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ABSTRACT

Langerhans cells (LCs) reside in the epidermis as a dense network of immune system
sentinels, coordinating both immunogenic and tolerogenic immune responses. To determine
molecular switches directing induction of LC immune activation, we performed mathematical
modelling of gene regulatory networks identified by single cell RNA sequencing of LCs
exposed to TNF, a key pro-inflammatory signal produced by the skin. Our approach
delineated three programmes of LC phenotypic activation (immunogenic, tolerogenic or
ambivalent), and confirmed that TNF enhanced LC immunogenic programming. Through
regulon analysis followed by mutual information modelling, we identified /RF1 as the key
transcription factor for the regulation of immunogenicity in LCs. Application of a mathematical
toggle switch model, coupling IRF1 with tolerance-inducing transcription factors, determined
the key set of transcription factors regulating the switch between tolerance and
immunogenicity, and correctly predicted LC behaviour in LCs derived from different body
sites. Our findings provide a mechanistic explanation of how combinatorial interactions
between different transcription factors can coordinate specific transcriptional programmes in
human LCs, interpreting the microenvironmental context of the local tissue

microenvironments.
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INTRODUCTION

Langerhans cells (LCs) act as immune sentinels at the epidermis and, through antigen
presenting function, are responsible for maintaining tissue immune homeostasis (Nestle et
al., 2009). In the steady-state, a network of LCs resides within the dense assembly of
epidermal keratinocytes (KCs), sensing the environment and capturing antigens through
intercellular extension and retraction of dendritic processes (Clausen and Stoitzner, 2015).
On encounter with antigen, LCs cease to phagocytose and instead upregulate pathways
associated with maturation, including MHC Il antigen presentation, T cell co-stimulation and
migration to local lymph nodes for priming of T cell immunity (Reis e Sousa, Stahl and Austyn,
1993). In the context of diverse signalling from the external environment and epidermal
microenvironment, LCs can promote immunogenic responses to protect against harmful
pathogens, or promote tolerogenic responses to prevent unwarranted inflammation to self-
antigen and innocuous agents (Polak et al., 2017)(Sirvent et al., 2020)(Clayton et al.,
2017)(Banchereau and Steinman, 1998). The correct orchestration of immunogenic vs
tolerogenic responses by LCs to the different stimuli they encounter is therefore expected to
be fundamental to the maintenance of skin health. However, the molecular mechanisms for

this decision-making process are largely unknown.

Recent investigations by us and others characterised plasticity in LC-driven adaptive immune
responses, dependent on LC activation state and signalling from the skin microenvironment.
In the absence of inflammation, migratory LC are marked with enhanced expression of
immunocompetency genes and they preferentially promote induction of Th2 CD4+ T cell
responses (Sirvent et al., 2020)(Polak et al., 2014)(Polak et al., 2012)(Klechevsky et al.,
2008), and tolerogenic FOXP3+ Treg responses (Davies et al., 2019)(Seneschal et al.,

2012)(Kitashima et al., 2018). In contrast, with TNF signalling, LC immunogenicity is
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enhanced (Barker et al., 1991). TNF is a skin proinflammatory cytokine, which is produced
by epidermal KCs, as well as dermal DCs, plasmacytoid DCs (pDCs) and NK cells
(Cumberbatch, Dearman and Kimber, 1997)(Singh et al., 2016)(Hjorton et al., 2018) in
response to immunogenic stimuli. TNF stimulation of migratory LC heightens their ability to
drive CD8 T cell activity through antigen cross-presentation (Sirvent et al., 2020)(Polak et al.,
2014)(Polak et al., 2012). Consistent with enhanced T cell activation, TNF stimulation
promotes the upregulation of costimulatory molecules and maturation markers in LC, as well
as promoting migration (Berthier-Vergnes et al., 2005)(Cumberbatch et al., 1999)(Epaulard
et al., 2014). Furthermore, TNF signalling augments LC mediated anti-viral immunity to
human immunodeficiency virus (HIV), Influenza and Epstein-Barr virus (EBV) antigen

(Epaulard et al., 2014)(Polak et al., 2017).

Immune cell function and changes in behaviour, such as the ones observed for LCs, are
encoded by unique transcriptomic expression profiles — transcriptional programmes (Sirvent
et al., 2020)(Xue et al., 2014)(Werner, Barken and Hoffmann, 2005)(Hoffmann et al., 2002).
These transcriptional programmes are coordinated by gene regulatory networks (GRNSs) in
which transcription factors (TFs) cooperate to define a specific, signal-induced immune
outcome (Singh, Khan and Dinner, 2014)(Lin et al., 2015). Importantly, interactions with the
external environment, tissue status (health or disease) or local microenvironmental signalling,
can directly regulate the behaviour of GRN, alter transcriptional programmes and induce

functional changes in cells.

