

1 On the robustness of inference of association with the gut microbiota in
2 stool, swab and mucosal tissue samples

3

4 **Authors:**

5 Shan Sun¹, Xiangzhu Zhu², Xiang Huang², Harvey J. Murff², Reid M. Ness², Douglas L.
6 Seidner³, Alicia Sorgen¹, Ivory Blakley¹, Chang Yu⁴, Qi Dai², M. Andrea Azcarate-Peril⁵,
7 Martha J. Shrubsole^{2*}, Anthony A. Fodor^{1*}

8 ¹Department of Bioinformatics and Genomics, University of North Carolina at Charlotte,
9 Charlotte, NC, USA.

10 ² Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

11 ³ Digestive Disease and Surgical Institute, Cleveland Clinic, Cleveland, OH 44195

12 ⁴Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.

13 ⁵Department of Medicine and Microbiome Core Facility, School of Medicine, University of
14 North Carolina, Chapel Hill, NC, USA.

15

16 **Corresponding Author:**

17 Anthony A. Fodor

18 Department of Bioinformatics and Genomics

19 University of North Carolina at Charlotte

20 9331 Robert D. Snyder Rd, Room 361

21 Charlotte, NC 28223

22 afodor@uncc.edu

23

24

25 *These authors contributed equally to this work.

26

27 **Key Words:** Gut microbiota, metagenome, stool, swab, mucosal tissue, host factors

28

29

30 **Abstract**

31 The gut microbiota plays an important role in human health and disease. Stool,
32 swab and mucosal tissue samples have been used in individual studies to survey
33 the microbial community but the consequences of using these different sample
34 types are not completely understood. We previously reported differences in
35 microbial community composition with 16S rRNA amplicon sequencing between
36 stool, swab and mucosal tissue samples. Here, we extended the previous study to a
37 larger cohort and performed shotgun metagenome sequencing of 1,397 stool, swab
38 and mucosal tissue samples from 240 participants. Consistent with previous results,
39 taxonomic composition of stool and swab samples was distinct, but still more
40 similar to each other than mucosal tissue samples, which had a substantially
41 different community composition, characterized by a high relative abundance of
42 the mucus metabolizers *Bacteroides* and *Subdoligranulum*, as well as bacteria with
43 higher tolerance for oxidative stress such as *Escherichia*. As has been previously
44 reported, functional profiles were more uniform across sample types than
45 taxonomic profiles with differences between stool and swab samples smaller, but
46 mucosal tissue samples remained distinct from the other two types. When the
47 taxonomic and functional profiles of different sample types were used for inference
48 in association with host phenotypes of age, sex, body mass index (BMI),
49 antibiotics or non-steroidal anti-inflammatory drugs (NSAIDs) use, hypothesis
50 testing using either stool or swab gave broadly similar results, but inference
51 performed on mucosal tissue samples gave results that were generally less
52 consistent with either stool or swab. Our study represents an important resource for
53 the experimental design of studies aimed to understand microbiota perturbations
54 specific to defined micro niches within the human intestinal tract.

56 **Introduction**

57 A growing number of studies have reported the essential roles of the human gut
58 microbiota in human health and that microbiota alterations are associated with
59 diseases including colorectal cancer, inflammatory bowel disease, obesity and
60 diabetes [1-4]. The human colorectum is a complex system consisting of many
61 microhabitats; studies have reported that the luminal and mucosal microbiota
62 harbor heterogeneous microbial communities [5]. With the oxygen decline from the
63 intestinal mucosa towards the lumen, anaerobic microorganisms are likely more
64 abundant in luminal than mucosal environments [6]. On the other hand, the
65 mucosal microbiota, directly adherent to the host tissue, may be more sensitive and
66 respond more rapidly to localized changes in host tissues, compared to the luminal
67 microbiota that is isolated from the loose mucus layer on the surface of the
68 colorectal wall [7].

69

70 Stool samples are the most common biospecimen used to assess composition and
71 functionality of the human gut microbiota in human research because of the large
72 amount of biomass and the feasibility of collection; however, stool-derived profiles
73 are more representative of luminal microorganisms than of mucosa-associated
74 microbes. Mucosal tissue biopsy better characterizes mucosa-associated microbes
75 but is less frequently used because of the invasive nature and accompanying risk of
76 the procedure. Rectal swab may be used when stool samples are not practical to
77 obtain, for example in the intensive care unit, and may collect a combination of
78 both luminal and mucosal communities [8]. While stool and mucosal samples are
79 generally distinct, there are mixed findings on the similarity between stool and
80 swab samples [9-11]. Thus, different biospecimen types may be needed to sample
81 microorganisms residing in different niches or to reflect different physiological
82 conditions. For example, a study on colitis-induced inflammation in mouse

83 reported that microbial dysbiosis in the mucus layer was detected preceding colitis
84 while changes in stool microbiota were detected post-colitis [7].

85

86 Most of the studies assessing the variation of microbiota profile by biospecimen
87 type have focused on taxonomic composition characterized by 16S rRNA
88 amplicon sequencing. Previous literature of observed variation using shotgun
89 metagenomics is usually limited by the sample size, including our own previous
90 study [8]. Compared to the 16S rRNA amplicon sequencing, shotgun metagenome
91 sequencing utilizes total DNA instead of PCR products thus reducing the bias
92 introduced during processing. Moreover, metagenome sequencing not only
93 determines the taxonomic composition of the gut bacterial communities but also
94 generates information about functional information. With the increasing
95 application of shotgun metagenome sequencing in microbiota studies, a better
96 understanding of the metagenome variation across biospecimen types will help
97 investigators develop and interpret their experimental design.

98

99 In this study, we collected matched stool, rectal swab and mucosal tissue samples
100 from 240 study participants at two time points, which resulted in 1,397 shotgun
101 metagenomes. This is one of the largest studies comparing metagenomes of human
102 stool, rectal swab and colorectal mucosal tissue samples. We estimated the
103 biospecimen type variation of both metagenome taxonomy and functional
104 pathways. We also assessed whether the associations between taxa/pathways and
105 age, sex, body mass index (BMI), non-steroidal anti-inflammatory drugs (NSAIDs)
106 use and antibiotics use were consistent across the different sample types.

107

108 **Methods**

109 *Study Population and Biospecimen Collection*

110 The Personalized Prevention of Colorectal Cancer Trial (PPCCT) was a double-
111 blind, placebo-controlled, randomized clinical trial designed to test the interaction
112 between a *TRPM7* genotype and reduction of the calcium/magnesium intake ratio
113 via magnesium supplementation on colorectal carcinogenesis biomarkers. Study
114 design and biospecimen collection have been previously described [8]. In brief,
115 participants were randomized to receive for 12 weeks either a personalized dose of
116 placebo (microcrystalline cellulose) or magnesium (magnesium glycinate).
117 Inclusion criteria included aged 40-85, personal history of colorectal polyps,
118 known *TRPM7* rs8042919 genotype, and daily intakes of calcium between 700-
119 2000 mg/day and the ratio of calcium to magnesium of 2.6 or greater. Exclusion
120 criteria included pregnancy, breastfeeding, use of medications that may interact
121 with magnesium, or personal history of cancer, colon resection or colectomy,
122 inflammatory bowel disease, organ transplantation, gastric bypass, chronic
123 diarrhea, chronic renal disease, hepatic cirrhosis, chronic ischemic heart disease, or
124 Type I diabetes. All study procedures were performed in accordance with relevant
125 guidelines and regulations as approved by the Vanderbilt Institutional Review
126 Board. The study is registered at ClinicalTrials.gov (NCT01105169).

127
128 Biospecimens were collected at home or in an in-person study visit at the
129 beginning of the trial (baseline) and at the conclusion of the study 12 weeks later
130 (mean 12.3 ± 1.03 weeks) [8]. Stool samples were collected by study participants
131 at home using a white plastic collection container covering the toilet bowl,
132 aliquoted by the participant into sterile cryovials, and stored in the home freezer
133 until transport with an ice pack to the study visit. Stool was collected up to 3 days
134 prior to the study visit. Rectal swabs and mucosal tissues were collected by the
135 study physician at the study visits. Rectal swabs were collected by inserting a
136 culturette swab through the anal canal, swabbing the distal rectal mucosa, and

137 placing the swab into a cryovial. Rectal mucosal samples were collected through
138 an anoscope using standard mucosal biopsy forceps and these samples were placed
139 into separate storage vials. All three biospecimen types were frozen at $-80\text{ }\square\text{ }^{\circ}\text{C}$
140 until use.

