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13 Abstract

14 A wealth of clustering algorithms are available for Single-cell RNA sequencing (scRNA-
15 seq), but it remains challenging to compare and characterize the features across different scales

16 of resolution. To resolve this challenge Multi-resolution Reconciled Tree (MRtree), builds a
17 hierarchical tree structure based on multi-resolution partitions that is highly flexible and can

18 be coupled with most scRNA-seq clustering algorithms. MRtree out-performs bottom-up or
19 divisive hierarchical clustering approaches because it inherits the robustness and versatility of
20 a flat clustering approach, while maintaining the hierarchical structure of cells. Application to

21 fetal brain cells yields insight into subtypes of cells that can be reliably estimated.
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» Background

s Single-cell RNA sequencing (scRNA-seq) is a recently developed technology that is being widely
% deployed to collect unprecedented catalogues detailing the transcriptomes of individual cells. The
27 ability to capture the molecular heterogeneity of tissues at high resolution underlies its increasing
28 popularity in discovering cellular and molecular underpinnings of complex and rare cell popula-

20 tions?, developing a “parts list” for complex tissues!®?Y

, and studying various diseases and cell
s development or lineage. One essential component involves the utility of scRNA-seq data to enable
31 the identification of functionally distinct subpopulations that each possess a different pattern of
3 gene expression activity. These sub-populations can indicate different cell types with relatively sta-
33 ble, static behavior, or cell states in intermediate stages of a transient process. Unbiased discovery
s of cell types from scRNA-seq data can be automated using a wealth of unsupervised clustering
35 algorithms, among them the most widely-applied include the Louvain graph-based algorithm incor-
s porated as part of Seurat *' pipeline, k-means clustering and its derivatives by consensus clustering
3 as performed in SC37 and SIMLR'2, and other methods that address issues caused by rare types
s such as RacelD?.

39 A major challenge regarding clustering algorithms mentioned above is that they explicitly or
a0 implicitly require the number of clusters to be supplied as an input parameter. Determining the
a1 number of cell types in the population presents a significant challenge given the large number of
a2 distinct cell types, which is further complicated by substantial biological and technical variation.
a3 There are some computational methods available to guide the choice of K; however, these methods
s are shown to be flawed in one aspect or another. For example, methods developed on the basis
a5 of statistical testing are shown to be too sensitive to heterogeneity, especially for large samples,
s while other methods tend to favor a fairly coarse resolution, with clearly separated clusters and
47 fail to identify closely related and overlapping cell types. Therefore, judgment from the researchers
a3 is required to choose the desired resolution. A common practice in scRNA-seq data analysis is to
20 run a clustering algorithm repeatedly for a range of resolutions, followed by careful inspections of
so individual results by examining the cluster compositions and the expression of published marker

51 genes to select the final partition. This supervised process takes significant time and effort and is
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sz limited by the current state of the investigator’s/field’s knowledge about cell type and cell state
53 diversity. It would be a substantial advantage in terms of efficiency and veracity to be able to reach
s« the same level of resolution in an unsupervised manner.

55 Hierarchical clustering (HC) is another popular general-purpose clustering method commonly

18,116 HC has the advantage of being able to determine relation-

s6 used to identify cell-populations
57 ships between clusters of different granularities since the result can be visualized as a dendrogram.
ss This dendrogram is then “cut” at different heights to generate different numbers of clusters. This
s hierarchical structure helps identify multiple levels of functional specialization of cells. For instance,
60 neurons share specific functional characteristics distinct from those of various glial cell types and
61 contain distinct subtypes with more specialized functions, such as excitatory or inhibitory proper-
62 ties. Different variants of hierarchical clustering make different assumptions, the most common ones
63 used in classical hierarchical agglomerative clustering (HAC) is Ward’s'® and “average” linkage as
s« adopted in SC37. An important limitation of HAC is that both time and memory requirements
65 scale at least quadratically with the number of data points, which is slower than many flat cluster-
66 ing methods like K-means and prohibitively expensive for large data sets. A few scRNA-seq tools
7 expand upon the idea of hierarchical clustering, for instance, pcaReduce?? introduces an agglom-
es erative clustering approach by conducting dimension reduction after each merge, starting from an
so initial clustering, and CellBIC® performs bisecting clustering in a top-down manner leveraging the
70 bi-modal gene expression patterns. However, these methods either require a good initial start that
71 is implicitly equivalent to the choice of K, or are highly dependent on the assumption of bimodal
72 expression pattern at each iteration, which is not appropriate for multi-modal data.

73 In this study, we build a tool to bridge the gap between two separate lines of inquiry, flat and
74 hierarchical clustering. Empirically, scRNA-seq data analysts observe that the partitions obtained
75 from flat clustering at multiple resolutions, when ordered by increasing resolution, produce a lay-
76 ered structure with a tree-style backbone!”. This produces a useful representation to help visually
77 determine the stability of clusters and relations among them. We build on this idea and propose
7z a method called Multi-resolution Reconciled Tree (MRtree) that reconstructs the underlying tree

79 structure by reconciling partitions obtained at different granularities (Figure 1) to produce a co-
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so herent hierarchy that is as similar as possible to the original flat clustering at different scales. It
g1 can work with many specially-designed flat clustering algorithms for single-cell data, such as Lou-
2 vain clustering from Seurat?®, thus inheriting the scalability and good performance in clustering
83 the single-cell data; meanwhile, it recovers the intrinsic hierarchy structure determined by the cell
s types and cell states.

85 Applications of MRtree on a variety of scRNA-seq data sets, including mouse brain'®, human
ss pancreas'*® and human fetal brain®, showed improved performance for clustering of scRNA-seq
&7 data over initial flat clustering methods. The hierarchical structure discovered by MRtree easily
s outperformed a variety of tree-construction methods. Moreover, the results accurately reflect the
g0 extent of transcriptional distinctions among cell groups and align well with levels of functional
90 specializations among cells. Particularly, when applied to developing human brain cells, the method
o1 successfully identified major cell types and recovered an underlying hierarchical structure that is
o highly consistent with the results from the original study”. Subsequent analysis on each major

93 type via MRtree revealed finer sub-structure defining biologically plausible subtypes, determined

e« mainly by maturation states, spatial location, and terminal specification.

s Results

o« Methods overview

97 MRtree aims to recover a hierarchical tree by denoising and integrating a series of flat clusterings
98 into a coherent tree structure. The algorithm starts by applying a suitable flat clustering algorithm
99 to obtain partitions for a range of resolution parameters. The multi-scale results can be represented
100 using a multi-partite graph, referred to as a cluster tree, where the nodes represent clusters, and
101 edges between partitions of adjacent resolutions indicate common cells shared. We propose an
102 efficient optimization procedure to reconcile the incoherent cell assignments across resolutions, that
103 produces the optimal underlying tree structure following the hierarchy constraints, while adhering
104 to the initial flat clustering to the maximum extent. Formally, this is achieved by minimizing

105 (among valid hierarchical tree structures), the difference between initial multi-level cluster assign-
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Figure 1: Overview of MRtree framework. The algorithm starts by performing flat clustering on
scRNA-seq data for a range of resolutions, where the partitions between adjacent resolutions are
matched to form a graph as an entangled cluster tree. Then reconciliation is performed through
optimization with the hierarchical structure enforced by constraints. The obtained final optimal
solution represents the recovered hierarchical cluster tree.

