

1 **Title:**

2 **Low doses of the organic insecticide spinosad trigger lysosomal defects, ROS driven lipid**  
3 **dysregulation and neurodegeneration in flies**

4 **Author names and affiliations:**

5 Felipe Martelli<sup>1,6</sup>, Zuo Zhongyuan<sup>2</sup>, Julia Wang<sup>2,7</sup>, Ching-On Wong<sup>3,8</sup>, Nicholas E. Karagas<sup>3</sup>, Ute  
6 Roessner<sup>1</sup>, Thusitha Rupasinghe<sup>1</sup>, Kartik Venkatachalam<sup>3</sup>, Trent Perry<sup>1</sup>, Philip Batterham<sup>1\*†</sup>, Hugo J.  
7 Bellen<sup>2,4,5,\* †</sup>  
8

9 <sup>1</sup>School of BioSciences, The University of Melbourne, Melbourne, VIC 3052, Australia

10 <sup>2</sup>Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030,  
11 USA

12 <sup>3</sup>Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of  
13 Texas Health Sciences Center, Houston, TX 77030, USA

14 <sup>4</sup>Neurological Research Institute, Texas Children Hospital, Houston, TX 77030, USA

15 <sup>5</sup>Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA

16 <sup>6</sup>Present address: School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia

17 <sup>7</sup>Present address: Medical Scientist Training Program, Baylor College of Medicine, Houston, TX  
18 77030, USA

19 <sup>8</sup>Present address: Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA

20

21 \*Authors with equal contribution

22

23 Corresponding authors e-mail addresses

24 <sup>†</sup>Correspondence to: [hbellen@bcm.edu](mailto:hbellen@bcm.edu) and [p.batterham@unimelb.edu.au](mailto:p.batterham@unimelb.edu.au)

25

26

27

28 **Keywords:**

29 Spinosad, organic insecticide, oxidative stress, lipid dysregulation, neurodegeneration, antioxidant,  
30 lysosomal dysfunction.

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 **Abstract**

48 The plight of insect populations around the world and the threats it poses to agriculture and  
49 ecosystems has thrown insecticide use into the spotlight. Spinosad is an organic insecticide,  
50 considered less harmful to beneficial insects than synthetic insecticides, but its mode of action  
51 remains unclear. Using *Drosophila*, we show that low doses of spinosad reduce cholinergic response  
52 in neurons by antagonizing Dα6 nAChRs. Dα6 nAChRs are transported to lysosomes that become  
53 enlarged and accumulate upon spinosad treatment. Oxidative stress is initiated in the central nervous  
54 system, and spreads to midgut and disturbs lipid storage in metabolic tissues in a Dα6-dependent  
55 manner. Spinosad toxicity was ameliorated with the antioxidant N-Acetylcysteine amide (NACA).  
56 Chronic exposures lead to mitochondrial defects, severe neurodegeneration and blindness in adult  
57 animals. The many deleterious effects of low doses of this insecticide reported here point to an urgent  
58 need for rigorous investigation of its impacts on beneficial insects.

59 **Introduction**

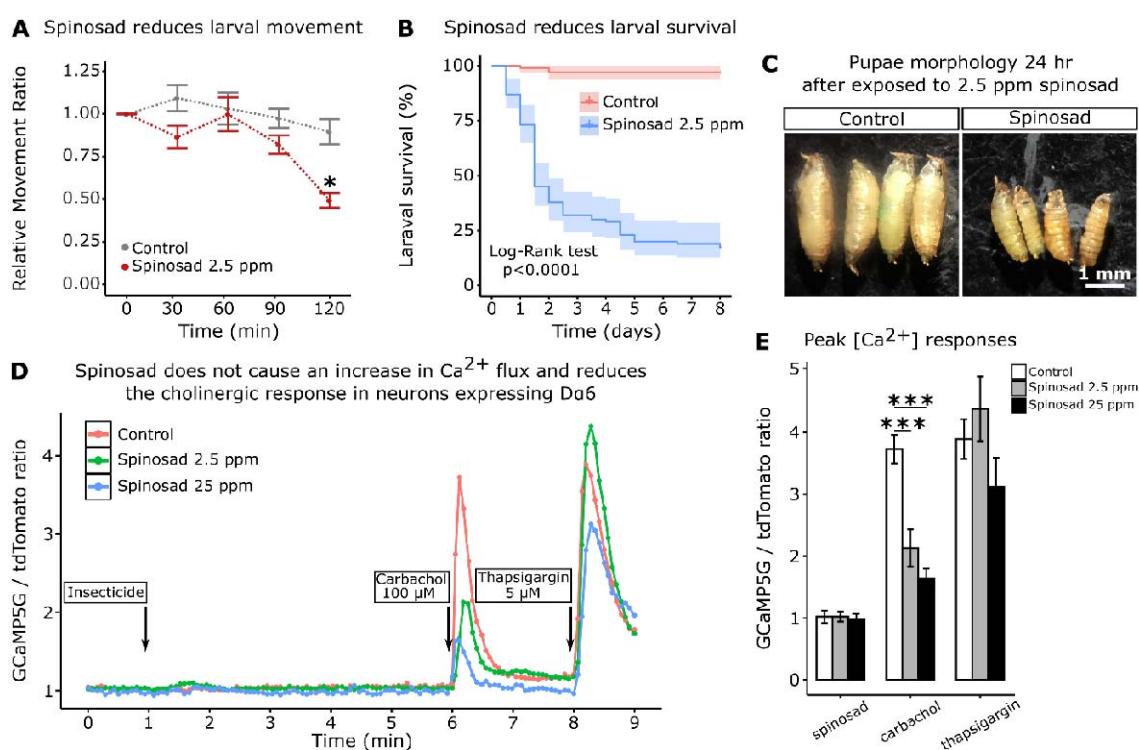
60 The life-cycles of many plant species require pollination by insects, particularly bee species; 75% of  
61 crop plants depend on these pollination services to some extent (Klein et al., 2007). Every crop plant  
62 species faces the threat of attack by insect pests, typically countered using insecticides targeting  
63 proteins that are highly conserved among insect species (Sattelle et al., 2005). While insecticides  
64 maximise crop yield, they have the potential to negatively impact populations of insects that provide  
65 vital services in agriculture and horticulture (Sánchez-Bayo and Wyckhuys, 2019). There has been a  
66 sharp focus on the impact of neonicotinoid insecticides on bees, both in the scientific literature and in  
67 public discourse, because of evidence that these chemicals may contribute to the colony collapse  
68 phenomenon (Lu et al. 2014; Lundin et al. 2015). Many other insect species are under threat. A  
69 recent meta-analysis found an average decline of approximately 9% in terrestrial insect abundance  
70 per decade, since 1925 (van Klink et al., 2020), although estimates differ depending on the regions  
71 studied and the methodologies used (Wagner et al., 2021). While the extent to which insecticides are  
72 involved remains undetermined, they have consistently been associated as a major factor, along with  
73 climate change, habitat loss, pathogens and parasites (Cardoso et al., 2020; Sánchez-Bayo and  
74 Wyckhuys, 2019; Wagner et al., 2021).

75 In assessing the risk posed by insecticides, it is important that the molecular and cellular events that  
76 unfold following the interaction between the insecticide and its target be understood. Many  
77 insecticides target ion channels in the nervous system. At the high doses used to kill pests these  
78 insecticides produce massive perturbations to the flux of ions in neurons, resulting in lethality (Perry  
79 and Batterham, 2018). But non-pest insects are likely to be exposed to lower doses and the  
80 downstream physiological processes that are triggered are poorly understood. In a recent study, low  
81 doses of the neonicotinoid imidacloprid were shown to stimulate a constitutive flux of calcium into  
82 neurons via the targeted ligand gated ion channels (nicotinic acetylcholine receptors – nAChRs)  
83 (Martelli et al., 2020). This causes an elevated level of ROS and oxidative stress which radiates from  
84 the brain to other tissues. Mitochondrial damage leads to a significant drop in energy levels,  
85 neurodegeneration and blindness (Martelli et al., 2020). Evidence of compromised immune function  
86 was also presented, supporting other studies (Chmiel et al., 2019). Many other synthetic insecticides  
87 are known to elevate the levels of ROS (Karami-Mohajeri and Abdollahi, 2011; Lukaszewicz-Hussain,  
88 2010; Wang et al., 2016) and may precipitate similar downstream impacts. Given current concerns  
89 about synthetic insecticides, a detailed analysis of the molecular and cellular impacts of organic  
90 alternatives is warranted. Here we report such an analysis for an insecticide of the spinosyn class,  
91 spinosad.

92 Spinosad is an 85%:15% mixture of spinosyns A and D, natural fermentation products of the soil  
93 bacterium *Saccharopolyspora spinosa*. It occupies a small (3%), but growing share of the global  
94 insecticide market (Sparks et al. 2017). It is registered for use in more than 80 countries and applied  
95 to over 200 crops to control numerous pest insects (Biondi et al., 2012). Recommended dose rates  
96 vary greatly depending on the pest and crop, ranging from 96 parts per million (ppm) for *Brassica*  
97 crops to 480 ppm in apple fields (Biondi et al., 2012). Garden sprays containing spinosad as the  
98 active ingredient contain doses of up to 5000 ppm. Like other insecticides, the level of spinosad  
99 residues found in the field vary greatly depending on the formulation, the application mode and dose  
100 used, environmental conditions and proximity to the site of application. If protected from light spinosad  
101 shows a half-life of up to 200 days (Cleveland et al., 2002).

102 Spinosad is a hydrophobic compound belonging to a lipid class known as polyketide macrolactones.  
103 Studies using mutants, field-derived resistant strains and heterologous expression have shown that  
104 spinosad targets the highly conserved nAChR Da6 subunit in *Drosophila melanogaster* and a range of  
105 other insect species (Perry et al., 2015, 2007; Watson, 2001). This subunit is not targeted by  
106 imidacloprid (Watson et al., 2010). The two insecticides differ in their mode of action. Imidacloprid is  
107 an agonist causing cation influx into neurons by binding to a site that overlaps with that normally  
108 occupied by the native ligand, acetylcholine (ACh) (Buckingham et al., 1997; Martelli et al., 2020;  
109 Perry et al., 2008). Spinosad is an allosteric modulator, binding to a site in the C terminal region of the  
110 protein (Puinean et al., 2013; Somers et al., 2015). Salgado (1998) measured nerve impulses in  
111 cockroaches with electromyograms and found an increased response to spinosad, concluding that  
112 spinosad promoted an excitatory motor neuron effect. Salgado and Saar (2004) found that spinosad  
113 allosterically activates non-desensitized nAChRs, but that small doses were also capable of  
114 antagonizing the desensitized nAChRs. It is currently accepted that spinosad causes an increased  
115 sensitivity to ACh in certain nAChRs and an enhanced response at some GABAergic synapses,  
116 causing involuntary muscle contractions, paralysis and death (Biondi et al., 2012; Perry et al., 2011;  
117 Salgado, 1998). A recent study (Nguyen et al., 2021) showed that both acute and chronic exposures  
118 to spinosad causes Da6 protein levels in the larval brain to decrease. A rapid loss of Da6 protein  
119 during acute exposure was blocked by inhibiting the proteasome system (Nguyen et al., 2021). As  
120 Da6 loss of function mutants are viable (Perry et al., 2007; Perry et al 2021), it was suggested that the  
121 toxicity of spinosad may be due to overloading of protein degradation pathways and/or the  
122 internalisation of spinosad where it may cause cellular damage. Spinosad has been shown to cause  
123 cellular damage via mitochondrial dysfunction, oxidative stress and programmed cell death in insect  
124 cells (*Spodoptera frugiperda* Sf9) (Xu et al., 2018; Yang et al., 2017).

125 Here we show that while spinosad by itself does not elicit  $\text{Ca}^{2+}$  flux in *Drosophila* neurons, the  
126 response elicited by the cholinergic agonist is stunted upon spinosad pretreatment. Following  
127 exposure to spinosad, Da6 cholinergic receptors traffic to the lysosomes, which induces hallmarks of  
128 lysosomal dysfunction. We also show that oxidative stress stemming from lysosomal dysfunction,  
129 which is a key factor in spinosad's mode of action at low doses, triggers a cascade of damage that  
130 results in mitochondrial dysfunction, reduced energy levels, extensive neurodegeneration in the  
131 central brain and blindness. Given the high degree of conservation of the spinosad target between  
132 insect species (Perry et al., 2015), our data suggest that the potential for this insecticide to cause  
133 harm in other non-pest insects needs to be thoroughly investigated.

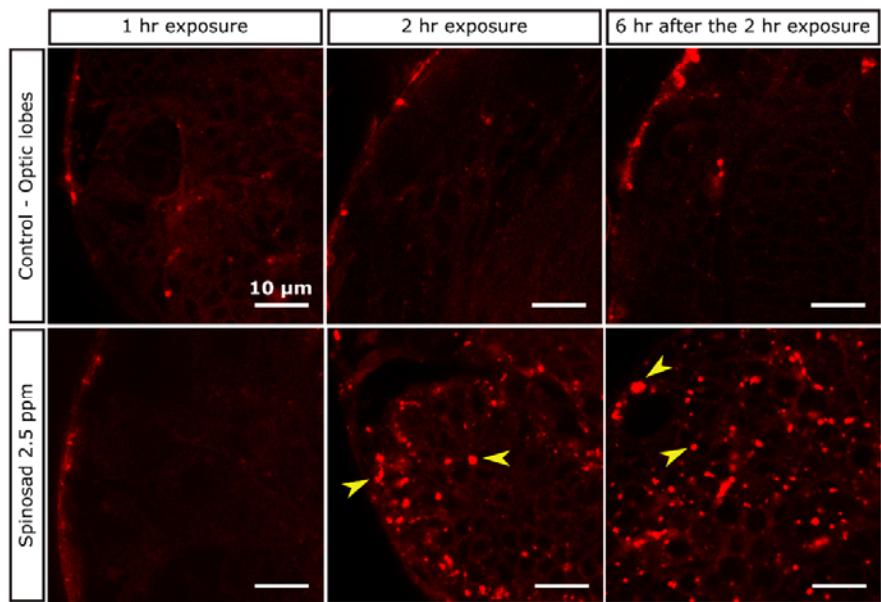

## 134 **Results**

### 135 **Low doses of spinosad affect survival and prevent $\text{Ca}^{2+}$ flux into neurons expressing Da6** 136 **nAChRs**

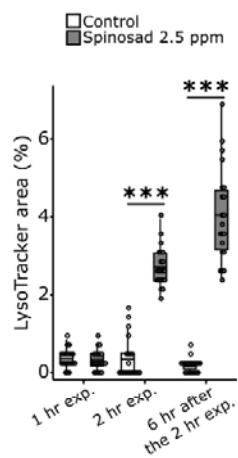
137 As a starting point to study the systemic effects of low-dose spinosad exposure, a dose that would  
138 reduce the movement of third instar larvae by 50% during a 2 hr exposure was determined. This was  
139 achieved with a dose of 2.5 ppm (**Figure 1A**). 82% of exposed larvae placed back onto insecticide-  
140 free media after being rinsed did not undergo metamorphosis. Death occurred over the course of the  
141 next 8 days (**Figure 1B**). Of the 18% of larvae that underwent metamorphosis, only 4% emerged as  
142 adults. Pupae showed small and irregular morphology (**Figure 1C**). The effect of this dose was  
143 measured on primary culture of neurons expressing the spinosad target, the nAChR Da6 subunit  
144 using the GCaMP5G:tdTomato cytosolic  $[\text{Ca}^{2+}]$  sensor. As no alterations in basal  $\text{Ca}^{2+}$  levels were  
145 detected in response to 2.5 ppm (**Figure 1D, E**), a dose of 25 ppm was tested, again with no  
146 measurable impact (**Figure 1D, E**). After 5 min of spinosad exposure, neurons were then stimulated  
147 by carbachol, a cholinergic agonist that activates nAChR. Spinosad-exposed neurons exhibited a  
148 significant decrease in cholinergic response when compared to non-exposed neurons (**Figure 1D, E**).  
149 Total  $\text{Ca}^{2+}$  content mobilized from ER remained unaltered as measured by thapsigargin-induced  
150  $\text{Ca}^{2+}$  release (**Figure 1D, E**). These data suggest that spinosad blocks the function of Da6-containing  
151 nAChRs.

152

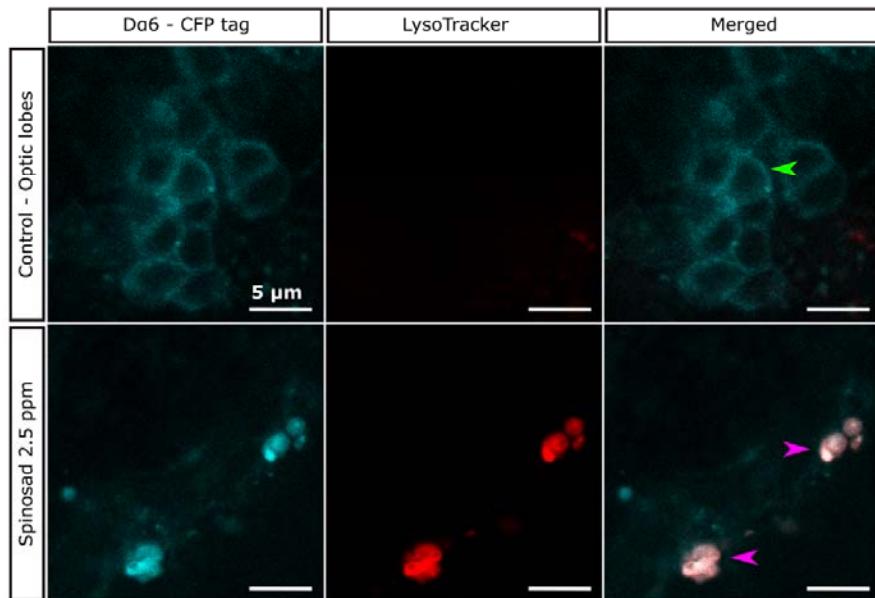
153




154  
155 **Figure 1. Low doses of spinosad are lethal and fail to increase  $\text{Ca}^{2+}$  levels in neurons.** A, Dose  
156 response to spinosad by an assay of larval movement over time, expressed in terms of Relative  
157 Movement Ratio (RMR);  $n = 100$  larvae/treatment). B, % Survival of larvae subjected to a 2 hr  
158 exposure to 2.5 ppm spinosad, rinsed and placed back onto insecticide-free medium ( $n = 100$   
159 larvae/treatment). C, Pupal morphology, 24 hr after exposure 2.5 ppm spinosad or control solution for  
160 2 hr. D, Cytosolic  $[\text{Ca}^{2+}]$  measured by GCaMP in neurons expressing nAChR-Da6. Measurement is  
161 expressed as a ratio of the signals of GCaMP5G signal and tdTomato. Spinosad (2.5 ppm or 25 ppm)  
162 was added to the bath solution at 1 minute after recording started. At 6 min and 8 min the spinosad  
163 and control groups were stimulated by 100  $\mu\text{M}$  carbachol and 5  $\mu\text{M}$  Thapsigargin, respectively. Each  
164 point represents the average of at least 50 cells. E, Peak  $[\text{Ca}^{2+}]$  responses to spinosad and carbachol.  
165 Error bars represent s.e.m.; shaded areas in B represent 95% confidence interval (Kaplan-Meier  
166 method and the Log-rank Mantel-Cox test;  $P < 0.0001$ ). A and E, t-test; \* $P < 0.05$ , \*\*\* $P < 0.001$ .


167 **Spinosad exposure causes lysosomal alterations, mitochondrial impairment and increase**  
168 **oxidative stress**

169 To test whether blocked Da6-containing nAChRs could cause receptor recycling from membrane and  
170 thus increase lysosome digestion, Lysotracker staining was used to assess lysosomal function.  
171 Whereas no phenotype was observed after 1 hr exposure, a 2 hr exposure to 2.5 ppm spinosad  
172 caused an 8-fold increase in the area occupied by lysosomes in the larval brain (Figure 2A, B). 6 hr  
173 after larvae were subjected to the 2 hr exposure, the area occupied by lysosomes in brains was 24-  
174 fold greater than in controls (Figure 2A, B). No increase in the area occupied by lysosomes was  
175 observed after exposure to imidacloprid, showing that this is a spinosad specific response (Figure 2 –  
176 **figure supplement 1**). These observations, in combination with the findings of Nguyen et al. (2021)  
177 suggested that binding of spinosad to Da6 nAChRs may promote their trafficking to lysosomes. To  
178 investigate this hypothesis, the brains of larvae expressing a fluorescently (CFP) tagged Da6 nAChR  
179 subunit were stained with Lysotracker. Exposure to 2.5 ppm spinosad showed a significant reduction  
180 of the Da6 CFP signal from neuronal membranes over time and colocalization with lysosomes  
181 (Figure 2C; Figure 2 – **figure supplement 2**). Importantly, enlarged lysosomes were not observed in  
182 *Da6* knockout mutants, regardless of spinosad exposure (Figure 2 – **figure supplement 1**),  
183 indicating that the lysosomal expansion is dependent on the presence of Da6 nAChRs.


