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18 Abstract

19

20 We investigated the functional classes of genomic regions containing SNPS contributing 

21 most to the SNP-heritability of important psychiatric and neurological disorders and 

22 behavioral traits, as determined from recent genome-wide association studies. We 

23 employed linkage-disequilibrium score regression with several brain-specific genomic 

24 annotations not previously used. The classes of genomic annotations conferring substantial 

25 SNP-heritability for the psychiatric disorders and behavioral traits differed systematically 

26 from the classes associated with neurological disorders, and both differed from the classes 

27 enriched for height, a biometric trait used here as a control outgroup. The SNPs implicated 

28 in these psychiatric disorders and behavioral traits were highly enriched in CTCF binding 

29 sites, in conserved regions likely to be enhancers, and in brain-specific promoters, 

30 regulatory sites likely to affect dynamic responses. The SNPs relevant for neurological 

31 disorders were highly enriched in constitutive coding regions and splice regulatory sites. 

32 We suggest that our results provide a bridge between genetics and the well-known effects 

33 of life history and recent stressful experiences on risk of psychiatric illness.

34

35 Introduction

36

37 Recent studies (e.g.  (1)) have found that little of the SNP-heritability for psychiatric 

38 disorders lies in coding regions. These results provoke the question: what kinds of genomic 

39 elements are relevant to each psychiatric disorder – which we term the ‘functional genetic 
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40 architecture’ of the disorder – and do the functional genetic architectures of psychiatric 

41 disorders differ systematically from those of complex neurological disorders or behavioral  

42 or anthropometric traits? By comparing the functional genetic architectures of psychiatric 

43 disorders to those of neurological disorders and behavioral traits, we sought to determine 

44 if the mechanisms of disorders differ systematically and how the resulting typology of 

45 illness relates to typology based on familial factors and/or SNP-based polygenic risk scores. 

46

47 Twin and family studies have investigated the degree to which different psychiatric 

48 disorders share familial liability (2, 3). With the development of polygenic risk scores 

49 (PRS), evidence for substantial genetic correlations across various psychiatric disorders 

50 was replicated and extended (2, 3) while the correlations across psychiatric and 

51 neurological disorders were limited (4). These results are of interest outside the 

52 specialized area of psychiatric genetics because the familial/genetic relationships between 

53 psychiatric disorders are used as a primary method for clarifying nosologic boundaries 

54 between disorders  (5). 

55

56 However, a complementary approach to the genetic architecture of psychiatric and 

57 neurologic disorders examines the relative contributions of different functional classes of 

58 genomic elements, such as dynamic regulators, affecting response to experience, or 

59 constitutive regulators that may affect cell-type identity, coding regions etc. This is the 

60 approach taken here.

61
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62 A separate important issue is whether the findings of psychiatric genetics can be integrated 

63 with the well-established findings of the life-history risk factors for mental illness (6, 7).  

64 Although psychiatric GWAS implicate many brain-related genes, especially synaptic genes, 

65 it remains unclear how the genetic risk factors may be related to the well-documented 

66 environmental risk factors for illness. A simple hypothesis is the that the genetic risk 

67 factors for psychiatric disorders lie predominantly in DNA that dynamically regulates genes 

68 in response to changing environmental circumstances or bodily signals, rather than in DNA 

69 that determines protein products or cell-type identity. 

70

71 Several groups have attempted to partition the common variant (SNP) heritability of select 

72 psychiatric disorders among different functional categories. Schork et al (8) compared 

73 genetic contributions of different parts of coding genes and found that the untranslated 

74 regions accounted for more heritability than coding regions for schizophrenia; however, 

75 the authors noted that, because of the high linkage disequilibrium (LD) in the human 

76 genome, it is difficult to assign unambiguously a particular association signal to a particular 

77 SNP, and thereby to determine in which categories most heritability lies. This assignment is 

78 especially challenging for functional classes that are frequently juxtaposed on the genome, 

79 (e.g. transcription start sites (TSS) and promoters) so that SNPs in LD with a SNP in one 

80 functional class are often in high LD with a SNP in another class. Schork et al (8) attempted 

81 to resolve this ambiguity by adding all the annotations in LD with all SNPs of genome wide 

82 significance, weighted by the LD r2. 

