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Abstract

Single-cell omics technologies produce large quantities of data describing the genomic, transcrip-
tomic or epigenomic profiles of many individual cells in parallel. In order to infer biological knowledge
and develop predictive models from these data, machine learning (ML)-based model are increasingly
used due to their flexibility, scalability, and impressive success in other fields. In recent years, we have
seen a surge of new ML-based method development for low-dimensional representations of single-cell
omics data, batch normalization, cell type classification, trajectory inference, gene regulatory net-
work inference or multimodal data integration. To help readers navigate this fast-moving literature,
we survey in this review recent advances in ML approaches developed to analyze single-cell omics
data, focusing mainly on peer-reviewed publications published in the last two years (2019-2020).

Introduction

With single-cell omics technologies getting wide-spread adoption, computational methods are urgently
needed to process the large amounts of data they produce [1]. Machine learning (ML) approaches have
recently demonstrated their fantastic potential to automatically process and learn from large amounts
of high-dimensional data in fields such as computer vision or natural language processing [2]. They are
therefore seen by many as a promising way to infer biological knowledge and develop predictive models
from single-cell omics data, which provide high-dimensional characterization of large quantities of cells.
Not surprisingly, the development of ML approaches to analyze single-cell omics data has been a very
active field of research recently.

In this review we survey recent advances in ML approaches developed to analyze single-cell tran-
scriptomic and epigenomic data, focusing mainly on peer-reviewed publications published in the last two
years (2019-2020). This period witnessed active developments of new methods, in particular based on
deep learning, to automatically extract information from large sets of single-cell data, tackling important
problems such as batch normalization, multimodal data integration, automatic cell type classification,
trajectory inference or gene network reconstruction. It is also a period where systematic benchmarks
started to highlight the practical challenges associated to these methods, as well as their potential. With
this review we hope to give the reader enough entry points to that fast-moving literature in order to
grasp the current state-of-the-art and join its future developments.

From raw data to useful representations

Raw single-cell transcriptomic count data, as well as their epigenomic counterparts, provide a high-
dimensional and noisy description of each cell by assessing the activity of thousands of genes or DNA
loci simultaneously. Transforming raw count data to a lower-dimensional representation of each cell
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using dimension reduction (DR) technique is a useful step to remove technical noise and prepare data
for visualization, classification or further analysis tasks (Figure 1).
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Figure 1: Standard analysis pipelines using a single modality of single-cell omics data start by turning
the raw sequencing reads into a matrix of cells×feature counts. This matrix is then used for dimension
reduction, representing each cell by a vector of lower dimension (embedding). The embedding is then used
as starting point for subsequent tasks such as visualization, cell type discovery, or trajectory inference.

While early and widely-used methods such as scran [3] and Seurat v2 [4] use standard principal com-
ponent analysis (PCA) on log-transformed count data for DR, many new DR models have been proposed
specifically for scRNA-seq data recently. A common theme has been to replace the implicit Gaussian noise
assumption of PCA by explicit statistical models of raw count data, modelling for example overdispersion
and zero-inflation due to dropout in the matrix factorization-based model ZinbWave [5], or heavy-tailed
count distribution in the nonparametric Bayesian model of [6]. Several groups have also investigated
the potential of (variational) autoencoders ((V)AE), a very popular class of deep learning-based DR
models. In short, a (V)AE learns a low-dimensional representation of input data (cell transcriptomes in
our case) that is sufficient to reconstruct the input data, using flexible neural network models to go from
the input to the compressed representation (encoding), and from the representation to the input data
(decoding). Several (V)AE models for scRNA-seq data have been proposed recently, include scVI [7•],
DCA [8], SAVER [9] and scVAE [10]. Methods using hyperbolic geometry have also recently been devel-
oped [11•] (J. Ding et al. bioRxiv doi: https://doi.org/10.1101/853457). These models differ from each
other by some modelling assumptions, such as the statistical model for count data in the decoder, or the
prior distribution of the low-dimensional representation, but otherwise follow a similar architecture. An
interesting property of these models is their computational scalability, as they are typically implemented
with deep learning libraries designed to train models with millions or more input points.