141

142 ***DNA Isolation and Sequencing***

143 Samples were transferred to a 2 ml tube containing 200 mg of $\leq 106\text{ }\mu\text{m}$ glass beads
144 (Sigma, St. Louis, MO) and 0.3 ml of Qiagen ATL buffer (Valencia, CA),
145 supplemented with lysozyme (20 mg/ml) (Thermo Fisher Scientific, Grand Island,
146 NY). The suspension was incubated at $37\text{ }^{\circ}\text{C}$ for 1 h with occasional agitation.
147 Subsequently the suspension was supplemented with 600IU of proteinase K and
148 incubated at $60\text{ }^{\circ}\text{C}$ for 1 h. Finally, 0.3 ml of Qiagen AL buffer were added and a
149 final incubation at $70\text{ }^{\circ}\text{C}$ for 10 minutes was carried out. Bead beating was then
150 performed for 3 minutes in a Qiagen TissueLyser II at 30Hz. After a brief
151 centrifugation, supernatants were transferred to a new tube containing 0.3 ml of
152 ethanol. DNA was purified using a standard on-column purification method with
153 Qiagen buffers AW1 and AW2 as washing agents and eluted in 10mM Tris (pH
154 8.0).

155

156 Whole-genome shotgun metagenomics (WGS) DNA sequencing was performed as
157 previously described [8]. Briefly, 1 ng of genomic DNA was processed using the
158 Nextera XT DNA Sample Preparation Kit (Illumina). Next, fragmented and tagged
159 DNA was amplified using a limited-cycle PCR program. In this step index 1(i7)
160 and index 2(i5) were added between the downstream bPCR adaptor and the core
161 sequencing library adaptor, as well primer sequences required for cluster formation.
162 The DNA library was purified using Agencourt® AMPure® XP Reagent. Each
163 sample was quantified and normalized prior to pooling. The DNA library pool was

164 loaded on the Illumina platform reagent cartridge and on the Illumina HiSeq
165 instrument.

166

167 ***Bioinformatics and Statistical Analyses***

168 Sequencing output from the Illumina HiSeq4000 platform was converted to fastq
169 format and demultiplexed using Illumina Bcl2Fastq 2.18.0.12. Quality control of
170 the demultiplexed sequencing reads was verified by FastQC. Human genome
171 contamination was removed from the shotgun metagenome sequencing reads with
172 KneadData. The number of reads before and after removing human genome
173 contamination is shown in Fig. S1. The taxonomic composition of the filtered
174 reads was characterized with MetaPhlAn2 [12] while the functional pathways were
175 annotated with HUMAnN2 against the UniRef database [13]. Unmapped reads
176 were excluded from the following analyses. PCoA ordination was generated with
177 Bray-Curtis dissimilarity based on genus composition and functional pathway
178 abundance respectively with function ‘capscale’ in the R package ‘vegan’. The
179 PERMANOVA test was performed with the function ‘adonis’ in the same package.
180 For each individual genus or pathway, we built linear mixed effects models with
181 the function ‘lme’ in R package ‘nlme’ with the aim of examining differences
182 between the modes based on sample type variation. The genera and pathways with
183 presence <10% in all samples were excluded to avoid spurious results and P-values
184 were adjusted with the Benjamini-Hochberg method for multiple testing.

185

186 Model 1 was used to test the associations between the metagenome and
187 biospecimen types (stool, swab or mucosal tissue). Model 1 was performed for
188 each pair of sample types to get the direction of changes and adjusted for host
189 factors.

190

161 Genus/pathway = sample_type+treatment*time_point+antibiotics use (1)
162 +age+sex+BMI+NSAIDs use+(1/participant)

163
164 In this model, sample type, treatment, time point, age, sex, BMI, antibiotics and
165 NSAIDs use were fixed effects while participant ID was a random effect. Using
166 pairwise models allowed for direct comparison between sample types. The
167 significance was determined as <10% FDRs corrected with Benjamini-Hochberg
168 method. Significant genera and pathways identified in this model were plotted as
169 heatmaps with the function ‘pheatmap’.

170
171 Model 2 was used to test the associations between metagenome and host factors in
172 each sample type.

173 Genus/pathway = treatment*time_point+antibiotics use (2)
174 +age+sex+BMI+NSAIDs use +(1/participant)

175 In this model, treatment, time point, age, sex, BMI, antibiotics and NSAIDs use
176 were fixed effects while participant ID is a random effect. The correlations
177 between inferences (-log10(P)) produced in different sample types were tested with
178 Spearman correlations and the plots were generated with ‘ggplot2’.

179
180 Because of the compositional nature of the shotgun metagenome sequencing data,
181 we also utilized ALDEx2 [14] which uses Bayesian methods and a geometric mean
182 based normalization to minimize compositional artifacts to confirm our
183 observations. Because ALDEx2 does not support models adjusted for covariates,
184 the associations were tested with one variable models.

185
186 **Results**
187 ***Taxonomic composition of metagenomes was associated with sample types***

214 After quality control, there were 1,397 stool, swab and mucosal tissue
215 metagenomes from 240 participants. We characterized the taxonomic composition
216 and functional pathways of the metagenomes and found substantial variation by
217 sample type. Shannon diversity at the genus level was significantly different
218 between sample types, with mucosal tissue samples of the lowest diversity and
219 swab the highest (Fig. 1a). PCoA ordinations of genus composition showed a
220 distinct cluster of mucosal tissue samples (Fig. 1b). A PCoA ordination in which
221 mucosal tissue samples were excluded in order to better visualize the stool and
222 swab samples showed clear separation as well (Fig. 1c). A PERMANOVA test
223 indicated that the genus composition was significantly associated with sample type
224 ($P=0.001$, with 999 permutations). The differences across stool, swab and mucosal
225 tissue samples explained 31.6% of the variance, while the differences between
226 stool and swab explained 5%, further supporting the observation that mucosal
227 tissue samples were more distinct compared to stool and swab. Microbial
228 taxonomic composition at other levels from phylum to species levels were also
229 significantly associated with sample type (Table S1). The PERMANOVA tests and
230 PCoA ordinations demonstrate that the microbial metagenomes sampled with
231 different methods were different at the community level.

232

233 In order to identify differentially abundant taxa, we used a linear mixed-effects
234 models to compare the sample types in pairs (Model 1). Among the 60 genera with
235 presence in >10% samples, 56 were different between at least one pair of samples,
236 with 35 significantly different between stool and swab samples, 53 between stool
237 and tissue, and 51 between swab and tissue (Fig. 2). Because the sequencing
238 depths were different between sample types (Fig. S1), we also utilized an analysis
239 pipeline based on ALDEx2, which attempts to explicitly correct for compositional
240 artifacts. The differential abundance of the 56 taxa across sample types were

241 supported by results from ALDEx2, except for *Paraprevotella* and an unknown
242 genus of the Clostridiaceae family (Table S2). P-values from the two methods were
243 generally consistent (Fig. S2a). Tissue samples had higher relative abundance of
244 *Bacteroides*, *Subdoligranulum*, *Escherichia*, *Blautia* and unclassified genera of the
245 families *Propionibacteriaceae* and *Acidaminococcaceae*. Compared to stool
246 samples, swab samples were enriched in *Propionibacterium*, *Campylobacter*,
247 *Porphyromonas*, *Prevotella*, *Clostridium*, *Streptococcus* and had lower abundance
248 of *Methanobrevibacter*, *Dialister*, *Adlercreutzia*, *Haemophilus*, *Klebsiella*,
249 *Akkermansia*, *Alistipes* and *Paraprevotella*.

250

251 ***Functional pathways of metagenomes were associated with sample types***

252 The metagenomes of mucosal tissue samples had a higher number of reads that
253 could not be mapped to the UniRef databases after removing host sequences (54%
254 compared to 30% for stool and 28% for swab samples), indicating that the mucosal
255 tissue microbiota was less represented in the current database. The number of
256 microbial pathways was lower in mucosal tissues compared to other samples (Fig.
257 3a). The PCoA ordinations of functional pathways showed a similar specific
258 cluster of mucosal tissue samples (Fig. 3b), while the stool and swab samples were
259 less separated compared to the PCoA ordination based on genus composition
260 (Fig.3c). A PERMANOVA test indicated that functional pathways were also
261 significantly different across sample types (stool, swab and mucosal tissue: $R^2 =$
262 0.273, $P=0.001$; stool and swab: $R^2 = 0.048$, $P=0.001$). We again used a linear
263 mixed effects model to identify the differential functional pathways between
264 samples. In 343 functional pathways with presence in >10% samples, 318 were
265 significantly different between at least one pair of samples, with 269 of differential
266 abundance for stool-swab comparison, 222 for stool-tissue and 233 for swab-tissue

267 (Fig. 4). Among the 318 significant pathways, only 8 were not supported by the
268 analysis of ALDEEx2 (Table S3; Fig. S2b).