**A** Acute spinosad exposure leads to the accumulation of lysosomes in the larval brain



**B** Quantification of **A**

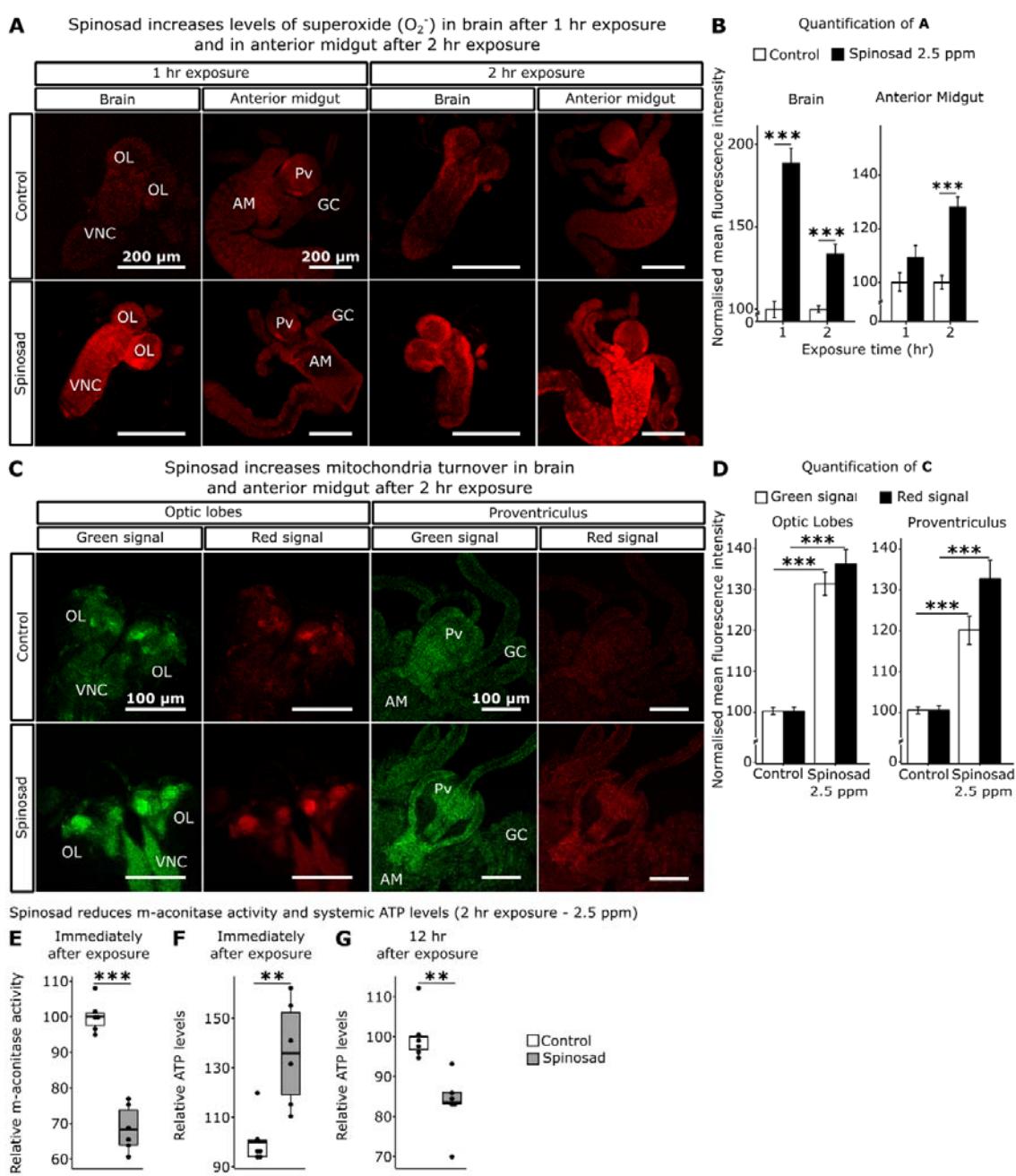


**C** Spinosad exposure leads to Da6 nAChRs to colocalize with enlarged lysosomes



184

185 **Figure 2. Spinosad exposure causes lysosomal expansion and Da6 nAChRs colocalize with**  
186 **enlarged lysosomes.** **A**, Larvae exposed to 2.5 ppm spinosad for 2hr show a significant increase in  
187 the number of enlarged lysosomes in the brain, not observed following a 1hr exposure. 6hrs after the  
188 2hr exposure the number of enlarged lysosomes is further increased. Yellow arrowheads indicate  
189 enlarged lysosomes. Lysotracker staining, 400 x magnification. **B**, Lysotracker area in the optic lobes  
190 (%) (n = 7 larvae/treatment, 3 optic lobe sections/larva). **C**, Larvae expressing Da6 tagged with CFP  
191 exposed to 2.5 ppm spinosad for 2 hr show co-localization of the Da6 and lysosomal signals. Green  
192 arrowhead indicates Da6 CFP signal in neuronal membranes of non-exposed larvae. Pink  
193 arrowheads indicate Da6 CFP signal colocalizing with lysosomes. Lysotracker staining, 600 x  
194 magnification. Microscopy images obtained in Leica SP5 Laser Scanning Confocal Microscope. t-test;  
195 \*\*\*P < 0.001.


196

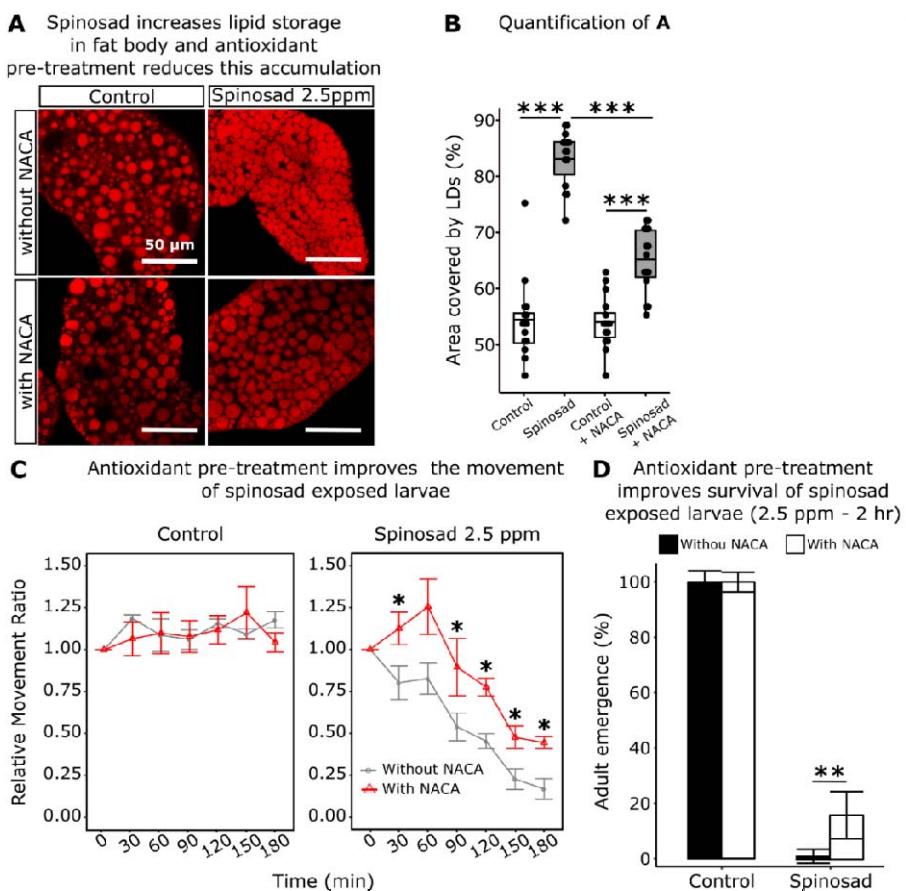
197

198 Defects in lysosomal function have been shown to impact other organelles, especially mitochondria  
199 (Deus et al., 2020). To assess mitochondrial dysfunction, we examined the levels of superoxide anion  
200 ( $O_2^-$ ), a primary reactive oxygen species (ROS) produced by mitochondria (Valko et al., 2007), using  
201 dihydroethidium (DHE) staining. After a 1 hr exposure to 2.5 ppm spinosad, there was a mean 89%  
202 increase in  $O_2^-$  accumulation in the brain. After 2 hr the levels were lower than at the 1hr time point,  
203 but still 44% higher than in the unexposed controls (**Figure 3A, B**). A different pattern was observed  
204 in the anterior midgut. A significant increase in accumulation compared with the controls (28%) was  
205 only observed at the 2 hr time point (**Figure 3A, B**).

206 Mitochondrial turnover was assessed using the MitoTimer reporter line (Gottlieb and Stotland, 2015).  
207 A 2hr spinosad exposure induced an increase of 31% and 36% for the green (healthy mitochondria)  
208 and red (stressed mitochondria) signals in the optic lobes of the larval brain, respectively (**Figure 3C,**  
209 **D**). For the digestive tract, a 19% and 32% increase were observed in the proventriculus for green  
210 and red signal, respectively (**Figure 3C, D**). To examine the impact of ROS we measured the enzyme  
211 activity of mitochondrial aconitase, a highly ROS sensitive enzyme (Yan et al., 1997). We observed a  
212 mean 34% reduction in aconitase activity (**Figure 3E**), indicating an increased presence of ROS in  
213 mitochondria during the 2 hr exposure. Immediately after the 2 hr exposure, a mean 36% increase in  
214 systemic ATP levels was observed (**Figure 3F**), followed by a 16.5% reduction 12 hr after the 2 hr  
215 exposure (**Figure 3G**). The initial increase in energy levels is consistent with the increase in the green  
216 signal observed with MitoTimer at this time point. However, the reduction in ATP levels 12 hr after the  
217 exposure shows that the mitochondrial energy output is eventually impaired.

218




219

220 **Figure 3. Spinosad exposure impacts ROS levels, mitochondrial turnover and energy levels. A,**  
221 Superoxide levels in the brain and anterior midgut of larvae exposed to 2.5 ppm spinosad for either 1  
222 hr or 2 hr. Tissue stained with DHE. **B**, Normalized mean fluorescence intensity of DHE (n = 15  
223 larvae/treatment; 3 sections/larva). **C**, Optic lobes of the brain and proventriculus of MitoTimer  
224 reporter strain larvae. 2.5 ppm spinosad exposure for 2 hr increased the signal of healthy (green) and  
225 unhealthy (red) mitochondria (n = 20 larvae/treatment; 3 image sections/larva). **D**, Normalized mean  
226 fluorescence intensity of MitoTimer signals. Error bars indicate standard error. **E**, Relative m-  
227 aconitase activity in whole larvae (n = 25 larvae/replicate; 6 replicates/treatment) exposed to 2.5 ppm  
228 spinosad for 2 hr. **F**, Relative systemic ATP levels immediately after the 2 hr exposure to 2.5 ppm  
229 spinosad (n = 20 larvae/ replicate; 6 replicates/ treatment). **G**, Relative systemic ATP levels 12 hr after  
230 exposure to 2.5 ppm spinosad (n = 20 larvae/ replicate; 6 replicates/ treatment). OL – optic lobe; VNC  
231 – ventral nerve cord; Pv – proventriculus; GC – gastric caeca; AM – anterior midgut. Error bars in **B**  
232 and **D** represent mean  $\pm$  s.e.m. Microscopy images obtained in Leica SP5 Laser Scanning Confocal  
233 Microscope, 200x magnification. t-test; \*\*P < 0.01; \*\*\*P < 0.001.

234 **Oxidative stress created by spinosad affects lipids, motility, and survival**

235 Oxidative stress has the ability to affect the lipid environment of metabolic tissues, causing bulk  
236 redistribution of lipids into lipid droplets (LD) (Bailey et al., 2015). An elevation of ROS levels in the  
237 *Drosophila* larval brain has been shown to cause an increase in LD numbers in the fat body as well as  
238 a decreases LD in the midgut and Malpighian tubules (Martelli et al., 2020). The impact of spinosad  
239 on LD numbers was therefore examined. Larvae exposed to 2.5 ppm spinosad for 2 hr showed a 52%  
240 increase in the area covered by LD in the fat body (**Figure 4A, B**), with a significant reduction in the  
241 number of large LD and an increase in small LD (**Figure 4 – figure supplement 1**). Pre-treatment  
242 with the antioxidant N-Acetylcysteine amide (NACA) significantly reduced the impacts of spinosad  
243 exposure on this phenotype. Even though still significant, the area occupied by LD in fat bodies  
244 increased only 20% with NACA pre-treatment (**Figure 4A, B**). Antioxidant pre-treatment also  
245 significantly improved movement of larvae exposed to spinosad (**Figure 4C**), and survival, which  
246 increased from 4% to 15% (**Figure 4D**).

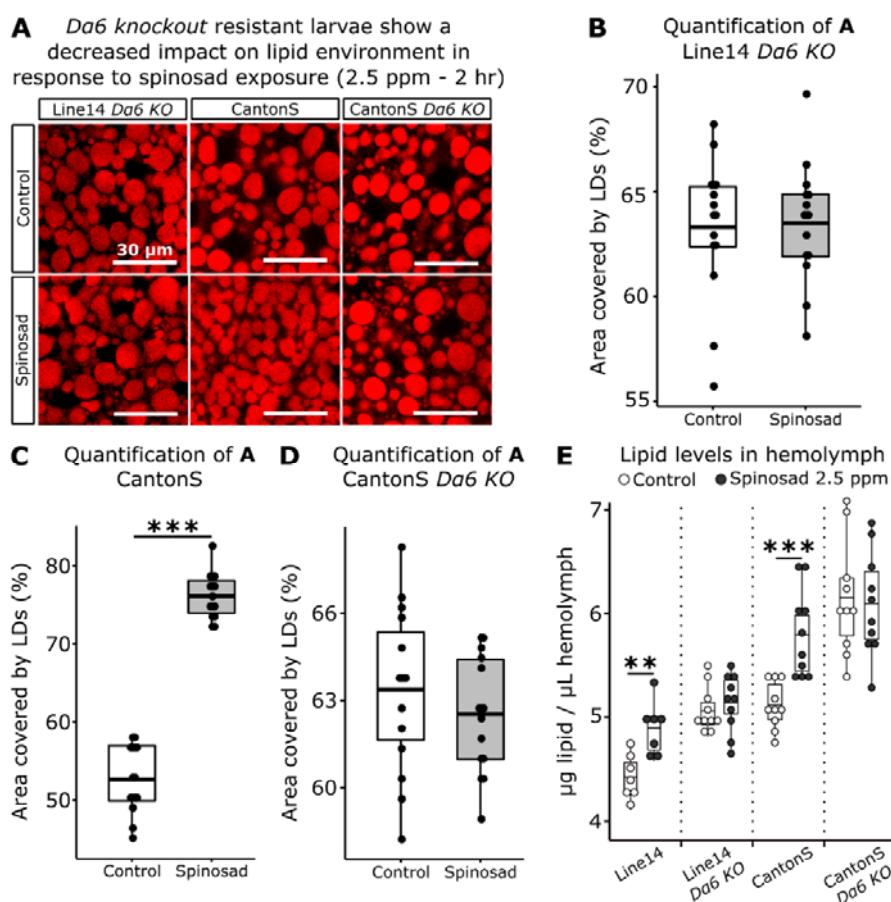
247



248

249 **Figure 4. Spinosad increases lipid storage in fat body. Antioxidant pre-treatment reduces this**  
250 **accumulation and improves larval movement and survival. A, Larvae exposed to 2.5 ppm**  
251 **spinosad for 2 hr show an accumulation of LD in the fat body. A 5 hr pre-treatment with 300 µg/mL of**  
252 **antioxidant N-acetylcysteine amide (NACA) reduces this accumulation. Nile red staining. Images**  
253 **obtained using a Leica SP5 Laser Scanning Confocal Microscope, 400x magnification. B, Percentage**  
254 **of area occupied by LD in fat body (n = 3 larvae/treatment; 5 image sections/larva). C, Pre-treatment**  
255 **with NACA improves the movement of spinosad exposed larvae. Dose response to insecticide**  
256 **analysed using the Wiggle Index analysis. Results are expressed in terms of Relative Movement**  
257 **Ratio (RMR) values as a function of exposure time in minutes (n = 25 larvae/replicate; 4 replicates/**  
258 **treatment). D, Pre-treatment with NACA improves survival of larvae exposed to spinosad. Corrected**  
259 **adult emergence (%) (n = 100 larvae/ treatment). Bars indicate corrected percentage survival (Abbots'**

260 correction). Error bars in **C** represent the s.e.m. and in **D** the 95% confidence interval. t-test; \*P <  
261 0.05; \*\*P < 0.01; \*\*\*P < 0.001.


262 In order to test whether doses that do not impact survival could also cause similar perturbations to the  
263 lipid environment, sublethal acute doses were determined. Larvae exposed to 0.5 ppm for 2 hr or 0.1  
264 ppm for 4 hr showed no impact in adult eclosion after being rinsed and placed back onto insecticide-  
265 free media (**Figure 4 – figure supplement 2**). Both doses caused on average a 29% increase in the  
266 area occupied by LD in fat bodies (**Figure 4 – figure supplement 2**). That this impact is smaller than  
267 that observed for the 2.5 ppm shows that this phenotype is dose dependent. Once again, an increase  
268 in the number of small LD and reduction in the number of large LD was observed (**Figure 4 – figure**  
269 **supplement 3**). Using these sublethal doses, other metabolic tissues were investigated. The doses of  
270 0.5 ppm for 2 hr and 0.1 ppm for 4 hr caused a mean 72% and 73% reduction in the total number of  
271 LD in the Malpighian tubules, respectively (**Figure 4 – figure supplement 2**). We also identified a  
272 reduction in the numbers of LD in the LD region of the posterior midgut (**Figure 4 – figure**  
273 **supplement 4**).

