s4 can be represented as a linear function of
PFEpos. According to the recent progress (Huang et al., 2020), learnable
PE and relative position embedding can help to further improve BERT’s
performances. Therefore, in the refined BERT model, we use learnable
PE and relative position representation. The learnable PE takes positional
embedding vectors as parameters, which are updated during the learning
process.
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2.1.2 Self-attention module

Following the embedding layer, there are three stacked transformer blocks.
Each transformer block consists of a multi-head self-attention layer and
position-wise fully connected feed-forward network. The self-attention
mechanism is a modeling approach of describing context information for
different positions of inputs under a deep learning framework. The self-
attention mechanism imitates the human sight mechanism and provides
a model with the ability to zoom in or out in a particular position of an
input sequence. It demonstrates the effectiveness in many different tasks
including natural language understanding, image recognition, and several
bioinformatics applications.

Attention function is described as mapping () and a set of key-value
(K, V) pairs to an output. Formally, for an input z = (z1, ...,
elements where z; € R%, we calculate query Q, key K and value V'
vectors of dimension dj, based on the embedding vector of embed(x). The

Tpn) of n

attention module generates a new sequence z = (21, ..., 2 ) of the same
length as z. z; is calculated as a weighted sum of linearly transformed
input elements as follows:

n
2z = Z aij(z;wV)
j=1

exp €;;
Pp—
Y 2221 CXP €k
(2, W) (z;Wwh)T
€ij = . )
zZ

where W@, WK WT ¢ Rdz*d= are parameter matrices.

The self-attention computes a pairwise correlation of embed(x;) and
embed(x;), which can be calculated in a parallel way. While in a biRNN,
recurrent hidden units are required to be calculated successively. This
architecture difference makes BERT can be optimized for fast inference.

2.1.3 Relative position representation in self-attention heads

For nanopore sequencing, signals are supposed to be more affected by
the nucleotide passing through the pore. Its surrounding nucleotides may
also have effects on the current signals. For those nucleotides that are
too far away in a context window, it is intuitive to assume they have less
effect on the detected current signals. In the refined BERT model, we
add relative position representation in the attention module following the
method proposed by Shaw et al. (2018). For any two input elements x;
and x;, the relative position information is modeled with two distinct
edge representations a;/j, a{? . For linear sequences, those edges are used
to capture the relative position differences between input elements. As the
precise relative position is not useful beyond a certain distance, we clip
the maximum distance (e.g. £3bp) in calculating attention a;; € A.

& = wk

©j clip(j—i,k)
vV \%
ai; = Weipi—ik)

clip(z, k) = maz(—k,min(k,z))

2.1.4 Final full connection layer

After the stacked transformer blocks, hidden units of the center position
feed to a full connection linear layer that makes the final prediction of
whether a given input contains a methylated motif or not. In the refined
BERT, besides the hidden units of the center position, hidden units in its
surrounding window (e.g., +=3bp) are concatenated as the input of the final
full connection layer.

2.2 Applying BERT models for nanopore methylation
detection

The BERT models are then applied to replace different classification
models (e.g. biRNN) in a typical model-based methylation detection
framework. In this framework, raw signals of each read are first translated
into nucleotide sequences (basecalling). Signals are then aligned to
corresponding reference nucleotides through the re-squiggle process. After
that, the target motif (e.g. CpG) and its context regions are localized
through nucleotide matching and signals in a context window of a fixed
length (e.g. 21bp) are transformed into event-based features as the input
of methylation callers. Typical event-based features include signal mean,
signal standard deviation, event length, and nucleotide information (Liu
etal.,2019). Here, we utilize the framework of deepMOD and perform the
same pre-process for the data. We use Tombo (Ver 1.5.1) to perform re-
squiggling and utilize Minimap2 (Ver 2.17-r941) to align events to the
reference genome. Here, we use E.coli K-12 MG1655 and H.Sapiens
GRCh38 as the reference genomes.

