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Abstract

We investigated the functional classes of genomic regions containing SNPS contributing
most to the SNP-heritability of important psychiatric and neurological disorders and
behavioral traits, as determined from recent genome-wide association studies. We
employed linkage-disequilibrium score regression with several brain-specific genomic
annotations not previously used. The classes of genomic annotations conferring substantial
SNP-heritability for the psychiatric disorders and behavioral traits differed systematically
from the classes associated with neurological disorders, and both differed from the classes
enriched for height, a biometric trait used here as a control outgroup. The SNPs implicated
in these psychiatric disorders and behavioral traits were highly enriched in CTCF binding
sites, in conserved regions likely to be enhancers, and in brain-specific promoters,
regulatory sites likely to affect dynamic responses. The SNPs relevant for neurological
disorders were highly enriched in constitutive coding regions and splice regulatory sites.
We suggest that our results provide a bridge between genetics and the well-known effects

of life history and recent stressful experiences on risk of psychiatric illness.

Introduction

Recent studies (e.g. (1)) have found that little of the SNP-heritability for psychiatric
disorders lies in coding regions. These results provoke the question: what kinds of genomic

elements are relevant to each psychiatric disorder — which we term the ‘functional genetic
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architecture’ of the disorder - and do the functional genetic architectures of psychiatric
disorders differ systematically from those of complex neurological disorders or behavioral
or anthropometric traits? By comparing the functional genetic architectures of psychiatric
disorders to those of neurological disorders and behavioral traits, we sought to determine
if the mechanisms of disorders differ systematically and how the resulting typology of

illness relates to typology based on familial factors and/or SNP-based polygenic risk scores.

Twin and family studies have investigated the degree to which different psychiatric
disorders share familial liability (2, 3). With the development of polygenic risk scores
(PRS), evidence for substantial genetic correlations across various psychiatric disorders
was replicated and extended (2, 3) while the correlations across psychiatric and
neurological disorders were limited (4). These results are of interest outside the
specialized area of psychiatric genetics because the familial /genetic relationships between
psychiatric disorders are used as a primary method for clarifying nosologic boundaries

between disorders (5).

However, a complementary approach to the genetic architecture of psychiatric and
neurologic disorders examines the relative contributions of different functional classes of
genomic elements, such as dynamic regulators, affecting response to experience, or
constitutive regulators that may affect cell-type identity, coding regions etc. This is the

approach taken here.
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A separate important issue is whether the findings of psychiatric genetics can be integrated
with the well-established findings of the life-history risk factors for mental illness (6, 7).
Although psychiatric GWAS implicate many brain-related genes, especially synaptic genes,
it remains unclear how the genetic risk factors may be related to the well-documented
environmental risk factors for illness. A simple hypothesis is the that the genetic risk
factors for psychiatric disorders lie predominantly in DNA that dynamically regulates genes
in response to changing environmental circumstances or bodily signals, rather than in DNA

that determines protein products or cell-type identity.

Several groups have attempted to partition the common variant (SNP) heritability of select
psychiatric disorders among different functional categories. Schork et al (8) compared
genetic contributions of different parts of coding genes and found that the untranslated
regions accounted for more heritability than coding regions for schizophrenia; however,
the authors noted that, because of the high linkage disequilibrium (LD) in the human
genome, it is difficult to assign unambiguously a particular association signal to a particular
SNP, and thereby to determine in which categories most heritability lies. This assignment is
especially challenging for functional classes that are frequently juxtaposed on the genome,
(e.g. transcription start sites (TSS) and promoters) so that SNPs in LD with a SNP in one
functional class are often in high LD with a SNP in another class. Schork et al (8) attempted
to resolve this ambiguity by adding all the annotations in LD with all SNPs of genome wide

significance, weighted by the LD r2.
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84  Finucane et al (9) addressed the issue of LD more systematically using partitioned linkage

85  disequilibrium score regression (LDSR). This method exploits the wide distribution of risk

86  SNPs with small effects and is based on the idea that SNPs in high LD with classes of SNPs

87  mostrelevant to risk will have systematically elevated chi-square association scores. Their

88 initial presentation used a large set of diverse annotations from different sources, including

89  some regulatory types; they offered a preliminary assignment of SNP heritability among