83
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84 Finucane et al (9) addressed the issue of LD more systematically using partitioned linkage 

85 disequilibrium score regression (LDSR). This method exploits the wide distribution of risk 

86 SNPs with small effects and is based on the idea that SNPs in high LD with classes of SNPs 

87 most relevant to risk will have systematically elevated chi-square association scores. Their 

88 initial presentation used a large set of diverse annotations from different sources, including 

89 some regulatory types; they offered a preliminary assignment of SNP heritability among 

90 classes and found differences among traits. However, most of these annotations were not 

91 brain-specific, and significant improvements in the annotation of regulatory functions have 

92 been made since their use of generic ENCODE data. This is an opportune time to revisit the 

93 LDSR approach using more recent and brain-specific data. 

94

95 The goals of this study are to characterize the functional genetic architecture of a range of 

96 psychiatric and neurological disorders and behavioral traits.  We predicted that a 

97 preponderance of the heritability for psychiatric disorders and behavioral traits would be 

98 in regulatory sites, specifically enhancers, while most of the heritability for neurological 

99 disorders would be in protein coding regions. We further expected lncRNAs to contribute 

100 to psychiatric disorders because they were highly expressed in specific brain cell types and 

101 play critical roles during development (10). 

102

103 Methods

104 2.1 Sources of data

105
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106 We annotated 9.5M SNPs in the human genome (HG19) as follows. We downloaded from 

107 the LDSR github site certain key generic (i.e. tissue-independent) annotations (e.g. coding 

108 regions) used in (9) . We added selected several non-coding generic annotations from 

109 ENSEMBL, conservation data from UCSC and we included some brain-specific regulatory 

110 annotations based on chromatin data from RoadMap Epigenomics (11) and from 

111 PsychENCODE (12, 13). These annotations and their sources are summarized in Table 1.

112

113 Table 1. Genome annotations used in this study and their sources

Annotation Source Reference Comment Proportion of 
SNPs

Promoter UCSC LDSR Finucane 0.0463
TSS LDSR Finucane 0.0178
Protein coding LDSR Finucane 0.0143
3' UTR LDSR Finucane 0.0036
5' UTR LDSR Finucane 0.0055
Splice donor Constructed 70 nt from start 

of intron and 
conserved

0.0024

Splice acceptor Constructed 70 nt from end 
of intron and 
conserved

0.0019

Brain Promoter RoadMap RoadMap 
Epigenomics

0.0031

Mammal 
Conserved

UCSC excluding other 
annotations

0.0059

Primate 
Conserved

UCSC excluding other 
annotations

0.0136

CTCF binding PsychENCODE 0.0194
lncRNA ENSEMBL 5.00E-04
micro-RNA ENSEMBL 6.40E-05
ribosomal RNA ENSEMBL 8.90E-06

114
115
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116

117

118 We generated two new kinds of annotations. One often overlooked source of regulatory 

119 variability are splicing regulatory sites. These are commonly found on either side of the 

120 splice junction, but they are poorly known or annotated. We assigned SNPs provisionally to 

121 these categories if they were located on introns within 70bp of an annotated splice junction 

122 and conserved across mammals.

123

124 Since we expected much of the heritability of psychiatric disorders to be in regulatory 

125 regions such as enhancers, we gathered and used annotations of enhancers from several 

126 sources, based on chromatin assays. However, although annotated enhancers (based on 

127 H3K27ac or ATAC chromatin peaks) from these studies showed significant enrichment 

128 among SNPs implicated by psychiatric and behavioral GWAS, none explained more than 

129 20% of SNP-heritability in the LDSR model. Some reasons for this are discussed below.

130

131 We adopted the following strategy to identify probable enhancers. Our annotation classes 

132 included all the known specific non-coding elements of the genome, many of which are 

133 highly conserved. We reasoned that most of the remaining non-coding regions highly 

134 conserved across mammals (PhastCons > 0.5) were likely to be enhancers, even though not 

135 all would be active in the brain. One well-known problem with using conserved regions to 

136 identify enhancers is that enhancers are typically not well conserved across different 

137 orders of animals; furthermore  there has likely been recent rapid evolution of regulatory 

138 sites affecting the human brain. This problem was partially addressed by using primate 
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139 conservation data from UCSC; only 20% of these primate-conserved regions overlapped 

140 other mammal-conserved regions, consistent with the rapid evolution of brain enhancers 

141 in the primate lineage. 