106 ments and the cluster assignments in the resulting tree structure. By representing the partitions
17 as a multi-partite graph, the clustering assignments that violate the hierarchy constraint can be
108 identified as merging directed edges and thus penalized in the objective function. The optimization
100 procedure proceeds by iteratively and greedily identifying those tree nodes, which, when corrected
10 by reassigning the associated conflicting cell lineages, contribute to maximum descent in the de-
1 fined objective function. The outcome of the proposed optimization procedure is a reconciled tree,
12 named the hierarchical cluster tree, representing the optimal tree-based cluster arrangement across
us  scales (Figure 1, Figure S1, Supplemental Information).

114 Our method is motivated by consensus clustering (also known as ensemble clustering); how-
us ever, instead of gathering information over repeated runs of algorithms at the same resolution, we
16 leverage the cluster structure revealed at multiple scales to build an ensembled hierarchy. The
117 common features across resolutions are identified and averaged to reduce noise, while the distinc-
us tions between resolutions are utilized to uncover different scales of geometric structure, which are
1o further reconciled to conform to a robust hierarchical tree. We stress that consensus clustering is
120 essentially a noise-reduction technique that aims to deliver robust, interpretable results.

121 Another key distinguishing feature of our procedure, compared to existing consensus methods,
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122 is that we build a cluster hierarchy directly from the flat partitions in an “in place” way. This
123 is in comparison to existing methods for which an alternative hierarchical clustering algorithm is
124 applied to the co-classification consensus matrix built from an ensemble of partitions. MRtree uses
125 an optimization framework to edit the original partitions through a similar voting scheme. At
16 the same time, it aims to preserve the original splitting order of the hierarchy determined by the
127 clustering algorithm. The proposed method is efficient in terms of memory cost and time complexity
128 (Supplemental Information). Moreover, MRtree enables a direct comparison of partitions before
120 and after tree reconciliation, to examine the stability of the clustering algorithm at different scales.
130 As a benefit, we are able to trim the tree to the maximum depth within the stable range to obtain
131 reliable final clusters.

132 To summarize, we present a computationally efficient method to generate a hierarchical tree
133 from flat clustering results for a range of resolutions, by an iterative greedy optimization scheme.
13¢ It enables us to take advantage of various flat clustering approaches, while improving over these
135 flat clustering results by averaging over membership assignments across resolutions. The resulting
136 hierarchical structure captures the relations between cell types and at the same time helps circum-
137 vent the problems of choosing the optimal resolution parameter. It turns out that the proposed
138 method improves the clustering accuracy over the initial partition across scales, and outperforms
130 a variety of alternative tree construction methods for recovering the underlying tree structure. To
10 facilitate identifying stable tree layers, we propose a stability measure that compares the initial flat
141 clustering with the reconciled tree. We also implement tools to sample implicit resolution param-
12 eters for Seurat clustering that enable equal coverage of different clustering granularities. Finally,

143 our optimization procedure is made efficient for potential use in big data analyses.

e Simulation study

s Simulated data To evaluate how well MRtree is able to recover the cluster hierarchy and improve
16 the clustering across resolutions, we harness the tools provided by the SymSim package '” to simulate
17 scRNA-seq data given a known tree structure, using the SymSim parameters estimated from a UMI-

s based dataset of 3,005 mouse cortex cells'® (Supplemental Information). Motivated by major cell


https://doi.org/10.1101/2021.02.06.430067
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.06.430067; this version posted February 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

1o types identified in brain tissues, we constructed a hypothetical tree (Figure 2A,B) as the ground
10 truth representing the hierarchy of the cell types/states.

151 Repeated simulations were performed by first generating single-cell data with SymSim from the
152 hypothetical tree structure, followed by multi-resolution flat clustering using a variety of clustering
153 methods. Then MRtree was applied to form the hierarchical cluster tree that reconciled the multi-
154 level clusterings. MRtree can be coupled with most flat clustering methods; hence we evaluated the
155 performance using a variety of algorithms, including Seurat?, SC37, SOUP?!, and K-means applied
156 to a UMAP projection. The clustering results were evaluated and compared with the raw clusters
157 obtained from flat clustering in three aspects: the accuracy of clustering regarding label assignments
158 at different resolutions, the tree structure estimation accuracy, and the clustering stability.

159 We first sought to quantify how well MRtree performs regarding clustering accuracy, measured
10 using Adjusted Multiresolution Rand Index (AMRI, Methods) between the obtained labels and
161 true labels known from the simulation. An AMRI close to 1 indicates perfect clustering given the
162 resolution. MRtree achieved higher accuracy almost uniformly across resolutions and for various
163 clustering methods (Figures 2C and S2). It is worth noticing that the reconciliation procedure
164 even improved upon SC3 results, which already employed an ensemble-based method for each fixed
165 resolution. This demonstrates that applying an ensemble approach across resolutions captures
166 additional structural information within the data. In addition, the gain was more pronounced for
167 coarse clustering and when there was more room for improvement.

168 Next, we evaluated the ability of MRtree to recover the tree structure. For comparison, we
160 leveraged the tools that build hierarchical trees in Seurat and SC3. For Seurat, an agglomerative
170 hierarchical cluster tree was built starting with the identified Seurat clusters, while for SC3, a full
i1 HAC was performed from the consensus similarity matrix constructed by aggregating clustering
172 results with different dimension reduction schemes. MRtree produced a significantly improved tree
173 structure estimation compared to the competing methods, as demonstrated by the reduced error
174 of tree reconstruction (Figure 2D, Methods).