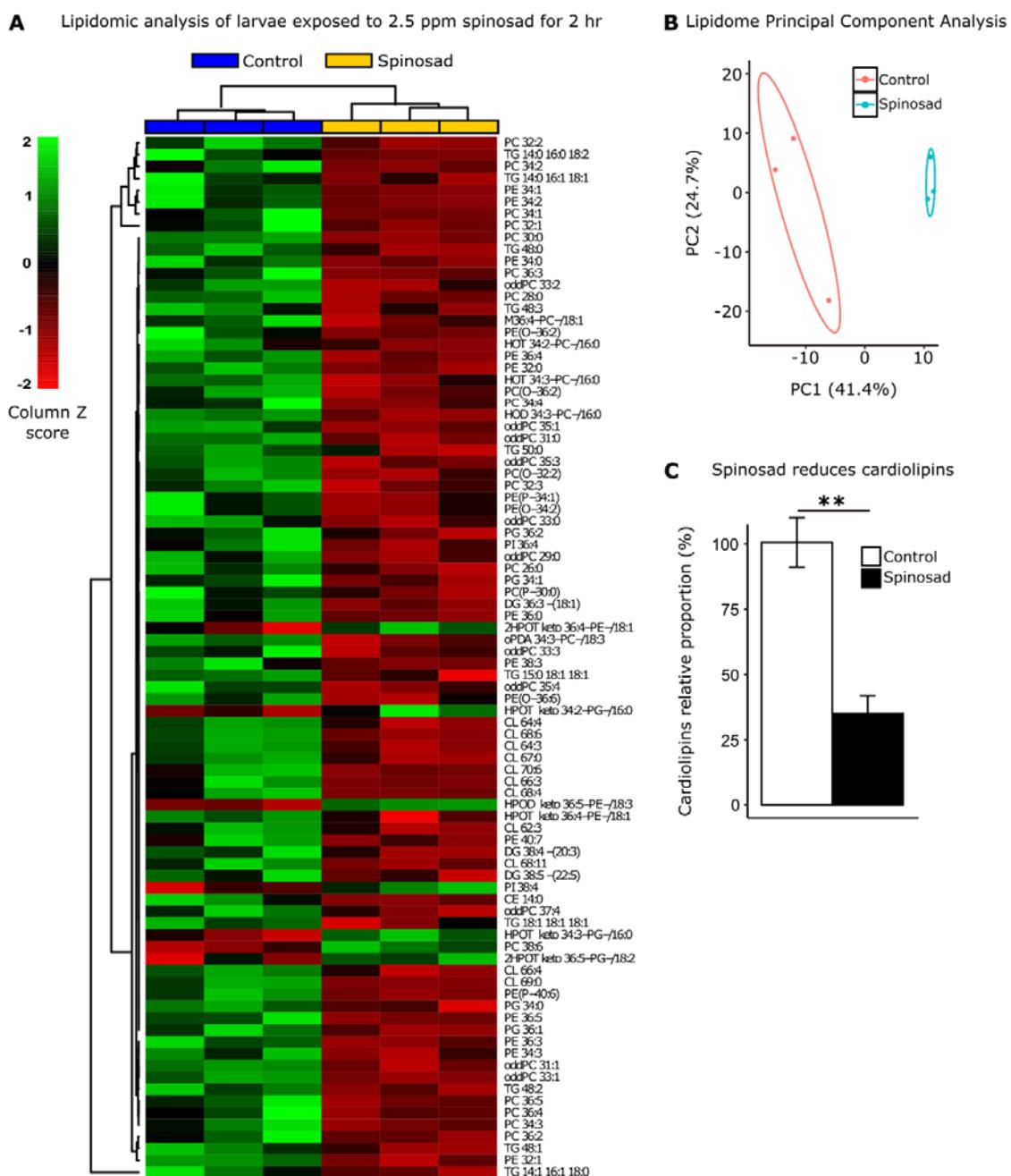
274 **A brain signal triggers the impacts of spinosad on metabolic tissues**

275 Once inside the insect body, spinosad could theoretically access any tissue via the open circulatory  
276 system. Given that the target *Dα6* nAChRs are localized in the brain (Perry et al., 2015; Somers et al.,  
277 2015), and that elevated levels of ROS were observed earlier in the brain than in metabolic tissues,  
278 prompts a significant question. Could the interaction between spinosad and *Dα6* in the brain provide  
279 the signal that ultimately leads to the observed disturbance of the lipid environment in the metabolic  
280 tissues? Two different *Dα6* knockout mutants (Line 14 *Dα6* KO and Canton S *Dα6* KO) and their  
281 respective genetic background control lines (Line 14 – used in experiments so far, and Canton S)  
282 were tested. Larvae were exposed to 2.5 ppm of spinosad for 2 hr. Neither of the mutants tested  
283 showed an increase in the area occupied by LD, compared to their respective background lines,  
284 under conditions of spinosad exposure (**Figure 5A-D**). We also quantified the level of lipids in  
285 hemolymph. Whereas Line 14 and Canton S showed an average 10% and 13% increase in response  
286 to spinosad, respectively, neither of the *Dα6* KO mutants showed significant changes (**Figure 5E**).  
287 Hence, *Dα6* mediates the observed lipid phenotypes.

288

289




290

291 **Figure 5. *Da6 knockout (KO)* resistant larvae show a decreased impact on lipid environment in**  
292 **response to spinosad exposures. A,** Larvae exposed to 2.5 ppm of spinosad for 2 hr. Nile red  
293 staining. Images obtained in Leica SP5 Laser Scanning Confocal Microscope, 400x magnification (n =  
294 3 larvae/ treatment; 5 image sections/larva). **B,** Percentage of area occupied by LD in fat body of Line  
295 14 *Da6 KO* larvae. **C,** Percentage of area occupied by LD in fat body of Canton S larvae. **D,**  
296 Percentage of area occupied by LD in fat body of Canton S *Da6 KO* larvae. **E,** Amount of lipids in  
297 hemolymph ( $\mu$ g/ $\mu$ L) of Line 14 *Da6 KO*, Canton S and Canton S *Da6 KO* larvae exposed to 2.5 ppm  
298 spinosad for 2 hr. Measured using the colorimetric vanillin assay (n = 10 replicates/treatment/time-  
299 point; 30 larvae/replicate). t-test; \*\*\*P < 0.001.

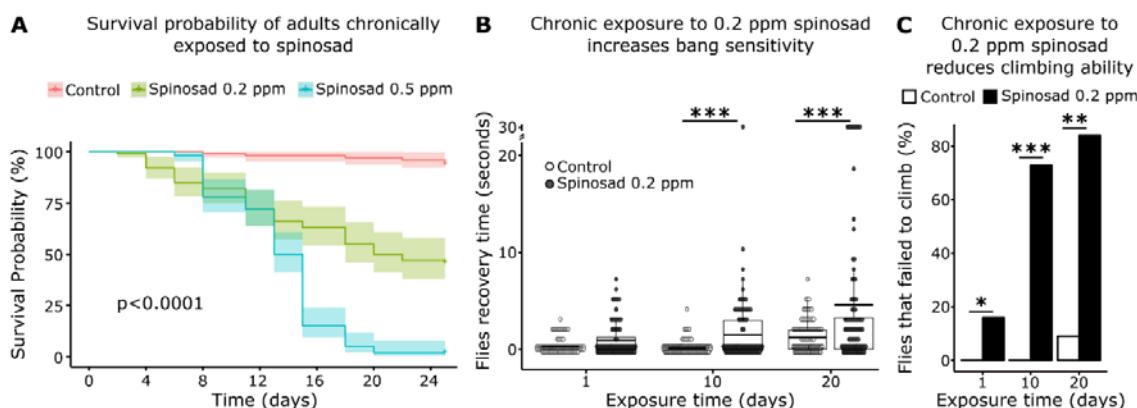
300 **Spinosad triggers major alterations in the lipidome pointing to impaired membrane function**  
301 **and decreased mitochondrial cardiolipins**

302 To further investigate the impacts on the lipid environment we performed a lipidomic analysis on  
303 whole larvae exposed to 2.5 ppm spinosad for 2 hr. Significant changes were observed in the levels  
304 of 88 lipids out of the 378 detected by mass spectrometry (**Figure 6A; Figure 6 – table supplement**  
305 **1**). A significant portion of the changes in lipids correspond to a reduction in phosphatidylcholine (PC),  
306 phosphatidylethanolamine (PE) and some triacylglycerol (TAG) species. Multivariate analysis (**Figure**  
307 **6B**) indicates that the overall lipidomic profiles of exposed larvae forms a tight cluster that is distinct  
308 from the undosed control. The use of whole larvae for lipidomic analysis reduces the capacity to  
309 detect significant shifts in lipid levels that predominantly occur in individual tissues but allows the  
310 identification of broader impacts on larval biology. In this context, the observed 65% reduction in the  
311 levels of identified cardiolipins (CL) is particularly noteworthy (**Figure 6C**). CL are mostly present in  
312 mitochondria and are required for the proper function of the TCA cycle proteins, especially those of  
313 Complex 1, the major ROS generator when dysfunctional (Quintana et al., 2010; Ren et al., 2014).

314



316 **Figure 6. Spinosad disturbs the lipid profile of exposed larvae.** Lipidomic profile of larvae  
317 exposed to 2.5 ppm spinosad for 2 hr (n = 10 larvae/replicate; 3 replicates/treatment). **A**, 88 lipid  
318 species out of the 378 identified were significantly affected by insecticide treatment (One-way  
319 ANOVA, Turkey's HSD, P < 0.05). The column Z score is calculated subtracting from each value  
320 within a row the mean of the row and then dividing the resulting values by the standard deviation of  
321 the row. The features are color coded by row with red indicating low intensity and green indicating  
322 high intensity. **B**, Principal Component Analysis of 378 lipid species. Each dot represents the lipidome  
323 data sum of each sample. First component explains 41.4% of variance and second component  
324 explains 24.7% of variance. **C**, Relative proportion of cardiolipins in exposed animals versus control.  
325 Error bars in **C** represent mean  $\pm$  s.e.m. t-test; \*\*P < 0.01.


326

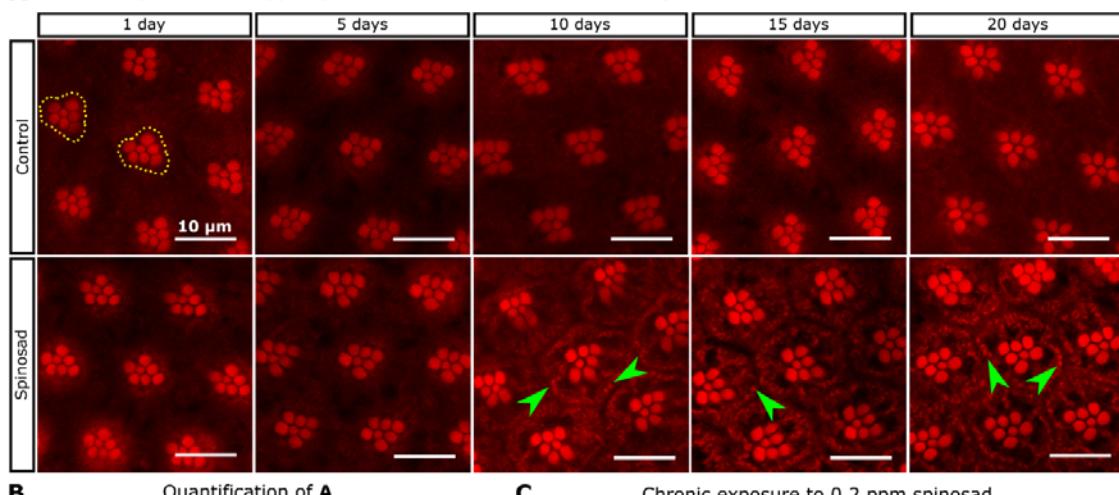
327

328 **Chronic low exposure to spinosad causes neurodegeneration and progressive loss of vision**

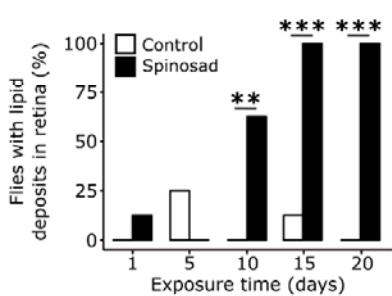
329 Next, we investigated the effects of chronic exposure to spinosad in adults. A dose of 0.2 ppm  
330 spinosad kills 50% of adult female flies within 25 days (**Figure 7A**). Two different behavioural assays  
331 were initially assessed: bang sensitivity and climbing. Exposure to 0.2 ppm spinosad for 10 and 20  
332 days increased the bang sensitivity phenotype that has been associated with perturbations in synaptic  
333 transmission (Saras and Tanouye, 2016) that can arise from various defects including defective  
334 channel localization, neuronal wiring and mitochondrial metabolism (Fergestad et al., 2006) (**Figure**  
335 **7B**). This assay measures the time it takes for flies to recover to a standing position following  
336 mechanical shock induced by vortexing the flies. Exposed flies also performed poorly in climbing  
337 assays, a phenotype which is often linked to neurodegeneration (McGurk et al., 2015). Indeed, 16%,  
338 73% and 84% of flies failed to climb after 1, 10 and 20 days of exposure, respectively (**Figure 7C**).  
339 These data suggest that low doses of spinosad induce neurodegenerative phenotypes.

340

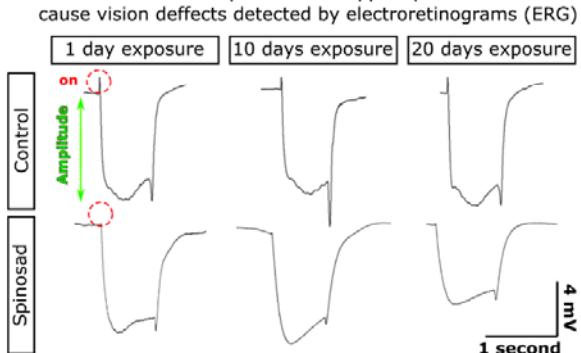



341

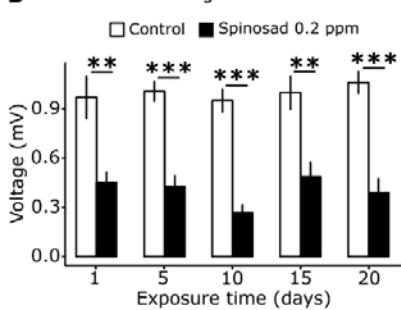
342 **Figure 7. Chronic exposure to spinosad affects behavior.** **A**, Determination of a chronic exposure  
343 dose that kills 50% of adults within 25 days. Females adults (2-5 days old) were exposed to different  
344 concentrations of spinosad for 25 days ( $n = 25$  flies/ replicate; 4 replicates/ treatment). The dose of  
345 0.2 ppm was selected for assessing the impacts of adult chronic exposures. Shaded areas represent  
346 95% confidence interval (Kaplan-Meier method and the Log-rank Mantel-Cox test). **B**, Chronic  
347 exposure to 0.2 ppm spinosad increases bang sensitivity. Bang sensitivity assay of adults after 1, 10  
348 and 20 days of exposure. Groups of 5 flies were vortexed in a clear vial for 10 seconds at maximum  
349 speed and the recovery time (time regain normal standing posture) for each fly was recorded ( $n = 100$   
350 flies/time point/ treatment). **C**, Chronic exposure to 0.2 ppm spinosad reduces climbing ability.  
351 Percentage of adult flies that failed to climb after 1, 10 and 20 days of exposure ( $n = 100$  flies/ time  
352 point/ treatment). **B** and **C**, Wilcoxon test; \*\* $P < 0.01$ ; \*\*\* $P < 0.001$ .


353 The retina of adult female flies chronically exposed to 0.2 ppm spinosad were examined for evidence  
354 of neurodegeneration, such as the accumulation of LD in glial cells based on Nile Red staining (Liu et  
355 al., 2015). Nile Red positive accumulations, likely to represent small LD, were observed decorating  
356 the plasma membrane of photoreceptor cells (**Figure 8A, B**). Even though nAChR *Dα6* is not  
357 expressed in the retina, it is widely expressed in the adult brain, including the lamina, tissue adjacent  
358 to the retina where the photoreceptors synapse (**Figure 8 – figure supplement 1**). Indeed, several  
359 laminar neurons synapse with the photoreceptors. The accumulation of LD in neurons suggest that  
360 the postsynaptic cells that express D6 somehow affect lipid production in PR.

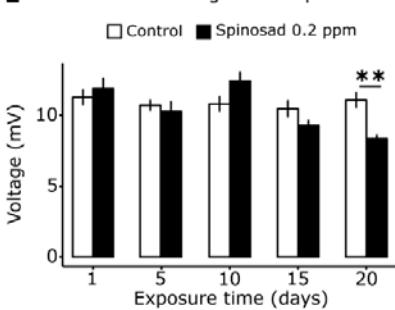
361 To quantify possible impacts on visual function, electroretinograms (ERGs) were performed at regular  
362 intervals over the 20 days of exposure (**Figure 8C-E**). ERG recordings measure impulses induced by  
363 light. The on-transient is indicative of synaptic transmission between photoreceptor neurons (PR) and  
364 postsynaptic cells, whilst the amplitude measures the phototransduction cascade (Wang and Montell,  
365 2007). A large reduction in the on-transient was observed from day 1 of exposure, whereas the  
366 amplitude was only significantly impacted after 20 days of exposure. The reduction in the on-transient  
367 is evidence of a rapid loss of synaptic transmission in laminar neurons (Wang and Montell, 2007) and  
368 hence impaired vision after just one day of exposure.


**A** Chronic exposure to 0.2 ppm spinosad causes the accumulation of lipids in retina




**B** Quantification of A




**C** Chronic exposure to 0.2 ppm spinosad cause vision defects detected by electroretinograms (ERG)



**D** Electretinogram - on transient



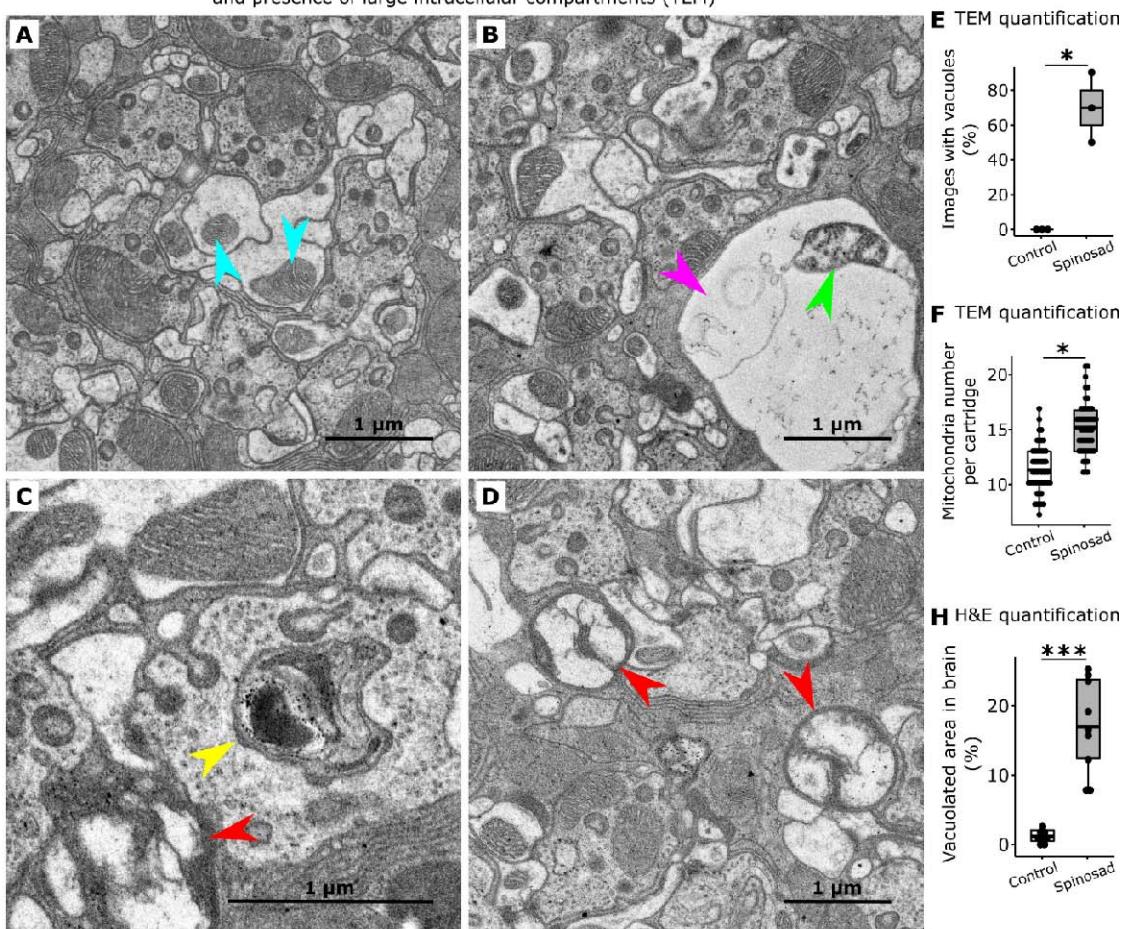
**E** Electretinogram - amplitude



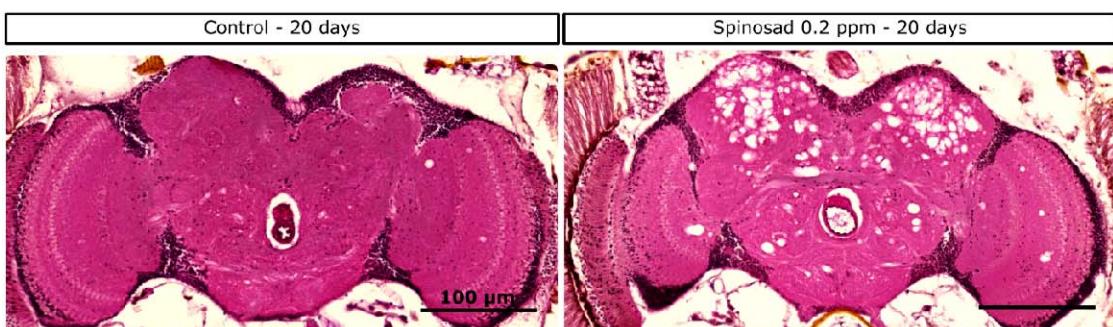
369

370 **Figure 8. Chronic exposure to spinosad causes loss of vision. A**, Clusters of rhabdomeres in the  
371 retina. In day 1 – control, two clusters of rhabdomeres are delimited with yellow dotted-lines. A diffuse  
372 lipid accumulation is observed from day 10 onwards. Nile red staining. 600 x magnification. **B**,  
373 Percentage of animals that shows lipid deposits in the retina (n = 8 flies/treatment/time point). **C**,  
374 Electretinograms (ERGs) of animals exposed to 0.2 ppm spinosad for 1, 10 and 20 days. Red  
375 dotted circles indicate the on-transient signal and green arrow indicates the amplitude, (n = 8 to 10  
376 adult flies/time point/treatment). **D**, On-transient signal of ERGs after days 1, 5, 10, 15 and 20 of  
377 exposure to 0.2 ppm spinosad. **E**, Amplitude of ERGs after days 1, 5, 10, 15 and 20 of exposure to  
378 0.2 ppm spinosad. Microscopy images obtained in Leica SP5 Laser Scanning Confocal Microscope. t-  
379 test; \*\*P < 0.01; \*\*\*P < 0.001.