269

270 ***The impact of sample type on the associations between the taxonomic and***
271 ***functional profiles and host factors***

272 We built separate models in each sample type to estimate whether the associations
273 with taxonomic composition were consistent across sample types for the host
274 factors age, sex, BMI, antibiotics use and NSAIDs use. The associations between
275 genera and host factors were very highly correlated between stool and swab
276 samples (Fig. 5: left panels) with Spearman's correlation coefficients of p-value vs.
277 p-value ranging from 0.501 for BMI to 0.75 for sex. The associations between
278 stool and mucosal tissue samples (Fig. 5: middle panels) were significantly
279 correlated except for sex with a P-value cutoff of 0.05, while the associations
280 between swab and mucosal tissue samples (Fig. 5: right panels) were significantly
281 correlated for BMI, antibiotics use and NSAIDs use but not for age or sex.

282

283 The same models were used for analyzing the robustness of the associations
284 between pathways and host factors (Fig. 6). As was the case for taxa, the
285 associations between pathways and host factors observed in stool and swab sample
286 types were all highly positively correlated (Fig 6: left panels). However,
287 comparisons between mucosal tissue and stool (Fig 6: middle panels) and swab
288 (Fig 6: right panels) samples showed that the correlations were less consistent,
289 including positive correlation with a smaller coefficient, negative correlation and
290 no correlation. These observations were generally consistent when using ALDEEx2
291 for statistical modeling instead of the linear models for both taxonomic

292 composition and functional pathways that inference with stool and swab are more
293 consistent than with mucosal tissue (Table S4 and S5).

294

295 **Discussion**

296 A better understanding of the associations between the human gut microbiome and
297 disease is essential for developing potential early detection and intervention
298 methods utilizing the microbiome. The stool, rectal swab and mucosal tissue
299 biospecimen types we examined in this study sample microhabitats in which
300 different microbial communities reside. With 1397 matched stool, rectal swab and
301 mucosal tissue metagenomes for 240 participants, our dataset provided a great
302 opportunity for analyzing the variations of these three matched biospecimens from
303 the same participants. Unsurprisingly, we found that microbial taxonomic
304 composition and functional pathways were different across the three biospecimen
305 types, with the mucosal tissue metagenome more distinct from stool and swab. In
306 general, the inference of host factor and microbiome associations were highly
307 consistent between stool and rectal swab but not for mucosal tissue.

308

309 The mucosal tissue microbiome had lower alpha diversity and low abundance of
310 most microbes, but was enriched in *Bacteroides*, *Subdoligranulum*, *Escherichia*
311 and *Propionibacteriaceae*. *Bacteroides thetaiotaomicron*, *B. caccae*, *B. fragilis* and
312 *B. vulgatus* are well known mucin degraders and rely on mucin and other host-
313 derived glycans for colonization [15]. *Propionibacterium* (phylum Actinobacteria)
314 and *Escherichia* (phylum Proteobacteria) were higher in mucosal tissue and swab
315 compared to stool samples, which could be explained by their higher oxygen
316 tolerance. The enrichment of Actinobacteria and Proteobacteria in the mucosa-
317 associated microbiota has been reported in correlation with the intestinal radial
318 colonic oxygen gradient that influences microbiota composition based on their

319 ability to tolerate the oxidative stress [16]. The higher alpha diversity in the rectal
320 swab microbiome compared to the stool and mucosal tissue microbiome is
321 consistent with our previous study [8] and could be explained by swab sampling
322 from both luminal and mucosal microbes [9].

323

324 Similar to taxonomic composition, the functional pathways in stool and rectal swab
325 samples were more similar to each other than mucosal tissue samples. The number
326 of sequencing reads from the mucosal tissue was smaller compared to stool and
327 rectal swab samples due to lower microbial biomass and a higher percentage of
328 human genome DNA contamination (Fig. S1). This could contribute to the
329 observed lower taxonomic and functional diversity in mucosal tissue microbiome
330 compared to stool and rectal swab samples. Compositional artifacts associated with
331 reduced sequencing depth may therefore explain some of the differences we
332 observed between mucosal tissue and stool and swab samples. These differences
333 did persist even when using the compositionally aware pipeline ALDEx2, but no
334 statistical approach can perfectly compensate for large differences in sequencing
335 depth. ALDEx2 does not allow for inclusion of covariates or adjusting for random
336 effects from the same subject and that might explain the differences between the
337 ALDEx2 and linear models. Future research will be needed to explore how much
338 of the differences between mucosal tissues and stool and swab in both community
339 and gene composition and inference can be explained by these compositional
340 differences.

341

342 Stool, swab and mucosal microbiota were enriched for different pathways,
343 reflecting the niche adaption of different microbial communities. Mucosal

344 microbiota was relatively enriched for pathways related to glycolysis and
345 biosynthesis pathways involved in the generation of amino acid L-isoleucine,
346 nucleosides adenosine, guanosine and inosine, and fatty acids gondoate and *cis*-
347 vaccenate (one of the major unsaturated fatty acids, responsible for membrane
348 phospholipid homeostasis in bacteria[17]). The stool and rectal swab microbiomes
349 differed in the pathway related to peptidoglycan, CDP-diacylglycerol,
350 UDP-N-acetylmuramoyl-pentapeptide, galactose, stachyose, L-arginine, purine
351 and pyrimidine. Because a large number of functional genes remained unexplored,
352 future expansion of database could provide a better knowledge of the functional
353 differences between these sample types.

354 In order to determine whether the biospecimen type influence the inference of
355 associations between the gut microbiome and host factors, we analyzed microbial
356 associations with age, sex, BMI, antibiotics and NSAIDs use in each of the three
357 sample types. We found that inferences performed with stool and rectal swab
358 samples were highly correlated with each other for both taxonomic composition
359 and functional pathways, while inference with mucosal tissue was more distinct
360 especially for functional pathways. The relatively poor consistency between the
361 mucosal tissue microbiome and the stool and rectal swab microbiome potentially
362 reflects the niche differences that affect microbial interactions with the
363 environment. It is also possible that the mucus barrier between the mucosal tissue
364 and the lumen makes the mucosal tissue microbiome more sensitive to some host
365 changes that were reflected in the mucosal tissues. For example, a previous study
366 reported that the excessive secretion of mucus glycan could lead to the increase of
367 *Akkermansia* and *Bacteroides* abundance in mucosal tissue but was only extended
368 to stool with an altered mucus barrier [7]. As is the case for comparisons of relative
369 abundance, models of inference are also sensitive to compositional artifacts

370 associated with sequencing depth, although in our study comparisons based on
371 ALDEx2 yielded broadly similar results to comparisons based on compositionally
372 naïve mixed linear models.

373

374 We note that this study was conducted in individuals with a history of colorectal
375 polyps, so the conclusions may not be generalizable to individuals without a
376 history of polyps. However, all the participants were polyp-free when
377 biospecimens were collected. Our work represents the largest study to date to
378 explicitly compare these sample types and should provide a useful guide to
379 investigators in the design and interpretation of human studies of the gut
380 microbiota.

381

382 **Conclusion**

383 Our study shows that the stool, swab and mucosal tissue microbiota are of different
384 taxonomic and functional profiles, but the stool and swab microbiota are generally
385 more similar compared to that of mucosal tissue. When analyzing the associations
386 between microbiota and host factors of age, sex, BMI, antibiotics or NSAIDs use
387 in each sample type, the inference on stool and swab samples were also more
388 consistent than the inference on mucosal samples. Our study suggests that not only
389 the taxonomic and functional profiles varied by sample types but the inference on
390 their associations with host factors were depending on the sample type as well.