Thus, we hypothesised that the decision-making process of LC-driven immunity is
determined by the context of the signalling environment, through alteration of transcriptional

programmes underpinning LC activation. We assumed that, while spontaneous migration in
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the absence of pro-inflammatory signalling reflects the scenario in which LCs mediate
peripheral immune homeostasis, TNF signalling favours immunogenicity. We sought to
identify specific TFs defining immunogenic and tolerogenic programmes in LCs and to
determine the regulatory interactions between the phenotype-defining TFs. Combining single
cell transcriptome analyses with a published toggle switch ordinary differential equation
(ODE) model defining two divergent sets of TF expression, containing self-amplification and
mutual inhibition (Huang et al., 2007), we identified regulatory modules defining immunogenic
(IRF1, IRF4) and tolerogenic (IRF4, RELB, ELK1, KRAS, SOX4) LC phenotypes. The model
was used to predict LC transcriptional programmes across abdominal skin, breast skin and
foreskin-derived migrated LC, and provides a mechanistic explanation of how combinatorial
interactions between different transcription factors can coordinate tissue and activation-

specific transcriptional programmes in human LCs.

RESULTS

TNF enhances immunogenic transcriptional programming in migratory LC

In order to mediate protective immune responses, epidermal LCs must respond appropriately
to environmental cues. To investigate transcriptional programmes induced by epidermal pro-
inflammatory cytokines in LCs, we performed single cell analysis of human primary migrated
LCs exposed to 24h stimulation with TNF vs unstimulated control. Clustering and
dimensionality reduction analysis of 737 cells (UMAP, ScanPy, version=1.5.0) revealed that
LC migrated from abdominal skin and cultured in the presence or absence of TNF contained
a predominant large cluster, confirmed to be LCs through high expression of MHC Il genes
(CD74, HLA-DRB1, HLA-DRBS), as well as two additional populations identified to be
melanocytes (TYRP1, TYR) and T cells (CD3D) (Logistic regression, ScanPy pipeline,

version=1.5.0), which were removed from downstream analysis (Supplementary figure 1A-
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C). The heterogeneity of the 737 migrated LCs cultured with or without TNF (unstimulated =
375, TNF stimulated = 362) was then analysed. Overall, the cells appeared relatively
homogeneous, consisting of one overall large population of LCs comprising sub clusters of
unstimulated and TNF stimulated LCs, which appear to diverge away from each other (Figure
1A). Differentially expressed gene (DEG) analysis comparing migrated LCs with and without
TNF identified 61 genes upregulated in unstimulated LCs and 87 genes upregulated in TNF
stimulated LCs (MAST, adj.p-value<0.05, Supplementary figure 1D). Gene ontology analysis
of the 61 genes upregulated in unstimulated LCs showed they were associated with secretion
by cell (adj. P-Value=5.3E-3) and regulation of the immune response (adj. P-Value=5.3E-3,
Figure 1B&C), with the latter influenced by the upregulation of the TF KRAS (Figure 1B,
Supplementary figure 1E). Gene ontology analysis for the 87 genes upregulated in migrated
TNF-stimulated LCs revealed association with cytokine-mediated signalling pathways (adj.
P-Value=2.2E-7) and positive regulation of alpha-beta T cell activation (adj. P-Value=1.5E-
4)(Figure 1B&C). This signature was influenced by the expression of the TF IRF1. Using an
immunogenic gene signature comprising genes upregulated in TNF stimulated LC (Ohr-24hr
DEGs) from bulk RNA-seq data (Sirvent et al., 2020) and a previously described tolerogenic
gene signature comprising genes associated with dendritic cell tolerogenic function (Davies
et al., 2019) (Supplementary Table 1), z-scores representing the activation of each
programme were calculated for individual LCs (Figure 1D). Differences in z-score
(Immunogenic-tolerogenic) were calculated, with the positive values reflecting LCs with
increased immunogenic signature expression. This revealed that overall, TNF stimulated LCs
display an enhancement for the immunogenic signature (Median = 0.02107) compared to
unstimulated (Median = -0.09535, unpaired t-test, p=<0.001)(Figure 1E). Overall TNF
stimulation enhances LC transcriptomic programmes associated with immunogenic

responses and T cell activation.
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Figure 1. TNF enhances immunogenic transcriptional programming in migratory LC.
A. UMAP dimensionality reduction analysis of scran-normalised single cell data from
unstimulated (375) and TNF stimulated (362) migrated LCs originating from the same donor.
B. Gene ontology analysis (Toppgene) for the 61 upregulated DEGs in unstimulated migrated
LCs and 87 upregulated DEGs in TNF stimulated migrated LCs (FDR corrected p=<0.05)

C. Trackplots displaying genes included in ontologies upregulated in unstimulated migrated
LC (regulation of immune response) and TNF stimulated migrated LC (positive regulation of
off T cell activation and cytokine- mediated signalling pathway).

D. UMAP marker plots displaying immunogenic z-scores and tolerogenic signature z-scores
in individual LC. Immunogenic z-scores were derived from the expression of genes identified
to be upregulated in TNF stimulated LC (Ohr-24hr DEGs) from bulk RNA-seq data (Sirvent et
al., 2020). Tolerogenic signature z-scores were derived from the expression of genes
associated with dendritic cell tolerogenic function (Davies et al., 2019).