380 To investigate the ultrastructure of the PR synapses we used Transmission Electron Microscopy.  
381 Severe morphological alterations were detected in transverse sections of the lamina of flies exposed  
382 for 20 days (**Figure 9A-F**). Vacuoles of photoreceptor terminals or postsynaptic terminals of  
383 synapsing neurons were observed in the lamina cartridges (**Figure 9B**). On average 70% of images  
384 showed the presence of vacuoles in lamina cartridges (**Figure 9E**). Large intracellular compartments  
385 were also observed in the dendrites of the postsynaptic neurons in the lamina (**Figure 9B-D**). These


386 do not correspond to normal structures found in healthy lamina (**Figure 9A**). The lamina of exposed  
387 flies also showed a mean 34% increase in the number of mitochondria (**Figure 9F**), many of which  
388 appear defective (**Figure 9B**). In examining the visual system of a *Dα6* KO mutants reared without  
389 spinosad, mild impacts were identified in ERG amplitude but a very significant reduction in on-  
390 transient was observed, consistent with a requirement for *Dα6* in postsynaptic cells of the  
391 photoreceptors. No morphological alterations were detected in the lamina by TEM (**Figure 9 – figure**  
392 **supplement 1**).

393 Lastly, Hematoxylin & Eosin stain (H&E) of adult flies painted a picture of the neurodegeneration  
394 caused outside the visual system by chronic low dose exposure to spinosad. 20 days of exposure  
395 caused numerous vacuoles in the central brain (**Figure 9G, H**). On average, 17% of the total central  
396 brain area was consumed by vacuoles in exposed flies.


397

398

Chronic exposure to spinosad (0.2 ppm - 20 days) causes vacuolation of photoreceptor terminals and presence of large intracellular compartments (TEM)



**G** Chronic exposure to spinosad (0.2 ppm - 20 days) causes vacuolation of the adult brain (H&E staining)



399

400 **Figure 9. Chronic exposure to spinosad causes neurodegeneration.** A, Transmission electron  
401 microscopy (TEM) of the lamina of a control animal showing a regular cartridge, blue arrowheads  
402 indicate normal mitochondria. B-D, TEM of lamina of flies exposed to 0.2 ppm spinosad for 20 days.  
403 B, Pink arrowhead indicates vacuole and green arrowhead indicates a defective mitochondrion. C,  
404 Yellow arrowhead indicates an enlarged digestive vacuole inside a photoreceptor terminal. D, Red  
405 arrowheads indicate the presence of large unidentified intracellular compartments. E, Percentage of  
406 images showing vacuoles in lamina cartridges (10 images/fly; 3 flies/ treatment). F, Number of  
407 mitochondria per cartridge (n = 3 flies/group; 16 cartridges/fly). G, Flies exposed to 0.2 ppm spinosad  
408 for 20 days show vacuolation of the central brain. Brain frontal sections stained with hematoxylin and  
409 eosin (H&E). H, Quantification of neurodegeneration in terms of percentage of brain area vacuolated  
410 (n = 3 flies/treatment). t-test; \*P < 0.05; \*\*\*P < 0.001.

411 **Discussion**

412

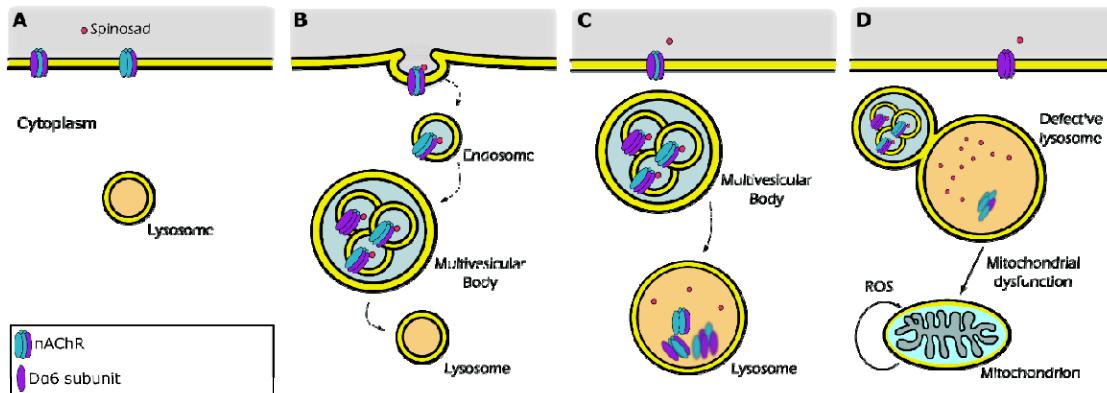
413 **Spinosad antagonizes neuronal activity**

414

415 In this study we provide evidence of the mechanism and consequences of exposure to low doses of  
416 spinosad. This organic insecticide leads to a lysosomal dysfunction associated with a mitochondrial  
417 dysfunction, elevated levels of ROS, lipid mobilization defects and neurodegeneration. Spinosad has  
418 been characterized as an allosteric modulator of the activity of its primary target, the nAChR – *Dα6*  
419 subunit, causing fast neuron over-excitation (Salgado, 1998). Here, the capacity of spinosad to  
420 interact with its target nAChRs to stimulate the flux of  $\text{Ca}^{2+}$  into neurons was quantified. The results  
421 obtained with the GCaMP assay showed that spinosad caused no detectable increase or decrease in  
422  $\text{Ca}^{2+}$  flux into *Dα6* expressing neurons, but it reduced the cholinergic response (**Figure 1**). Given that  
423 spinosad binds to the C terminal region of the protein (Crouse et al., 2018; Puinean et al., 2013;  
424 Somers et al., 2015), these findings are consistent with a non-competitive antagonist mode of action  
425 for spinosad on nAChRs. That *Dα6* loss of function mutants are viable (Perry et al., 2007) creates a  
426 conundrum that can be resolved if a significant component of spinosad's toxicity is due to molecular  
427 events that play out elsewhere in the cell. Blocked neuronal receptors can be recycled from the  
428 plasma membrane through endocytosis (Saheki and De Camilli, 2012). Our data indicate that  
429 spinosad exposure leads to the removal of *Dα6* nAChRs from neuronal membranes (Nguyen et al.,  
430 2021) and localization to enlarged lysosomes, resulting in lysosomal expansion (**Figure 2C**) and  
431 lysosomal dysfunction.

432 **Spinosad causes lysosomal storage diseases - like phenotype**

433


434 The following observations suggest that spinosad induces lysosomal dysfunction. LysoTracker  
435 staining reveals a very significant accumulation of enlarged lysosomes in the brain in response to  
436 spinosad, but not in the presence of imidacloprid, another insecticide which also binds to nAChRs  
437 (**Figure 2 – figure supplement 1**). Importantly, *Dα6* knockout flies show no accumulation of  
438 LysoTracker staining, clearly showing that the lysosomal lesions rely on the presence of *Dα6* and  
439 spinosad (**Figure 2 – figure supplement 1**). Whether spinosad molecules are ferried to lysosomes  
440 along with *Dα6* subunits and accumulate into these organelles remains to be clarified. However, the  
441 increased severity in the lysosomal phenotype after exposure ceases (**Figure 2A, B**) is consistent  
442 with the poisoning of these organelles. Lysosomes become enlarged as they accumulate undigested  
443 material, which can lead to recycling problems for neurons (Darios and Stevanin, 2020). If spinosad  
444 remains bound to the receptor and is ferried into the lysosomes it may contribute to a lysosomal  
445 dysfunction akin to Lysosomal Storage Disease (LSD) (Darios and Stevanin, 2020). To date there is  
446 little published evidence of spinosad metabolites in insects. Spinosad is a complex polyketide  
447 macrolactone that may not be hydrolysed by lysosome acidic enzymes and could accumulate in the  
448 lumen of these organelles.

449 Our hypothesis for the mode of action of spinosad is illustrated in **Figure 10**. Spinosad exposure  
450 shows a delayed effect on larval movement when compared to imidacloprid (Denecke et al., 2015;  
451 Martelli et al., 2020). We attribute this to the time taken for a threshold level of lysosomal damage to  
452 accumulate. Imidacloprid is readily metabolized and the metabolites are excreted (Fusetto et al.,  
453 2017), leaving little lingering damage. In contrast, following a 2hr exposure to 2.5ppm spinosad, 3<sup>rd</sup>  
454 instar larvae show a developmental arrest and die after several days (**Figure 1**). The LSD-like  
455 dysfunction is also likely the underlying cause for the severe vacuolation of adult central brain under  
456 spinosad chronic exposure. Recycling defects in neuronal cells caused by LSD impair cell function,  
457 ultimately triggering neurodegeneration (Darios and Stevanin, 2020). Nguyen et al. (2021) recently  
458 showed that flies treated with a proteasome inhibitor drug, bortezomib, present with a reduced loss of  
459 *Dα6* from neuronal membranes when exposed to spinosad. That suggests that the proteasome  
460 degradation pathway could also be involved in recycling spinosad-blocked *Dα6* subunits. Receptors  
461 marked for proteasome degradation can end up in lysosomes as these pathways engage in crosstalk  
462 (Korolchuk et al., 2010).

463

464

465



466  
467  
468 **Figure 10. Proposed mechanism for internalization of spinosad after binding to the Da6 nAChR**  
469 **target.** **A**, Spinosad binds to Da6 subunit of nAChRs in the neuronal cell membranes. **B**, The binding  
470 of spinosad leads to Da6 nAChR blockage, endocytosis and trafficking to lysosome. **C**, Spinosad  
471 accumulates in lysosomes, while receptors and other membrane components are digested. **D**,  
472 Enlarged lysosomes due to accumulation of undigested material do not function properly leading to  
473 cellular defects which may include mitochondrial dysfunction, increased mitochondrial ROS  
474 production and eventually cell vacuolation and neurodegeneration.  
475

#### 476 **Spinosad triggers oxidative stress**

477

478 Extensive evidence connects lysosomal disorders with mitochondrial dysfunction (Plotegher and  
479 Duchen, 2017; Stepien et al., 2020; Yambire et al., 2018). Mitochondrial dysfunction is widespread in  
480 LSD and is involved in its pathophysiology. Although mitochondrial dysfunction in LSD seems to have  
481 a multifactorial origin, the exact mechanisms remain unclear. Lysosomal disorders may lead to  
482 cytoplasmic accumulation of toxic macromolecules, impaired degradation of damaged mitochondria  
483 and dysregulation of intracellular  $Ca^{2+}$  homeostasis, resulting in increased ROS generation and  
484 reduced ATP levels (Plotegher and Duchen, 2017). The severe lysosomal dysfunction observed here  
485 is the most likely cause for the mitochondrial defects and increased ROS generation triggered by  
486 spinosad exposure.

487 The evidence for oxidative stress produced during spinosad exposure comes from the accumulation  
488 of superoxide, increased mitochondrial turnover, reduced activity of the ROS sensitive enzyme m-  
489 aconitase and reduced ATP levels (Figure 3), accumulation of LD in fat bodies (Figure 4), and  
490 severe reduction of cardiolipin levels that typically associated with defects in the electron transport  
491 chain and increased ROS production (Quintana et al., 2010) (Figure 6). Increasing levels of ROS in  
492 the larval brain using RNAi has been shown to disturb mitochondrial function triggering changes in  
493 lipid stores in metabolic tissues (Martelli et al., 2020). Oxidative stress promotes redistribution of  
494 membrane lipids into LD, reducing their susceptibility to lipid peroxidation (Bailey et al., 2015). Here,  
495 increases in lipid stores were observed in the fat body, with a reduction in the numbers of large LD  
496 and accumulation of small LD, a reduction in LD in the Malpighian tubules and midgut and changes in  
497 lipid levels in the hemolymph (Figure (Figure 4)). Our lipidome analysis revealed reduction of PE and  
498 PC levels (Figure 6), consistent with impaired membrane fluidity and altered LD dynamics (Dawaliby  
499 et al., 2016; Guan et al., 2013; Krahmer et al., 2011).

500 The use of the antioxidant NACA reduces the accumulation of LD in the fat body linking this  
501 phenotype to oxidative stress (Figure 4). NACA also diminished spinosad toxicity by reducing the  
502 impact on larval movement and survival (Figure 4). *Da6 knockout* mutants exposed to spinosad show  
503 no accumulation of LD in the fat body or change of lipid levels in hemolymph indicating that these  
504 phenotypes are due to the spinosad:Da6 interaction (Figure 5). Exposed to 7.7 ppb (parts per billion)  
505 for 24 hr was shown to cause the vacuolation of epithelial cells of the midgut and Malpighian tubules  
506 of honeybees (*Apis mellifera*) (Lopes et al., 2018). It is not clear whether this is due to the  
507 spinosad:Da6 interaction precipitating elevated levels of ROS.

508  
509  
510 A striking similarity between impacts caused in metabolic tissues by spinosad and imidacloprid  
511 (Martelli et al., 2020) is observed, although the impacts induced by spinosad are more severe. In the

513 case of imidacloprid, these perturbations were shown to be caused by an oxidative stress signal  
514 initiated by an increase  $\text{Ca}^{2+}$  influx into neurons caused by the insecticide binding to its nAChR targets  
515 (Martelli et al., 2020). It was proposed that peroxidised lipids generated in the brain and carried in  
516 hemolymph precipitate oxidative damage to other tissues (Ioannou et al., 2019; Valko et al., 2007).  
517 Concomitantly, *Da6* has been associated with the response to oxidative stress. *Da6* mutants are more  
518 susceptible to oxidative damage (Weber et al., 2012). Studies on genes of the mammalian  $\alpha 7$  family,  
519 which includes *Drosophila* *Da6* gene, have been shown to play a role in neuroprotection by inducing  
520 the antioxidant system through Jak2/STAT3 pathway (Egea et al., 2015). Therefore, an absence of  
521 *Da6* subunits from neuronal membranes under conditions of spinosad exposure may increase  
522 susceptibility to oxidative damage.  
523

524 Lysosomal dysfunction provides a parsimonious explanation as the cause for the mitochondrial  
525 impairment and ROS generated by spinosad exposure (Deus et al., 2020; Plotegher and Duchen,  
526 2017; Stepien et al., 2020; Yambire et al., 2018) (**Figure 10**). But the accumulation of superoxide was  
527 observed earlier (1 hr) than the lysosomal defects (2 hr), although levels of *Da6* protein were shown  
528 to have decreased significantly after 30 min (**Figure 2 – figure supplement 2**). This could be  
529 explained by different capacities of DHE and Lysotracker to detect thresholds of damage that have a  
530 significant biological impact. However, it also leaves open the possibility that the generation of ROS is  
531 due to another mechanism that probably relates to the severe lowering of cardiolipins in mitochondrial  
532 membranes.  
533

### 534 **Spinosad causes neurodegeneration and affects behavior in adults**

535 Both LSD (Darios and Stevanin, 2020) and oxidative stress (Liu et al., 2017; Martelli et al., 2020) can  
536 cause neurodegeneration. The evidence for spinosad-induced neurodegeneration comes from the  
537 reduced climbing ability caused by chronic low dose exposures (McGurk et al., 2015; **Figure 7**),  
538 blindness (**Figure 8**), vacuolation of the lamina cartridges and severe vacuolation of adult CNS  
539 (**Figure 9**). Electroretinograms reveal that both *Da6 knockout* mutants non-exposed and wild type  
540 flies chronically exposed to 0.2 ppm spinosad have reduced on-transients and amplitudes in response  
541 to light flashes (**Figure 8; Figure 9 – figure supplement 1**). *Da6 knockout* mutants, however, show  
542 no vacuolation of lamina (**Figure 9 – figure supplement 1**). Given that *Da6 knockout* mutants are  
543 viable, highly resistant to spinosad and show no conspicuous behavioral defects, it becomes clear  
544 that the majority of the impacts caused by spinosad are not initiated by the absence of *Da6* from  
545 neuronal membranes. The astonishing level of neurodegeneration observed in the central brain  
546 (**Figure 9G, H**) seems to be largely contained to the functional regions of the optic tubercle,  
547 mushroom body and superior lateral and medial protocerebrum. These regions are important centres  
548 for vision and memory, and learning and cognition in flies (Schürmann, 2016). Neurodegeneration in  
549 these regions indicate that a wide range of behaviours would be critically compromised in exposed  
550 flies.  
551

552 *Da6* nAChRs are not known to be expressed in photoreceptor cells or glial cells, but their expression  
553 in lamina (**Figure 8 – figure supplement 1**) supports their presence in post-synaptic cells. The  
554 accumulation of LD in PR after spinosad exposure (**Figure 8A**) suggests the existence of cell non-  
555 autonomous mechanisms initiated by spinosad in post-synaptic cells. Liu et al. (2017) showed that  
556 ROS induce the formation of lipids in neurons that are transported to glia, where they form LD. Here,  
557 a ROS signal generated by spinosad exposure in post-synaptic cells might be carried to PR, affecting  
558 lipid metabolism, and triggering LD accumulation. This hypothesis needs further investigation.  
559

### 560 **Rational control of insecticide usage**

561 In the public domain, organic insecticides are often assumed to be safer than synthetic ones for the  
562 environment and non-target insect species. The synthetic insecticide, imidacloprid, has faced intense  
563 scrutiny and bans because of its impact on the behavior of bees and the potential for this to contribute  
564 to the colony collapse phenomenon (Wu-Smart and Spivak, 2016). No other insecticide has been so  
565 comprehensively investigated, so it is not yet clear whether other chemicals pose similar risks. This  
566 study has revealed disturbing impacts of low doses of an organic insecticide, spinosad. Using the  
567 same methods deployed here, imidacloprid had a lower impact in *Drosophila* than spinosad (Martelli  
568 et al., 2020). At the same low acute dose (2.5 ppm for 2 hr), imidacloprid has no impact on larval  
569 survival, while spinosad is lethal. 4 ppm imidacloprid causes blindness and neurodegeneration, but no  
570 brain vacuolation under conditions of chronic exposure with 56% of flies dying in 25 days. 0.2ppm  
571

572 spinosad causes blindness and widespread brain vacuolation with 54% of flies dying in 25 days. That  
573 the nAChR *Dα6* subunit has been shown to be a highly conserved spinosad target across a wide  
574 range of insects (Perry et al., 2015) suggests that low doses of this insecticide may have similar  
575 impacts in other species. The susceptibility of different species to insecticides varies, so the doses  
576 required may differ between them. The protocols used here will be useful in assessing the risk that  
577 spinosad poses to beneficial insects. Given the extent to which spinosad affects mitochondrial  
578 function, lipid metabolism and the brain, this insecticide may compromise the capacity of insects to  
579 survive in natural populations exposed to a variety of stresses including some of those that are being  
580 linked to insect population declines (Cardoso et al., 2020; Sánchez-Bayo and Wyckhuys, 2019).