391

392 **Acknowledgements**

393 The authors thank the research staff and investigators who have contributed to the Personalized
394 Prevention of Colorectal Cancer Trial, the study participants who contributed their time and
395 biospecimens for research, and Dr. Jay Fowke for sharing his protocol for rectal biopsy
396 collection. This study was supported by grants R03CA183019 (MJS), R01CA149633 (QD and
397 CY), and R01DK110166 (QD and MJS), as well as the Ingram Cancer Center Endowment Fund.
398 Data collection, sample storage and processing for this study were partially conducted by the
399 Survey and Biospecimen Shared Resource, which is supported in part by P30CA68485. Clinical

400 visits to the Vanderbilt Clinical Research Center were supported in part by the Vanderbilt CTSA
401 grant UL1 RR024975 from NCRR/NIH. The UNC Microbiome Core is supported in part by P30
402 DK034987 Center for Gastrointestinal Biology and Disease (CGIBD) and P30 DK056350 UNC
403 Nutrition Obesity Research Center (NORC). The parent study data were stored in Research
404 Electronic Data Capture (REDCap) and data analyses (VR12960) were supported in part by the
405 Vanderbilt Institute for Clinical and Translational Research (UL1TR000445). The content of this
406 paper is solely the responsibility of the authors and does not necessarily represent the official
407 views of the National Cancer Institute or the National Institutes of Health.
408
409

410 **Author Contributions**

411 QD, CY, MJS and AAF contributed to study conception, design, and supervision. XZ, HJM,
412 RMN, DLS, MAAP, QD and MJS contributed to acquisition of data. XZ and MJS provided
413 administrative, technical, or material support. SS, XZ, HX, AS, IB, CY, DQ, MJS and AAF
414 contributed to analysis and interpretation of data. All authors contributed to writing, review,
415 and/or revision of the manuscript and approved the final manuscript.
416
417

418 **Competing interests**

419 The authors declare no competing interests.
420

421 **Data sharing statement**

422 The metagenomes sequences analyzed in this study are available at NBCI with accession ID
423 PRJNA693850. Scripts used in this study are available at
424 <https://github.com/ssun6/StoolSwabTissue>.
425

426 **REFERENCES**

- 427 1. Arthur JC, Gharaibeh RZ, Mühlbauer M, Perez-Chanona E, Uronis JM, McCafferty J, Fodor AA, Jobin C: Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. *Nat Commun* 2014, 5:4724.
- 428 2. Kostic AD, Xavier RJ, Gevers D: The microbiome in inflammatory bowel disease: current status and the future ahead. *Gastroenterology* 2014, 146:1489-1499.
- 429 3. Graham C, Mullen A, Whelan K: Obesity and the gastrointestinal microbiota: a review of associations and mechanisms. *Nutrition reviews* 2015, 73:376-385.
- 430 4. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D: A metagenome-wide association study of gut microbiota in type 2 diabetes. *Nature* 2012, 490:55.
- 431 5. Donaldson GP, Lee SM, Mazmanian SK: Gut biogeography of the bacterial microbiota. *Nature Reviews Microbiology* 2016, 14:20-32.
- 432 6. Espey MG: Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. *Free Radical Biology and Medicine* 2013, 55:130-140.
- 433 7. Glymenaki M, Singh G, Brass A, Warhurst G, McBain AJ, Else KJ, Cruickshank SM: Compositional changes in the gut mucus microbiota precede the onset of colitis-induced inflammation. *Inflammatory bowel diseases* 2017, 23:912-922.

444 8. Jones RB, Zhu X, Moan E, Murff HJ, Ness RM, Seidner DL, Sun S, Yu C, Dai Q, Fodor
445 AA: Inter-niche and inter-individual variation in gut microbial community assessment
446 using stool, rectal swab, and mucosal samples. *Scientific reports* 2018, 8:4139.

447 9. Choudhury R, Kleerebezem M, Middelkoop A, Bolhuis JE: Legitimate and reliable
448 determination of the age-related intestinal microbiome in young piglets; rectal swabs and
449 fecal samples provide comparable insights. *Frontiers in Microbiology* 2019, 10:1886.

450 10. Bassis CM, Moore NM, Lolans K, Seekatz AM, Weinstein RA, Young VB, Hayden MK:
451 Comparison of stool versus rectal swab samples and storage conditions on bacterial
452 community profiles. *BMC microbiology* 2017, 17:1-7.

453 11. Fair K, Dunlap DG, Fitch A, Bogdanovich T, Methé B, Morris A, McVerry BJ, Kitsios
454 GD: Rectal swabs from critically ill patients provide discordant representations of the gut
455 microbiome compared to stool samples. *Msphere* 2019, 4:e00358-00319.

456 12. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A,
457 Huttenhower C, Segata N: MetaPhlAn2 for enhanced metagenomic taxonomic profiling.
458 *Nature methods* 2015, 12:902-903.

459 13. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, Lipson
460 KS, Knight R, Caporaso JG, Segata N: Species-level functional profiling of metagenomes
461 and metatranscriptomes. *Nature methods* 2018, 15:962.

462 14. Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB: ANOVA-like differential
463 expression (ALDEEx) analysis for mixed population RNA-Seq. *PLoS One* 2013, 8:e67019.

464 15. Martens EC, Chiang HC, Gordon JI: Mucosal glycan foraging enhances fitness and
465 transmission of a saccharolytic human gut bacterial symbiont. *Cell host & microbe* 2008,
466 4:447-457.

467 16. Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A, Grunberg S,
468 Baldassano RN, Lewis JD, Li H: Correlation between intraluminal oxygen gradient and
469 radial partitioning of intestinal microbiota. *Gastroenterology* 2014, 147:1055-1063.
470 e1058.

471 17. Zhang Y-M, Rock CO: Membrane lipid homeostasis in bacteria. *Nature Reviews
472 Microbiology* 2008, 6:222-233.

473

474

475 **Figure legends**

476 Fig. 1. Alpha-diversity and PCoA ordinations of the taxonomic composition of
477 microbial metagenomes at the genus level. Color indicates the sample types. (a)
478 Alpha diversity across sample types. Differences between sample types were tested
479 with Wilcoxon's test. (b) Mucosal tissue samples formed a distinct cluster from
480 stool and swab samples. (c) Separation of stool and swab samples.

481

482 Fig. 2. Heatmap of genera that were significantly different between sample types
483 (FDR<0.05). Keys indicate the z-scores of averaged taxonomic abundance.

484

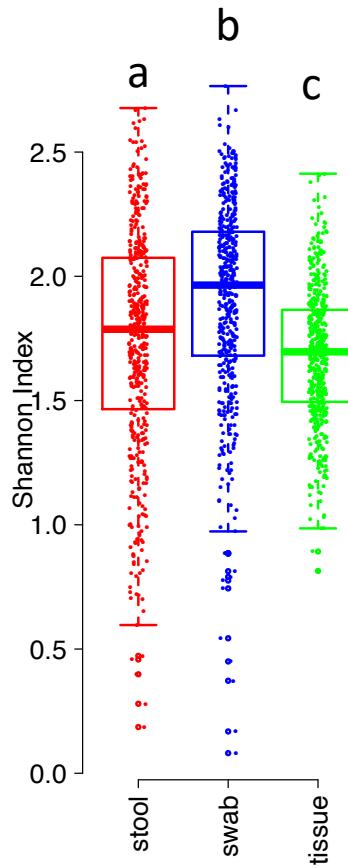
485 Fig. 3. The number of pathways and PCoA ordinations of functional pathways of
486 microbial metagenomes. Color indicates the sample types. (a) The number of
487 pathways across samples. (b) Mucosal tissue samples formed a distinct cluster
488 from stool and swab samples. (c) visualization of only stool and swab samples.

489

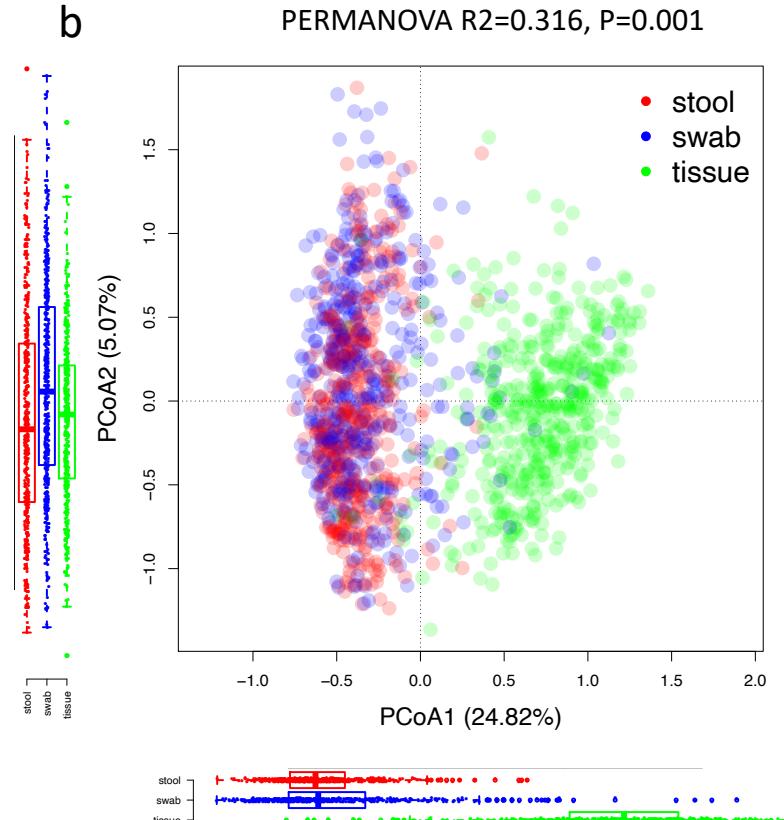
490 Fig. 4. Heatmap of functional pathways that were significantly different between
491 sample types (FDR<0.05). Keys indicate z-scores of averaged abundance.

