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ABSTRACT 30 
 31 
Langerhans cells (LCs) reside in the epidermis as a dense network of immune system 32 

sentinels, coordinating both immunogenic and tolerogenic immune responses. To determine 33 

molecular switches directing induction of LC immune activation, we performed mathematical 34 

modelling of gene regulatory networks identified by single cell RNA sequencing of LCs 35 

exposed to TNF, a key pro-inflammatory signal produced by the skin. Our approach 36 

delineated three programmes of LC phenotypic activation (immunogenic, tolerogenic or 37 

ambivalent), and confirmed that TNF enhanced LC immunogenic programming. Through 38 

regulon analysis followed by mutual information modelling, we identified IRF1 as the key 39 

transcription factor for the regulation of immunogenicity in LCs. Application of a mathematical 40 

toggle switch model, coupling IRF1 with tolerance-inducing transcription factors, determined 41 

the key set of transcription factors regulating the switch between tolerance and 42 

immunogenicity, and correctly predicted LC behaviour in LCs derived from different body 43 

sites. Our findings provide a mechanistic explanation of how combinatorial interactions 44 

between different transcription factors can coordinate specific transcriptional programmes in 45 

human LCs, interpreting the microenvironmental context of the local tissue 46 

microenvironments.  47 
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INTRODUCTION 48 

Langerhans cells (LCs) act as immune sentinels at the epidermis and, through antigen 49 

presenting function, are responsible for maintaining tissue immune homeostasis (Nestle et 50 

al., 2009). In the steady-state, a network of LCs resides within the dense assembly of 51 

epidermal keratinocytes (KCs), sensing the environment and capturing antigens through 52 

intercellular extension and retraction of dendritic processes (Clausen and Stoitzner, 2015). 53 

On encounter with antigen, LCs cease to phagocytose and instead upregulate pathways 54 

associated with maturation, including MHC II antigen presentation, T cell co-stimulation and 55 

migration to local lymph nodes for priming of T cell immunity (Reis e Sousa, Stahl and Austyn, 56 

1993). In the context of diverse signalling from the external environment and epidermal 57 

microenvironment, LCs can promote immunogenic responses to protect against harmful 58 

pathogens, or promote tolerogenic responses to prevent unwarranted inflammation to self-59 

antigen and innocuous agents (Polak et al., 2017)(Sirvent et al., 2020)(Clayton et al., 60 

2017)(Banchereau and Steinman, 1998). The correct orchestration of immunogenic vs 61 

tolerogenic responses by LCs to the different stimuli they encounter is therefore expected to 62 

be fundamental to the maintenance of skin health. However, the molecular mechanisms for 63 

this decision-making process are largely unknown.  64 

 65 

Recent investigations by us and others characterised plasticity in LC-driven adaptive immune 66 

responses, dependent on LC activation state and signalling from the skin microenvironment. 67 

In the absence of inflammation, migratory LC are marked with enhanced expression of 68 

immunocompetency genes and they preferentially promote induction of Th2 CD4+ T cell 69 

responses (Sirvent et al., 2020)(Polak et al., 2014)(Polak et al., 2012)(Klechevsky et al., 70 

2008), and tolerogenic FOXP3+ Treg responses (Davies et al., 2019)(Seneschal et al., 71 

2012)(Kitashima et al., 2018). In contrast, with TNF signalling, LC immunogenicity is 72 
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enhanced (Barker et al., 1991). TNF is a skin proinflammatory cytokine, which is produced 73 

by epidermal KCs, as well as dermal DCs, plasmacytoid DCs (pDCs) and NK cells 74 

(Cumberbatch, Dearman and Kimber, 1997)(Singh et al., 2016)(Hjorton et al., 2018) in 75 

response to immunogenic stimuli. TNF stimulation of migratory LC heightens their ability to 76 

drive CD8 T cell activity through antigen cross-presentation (Sirvent et al., 2020)(Polak et al., 77 

2014)(Polak et al., 2012). Consistent with enhanced T cell activation, TNF stimulation 78 

promotes the upregulation of costimulatory molecules and maturation markers in LC, as well 79 

as promoting migration (Berthier-Vergnes et al., 2005)(Cumberbatch et al., 1999)(Epaulard 80 

et al., 2014). Furthermore, TNF signalling augments LC mediated anti-viral immunity to 81 

human immunodeficiency virus (HIV), Influenza and Epstein-Barr virus (EBV) antigen 82 

(Epaulard et al., 2014)(Polak et al., 2017).  83 

 84 

Immune cell function and changes in behaviour, such as the ones observed for LCs, are 85 

encoded by unique transcriptomic expression profiles – transcriptional programmes (Sirvent 86 

et al., 2020)(Xue et al., 2014)(Werner, Barken and Hoffmann, 2005)(Hoffmann et al., 2002).  87 