3 Experiments

We compare BERT models with the state-of-the-art biRNN model, which
is used as the basic network structure in DeepMOD (Liu e al., 2019) and
DeepSignal (Ni et al., 2019). To compare with other non-deep-learning-
based methods, we utilized the CpG benchmark pipeline (Yuen et al.,
2020) as a pivot.

3.1 Data and model parameters

We train and test the models on the public accessible SmC (Stoiber et al.,
2016; Simpson et al., 2017) and 6mA (Stoiber et al., 2016) datasets. The
datasets include samples of E.coli K-12 MG1655, K-12 ER2925, and
H.sapiens NA12878. Negative control samples are amplified with PCR and
no modified bases are included. Positive control samples are synthetically
introduced by specific enzymes after PCR amplification, which includes
Sssl, Hhal, Mpel methylases for SmC, and Taql, EcoRI, and Dam for
6mA modification. We use the samples that are sequenced with Oxford
Nanopore R9 flow cells. For each dataset, we randomly shuffle reads in
positive and negative controls and construct the training, validate and test
set according to a split proportion of 80/10/10 for in-sample evaluation.
For the cross-sample evaluation, we train models on one dataset and test
on the other dataset.

BiRNN uses the default model architecture and parameter setting
of DeepMOD, which consists of three stacked bi-directional recurrent
layers (hidden_size=100) and one full connection layer for the center
position. The total number of biRNN parameters is 570,802 for an input
length of 21bp. BERTSs use three attention layers (hidden_size=100,
attention_head=4) and one full connection layer. For the refined
BERT, learnable positional encoding, attention with relative position
representation and center-hidden-concatenation are used. For BERT and
refined BERT, there are total of 364,902 and 368,202 parameters, which
are around 35% less than that of biRNN. More detailed information on the
model structures is described in the supplement material. We implement
the three models using Pytorch. All the models are optimized using Adam
optimizer (Kingma and Ba, 2014) with the learning rate of 1le — 4 and
maximum iteration epoch of 50. Model parameters are selected based on
the minimum validation loss.

3.2 Exploring differentiated signal positions in the context
window surrounding target motifs

Ideally, we assume a modified nucleotide (e.g., the center position of
XXXXXXXXXXCPMC GXXXXXXXXX) has different current signals,
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Fig. 2: Boxplot of positional signal-shift for SmC and 6mA datasets of the specific motif and methyltransferase. (al),(a2) and (a3) are on Stoiber’s E.coli
SmC dataset. (b1) and (b2) are on Simpson’s SmC dataset. (c1), (c2) and (c3) are on Stoiber’s E.coli 6mA dataset. Each dataset is represented in a format

of dataSource_motif_methltansferase.

when compared with the unmodified one. As the boundary of nucleotide/k-
mer signals are not rigorous and surrounding nucleotides may also
be affected, it is worthwhile investigating signal-shift patterns related
to methylation in a large context. To identify signal-shift affected by
methylation for a specific dataset, we use a simple quantification approach
to calculate significant signal changes of each position in the context
window. Given a dataset of a specific motif and methyltransferase, we
first cluster instances with the same nucleotide sequence to avoid the
effect of nucleotide sequences. We reserve sequence clusters that contain
both methylation and unmethylation instances (> 1). For each sequence
cluster, we normalize event signal values of methylation samples with their
according unmodified averaged event signal values for each position. The
i-th positional signal-shift is then calculated as s*¢t" — qug(synmeth).
For those normalized methylation samples, we calculate basic statistics of
signal-shift for each position and draw boxplots for SmC and 6mA training
sets.

Shown in Figure 2, for all datasets, we can observed positions of
significantly signal-shift are located in a range of £3bp to the center
position (the 11th) in which the target nucleotide is located. For the rest
off-center positions, the averaged signal-shift values are close to 0. This
indicates a modified nucleotide not only affect its corresponding current
signals but also the signals of its surrounding nucleotides.