142

143 2.2 Class-Specific Heritability Estimates

144 We used the LDSR procedure software provided by the Broad Institute 

145 (https://github.com/bulik/ldsc), and made the following modifications, both in line with 

146 their recommendations. First, two regions of very high linkage disequilibrium were 

147 excluded: the MHC region and the GPHN yin-yang region since both have strong 

148 associations with some psychiatric disorders and their leverage points would distort the 

149 regression. Second, the LDSR regression model tacitly assumes that all effect sizes within a 

150 category are comparable. However, the actual distribution of effect sizes observed in GWAS 

151 is very strongly right-skewed and outliers can substantially distort least squares fits, such 

152 as those used in LDSR. We therefore winsorised the summary P values at 10-7, 

153 corresponding to a chi-square of 22.

154

155 Besides the categories reported here we also used several other annotations of non-coding 

156 RNAs (microRNAs, and ribosomal RNAs). The proportions of SNPs with each of these 

157 annotations were less than 1 in 10,000, and the standard errors of heritability estimates for 

158 those classes from LDSR were almost all larger than the estimates and thus were omitted 

159 from the presentation.

160
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161 Genome build made little difference to the results. Running LDSR for partitioned 

162 heritability on the same GWAS summaries using LD from either HG19 or HG38 had minimal 

163 impact on the heritability estimates. Since most of the GWAS results used here were 

164 reported initially in HG19, we used LDSR on this older build.

165

166 We obtained GWAS data from 18 brain-related phenotypes as listed in Table 2. We 

167 attempted to sample broadly from psychiatric disorders and behavioral traits (14-25), as 

168 well a selection of neurological disorders (26-30). We included well-studied biometric 

169 traits, height and BMI, as controls.

170
171 Table 2. Sources of GWAS data used in this study
172

Trait Acronym Reference Total N
173

Age-related Macular 
Degeneration AMD Fritsche et al. 2013 77255
Alcohol Use Disorder AUD Walters et al. 2018 46568
Alzheimer's disease AD1 Jansen et al. 2019 455258
Alzheimer's disease AD2 Kunkle et al. 2019 63926
Attention Deficit Hyperactivity 
Disorder ADHD Demontis et al.. 2019 55374
Autism Spectrum Disorder ASD Grove et al. 2019 46350
Bipolar Disorder BPD Stahl et al 2019 41653
Body Mass Index BMI Yengo et al. 2018 681275
Educational Attainment EDU Lee et al 2018 766345
Epilepsy EPI ILAE, 2018 44889
Extraversion EXT Van Den Berg et al 2015 63030
Height HGT Yengo et al. 2018 693529
Intelligence IQ Savage et al. 2018 269867
Major Depressive Disorder MDD Wray et al. 2018 480359
Neuroticism NEU Nagel et al.. 2018 380506 
Parkinson's disease PAR Nalls et al., 2019 482730
Reaction Time RT Davies et al., 2018 282014
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Risky Behavior RSK Linner et al. 2019 466571
Schizophrenia SCZ Pardinas et al 2018 105318
Subjective Well-being SWB Okbay et al 2016 298420

174

175 The LDSR program was downloaded in March 2019 and run using recommended settings. 

176 The LDSR estimates are unbiased, thus the LDSR method yields some negative heritability 

177 estimates when the standard error of the estimates exceeds the (positive) true h2. The 

178 proportion of negative estimates of proportions of h2 was consistent with what would be 

179 expected if one third of the categories contributed much lower SNP-heritability than the 

180 standard errors of the estimates. These negative estimates occurred mostly for those traits, 

181 which themselves have low SNP-heritability (mostly behavioral traits).

182

183 LDSR estimates for some categories had standard errors within a factor of two of the 

184 estimates. In order to reduce the error, we used an empirical Bayes (eBayes) approach. We 

185 started by observing that for annotation classes with well estimated heritabilities, (i.e. 

186 small standard errors), the estimates followed an approximately exponential distribution 

187 across different phenotypes. Therefore, we modeled the distribution of h2 across 

188 phenotypes by an exponential for all annotation classes. We estimated the parameter for 

189 each class by maximum likelihood: we determined the exponential parameter that gave the 

190 highest probability for observing the full set of heritabilities estimated by LDSR across all 

191 phenotypes, taking into account the standard errors of these estimates (process 

192 documented in accompanying code). The posterior distribution of the estimate for each 

193 phenotype was then the exponential prior multiplied by the likelihood function, and the 

194 posterior estimates were computed as the expected value of the posterior distribution. 
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195

196 Empirical Bayes approaches introduce a bias in order to reduce unmodeled error. Since the 

197 aim of this paper is to document distinctions among phenotypes, and the bias of eBayes 

198 draws estimates for each phenotype toward the common mean of all phenotypes, the bias 

199 does not contribute to our results. We also tried a shrinkage strategy analogous to that 

200 used by the LASSO and found only very modest differences in results (not reported).