581  
582 Two clocks are ticking. The global human population is increasing and the amount of arable land  
583 available for food production is decreasing. Thus, the amount of food produced per hectare needs to  
584 increase. Our capacity to produce enough food has been underpinned by the use of insecticides.  
585 Approximately 600,000 tonnes of insecticides are used annually around the world (Aizen et al., 2009;  
586 Klein et al., 2007), but sublethal concentrations found in contaminated environments can affect  
587 behaviour, fitness and development of target and non-target insects (Müller, 2018). Despite their  
588 distinct modes of action, spinosad and imidacloprid produce a similar spectrum of damage (Martelli et  
589 al., 2020). This similarity arises because both insecticides trigger oxidative stress in the brain, albeit  
590 via different mechanisms. Several other insecticide classes such as organochlorines,  
591 organophosphates, carbamates and pyrethroids have all been shown to promote oxidative stress  
592 (Balieira et al., 2018; Karami-Mohajeri and Abdollahi, 2011; Lukaszewicz-Hussain, 2010; Terhzaz et  
593 al., 2015; Wang et al., 2016). Many insect populations are exposed to a continuously changing  
594 cocktail of insecticides (Kerr, 2017; Tosi et al., 2018), most of which are capable of producing  
595 ROS. The cumulative impact of these different insecticides could be significant. Our research  
596 clarifies the mode of action of spinosad, highlighting the perturbations and damage that occur  
597 downstream of the insecticide:receptor interaction. Other chemicals should not be assumed to be  
598 environmentally safe until their low dose biological impacts have been examined in similar detail.

599  
600 **Material and Methods**

601  
602 Fly strains and rearing

603 Armenia<sup>14</sup> (Line 14), an isofemale line derived from Armenia<sup>60</sup> (Drosophila Genomics Resource  
604 Center #103394) (Perry et al., 2008), was used as the susceptible wild type line for all assays except  
605 the following. Expression of nAChR-*Dα6* gene in adult brains: *Dα6* T2A Gal4 (BDSC #76137) was  
606 crossed with UAS-GFP.nls (BDSC #4775). Insecticide impact on mitochondrial turnover: the  
607 MitoTimer line (Gottlieb and Stotland, 2015) was used. GCaMP experiment: UAS-tdTomato-P2A-  
608 GCaMP5G (III) (Daniels et al., 2014; Wong et al., 2014) was crossed with *Dα6* T2A Gal4 (BDSC  
609 #76137). Two mutants for the nAChR-*Dα6* gene, which confers resistance to spinosad (Perry et al  
610 2015) and their background control lines were used to investigate the insecticide mode of action. The  
611 first of these is Line 14 *Dα6* KO strain, a mutant recovered following EMS mutagenesis in the Line 14  
612 genetic background, with no detectable *Dα6* expression (Perry et al., 2015). The second mutant is a  
613 CRISPR knockout of *Dα6* generated in the CantonS genetic background. For experiments aiming to  
614 investigate the trafficking of *Dα6* nAChR in brains, UAS *Dα6* CFP tagged strain built in Line 14 *Dα6*  
615 KO background (obtained by CRISPR) was crossed to a Gal4-L driver in Line 14 *Dα6* KO background  
616 strain. For experiments involving larvae, flies were reared on standard food media sprinkled with dried  
617 yeast and maintained at 25°C. For experiments involving adults, flies were reared in molasses food  
618 and maintained at 25°C. In all experiments involving adult flies only females were used to maintain  
619 consistency.

620 Insecticide dilution and exposure

621 The pure version of spinosad (Sigma Aldrich®) was used in all assays. The chemical was diluted to  
622 create 1000 ppm stocks solution, using dimethyl sulfoxide (DMSO), and was kept on freezer (-20°C).  
623 Before exposures, 5x stocks were generated for the dose being used by diluting the 1000 ppm stock  
624 in 5% Analytical Reagent Sucrose (Chem Supply) solution (or equivalent dose of DMSO for controls).

625

626

627 Antioxidant treatment

628 The antioxidant, N-acetylcysteine amide (NACA) was used as previously described (Martelli et al.,  
629 2020). Briefly, larvae were treated with 300 µg/mL of NACA in 5% Analytical Reagent Sucrose (Chem  
630 Supply) solution for 5 hr prior to exposure to spinosad exposures.

631 Fly medias used

| <b>Standard Food (1L)</b> |        | <b>Apple Juice Plates (1L)</b> |        | <b>Molasses Food (1L)</b> |        |
|---------------------------|--------|--------------------------------|--------|---------------------------|--------|
| <i>H<sub>2</sub>O</i>     | 987 mL | <i>H<sub>2</sub>O</i>          | 720 mL | <i>H<sub>2</sub>O</i>     | 800 mL |
| <i>Potassium Tartrate</i> | 8.0 g  | <i>Agar</i>                    | 20 g   | <i>Molasses</i>           | 160 mL |
| <i>Calcium Chloride</i>   | 0.5 g  | <i>Apple Juice</i>             | 200 mL | <i>Maize meal</i>         | 60 g   |
| <i>Agar</i>               | 5.0 g  | <i>Brewer's Yeast</i>          | 7.0 g  | <i>Dried active yeast</i> | 15 g   |
| <i>yeast</i>              | 12 g   | <i>Glucose</i>                 | 52 g   | <i>Agar</i>               | 6.0 g  |
| <i>Glucose</i>            | 53 g   | <i>Sucrose</i>                 | 26 g   | <i>Acid mix</i>           | 7.5 mL |
| <i>Sucrose</i>            | 27 g   | <i>Tegosept</i>                | 6.0 mL | <i>Tegosept</i>           | 5.0 mL |
| <i>Semolina</i>           | 67 g   |                                |        |                           |        |
| <i>Acid Mix</i>           | 12 mL  |                                |        |                           |        |
| <i>Tegosept</i>           | 15 mL  |                                |        |                           |        |

632

633 Larvae movement assay

634 Larvae movement in response to insecticide exposure was quantified by Wiggle Index Assay, as  
635 described by Denecke et al. (2015). 25 third instar larvae were used for a single biological replicate  
636 and four replicates were tested for each exposure condition. Undosed larvae in NUNC cell plates  
637 (Thermo-Scientific) in 5% Analytical Reagent Sucrose (Chem Supply) solution were filmed for 30  
638 seconds and then 30 min, 1 hr, 1 hr and 30 min and 2 hr after spinosad exposure. The motility at each  
639 time-point is expressed in terms of Relative Movement Ratio (RMR), normalized to motility prior to  
640 spinosad addition.

641 Larvae viability and adult survival tests

642 For all tests 5 replicates of 20 individuals (100 individuals) per condition were used. In assessing third  
643 instar larval viability and metamorphosis following insecticide exposure, individuals were rinsed three  
644 times with 5% w/v sucrose (Chem Supply) and placed in vials on insecticide-free food medium.  
645 Survival probability of larvae exposed to 2.5 ppm spinosad for 2 hr was analysed using Kaplan-Meier  
646 method and the Log-rank Mantel-Cox test. Correct percentage survival of larvae exposed to 0.5 ppm  
647 spinosad for 2 hr, or 0.1 ppm spinosad for 4 hr was analysed using Abbotts' correction. To examine  
648 the survival of adult flies chronically exposed to 0.2 ppm spinosad, 5 replicates of 20 females (3-5  
649 days old) were exposed for 25 days. The same number of flies was used for the control group.  
650 Statistical analysis was based on the Kaplan-Meier method and data were compared by the Log-rank  
651 Mantel-Cox test.

652 GCaMP assay

653 Cytosolic [Ca<sup>2+</sup>] in *Drosophila* primary neurons was measured as previously described (Martelli et al.,  
654 2020). Briefly, four brains from third instar larvae were dissected to generate ideal number of cells for  
655 3 plates. Cells were allowed to develop in culture plates (35 mm glass-bottom dishes with 10 mm  
656 bottom well (Cellvis), coated with concanavalin A (Sigma)) with Schneider's media for 4 days with the  
657 media refreshed daily. Recording was done using a Nikon A1 confocal microscope, 40x air objective,  
658 sequential 488nm and 561nm excitation. Measurements were taken at 3 second intervals. Cytosolic  
659 Ca<sup>2+</sup> levels were reported as GCaMP5G signal intensity divided by tdTomato signal intensity. Signal  
660 was recorded for 60 sec before the addition of 2.5 ppm or 25 ppm spinosad to the bath solution. 5 min  
661 after that, both insecticide and control groups were stimulated by the cholinergic agonist carbachol  
662 (100 µM) added to the bath solution, and finally the SERCA inhibitor thapsigargin (5 µM) was added

663 after a further 1 min. At least 50 neuronal cells were evaluated per treatment. The data were analysed  
664 using a Student's t-test.

665 Evaluation of mitochondrial turnover

666 Mitochondrial turnover was assessed as previously described (Martelli et al., 2020). Larvae of the  
667 MitoTimer line were exposed to 2.5 ppm spinosad for 2 hr. Control larvae were exposed to 2.5 ppm  
668 DMSO. Midguts and brains were dissected in PBS and fixed in 4% PFA (Electron Microscopy  
669 Science) and mounted in Vectashield (Vector Laboratories). 20 anterior midguts and 20 pairs of  
670 optical lobes were analysed for each condition. Confocal microscopy images were obtained in Leica  
671 SP5 Laser Scanning Confocal Microscope at 200x magnification for both green (excitation/emission  
672 488/518 nm) and red (excitation/emission 543/572 nm) signals. Three independent measurements  
673 along the z stack were analysed for each sample. Fluorescence intensity was quantified on ImageJ  
674 software and data were analysed using a Student's t-test.

675 Systemic mitochondrial aconitase activity

676 Relative mitochondrial aconitase activity was quantified using the colorimetric Aconitase Activity  
677 Assay Kit from Sigma (#MAK051), following manufacturer's instructions as previously described  
678 (Martelli et al., 2020). A total of six biological replicates (25 whole larvae per replicate) were exposed  
679 to 2.5 ppm spinosad for 2 hr, whilst six control replicates (25 whole larvae per replicate) were exposed  
680 to DMSO for 2 hr. Absorbance was measured at 450 nm in a FLUOstar OPTIMA (BMG Labtech)  
681 microplate reader using the software OPTIMA and normalized to sample weight. The data were  
682 analysed using a Student's t-test.

683 Systemic ATP levels

684 Relative ATP levels were quantified fluorometrically using an ATP assay kit (Abcam, #83355),  
685 following manufacturer instructions as previously described (Martelli et al., 2020). A total of six  
686 biological replicates (20 larvae per replicate) were exposed to 2.5 ppm spinosad for 2 hr, whilst six  
687 control replicates (20 larvae per replicate) were exposed to DMSO for 2 hr. Fluorescence was  
688 measured at excitation/emission = 535/587 nm in FLUOstar OPTIMA (BMG Labtech) microplate  
689 reader using the software OPTIMA and normalized to sample weight. The data were analysed using a  
690 Student's t-test.

691 Measurement of superoxide ( $O_2^-$ ) levels

692 Levels of superoxide were assessed dihydroethidium staining (DHE – Sigma-Aldrich), as described in  
693 (Owusu-Ansah et al. 2008). Briefly, larvae were dissected in Schneider's media (GIBCO) and  
694 incubated with DHE at room temperature on an orbital shaker for 7 minutes in dark. Tissues were  
695 fixed in 8% PFA (Electron Microscopy Science) for 5 minutes at room temperature on an orbital  
696 shaker in dark. Tissues were then rinsed with PBS (Ambion) and mounted in Vectashield (Vector  
697 Laboratories). Confocal microscopy images were obtained in a Leica SP5 Laser Scanning Confocal  
698 Microscope at 200x magnification (excitation/emission 518/605 nm). Third instar larvae were exposed  
699 to 2.5 ppm spinosad for 1 or 2 hr. Controls were exposed to equivalent doses of DMSO. A total of 15  
700 brains and 15 midguts were assessed for each condition. Three independent measurements along  
701 the z stack were analysed for each sample. Fluorescence intensity was quantified on ImageJ software  
702 and data were analysed using a Student's t-test.

703 Evaluation of lipid environment of metabolic tissues in larvae

704 Fat bodies, midguts and Malpighian tubules were dissected in PBS (Ambion) and subjected to lipid  
705 staining with Nile Red N3013 Technical grade (Sigma-Aldrich) as previously described (Martelli et al.,  
706 2020). Three biological replicates were performed for each exposure condition, each replicate  
707 consisting of a single tissue from a single larva. Tissues were fixed in 4% PFA (Electron Microscopy  
708 Science) and stained with 0.5  $\mu$ g/mL Nile Red/PBS for 20 minutes in dark. Slides were mounted in  
709 Vectashield (Vector Laboratories) and analysed using a Leica SP5 Laser Scanning Confocal  
710 Microscope at 400x magnification. Red emission was observed with 540  $\pm$  12.5 nm excitation and 590  
711 LP nm emission filters. Images were analysed using ImageJ software. For fat bodies, the number,  
712 size and percentage of area occupied by lipid droplets was measure in 5 different random sections of

713 2500  $\mu\text{m}^2$  per sample (three samples per group). For Malpighian tubules number of lipid droplets was  
714 measure in five different random sections of 900  $\mu\text{m}^2$  per sample (three samples per group). For  
715 midgut samples, lipid droplets were not quantified, rather zones containing lipid droplets were  
716 identified by microscopy. The data were analysed using Student's t-test.

717 Lipid quantification in larvae hemolymph

718 Extracted hemolymph lipids were measured using the sulfo-phospho-vanillin method (Cheng et al.  
719 2011) as previously described (Martelli et al., 2020). 30 third instar larvae were used for a single  
720 biological replicate and 7 replicate samples were prepared for each exposure condition. Absorbance  
721 was measured at 540 nm in a CLARIOstar® (BMG LABTECH) microplate reader using MARS Data  
722 Analysis Software (version 3.10 R3). Cholesterol (Sigma-Aldrich) was used for the preparation of  
723 standard curves. The data were analysed using a Student's t-test.

724 Lipid Extraction and Analysis Using Liquid Chromatography-Mass Spectrometry.

725 Lipidomic analyses of whole larvae exposed for 2 h to 2.5 ppm spinosad were performed in biological  
726 triplicate and analyzed by electrospray ionization-mass spectrometry (ESI-MS) using an Agilent Triple  
727 Quad 6410 as previously described (Martelli et al., 2020). Briefly, samples were transferred to  
728 CryoMill tubes treated with 0.001% BHT (butylated hydroxytoluene) and frozen in liquid nitrogen.  
729 Samples were subsequently homogenized using a CryoMill (Bertin Technologies) at -10 °C. Then  
730 400  $\mu\text{L}$  of chloroform was added to each tube and samples were incubated for 15 min at room  
731 temperature in a shaker at 1,200 rpm. Samples were then centrifuged for 15 min, at 13,000 rpm at  
732 room temperature; the supernatants were removed and transferred to new 1.5-mL microtubes. For a  
733 second wash, 100  $\mu\text{L}$  of methanol (0.001% BHT and 0.01 g/mL 13C5 valine) and 200  $\mu\text{L}$  of  
734 chloroform were added to CryoMill tubes, followed by vortexing and centrifugation as before.  
735 Supernatants were transferred to the previous 1.5-mL microtubes. A total of 300  $\mu\text{L}$  of 0.1 M HCl was  
736 added to pooled supernatants and microtubes were then vortexed and centrifuged (15 min, room  
737 temperature, 13,000 rpm). Upper phases (lipid phases) were collected and transferred to clean 1.5-  
738 mL microtubes, as well as the lower phases (polar phases). All samples were kept at -20 °C until  
739 analysis. For liquid chromatography-mass spectrometry (LC-MS) analysis, microtubes were shaken  
740 for 30 min at 30 °C, then centrifuged at 100 rpm for 10 min at room temperature after which the  
741 supernatants were transferred to LC vials. Extracts were used for lipid analysis. For statistical analysis  
742 the concentration of lipid compounds was initially normalized to sample weight. Principal Components  
743 Analysis (PCA) was calculated to verify the contribution of each lipid compound in the variance of  
744 each treatment. PCA was calculated using the first two principal component axes. To discriminate the  
745 impacts of spinosad on the accumulation of specific lipid compounds we performed a One-way  
746 ANOVA test with post-hoc Tukey's HSD ( $p < 0.05$ ).

747 Investigating impacts on lysosomes

748 To investigate spinosad impacts on lysosomes the Lysotracker staining was used on larval brains  
749 dissected from 3<sup>rd</sup> instars. Larvae were exposed to 2.5 ppm spinosad for 1 hr or 2 hr, in the last case  
750 brains were assessed immediately after the 2 hr exposure or 6 hr after that. Larvae were dissected in  
751 PBS and tissue immediately transferred to PBS solution containing Lysotracker Red DND-99  
752 (1:10,000) (Invitrogen) for 7 minutes. Tissues were then rinsed 3 times in PBS and slides were  
753 mounted for immediate microscopy 400x magnification (DsRed filter). A total of 7 brain samples were  
754 assessed per group, with 3 random different sections of 900  $\mu\text{m}^2$  accounted per brain. To investigate  
755 the hypothesis of D $\alpha$ 6 nAChRs being endocytosed and digested by lysosomes after exposure to 2.5  
756 ppm spinosad for 2 hr, brains from larvae obtained by crossing UAS D $\alpha$ 6 CFP tagged in Line 14 D $\alpha$ 6  
757 KO strain to Gal4-L driver in Line 14 D $\alpha$ 6 KO strain were also subjected to Lysotracker staining.  
758 Images were analysed using the software ImageJ and data were analysed using Student's t-test.

759 Electrophysiology of the retina

760 Amplitudes and on transients were assessed as previously described (Martelli et al., 2020). Briefly,  
761 adult flies were anesthetized and glued to a glass slide. A reference electrode was inserted in the  
762 back of the fly head and the recording electrode was placed on the corneal surface of the eye, both  
763 electrodes were filled with 100 mM NaCl. Flies were maintained in the darkness for at least 5 min  
764 prior to a series of 1 s flashes of white light delivered using a halogen lamp. During screening 8 to 10

765 flies per treatment group were tested. For a given fly, amplitude and on transient measurements were  
766 averaged based on the response to the 3 light flashes. Responses were recorded and analysed using  
767 AxoScope 8.1. The data were analysed using Student's t-test.

768 Nile red staining of adult retinas

769 For whole mount staining of fly adult retinas, heads were dissected in cold PBS (Ambion) and fixed in  
770 37% formaldehyde overnight. Subsequently, the retinas were dissected and rinsed several times with  
771 1x PBS and incubated for 15 minutes at 1:1000 dilution of PBS with 1 mg/ml Nile Red (Sigma).  
772 Tissues were then rinsed with PBS and immediately mounted with Vectashield (Vector Labs) for  
773 same-day imaging. For checking the effects of chronic exposures 8 retinas from 8 adult female flies  
774 were analysed per condition (imidacloprid 4 ppm and control) per day (after 1, 5, 10, 15 and 20 days  
775 of exposure). Images were obtained with a Leica TCS SP8 (DM600 CS), software LAS X, 600x  
776 magnification, and analysed using ImageJ. The data were analysed using Student's t-test.

777 Expression of Da6 nAChRs in brain

778 The expression pattern of nAChR-Da6 gene in adult brains was assessed in the crossing between Da6  
779 T2A Gal4 (BDSC #76137) and UAS-GFP.nls (BDSC #4775). Adult brains were fixed in 4% PFA  
780 (Electron Microscopy Science) in PBS for 20 minutes at room temperature. PFA was removed and  
781 tissues were washed 3 times in PBS. Samples were mounted in Vectashield (Vector Laboratories).  
782 Images were obtained with a Leica TCS SP8 (DM600 CS), software LAS X, 400x magnification, using  
783 GFP channel. Images were analysed using the software ImageJ.

784 Adult brain histology (Hematoxylin & Eosin staining)

785 Adult fly heads were fixed in 8% glutaraldehyde (EM grade) and embedded in paraffin. Sections (10  
786  $\mu\text{m}$ ) were prepared by a microtome (Leica) and stained with Hematoxylin and Eosin as described  
787 (Chouhan et al., 2016). At least three animals were examined for each group (20 days exposure to  
788 0.2 ppm spinosad plus control group) in terms of percentage of brain area vacuolated. The data were  
789 analysed using Student's t-test.