E. Differences in z-scores (immunogenic — tolerogenic z-score) were calculated to compare
the proportion of unstimulated and TNF stimulated migrated LC displaying an elevated
immunogenic profile. Unpaired t-test, ****=p<0.001.

IRF1 expression controls immunogenic transcriptional programming

To identify the key TF regulators of programming in unstimulated vs TNF-stimulated migrated

LC, SCENIC (Aibar et al., 2017) single cell regulatory network inference analysis was
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performed (Figure 2A, z-score enrichment >0.1). Here, TNF stimulated LC displayed
enrichment of the /IRF1 regulon (Figure 2B, z-score=0.2), which, along with the upregulated
expression of IRF1 from DEG analysis (Figure 2C, MAST), strongly highlighted this TF as
being a candidate critical for immunogenic LC programming. In unstimulated LC, the most
enriched regulon was SOX4, although this enrichment was more moderate (Figure 2A, z-
score=0.1). Interestingly, IRF4, which has been demonstrated to be critical for both LC
immunocompetent and tolerogenic programming (Sirvent et al., 2020)(Davies et al., 2019),
displayed homogenous regulon enhancement and expression across both populations

(Supplementary Figure 2A-B).

Whilst unstimulated LCs displayed significant upregulation of KRAS and enrichment of the
SOX4 regulon, these findings were relatively weak and less exclusive to unstimulated LC in
contrast to the clear upregulation of IRF1 in TNFa stimulated LC (Figure 2B&C,
Supplementary Figure 2B). We therefore explored whether these TFs acted in accordance
with core TF mediators of programming in migrated LC which have previously been
associated with coordinating immunocompetent and tolerogenic regulation, including /IRF4,
RELB, ELK1, KLF6 and HMGN3 (Davies et al., 2019). Using partial information
decomposition analysis (PIDC) (Chan, Stumpf and Babtie, 2017) gene regulatory network
inference of the 61 genes upregulated in unstimulated migrated LC, along with KRAS, SOX4,
IRF4, RELB, ELK1, KLF6 and HMGNS3, a directed PIDC (TF -> target gene edges only)
network graph depicting regulatory interactions between TFs and target genes was
generated (correlation score >1.5). Here, KRAS and SOX4 could be observed to be
components of a highly interconnected regulatory hub with IRF4, RELB and ELK1
(Supplementary Figure 2C). This regulatory hub could be associated with controlling the

expression of 33 unstimulated LC upregulated genes, highlighting its importance for
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transcriptional programming in unstimulated LC (Supplementary Figure 2D). PIDC analysis
was also performed to identify targets of IRF 1 within the TNF-upregulated gene list to discern
the TFs influence on the transcriptomic programming on TNF-stimulated LC. Here, 64/87
(74%) TNF-upregulated genes were identified to be targets of IRF1 (Figure 2D-E).
Furthermore, PIDC analysis of IRF1 along with the core migrated LC TFs and the 87 genes
upregulated in TNF stimulated LC, suggested IRF1 upregulation added an additional layer of
regulation beneath the core network of ELK1, RELB, IRF4 and HMGN3 to mediate

immunostimulatory programming. (Supplementary figure 2E).
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genes (87)
Unstimulated - 0.1 01 | 0.1
m
3
g
TNFa stimulated - 0.1 0.1 0.1 0.1 0.1 3
3
ATF4_(+) CREBL2_(+) FOXP1_(+) IRF1_(+) KLF10_(+) MXI1_(+) POU2F1_(+) SOX4_(+) ZEB1 (+) E)
oooooooooooooo = & RHOG
CD40 EPSTI1
BASP1 GRsF1 | | 0| uTAF
CFLAR
CED El ues
RC1
B) C) FUS  pppaRSC RCKS!
Regulon(IRF1_(+
g ( (+)) 0.07 o RHOF  \iep2
25 GEl
0.06 KRRk SAMSN1
RCSD1 cs
0.05 2.0+
. > > ' - CREG
- HMGN3-
N 0.0 IRF1 PTK2E
§ . ‘: - 104 HMSD SNX11
S5(-% o’ 0.03 ’ MT.NDI
ail } OSTF1
& e 0.02 0.5 DUSP1 AC023237.1
e 3 DNAJC21
¢ 0.01 0.0 SOD2 CTD.2192)16.22
o LA2G.
0.00 Unstimulated TNFastimulated sk

UMAP1 : ATP6VIGL TRAFD1 - cygsa

LLLLLL
TMSBAY —

HNRNPDL

A2
NFKBIA| RABOA | NT> TMEM150C
SLAMF7
E8I3
LYST  NAA25  SOCS1

Figure 2. IRF1 expression controls immunogenic transcriptional programming.

A. SCENIC regulatory network and inference clustering analysis revealed TF regulons which
were enriched in unstimulated and TNF stimulated migrated LCs. Z-score heatmap (yellow
-> blue) of enriched regulons are displayed (z-score>0.1).