These transcriptional programmes are coordinated by gene regulatory networks (GRNs) in 88 

which transcription factors (TFs) cooperate to define a specific, signal-induced immune 89 

outcome  (Singh, Khan and Dinner, 2014)(Lin et al., 2015). Importantly, interactions with the 90 

external environment, tissue status (health or disease) or local microenvironmental signalling, 91 

can directly regulate the behaviour of GRN, alter transcriptional programmes and induce 92 

functional changes in cells. 93 

 94 

Thus, we hypothesised that the decision-making process of LC-driven immunity is 95 

determined by the context of the signalling environment, through alteration of transcriptional 96 

programmes underpinning LC activation. We assumed that, while spontaneous migration in 97 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2021. ; https://doi.org/10.1101/2021.02.07.430111doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.07.430111
http://creativecommons.org/licenses/by-nd/4.0/


the absence of pro-inflammatory signalling reflects the scenario in which LCs mediate 98 

peripheral immune homeostasis, TNF signalling favours immunogenicity. We sought to 99 

identify specific TFs defining immunogenic and tolerogenic programmes in LCs and to 100 

determine the regulatory interactions between the phenotype-defining TFs. Combining single 101 

cell transcriptome analyses with a published toggle switch ordinary differential equation 102 

(ODE) model defining two divergent sets of TF expression, containing self-amplification and 103 

mutual inhibition (Huang et al., 2007), we identified regulatory modules defining immunogenic 104 

(IRF1, IRF4) and tolerogenic (IRF4, RELB, ELK1, KRAS, SOX4) LC phenotypes. The model 105 

was used to predict LC transcriptional programmes across abdominal skin, breast skin and 106 

foreskin-derived migrated LC, and provides a mechanistic explanation of how combinatorial 107 

interactions between different transcription factors can coordinate tissue and activation-108 

specific transcriptional programmes in human LCs. 109 

 110 

RESULTS 111 

TNF enhances immunogenic transcriptional programming in migratory LC  112 

In order to mediate protective immune responses, epidermal LCs must respond appropriately 113 

to environmental cues. To investigate transcriptional programmes induced by epidermal pro-114 

inflammatory cytokines in LCs, we performed single cell analysis of human primary migrated 115 

LCs exposed to 24h stimulation with TNF vs unstimulated control. Clustering and 116 

dimensionality reduction analysis of 737 cells (UMAP, ScanPy, version=1.5.0) revealed that 117 

LC migrated from abdominal skin and cultured in the presence or absence of TNF contained 118 

a predominant large cluster, confirmed to be LCs through high expression of MHC II genes 119 

(CD74, HLA-DRB1, HLA-DRB5), as well as two additional populations identified to be 120 

melanocytes (TYRP1, TYR) and T cells (CD3D) (Logistic regression, ScanPy pipeline, 121 

version=1.5.0), which were removed from downstream analysis (Supplementary figure 1A-122 
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C). The heterogeneity of the 737 migrated LCs cultured with or without TNF (unstimulated = 123 

375, TNF stimulated = 362) was then analysed. Overall, the cells appeared relatively 124 

homogeneous, consisting of one overall large population of LCs comprising sub clusters of 125 

unstimulated and TNF stimulated LCs, which appear to diverge away from each other (Figure 126 

1A). Differentially expressed gene (DEG) analysis comparing migrated LCs with and without 127 

TNF identified 61 genes upregulated in unstimulated LCs and 87 genes upregulated in TNF 128 

stimulated LCs (MAST, adj.p-value<0.05, Supplementary figure 1D). Gene ontology analysis 129 

of the 61 genes upregulated in unstimulated LCs showed they were associated with secretion 130 

by cell (adj. P-Value=5.3E-3) and regulation of the immune response (adj. P-Value=5.3E-3, 131 

Figure 1B&C), with the latter influenced by the upregulation of the TF KRAS (Figure 1B, 132 

Supplementary figure 1E). Gene ontology analysis for the 87 genes upregulated in migrated 133 

TNF-stimulated LCs revealed association with cytokine-mediated signalling pathways (adj. 134 

P-Value=2.2E-7) and positive regulation of alpha-beta T cell activation (adj. P-Value=1.5E-135 

4)(Figure 1B&C). This signature was influenced by the expression of the TF IRF1. Using an 136 

immunogenic gene signature comprising genes upregulated in TNF stimulated LC (0hr-24hr 137 

DEGs) from bulk RNA-seq data (Sirvent et al., 2020) and a previously described tolerogenic 138 

gene signature comprising genes associated with dendritic cell tolerogenic function (Davies 139 

et al., 2019) (Supplementary Table 1), z-scores representing the activation of each 140 

programme were calculated for individual LCs (Figure 1D). Differences in z-score 141 

(Immunogenic-tolerogenic) were calculated, with the positive values reflecting LCs with 142 

increased immunogenic signature expression. This revealed that overall, TNF stimulated LCs 143 

display an enhancement for the immunogenic signature (Median = 0.02107) compared to 144 

unstimulated (Median = -0.09535, unpaired t-test, p=<0.001)(Figure 1E). Overall TNF 145 

stimulation enhances LC transcriptomic programmes associated with immunogenic 146 

responses and T cell activation.  147 
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 148 