790 Transmission Electron Microscopy (TEM)

791 Laminas of adult flies chronically exposed to 0.2 ppm spinosad 20 days (controls exposed to  
792 equivalent volume of DMSO) were processed for TEM imaging as described (Luo et al., 2017). TEM  
793 of laminas of 20-day old CantonS and CantonS Da6 KO mutants aged in the absence of spinosad  
794 was also investigated. Samples were processed using a Ted Pella Bio Wave microwave oven with  
795 vacuum attachment. Adult fly heads were dissected at 25 °C in 4 % paraformaldehyde, 2 %  
796 glutaraldehyde, and 0.1 M sodium cacodylate (pH 7.2). Samples were subsequently fixed at 4 °C for  
797 48 hr. 1 % osmium tetroxide was used for secondary fixation with subsequent dehydration in ethanol  
798 and propylene oxide. Samples were then embedded in Embed-812 resin (Electron Microscopy  
799 Science, Hatfield, PA). 50 nm ultra-thin sections were obtained with a Leica UC7 microtome and  
800 collected on Formvar-coated copper grids (Electron Microscopy Science, Hatfield, PA). Specimens  
801 were stained with 1 % uranyl acetate and 2.5 % lead citrate and imaged using a JEOL JEM 1010  
802 transmission electron microscope with an AMT XR-16 mid-mount 16 mega-pixel CCD camera. For  
803 quantification of ultrastructural features, electron micrographs were examined from 3 different animals  
804 per treatment. The data were analysed using Student's t-test.

805 Bang Sensitivity

806 The bang sensitivity phenotype was tested after 1, 10 and 20 days of chronic exposure to 0.2 ppm  
807 spinosad. Flies were vortexed on a VWR vortex at maximum strength for 10 s. The time required for  
808 flies to flip over and regain normal standing posture was then recorded. The data were analysed using  
809 Wilcoxon signed-rank test.

810

811 Climbing assay

812 Climbing phenotype was tested after 1, 10 and 20 days of exposure to 0.2 ppm spinosad. 5 adult  
813 female flies were placed into a clean vial and allowed to rest for 30 min. Vials were tapped against a  
814 pad and the time required for the flies to climb up to a pre-determined height (7 cm) was recorded.

815 Flies that did not climb the pre-determined height within 30 seconds were deemed to have failed the  
816 test. The data were analysed using Wilcoxon signed-rank test.  
817

#### 818 Graphs and Statistical analysis

819 All graphs were created, and all statistical analysis were performed in the software R (v.3.4.3).  
820 Images were designed using the free image software Inkscape (0.92.4).

821 Many of the analyses performed here were conducted on spinosad and imidacloprid in parallel with  
822 these treatments sharing the same controls, allowing direct comparison of the impact of these  
823 insecticides. The imidacloprid data were published in (Martelli et al., 2020). The data with shared  
824 controls are shown in Fig 1 (A,D,E), Fig 3 (A,B,C,D,E,F), Fig 4 (A,B,C), Fig 4 - figure supplement 1,  
825 Fig 4 - figure supplement 2 (D,E), Fig 4 - figure supplement 3, Fig 4 - figure supplement 4, Fig 5 (E),  
826 Fig 6, Fig 6 - table supplement 1, Fig 7 (B) and Fig 8 (C,D,E).

#### 827 828 **Acknowledgments:**

829  
830 **Funding:** F.M. was supported by a Victorian Latin America Doctoral Scholarship, an Alfred Nicholas  
831 Fellowship, a UoM Faculty of Science Travelling Scholarship, and The Robert Johanson and Anne  
832 Swann Fund - Native Animals Trust (awarded to F.M. and T.P.). P.B. was supported by the University  
833 of Melbourne. H.J.B. was supported by the Howard Hughes Medical Institute (HHMI) and is an  
834 investigator of HHMI. K.V. was supported by NIH (NIA) grant. Lipid analysis were performed at  
835 Metabolomics Australia at University of Melbourne, which is a National Collaborative Research  
836 Infrastructure Strategy initiative under Bioplatforms Australia Pty Ltd (<http://www.bioplatforms.com/>).

837 **Author Contribution:** F.M., T.P., P.B. and H.J.B. conceived the study and designed the experiments.  
838 F.M. performed toxicology assays, all tissue confocal microscopy, behavioral assays, metabolic  
839 assays, and transcriptomics analysis. F.M. and Z.Z. processed and analysed the electron microscopy  
840 data. F.M. and J.W. performed the ERG analysis and RNAi experiments. F.M., T.R. and U.R.  
841 performed the lipidomic analysis. F.M., C.O.W., N.E.K. and K.V. performed GCaMP experiments.  
842 T.P., P.B. and H.J.B. acquired funding and supervised the research. F.M., P.B. and H.J.B. wrote the  
843 manuscript. All authors read, edited, reviewed, and approved the final version of the manuscript.

844 **Competing interests:** The authors confirm that there are no competing interests.

#### 845 **References**

846 Aizen MA, Garibaldi LA, Cunningham SA, Klein AM. 2009. How much does agriculture depend on  
847 pollinators? Lessons from long-term trends in crop production. *Ann Bot* **103**:1579–1588.  
848 doi:10.1093/aob/mcp076

849 Bailey AP, Koster G, Guillermier C, Hirst EMA, MacRae JI, Lechene CP, Postle AD, Gould AP. 2015.  
850 Antioxidant Role for Lipid Droplets in a Stem Cell Niche of *Drosophila*. *Cell* **163**:340–353.  
851 doi:10.1016/j.cell.2015.09.020

852 Balieira KVB, Mazzo M, Bizerra PFV, Guimarães ARJS, Nicodemo D, Mingatto FE. 2018.  
853 Imidacloprid-induced oxidative stress in honey bees and the antioxidant action of caffeine.  
854 *Apidologie* **49**:562–572. doi:10.1007/s13592-018-0583-1

855 Biondi A, Mommaerts V, Smagghe G, Viñuela E, Zappalà L, Desneux N. 2012. The non-target impact  
856 of spinosyns on beneficial arthropods. *Pest Manag Sci* **68**:1523–1536. doi:10.1002/ps.3396

857 Buckingham SD, Lapiède B, Le Corronc H, Grolleau F, Sattelle DB. 1997. Imidacloprid actions on  
858 insect neuronal acetylcholine receptors. *J Exp Biol* **200**:2685–2692.

859 Cardoso P, Barton PS, Birkhofer K, Chichorro F, Deacon C, Fartmann T, Fukushima CS, Gaigher R,  
860 Habel JC, Hallmann CA, Hill MJ, Hochkirch A, Kwak ML, Mammola S, Ari Noriega J, Orfinger  
861 AB, Pedraza F, Pryke JS, Roque FO, Settele J, Simaika JP, Stork NE, Suhling F, Vorster C,  
862 Samways MJ. 2020. Scientists' warning to humanity on insect extinctions. *Biol Conserv* **242**.  
863 doi:10.1016/j.biocon.2020.108426

864 Cheng YS, Zheng J, VanderGheynst JS. 2011. Rapid Quantitative Analysis of Lipids Using a  
865 Colorimetric Method in a Microplate Format. *Lipids* **46**:95–103. doi:10.1007/s11745-010-3494-0

866 Chmiel JA, Daisley BA, Burton JP, Reid G. 2019. deleterious Effects of Neonicotinoid Pesticides on  
867 *Drosophila melanogaster* Immune Pathways. *MBio* **10**:1–14. doi:10.1128/mBio.01395-19

868 Chouhan AK, Guo C, Hsieh YC, Ye H, Senturk M, Zuo Z, Li Y, Chatterjee S, Botas J, Jackson GR,  
869 Bellen HJ, Shulman JM. 2016. Uncoupling neuronal death and dysfunction in *Drosophila* models  
870 of neurodegenerative disease. *Acta Neuropathol Commun* **4**:62. doi:10.1186/s40478-016-0333-  
871 4

872 Cleveland CB, Bormett GA, Saunders DG, Powers FL, McGibbon AS, Reeves GL, Rutherford L,  
873 Balcer JL. 2002. Environmental fate of spinosad. 1. Dissipation and degradation in aqueous  
874 systems. *J Agric Food Chem* **50**:3244–3256. doi:10.1021/jf011663i

875 Crouse GD, Demeter DA, Samaritoni G, McLeod CL, Sparks TC. 2018. De Novo Design of Potent,  
876 Insecticidal Synthetic Mimics of the Spinosyn Macrolide Natural Products. *Sci Rep* **8**:8–13.  
877 doi:10.1038/s41598-018-22894-6

878 Daniels RW, Rossano AJ, Macleod GT, Ganetzky B. 2014. Expression of multiple transgenes from a  
879 single construct using viral 2A peptides in *Drosophila*. *PLoS One* **9**.  
880 doi:10.1371/journal.pone.0100637

881 Darios F, Stevanin G. 2020. Impairment of Lysosome Function and Autophagy in Rare  
882 Neurodegenerative Diseases. *J Mol Biol* **432**:2714–2734. doi:10.1016/j.jmb.2020.02.033

883 Dawaliby R, Trubbia C, Delporte C, Noyon C, Ruyschaert JM, Van Antwerpen P, Govaerts C. 2016.  
884 Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. *J Biol  
885 Chem* **291**:3658–3667. doi:10.1074/jbc.M115.706523

886 Denecke S, Nowell CJ, Fournier-Level A, Perry T, Batterham P. 2015. The wiggle index: An open  
887 source bioassay to assess sub-lethal insecticide response in *Drosophila melanogaster*. *PLoS  
888 One* **10**:1–18. doi:10.1371/journal.pone.0145051

889 Deus CM, Yambire KF, Oliveira PJ, Raimundo N. 2020. Mitochondria–Lysosome Crosstalk: From  
890 Physiology to Neurodegeneration. *Trends Mol Med* **26**:71–88.  
891 doi:10.1016/j.molmed.2019.10.009

892 Egea J, Buendia I, Parada E, Navarro E, León R, Lopez MG. 2015. Anti-inflammatory role of  
893 microglial alpha7 nAChRs and its role in neuroprotection. *Biochem Pharmacol* **97**:463–472.  
894 doi:10.1016/j.bcp.2015.07.032

895 Fergestad T, Bostwick B, Ganetzky B. 2006. Metabolic disruption in drosophila bang-sensitive seizure  
896 mutants. *Genetics* **173**:1357–1364. doi:10.1534/genetics.106.057463

897 Fusetto R, Denecke S, Perry T, O'Hair RAJ, Batterham P. 2017. Partitioning the roles of CYP6G1 and  
898 gut microbes in the metabolism of the insecticide imidacloprid in *Drosophila melanogaster*. *Sci  
899 Rep* **7**:1–12. doi:10.1038/s41598-017-09800-2

900 Gottlieb RA, Stotland A. 2015. MitoTimer: a novel protein for monitoring mitochondrial turnover in the  
901 heart. *J Mol Med* **93**:271–278. doi:10.1007/s00109-014-1230-6

902 Guan XL, Cestra G, Shui G, Kuhrs A, Schittenhelm RB, Hafen E, van der Goot FG, Robinett CC, Gatti  
903 M, Gonzalez-Gaitan M, Wenk MR. 2013. Biochemical Membrane Lipidomics during *Drosophila*  
904 Development. *Dev Cell* **24**:98–111. doi:10.1016/j.devcel.2012.11.012

905 Ioannou MS, Jackson J, Sheu SH, Chang CL, Weigel AV, Liu H, Pasolli HA, Xu CS, Pang S, Matthies  
906 D, Hess HF, Lippincott-Schwartz J, Liu Z. 2019. Neuron-Astrocyte Metabolic Coupling Protects  
907 against Activity-Induced Fatty Acid Toxicity. *Cell* **177**:1522–1535.e14.  
908 doi:10.1016/j.cell.2019.04.001

909 Karami-Mohajeri S, Abdollahi M. 2011. Toxic influence of organophosphate, carbamate, and  
910 organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: A  
911 systematic review. *Hum Exp Toxicol* **30**:1119–1140. doi:10.1177/0960327110388959

912 Kerr JT. 2017. A Cocktail of Toxins. *Science* **356**:1331–1332. doi:10.1126/science.aan6713

913 Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T.  
914 2007. Importance of pollinators in changing landscapes for world crops. *Proc R Soc B Biol Sci*  
915 **274**:303–313. doi:10.1098/rspb.2006.3721

916 Korolchuk VI, Menzies FM, Rubinsztein DC. 2010. Mechanisms of cross-talk between the ubiquitin-  
917 proteasome and autophagy-lysosome systems. *FEBS Lett* **584**:1393–1398.  
918 doi:10.1016/j.febslet.2009.12.047

919 Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S, Heger K, Newman HW, Schmidt-supplian M,  
920 Vance DE, Mann M, Farese RV, Walther TC. 2011. Phosphatidylcholine Synthesis for Lipid  
921 Droplet Expansion Is Mediated by Localized Activation of CTP $\square$ : Phosphocholine  
922 Cytidylyltransferase. *Cell Metab* **14**:504–515. doi:10.1016/j.cmet.2011.07.013

923 Liu L, Mackenzie K., Putluri N, Bellen HJ. 2017. The Glia-Neuron Lactate Shuttle and Elevated ROS  
924 Promote Lipid Synthesis in Neurons and Lipid Droplet Accumulation in Glia via APOE / D Article  
925 The Glia-Neuron Lactate Shuttle and Elevated ROS Promote Lipid Synthesis in Neurons and  
926 Lipid Droplet Accumulat. *Cell Metab* **1**–19. doi:10.1016/j.cmet.2017.08.024

927 Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, Li Z, Hui J, Graham BH, Quintana A,  
928 Bellen HJ. 2015. Glial lipid droplets and ROS induced by mitochondrial defects promote  
929 neurodegeneration. *Cell* **160**:177–190. doi:10.1016/j.cell.2014.12.019

930 Lopes MP, Fernandes KM, Tomé HVV, Gonçalves WG, Miranda FR, Serrão JE, Martins GF. 2018.  
931 Spinosad-mediated effects on the walking ability, midgut, and Malpighian tubules of Africanized  
932 honey bee workers. *Pest Manag Sci* **74**:1311–1318. doi:10.1002/ps.4815

933 Lu C, Warchol KM, Callahan RA. 2014. Sub-lethal exposure to neonicotinoids impaired honey bees  
934 winterization before proceeding to colony collapse disorder. *Bull Insectology* **67**:125–130.

935 Lukaszewicz-Hussain A. 2010. Role of oxidative stress in organophosphate insecticide toxicity - Short  
936 review. *Pestic Biochem Physiol* **98**:145–150. doi:10.1016/j.pestbp.2010.07.006

937 Lundin O, Rundlöf M, Smith HG, Fries I, Bommarco R. 2015. Neonicotinoid insecticides and their  
938 impacts on bees: A systematic review of research approaches and identification of knowledge  
939 gaps. *PLoS One* **10**:1–20. doi:10.1371/journal.pone.0136928

940 Luo X, Rosenfeld JA, Yamamoto S, Harel T, Zuo Z, Hall M, Wierenga K, Pastore MT, Bartholomew D,  
941 Delgado MR, Rotenberg J, Lewis RA, Emrick L, Bacino CA, Eldomery MK, Akdemir ZC, Xia F,  
942 Yang Y, Lalani SR, Lotze T, Lupski JR, Lee B, Bellen HJ, Wangler MF. 2017. Clinically severe  
943 CACNA1A alleles affect synaptic function and neurodegeneration differentially. *PLoS Genet* **13**.  
944 doi:10.1371/journal.pgen.1006905

945 Martelli F, Zhongyuan Z, Wang J, Wong C-O, Karagas NE, Roessner U, Rupasinghe T,  
946 Venkatachalam K, Perry T, Bellen HJ, Batterham P. 2020. Low doses of the neonicotinoid  
947 insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in  
948 *Drosophila*. *Proc Natl Acad Sci* **117**:25840–25850. doi:10.1073/pnas.2011828117

949 McGurk L, Berson A, Bonini NM. 2015. *Drosophila* as an in vivo model for human neurodegenerative  
950 disease. *Genetics* **201**:377–402. doi:10.1534/genetics.115.179457

951 Müller C. 2018. Impacts of sublethal insecticide exposure on insects — Facts and knowledge gaps.  
952 *Basic Appl Ecol* **30**:1–10. doi:10.1016/j.baae.2018.05.001

953 Nguyen J, Ghazali R, Batterham P, Perry T. 2021. Inhibiting the proteasome reduces molecular and

954 biological impacts of the natural product insecticide, spinosad. *Pest Manag Sci* **ps.6290**.  
955 doi:10.1002/ps.6290

956 Owusu-Ansah E, Yavari A, Banerjee U. 2008. A protocol for in vivo detection of reactive oxygen  
957 species. *Nat Protoc* doi:**10.103**:1–10. doi:10.1038/nprot.2008.23

958 Perry T, Batterham P. 2018. Harnessing model organisms to study insecticide resistance. *Curr Opin*  
959 *Insect Sci* **27**:61–67. doi:10.1016/j.cois.2018.03.005

960 Perry T, Batterham P, Daborn PJ. 2011. The biology of insecticidal activity and resistance. *Insect*  
961 *Biochem Mol Biol* **41**:411–422. doi:10.1016/j.ibmb.2011.03.003

962 Perry T, Chen W, Ghazali R, Yang YT, Christesen D, Martelli F, Lumb C, Luong HNB, Mitchell J,  
963 Holien JK, Parker MW, Sparks TC, Batterham P. 2021. Role of nicotinic acetylcholine receptor  
964 subunits in the mode of action of neonicotinoid, sulfoximine and spinosyn insecticides in  
965 *Drosophila melanogaster*. *Insect Biochem Mol Biol*. In press.

966 Perry T, Heckel DG, McKenzie JA, Batterham P. 2008. Mutations in Da1 or D $\beta$ 2 nicotinic  
967 acetylcholine receptor subunits can confer resistance to neonicotinoids in *Drosophila*  
968 *melanogaster*. *Insect Biochem Mol Biol* **38**:520–528. doi:10.1016/j.ibmb.2007.12.007

969 Perry T, McKenzie JA, Batterham P. 2007. A Da6 knockout strain of *Drosophila melanogaster* confers  
970 a high level of resistance to spinosad. *Insect Biochem Mol Biol* **37**:184–188.  
971 doi:10.1016/j.ibmb.2006.11.009

972 Perry T, Somers J, Yang YT, Batterham P. 2015. Expression of insect  $\alpha$ 6-like nicotinic acetylcholine  
973 receptors in *Drosophila melanogaster* highlights a high level of conservation of the receptor:  
974 Spinosyn interaction. *Insect Biochem Mol Biol* **64**:106–115. doi:10.1016/j.ibmb.2015.01.017

975 Plotegher N, Duchen MR. 2017. Mitochondrial Dysfunction and Neurodegeneration in Lysosomal  
976 Storage Disorders. *Trends Mol Med* **23**:116–134. doi:10.1016/j.molmed.2016.12.003

977 Puinean AM, Lansdell SJ, Collins T, Bielza P, Millar NS. 2013. A nicotinic acetylcholine receptor  
978 transmembrane point mutation (G275E) associated with resistance to spinosad in *Frankliniella*  
979 *occidentalis*. *J Neurochem* **124**:590–601. doi:10.1111/jnc.12029

980 Quintana A, Kruse SE, Kapur RP, Sanz E, Palmiter RD. 2010. Complex I deficiency due to loss of  
981 Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. *Proc Natl*  
982 *Acad Sci U S A* **107**:10996–11001. doi:10.1073/pnas.1006214107

983 Ren M, Phoon CKL, Schlame M. 2014. Metabolism and function of mitochondrial cardiolipin. *Prog*  
984 *Lipid Res*. doi:10.1016/j.plipres.2014.04.001

985 Saheki Y, De Camilli P. 2012. Synaptic Vesicle Endocytosis. *Cold Spring Harb Perspect Biol*  
986 **4**:a005645–a005645. doi:10.1101/cshperspect.a005645

987 Salgado VL. 1998. Studies on the Mode of Action of Spinosad: Insect Symptoms and Physiological  
988 Correlates. *Pestic Biochem Physiol* **60**:91–102.