492

493 Fig. 5. Correlations between the genus composition inference for age (a), sex (b),
494 BMI (c), antibiotics use (d) and NSAIDs use (e) between pairwise sample types.
495 The axes were the $-\log_{10}$ transformation of p-values from the model 2 described in
496 methods


497

498 Fig 6. Correlations between the functional pathways inference for age (a), sex (b),
499 BMI (c), antibiotics use (d), NSAIDs use (e) and between pairwise sample types.
500 The axes were the $-\log_{10}$ transformation of p-values from the model 2 described in
501 methods.


502

503

a

b

c

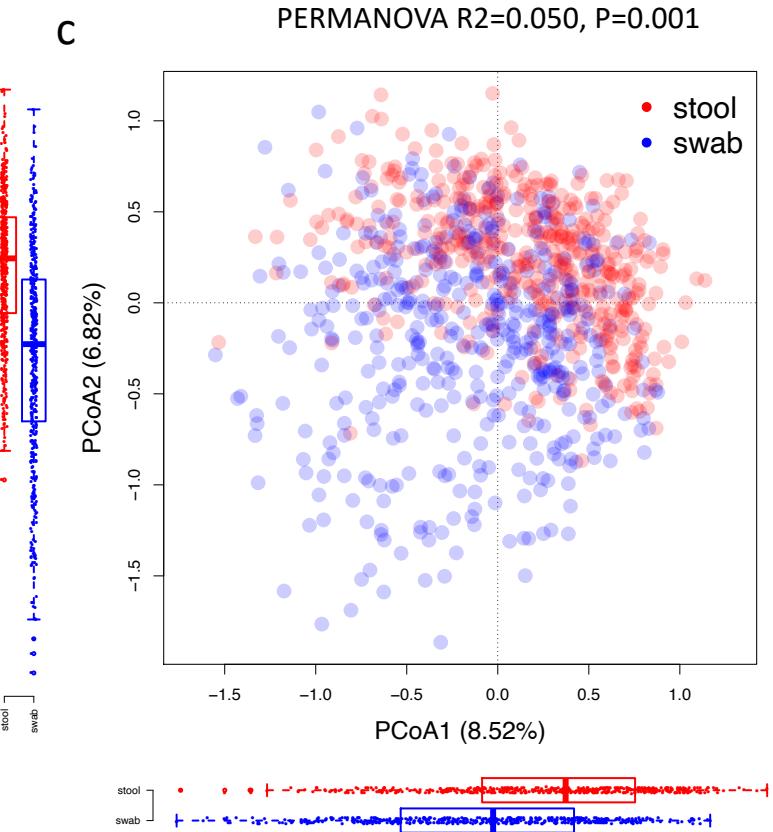


Fig. 1. Alpha-diversity and PCoA ordinations of taxonomic composition of microbial metagenomes at the genus level. Color indicates the sample types. (a) Alpha diversity across sample types. Differences between sample types were tested with Wilcoxon's test. (b) Mucosal tissue samples formed a distinct cluster from stool and swab samples. (c) Separation of stool and swab samples.

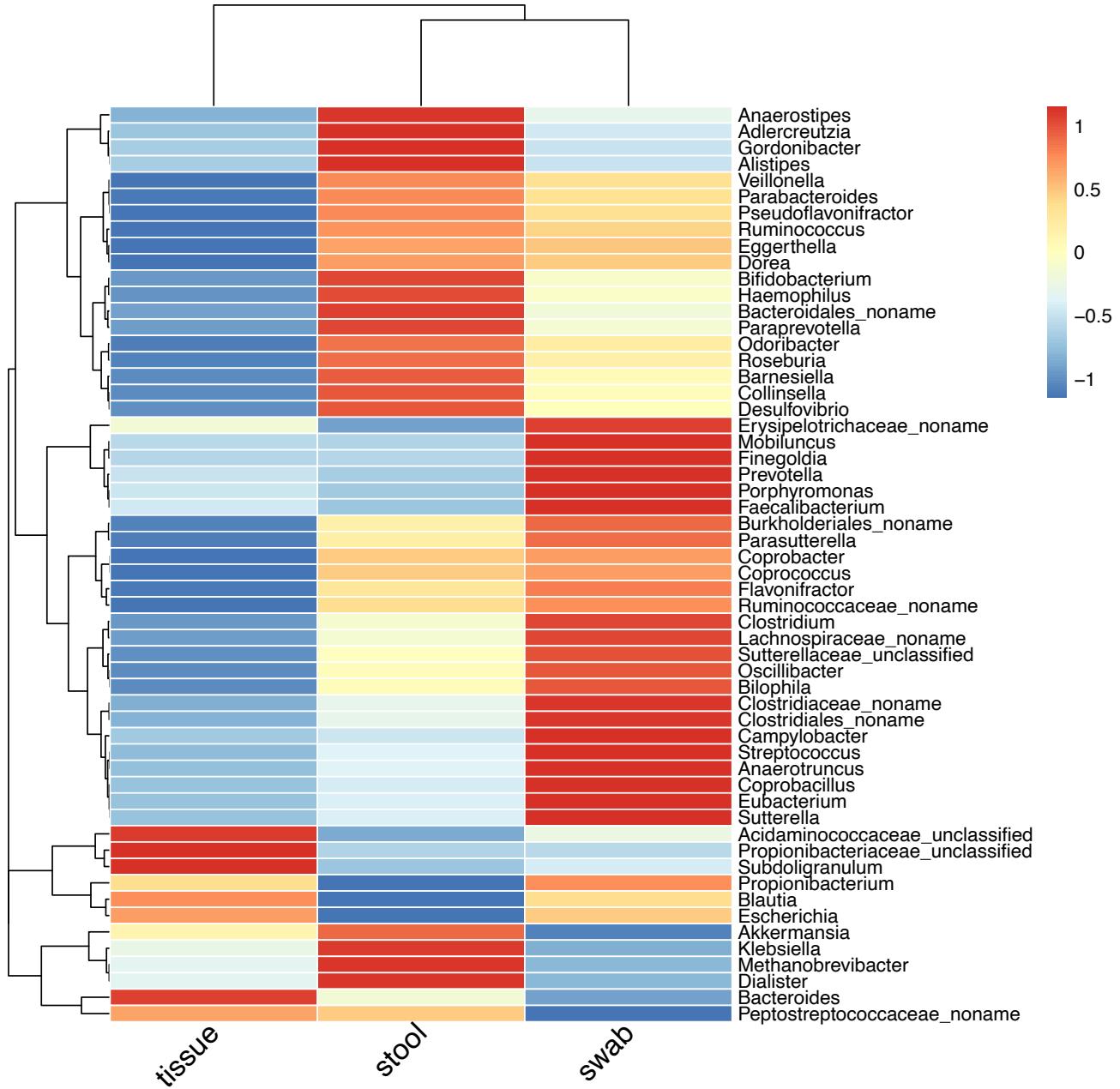


Fig. 2. Heatmap of genera that were significantly different between sample types (FDR<0.05). Keys indicate z-scores of averaged taxonomic abundance.