175 Finally we evaluate the clustering stability before and after tree reconciliation, coupled with

176 multiple clustering methods. The stability score is calculated following the subsample procedure
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177 described in Methods. For K less than the true number of clusters, the measured stability is
178 confounded by the instability induced by the incorrect resolution. Therefore we restrict our com-
179 parison to the measured stability at the true resolution. Clustering stability with MRtree is clearly
180 improved compared to the initial clustering across all methods (Figure S3), demonstrating the im-
181 proved robustness of MRtree, which successfully employs the consensus mechanism to denoise the

12 individual clustering with collective information across resolutions.
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Figure 2: Evaluate the performance of MRtree via simulations and analysis on mouse brain data'®.
(A) The hypothetical tree structure of the cell states from which cells are generated. (B) tSNE plot
of the simulated cells in one experiment, colored by the cell types indicated in the leaf of the actual
hierarchical cluster tree. The difficulty of the simulation varies from simple (left, smaller within-
cluster noise) to challenging (right, stronger noise) in panels (C) and (D) for each method. (C)
Comparing the accuracy of MRtree clusters with the clusters from initial flat clustering at multiple
resolutions using Seurat and SC3. The accuracy is measured by the Adjusted Multi-resolution
Rand Index (AMRI). (D) Evaluate tree construction accuracy of MRtree with dendrogram from
hierarchical clustering obtained with Seurat and SC3. (E-H) MRtree applied to scRNA-seq data
from the mouse brain. (E) Initial flat clustering by SOUP on 3,005 cells'® by varying K, the
resolution parameter specifying the number of clusters, colored by the gold standard labels. (F)
The MRtree-constructed tree from initial SOUP clusterings. The pie charts on tree nodes represent
the cell type composition referencing the gold standard. (G, H) Comparing tree construction and
clustering accuracy on mouse brain data using different methods, hierarchical cluster tree generated
by HAC starting with SOUP clusters (G) and starting with individual cells (H).

scRINA-seq data

Mouse brain cells We illustrate MRtree using a scRNA-seq data set containing 3,005 cells of
somatosensory cortex and hippocampal-CA1 region from mice, collected between postnatal 21-31

days. We call this the mouse brain data!'®

. The authors have assigned the cells to seven major
types: pyramidal CAl, pyramidal SS, interneurons, astrocytes-ependymal, microglia, endothelial-
mural, and oligodendrocytes. For comparison, these labels are treated as the gold standard in the
following analysis.

We chose SOUP?! for multi-resolution clustering due to its superior performance on these data.
The hard clustering labels were obtained by varying K, the resolution parameter specifying the
desired number of clusters, from 2 to 12. With MRtree, we were able to construct a hierarchical
cluster tree from the flat sequential clusterings. The initial cluster tree is visualized with nodes
colored by the major type referencing the gold standard, and the recovered tree from MRtree is
shown on the right, with the proportion of cell types in each node visualized by a pie chart (Figure
2E,F). The tree successfully split the neurons and glial cells at an early stage, followed by splitting
pyramidal cells from two regions (CA1,SS) from the interneurons. Finally, cells from the same type

but distinct brain regions were identified. The tree reconciliation step also improved the clustering

performance by increasing the accuracy measured by AMRI in multiple layers (Figure S4a).

10
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201 To further compare the performance of MRtree with HAC, we applied HAC using complete link-
202 age on the first 20 principal components, starting either form singletons (individual cell) or the 9
203 SOUP clusters obtained at the maximum resolution (Figure 2G,H; only the top layers of HAC from
204 singleton are shown for comparison purposes). Compared to MRtree, HAC shared a similar overall
205 tree structure, but it generated clusters at lower accuracy for each layer. The results support the
206 argument that MRtree is able to improve accuracy upon initial clustering by pooling information
207 across resolutions. HAC from singletons performed much worse regarding both accuracy and tree
208 structure, possibly owing to the sensitivity of HAC to outliers and linkage selection. For complete-
200 ness, we also demonstrate the accuracy from two widely applied clustering methods, Seurat and
a0 SC3, where the HAC results were generated from the built-in functions provided as part of the
aun toolkits. In both cases, MRtree outperformed both the initial flat clustering and the HAC (Figure
22 34b,c).

213 In addition to improving the clustering accuracy, we were able to infer the resolution that achieved
214 the highest stability by inspecting the difference between the initial tree and the reconstructed tree.
25 It indicated that both the SOUP and Seurat algorithms should stop splitting at K = 7, which was
216 consistent with the gold standard (Figure S6). Stability analysis on SC3 results showed a preferred
217 resolution of 6 clusters. Indeed, we observed steep drop in accuracy for any resolution greater
218 than 6 (Figure S4c). By comparison, using available K-selection methods supported in multiple
210 single-cell analysis pipelines, the optimal number of clusters selected varied widely (Table S1). For
20 instance, SC3 supported 22 clusters. In addition, the large gap between MRtree and initial Seurat
21 clusterings indicated the inability of Seurat to identify accurate and stable clusters on this dataset.
222 This observation was further supported by the lower accuracy (AMRI< 0.6) of the resulting Seurat

223 clusters (Figure S4b).

24+ Human pancreas islet cells To evaluate performance on cell types that are fairly well separated,
25 we investigated the hierarchical structure identified by MRtree for cells from human pancreatic
26 tissues. We first analyzed single-cell RNA sequencing of 635 cells on islets from Wang et al.?,

227 which come from multiple donors, including children, control adults, and individuals with type 1 or

228 type2 diabetes (T1D, T2D). Among them, 430 cells were annotated by the authors into seven cell

11
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Figure 3: MRtree applied on pancreas islet cells data sets reveals the transcriptional distinctions
and similarities between cell types. (A) MRtree-constructed tree with SC3 clusterings on 635 cells
from Wang et al.'*. The tree was trimmed to the layer with eight leaf clusters (K = 8). The
pie charts overlying on tree nodes represent the cell type composition for corresponding clusters.
Colors indicate the cell-type labels by Wang et al., where a fraction of cells (marked in gray) were
considered ambiguous cells by the authors and unlabeled. The leaf labels demonstrate the inferred
cluster identity. (B-D) Jointly constructing the cell type hierarchical tree for pancreas islet cells
integrated from five technologies. (B) UMAP project of 14,892 cells integrated from five technologies
using Seurat MNN integration tools, colored with the cell type labels from respective studies. (C)
MRtree-constructed tree from the integrated data with Seurat initial flat clusterings. Pie charts on
tree nodes show the cell-type composition given the referencing labels from the studies. Leaf labels
indicate the inferred labels of cells in each leaf node. (D) Hierarchical tree constructed by Seurat
agglomerative hierarchical clustering starting from Seurat flat clustering results obtained with the
highest resolution, annotated similarly by cell type compositions.
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29 types, while 205 cells were considered ambiguous and unlabeled. We applied MRtree to construct
230 the hierarchical cluster tree based on SC3 flat clustering with the number of clusters ranging
251 from 2 to 15. The tree was then trimmed to eight leaf nodes based on stability analysis (Figure
222 3A, Figure STA). The first split created two large interpretable cell groups: gene ontology (GO)
233 shows enrichment of exocrine functions such as terms related to “Putrescine catabolic process”
21 (adjusted p-value=2.3E — 02) and “Cobalamin metabolic process” (adjusted p-value=5.48FE — 05)
235 for the left branch, and enrichment of endocrine functions such as “Insulin secretion” (adjusted
236 p-value=3.4F — 5) and “Enteroendocrine cell differentiation” (adjusted p-value=2.1E — 2) for the
27 right branch. The exocrine group was further divided into acinar (PRSS1) and ductal cells (SPP1).
238 The right branch further separates a previously undiscovered cluster composed mainly of ambiguous
230 cells and a few previously labeled alpha and mesenchyme cells. This cluster expresses marker genes
20 with significant GO terms such as “Collagen metabolic process” and “regulation of endothelial cell
a1 migration”, pointing to endothelial and stellate cells (Table S2) that were not labeled in the original
22 analysis. The remaining endocrine cells were further divided into a group containing « cells (GCG)
23 and pancreatic polypeptide cells (PPY), and another group containing  (INS) and § cells (RBP4)
214 (Table S3).