989 Salgado VL, Saar R. 2004. Desensitizing and non-desensitizing subtypes of alpha-bungarotoxin-  
990 sensitive nicotinic acetylcholine receptors in cockroach neurons. *J Insect Physiol* **50**:867–879.  
991 doi:10.1016/j.jinsphys.2004.07.007

992 Sánchez-Bayo F, Wyckhuys KAG. 2019. Worldwide decline of the entomofauna: A review of its  
993 drivers. *Biol Conserv*. doi:10.1016/j.biocon.2019.01.020

994 Saras A, Tanouye MA. 2016. Mutations of the Calcium Channel Gene cacophony Suppress Seizures  
995 in *Drosophila*. *PLoS Genet* **12**:1–17. doi:10.1371/journal.pgen.1005784

996 Sattelle DB, Jones AK, Sattelle BM, Matsuda K, Reenan R, Biggin PC. 2005. Edit, cut and paste in  
997 the nicotinic acetylcholine receptor gene family of *Drosophila melanogaster*. *BioEssays* **27**:366–  
998 376. doi:10.1002/bies.20207

999 Schürmann FW. 2016. Fine structure of synaptic sites and circuits in mushroom bodies of insect  
1000 brains. *Arthropod Struct Dev* **45**:399–421. doi:10.1016/j.asd.2016.08.005

1001 Somers J, Nguyen J, Lumb C, Batterham P, Perry T. 2015. In vivo functional analysis of the  
1002 *Drosophila melanogaster* nicotinic acetylcholine receptor Da6 using the insecticide spinosad.  
1003 *Insect Biochem Mol Biol* **64**:116–127. doi:10.1016/j.ibmb.2015.01.018

1004 Sparks TC, Hahn DR, Garizi N V. 2017. Natural products, their derivatives, mimics and synthetic  
1005 equivalents: role in agrochemical discovery. *Pest Manag Sci* **73**:700–715. doi:10.1002/ps.4458

1006 Stepien KM, Roncaroli F, Turton N, Hendriksz CJ, Roberts M, Heaton RA, Hargreaves I. 2020.  
1007 Mechanisms of Mitochondrial Dysfunction in Lysosomal Storage Disorders: A Review. *J Clin  
1008 Med* **9**:2596. doi:10.3390/jcm9082596

1009 Terhzaz S, Cabrero P, Brinzer RA, Halberg KA, Dow JAT, Davies S. 2015. A novel role of *Drosophila*  
1010 cytochrome P450-4e3 in permethrin insecticide tolerance. *Insect Biochem Mol Biol* **67**:38–46.  
1011 doi:10.1016/j.ibmb.2015.06.002

1012 Tosi S, Costa C, Vesco U, Quaglia G, Guido G. 2018. A 3-year survey of Italian honey bee-collected  
1013 pollen reveals widespread contamination by agricultural pesticides. *Sci Total Environ* **615**:208–  
1014 218. doi:10.1016/j.scitotenv.2017.09.226

1015 Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. 2007. Free radicals and antioxidants  
1016 in normal physiological functions and human disease. *Int J Biochem Cell Biol* **39**:44–84.  
1017 doi:10.1016/j.biocel.2006.07.001

1018 van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM. 2020. Meta-analysis  
1019 reveals declines in terrestrial but increases in freshwater insect abundances. *Science* (80- )  
1020 **420**:in press. doi:10.1126/science.aax9931

1021 Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D. 2021. Insect decline in the  
1022 Anthropocene: Death by a thousand cuts. *Proc Natl Acad Sci U S A* **118**:1–10.  
1023 doi:10.1073/pnas.2023989118

1024 Wang T, Montell C. 2007. Phototransduction and retinal degeneration in *Drosophila*. *Pflugers Arch  
1025 Eur J Physiol* **454**:821–847. doi:10.1007/s00424-007-0251-1

1026 Wang X, Martínez MA, Dai M, Chen D, Ares I, Romero A, Castellano V, Martínez M, Rodríguez JL,  
1027 Martínez-Larrañaga MR, Anadón A, Yuan Z. 2016. Permethrin-induced oxidative stress and  
1028 toxicity and metabolism. A review. *Environ Res*. doi:10.1016/j.envres.2016.05.003

1029 Watson GB. 2001. Actions of Insecticidal Spinosyns on  $\gamma$ -Aminobutyric Acid Responses from Small-  
1030 Diameter Cockroach Neurons. *Pestic Biochem Physiol* **71**:20–28. doi:10.1006/pest.2001.2559

1031 Watson GB, Chouinard SW, Cook KR, Geng C, Gifford JM, Gustafson GD, Hasler JM, Larrinua IM,  
1032 Letherer TJ, Mitchell JC, Pak WL, Salgado VL, Sparks TC, Stilwell GE. 2010. A spinosyn-  
1033 sensitive *Drosophila melanogaster* nicotinic acetylcholine receptor identified through chemically  
1034 induced target site resistance, resistance gene identification, and heterologous expression.  
1035 *Insect Biochem Mol Biol* **40**:376–384. doi:10.1016/j.ibmb.2009.11.004

1036 Weber AL, Khan GF, Magwire MM, Tabor CL, Mackay TFC, Anholt RRH. 2012. Genome-wide  
1037 association analysis of oxidative stress resistance in *drosophila melanogaster*. *PLoS One* **7**.  
1038 doi:10.1371/journal.pone.0034745

1039 Wong CO, Chen K, Lin YQ, Chao Y, Duraine L, Lu Z, Yoon WH, Sullivan JM, Broadhead GT, Sumner  
1040 CJ, Lloyd TE, Macleod GT, Bellen HJ, Venkatachalam K. 2014. A TRPV channel in *drosophila*

1041        motor neurons regulates presynaptic resting Ca<sup>2+</sup> levels, synapse growth, and synaptic  
1042        transmission. *Neuron* **84**:764–777. doi:10.1016/j.neuron.2014.09.030

1043        Wu-Smart J, Spivak M. 2016. Sub-lethal effects of dietary neonicotinoid insecticide exposure on  
1044        honey bee queen fecundity and colony development. *Sci Rep* **6**:1–11. doi:10.1038/srep32108

1045        Xu W, Yang M, Gao J, Zhang Y, Tao L. 2018. Oxidative stress and DNA damage induced by  
1046        spinosad exposure in spodoptera frugiperda Sf9 cells. *Food Agric Immunol* **29**:171–181.  
1047        doi:10.1080/09540105.2017.1364708

1048        Yambire KF, Mosquera LF, Steinfeld R, Mühle C, Ikonen E, Milosevic I, Raimundo N. 2018.  
1049        Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases.  
1050        *bioRxiv* 1–29. doi:10.1101/381376

1051        Yan LJ, Levine RL, Sohal RS. 1997. Oxidative damage during aging targets mitochondrial aconitase.  
1052        *Proc Natl Acad Sci U S A* **94**:11168–11172.

1053        Yang M, Wang B, Gao J, Zhang Y, Xu W, Tao L. 2017. Spinosad induces programmed cell death  
1054        involves mitochondrial dysfunction and cytochrome C release in Spodoptera frugiperda Sf9  
1055        cells. *Chemosphere* **169**:155–161. doi:10.1016/j.chemosphere.2016.11.065

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

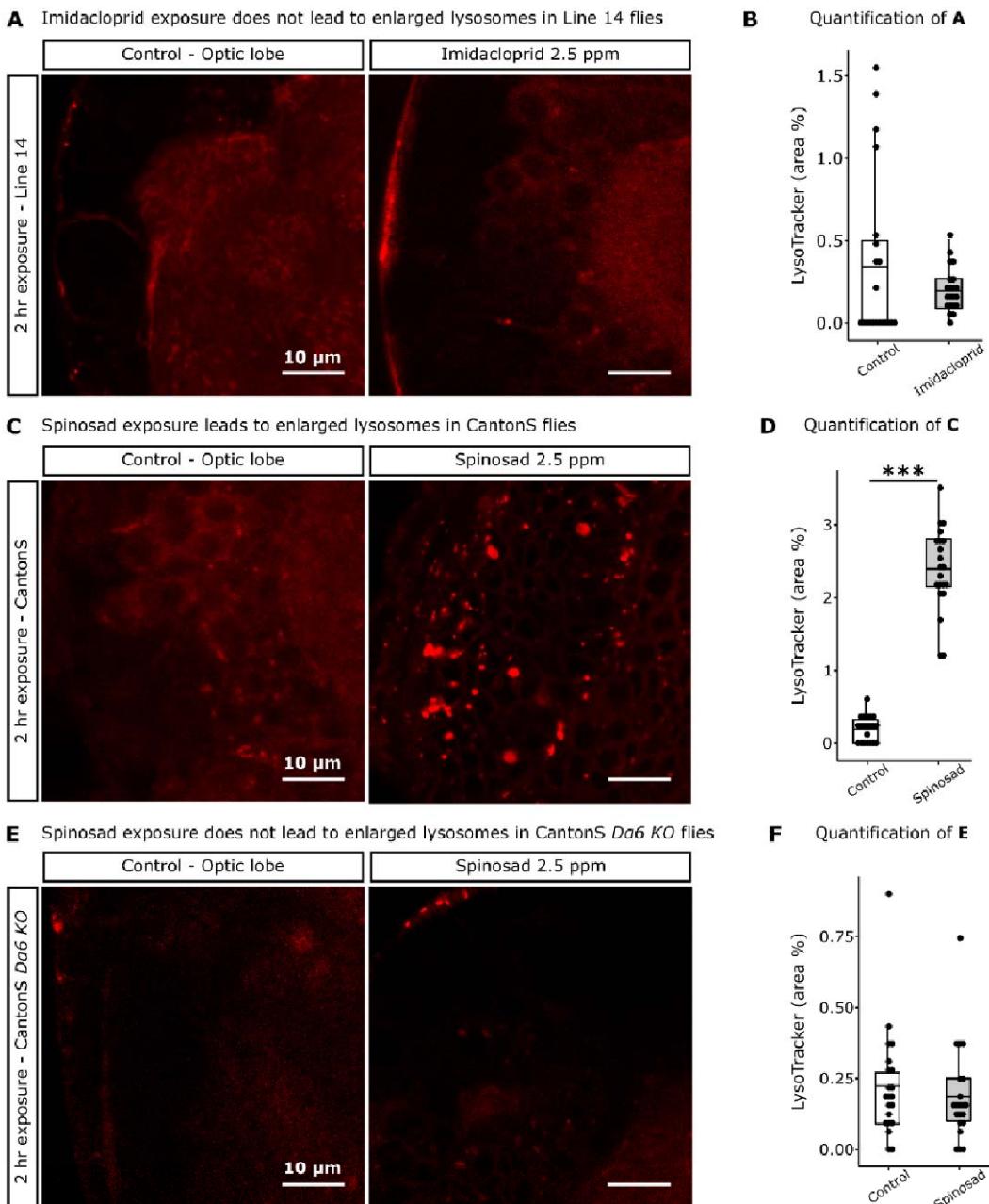
1068

1069

1070

1071

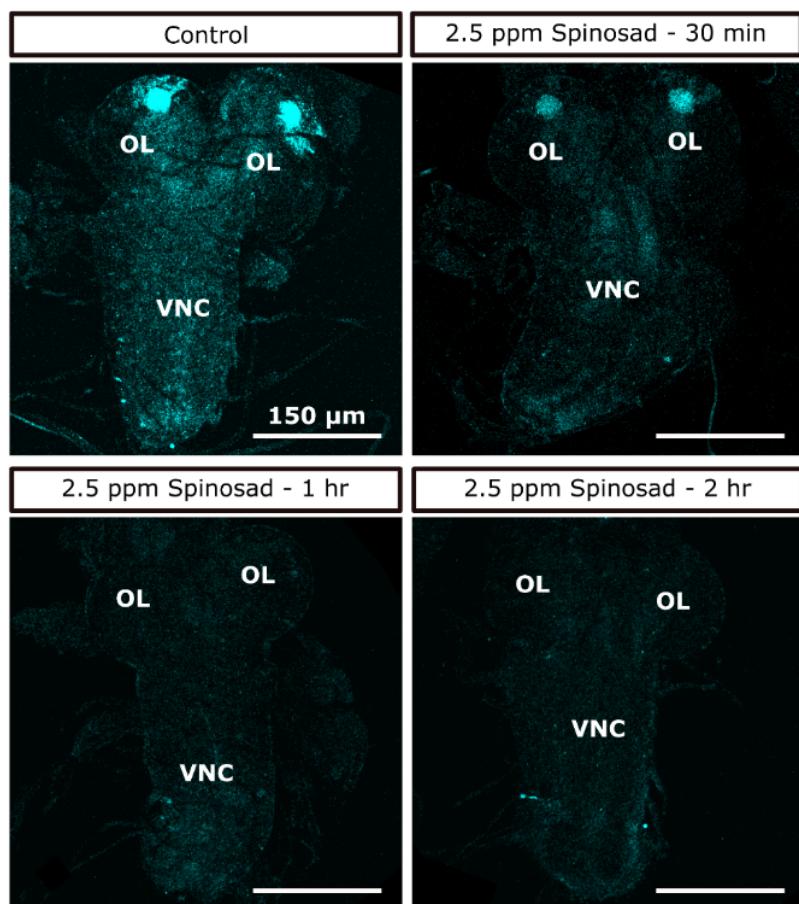
1072


1073

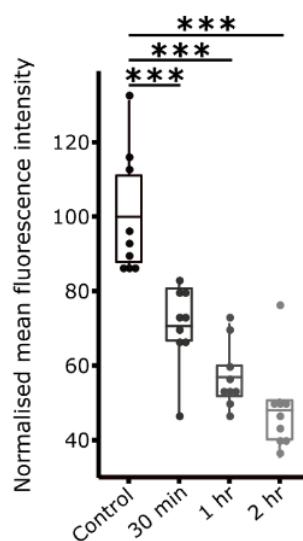
1074

1075

Supplementary Information for Martelli et al 2021


1076



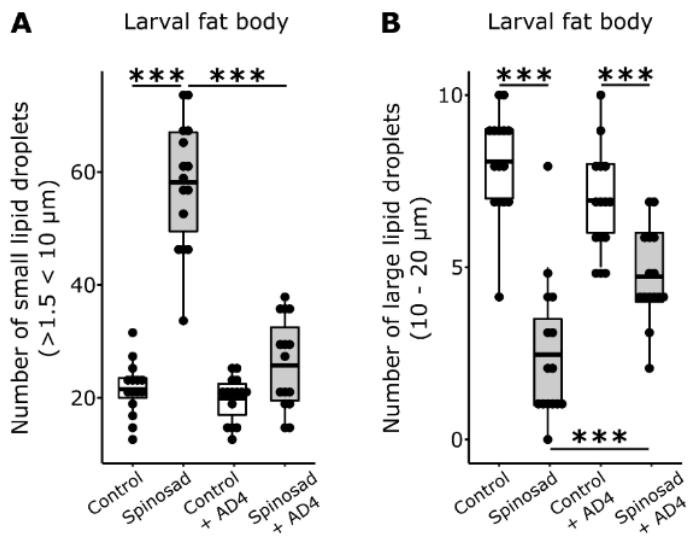

1077

**Figure 2 – figure supplement 1. Enlarged lysosomes are only observed in response to spinosad exposure and in the presence of *Dα6* nAChRs. A**, Line 14 larvae exposed to 2.5 ppm imidacloprid for 2hr show no enlarged lysosomes in the brain. **B**, Quantification of A, Lysotracker area in the optic lobes (%) (n = 7 larvae/treatment, 3 optic lobe sections/larva). **C**, CantonS larvae exposed to 2.5 ppm spinosad for 2hr show significant increase in the number of enlarged lysosomes in the brain. **D**, Quantification of C, Lysotracker area in the optic lobes (%) (n = 7 larvae/treatment, 3 optic lobe sections/larva). **E**, CantonS *Dα6* knockout larvae exposed to 2.5 ppm spinosad for 2hr show no enlarged lysosomes in the brain. **F**, Quantification of E, Lysotracker area in the optic lobes (%) (n = 7 larvae/treatment, 3 optic lobe sections/larva). Lysotracker staining, 400 x magnification. Microscopy images obtained in Leica SP5 Laser Scanning Confocal Microscope. t-test; \*\*\*P < 0.001.

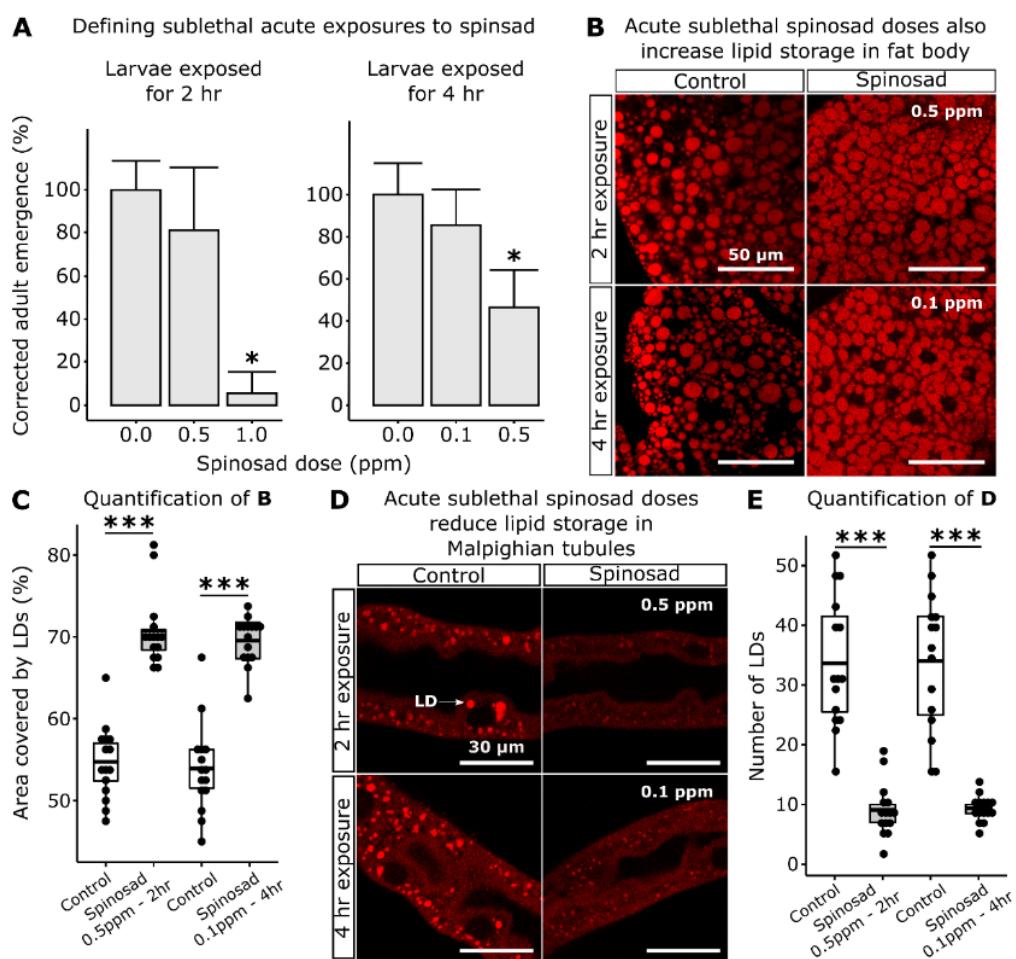
**A** Larvae expressing Da6 tagged with CFP and exposed to spinosad show a reduction of CFP signal over time



**B** Quantification of A




1088


1089 **Figure 2 – figure supplement 2. Exposure to spinosad reduces Da6 nAChRs in neuronal**  
1090 **membranes. A, Brains from larvae obtained by crossing UAS Da6 CFP tagged in Line 14 Da6 KO**  
1091 **strain to Gal4-L driver in Line 14 Da6 KO strain were exposed to 2.5 ppm spinosad for 30 min, 1 hr or**  
1092 **2 hr. B, Quantification of A (n = 3 larvae/condition, 3 brain sections/larva). Microscopy images**  
1093 **obtained in Leica SP5 Laser Scanning Confocal Microscope, 400 x magnification. OP – optic lobe;**  
1094 **VNC – ventral nerve cord. t-test; \*\*\*P < 0.001.**

1095

1096 Spinosad increases lipid storage in fat body and antioxidant pre-treatment  
1097 reduces this accumulation - impact of exposure to 2.5 ppm spinosad  
1098 for 2 hr in the numbers of small and large LDs



**Figure 4 – figure supplement 1. Impact of spinosad exposure on LD dynamics in fat body.**  
Larvae exposed to 2.5 ppm spinosad for 2 hr show an accumulation of small LDs and reduction of  
large LD in the fat body. 5 hr pre-treatment with 300  $\mu\text{g/mL}$  of antioxidant N-acetylcysteine amide  
(NACA) reduces this effect. **A**, Number of small LD ( $> 1.5 \mu\text{m} < 10 \mu\text{m}$ ). **B**, Number of large LD (10  
 $\mu\text{m} - 20 \mu\text{m}$ ). n = 3 larvae/group; 5 image sections/larva. t-test; \*\*\*P < 0.001.