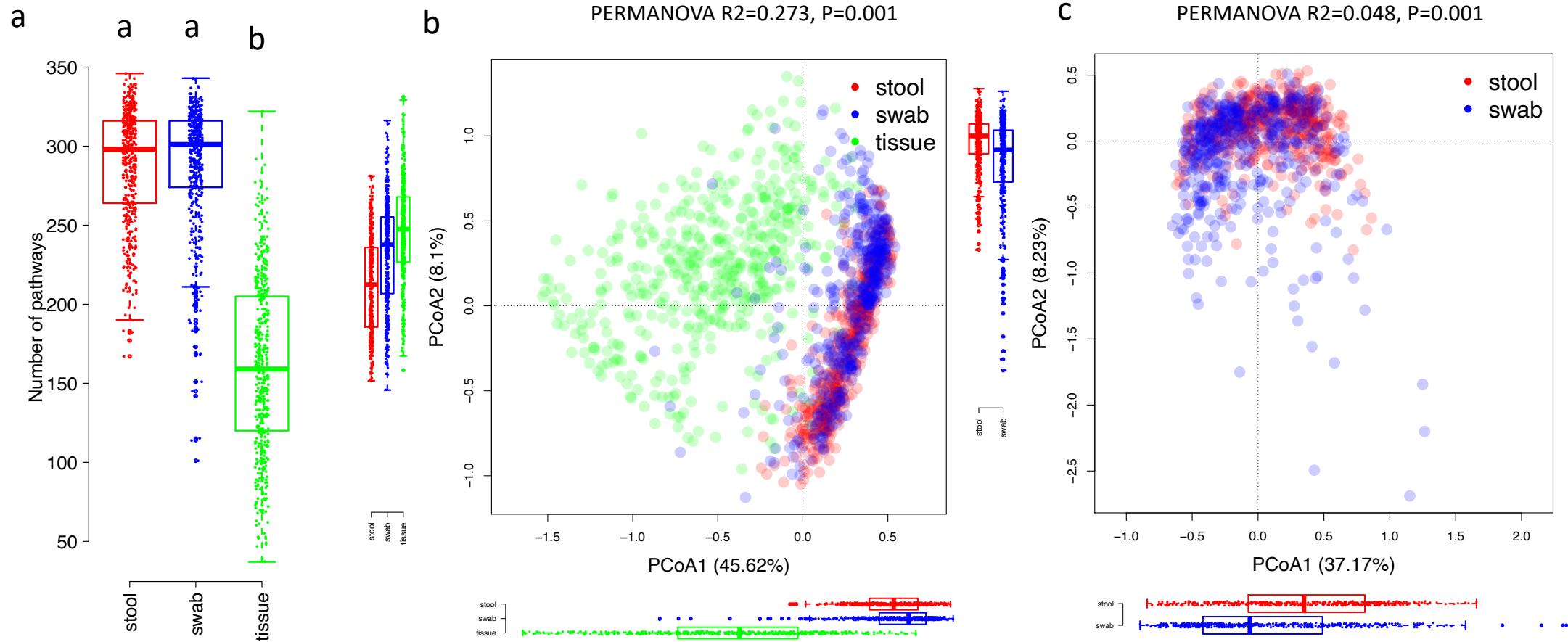



Fig. 3. The number of pathways and PCoA ordinations of functional pathways of microbial metagenomes. Color indicates the sample types. (a) The number of pathways across samples. (b) Mucosal tissue samples formed a distinct cluster from stool and swab samples. (c) visualization of only stool and swab samples.