25 In addition to recapitulating a logical tree for all cell types, the eight clusters improved upon the
26 initial SC3 clusters. In particular, seven of the clusters match well with the identified seven major
27 cell types from Wang et al., achieving AMRI greater than 0.95 (Figure S7TB-D). By contrast, a
us competing tree construction method, CellBIC®, revealed a similar tree structure, but it failed to
20 identify the group of § cells®. Finally, because it is well accepted that 3 cells are heterogeneous,
0 especially in conditions of metabolic stress, such as obesity or type 2 diabetes!?, we further applied
21 MRtree on the subset of 111 3 cells. We obtained five 8 subclusters that corresponded to key
22 biological features, including two clusters composed mainly of cells from T2D individuals, and one
253 control group containing 90% cells from children (Figure STE-G).

24 Next, we considered a more challenging data set, again from the human pancreatic islet, produced

8

25 by merging data from five technologies®. In total, 14,892 cells were annotated and grouped by

6 respective studies into 13 major cell-types with cluster sizes varying by magnitude. We first in-
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257 tegrated the cells using Seurat MNN integration tools using 2,000 highly expressed genes (Figure
s 3B). Despite the observation that SC3 demonstrates superior performance on the smaller data
20 sets, we utilized Seurat graph-based clustering because it demonstrates greater scalability to large-
%0 scale analysis. Flat clusterings were obtained for 50 different resolution parameters sampled via
261 Event-Sampling in the range of [0.001, 2]. The resulting tree identified all 13 major types with high
22 accuracy and also uncovered many subtypes organized as subtrees (Figure 3C). Very distinct cell
263 types separated early and fall into remote branches, while cell types that share similar functions
264 share internal branches and split later in the process. For instance, endothelial, schwann, and
25 stellate cells are very different from other endocrine and exocrine cells and thus split out first. Two
266 types of endocrine cells, acinar and ductal, fall into a common subtree. Likewise, five types of
267 exocrine cells are organized in the same subtree. Finally, subtypes from the same major type are
268 organized in the same subtree, with one exception. A small subset of « cells was inappropriately
260 placed in the tree. However, evidence suggests these cells represent an anomaly, possibly due to
270 batch correction. These a outliers appear in the UMAP projection separated from other « cells
o1 and near the activated stellate cells.

272 For comparison, we produced a hierarchical tree using Seurat agglomerative clustering (Figure 3D).
a3 Given the well-separated cluster structure of cell types in the projected PCA space, it is not surpris-
274 ing that the tree also identifies all the major cell types; however, the hierarchical structure appears
a7s  less reasonable. For instance, the activated and quiescent stellate cells were placed far from each
276 other in the tree, and two endocrine types were grouped in different subtrees. In summary, MRtree
277 produced a more useful tree than competing methods for both applications, and the interpretable
a7s subtree structure observed across applications shows promise for further investigation of the cell

279 subtypes identified here.

20 Human fetal brain cells We applied MRtree to cells from the mid-gestational human cortex,
21 which we call the human brain data®. These data were derived from ~40,000 cells from germinal
222 zones (ventricular zone, subventricular zone) and developing cortex (subplate (SP) and cortical
23 plate (CP)) separated before single-cell isolation. By performing Seurat clustering?®, the authors

284 assigned the cells into 16 transcriptionally distinct cell groups (Table S4). For convenience, here
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285 we refer to these expert classifications as the Polioudakis labels.

26 Our analysis began with the same preprocessing steps as conducted in the study? using the pipeline
257 supported by Seurat V3. The multilevel clustering results are visualized by increasing resolution
288 from the top layer (resolution=0.001) to bottom layer (resolution=2), where each layer corresponds
20 to one clustering (Figure S8A). Notably there were a considerable number of cells assigned to clus-
200 ters inconsistently over changing resolutions, which made it challenging to determine the optimal
201 resolution and the final cluster memberships. By applying MRtree, we were able to construct the
202 organized hierarchical tree, which was represented by a dendrogram with the cell-type composition
203 of clusters referencing Polioudakis labels shown by pie charts on tree nodes (Figure 4A). MRtree
204 first separated interneurons and pericytes, endothelial and microglia, followed by splitting excita-
205 tory deep layer neurons from radial glia to maturing excitatory neurons, representing the rest of a
206 closely connected lineage (upper layer enriched). By further increasing the resolution, the radial glia
207 cells and excitatory neurons were isolated, where the intermediate progenitors were more closely
208 connected with maturing excitatory neurons. The finer distinctions of excitatory neurons were
200 subsequently identified as migrating, maturing, and maturing upper enriched subtypes supported
s00 by differential gene expression and canonical cell markers (Table S5). The results were consistent
so1 - with the group-wise separability visible through a 2-dimensional tSNE projection (Figure 4B). The
302 cluster stability was inspected by comparing the initial Seurat clusters at each resolution with the
303 MRtree results (Figure S8B), which suggested that the clusters were stable up to around K = 15.
s+ We decided to cut the tree at K = 13, which corresponded fairly closely to the 16 major gold
305 standard cell types of the midgestational brain by examination of differentially-expressed marker
s06  genes (Table S5, Figure 4C,D). For comparison, an agglomerative hierarchical tree was generated
so7  starting from the Seurat clusters obtained at the highest resolution (Figure S8C). These results
308  were distance-based and consequently more vulnerable to outliers, which appear to have caused
s00 several anomalies: subsets of ExM, ExM-U, and ExDpl were grouped together, and two subsets of