201

202 Results

203 The partitioned heritability estimates for the most significant categories and the 

204 enrichments (ratio of proportion of SNP-heritability to proportion of SNPs) for selected 

205 categories are shown in Fig 1; the raw estimates from running the Broad LDSR program 

206 and their standard errors are presented in S1 Table. The classes contributing most to SNP-

207 heritability were coding regions and transcription start sites (TSS; for most neurological 

208 disorders) and CTCF sites (psychiatric and behavioral phenotypes). The most enriched 

209 classes (contributing much more than their proportion) were these three classes and also 

210 brain-specific promoters (mostly for psychiatric and behavioral).

211

212 Fig 1 Heritability and enrichment estimates for 20 brain phenotypes 

213 a) Empirical Bayes heritability estimates for the genomic classes studied here (in columns) 

214 for 20 traits and disorders (in rows). Color (legend at right) indicates estimated proportion 

215 of SNP-heritability. Estimates are (slightly) biased downward.

216 b) Empirical Bayes enrichments of estimated SNP heritability attributed to various genomic 

217 classes by LDSR. Color indicates the enrichment (ratio of attributed heritability to 
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218 proportion of SNPs) for each genomic category for each trait; key at right: blue: 0 

219 (depletion); teal: little enrichment (1-2-fold); red: high (> 12-fold) enrichment.

220

221

222 The patterns of partitioned heritabilities seen in Fig 1 segregate with a priori classifications 

223 of the phenotypes, so we asked how the genetic architectures of the different traits relate to 

224 each other. We represented the relations among partitioned heritability patterns of 

225 phenotypes (Fig 2) using Kruskal’s isometric multi-dimensional scaling (implemented as 

226 isoMDS in R3.3) We defined distance between phenotypes by the sum over categories of the 

227 absolute differences in estimated heritability. The heritability distribution patterns of the 

228 core psychiatric traits cluster together with behavioral traits at center-left, while 

229 neurological disorders are spread through the lower right.

230

231 Fig 2. Multi-dimensional scaling 2-D plot showing similarities of functional genetic 

232 architecture among different traits. The horizontal axis corresponds roughly to higher 

233 loadings on constitutive (coding, promoter, splicing) annotations toward the right and 

234 higher regulatory related loadings toward the left.

235 KEY: (for references see Table 2)

236 AD1/2 Alzheimer’s disease (see Table 2); ADHD: Attention Deficit Hyperactivity Disorder;

237 ASD: Autism Spectrum Disorder; AMD: Age-related macular degeneration; AUD: Alcohol 

238 use disorder; BMI: Body mass index; BPD: Bipolar disorder; EDU: Educational Attainment;
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239 EPI: Epilepsy; EXT: Extraversion; HGT: Height; IQ: Intelligence quotient; MDD: Major 

240 depressive disorder; NEU: Neuroticism; PAR: Parkinson’s disease; RSK: Risky Behavior; RT: 

241 Reaction Time; SCZ: Schizophrenia; SWB: Subjective well-being;

242

243

244 The clustered arrangement of traits in Fig 2 suggests that the partition of heritability 

245 among classes might be robust enough to distinguish whether an unknown disorder was 

246 neurological or psychiatric. To test this rigorously, we fit a linear discriminant to the 

247 heritability partition vectors and performed leave-one-out cross-validation. The predicted 

248 out-of-sample classes were the same as actual classes in all cases, confirming that patterns 

249 of enrichment can help distinguish between neurological and psychiatric disorders. Fig 3 

250 shows the loadings of the discriminant function. The contribution of CTCF sites is the most 

251 discriminating measure, followed by contribution of coding regions (negative) and of 

252 primate-conserved regions. We were unable to find a robust linear discriminator based on 

253 genomic classes between behavioral traits and psychiatric disorders.