Have deep learning-based (V)AE definitively imposed themselves as the best DR approach for scRNA-
seq data? The answer is not so simple. Besides requiring large number of cells to learn parameters, (V)AE
performance was shown to be very sensitive to arbitrary parameter choices [12], and [13] highlighted
that with datasets of a few hundreds or thousands cells simpler models remain competitive and easier
to use. The practical difficulty to correctly train complex ML models is not specific to (V)AE: another
example is the ”art of training” the popular t-distributed stochastic neighbour embedding (tSNE) model
for visualizing scRNA-seq in two dimensions [14], that requires specific initialization and choices of
hyperparameters. Once correctly trained, tSNE reaches the same performance as uniform manifold
approximation and projection (UMAP), a model proposed to improve tSNE mapping of scRNA-seq
[15, 14]. This highlights, again, both the potential and the difficulty to train some modern ML-based
models, and raises in particular important concerns about making sure that all published results are
reproducible and not overfitted to a given experiment.

Several DR methods for single-cell epigenomic data have also been proposed recently, either based on
standard PCA models [16, 17], matrix factorization with latent Dirichlet allocation [18], or a VAE [19].
A recent benchmark highlights the importance of preprocessing, in particular how reads are binned into
regions of interest and counted, for the success of these methods [20•].

One interesting idea to use complex models on small datasets is to leverage larger, already annotated,
datasets to learn the embedding, using techniques from the field of transfer learning or domain adaptation.
Embeddings learned by PCA and non-negative matrix factorisation (NMF) on datasets such as the
Human Cell Atlas (HCA) have successfully been used in both scATAC-seq [21] and scRNA-seq [22, 23]
on new unseen datasets and cell types, as well as used for denoising the new dataset [24]. Similarly the
embeddings learned by (demoising) AEs on one dataset, have been shown to be useful on other datasets,
both for clustering [25, 26•, 27, 28] and surface protein prediction [29]. One limitation of these methods is
that the embedding is only learned on a single dataset, and applied to another dataset, without analyzing
both in parallel. This limits the ability to train models on multiple datasets and thus truly leverage the
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mass of experiments in databases such as HCA.
The result of the DR is often fed to standard clustering algorithms, as reviewed in [30], in order to

identify cell types, with these algorithms also being extremely sensitive to hyperparameter choices [31].
Once the cells are clustered, differential expression tools, benchmarked in [32], can be used to identify
de novo marker genes.

The cells can also be matched to known cell types either by querying a reference database with tools
such as Cell BLAST [33], scMap [34], scQuery [35] or CellFishing.jl [36] or by using standard supervised
learning techniques as benchmarked in [37]. However these methods can be sensitive to batch effects,
whose corrections are the subject of the following section.

Batch correction and integration of heterogeneous scRNA-seq
data

Count matrices Low dimension
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Batch 2
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Figure 2: Different experiments of a similar modality (e.g., scRNA-seq) containing different number of
cells can be integrated into a single unified view. At first, cells of the same type are separated by their
batch, but after correction are perfectly merged together.

Instead of analyzing data of a single experiment, much can be gained by jointly analyzing single-cell
transcriptomic data of many experiments, potentially coming from different labs, using different tech-
nologies, and following different experimental protocols. ML models are likely to benefit from analyzing
more cells, but the risk of capturing batch effects and other confounding factors instead of biological
knowledge is large and considered one of the grand challenges of scRNA-seq data analysis [1]. A num-
ber of models have been proposed to specifically perform jointly DR on heterogeneous scRNA-seq data,
build a global graph or construct a common gene expression matrix, aiming to capture biology and ignore
confounding effects (see Figure 2 and [38] for a comprehensive benchmark).

A first group of models learn a low-dimensional representation over a common space that is invariant
to technical confounders. Among those, SAUCIE [39•] and scDGN [40] are deep-learning based, SAUCIE
is an AE trained with a specific regularisation penalty on the latent codes to remove batch effects, and
scDGN is a supervised adversarial neural network model trained to accurately classify cell types and
discriminate against batches. scMC [41], Harmony [42] and SMNN [43] rely on a linear transformation
to a lower dimensional space, clustering (shared nearest neighbour scheme, soft k-means or supervised
mutual nearest neighbours) and post-processing of the low dimensional embeddings to both account for
cell-cell similarities and remove batch-specific variations. Other models have an objective to build a
joint graph connecting all measured cells, such as scPopCorn [44] which relies on PageRank and graph-k
partitioning, and Conos [45] which exploits cell-cell similarity matrices and mutual nearest neighbours.
These graph-based models allow for tasks such as cell annotation and information propagation along
the network. However, the methods previously described hinder interpretability as they do not enable
studying differentially expressed genes leveraging the multiple datasets. A third group of models at-
tempt to tackle this problem by correcting for batch effects on the original count data. Among them,
scAlign [46] uses paired AEs with a common latent space that conserves the cell-cell distances estimated
in the count data, while BERMUDA [47] instead uses a regularisation penalty on cell clusters from dif-
ferent batches in the latent space, and scGen [48] combines VAEs and latent space vector arithmetics.