B. UMAP marker plot displaying IRF1 regulon enrichment (z-score) in individual LCs.

C. Violin plot displaying the level of transcriptomic expression of /IRF1 in unstimulated and
TNF stimulated migrated LCs, MAST, ****=p<0.001.

D. Venn Diagram displaying the overlap in TNF stimulated LC upregulated genes identified
to be targets of IRF1 in PIDC analysis (edge weight >1).

E. PIDC network graph displaying IRF1 targets (edge weight >1) identified within TNF
stimulated LC upregulated genes.
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A toggle switch mathematical model predicts immunostimulatory vs tolerogenic

LC phenotypes from single cell transcriptomic data

Single cell analysis revealed distinct programming of unstimulated and TNF-stimulated LCs
determined by differentially regulated TFs. To explore how the balance of LC phenotypes is
controlled, we utilised a tri-stable toggle switch ODE model in which different activation
programmes can be described based on the expression of a selected number of programme
(immunogenic vs tolerogenic) defining TFs (Huang et al., 2007). The ODE model contains 2
equations which each represent the activation of immunogenic (/) and tolerogenic (T)
programmes, respectively (Figure 3A). Each equation contains 3 terms, which represent
auto-amplification (dotted box), cross-inhibition of opposing programmes (dashed box) and
first order state decay (solid box). The model therefore assumes that the regulatory
programmes that define each programme auto-amplify their own expression, whilst inhibiting
the expression of the opposite programme. The tri-stable model describes a phenotypic
‘attractor landscape’ in which LCs can fall into an immunogenic (A), a tolerogenic (B) or an
ambivalent (C, equal ability to stimulate tolerogenic and immunogenic responses) state
(Figure 3B). In the phase portrait, (A) and (B) therefore represent states in which the
expression of TFs from either programme is dominant over the other, whilst (C) represents a
state in which there is balanced expression of both immunogenic and tolerogenic
programmes. The model can therefore be utilised on single cell data to predict the phenotypic
state of individual LCs by plotting single LC trajectories in state space using single cell

expression data z-scores of phenotype-defining TFs.

The model has been systematically tested by iterative application of distinct transcription
factor combinations (Supplementary Table 2). For defining the immunogenic phenotype,

IRF1 alone or in combination with /IRF4 was tested. The inclusion of /IRF4 for immunogenic
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regulation was based on previous analysis demonstrating the importance of /RF4 for both
immunizing and tolerizing T cell activation, as well as immunocompetent LC programming
(Vander Lugt et al., 2017)(Sirvent et al., 2020), which was supported by our PIDC analysis
which revealed extensive interconnectivity of these TFs. For defining the tolerogenic
phenotype, combinations of KRAS, SOX4, IRF4, RELB and ELK1 were investigated. To
define the best model however, we reflected on which models best followed the hypothesis
that unstimulated migrated LCs are mutually efficient at inducing immunogenic and
tolerogenic responses. Likewise, the model predictions would need to reflect the differences
in z-score signature enrichment observations, in which TNF stimulated LC exhibited an
increase in immunogenic signatures and a reduction in tolerogenic signatures (Figure 1E).
Overall, many model iterations depicted the observations that the TNF-stimulated LC
population contain increased quantities of immunogenic LCs (Supplementary Table 2).
However, model 14, in which both /IRF1 and /IRF4 depicted the immunogenic phenotype and
KRAS, SOX4, IRF4, RELB and ELK1 depicted the tolerogenic phenotype, was best at
predicting results in line with both criteria (Figure 3C, Supplementary Table 2). Here, the
relative quantities of immunogenic (34.93%), tolerogenic (33.60%) and ambivalent (31.47%)
LCs in unstimulated LCs was equal, whilst TNF stimulated LCs displayed an increase in
immunogenic (41.99%) and ambivalent (40.05%) programmed LCs and a decrease in

tolerogenic (17.96%) LCs.
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258 Figure 3. A toggle switch mathematical model predicts immunogenic vs tolerogenic
259 LC phenotypes from single cell transcriptomic data.

260 A. Dynamical system representing the activation of immunogenic (I) and tolerogenic (T)
261 programmes in LCs. The dotted box represents terms describing the auto-amplification of
262  each respective programme. The dashed box represents terms describing the cross-
263 inhibition from opposing programmes, whilst the solid box depicts the first-order decay rate
264 (k) for each programme.

265 B. Phase portrait of the toggle switch model in which the two programmes (immunogenic and
266  tolerogenic) auto-amplify their own expression and are mutually repressive. Black circles (A,
267 B and C) represent end points for trajectories at stable attractors representing an
268 immunogenic programme (A), tolerogenic programme (B) or an ambivalent programme (C).
269 C. Pie charts summarising the numbers and percentages of LC assigned to each phenotype
270 through utilising the toggle-switch model for trajectory plotting. For each trajectory,
271  representing an individual unstimulated or TNF-stimulated LC, the x-axis represents z-scores
272 combining normalised IRF1/IRF4 expression values; the y-axis represents the z-scores
273  combining SOX4, KRAS, IRF4, RELB and ELK1 expression values. Z-scores were scaled to
274  fit phase portrait boundaries.