254

255 Fig 3.  Functional genomic features that discriminate psychiatric disorders from 

256 neurological disorders. Bar plot showing weights of the linear discriminant function 

257 separating SNP functional class enrichment profiles typical of psychiatric disorders and 

258 behavioral traits (positive enrichments) from those profiles typical of neurological 

259 disorders (negative enrichments). Note heavy weighting on CTCF sites and putative 

260 primate enhancers for psychiatric disorders, but on coding regions for neurological 

261 disorders. Note that because the proportions of different SNP classes vary by almost three 
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262 orders of magnitude, the discriminant weights displayed here were determined for 

263 enrichment ratios (heritability for a class divided by proportion of SNPs in that class) 

264 rather than heritabilities.

265

266 Results Summary

267 We found that the majority of heritability for psychiatric disorders seems to be in putative 

268 regulatory sites: enhancers and CTCF sites. The sum of estimated SNP-heritabilities over all 

269 categories was similar for most traits: between 80% and 90%.  These results suggest that 

270 the categories used here, although comprising less than 13% of the common SNPs in the 

271 genome, account for most of the SNP-heritability of these disorders or traits. Furthermore 

272 at least half the SNP-heritability for psychiatric and behavioral phenotypes seems to lie in 

273 less than 3% of the genome.

274

275 Notably we have found that brain-specific promoters and two relatively unstudied 

276 categories – CTCF binding sites, and putative inducible or cell-type specific enhancers – 

277 provide the majority of the SNP heritability for the major psychiatric disorders 

278 (schizophrenia, autism and bipolar disorder) as well as for behavioral traits, but not for 

279 neurological disorders. 

280

281 We found that the three classes of non-coding RNAs tested (miRNAs, lncRNAs, rRNAs) 

282 appeared greatly enriched (medians 20-fold, 12-fold, and 20-fold, resp.) for contributions 

283 to SNP-heritability. Nevertheless, the overall contributions to heritability were small 

284 because the number of SNPs in such genes was small. Furthermore, the estimates of 
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285 contribution were uncertain. Therefore, results from these categories are not presented. 

286 We have also identified a new category – putative splice regulatory sites – as relevant to 

287 neurological disorders.

288

289 Discussion 

290 We sought to determine whether we could distinguish the functional genetic architectures 

291 of psychiatric disorders, behavioral traits and neurological disorders. We predicted that 

292 variation in regulatory sites would play a greater role in the etiology of psychiatric 

293 disorders and likely behavioral traits than in neurologic disorders, while the reverse 

294 pattern would be observed for coding sequence variation. Our results partially confirmed 

295 these expectations. 

296

297 Results for non-coding RNAs are not shown in Fig 1 because the standard errors of 

298 estimates for all three classes were comparable to, and usually bigger than, the estimates. 

299 Their presence or absence made little contribution to the relations among phenotypes or 

300 the appearance of Fig 2. We expected substantial heritability for psychiatric syndromes in 

301 long non-coding RNAs (lncRNAs) expressed during development. Indeed, we found that all 

302 classes of non-coding RNAs appeared enriched across all phenotypes, consistent with the 

303 emerging idea that non-coding RNAs play a role in human disease. Nevertheless, the 

304 estimates of SNP-heritability were all quite modest (under 1%), the LDSR standard errors 

305 were larger than the estimates in most cases, and differences between estimated 

306 enrichments across phenotypes or classes were not significant. However, all phenotypes 

307 with high estimates (at least ten-fold) for contribution of lncRNAs were behavioral or 
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308 psychiatric; and for autism spectrum disorders the estimated proportion of heritability due 

309 to lncRNAs was greater than 1% and larger than two standard errors. Greater genetic 

310 resolution of GWAS may allow us to gain insight into role of these non-coding elements.

311

312 We were surprised to find such a strong representation of brain-specific CTCF sites in 

313 psychiatric disorders and behavioral traits, but only very modest enrichment (not shown) 

314 for the ENCODE CTCF sites used in (9).

315

316 Two of our new brain-specific categories – brain-specific promoters, determined from 

317 RoadMap Epigenomics data; and CTCF binding sites, determined from PsychENCODE data 

318 – contributed substantial heritability to psychiatric disorders and behavioral traits. The 

319 generic cross-tissue versions of these categories used by (9) did not contribute 

320 substantially to psychiatric disorders, although the generic promoters did contribute to 

321 neurological disorders (Note that the UCSC promoter annotations used by LDSR enclose 

322 more than ten times as many SNPs as the RoadMap brain promoters). Many genes have 

323 several promoters which may be active in different tissues.  Use of different promoters will 

324 result in different 5’UTRs, which contain regulatory signals often related to trafficking the 

325 RNA to specific cell compartments, such as dendrites. The greater enrichment of brain-

326 specific promoters and CTCF sites validates our rationale for using regulatory sites derived 

327 specifically from brain chromatin data, with one significant exception: enhancers.