Besides, SmC and 6mA datasets show different positional-signal-shift
patterns. Specific positions, such as -2bp position (9th) in the SmC dataset
and +1bp position (12th) in the 6mA dataset, have larger averaged signal-
shift values. Such pattern can be generalized across the different dataset
with the same motif and methyltransferase. For example, Figure 2 (al),
(b1) and (b2) show a similar positional signal-shift pattern. For different
methyltransferases, such as Hhal (Figure 2(a3)) also shows a similar

pattern as in SssI, while Mpel does not have a similar pattern obviously
(Figure 2(a2)).

Those positional signal patterns can be directly modeled by a biRNN,
while for the basic BERT, they are not specifically considered in its model
structure. In a biRNN, such as the implementation of deepMOD, the
last full connection layer uses hidden units of the center time step as
the input. Meanwhile, the bi-directional structure and the information
decay from both ends to the center position render the model focusing
more on center positions. For the basic BERT, as any arbitrary time-
step pair is processed with the same attention module, the importance
of center positions are not specifically considered in the model. Therefore,
we propose a refined BERT model to solve this problem. We incorporate
relative-position attention and center-hidden-units concatenation to enable
a BERT model to pay more attention to center positions.

3.3 In-sample evaluation

To evaluate model performance, we first perform the in-sample evaluation
on SmC and 6mA datasets. The predictions of different models are
evaluated on the read and genomic level. For the genomic level evaluation,
we group all reads aligned to the same genomic coordinate, and uses a
threshold of prediction methylation percentage > 0.1 (same as deepMOD)
as a genomic position prediction.

In general, on the five 5SmC datasets, the AUC performance
of the three models are relatively close on both read level and
genomic level. The basic BERT model does not work as well as
the biRNN model that AUC scores are lower. The refined BERT
model achieves equivalent or better AUC scores on the genomic-

level. Note that on the dataset Stoiber_FE.coli_CG_Mpel and
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. R Single (read-level) Group (>=1, genomic-level)

Dataset | Species | Motif_Methyltransferase Model AUC [ Precision | Recall | AUC T Precision | Recall
biRNN 0.9205 | 0.9545 [0.8593 [ 0.9322| 0.9320 0.9134

GCGC_Hhal BERT _basic | 0.9183 | 0.9528 |0.8556 | 0.9305| 0.9299 09113

BERT _refined | 0.9239 | 0.9563 | 0.8655 | 0.9351 | 0.9341 0.9177

BiRNN 0.7184 | 0.8943 |0.4555|0.7482 | 0.8764 0.5452

Stoiber E.coli CG_Mpel BERT _basic | 0.7045 | 0.8682 |0.4316|0.7312| 0.8494 0.5211
BERT _refined | 0.717 | 0.9017 | 0.4511|0.7482 | 0.8848 0.5412

BiRNN 0.9017 | 0.9576 |0.8097 | 0.9127 | 0.9508 0.8420

CG_Sssl BERT _basic | 0.9001 | 0.9534 |0.8071|0.9107 | 0.9463 0.8395

BERT _refined | 0.9068 | 0.9509 | 0.821 | 0.9162 | 0.9433 0.852

BiRNN 0.9514 | 0.9512 |0.9316 | 0.9284 | 0.8805 0.9854

E. coli CG_Sssl BERT _basic | 0.9477 | 0.9469 |0.9268 | 0.9227 | 0.8718 0.9845

Simpson BERT _refined | 0.9464 | 0.9656 | 0.9124 | 0.9456 | 0.9135 0.9803
BiRNN 0.9004 | 0.8891 |0.9230 [ 0.9010| 0.8900 0.9240

H.Sapiens CG_Sssl BERT _basic | 0.8962 | 0.8813 |0.9248 | 0.8969 | 0.8823 0.9256

BERT _refined | 0.9045 | 0.9143 | 0.8984 | 0.9053 | 0.9147 0.9003

Table 1. In-sample evaluation of different deep learning models on SmC datasets. The best score of each dataset is highlighted in bold.