s.0 [P were separated from each other.
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Figure 4: MRtree applied to scRNA-seq data from human brain cells. (A) MRtree produces
the hierarchical cluster tree from the initial flat clusterings at multiple resolutions obtained from
Seurat V3. The nodes correspond to clusters, with a pie chart displaying the cluster composition
referencing the Polioudakis labels. Tree cut is placed at tree layer corresponding to K = 13 based
on stability analysis, above which the clusters are stable. (B) tSNE plot of all 40,000 human brain
cells colored by which of the 13 major clusters the cells belong to, with cell-type identities names
hovering over clusters in black. (C) The 13 major clusters were obtained by cutting the tree at
the level indicated by the dashed line in (B), indicating the identified major cell types and the
associated stable hierarchical structure. (D) Heatmap of the top 10 significant marker genes (FDR-~
adjusted p-value< 0.05) for the identified 13 major clusters ranked by average log fold change,
arranged according to the display of tree leaf nodes.
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Figure 5: MRtree clusters cells into known cell subtypes and states that underlie known cellular
developmental transcriptional trajectories at a higher resolution. (A) Hierarchical cluster tree of
subplate/ deep layer excitatory neurons (ExDp) with a heatmap of gene expression within canonical
gene ontology categories showing a gradually increased enrichment of Synaptogenesis, CREB sig-
naling, synaptic signaling (i.e., Synaptic long term potentiation, Opioid, and Dopamine-DARPP32-
cAMP signaling) across maturation from ExDP_0 to most mature ExDP_3 cluster. (B) Hierarchical
cluster tree of MGE-derived interneuron with a heatmap of gene expression within canonical gene
ontology categories shows a gradually increased enrichment of Synaptogenesis, CREB signaling,
and calcium-mediated signaling across maturation from InMGE_2 to most mature InNMGE_4 clus-
ter. (C) tSNE projection of all cells colored by the MRtree identified subtypes from subsequent
analysis of the MRtree major cell types. (D) MRtree clusters are driven by biology and not tech-
nical co-variation in the data: Histogram of the percentage of cells that each brain sample (left),
sequencing run (middle), and cortical region (right) contribute to each cellular cluster identified
by MRtree. (E) Cells projected onto Monocle pseudotime analysis from Polioudakis et al., with
cells colored by MRtree cell-types and names hovering above. (F) Pseudotime projection of each
cluster cell types from MRtree illustrating a continuous developmental trajectory of excitatory
neurons, first: top left; intermediate progenitors IP_1, IP_0, top middle; newly born excitatory neu-
rons ExN_0, ExN_2, ExN_1, and, top right; maturing excitatory neurons ExM_0, ExM_1, ExM_2,
ExM_3, bottom left; followed by maturing upper layer neurons ExM-U_0 through ExM-U_7 and,
bottom left; maturing subplate/ deep layer neurons ExDP 2, ExDP_0, ExDP_1, ExDP_3.

Identify subtypes Next, we scrutinized the fine-grained structure by re-clustering the 13 major
cell types obtained from the hierarchical cluster tree of all cells. The cells were pre-processed from
the raw count data as performed in the first iteration, followed by clustering using the Seurat
graph-based method. By setting the resolution parameters from 0.05 to 1 and applying MRtree,
we obtained one hierarchical tree for each major cell type, determined by trimming the full tree
to the stable top layers (ExDP and InMGE are depicted in Figure 5A,B). This resulted in 21
transcriptionally distinct cell types from 7 of the identified major types, expanding IP, ExN, ExM,
ExM-U, ExDp, InCGE, and InMGE (Figure 5C, Table S8). The subtypes’ partitions were first
evaluated by assessing whether the likely technical and biological co-variation, including brain
sample, sequencing run, and cortical region, illustrated somewhat even distribution and appropriate
overlap within each identified cluster. Results show that the clusterings were not driven by these

technical features and are likely biologically meaningful (Figure 5D, Figure S9).
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Figure 6: Known and unique biological states identified by MRtree with sub clustering on human
fetal brain data: intermediate progenitors and subplate/ deep excitatory neurons (A) top: tSNE
plot of all cells where intermediate progenitor (IP) cells identified by MRtree are colored by red,
bottom: tSNE projection of MRtree clustering where IP is broken into IP_1, colored in blue and
IP_0, colored by red. (B) Gene expression dot plot showing the normalized mean expression of
marker genes for newly born neurons (i.e. SLA, STMN2, NEURODG), intermediate progenitors
(i.e. EFOMES, SOX11, SOX/, PTN), and radial glia (i.e. SLC1A3, VIM, SOX2, HES1) within
IP_1 (left) and IP_0 (right), grouped by increasing (top), decreasing (middle) and neural (bottom)
expressions from IP_1 to IP_0. (C) Significant protein-protein interacting (PPI) networks from
differential genes expressed in IP_1 on the left versus significant PPI network from DGE in IP_0 on
the right. (D) Heatmap of IP_1 and IP_0 gene expression within canonical gene ontology categories.
(E) top: tSNE projection where subplate and deep excitatory neurons (ExDP) cells identified by
MRtree are colored by red; bottom: tSNE projection where ExDP are broken into ExDP_2, colored
in blue and ExDP_0, colored by red, ExDP_1 colored by green, and ExDP_3 colored by purple. (F)
Gene expression dot plot showing the normalized mean expression of marker genes for layer 5 (i.e.
ETV1, RORB, FOXP1, FEZF?2), Layer 6 (i.e. TBR1, SYT6, FOXP2), shared deep markers (i.e.
RORB, TLE4, LMO3, CRYM, THY1) and subplate makers (i.e NR4A2, ST18) within ExDP_2,
ExDP_0, ExDP_1, and ExDP_3 from left to right. The subtype-specific expressions are marked
by brackets. (G) Significant protein-protein interacting (PPI) networks from differential genes
expressed in ExDP_2 on the top left versus significant PPI network from ExDP_1 top right and
PPI from ExDP_3 bottom center.

We focus on the results of excitatory neuronal subtypes, given their critical roles in neurological
disorders. Close examination revealed that MRtree clustered cells into well-known cell types and
states that underlie known cellular developmental transcriptional trajectories at a higher resolu-
tion. Projection of each cluster of cell types from MRtree onto Polioudakis Monocle Psuedotime
illustrated a continuous developmental trajectory of excitatory neurons, starting from intermedi-
ate progenitors (IP) with IP_1 preceding IP_0. The cells then develop into newly born excitatory
neurons in the order of ExN_0, ExN_2, ExN_1, which then grow into maturing excitatory neuron
subtypes following the order of ExM_0, ExM_1, ExM_2, ExM_3. The trajectory finally ends at ma-
turing upper layer neurons ExM-U_0 through ExM-U_7 and maturing subplate/ deep layer neurons
ExDP_2, ExDP_0, ExDP_1, ExDP _3, with ExDP _3 considered as the most mature subtype (Figure
5E,F). The estimated hierarchical tree for subtypes corresponded with gene ontology analysis of
differential gene expression between branch cell types. For ExDp, the most distinct subtype was
ExDp_3, which was first differentiated from the other subtypes, followed by the split for ExDp_2,
and then ExDp_0 and ExDp_1 (Figure 5A). The heatmap of gene expression within canonical gene

ontology categories showed a gradual increase in enrichment of Synaptogenesis, CREB signaling,
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s synaptic signaling (i.e., Synaptic long-term potentiation, Opioid, and Dopamine-DARPP32-cAMP
sa1 signaling) across maturation from ExDP_0 to the most mature ExDP_3 cluster. We observed simi-
s lar functional specializations of inhibitory neuron subtypes (Figure 5B). The most mature subtype
a3 InMGE_4 was discriminated from the other MGE interneurons first, followed by splitting the sec-
3¢ ond and third most mature subtypes from less mature cells, and finer distinctions were established
s subsequently in two branches. The heatmap of gene expression within canonical gene ontology
a6 categories showed a gradual increase in enrichment of Synaptogenesis, CREB signaling, Calcium
37 mediated signaling across maturation from InMGE_2 to most mature InNMGE_4 cluster.