90 classes and found differences among traits. However, most of these annotations were not

91 brain-specific, and significant improvements in the annotation of regulatory functions have

92  been made since their use of generic ENCODE data. This is an opportune time to revisit the

93 LDSR approach using more recent and brain-specific data.

94

95  The goals of this study are to characterize the functional genetic architecture of a range of

96  psychiatric and neurological disorders and behavioral traits. We predicted that a

97  preponderance of the heritability for psychiatric disorders and behavioral traits would be

98 inregulatory sites, specifically enhancers, while most of the heritability for neurological

99  disorders would be in protein coding regions. We further expected IncRNAs to contribute
100  to psychiatric disorders because they were highly expressed in specific brain cell types and
101  play critical roles during development (10).

102

103 Methods

104 2.1 Sources of data

105
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We annotated 9.5M SNPs in the human genome (HG19) as follows. We downloaded from

the LDSR github site certain key generic (i.e. tissue-independent) annotations (e.g. coding

regions) used in (9) . We added selected several non-coding generic annotations from

ENSEMBL, conservation data from UCSC and we included some brain-specific regulatory

annotations based on chromatin data from RoadMap Epigenomics (11) and from

PsychENCODE (12, 13). These annotations and their sources are summarized in Table 1.

Table 1. Genome annotations used in this study and their sources

Annotation Source Reference Comment Proportion of
SNPs
Promoter UCSC LDSR Finucane 0.0463
TSS LDSR Finucane 0.0178
Protein coding LDSR Finucane 0.0143
3'UTR LDSR Finucane 0.0036
5'UTR LDSR Finucane 0.0055
Splice donor Constructed 70 nt from start 0.0024
of intron and
conserved
Splice acceptor Constructed 70 nt from end 0.0019
of intron and
conserved
Brain Promoter RoadMap RoadMap 0.0031
Epigenomics
Mammal ucsc excluding other 0.0059
Conserved annotations
Primate ucsc excluding other 0.0136
Conserved annotations
CTCF binding PsychENCODE 0.0194
IncRNA ENSEMBL 5.00E-04
micro-RNA ENSEMBL 6.40E-05
ribosomal RNA ENSEMBL 8.90E-06
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116

117

118 We generated two new kinds of annotations. One often overlooked source of regulatory
119  variability are splicing regulatory sites. These are commonly found on either side of the
120  splice junction, but they are poorly known or annotated. We assigned SNPs provisionally to
121  these categories if they were located on introns within 70bp of an annotated splice junction
122 and conserved across mammals.

123

124  Since we expected much of the heritability of psychiatric disorders to be in regulatory

125 regions such as enhancers, we gathered and used annotations of enhancers from several
126  sources, based on chromatin assays. However, although annotated enhancers (based on
127  H3K27ac or ATAC chromatin peaks) from these studies showed significant enrichment
128 among SNPs implicated by psychiatric and behavioral GWAS, none explained more than
129  20% of SNP-heritability in the LDSR model. Some reasons for this are discussed below.

130

131  We adopted the following strategy to identify probable enhancers. Our annotation classes
132  included all the known specific non-coding elements of the genome, many of which are

133 highly conserved. We reasoned that most of the remaining non-coding regions highly

134  conserved across mammals (PhastCons > 0.5) were likely to be enhancers, even though not
135 all would be active in the brain. One well-known problem with using conserved regions to
136 identify enhancers is that enhancers are typically not well conserved across different

137  orders of animals; furthermore there has likely been recent rapid evolution of regulatory

138  sites affecting the human brain. This problem was partially addressed by using primate
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139  conservation data from UCSC; only 20% of these primate-conserved regions overlapped
140  other mammal-conserved regions, consistent with the rapid evolution of brain enhancers
141  inthe primate lineage.

142
143 2.2 Class-Specific Heritability Estimates

144  We used the LDSR procedure software provided by the Broad Institute

145  (https://github.com/bulik/ldsc), and made the following modifications, both in line with
146  their recommendations. First, two regions of very high linkage disequilibrium were

147  excluded: the MHC region and the GPHN yin-yang region since both have strong

148  associations with some psychiatric disorders and their leverage points would distort the
149  regression. Second, the LDSR regression model tacitly assumes that all effect sizes within a
150 category are comparable. However, the actual distribution of effect sizes observed in GWAS
151  isvery strongly right-skewed and outliers can substantially distort least squares fits, such
152  as those used in LDSR. We therefore winsorised the summary P values at 1077,

153  corresponding to a chi-square of 22.