3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 5, 2021. ; https://doi.org/10.1101/2021.02.04.429763doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.429763
http://creativecommons.org/licenses/by/4.0/


scVI [7•] and trVAE [49] are so-called conditional VAE approaches that condition the decoder on an
auxiliary batch variable to correct the data in the latent space. Based on variants of nearest neighbour
search, scMerge [50] combines mutual nearest clusters and RUV-III factor analysis to remove unwanted
factors from the count data, and Scanorama [51••] and Seurat v3 [52] rely on linear projection to a
low-dimensional space and an efficient (mutual) nearest neighbour search to obtain matched cells in
low-dimensional space that are used to build translation vectors in the high-dimensional space.

All methods cited above offer batch correction for scRNA-seq data, while scMC has also been proposed
for scATAC-seq integration and SAUCIE for single-cell CyTOF measurements. While most methods
need shared cell types across datasets to build anchor cells, SAUCIE, scPopCorn and scMerge can be
used without. Finally, almost half of the methods are able to scale to datasets containing hundreds of
thousands of cells.

Learning trajectories, dynamics and regulation

Besides capturing the cellular heterogeneity of tissues and identifying cell types, single-cell omics data
offers the possibility to learn about dynamical processes that shape this heterogeneity, such as cell
cycle, differentiation, proliferation or tumorigenesis. From a data analytical point of view, this raises
the question of inferring a dynamical model or at least the cellular trajectories from a snapshot of cells
scattered at different time points along the dynamics. Since the first algorithms such as Monocle [53] were
published in 2014 to infer trajectories and order cells using the notion of pseudotime, dozens of methods
have been proposed. Recently proposed methods include GrandPrix [54], an efficient implementation of
the Gaussian process latent variable model (GPLVM) to estimate pseudotimes and their uncertainty;
STREAM [55], which estimates a low-dimensional set of curves, called the principal graph, to describe
the cells’ pseudotime, trajectories and branching points; PAGA [56], a graph-based method to compute
a graph representation of a set of cells, allowing visualization and dynamical interpretation at different
resolutions; TinGa [57], which builds a graph to fit the single-cell omics data as well as possible using
the Growing Neural Graph (GNG) algorithm; or Monocle 3 [58], the latest version of Monocle with
new features such as learning trajectories with loops or point of convergence and better scalability. To
help users choose a particular method for a given problem, [59•] published an impressive benchmark of
trajectory inference methods, comparing 45 published algorithms on 110 real and 229 synthetic datasets.
While no clear winner emerges in all situations, the benchmark is useful to understand the strengths and
weaknesses of different methods in different settings.

A related problem is to infer the relationships between populations of cells captured at different time
points along a dynamic process, such as developmental processes after induced pluripotent stem cell
reprogramming observed through scRNA-seq profiles captured at half-day intervals [60••]. In that paper
the authors develop a method, called Waddington-OT, to relate the populations of cells at different time
points using the concepts and tools of optimal transport (OT), a mathematically well-established and
fast-growing field in ML [61], particularly well adapted to compare populations of cells and model their
evolution. With ImageAEOT, [62] show how OT combined with an autoencoder allows to predict the
lineages of cells using time-labeled single-cell images.

While trajectory inference implicitly allows us to predict the future evolution of cells, some algo-
rithms have also been proposed to explicitly infer the velocity of each individual cell’s transcriptomic
profile. Following the pioneering work of [63], [64] proposed scVelo, a likelihood-based dynamical model
for velocity inference from the ratio of spliced and unspliced mRNA. [65] propose another kernel-based
velocity estimator, and show how gene regulatory networks (GRN) can be automatically inferred, al-
though with modest accuracy, by training a sparse regression model to predict the velocity from gene
expression levels. Another recent attempt to reconstruct GRN and more general gene networks from
scRNA-seq data with an ML approach is the convolutional neural network for coexpression (CNNC)
approach of [66], who represent each gene pair as a scatter plot of their expression levels across cells and
train a standard CNN for 2D images on the resulting plots to learn pairwise relationships.