275

276 IRF1/IRF4 toqggle-switch determines body-site specific differences in LC

277 immunogenic programming
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We next sought to validate the power of the model to predict differences in transcriptomes
from LCs of independent datasets, including a single cell dataset of migrated breast skin-
derived and foreskin-derived LC. Comparative analysis of z-score enrichment for
immunogenic vs tolerogenic signatures revealed that foreskin LCs more frequently display a
predominant immunogenic phenotype (Figure 4A, p=0.039). This enhanced immunogenic
programme in foreskin LCs could be seen in the expression of inflammatory pathway-
associated transcripts, which importantly, included /IRF1 (Figure 4B). The model was then
applied, using the same parameters and TFs as in Figure 3C, to test model predictions of
immunogenic, tolerogenic and ambivalent populations amongst breast skin and foreskin-
derived LC. Here the model predicted breast skin LCs to be 9.35% immunogenic, 37.92%
tolerogenic and 52.73% ambivalent, whilst foreskin LCs were predicted to be 16.67%
immunogenic, 29.17% tolerogenic and 54.17% ambivalent (Figure 4C). Model predictions of
increased immunogenicity in foreskin LC therefore reflected transcriptomic observations in

which foreskin derived LC display enhancement of immunogenic programming.
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Figure 4. IRF1/IRF4 toggle-switch determines body-site specific differences in LC
immunogenic programming.

A. Differences in z-scores (immunogenic — tolerogenic z-score) were calculated to quantify
the proportion of breast derived skin and foreskin migrated LCs that display elevated
immunogenic profiles. Unpaired t-test, *=p<0.05.

B. Trackplots comparing the expression of transcripts associated with immunogenic LC
function across breast skin derived and foreskin migrated LCs.

C. Pie charts summarising the numbers and percentages of LC assigned to each phenotype
through utilising the toggle-switch model for trajectory plotting. For each trajectory,
representing an individual breast-derived or foreskin-derived migratory LC, the x-axis
represents z-scores combining normalised IRF1/IRF4 expression values; the y-axis
represents the z-scores combining SOX4, KRAS, IRF4, RELB and ELK1 expression values.
Z-scores were scaled to fit phase portrait boundaries.

DISCUSSION
Immune cell function and behaviour are encoded by unique transcriptomic expression
profiles — transcriptional programmes (Xue et al., 2014). Changes in the transcriptional

programmes, which reflect status of health or disease or environmental signalling, are

coordinated by gene regulatory networks (GRNs) in which transcription factors (TFs) play an
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essential role (Singh, Khan and Dinner, 2014)(Lin et al., 2015). However, large scale
investigations into the activity of individual GRN components and interactions between
specific modules which underlie different transcriptomic programmes, and in particular the
kinetics in which those programmes are executed, are difficult to investigate using functional
in vitro methods (Ay and Arnosti, 2011). Therefore, mathematical modelling techniques are
increasingly being utilised to counter this problem and include methods such as ordinary
differential equation (ODE) modelling and Petri net modelling (Loriaux and Hoffmann,
2012)(Livigni et al., 2018). Mathematical modelling can permit investigations of dynamic
biological systems in silico to assess how different molecular signals can alter regulatory
network behaviour. For example, Petri net modelling has revealed the LC IRF-GRN
underlying immunogenic immune activation in response to different stimuli (Polak et al.,
2017). However, Signalling Petri Net (SPN) and similar methods allow only qualitative
assessment of network behaviour, and limit the strength of predictions. In contrast, ODE
modelling has allowed exploration of small TF networks and specific network elements, such
as positive feedback based switches, which can define cell lineage determination and operon

activation (Huang et al., 2007)(Gardner, Cantor and Collins, 2000).

In GRNSs, TFs act in concert with each other to coordinate different expression programmes.
However, specific cellular phenotypes are determined by the increased expression of specific
phenotype-defining TFs. For example, in macrophages, whilst NFKB1, JUNB and CREB1
define core programmes of activation, STAT4 is specifically upregulated in the context of
chronic inflammation, which correlates with increased expression of a unique gene
expression programme (Xue et al., 2014).

The plasticity of migrated LC to induce both immunogenic and tolerogenic adaptive T cell

responses (Sirvent et al., 2020)(Polak et al., 2014)(Polak et al., 2012)(Klechevsky et al.,
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2008)(Davies et al., 2019) has revealed the complexity in discerning the decision-making
process of LCs to drive either immunogenic or tolerogenic responses and has highlighted the
question as to how LCs skew T cell activation to favour responses that are preferential in
different biological contexts such as inflammation. Here we analysed single cell
transcriptomic data arising from unstimulated and TNF-stimulated migrated LC, to discern
the divergent programming of LCs in response to inflammatory stimuli and uncover critical
TFs which govern immunogenic gene regulation.