154

155 Besides the categories reported here we also used several other annotations of non-coding
156  RNAs (microRNAs, and ribosomal RNAs). The proportions of SNPs with each of these

157  annotations were less than 1 in 10,000, and the standard errors of heritability estimates for
158 those classes from LDSR were almost all larger than the estimates and thus were omitted
159  from the presentation.

160
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161  Genome build made little difference to the results. Running LDSR for partitioned

162  heritability on the same GWAS summaries using LD from either HG19 or HG38 had minimal
163  impact on the heritability estimates. Since most of the GWAS results used here were

164  reported initially in HG19, we used LDSR on this older build.

165

166  We obtained GWAS data from 18 brain-related phenotypes as listed in Table 2. We

167  attempted to sample broadly from psychiatric disorders and behavioral traits (14-25), as
168  well a selection of neurological disorders (26-30). We included well-studied biometric

169 traits, height and BM]I, as controls.

170

171 Table 2. Sources of GWAS data used in this study

172
Trait Acronym Reference Total N

173
Age-related Macular
Degeneration AMD  Fritsche et al. 2013 77255
Alcohol Use Disorder AUD  Walters et al. 2018 46568
Alzheimer's disease ADI Jansen et al. 2019 455258
Alzheimer's disease AD2 Kunkle et al. 2019 63926
Attention Deficit Hyperactivity
Disorder ADHD Demontis et al.. 2019 55374
Autism Spectrum Disorder ASD Grove et al. 2019 46350
Bipolar Disorder BPD Stahl et al 2019 41653
Body Mass Index BMI Yengo et al. 2018 681275
Educational Attainment EDU  Leeetal 2018 766345
Epilepsy EPI ILAE, 2018 44889
Extraversion EXT Van Den Berg et al 2015 63030
Height HGT  Yengoetal. 2018 693529
Intelligence IQ Savage et al. 2018 269867
Major Depressive Disorder MDD  Wray et al. 2018 480359
Neuroticism NEU  Nagel etal.. 2018 380506
Parkinson's disease PAR Nalls et al., 2019 482730

Reaction Time RT Davies et al., 2018 282014
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Risky Behavior RSK Linner et al. 2019 466571
Schizophrenia SCZ Pardinas et al 2018 105318
Subjective Well-being SWB  Okbay et al 2016 298420

174

175  The LDSR program was downloaded in March 2019 and run using recommended settings.
176  The LDSR estimates are unbiased, thus the LDSR method yields some negative heritability
177  estimates when the standard error of the estimates exceeds the (positive) true h?. The

178  proportion of negative estimates of proportions of h? was consistent with what would be
179  expected if one third of the categories contributed much lower SNP-heritability than the
180 standard errors of the estimates. These negative estimates occurred mostly for those traits,
181  which themselves have low SNP-heritability (mostly behavioral traits).

182

183  LDSR estimates for some categories had standard errors within a factor of two of the

184  estimates. In order to reduce the error, we used an empirical Bayes (eBayes) approach. We
185  started by observing that for annotation classes with well estimated heritabilities, (i.e.

186  small standard errors), the estimates followed an approximately exponential distribution
187  across different phenotypes. Therefore, we modeled the distribution of h? across

188  phenotypes by an exponential for all annotation classes. We estimated the parameter for
189  each class by maximum likelihood: we determined the exponential parameter that gave the
190  highest probability for observing the full set of heritabilities estimated by LDSR across all
191 phenotypes, taking into account the standard errors of these estimates (process

192  documented in accompanying code). The posterior distribution of the estimate for each
193  phenotype was then the exponential prior multiplied by the likelihood function, and the

194  posterior estimates were computed as the expected value of the posterior distribution.
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195

196  Empirical Bayes approaches introduce a bias in order to reduce unmodeled error. Since the
197  aim of this paper is to document distinctions among phenotypes, and the bias of eBayes
198  draws estimates for each phenotype toward the common mean of all phenotypes, the bias
199  does not contribute to our results. We also tried a shrinkage strategy analogous to that

200  used by the LASSO and found only very modest differences in results (not reported).