. . Single (read-level) Group (>=1, genomic level)
Dataset | Species | Motif_Methyltransferase Model AUC | Precision | Recall | AUC T Precision | Recall
BiRNN 0.8524 | 0.8088 |0.7497|0.8429 | 0.7797 | 0.8035
gaAttc_EcoRI BERT _basic | 0.8607 | 0.8151 |0.7653|0.8591 | 0.7969 | 0.8277
BERT _refined | 0.8611 | 0.8826 | 0.7473|0.8655 | 0.8596 | 0.7987
BiRNN 0.7722 | 0.7922 |0.5750|0.7750 | 0.7789 | 0.6290
Stoiber | E.coli tcgA_Taql BERT _basic | 0.7573 | 0.8168 | 0.5392|0.7653 | 0.8063 | 0.5937
BERT _refined | 0.7857 | 0.7788 | 0.6064 | 0.7843 | 0.7643 | 0.6586
BiRNN 0.6123 | 0.7656 | 0.247 | 0.6337 | 0.7631 | 0.3241
gAtc_Dam BERT _basic | 0.6128 | 0.7329 |0.2529 | 0.631 | 0.7311 | 0.3305
BERT _refined | 0.6188 | 0.7513 | 0.2634 | 0.6385 | 0.7471 0.3421

Table 2. In-sample evaluation of different deep learning models on 6mA datasets.The best score of each dataset is highlighted in bold.

Simpson_E.coli_CG_SssI, although the read-level AUC of the
refined BERT are 0.0014 and 0.005 lower than that of biRNN, the
genomic-level performance of the refined BERT is equal or significantly
better than biRNN. This can be explained by the more accurate
prediction in several low read-coverage regions. On the 6mA dataset,
the refined BERT model achieves the best AUC performance on both
read-level and genomic-level. The performance of the basic BERT
model is variant and unstable. On Stobier_FE.coli_gaAttc_EcoRI and
Stoiber_E.coli_gAtc_Dam, the basic BERT performs slightly better
than biRNN on the read-level AUC, but has a large performance gap on
Stoiber_E.coli_gaAttc_EcoRI.

In summary, in the in-sample evaluation, the refined BERT model
can achieve competitive or better results when compared with the biRNN
model on benchmark SmC and 6mA datasets.

3.4 Cross-sample evaluation

‘We then conduct the cross-sample evaluation. To compare with other non-
deep-learning based methods, we utilize the benchmark pipeline (Yuen
et al., 2020) as a pivot. We test models on the same benchmark datasetl,
which is generated based on Simpson’s E.coli dataset with different
methylation levels. In the dataset, 100 arbitrary sites are selected, which
contain singleton CpG in a window of 10nt from both methylated and
unmethylated instances in the Simpson’s E.coli dataset. Yuen et al. created
11 specific mixtures of methylated and unmethylated reads, containing 0%,

10%, ..., 100% of methylated reads. Each mixture contains approximately
2400 reads. More detailed information can be found in (Yuen et al., 2020).

Different from the deepMOD model used in the original benchmark
pipeline, which is pre-trained on a mixture dataset of all SmC positive
(Cg_Sssl, Cg_Mpel, and gCgc_Hhal) and negative controls (UMR, conl,
and con2). Here, we test two different models trained on a single
dataset with the same methyltransferase to reduce potential overlapping
between the training and testing set. All three models are trained
on Stoiber_Ecoli_CG_SsslI and Simpson_H sapiens_CG_Sssl,
separately. Simpson_H sapiens_CG_SssI is sequenced by the
same group on different species, while Stoiber_FEcoli_CG_SssI is
sequenced by a different group on the same species. We use METEORE
pipeline (Yuen et al., 2020) to generate violin plots for model predictions
on each mixture. The Pearson’s correlation r, coefficient of determination
r2 and root mean square error (RMSE) are used as the evaluation metrics
for each model.

With the training data of Simpson_H sapiens_CG_Sssl, all three
models achieve performances ranked next to the best reported results of
Megalodon (r=0.9860, r2 = 0.9723, RMSE=0.0758) on the dataset (Yuen
et al., 2020). BiRNN achieves the best Pearson correlation r=0.9828 and
r2=0.9658, while refine BERT achieves minimal RMSE of 0.0732 among
the evaluated three models.