Figure 1. TNF enhances immunogenic transcriptional programming in migratory LC. 149 
A. UMAP dimensionality reduction analysis of scran-normalised single cell data from 150 
unstimulated (375) and TNF stimulated (362) migrated LCs originating from the same donor.  151 
B. Gene ontology analysis (Toppgene) for the 61 upregulated DEGs in unstimulated migrated 152 
LCs and 87 upregulated DEGs in TNF stimulated migrated LCs (FDR corrected p=<0.05)  153 
C. Trackplots displaying genes included in ontologies upregulated in unstimulated migrated 154 
LC (regulation of immune response) and TNF stimulated migrated LC (positive regulation of 155 
ab T cell activation and cytokine- mediated signalling pathway).  156 
D. UMAP marker plots displaying immunogenic z-scores and tolerogenic signature z-scores 157 
in individual LC. Immunogenic z-scores were derived from the expression of genes identified 158 
to be upregulated in TNF stimulated LC (0hr-24hr DEGs) from bulk RNA-seq data (Sirvent et 159 
al., 2020). Tolerogenic signature z-scores were derived from the expression of genes 160 
associated with dendritic cell tolerogenic function (Davies et al., 2019). 161 
E. Differences in z-scores (immunogenic – tolerogenic z-score) were calculated to compare 162 
the proportion of unstimulated and TNF stimulated migrated LC displaying an elevated 163 
immunogenic profile. Unpaired t-test, ****=p<0.001. 164 
 165 

IRF1 expression controls immunogenic transcriptional programming  166 

To identify the key TF regulators of programming in unstimulated vs TNF-stimulated migrated 167 

LC, SCENIC (Aibar et al., 2017) single cell regulatory network inference analysis was 168 
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performed (Figure 2A, z-score enrichment ³0.1). Here, TNF stimulated LC displayed 169 

enrichment of the IRF1 regulon (Figure 2B, z-score=0.2), which, along with the upregulated 170 

expression of IRF1 from DEG analysis (Figure 2C, MAST), strongly highlighted this TF as 171 

being a candidate critical for immunogenic LC programming. In unstimulated LC, the most 172 

enriched regulon was SOX4, although this enrichment was more moderate (Figure 2A, z-173 

score=0.1). Interestingly, IRF4, which has been demonstrated to be critical for both LC 174 

immunocompetent and tolerogenic programming (Sirvent et al., 2020)(Davies et al., 2019), 175 

displayed homogenous regulon enhancement and expression across both populations 176 

(Supplementary Figure 2A-B). 177 

 178 

Whilst unstimulated LCs displayed significant upregulation of KRAS and enrichment of the 179 

SOX4 regulon, these findings were relatively weak and less exclusive to unstimulated LC in 180 

contrast to the clear upregulation of IRF1 in TNFa stimulated LC (Figure 2B&C, 181 

Supplementary Figure 2B). We therefore explored whether these TFs acted in accordance 182 

with core TF mediators of programming in migrated LC which have previously been 183 

associated with coordinating immunocompetent and tolerogenic regulation, including IRF4, 184 

RELB, ELK1, KLF6 and HMGN3 (Davies et al., 2019). Using partial information 185 

decomposition analysis (PIDC) (Chan, Stumpf and Babtie, 2017) gene regulatory network 186 

inference of the 61 genes upregulated in unstimulated migrated LC, along with KRAS, SOX4, 187 

IRF4, RELB, ELK1, KLF6 and HMGN3, a directed PIDC (TF -> target gene edges only) 188 

network graph depicting regulatory interactions between TFs and target genes was 189 

generated (correlation score >1.5). Here, KRAS and SOX4 could be observed to be 190 

components of a highly interconnected regulatory hub with IRF4, RELB and ELK1 191 

(Supplementary Figure 2C). This regulatory hub could be associated with controlling the 192 

expression of 33 unstimulated LC upregulated genes, highlighting its importance for 193 
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transcriptional programming in unstimulated LC (Supplementary Figure 2D). PIDC analysis 194 

was also performed to identify targets of IRF1 within the TNF-upregulated gene list to discern 195 

the TFs influence on the transcriptomic programming on TNF-stimulated LC. Here, 64/87 196 

(74%) TNF-upregulated genes were identified to be targets of IRF1 (Figure 2D-E). 197 

Furthermore, PIDC analysis of IRF1 along with the core migrated LC TFs and the 87 genes 198 

upregulated in TNF stimulated LC, suggested IRF1 upregulation added an additional layer of 199 

regulation beneath the core network of ELK1, RELB, IRF4 and HMGN3 to mediate 200 

immunostimulatory programming. (Supplementary figure 2E).   201 

Figure 2. IRF1 expression controls immunogenic transcriptional programming.  202 
A. SCENIC regulatory network and inference clustering analysis revealed TF regulons which 203 
were enriched in unstimulated and TNF stimulated migrated LCs. Z-score heatmap (yellow 204 
-> blue) of enriched regulons are displayed (z-score>0.1).  205 
B. UMAP marker plot displaying IRF1 regulon enrichment (z-score) in individual LCs.  206 
C. Violin plot displaying the level of transcriptomic expression of IRF1 in unstimulated and 207 
TNF stimulated migrated LCs, MAST, ****=p<0.001.  208 
D. Venn Diagram displaying the overlap in TNF stimulated LC upregulated genes identified 209 
to be targets of IRF1 in PIDC analysis (edge weight >1).  210 
E. PIDC network graph displaying IRF1 targets (edge weight >1) identified within TNF 211 
stimulated LC upregulated genes. 212 
 213 
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A toggle switch mathematical model predicts immunostimulatory vs tolerogenic 214 