328

329 The function of CTCF in gene regulation is poorly known and is now an active area of 

330 research. We do know that brain-specific CTCF binding sites are highly conserved across 
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331 mammals, and hence must play an important role in the genome. Recent evidence suggests 

332 that CTCF and its induced chromatin looping are not required for basal cell functions. 

333 Rather, chromatin configuration is highly dynamic at the fine scale, and CTCF plays a major 

334 role in these reconfigurations, acting to stabilize DNA loops during enhancer-promoter 

335 contact on time scales of minutes (6).  These findings suggest that CTCF binding sites are 

336 likely candidates for modulating dynamic responses to transient cell signals. In the brain, 

337 transient cell signals mediate learning (7). Some reports (31) indicate that CTCF plays a 

338 critical role in the brain’s most specific functions, such as learning and memory, CTCF 

339 would be strongly implicated in psychiatric disorders and behavior traits, but less so in 

340 neurologic disorders or biometric traits. 

341

342 We identified brain promoters and expected to identify brain enhancers using data from 

343 published chromatin assays of human brain tissue (11). Brain promoters selected from the 

344 annotations produced by seemed useful, but, LDSR did not find that enhancer annotations 

345 from these data sets explained a large fraction of SNP heritability. We suggest two main 

346 reasons for this. First, currently available brain chromatin data is derived primarily from 

347 dissected tissue, aggregating across nuclei from all major cell types. Second, enhancers are 

348 not always active: many enhancers, especially those critical for learning are induced in only 

349 a small fraction of cells by specific signals and are ‘on’ for brief periods during which a 

350 burst of transcription is activated.

351

352 Enhancer annotations derived from the chromatin data currently available are thus likely 

353 to reflect predominantly constitutive enhancers in the most abundant cell types. Our 
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354 success in finding enrichment signals in putative regulatory sites flagged by conservation, 

355 and our failure to find as much in chromatin data, suggests that inducible enhancers that 

356 are responsive to physiological signals and events or enhancers in minor cell types 

357 contribute to the genetics of psychiatric disorders more than other disorders. This 

358 interpretation is consistent with evidence that i) interneurons (32) and ii) physiological 

359 insults such as injury or infection or life experience stress (33) are implicated in psychiatric 

360 disorders more than in neurological disorders or biometric traits. 

361  

362 We were surprised to see that the functional genetic architecture of BMI seemed more 

363 similar to that of behavioral traits than to the standard biometric trait of height. However 

364 (34) found many SNPs relevant to BMI in or near genes expressed in the nervous system.

365

366 Does the relationship between psychiatric disorders assessed from our functional genomic 

367 categories seen in Fig 2 map onto those obtained from common SNP variants formed into 

368 polygene scores? A definitive answer is not yet possible, but two lines of suggestive 

369 evidence can be derived from the magnitude of SNP-based genetic correlations that bear 

370 some resemblance to the distance between the disorders in Fig 2. First, using SCZ as an 

371 anchor point, SNP-based genetic correlations are high between SCZ and BPD (positioned 

372 closely together Fig 2) and modest with MDD (which is further apart) (2).  Second, using 

373 AUD as an anchor, SNP genetic correlations are high with MDD and modest with SCZ and 

374 BPD (35).

375
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376 The results presented here complement recent studies showing genes implicated by GWAS 

377 for neurological disorders concentrate in specific brain cell types, while genes implicated 

378 by GWAS for psychiatric disorders and behavioral traits are broadly enriched in 

379 telencephalic neurons (36).  

380

381 Conclusion

382 In a novel use of LDSR, we have identified the genomic categories accounting for a majority 

383 of the SNP heritability for a number of major psychiatric disorders. We have also shown 

384 that the functional genetic architectures of many psychiatric disorders and behavioral 

385 traits are relatively similar to each other and less similar to the architectures of 

386 neurological diseases or to a control anthropometric trait like height.   We have shown that 

387 distinctive genomic categories relevant to psychiatric disorders and behavioral traits are 

388 those related to dynamic gene regulation on short time scales. Our results hold promise for 

389 bridging genetics and well-established environmental and life-history risk factors for 

390 psychiatric disorders.
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