Multimodal data integration

An important problem in single-cell omics data analysis is to integrate several modalities together, in
order to enhance the performance of downstream tasks such as cell type labelling, identification of sub-
populations, visualisation or regulatory network inference, as reviewed in [67, 68]. Several ML approaches
have been developed for that purpose, for instance by characterizing cells across measurements, projecting
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Figure 3: Single-cell modalities can take various forms, such as DNA, DNA methylation, CRISPR
perturbations, transcriptomics, proteomics or chromatin accessibility. ML models developed for single-
cell multimodal data integration assume that the correspondences between cells are either known (co-
assay data) or not (non co-assay data) across modalities. In the case of non co-assay data, additional
supervision signal might be used, such as cell types, correspondences between features or anchor cells.

multiple measurements into a common latent space or learning the missing modalities. Transcriptomics is
typically one of the modalities that is integrated, together with chromatin accessibility [69, 52, 70], DNA
[71], DNA methylation [72, 52], proteomic data [73, 74, 69, 75, 76] or CRISPR perturbations [77•, 78].

A first category of models assume that the correspondences between cells are known across modalities,
with direct applications to co-assay data (Figure 3). Such methods learn a joint representation of each
cell or a cell-cell similarity matrix that is used for downstream analyses by exploiting variants of VAEs
such as totalVI (A. Gayoso et al., bioRxiv doi: 10.1101/2020.05.08.083337) and scMVAE [70], matrix
factorisation-based models such as scAI [76] and MOFA+ [79], or k-nearest neighbour prediction to learn
cell-specific modality weights as Seurat v4 (Y. Hao et al., bioRxiv doi: 10.1101/2020.10.12.335331).
A second category of models do not require co-assays within individual cells and can be applied to
independent multi-omics datasets originating from different cells. Current deep learning-based methods
either rely on a pair of VAEs whose latent spaces are coupled through a specific penalty (K. D. Yang
et al., arxiv.org/abs/1902.03515), or on learning low-dimensional representations minimising a tSNE
loss for each view, coupled through a learned matching matrix (UnionCOM [74]). Other methods rely
on NMF, to learn a low-dimensional space composed of specific and common factors (LIGER [75]), or
cluster representatives of subpopulations of cells (DC3 [80•]). MMD-MA [73, 81] learns a joint latent
representation where different modalities have a similar distribution using the theory of kernel methods.
SCOT [69] uses OT to learn a joint distribution between cells from both views. clonealign [71] models the
association between copy number features and gene expression leveraging mean field variational Bayes
inference. While these methods can in theory be applied to any bi-modal omics dataset, hyperparameter
selection is difficult when no co-assay data is available for MMD-MA, SCOT and UnionCOM. Among
models that do not require co-assay data, some use weak supervision such as SCIM [72], an adversarial
AE model that assumes that the cell types are known for a fraction of the cells and Seurat v3 [52],
a canonical correlation analysis (CCA)-based model that relies on building anchor cells using mutual
nearest neighbours. Applied to single-cell CRISPR screenings, scMAGeCK [78] relies on statistical
analyses and MUSIC [77•] on topic modeling in order to link gene perturbations to cell phenotype.
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Finally, it is worth mentioning that some models require features to have a one-to-one correspondence
between views [71, 52, 75, 77•, 78], which may not be the case systematically.

While the diversity of models is large, most of them rely on finding a joint low-dimensional space
that can be later used on downstream tasks. Most models combine two modalities and a few enable
the integration of more than two, such as UnionCOM, MOFA+ and DC3, the latter also incorporating
scHiC or bulk HiChIP datasets. Finally, the scalability of the models evolve conjointly with single-cell
technologies, nowadays being able to handle tens or hundreds of thousands of cells [70, 72].

Conclusion

Researchers are facing an exponential growth of approaches to deal with single-cell genomics data, with
over 800 tools (scrna-tools.org) published for scRNA-seq analysis so far, many of which being based on
ML approaches. A vast majority of ML-based tools have been straightforwardly imported from other
fields, with some features unsuited for genomic challenges and to the reality of biological data - thereby
not maximising their performance. In particular, a number of parameters, which have a strong impact
on performance, need extensive training to be properly tuned, which is often unrealistic in the case of
genomic data. It also raises questions of reproducibility that the scientific community should address,
defining for example the processed datasets and variables that should be shared, i.e., random seed values
or reduced dimensional spaces, in addition to the raw data. Whether ML models will in the near
future make up for the current technical limitations of single cell genomics approaches - e.g dropouts,
batch effects - remains uncertain. If current single-cell omics achieve genome-wide characterization of
the transcriptome or epigenomes for example, these methods do not yet achieve single-locus/single-
cell resolution due to the dropouts within datasets, leaving room for experimental and computational
optimisation.
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