LC phenotypes from single cell transcriptomic data 215 

Single cell analysis revealed distinct programming of unstimulated and TNF-stimulated LCs 216 

determined by differentially regulated TFs. To explore how the balance of LC phenotypes is 217 

controlled, we utilised a tri-stable toggle switch ODE model in which different activation 218 

programmes can be described based on the expression of a selected number of programme 219 

(immunogenic vs tolerogenic) defining TFs (Huang et al., 2007). The ODE model contains 2 220 

equations which each represent the activation of immunogenic (I) and tolerogenic (T) 221 

programmes, respectively (Figure 3A). Each equation contains 3 terms, which represent 222 

auto-amplification (dotted box), cross-inhibition of opposing programmes (dashed box) and 223 

first order state decay (solid box). The model therefore assumes that the regulatory 224 

programmes that define each programme auto-amplify their own expression, whilst inhibiting 225 

the expression of the opposite programme. The tri-stable model describes a phenotypic 226 

‘attractor landscape’ in which LCs can fall into an immunogenic (A), a tolerogenic (B) or an 227 

ambivalent (C, equal ability to stimulate tolerogenic and immunogenic responses) state 228 

(Figure 3B). In the phase portrait, (A) and (B) therefore represent states in which the 229 

expression of TFs from either programme is dominant over the other, whilst (C) represents a 230 

state in which there is balanced expression of both immunogenic and tolerogenic 231 

programmes. The model can therefore be utilised on single cell data to predict the phenotypic 232 

state of individual LCs by plotting single LC trajectories in state space using single cell 233 

expression data z-scores of phenotype-defining TFs. 234 

 235 

The model has been systematically tested by iterative application of distinct transcription 236 

factor combinations (Supplementary Table 2). For defining the immunogenic phenotype, 237 

IRF1 alone or in combination with IRF4 was tested. The inclusion of IRF4 for immunogenic 238 
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regulation was based on previous analysis demonstrating the importance of IRF4 for both 239 

immunizing and tolerizing T cell activation, as well as immunocompetent LC programming 240 

(Vander Lugt et al., 2017)(Sirvent et al., 2020), which was supported by our PIDC analysis 241 

which revealed extensive interconnectivity of these TFs. For defining the tolerogenic 242 

phenotype, combinations of KRAS, SOX4, IRF4, RELB and ELK1 were investigated. To 243 

define the best model however, we reflected on which models best followed the hypothesis 244 

that unstimulated migrated LCs are mutually efficient at inducing immunogenic and 245 

tolerogenic responses. Likewise, the model predictions would need to reflect the differences 246 

in z-score signature enrichment observations, in which TNF stimulated LC exhibited an 247 

increase in immunogenic signatures and a reduction in tolerogenic signatures (Figure 1E). 248 

Overall, many model iterations depicted the observations that the TNF-stimulated LC 249 

population contain increased quantities of immunogenic LCs (Supplementary Table 2). 250 

However, model 14, in which both IRF1 and IRF4 depicted the immunogenic phenotype and 251 

KRAS, SOX4, IRF4, RELB and ELK1 depicted the tolerogenic phenotype, was best at 252 

predicting results in line with both criteria (Figure 3C, Supplementary Table 2). Here, the 253 

relative quantities of immunogenic (34.93%), tolerogenic (33.60%) and ambivalent (31.47%) 254 

LCs in unstimulated LCs was equal, whilst TNF stimulated LCs displayed an increase in 255 

immunogenic (41.99%) and ambivalent (40.05%) programmed LCs and a decrease in 256 

tolerogenic (17.96%) LCs.  257 
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Figure 3. A toggle switch mathematical model predicts immunogenic vs tolerogenic 258 
LC phenotypes from single cell transcriptomic data.  259 
A. Dynamical system representing the activation of immunogenic (I) and tolerogenic (T) 260 
programmes in LCs. The dotted box represents terms describing the auto-amplification of 261 
each respective programme. The dashed box represents terms describing the cross-262 
inhibition from opposing programmes, whilst the solid box depicts the first-order decay rate 263 
(k) for each programme.  264 
B. Phase portrait of the toggle switch model in which the two programmes (immunogenic and 265 
tolerogenic) auto-amplify their own expression and are mutually repressive. Black circles (A, 266 
B and C) represent end points for trajectories at stable attractors representing an 267 
immunogenic programme (A), tolerogenic programme (B) or an ambivalent programme (C). 268 
C. Pie charts summarising the numbers and percentages of LC assigned to each phenotype 269 
through utilising the toggle-switch model for trajectory plotting. For each trajectory, 270 
representing an individual unstimulated or TNF-stimulated LC, the x-axis represents z-scores 271 
combining normalised IRF1/IRF4 expression values; the y-axis represents the z-scores 272 
combining SOX4, KRAS, IRF4, RELB and ELK1 expression values. Z-scores were scaled to 273 
fit phase portrait boundaries. 274 
 275 