ss  MRtree partitioned intermediate progenitor cells into two subtypes (IP_1 and IP_0; Figure 6A)
349 similar to cell types revealed in Polioudakis et al., achieved only after multiple rounds of analysis of
30 flat clustering results. Marker genes for newly born neurons (i.e. SLA, STMN2, NEUROD6) and
31 intermediate progenitors (i.e. EOMES, SOX11, SOX/, PTN) showed increased expression mark-
352 ers within IP_0 in contrast to expression of more intermediate progenitors and radial glia genes
353 within IP_1 (i.e. SLC1AS8, VIM, SOX2, HES1) (Figure 6B). Notably, by comparing the significant
s34 protein-protein interacting (PPI) networks from differential genes (DGE) expressed in IP_1 versus
355 significant PPI network from DGE in IP_0, we observed that IP_1 cells PPI contains a highly con-
356 nected radial glial genes surrounding VIM including MKi67, SOX2, for example, whereas, IP_0 cells
357 contain more neuronal-committed genes involving early step in neuronal differentiation including
w8 MAPT, GAP43, CALM2, GRIA2, PTPRD (Figure 6C). Gene ontology analysis further uncov-
350 ered a switch in the enrichment of EIF2 signaling, growth factors, and cell cycling pathways (i.e.
30 Sirtuin signaling pathway and SAPK/JNK signaling) in IP_1 to more specific neuronal categories
61 like Synaptogenesis, Ephrin Receptor signaling, Reelin signaling underlying migration and neurite
sz pathfinding signaling within IP_0 (Figure 6D).

363 For ExDP subtypes, a closer examination of the expression of marker genes for layer 5 (i.e., ETV]I,
sss  RORB, FOXP1, FEZF2), Layer 6 (i.e., TBR1, SYT6, FOXP2), shared deep markers (i.e., RORB,
ss  TLE4, LMO3, CRYM, THY1) and subplate makers (i.e., NRJ/A2, ST18) showed expression of
s66 Layer b markers within the least mature cells, ExDP_2, and layer 6 markers within ExDP _0, in

sz contrast to the more mature expression of layer 6-CTIP2 markers within ExDP_3 and mature
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ss  expression of markers of subplate and layer 6 within ExDP_1 (Figure 6F). Surprisingly, ExDP_2
0 PPI revealed a set of genes and structure similar to an intermediate progenitor with VIM at the
30 center of translational control and the expression of neuronally committed genes SOX/, SOX11,
s ID2 similar to IP_1, except that neuronal specificity genes within this cluster were linked directly
sz to upper Layer 5 cell fate (i.e., FEZF2, FOXP1, RORB, SYT}) instead of a general excitatory
s73 neuronal lineage seen in IP_1. ExDP_1 subplate cells PPI exhibited a group of connected genes
s related to more mature cellular properties such as synaptic plasticity and Wnt signaling (i.e.,
s5s. GRIN2B, CTNNB1, NR2F1, NRXN1) but no energy or translational pathways that were present in
376 ExDP_2. ExDP_3 cells showed the most extensive and unique PPI that illustrated more committed
s77 - axonal and synaptic pathways underlying specifically Layer 6 CTIP2+ cells (i.e., CALM2, NRCAM,
s SNCA, GABAergic postsynaptic machinery) (Figure 6G).

s79 Four other cell types revealed subtypes that were also related to developmental ordering. ExN
30 was partitioned into 3 subtypes that indicate a gradually increased expression of markers of upper
ss1  layer excitatory neurons in contrast to no expression of deep layer neuronal programs (Figure
sz 510). ExM was partitioned into 4 subtypes, 3 of which illustrate gradually increased expression
33 of upper layer markers, in contrast, a fourth that expressed deep layer markers indicating layer
ssa 4/5 excitatory neurons (Figure S11). InMGE was partitioned into 6 progressively more mature
;s subtypes (Fig 5B) that demonstrate distinctions in both maturation and terminal specification
ss  (Fig S12). Finally, the 3 subtypes of InCGE display a general maturation of CGE interneurons
ss7  through a gradual decrease in expression of transcription factors along with a gradual increase in
;s expression of axonal-related genes (Figure S13). Meanwhile, although the signal was sparse, the
0 PPI network for the allegedly most mature subtype revealed a connection between genes critically
30 involved in post-synaptic glutamate signaling and plasticity, further supporting this conjecture.

31 Additional characteristics of these subtypes can be found in Supplemental Information.

52 Discussion and conclusion

303 In this article, we propose MRtree, a computational approach for characterizing multi-resolution

s04 cell clusters ranging from major cell groupings to fine-level subtypes using a hierarchical tree. The
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305 approach is based on deriving a multi-resolution reconciled tree to integrate clusterings obtained for
306 a range of different resolutions. The proposed method combines the flat and hierarchical clustering
s07 results in a novel manner, inheriting the computational efficiency and scalability from the flat
s0s clustering and the interpretability of a hierarchical structure. In comparison, MRtree outperforms
39 bottom-up and top-down hierarchical clustering approaches and provides superior clustering for
200 each level of resolution. MRtree also provides tools for sampling implicit resolution parameters for
s01  Louvain clustering. This enables equal coverage of different clustering scales as input for the tree
a2 construction process. All clustering methods face the challenge of determining the optimal number
403 of clusters supported by the data. While this problem is inherently intractable, MRtree uses a
s04  stability criterion to determine the maximum resolution level for which stable clustering results
205 can be obtained for a given dataset. Because MRtree is agnostic to the clustering approach, it
a6 can readily utilize input from any flat clustering algorithm. Hence MRtree is extremely flexible,
207 immediately incorporating the advantages of available clustering algorithms, while often providing
108 improved clustering at every resolution due to the reconciliation procedure.

209 To illustrate the performance of our method, we apply MRtree to a variety of scRNA-seq data sets,
410 including cells from the mouse brain, human pancreas, and human fetal brain tissues. Coupled
411 with suitable initial flat clustering algorithms, MRtree constructs the hierarchical tree that reveals
a2 different levels of transcriptional distinction between cell types and outperforms popular competi-
a3 tors, including bottom-up HAC and divisive methods such as CellBICS. For functionally distinct
a4 cell types that can be easily identified, the reconciliation process organizes the clusters obtained
as under different scales into a unified hierarchical structure, and suggests a proper tree cut to retain
416 the stable partitions. For instance, the constructed tree from integrated pancreatic islet data sets
a7 successfully identified endocrine and exocrine groups and subsequent cell types within each group.
as  The clusters from the tree of mouse cortex data sets accurately recovered the known major cell
419 types organized into subtrees of neurons and glial cells. Application of MRtree on human fetal brain
a0 cells uncovered previously recognized main types organized in a tree structure along the maturation
421 trajectories.