The epidermal inflammatory cytokine TNF is a powerful mediator of inflammation and its
effects on enhancing LC activation and programming of immunogenic T cells has previously
been demonstrated (Sirvent et al., 2020)(Stoitzner et al., 1999)(Théry and Amigorena, 2001).
Here we demonstrate at the single cell level that, compared to unstimulated LCs, TNF causes
divergent transcriptional programming characterised by upregulation of genes associated
with inflammatory cytokine signalling processes and T cell activation, thus reflecting their
enhanced immunogenic function in vitro. Interestingly whilst the effects of TNF were clear,
there was still significant overlap between the stimulated and unstimulated populations,
suggesting that common transcriptomic features, likely associated with migration and
immunocompetency, were still present. Importantly, as highlighted from our analysis, the TF
IRF1 was revealed to be a critical component of the TNF-enhanced transcriptomic
programme, which appeared to be projected onto the core migrated LC transcriptional
network to enhance immunogenic programming. The association of IRF1 with inflammatory
pathway activation has been observed in other systems. In DCs, TLR-9-mediated IRF1
induction leads to the induction of IFNy and interferon-stimulated genes, driving efficient anti-
viral immune responses (Schmitz et al., 2007). IRF 1 activation in macrophages is associated
with the polarisation of macrophages towards the pro-inflammatory M1 phenotype

(Chistiakov et al., 2018). In fibroblast like synoviocytes (FLS), which are implicated in the
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inflammation in rheumatoid arthritis, TNF-mediated induction of /IRF1 leads to induction of
inflammatory mediators, such as IFNy (Bonelli et al., 2019). In contrast, IRF4 has been
conclusively demonstrated as a transcription factor critical for LC immunocompetent
programming and DC capacity to induce immunogenic T cell activation (Vander Lugt et al.,
2017)(Sirvent et al., 2020). Therefore, we hypothesised that together, IRF1 and IRF4
complementarily coordinate LC immunogenic programming. In our model, while expression
of IRF4 induces LC maturation and immune-competence, expression of IRF1, induced by
TNF signalling, fine-tunes the programmes towards immunogenicity. Additionally, we
revealed that in unstimulated LCs, KRAS and SOX4 interact with components of a core
network of TFs enhanced upon LC migration (IRF4, RELB and ELKT), previously
demonstrated to be responsible for immunocompetent and tolerogenic regulation (Davies et
al., 2019). This revealed the preference by unstimulated, migrated LC, for homeostatic
regulation as compared to the immunogenic regulation enhanced in TNF-stimulated,
migrated LC.

In vivo analysis of LC behaviour in humans is unfeasible and in vitro methods to observe
phenotypic behaviours are constrained. The utilisation of mathematical modelling is therefore
fundamental to augmenting comprehension of phenotypic programmes of LC in situ.
Importantly, interpretation of transcriptomic observations in light of a well-established toggle-
switch model of general cell fate specification (Huang et al., 2007) permitted an
unprecedented opportunity to explore the determinants regulating immunogenic vs
tolerogenic programmes in LC. Analysis of this model indicates that 3 stable phenotypes are
possible, which could reflect the phenotypic landscape in which LC can adopt predominantly
immunogenic or tolerogenic programmes, or an intermediate ambivalent programme, in
which immunogenic and tolerogenic activation are mutually present and in balance. Such

“‘multilineage priming” is common in cell fate switches and may have an important role in
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regulating LC fate decisions. Using the model in which IRF1/IRF4 determine immunogenicity
and KRAS/SOX4/IRF4/RELB/ELK1 determine tolerogenicity, we demonstrated that model
predictions were reflective of our transcriptomic data. Moreover, the model allowed prediction
of in vitro phenotypic features of enhanced immunogenicity in TNF stimulated LC (Sirvent et
al., 2020)(Polak et al., 2014).

The foreskin microenvironment is associated with increased need for effective anti-microbial
responses and is reported to be a pro-inflammatory/ immunologically active tissue marked
by elevated pro-inflammatory cytokines and infiltration of effector immune cells (Prodger et
al., 2012)(Sennepin et al., 2017)(Zhou et al., 2011)(Gray et al., 2020). Apart from baseline
and mitogen-induced TNF and IFNy secretion by foreskin CD8 T cells being higher than levels
secreted by CD8 T cells in the blood (Prodger et al., 2012), the foreskin is most likely in a
consistent state of inflammation being driven by infiltrating T cells and elevated LC’s upon
exposure to a multitude of microbial stimuli (Gray et al., 2020). These inflammatory-
associated characteristics of the foreskin site were reflected in transcriptomic observations
made during comparison of LC derived from breast skin and foreskin, in which immunogenic
programming was enhanced in foreskin LC. Here, we again showed that model predictions
were reflective of transcriptomic observations, highlighting the power of the model across
anatomically diverse LC datasets.

Overall, we have shown that epidermal signalling, such as pro-inflammatory TNF, can
modulate the proportion of LCs exhibiting different immunological programmes. This may
therefore, reflect how LCs balance the need for different immunological responses to diverse
biological stimuli. Furthermore, we have highlighted specific TF regulators critical for the
modulation of both immunogenic and tolerogenic LC programmes, which, when translated
into a mathematical model, have demonstrated the potential to predict LC phenotypes across

different LC transcriptomic datasets. This opens opportunities to apply the model for


https://doi.org/10.1101/2021.02.07.430111
http://creativecommons.org/licenses/by-nd/4.0/

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430111; this version posted February 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

predicting LC activation states and behaviour across different biological contexts in health

and disease, and provides a tool for assessment of LC activation status in human skin.