IRF1/IRF4 toggle-switch determines body-site specific differences in LC 276 

immunogenic programming 277 
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We next sought to validate the power of the model to predict differences in transcriptomes 278 

from LCs of independent datasets, including a single cell dataset of migrated breast skin-279 

derived and foreskin-derived LC. Comparative analysis of z-score enrichment for 280 

immunogenic vs tolerogenic signatures revealed that foreskin LCs more frequently display a 281 

predominant immunogenic phenotype (Figure 4A, p=0.039). This enhanced immunogenic 282 

programme in foreskin LCs could be seen in the expression of inflammatory pathway-283 

associated transcripts, which importantly, included IRF1 (Figure 4B). The model was then 284 

applied, using the same parameters and TFs as in Figure 3C, to test model predictions of 285 

immunogenic, tolerogenic and ambivalent populations amongst breast skin and foreskin-286 

derived LC. Here the model predicted breast skin LCs to be 9.35% immunogenic, 37.92% 287 

tolerogenic and 52.73% ambivalent, whilst foreskin LCs were predicted to be 16.67% 288 

immunogenic, 29.17% tolerogenic and 54.17% ambivalent (Figure 4C). Model predictions of 289 

increased immunogenicity in foreskin LC therefore reflected transcriptomic observations in 290 

which foreskin derived LC display enhancement of immunogenic programming. 291 
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Figure 4. IRF1/IRF4 toggle-switch determines body-site specific differences in LC 292 
immunogenic programming.  293 
A. Differences in z-scores (immunogenic – tolerogenic z-score) were calculated to quantify 294 
the proportion of breast derived skin and foreskin migrated LCs that display elevated 295 
immunogenic profiles. Unpaired t-test, *=p<0.05.  296 
B. Trackplots comparing the expression of transcripts associated with immunogenic LC 297 
function across breast skin derived and foreskin migrated LCs.  298 
C. Pie charts summarising the numbers and percentages of LC assigned to each phenotype 299 
through utilising the toggle-switch model for trajectory plotting. For each trajectory, 300 
representing an individual breast-derived or foreskin-derived migratory LC, the x-axis 301 
represents z-scores combining normalised IRF1/IRF4 expression values; the y-axis 302 
represents the z-scores combining SOX4, KRAS, IRF4, RELB and ELK1 expression values. 303 
Z-scores were scaled to fit phase portrait boundaries. 304 
 305 

DISCUSSION 306 

Immune cell function and behaviour are encoded by unique transcriptomic expression 307 

profiles – transcriptional programmes (Xue et al., 2014). Changes in the transcriptional 308 

programmes, which reflect status of health or disease or environmental signalling, are 309 

coordinated by gene regulatory networks (GRNs) in which transcription factors (TFs) play an 310 
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essential role (Singh, Khan and Dinner, 2014)(Lin et al., 2015). However, large scale 311 

investigations into the activity of individual GRN components and interactions between 312 

specific modules which underlie different transcriptomic programmes, and in particular the 313 

kinetics in which those programmes are executed, are difficult to investigate using functional 314 

in vitro methods (Ay and Arnosti, 2011). Therefore, mathematical modelling techniques are 315 

increasingly being utilised to counter this problem and include methods such as ordinary 316 

differential equation (ODE) modelling and Petri net modelling (Loriaux and Hoffmann, 317 

2012)(Livigni et al., 2018). Mathematical modelling can permit investigations of dynamic 318 

biological systems in silico to assess how different molecular signals can alter regulatory 319 

network behaviour. For example, Petri net modelling has revealed the LC IRF-GRN 320 

underlying immunogenic immune activation in response to different stimuli (Polak et al., 321 

2017). However, Signalling Petri Net (SPN) and similar methods allow only qualitative 322 

assessment of network behaviour, and limit the strength of predictions. In contrast, ODE 323 

modelling has allowed exploration of small TF networks and specific network elements, such 324 

as positive feedback based switches, which can define cell lineage determination and operon 325 

activation (Huang et al., 2007)(Gardner, Cantor and Collins, 2000).  326 

 327 

In GRNs, TFs act in concert with each other to coordinate different expression programmes. 328 

However, specific cellular phenotypes are determined by the increased expression of specific 329 

phenotype-defining TFs. For example, in macrophages, whilst NFKB1, JUNB and CREB1 330 

define core programmes of activation, STAT4 is specifically upregulated in the context of 331 

chronic inflammation, which correlates with increased expression of a unique gene 332 

expression programme (Xue et al., 2014). 333 

The plasticity of migrated LC to induce both immunogenic and tolerogenic adaptive T cell 334 

responses (Sirvent et al., 2020)(Polak et al., 2014)(Polak et al., 2012)(Klechevsky et al., 335 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2021. ; https://doi.org/10.1101/2021.02.07.430111doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.07.430111
http://creativecommons.org/licenses/by-nd/4.0/


2008)(Davies et al., 2019) has revealed the complexity in discerning the decision-making 336 

process of LCs to drive either immunogenic or tolerogenic responses and has highlighted the 337 

question as to how LCs skew T cell activation to favour responses that are preferential in 338 

different biological contexts such as inflammation. Here we analysed single cell 339 

transcriptomic data arising from unstimulated and TNF-stimulated migrated LC, to discern 340 

the divergent programming of LCs in response to inflammatory stimuli and uncover critical 341 

TFs which govern immunogenic gene regulation.  342 

The epidermal inflammatory cytokine TNF is a powerful mediator of inflammation and its 343 

effects on enhancing LC activation and programming of immunogenic T cells has previously 344 

been demonstrated (Sirvent et al., 2020)(Stoitzner et al., 1999),(Théry and Amigorena, 2001). 345 