201

202  Results

203  The partitioned heritability estimates for the most significant categories and the

204  enrichments (ratio of proportion of SNP-heritability to proportion of SNPs) for selected
205  categories are shown in Fig 1; the raw estimates from running the Broad LDSR program
206  and their standard errors are presented in S1 Table. The classes contributing most to SNP-
207  heritability were coding regions and transcription start sites (TSS; for most neurological
208 disorders) and CTCF sites (psychiatric and behavioral phenotypes). The most enriched

209 classes (contributing much more than their proportion) were these three classes and also
210  brain-specific promoters (mostly for psychiatric and behavioral).

211

212 Fig 1 Heritability and enrichment estimates for 20 brain phenotypes

213  a) Empirical Bayes heritability estimates for the genomic classes studied here (in columns)
214  for 20 traits and disorders (in rows). Color (legend at right) indicates estimated proportion
215  of SNP-heritability. Estimates are (slightly) biased downward.

216  b) Empirical Bayes enrichments of estimated SNP heritability attributed to various genomic

217  classes by LDSR. Color indicates the enrichment (ratio of attributed heritability to
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218  proportion of SNPs) for each genomic category for each trait; key at right: blue: 0

219  (depletion); teal: little enrichment (1-2-fold); red: high (> 12-fold) enrichment.

220

221

222  The patterns of partitioned heritabilities seen in Fig 1 segregate with a priori classifications
223  of the phenotypes, so we asked how the genetic architectures of the different traits relate to
224  each other. We represented the relations among partitioned heritability patterns of

225 phenotypes (Fig 2) using Kruskal’s isometric multi-dimensional scaling (implemented as
226  isoMDS in R3.3) We defined distance between phenotypes by the sum over categories of the
227  absolute differences in estimated heritability. The heritability distribution patterns of the
228  core psychiatric traits cluster together with behavioral traits at center-left, while

229  neurological disorders are spread through the lower right.

230

231  Fig 2. Multi-dimensional scaling 2-D plot showing similarities of functional genetic
232  architecture among different traits. The horizontal axis corresponds roughly to higher
233  loadings on constitutive (coding, promoter, splicing) annotations toward the right and

234  higher regulatory related loadings toward the left.

235  KEY: (for references see Table 2)

236  AD1/2 Alzheimer’s disease (see Table 2); ADHD: Attention Deficit Hyperactivity Disorder;
237  ASD: Autism Spectrum Disorder; AMD: Age-related macular degeneration; AUD: Alcohol

238  usedisorder; BMI: Body mass index; BPD: Bipolar disorder; EDU: Educational Attainment;
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239  EPI: Epilepsy; EXT: Extraversion; HGT: Height; IQ: Intelligence quotient; MDD: Major

240  depressive disorder; NEU: Neuroticism; PAR: Parkinson’s disease; RSK: Risky Behavior; RT:
241  Reaction Time; SCZ: Schizophrenia; SWB: Subjective well-being;

242

243

244  The clustered arrangement of traits in Fig 2 suggests that the partition of heritability

245  among classes might be robust enough to distinguish whether an unknown disorder was
246  neurological or psychiatric. To test this rigorously, we fit a linear discriminant to the

247  heritability partition vectors and performed leave-one-out cross-validation. The predicted
248  out-of-sample classes were the same as actual classes in all cases, confirming that patterns
249  of enrichment can help distinguish between neurological and psychiatric disorders. Fig 3
250  shows the loadings of the discriminant function. The contribution of CTCF sites is the most
251  discriminating measure, followed by contribution of coding regions (negative) and of

252  primate-conserved regions. We were unable to find a robust linear discriminator based on
253  genomic classes between behavioral traits and psychiatric disorders.

254

255 Fig 3. Functional genomic features that discriminate psychiatric disorders from

256 neurological disorders. Bar plot showing weights of the linear discriminant function

257  separating SNP functional class enrichment profiles typical of psychiatric disorders and
258  behavioral traits (positive enrichments) from those profiles typical of neurological

259  disorders (negative enrichments). Note heavy weighting on CTCF sites and putative

260 primate enhancers for psychiatric disorders, but on coding regions for neurological

261 disorders. Note that because the proportions of different SNP classes vary by almost three
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262  orders of magnitude, the discriminant weights displayed here were determined for
263  enrichment ratios (heritability for a class divided by proportion of SNPs in that class)
264  rather than heritabilities.