METHODS

Human LC isolation: Human skin abdominoplasty samples were collected with written
consent from donors with approval by the South East Coast - Brighton & Sussex Research
Ethics Committee in adherence to Helsinki Guidelines [ethical approvals: REC approval:
16/LO/0999). Fat and lower dermis was cut away and discarded before dispase (2 U/ml,
Gibco, UK, 20h, +4°C) digestion. Foreskin tissue was collected from the Medical Male
Circumcision HIV prevention programme in Cape Town, South Africa. Tissue was collected
with consent and approved by the University of Cape Town [ethics approvals HREC:
566/2012]. Inner and outer foreskin was dissected and processed in an identical manner to
the abdominoplasty samples. Migrated LCs were extracted from epidermal explant sheets
cultured in media (RPMI, Gibco, UK, 5% FBS, Invitrogen, UK, 100 IU/ml penicillin and 100
mg/ml streptomycin, Sigma, UK) for 48 hours. Migrated LC were purified through
fluorescence-activated cell sorting (FACS). TNF stimulated migrated LCs were incubated for
24 hours with 25ng/ml TNFa. Antibodies used for cell staining were pre-titrated and used at
optimal concentrations. A FACS Aria flow cytometer (Becton Dickinson, USA) and FlowJo
software was used for analysis. For FACS purification LCs were stained for CD207 (anti-
CD207 PeVio700), CD1a (anti-CD1a VioBlue) and HLA-DR (anti-HLA-DR Viogreen, Miltenyi

Biotech, UK).

Drop-seq: After FACS purification, single LCs were co-encapsulated with primer coated
barcoded Bead SeqB (Chemgenes, USA) within 1 nL droplets (Drop-seq). Drop-seq

microfluidic devices according to the design of Macosko et al. were fabricated by soft
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lithography, oxygen plasma bonded to glass slides and functionalised with fluorinated silane
(1% (v/v) trichloro(1H,1H,2H,2H-perfluorooctyl)silane in HFE-7500 carrier oil). Open
instrumentation syringe pumps and microscopes (see dropletkitchen.github.io) were used to
generate and observe droplets, using conditions and concentrations according to the Drop-
seq protocol, 607 steady-state LC and 208 migrated LC from mastectomy skin were
converted into ‘STAMPs’ for PCR library amplification (High Sensitivity DNA Assay, Agilent
Bioanalyser) and tagmentation (Nextera XT, lllumina, UK). Sequencing of libraries was
executed using NextSeq on a paired end run (1.5x10E5 reads for maximal coverage) at the

Wessex Investigational Sciences Hub laboratory, University of Southampton.

Transcriptomic data analysis: The Drop-seq protocol from the McCarrol lab was followed
for converting sequencer output into gene expression data. The bcl2fastq tool from lllumina
was used to demultiplex files, remove UMIs from reads and deduce captured transcript reads.
Reads were then aligned to human hg19 reference genome using STAR. Analyses was
performed using the python-based Scanpy pipeline(version 1.5.0), (Wolf, Angerer and Theis,
2018). High quality barcodes, discriminated from background RNA barcodes, were selected
based on the overall UMI distribution using EmptyDrops (Lun et al., 2019). Low quality cells,
with a high fraction of counts from mitochondrial genes (20% or more) indicating stressed or
dying cells were removed. In addition, genes with expression detected in <10 cells were
excluded. Datasets were normalised using scran, using rpy2 within python (Lun, Bach and
Marioni, 2016). Highly variable genes (top 2000) were selected using distribution criteria:
min_mean=0, max_mean=4, min_disp=0.1. A single-cell neighbourhood graph was
computed on the first principal components that sufficiently explain the variation in the data
using 10 nearest neighbours. Uniform Manifold Approximation and Projection (UMAP) was

performed for dimensionality reduction. The Leiden algorithm (Traag, Waltman and van Eck,
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2019) was used to identify clusters within cell populations (Leiden r = 0.5, n_pcs=30).
Differentially expressed genes (DEGs) between cell clusters were identified using MAST
(FDR corrected p-value<0.01, logFC>1). Gene ontology analysis was performed using
Toppgene (FDR corrected p-value<0.05), describing biological pathways associated with
gene lists. Z-scores for tolerogenic and immunogenic gene signatures were calculated for
each single LC. Tolerogenic signature was composed of genes identified to be associated
with DC tolerogenic function and previously shown to be enriched in tolerogenic migrated LC
(Davies et al., 2019). The immunogenic signature was composed of 0-24 hour TNFa
stimulated LC upregulated DEGs, identified from bulk RNA-seq data (Sirvent et al., 2020).
To differentiate LC with predominantly immunogenic or tolerogenic transcriptomic expression
profiles immunogenic — tolerogenic z-scores were calculates for each single cell. The more
positive the difference in z-score values, the more immunogenic and the more negative the
difference in z-scores, the more tolerogenic. Regulatory network inference analysis was
performed using single-cell regulatory network inference and clustering (SCENIC) within

python (Aibar et al., 2017).