Here we demonstrate at the single cell level that, compared to unstimulated LCs, TNF causes 346 

divergent transcriptional programming characterised by upregulation of genes associated 347 

with inflammatory cytokine signalling processes and T cell activation, thus reflecting their 348 

enhanced immunogenic function in vitro. Interestingly whilst the effects of TNF were clear, 349 

there was still significant overlap between the stimulated and unstimulated populations, 350 

suggesting that common transcriptomic features, likely associated with migration and 351 

immunocompetency, were still present. Importantly, as highlighted from our analysis, the TF 352 

IRF1 was revealed to be a critical component of the TNF-enhanced transcriptomic 353 

programme, which appeared to be projected onto the core migrated LC transcriptional 354 

network to enhance immunogenic programming. The association of IRF1 with inflammatory 355 

pathway activation has been observed in other systems. In DCs, TLR-9-mediated IRF1 356 

induction leads to the induction of IFNg and interferon-stimulated genes, driving efficient anti-357 

viral immune responses (Schmitz et al., 2007). IRF1 activation in macrophages is associated 358 

with the polarisation of macrophages towards the pro-inflammatory M1 phenotype 359 

(Chistiakov et al., 2018). In fibroblast like synoviocytes (FLS), which are implicated in the 360 
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inflammation in rheumatoid arthritis, TNF-mediated induction of IRF1 leads to induction of 361 

inflammatory mediators, such as IFNg (Bonelli et al., 2019). In contrast, IRF4 has been 362 

conclusively demonstrated as a transcription factor critical for LC immunocompetent 363 

programming and DC capacity to induce immunogenic T cell activation (Vander Lugt et al., 364 

2017)(Sirvent et al., 2020). Therefore, we hypothesised that together, IRF1 and IRF4 365 

complementarily coordinate LC immunogenic programming. In our model, while expression 366 

of IRF4 induces LC maturation and immune-competence, expression of IRF1, induced by 367 

TNF signalling, fine-tunes the programmes towards immunogenicity. Additionally, we 368 

revealed that in unstimulated LCs, KRAS and SOX4 interact with components of a core 369 

network of TFs enhanced upon LC migration (IRF4, RELB and ELK1), previously 370 

demonstrated to be responsible for immunocompetent and tolerogenic regulation (Davies et 371 

al., 2019). This revealed the preference by unstimulated, migrated LC, for homeostatic 372 

regulation as compared to the immunogenic regulation enhanced in TNF-stimulated, 373 

migrated LC.  374 

In vivo analysis of LC behaviour in humans is unfeasible and in vitro methods to observe 375 

phenotypic behaviours are constrained. The utilisation of mathematical modelling is therefore 376 

fundamental to augmenting comprehension of phenotypic programmes of LC in situ. 377 

Importantly, interpretation of transcriptomic observations in light of a well-established toggle-378 

switch model of general cell fate specification (Huang et al., 2007) permitted an 379 

unprecedented opportunity to explore the determinants regulating immunogenic vs 380 

tolerogenic programmes in LC. Analysis of this model indicates that 3 stable phenotypes are 381 

possible, which could reflect the phenotypic landscape in which LC can adopt  predominantly 382 

immunogenic or tolerogenic programmes, or an intermediate ambivalent programme, in 383 

which immunogenic and tolerogenic activation are mutually present and in balance. Such 384 

“multilineage priming” is common in cell fate switches and may have an important role in 385 
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regulating LC fate decisions. Using the model in which IRF1/IRF4 determine immunogenicity 386 

and KRAS/SOX4/IRF4/RELB/ELK1 determine tolerogenicity, we demonstrated that model 387 

predictions were reflective of our transcriptomic data.  Moreover, the model allowed prediction 388 

of in vitro phenotypic features of enhanced immunogenicity in TNF stimulated LC (Sirvent et 389 

al., 2020)(Polak et al., 2014). 390 

The foreskin microenvironment is associated with increased need for effective anti-microbial 391 

responses and is reported to be a pro-inflammatory/ immunologically active tissue marked 392 

by elevated pro-inflammatory cytokines and infiltration of effector immune cells (Prodger et 393 

al., 2012)(Sennepin et al., 2017)(Zhou et al., 2011)(Gray et al., 2020). Apart from baseline 394 

and mitogen-induced TNF and IFNg secretion by foreskin CD8 T cells being higher than levels 395 

secreted by CD8 T cells in the blood (Prodger et al., 2012), the foreskin is most likely in a 396 

consistent state of inflammation being driven by infiltrating T cells and elevated LC’s upon 397 

exposure to a multitude of microbial stimuli (Gray et al., 2020). These inflammatory-398 

associated characteristics of the foreskin site were reflected in transcriptomic observations 399 

made during comparison of LC derived from breast skin and foreskin, in which immunogenic 400 

programming was enhanced in foreskin LC. Here, we again showed that model predictions 401 

were reflective of transcriptomic observations, highlighting the power of the model across 402 

anatomically diverse LC datasets.  403 

Overall, we have shown that epidermal signalling, such as pro-inflammatory TNF, can 404 

modulate the proportion of LCs exhibiting different immunological programmes. This may 405 

therefore, reflect how LCs balance the need for different immunological responses to diverse 406 

biological stimuli. Furthermore, we have highlighted specific TF regulators critical for the 407 

modulation of both immunogenic and tolerogenic LC programmes, which, when translated 408 

into a mathematical model, have demonstrated the potential to predict LC phenotypes across 409 

different LC transcriptomic datasets. This opens opportunities to apply the model for 410 
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predicting LC activation states and behaviour across different biological contexts in health 411 

and disease, and provides a tool for assessment of LC activation status in human skin. 412 