265

266 Results Summary

267  We found that the majority of heritability for psychiatric disorders seems to be in putative
268 regulatory sites: enhancers and CTCF sites. The sum of estimated SNP-heritabilities over all
269  categories was similar for most traits: between 80% and 90%. These results suggest that
270  the categories used here, although comprising less than 13% of the common SNPs in the
271  genome, account for most of the SNP-heritability of these disorders or traits. Furthermore
272  atleast half the SNP-heritability for psychiatric and behavioral phenotypes seems to lie in
273  less than 3% of the genome.

274

275  Notably we have found that brain-specific promoters and two relatively unstudied

276  categories - CTCF binding sites, and putative inducible or cell-type specific enhancers -
277  provide the majority of the SNP heritability for the major psychiatric disorders

278  (schizophrenia, autism and bipolar disorder) as well as for behavioral traits, but not for
279  neurological disorders.

280

281  We found that the three classes of non-coding RNAs tested (miRNAs, IncRNAs, rRNAs)

282  appeared greatly enriched (medians 20-fold, 12-fold, and 20-fold, resp.) for contributions
283  to SNP-heritability. Nevertheless, the overall contributions to heritability were small

284  because the number of SNPs in such genes was small. Furthermore, the estimates of
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285  contribution were uncertain. Therefore, results from these categories are not presented.
286  We have also identified a new category - putative splice regulatory sites - as relevant to
287  neurological disorders.

288

289 Discussion

290 We sought to determine whether we could distinguish the functional genetic architectures
291  of psychiatric disorders, behavioral traits and neurological disorders. We predicted that
292  variation in regulatory sites would play a greater role in the etiology of psychiatric

293  disorders and likely behavioral traits than in neurologic disorders, while the reverse

294  pattern would be observed for coding sequence variation. Our results partially confirmed
295  these expectations.

296

297  Results for non-coding RNAs are not shown in Fig 1 because the standard errors of

298 estimates for all three classes were comparable to, and usually bigger than, the estimates.
299  Their presence or absence made little contribution to the relations among phenotypes or
300 the appearance of Fig 2. We expected substantial heritability for psychiatric syndromes in
301 longnon-coding RNAs (IncRNAs) expressed during development. Indeed, we found that all
302 classes of non-coding RNAs appeared enriched across all phenotypes, consistent with the
303 emerging idea that non-coding RNAs play a role in human disease. Nevertheless, the

304 estimates of SNP-heritability were all quite modest (under 1%), the LDSR standard errors
305  were larger than the estimates in most cases, and differences between estimated

306 enrichments across phenotypes or classes were not significant. However, all phenotypes

307  with high estimates (at least ten-fold) for contribution of IncRNAs were behavioral or
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308 psychiatric; and for autism spectrum disorders the estimated proportion of heritability due
309 toIncRNAs was greater than 1% and larger than two standard errors. Greater genetic

310 resolution of GWAS may allow us to gain insight into role of these non-coding elements.
311

312 We were surprised to find such a strong representation of brain-specific CTCF sites in

313  psychiatric disorders and behavioral traits, but only very modest enrichment (not shown)
314  for the ENCODE CTCF sites used in (9).

315

316 Two of our new brain-specific categories - brain-specific promoters, determined from

317 RoadMap Epigenomics data; and CTCF binding sites, determined from PsychENCODE data
318 - contributed substantial heritability to psychiatric disorders and behavioral traits. The
319  generic cross-tissue versions of these categories used by (9) did not contribute

320  substantially to psychiatric disorders, although the generic promoters did contribute to
321 neurological disorders (Note that the UCSC promoter annotations used by LDSR enclose
322  more than ten times as many SNPs as the RoadMap brain promoters). Many genes have
323  several promoters which may be active in different tissues. Use of different promoters will
324  resultin different 5’UTRs, which contain regulatory signals often related to trafficking the
325 RNA to specific cell compartments, such as dendrites. The greater enrichment of brain-
326  specific promoters and CTCF sites validates our rationale for using regulatory sites derived
327  specifically from brain chromatin data, with one significant exception: enhancers.