When using Stoiber_Ecoli_CG_SssI for training models, the
performances of all three models decrease. This indicates the challenge of
using datasets sequenced by different research groups. Here, both BERT
models show better performances than biRNN, as in Figure 3b. The refined
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Fig. 3: Violin plots of prediction results of models trained on different datasets.

BERT achieves the best r=0.9446, 2=0.8924 and RMSE of 0.1449 among 3.5 Model inference speed
the three model.s, which demonstrate the generalization ability on datasets The main motivation of applying BERT models is to use a non-recurrent
sequenced by different research groups. Based on the reported benchmark modeling approach for the nanopore methylation detection task to improve
results, the Pearson correlation ranks between reported deepMOD and . .

the model inference speed. We performed a speed test on a server with

deepSignal (Megalodon > DeepMOD iz 11 odet (0.9467) > refined BERT 54 opyy cores (Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz) and
> DeepSignalp,yman_hz1 (0.9420) >Guppy>Nanopolish>Tombo).


https://doi.org/10.1101/2021.02.08.430070
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.08.430070; this version posted February 10, 2021. The copyright holder for this preprint (which was not certified by
peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International

license .

BERT for nanopore methylation detection

Model Model inference time | Total running time
biRNN 16291 s 711.56 s
BERT _basic 2271 s 615.36's
BERT _refined 27.29 s 622.73 s

Table 3. Model inference and total running time on the benchmark dataset1 for
all 26402 reads.

one V100 NIVIDA GPU card. In the running, CPUs are responsible
for data loading and feature extraction, while GPU works for model
inference. We tested the model inference time and total running time
of the three models on the benchmark dataset]l. For each mixture split,
we repeated 5 times running and took the averaged value. As shown in
Table 3, the model inference speed of BERT models is around 6x~7x
faster than biRNN model (BERT _refined:5.96x, BERT_basic:7.16x). The
inference time of refined BERT is only slightly slower than the basic BERT
model. The gap of the total time is not that large (BERT _refined:1.14x,
BERT _basic:1.16x), as the data I/O and feature extraction take major time.
In the current implementation of BERT, we use reads as the basic data
unit and integrate the data pre-processing part during a read-batch loading
process. The data I/O and feature extraction part can be further accelerated.

4 Discussion

A BERT commonly works in a pre-training and fine-tuning approach. In
the pre-training phase, a BERT learns bi-directional representations from
unlabeled data. After that, learned feature representations are used on task-
specific data for further fine-tuning. It has lead to several state-of-the-art
results on many downstream tasks in language understanding. According
to the data scale, the number of BERT parameters is usually large, and
training such a model requires a huge amount of computational resources.
Forexample, the BERT used for natural language modeling has a parameter
scale ranging from 110M to 340M (Devlin et al., 2018). In this work, we
did not follow this schema. Instead, we utilized the model architecture of
BERT to provide a lightweight and non-recurrent solution to replace the
recurrent biRNN model. In our experiment, the BERT uses three attention
layers with 4 attention heads and 100 hidden units for each layer. The total
number of model parameters is around 0.37M, which is even less than that
of biRNN (0.57M). In the future, when more nanopore methylation data
becomes available, a larger BERT model and pre-training and fine-tuning
scheme can be further explored.

5 Conclusion

In this work, we explored applying BERT models for nanopore methylation
detection, which aims to use a non-recurrent modeling approach for fast
inference. We quantified positional signal-shift related to methylation for

different datasets of specific motif/methylase and found patterns across
datasets. In the process of evaluation, we found the original BERT
architecture does not work as well as biRNN. We proposed a refined BERT
considering task-specific characters into the modeling. Compared with the
original BERT, the refined BERT uses learnable positional encoding and
self-attention with relative position representation, and focuses more on
the center positions in a £3bp range. The experiment results show that the
refined BERT can achieve competitive and even better results than the state-
of-the-art biRNN model on a set of 5SmC and 6mA benchmark datasets,
while the model inference speed is about 6x faster. On the cross-sample
evaluation, for the case that train and test data from different research
groups, BERTs (include the original BERT) show a better performance
than biRNN.
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