42 Our method has a greater impact in challenging situations where clusters are similar. Apart from
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423 validating the method on the widely-acknowledged main cell types, we uncovered a list of stable
424 subtypes from the fetal brain dataset that exhibit distinct states and functionality by examining
45 canonical gene ontology categories and significant PPI networks. Specifically, we have shown that
426 two subtypes of intermediate progenitors are well-defined by the expression of radial glia markers
227 versus newly born neurons markers. The subplate /deep layer excitatory neurons are mainly differ-
28 entiated by the layers the cells will populate. While migrating and maturing excitatory subtypes
429 show a gradual increase of upper layer excitatory neuron markers, upper and deep layer excitatory
430 neuron markers, respectively. Subtypes close in maturation states are reflected in the hierarchical
a1 tree as they are split later down the tree. InMGE demonstrates the distinction in both matu-
42 ration and terminal specification with respect to the engagement of synaptic programs. At the
433 same time, InCGE subtypes differentiate mainly by maturation, which fits nicely with the fact that
43¢ CGE interneurons are born after MGE interneurons. While both cell types are born in the ventral
435 telencephalon, their terminal specification happens only upon beginning synaptogenesis when they
436 begin to express subtype-specific markers. Surprisingly, subtypes of ExDP revealed a set of genes
437 and structures similar to an intermediate progenitor that can be further investigated in future work.
438 It is worth noting that the quality of MRtree’s construction relies on the performance of the chosen
439 flat clusterings. If the flat clusterings method inputs unstable or biased clusters, these errors
40 will be largely retained and reflected in the estimated hierarchical cluster tree. Similar to many
41 consensus clustering methods, MRtree can be extended to allow input from multiple sources, each
42 applying different flat clustering methods; however, the quality of the constructed tree depends on
43 the clustering performance of the full spectrum of sources. If the input data provides a disparate
42 signal, then the outcome is likely to be unstable.

s Our studies suggest several interesting questions worthy of future investigations. For instance,
46 our method is a general framework that allows for any flat-clustering base procedure. In practice,
47 how to determine which base procedure suits better for different data sets still remains open. In
4 addition, the current framework relies on a rough idea about the range of resolution. Can we
49 automatically decide the range of resolution? How can we select this range when the resolution is

40 not parameterized by the number of clusters? In particular, our current method adopts a stability
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451 measure to decide whether to further branch the hierarchical tree. Can we provide theoretical
42 guarantees for the power of this stopping criterion? Furthermore, our work shed light on how

453 major cell types evolve to subtypes, and we would like to further verify these biological findings.

s Met hO dS

455 We briefly formulate the optimization problem and introduce the algorithm we employed. A more
a6 detailed description can be found in Supplemental Information. Given the transcriptomes of n cells
57 on p genes, denoted as X € R™* P suppose clustering is performed using algorithm A at a range
sss  of m resolutions with parameters {ki,...,kn}. Here the resolution parameters are loosely defined
49 where it corresponds explicitly to the number of clusters for some algorithms, while it implicitly
460 determines the number of clusters for other algorithms. To formally state the problem and the

461 hierarchical reconciliation algorithm, we first introduce some notation.

w2 Definition 1 A cluster tree To(k1,. .., km) at resolution levels (ki,...,kn) is a directed m-partite

a3 graph with vertex set V(1) and edge set E(T,). Denote the set of all cluster trees as Te(k1, ..., km).

s Here the vertex set V(7) is the union of m subsets, namely V(T;) = Uj=1,.._mV;(T;), where each
as set V;(T.) consists of k; nodes denoted as {vj1,...,v;k; }. Each nodes represents a cluster in the
a6 partition of n cells into k; clusters, namely, v;; represents the k-th cluster at the j resolution level.

w7 BEach direct edge ey, , v is defined between adjacent layers pointing from a lower resolution

+1,k!

s cluster v;y to a higher resolution cluster v; 1, whenever there are overlapping samples between
a0 these two clusters at different resolutions. Further, Let vin(e) and voys(€) be the in-vertex and

a0 out-vertex of edge e.

an Definition 2 We call a cluster tree a hierarchical cluster tree, denoted as Tp(ki, ..., km), if it

a2 satisfies the following constraint:
473 Constraint A1: Each node vjy1 ) has one and only one in-vertex edge.

s Denote the set of all hierarchical cluster trees at resolution (ki,...,kp) as Trp(ki, ... k)
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475 Condition A ensures that any cluster in a higher resolution belongs to one and only one cluster
a6 in the adjacent lower resolution, that is, V v;y, 3k’ such that v C vj_q1 4. It further implies
a7 that the hierarchical tree can only be a branching tree as the resolution increases (top-down), and
a7s the clusters in lower levels should be intact in levels above it. Compared to the cluster trees,
479 hierarchical cluster trees respect the clustering structure at higher resolutions in the sense that
a0 they keep samples that are together at higher resolutions in the same cluster for lower resolutions.
451 Similarly, those samples that are far away from each other at a lower resolution do not enter the
42 same clusters at high resolutions. We illustrate an example of A hierarchical cluster tree and its
453 noisy companion in the form of a cluster tree in Figure S1.

a4 Arrange the the clustering results at each resolution inside a label matrix

L(T.) := [L1,..., Ly € R™™, (1)

ags  where the j-th column denotes the corresponding labels for each data point at resolution k;.

ss  Definition 3 For each data point z;;i = 1,...,n, define its clustering path p(z;) =
7 (V115> Ul ) Where vy, is the label for x; at resolution k;. Let P(T¢) := {p(z;) | i =1,...,n}

a8 be the set of all unique paths.

s0  Optimization scheme Let T.(kq,..., kn; A, X) be the initial cluster tree by applying clustering
a0 algorithm A on X, and let T} (ky,...,kn; A, X) be the underlying true hierarchical cluster tree.
a1 Further denote the two respective n-by-p label matrices as L(T;; A, X) and L(7}; A, X). Our goal
492 is to recover the unknown hierarchical tree from the observed initial cluster tree from the multi-
a3 resolution flat clustering. For ease of notation, we drop A, X and replace (ki,...,k,) with k™.
a4 Assuming that T,(k;) is an estimator of Ty (k;),j = 1,...,m, if T,(k™) satisfy constraint A, it
s naturally yields an estimator of 7} (k™), though this is rarely the case. Following this idea, we
496 construct the estimator by building a hierarchical cluster tree that mostly preserves the cluster
a7 structures from the observed cluster tree T.(k™) constructed from the initial flat clustering results.
as  'To achieve this, we define a loss function as the distance between the solution tree and initial flat

a90  clusterings T.(k™). We seek to minimize the loss under the constraint that the solution tree satisfies
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s0 constraint A;. To measure the difference between two trees, which is equivalent to measuring
so0  mismatch between two sets of partitions, we adopt hamming distance between the respective label
so2 matrices (defined in Eq. (1)). Hamming distance computes the number of location-mismatches of
503  a pair of matrices, commonly used for measuring the distance between two paired partitions.