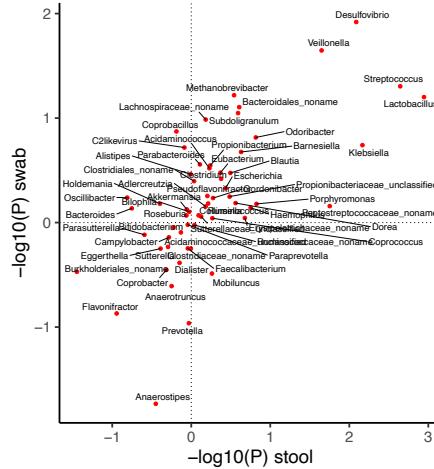
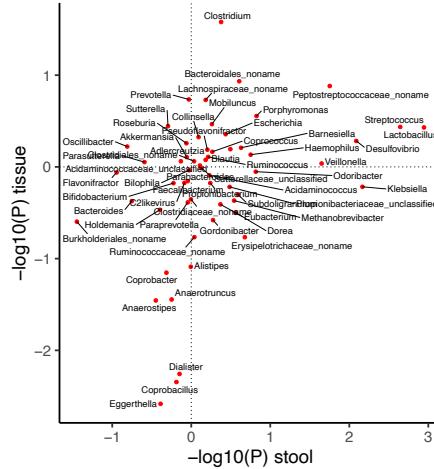
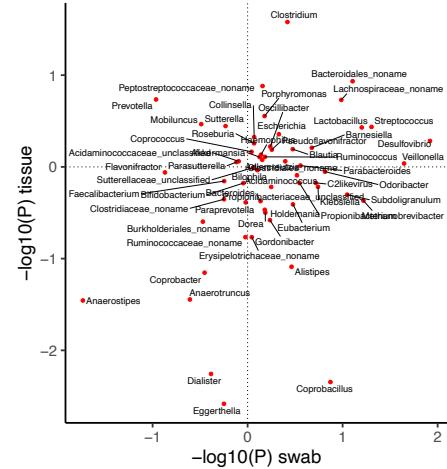
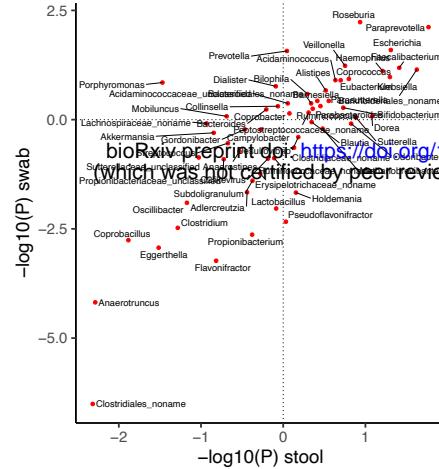
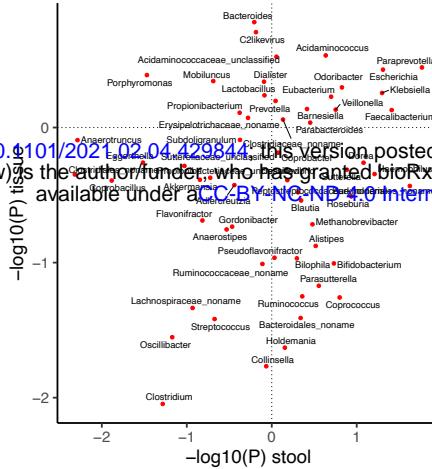
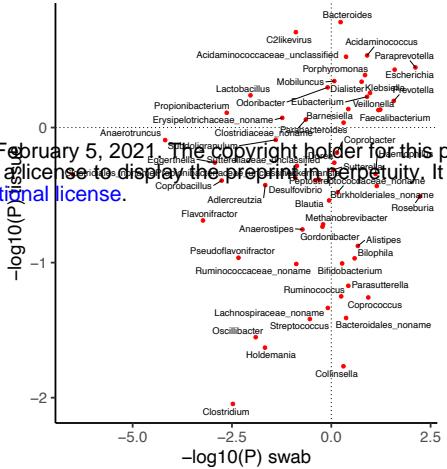
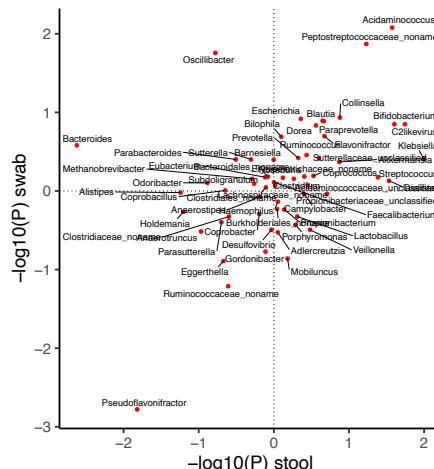
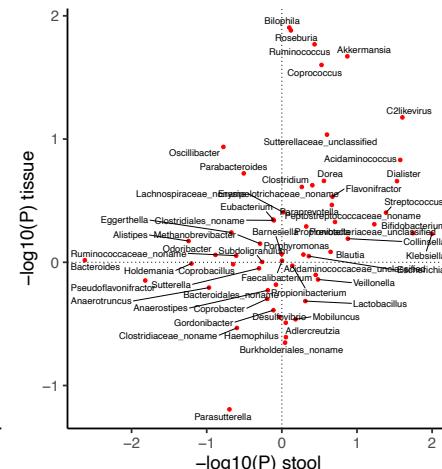
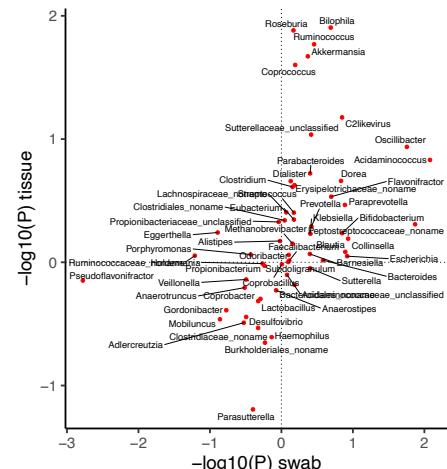
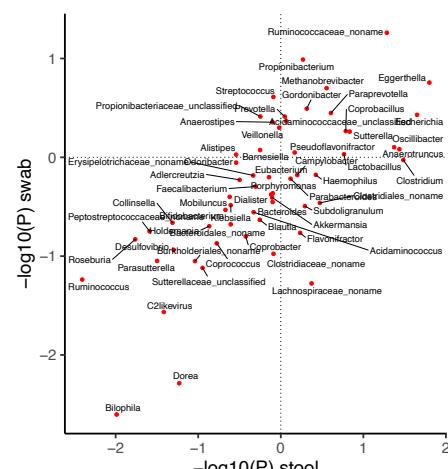
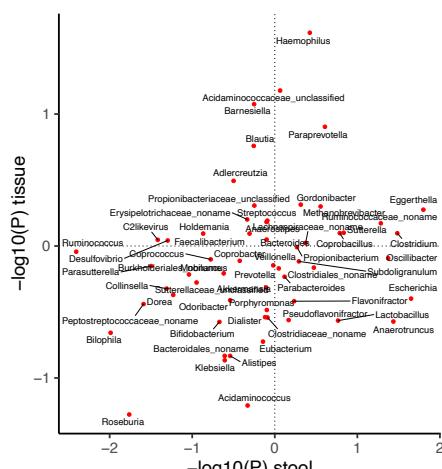
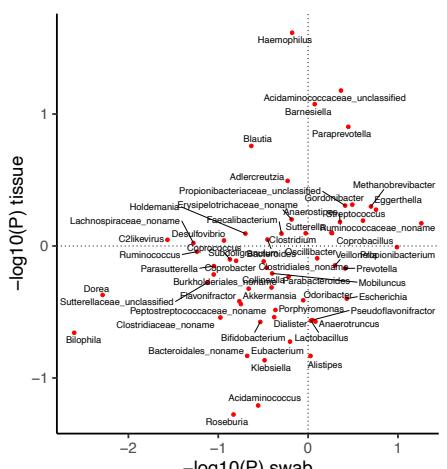
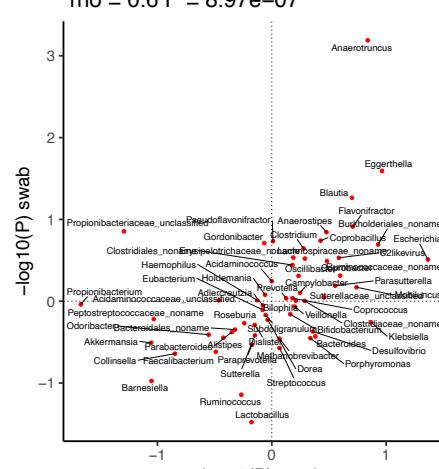
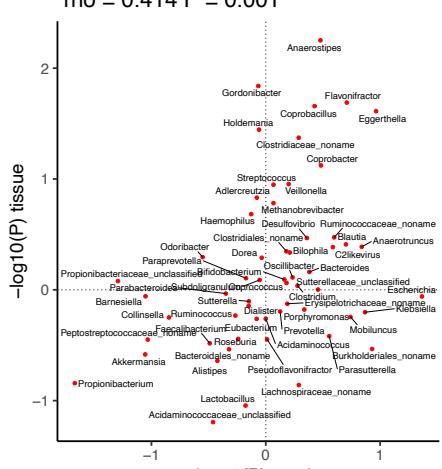
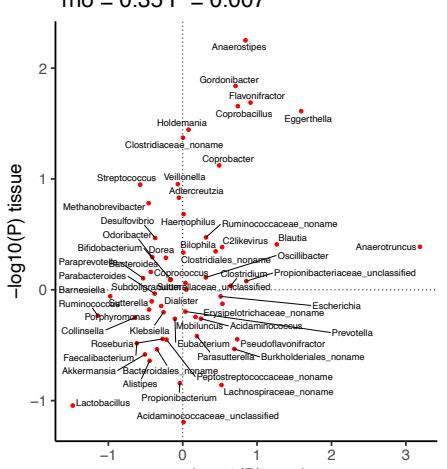
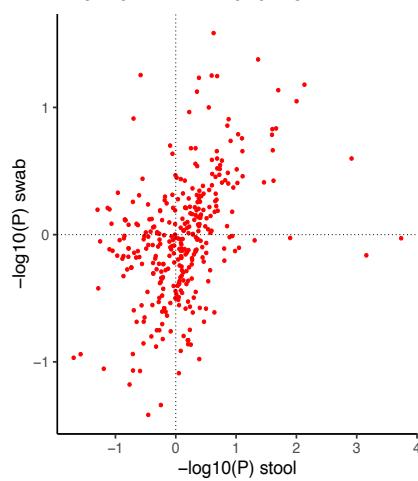
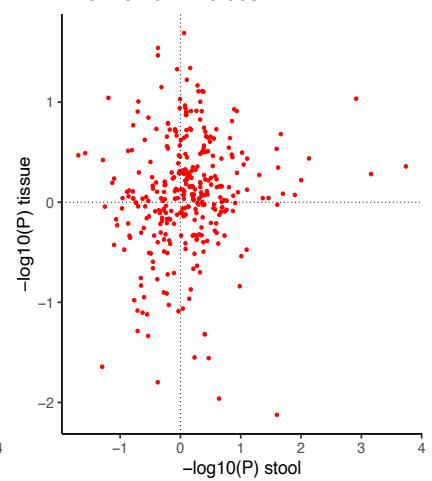
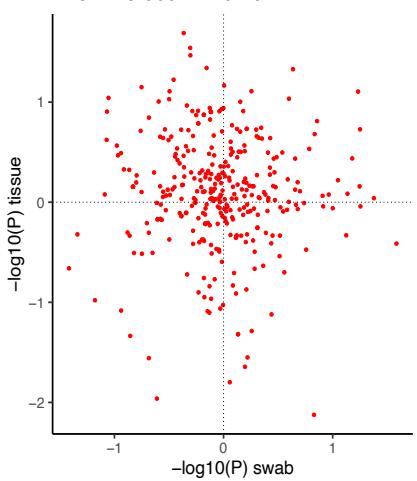
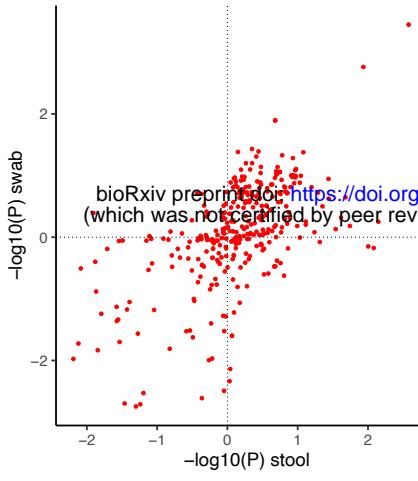
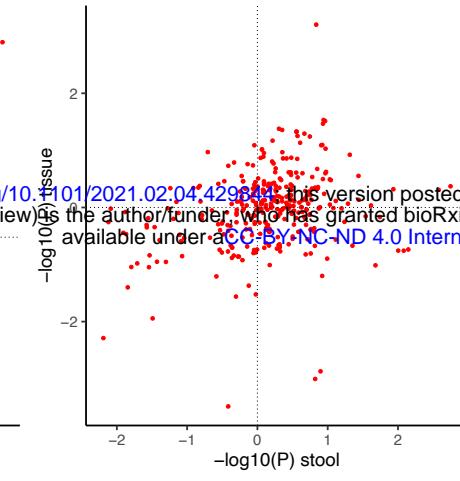
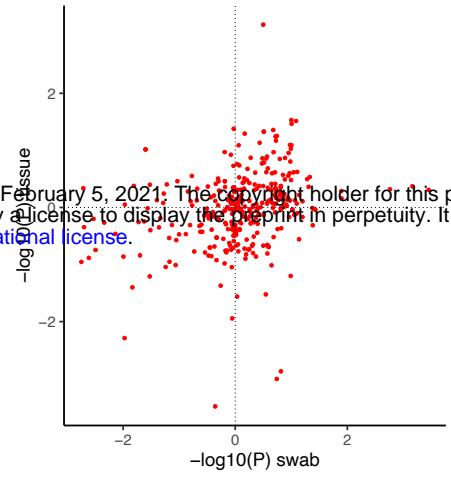
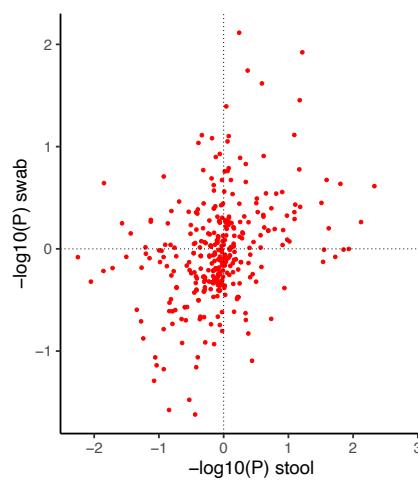
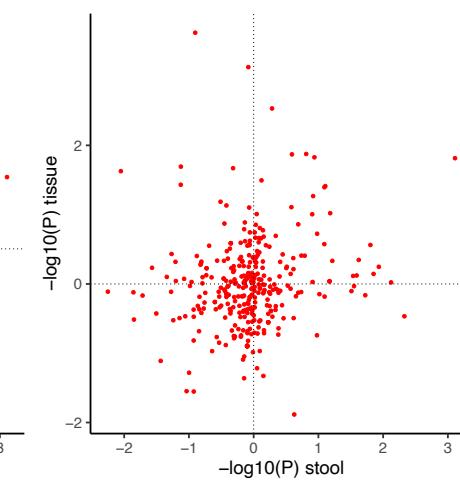
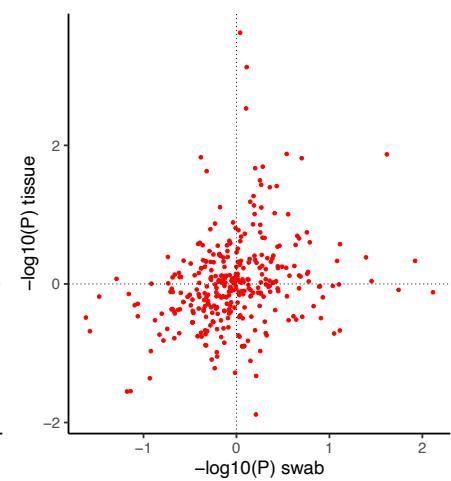
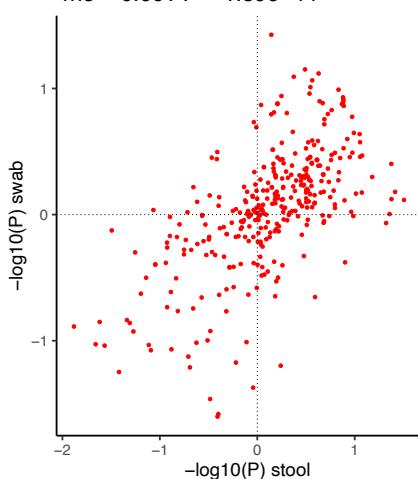
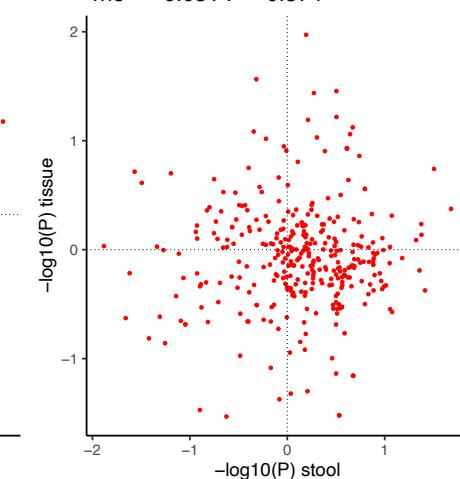
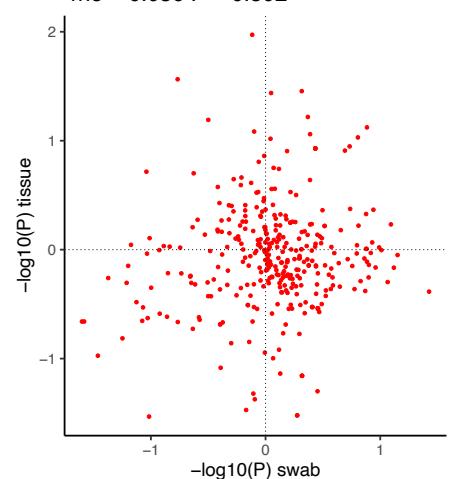
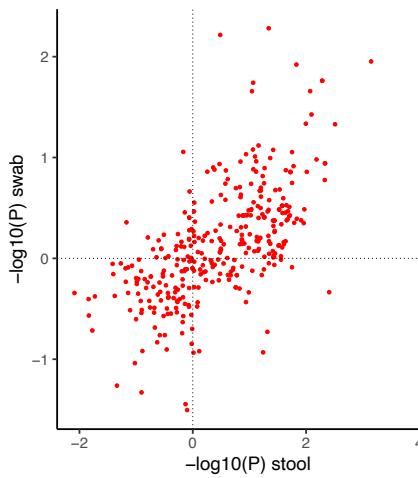
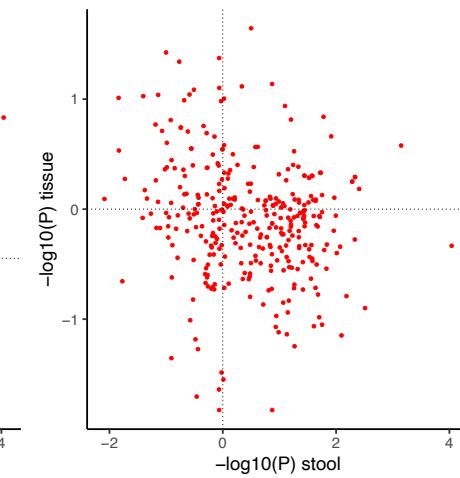
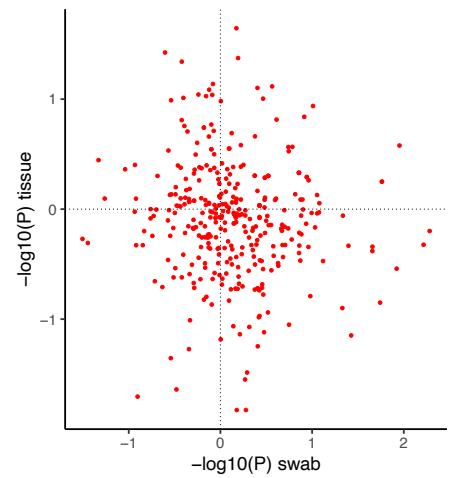






