Directional PIDC: Notebooks from Chan et al. were adapted for the analysis and run using
Julia V 1.0.5 in Jupyter Notebook. Directional network inference of IRF1 with TNF stimulated
LC upregulated DEGs was performed using PIDC algorithm (Chan, Stumpf and Babtie, 2017)
using scran-normalised expression data. Inference of unstimulated and TNF stimulated
migrated LC TF -> target networks was performed using scran-normalised expression data
of core LC TFs (Davies et al., 2019), plus IRF1 in TNF stimulated LC and the upregulated
DEGs for unstimulated and TNF stimulated LCs, respectively. Edge weights were exported,
and sorted to include only transcription factors as targets. Hierarchical network was visualised

using yED.
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Mathematical modelling: The toggle-switch ODE model was adapted from Huang et al.
(Huang et al., 2007), in which the observed functional interactions are depicted in an
‘influence’ network, rather than molecular mechanisms of interaction. The model is
constructed from two first order ODEs which govern changes in immunogenic and tolerogenic
programmes respectively. Each ODE is composed of 3 terms, with the regulatory influences
modelled using Hill functions to describe sigmoidal associations. The first term describes
auto-amplification of each programme; the second term describes the cross inhibition
between opposing programmes; the final term allows for programme decay at a constant
rate.

To make a more parsimonious model we assumed that the parameters that characterise
generic interactions are constant (i.e. a,b,k=1, n=4 and 6=0.5) in accordance with these
parameters creating a stable attractor landscape containing 3 states as described in (Huang

et al.).

Analysis and plotting of the ODE model was performed within MATLAB (Mathworks, Inc.).
Trajectories were found using the ode45 solver and phase portraits were produced using the
quiver command. TF expression values or z-scores representing expression of multiple
TFs in each single cell were exported from Scanpy scRNA-seq analysis, scaled to fit phase
portrait boundaries and then utilised as time 0 starting points from which trajectories were
calculated and plotted. The total number of cells trajectories ending at each of the 3 attractors
after simulation was quantified and then plotted as pie charts in GraphPad Prism 8 software

for comparison.
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Supplementary material
TNF signalling fine-tunes Langerhans cell transcriptional

programmes associated with adaptive immunity.
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Supplementary Table 1. Gene lists of the LC immunogenic signature derived from (Sirvent

et al. 2020) and tolerogenic signature derived from (Davies et al. 2019).

Supplementary Table 2. Toggle-switch model iterations utilising different combinations of

immunogenic vs tolerogenic defining TFs in LCs.
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Supplementary figure 1. TNF enhances immunogenic transcriptional programming in
migratory LC. A. UMAP dimensionality reduction analysis of epidermal cell populations
detected 3 distinct subclusters of cells. B. Top 10 markers genes for clusters 1-3 (t-test,
ScanPy pipeline, version=1.5.0), revealed populations to be LCs (cluster 1), melanocytes
(cluster 2) and T cells (cluster 3) C. UMAP marker plots displaying the expression of the LC
marker HLA-DRB1, the T cell marker CD3D and the melanocyte marker TYRP1. D. Heatmap
displaying the 61 upregulated DEGs in unstimulated migrated LCs and 87 upregulated DEGs
in TNF stimulated migrated LCs (FDR corrected p=<0.01, logFC>1). Gene ontology analysis
(Toppgene) results are displayed alongside for unstimulated and TNF stimulated migrated
LC upregulated DEGs (-log10 FDR corrected p-values) E. Violin plot of KRAS expression in

unstimulated and TNFa stimulated migrated LC.
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550 Supplementary figure 2. IRF1 expression controls immunogenic transcriptional

551 programming. A. UMAP marker plot displaying IRF4 regulon enhancement (z-scores) within

552 individual LCs. B. Violin plot of IRF4 expression in unstimulated and TNF stimulated migrated
553 LCs. MAST, ****=p<0.001. C. PIDC network graph displaying connectivity (edge weight >1.5)
554 between a regulatory module comprising of SOX4, KRAS, IRF4, RELB and ELK1 in
555 unstimulated migrated LCs. D. PIDC network graph comprising 38 nodes (5 TFs, 33 output
556 genes) and 107 edges with weight >1.5, hierarchically organized, displaying predicted
557 regulatory modules for the regulatory TF module from Supplementary Figure 2C along with
558 upregulated DEGs in unstimulated LCs. E. PIDC network graph comprising 58 nodes (5 TFs,
559 53 output genes) and 122 edges with weight >1.5, hierarchically organized, displaying
560 predicted regulatory modules for IRF1 and TFs core to migrated LC (IRF4, HMGN3, ELK1
561 and RELB), along with upregulated DEGs in TNF stimulated migrated LCs.
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