 413 

METHODS 414 

Human LC isolation: Human skin abdominoplasty samples were collected with written 415 

consent from donors with approval by the South East Coast - Brighton & Sussex Research 416 

Ethics Committee in adherence to Helsinki Guidelines [ethical approvals: REC approval: 417 

16/LO/0999). Fat and lower dermis was cut away and discarded before dispase (2 U/ml, 418 

Gibco, UK, 20h, +4°C) digestion. Foreskin tissue was collected from the Medical Male 419 

Circumcision HIV prevention programme in Cape Town, South Africa. Tissue was collected 420 

with consent and approved by the University of Cape Town [ethics approvals HREC: 421 

566/2012]. Inner and outer foreskin was dissected and processed in an identical manner to 422 

the abdominoplasty samples. Migrated LCs were extracted from epidermal explant sheets 423 

cultured in media (RPMI, Gibco, UK, 5% FBS, Invitrogen, UK, 100 IU/ml penicillin and 100 424 

mg/ml streptomycin, Sigma, UK) for 48 hours. Migrated LC were purified through 425 

fluorescence-activated cell sorting (FACS). TNF stimulated migrated LCs were incubated for 426 

24 hours with 25ng/ml TNFα. Antibodies used for cell staining were pre-titrated and used at 427 

optimal concentrations. A FACS Aria flow cytometer (Becton Dickinson, USA) and FlowJo 428 

software was used for analysis. For FACS purification LCs were stained for CD207 (anti-429 

CD207 PeVio700), CD1a (anti-CD1a VioBlue) and HLA-DR (anti-HLA-DR Viogreen, Miltenyi 430 

Biotech, UK). 431 

 432 

Drop-seq: After FACS purification, single LCs were co-encapsulated with primer coated 433 

barcoded Bead SeqB (Chemgenes, USA) within 1 nL droplets (Drop-seq). Drop-seq 434 

microfluidic devices according to the design of Macosko et al. were fabricated by soft 435 
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lithography, oxygen plasma bonded to glass slides and functionalised with fluorinated silane 436 

(1% (v/v) trichloro(1H,1H,2H,2H-perfluorooctyl)silane in HFE-7500 carrier oil). Open 437 

instrumentation syringe pumps and microscopes (see dropletkitchen.github.io) were used to 438 

generate and observe droplets, using conditions and concentrations according to the Drop-439 

seq protocol, 607 steady-state LC and 208 migrated LC from mastectomy skin were 440 

converted into ‘STAMPs’ for PCR library amplification (High Sensitivity DNA Assay, Agilent 441 

Bioanalyser) and tagmentation (Nextera XT, Illumina, UK). Sequencing of libraries was 442 

executed using NextSeq on a paired end run (1.5x10E5 reads for maximal coverage) at the 443 

Wessex Investigational Sciences Hub laboratory, University of Southampton.  444 

 445 

Transcriptomic  data analysis: The Drop-seq protocol from the McCarrol lab was followed 446 

for converting sequencer output into gene expression data. The bcl2fastq tool from Illumina 447 

was used to demultiplex files, remove UMIs from reads and deduce captured transcript reads. 448 

Reads were then aligned to human hg19 reference genome using STAR. Analyses was 449 

performed using the python-based Scanpy pipeline(version 1.5.0), (Wolf, Angerer and Theis, 450 

2018). High quality barcodes, discriminated from background RNA barcodes, were selected 451 

based on the overall UMI distribution using EmptyDrops (Lun et al., 2019). Low quality cells, 452 

with a high fraction of counts from mitochondrial genes (20% or more) indicating stressed or 453 

dying cells were removed. In addition, genes with expression detected in <10 cells were 454 

excluded. Datasets were normalised using scran, using rpy2 within python (Lun, Bach and 455 

Marioni, 2016). Highly variable genes (top 2000) were selected using distribution criteria: 456 

min_mean=0, max_mean=4, min_disp=0.1. A single-cell neighbourhood graph was 457 

computed on the first principal components that sufficiently explain the variation in the data 458 

using 10 nearest neighbours. Uniform Manifold Approximation and Projection (UMAP) was 459 

performed for dimensionality reduction. The Leiden algorithm (Traag, Waltman and van Eck, 460 
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2019) was used to identify clusters within cell populations (Leiden r = 0.5, n_pcs=30). 461 

Differentially expressed genes (DEGs) between cell clusters were identified using MAST 462 

(FDR corrected p-value<0.01, logFC>1). Gene ontology analysis was performed using 463 

Toppgene (FDR corrected p-value<0.05), describing biological pathways associated with 464 

gene lists. Z-scores for tolerogenic and immunogenic gene signatures were calculated for 465 

each single LC. Tolerogenic signature was composed of genes identified to be associated 466 

with DC tolerogenic function and previously shown to be enriched in tolerogenic migrated LC 467 