328

329  The function of CTCF in gene regulation is poorly known and is now an active area of

330 research. We do know that brain-specific CTCF binding sites are highly conserved across
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331 mammals, and hence must play an important role in the genome. Recent evidence suggests
332  that CTCF and its induced chromatin looping are not required for basal cell functions.

333  Rather, chromatin configuration is highly dynamic at the fine scale, and CTCF plays a major
334  role in these reconfigurations, acting to stabilize DNA loops during enhancer-promoter
335 contact on time scales of minutes (6). These findings suggest that CTCF binding sites are
336 likely candidates for modulating dynamic responses to transient cell signals. In the brain,
337 transient cell signals mediate learning (7). Some reports (31) indicate that CTCF plays a
338 critical role in the brain’s most specific functions, such as learning and memory, CTCF

339  would be strongly implicated in psychiatric disorders and behavior traits, but less so in
340 neurologic disorders or biometric traits.

341

342  We identified brain promoters and expected to identify brain enhancers using data from
343  published chromatin assays of human brain tissue (11). Brain promoters selected from the
344  annotations produced by seemed useful, but, LDSR did not find that enhancer annotations
345 from these data sets explained a large fraction of SNP heritability. We suggest two main
346  reasons for this. First, currently available brain chromatin data is derived primarily from
347  dissected tissue, aggregating across nuclei from all major cell types. Second, enhancers are
348 notalways active: many enhancers, especially those critical for learning are induced in only
349  asmall fraction of cells by specific signals and are ‘on’ for brief periods during which a

350  burst of transcription is activated.

351

352  Enhancer annotations derived from the chromatin data currently available are thus likely

353  toreflect predominantly constitutive enhancers in the most abundant cell types. Our


https://doi.org/10.1101/2021.02.04.429714
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429714; this version posted February 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

354  success in finding enrichment signals in putative regulatory sites flagged by conservation,
355 and our failure to find as much in chromatin data, suggests that inducible enhancers that
356 areresponsive to physiological signals and events or enhancers in minor cell types

357  contribute to the genetics of psychiatric disorders more than other disorders. This

358 interpretation is consistent with evidence that i) interneurons (32) and ii) physiological
359  insults such as injury or infection or life experience stress (33) are implicated in psychiatric
360 disorders more than in neurological disorders or biometric traits.

361

362 We were surprised to see that the functional genetic architecture of BMI seemed more
363  similar to that of behavioral traits than to the standard biometric trait of height. However
364 (34) found many SNPs relevant to BMI in or near genes expressed in the nervous system.
365

366  Does the relationship between psychiatric disorders assessed from our functional genomic
367  categories seen in Fig 2 map onto those obtained from common SNP variants formed into
368 polygene scores? A definitive answer is not yet possible, but two lines of suggestive

369 evidence can be derived from the magnitude of SNP-based genetic correlations that bear
370 some resemblance to the distance between the disorders in Fig 2. First, using SCZ as an
371 anchor point, SNP-based genetic correlations are high between SCZ and BPD (positioned
372  closely together Fig 2) and modest with MDD (which is further apart) (2). Second, using
373  AUD as an anchor, SNP genetic correlations are high with MDD and modest with SCZ and
374  BPD (35).

375
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376  The results presented here complement recent studies showing genes implicated by GWAS
377  for neurological disorders concentrate in specific brain cell types, while genes implicated
378 by GWAS for psychiatric disorders and behavioral traits are broadly enriched in

379 telencephalic neurons (36).

380

381 Conclusion

382 Inanovel use of LDSR, we have identified the genomic categories accounting for a majority
383  of the SNP heritability for a number of major psychiatric disorders. We have also shown
384 that the functional genetic architectures of many psychiatric disorders and behavioral

385  traits are relatively similar to each other and less similar to the architectures of

386 neurological diseases or to a control anthropometric trait like height. We have shown that
387  distinctive genomic categories relevant to psychiatric disorders and behavioral traits are
388 those related to dynamic gene regulation on short time scales. Our results hold promise for
389  bridging genetics and well-established environmental and life-history risk factors for

390 psychiatric disorders.
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