aage : stool vs swab
 $\rho = 0.659 P = 3.72e-08$ stool vs tissue
 $\rho = 0.396 P = 0.002$ swab vs tissue
 $\rho = 0.246 P = 0.063$ **b**sex : stool vs swab
 $\rho = 0.75 P < 2.2e-16$ stool vs tissue
 $\rho = 0.149 P = 0.263$ swab vs tissue
 $\rho = 0.257 P = 0.052$ **c**BMI : stool vs swab
 $\rho = 0.501 P = 6.56e-05$ stool vs tissue
 $\rho = 0.449 P = 4.62e-04$ swab vs tissue
 $\rho = 0.661 P = 4.46e-08$ **d**antibiotics : stool vs swab
 $\rho = 0.715 P < 2.2e-16$ stool vs tissue
 $\rho = 0.31 P = 0.018$ swab vs tissue
 $\rho = 0.411 P = 0.001$ **e**NSAIDS_use : stool vs swab
 $\rho = 0.6 P = 8.97e-07$ stool vs tissue
 $\rho = 0.414 P = 0.001$ swab vs tissue
 $\rho = 0.35 P = 0.007$

Fig. 5. Correlations between the genus composition inference for age (a), sex (b), BMI (c), antibiotics use (d) and NSAIDs use (e) between pairwise sample types. The axes were the $-\log_{10}$ transformation of p-values from the model2 described in methods

aage : stool vs swab
 $\rho = 0.442 P = 7.97e-18$ stool vs tissue
 $\rho = 0.16 P = 0.003$ swab vs tissue
 $\rho = -0.069 P = 0.204$ **b**sex : stool vs swab
 $\rho = 0.604 P = 1.84e-35$ stool vs tissue
 $\rho = 0.282 P = 1.19e-07$ swab vs tissue
 $\rho = 0.343 P = 7.33e-11$ **c**BMI : stool vs swab
 $\rho = 0.355 P = 1.35e-11$ stool vs tissue
 $\rho = 0.157 P = 0.004$ swab vs tissue
 $\rho = 0.311 P = 4.60e-09$ **d**antibiotics : stool vs swab
 $\rho = 0.661 P = 1.89e-44$ stool vs tissue
 $\rho = -0.031 P = 0.574$ swab vs tissue
 $\rho = 0.036 P = 0.502$ **e**NSAIDs_use : stool vs swab
 $\rho = 0.674 P = 9.07e-47$ stool vs tissue
 $\rho = -0.168 P = 0.002$ swab vs tissue
 $\rho = -0.109 P = 0.044$

Fig 6. Correlations between the functional pathways inference for age (a), sex (b), BMI (c), antibiotics use (d) , NSAIDs use (e) and between pairwise sample types. The axes were the $-\log_{10}$ transformation of p-values from the model2 described in methods.