so4  The problem formulated above is equivalent to finding the optimum k,,, distinct paths from the set
sos  of all feasible paths (Def. 3) of a cluster tree, to which all data points are assigned, and the induced
so6 multi-scale partitions preserve the most flat clustering structures. It is a combinatorial optimization
so7 problem. The complexity grows exponentially with the depth and number of clusters in each layer
s8  of the tree, and therefore is computationally intractable. To alleviate the computational burden,
s00 we introduce an equivalent objective function and propose a greedy algorithm to solve it. Formally,
si0  define V(T) to be the set of “bad” vertices that have more than one in-vertex edge. Then for any
s1 proposed hierarchical cluster tree, i.e. T € Tj,, we have |V(T)| = 0. The hierarchy is therefore

512 estimated by solving the optimization problem respective to the newly-formulated constraint,
Ty, = argmin min Dy (L(T), w(L(Te))  subject to V(T)| = 0. (2)

513 where Dy, (- -) represents the hamming distance. The objective is minimized over permutation
sie of labels m = m,,j = 1,...,m within each partition since the error should not be depending on
si5. how we label the classes.

sis - We employ a greedy optimization procedure. The formulated problem (2) is first transformed to a
517 soft constraint problem that shares the same solutions to allow for constraint violation during the
518 optimization procedure. This enables initializing the solution with the observed flat cluster tree
519 To(Km). The objective is then minimized by sequentially “cleaning” one bad vertex in set |V (T)| at
s20 atime. “Cleaning” the node refers to eliminate all but one edge that have this node as its in-vertex,
s21 followed by re-routing data points belonging to the eliminated path to remaining nearest viable
s2 paths. The increase in the objective as the results of cleaning the node is considered as the cost
53 of eliminating the node from V(7). In each iteration, the vertex in set V(T') is evaluated for its
524 elimination cost, where the one with the minimum cost is selected. The tree is then updated with

525 the selected node being cleaned and affected data points re-assigned to the nearest remaining paths.
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s The procedure is repeated until |V (T')| = 0, which generates the desired hierarchical cluster tree.
527 The full algorithm is summarized in Algorithm 1. In Supplemental Information we analyze the
58  key properties of the algorithm: Theorem 1 provides the convergence properties, while Theorem 2
520 describes the memory and time complexity. In addition, we introduce methods for sampling implicit
s3 resolution parameters with uniform coverage for modularity-based clustering (Seurat clustering),
531 including linear sampling, exponential sampling, and most preferably, Event Sampling method. We
532 also discuss ways of speeding up the algorithm in case of large sample size or a large number of
533 initial flat clusterings through layer-wise reconciliation and performing within-resolution consensus

53¢ clustering as the first step.

533 Stability analysis to determine tree cut We consider clustering stability to determine the
53 tree cut based on a basic philosophy that clustering should be a structure on the data set that is
s37 “stable”. That is, if applied to data sets from the same underlying model, a clustering algorithm
53 should consistently generate similar results. Higher stability across resolutions is reflected as greater
539 consistency of individual initial flat clustering with the resulting clustering in the reconciled tree.
se0 'To measure the stability, we calculate the similarity using ARI between clusterings in corresponding
se1 layers from the initial cluster tree and the resulted hierarchical cluster tree. This will generate a
522 line plot showing the similarity with increasing resolution. The tree cut can then be determined by
53 finding the “change point” where the stability is high at the current point and start to decrease by

sa4  further increasing the resolution.

ss  Clustering accuracy To quantify the clustering performance in each layer of the hierarchical
s46  tree, we utilize a novel modified version of Adjusted Rand Index (ARI)®, called Modified Multi-
sa7  resolution Rand Index (AMRI, Supplemental Information), as the accuracy metric to compare the
ss multi-resolution cluster structures with the true labels. The adjustment allows for comparisons
549 across resolutions, accounting for the reduced ability to uncover details in lower resolutions, thus

ss0  avoiding a bias towards fine-grained clustering results.
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551 'Tree construction accuracy To quantify the performance of hierarchical tree construction,
s52  given the true tree is known, we reduce the tree to a similarity matrix. Each entry of the matrix
553 represents the length of branch two data points share. The longer branch a pair share, the more
ss¢  similar they are. In this way, we convert the measurement of the difference between hierarchies
55 (dendrograms) to measure the difference between two similarity matrices. The between-similarity

556 distance is measure with the L; norm of the difference, defined by

D(T1,Ty) = [|[A1 — A2ll1 = Z |A1,ij — A2, (3)
7:7‘7.
557 where Aq, Ao are the similarity matrices of tree 17, T5 respectively. Given the certain tree structure,

sss the induced similarity metrics can be visualized in Figure S14.

s50.  Cluster Stability Apart from examining the performance of MRtree for clustering accuracy, we
s60  also access the stability of the clusters at multiple resolutions prior to and post to tree reconciliation.
see  Clustering stability has been considered as a crucial indicator of goodness of the clusters, given that
s2 well-performed partitions tend to be consistent across different sampling from the same underlying
sss model or of the same data generating process'!. In practice, a large variety of methods has been
se4  devised to compute stability scores. Here we adopt the sub-sampling procedure, where the same
s6s  clustering method is repeatedly performed on the independently sub-sampled data sets and compute
ss6  the average similarity among the repetitions. Formally given a data set of n points Sy, let Cx(Sy)

)

sz be the resulted clustering outcome with k clusters. Let S,(lb be a sub-sampling of S, by randomly
ses  choosing a subset of size Tn without replacement. Then the stability score is obtained by averaging

se0  the partition similarity on the shared data points,

B
Stab(k,n) = % S ARI(C(Sn), Ch(8D). (4)
b=1

s The higher the stability score, the more stable the clustering procedure is regarding the noise in

s1 the data. We use 7 = 0.95 in our experiments.

29


https://doi.org/10.1101/2021.02.06.430067
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.06.430067; this version posted February 8, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

592

593

594

595

available under aCC-BY-ND 4.0 International license.

Software MRtree can be constructed using the mrtree R package, which can
work directly with Seurat and SingleCellExperiment objects, available on Github

(https://github.com/pengminshi/MRtree).
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