(Davies et al., 2019). The immunogenic signature was composed of 0-24 hour TNFa 468 

stimulated LC upregulated DEGs, identified from bulk RNA-seq data (Sirvent et al., 2020). 469 

To differentiate LC with predominantly immunogenic or tolerogenic transcriptomic expression 470 

profiles immunogenic – tolerogenic z-scores were calculates for each single cell. The more 471 

positive the difference in z-score values, the more immunogenic and the more negative the 472 

difference in z-scores, the more tolerogenic. Regulatory network inference analysis was 473 

performed using single-cell regulatory network inference and clustering (SCENIC) within 474 

python (Aibar et al., 2017).  475 

 476 

Directional PIDC: Notebooks from Chan et al. were adapted for the analysis and run using 477 

Julia V 1.0.5 in Jupyter Notebook. Directional network inference of IRF1 with TNF stimulated 478 

LC upregulated DEGs was performed using PIDC algorithm (Chan, Stumpf and Babtie, 2017) 479 

using scran-normalised expression data. Inference of unstimulated and TNF stimulated 480 

migrated LC TF -> target networks was performed using scran-normalised expression data 481 

of core LC TFs (Davies et al., 2019), plus IRF1 in TNF stimulated LC and the upregulated 482 

DEGs for unstimulated and TNF stimulated LCs, respectively. Edge weights were exported, 483 

and sorted to include only transcription factors as targets. Hierarchical network was visualised 484 

using yED. 485 
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 486 

Mathematical modelling: The toggle-switch ODE model was adapted from Huang et al. 487 

(Huang et al., 2007), in which the observed functional interactions are depicted in an 488 

‘influence’ network, rather than molecular mechanisms of interaction. The model is 489 

constructed from two first order ODEs which govern changes in immunogenic and tolerogenic 490 

programmes respectively. Each ODE is composed of 3 terms, with the regulatory influences 491 

modelled using Hill functions to describe sigmoidal associations. The first term describes 492 

auto-amplification of each programme; the second term describes the cross inhibition 493 

between opposing programmes; the final term allows for programme decay at a constant 494 

rate. 495 

 To make a more parsimonious model we assumed that the parameters that characterise 496 

generic interactions are constant (i.e. a,b,k=1, n=4 and q=0.5) in accordance with these 497 

parameters creating a stable attractor landscape containing 3 states as described in (Huang 498 

et al.). 499 

 500 

Analysis and plotting of the ODE model was performed within MATLAB (Mathworks, Inc.). 501 

Trajectories were found using the ode45 solver and phase portraits were produced using the 502 

quiver command. TF expression values or z-scores representing expression of multiple 503 

TFs in each single cell were exported from Scanpy scRNA-seq analysis, scaled to fit phase 504 

portrait boundaries and then utilised as time 0 starting points from which trajectories were 505 

calculated and plotted. The total number of cells trajectories ending at each of the 3 attractors 506 

after simulation was quantified and then plotted as pie charts in GraphPad Prism 8 software 507 

for comparison. 508 

 509 
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Supplementary figure 1. TNF enhances immunogenic transcriptional programming in 536 

migratory LC. A. UMAP dimensionality reduction analysis of  epidermal cell populations 537 

detected 3 distinct subclusters of cells. B. Top 10 markers genes for clusters 1-3 (t-test, 538 

ScanPy pipeline, version=1.5.0), revealed populations to be LCs (cluster 1), melanocytes 539 

(cluster 2) and T cells (cluster 3) C. UMAP marker plots displaying the expression of the LC 540 

marker HLA-DRB1, the T cell marker CD3D and the melanocyte marker TYRP1. D. Heatmap 541 

displaying the 61 upregulated DEGs in unstimulated migrated LCs and 87 upregulated DEGs 542 

in TNF stimulated migrated LCs (FDR corrected p=<0.01, logFC>1). Gene ontology analysis 543 

(Toppgene) results are displayed alongside for unstimulated and TNF stimulated migrated 544 

LC upregulated DEGs (-log10 FDR corrected p-values)  E. Violin plot of KRAS expression in 545 

unstimulated and TNFa stimulated migrated LC.  546 

 547 

 548 

 549 
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Supplementary figure 2. IRF1 expression controls immunogenic transcriptional 550 

programming. A. UMAP marker plot displaying IRF4 regulon enhancement (z-scores) within 551 

individual LCs. B. Violin plot of IRF4 expression in unstimulated and TNF stimulated migrated 552 

LCs. MAST, ****=p<0.001. C. PIDC network graph displaying connectivity (edge weight >1.5) 553 

between a regulatory module comprising of SOX4, KRAS, IRF4, RELB and ELK1 in 554 

unstimulated migrated LCs. D. PIDC network graph comprising 38 nodes (5 TFs, 33 output 555 

genes) and 107 edges with weight >1.5, hierarchically organized, displaying predicted 556 

regulatory modules for the regulatory TF module from Supplementary Figure 2C along with 557 

upregulated DEGs in unstimulated LCs. E. PIDC network graph comprising 58 nodes (5 TFs, 558 

53 output genes) and 122 edges with weight >1.5, hierarchically organized, displaying 559 

predicted regulatory modules for IRF1 and TFs core to migrated LC (IRF4, HMGN3, ELK1 560 

and RELB), along with upregulated DEGs in TNF stimulated migrated LCs. 561 

 562 

 563 
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