1105

1106 **Figure 4 – figure supplement 2. Spinosad doses that do not affect survival impact the larval**  
1107 **lipid environment.** **A**, Corrected adult emergence relative to controls - larvae exposed to different

1108 spinosad doses were rinsed in 5% sucrose and placed back onto insecticide-free media for

1109 quantification of adult emergence. 0.5 ppm for 2 hr and 0.1 ppm for 4 hr were determined as the

1110 highest doses that do not affect survival. **B**, Accumulation of LD in the fat body of larvae in response

1111 to the highest doses that do not affect survival. **C**, Percentage of area occupied by LD in fat body (n =

1112 3 larvae/treatment; 5 image sections/larva). **D**, Reduction of lipid storage in Malpighian tubules of

1113 larvae exposed to the highest doses that do not affect survival. White arrow indicates a LD. **E**,

1114 Number of lipid droplets per Malpighian Tubule (n = 3 larvae/treatment; 5 sections/larva). Microscopy

1115 images obtained in Leica SP5 Laser Scanning Confocal Microscope, 400x magnification, Nile red

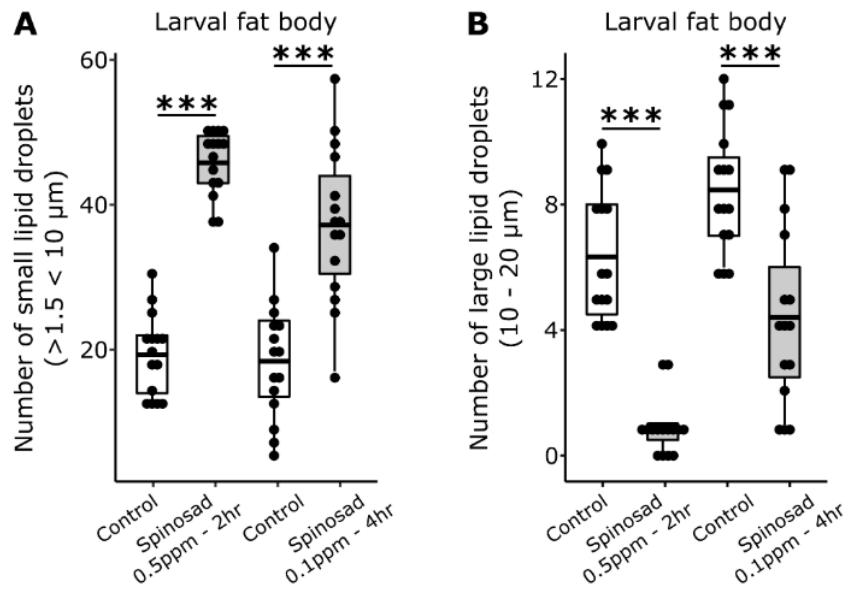
1116 staining. Error bars in **A** indicate 95% confidence interval (One-way ANOVA, Turkey's HSD; \*P <

1117 0.05). **C** and **E**, t-test; \*\*\*P < 0.001.

1118

1119

1120


1121

1122

1123

1124

Acute sublethal spinosad doses (0.1 ppm for 4 hr; 0.5 ppm for 2 hr) also increase lipid storage in fat body - impact of spinosad exposure in the numbers of small and large LDs



1125

1126 **Figure 4 – figure supplement 3. The highest spinosad doses that do not affect survival also**  
1127 **impact LD dynamics in fat body.** Larvae exposed to 0.5 ppm spinosad for 2 hr, or 0.1 ppm spinosad  
1128 for 4 hr, show an accumulation of small LD and reduction of large LD in the fat body. **A**, Number of  
1129 small LD ( $> 1.5 \mu\text{m} < 10 \mu\text{m}$ ). **B**, Number of large LD (10  $\mu\text{m} - 20 \mu\text{m}$ ). n = 3 larvae/group; 5 image  
1130 sections/larva. t-test; \*\*\*P < 0.001.

1131

1132

1133

1134

1135

1136

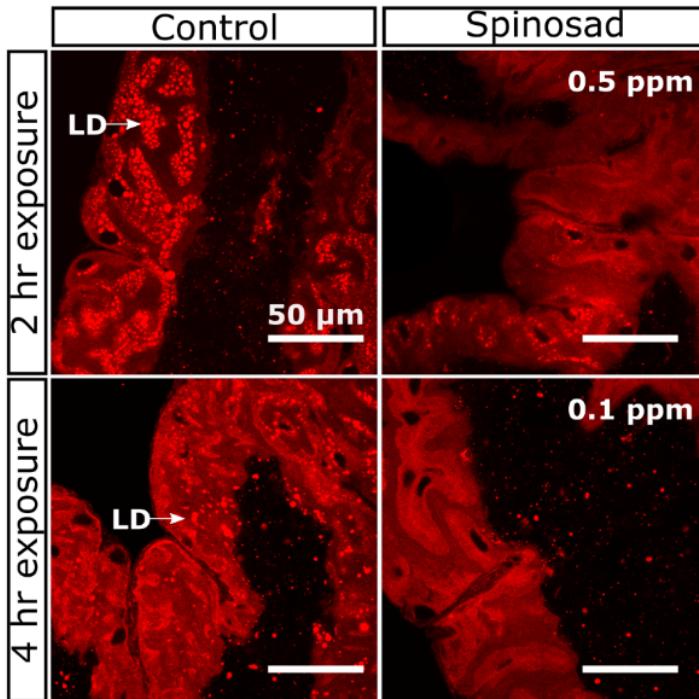
1137

1138

1139

1140

1141


1142

1143

1144

1145

## Acute sublethal spinosad doses reduce lipid storage in midgut



1147 **Figure 4 – figure supplement 4. Spinosad doses that do not affect survival impact the larval**  
1148 **lipid environment.** Posterior midgut. White arrow indicates a cluster of LDs. Zones with LD  
1149 accumulation were not quantified since they were only found in non-exposed animals (n = 3 larvae/  
1150 treatment). Microscopy images obtained in Leica SP5 Laser Scanning Confocal Microscope, 400x  
1151 magnification, Nile red staining.

1152

1153

1154

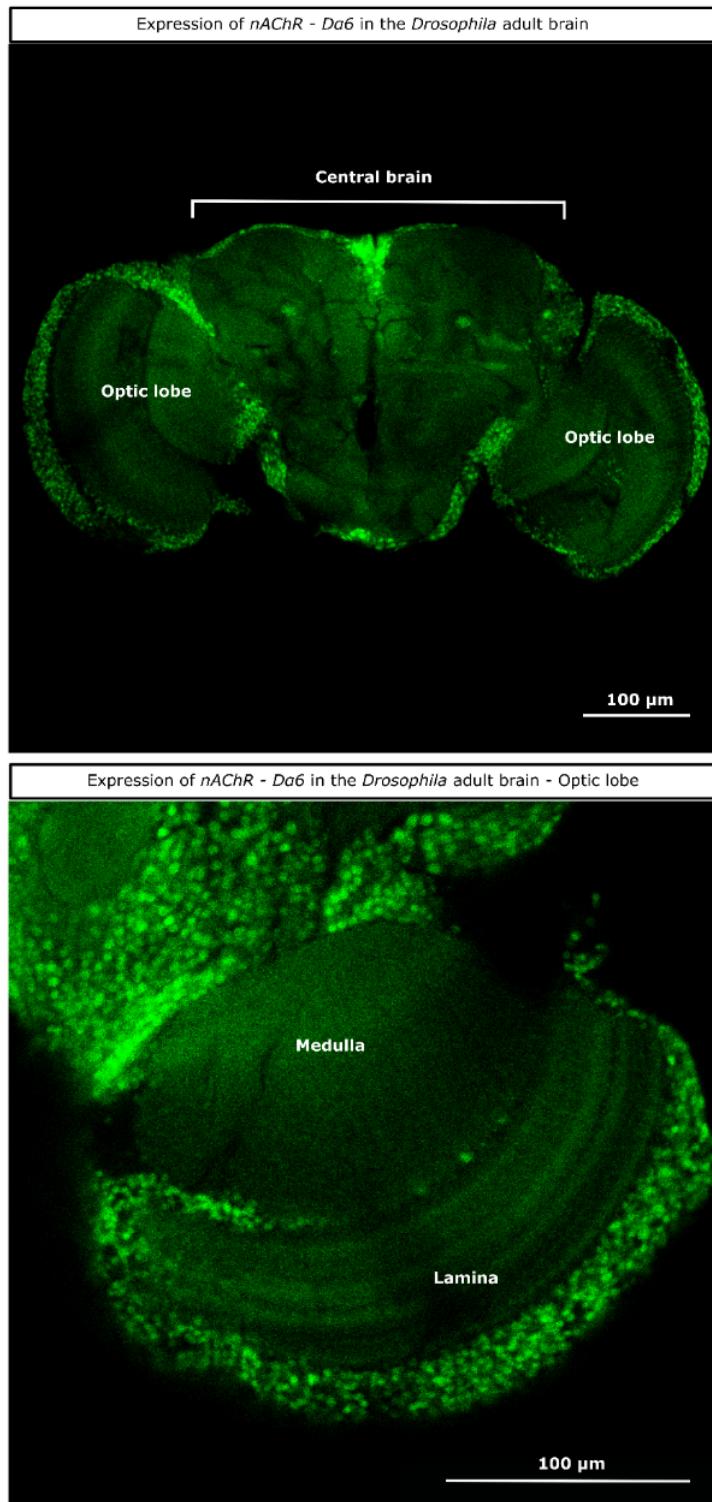
1155

1156

1157

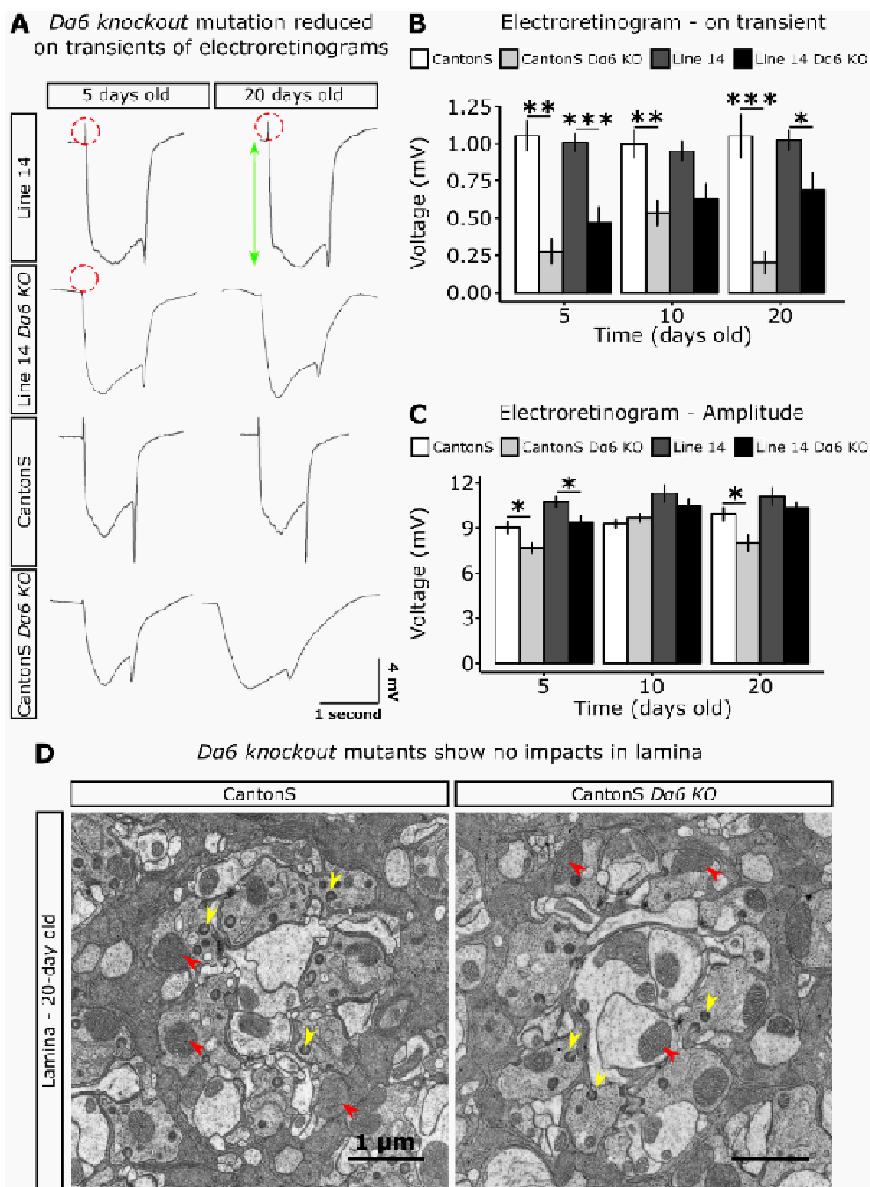
1158

1159


1160

1161

1162


1163

1164



1165

1166 **Figure 8 – figure supplement 1. Expression pattern of nAChR subunit *Da6* in the *Drosophila***  
1167 **adult brain (*Da6* T2A Gal4 > UAS-GFP.nls).** Detail of the expression in lamina and medulla (optic  
1168 lobe). Microscopy images obtained in Leica SP5 Laser Scanning Confocal Microscope. 400 x  
1169 magnification.



1170

1171 **Figure 9 – figure supplement 1. nAChR *Da6* knockout (KO) mutants show defective**  
1172 **electroretinograms (ERGs) but no damage in lamina. A, ERGs of 5- and 20-days old females from**  
1173 **Line 14, Line 14 *Da6* KO mutant, Canton S and Canton S *Da6* KO mutant. Red dotted circles indicate**  
1174 **the on-transient signal and green arrow indicates the amplitude (n = 8 to 10 adult flies/strain/time**  
1175 **point) B, On-transient signal of ERGs of 5-, 10- and 20-days old flies. C, Amplitude of ERGs of 5-, 10-**  
1176 **and 20-days old flies. D, Electron microscopy of the lamina of 20-day old Canton S and Canton S *Da6***  
1177 **KO mutant flies aged in the absence of spinosad. Red arrowheads indicate normal mitochondria,**  
1178 **yellow arrowheads indicate capitate projections. No conspicuous difference was noticed between**  
1179 **mutant and background strains (10 images/fly; 3 flies/genotype). t-test; \*P < 0.05, \*\*P < 0.01, \*\*\*P <**  
1180 **0.001.**

1181

1182

1183

1184

1185

1186 **Figure 6 – table supplement 1. Impact of spinosad on the lipidomic profile.** Lipidomic profile of  
 1187 larvae exposed to 2.5 ppm spinosad or control (equivalent dose of DMSO) for 2 hr as detected by LC-  
 1188 MS. Values are expressed as peak intensity area normalized to sample weight.

| Lipid species                       | Control 1 | Control 2 | Control 3 | Spinosad 1 | Spinosad 2 | Spinosad 3 | ANOVA,<br>Tukey's HSD<br>p-adj | F-value |
|-------------------------------------|-----------|-----------|-----------|------------|------------|------------|--------------------------------|---------|
| 2HPOT keto 34:2-PE-/16:0            | 123795.62 | 163589.74 | 219673.91 | 217767.86  | 176250     | 175247.52  | 0.5419233                      | 0.443   |
| 2HPOT keto 34:2-PG-/16:0            | 90656.9   | 67008.5   | 89021.7   | 104107.1   | 117589.3   | 76435.6    | 0.2970207                      | 1.435   |
| 2HPOT keto 34:3-PC-/16:0            | 77372.3   | 33076.9   | 58043.5   | 41875      | 42589.3    | 55247.5    | 0.5176349                      | 0.502   |
| 2HPOT keto 34:3-PE-/16:0            | 933065.69 | 952820.51 | 1215326.1 | 1248660.7  | 1132232.1  | 1204851.5  | 0.1715842                      | 2.767   |
| 2HPOT keto 34:3-PG-/16:0            | 778321.2  | 873846.2  | 713152.2  | 958750     | 810982.1   | 959703     | 0.1486808                      | 3.189   |
| 2HPOT keto 36:4-PC-/2HPOT keto 36:4 | 754744.5  | 938119.7  | 916087    | 849821.4   | 981875     | 931584.2   | 0.4999316                      | 0.549   |
| 2HPOT keto 36:4-PE-/18:1            | 2131167.9 | 2425726.5 | 2663478.3 | 2802767.9  | 2864107.1  | 3127920.8  | 0.0458895                      | 8.185   |
| 2HPOT keto 36:4-PE-/18:2            | 1160292   | 1192649.6 | 1200434.8 | 1141696.4  | 1364821.4  | 1291485.1  | 0.2892342                      | 1.490   |
| 2HPOT keto 36:4-PG-/18:1            | 1165255.5 | 1236239.3 | 1200108.7 | 1235000    | 1367410.7  | 1312079.2  | 0.07464646                     | 5.743   |
| 2HPOT keto 36:4-PG-/18:2            | 667737.2  | 667435.9  | 531521.7  | 607232.1   | 672142.9   | 596534.7   | 0.9549847                      | 0.004   |
| 2HPOT keto 36:5-PC-/18:3            | 680438    | 810940.2  | 648260.9  | 814821.4   | 845357.1   | 599108.9   | 0.6872676                      | 0.188   |
| 2HPOT keto 36:5-PE-/18:2            | 488905.11 | 508205.13 | 590434.78 | 505625     | 610803.57  | 570297.03  | 0.4911734                      | 0.573   |
| 2HPOT keto 36:5-PG-/18:2            | 271678.8  | 318461.5  | 243152.2  | 339107.1   | 371071.4   | 333267.3   | 0.04814691                     | 7.916   |
| 2HPOT keto 36:6-PC-/18:3            | 51824.8   | 27094     | 31521.7   | 25267.9    | 65178.6    | 50297      | 0.5080307                      | 0.527   |
| CE 14:0                             | 146788.3  | 242136.8  | 283695.7  | 45982.1    | 69464.3    | 39207.9    | 0.01419808                     | 17.270  |
| CE 16:0                             | 188102.2  | 186153.8  | 236195.7  | 359285.7   | 233035.7   | 312475.2   | 0.07171429                     | 5.922   |
| CE 16:1                             | 725912.4  | 732393.2  | 986195.7  | 524732.1   | 756964.3   | 828910.9   | 0.4255195                      | 0.786   |
| CE 18:1                             | 3085839.4 | 3167435.9 | 3113043.5 | 3207500    | 1493482.1  | 3164158.4  | 0.4256607                      | 0.785   |
| CE 18:2                             | 9927      | 79059.8   | 35978.3   | 20000      | 73928.6    | 35148.5    | 0.9601355                      | 0.003   |
| CL 62:3                             | 37606.838 | 41282.051 | 23152.174 | 19107.143  | 7232.1429  | 3564.3564  | 0.02952137                     | 10.990  |
| CL 64:3                             | 152820.51 | 159059.83 | 116304.35 | 65625      | 39553.571  | 22376.238  | 0.00544154                     | 29.900  |
| CL 64:4                             | 1155726.5 | 1217948.7 | 898260.87 | 609642.86  | 283660.71  | 155940.59  | 0.01131725                     | 19.730  |
| CL 64:6                             | 20341.88  | 18717.949 | 34239.13  | 23303.571  | 23392.857  | 16732.673  | 0.5750357                      | 0.372   |
| CL 65:0                             | 10341.88  | 13589.744 | 11847.826 | 9375       | 11071.429  | 13465.347  | 0.7017686                      | 0.169   |
| CL 66:0                             | 12478.632 | 12905.983 | 10000     | 10446.429  | 12946.429  | 10396.04   | 0.6892719                      | 0.185   |
| CL 66:3                             | 101538.46 | 129487.18 | 48152.174 | 8482.1429  | 8125       | 14059.406  | 0.02580067                     | 11.980  |
| CL 66:4                             | 575811.97 | 634786.32 | 513260.87 | 329017.86  | 146250     | 69702.97   | 0.009676818                    | 21.600  |
| CL 66:6                             | 44017.094 | 35470.085 | 30760.87  | 28303.571  | 13125      | 6831.6832  | 0.05036087                     | 7.670   |
| CL 67:0                             | 123247.86 | 114358.97 | 86413.043 | 55982.143  | 22767.857  | 19504.951  | 0.009472268                    | 21.870  |
| CL 68:10                            | 36495.727 | 32649.573 | 34347.826 | 31875      | 32589.286  | 25247.525  | 0.1506398                      | 3.149   |
| CL 68:11                            | 19743.59  | 23931.624 | 12934.783 | 3214.2857  | 4375       | 594.05941  | 0.008930132                    | 22.620  |
| CL 68:3                             | 24871.795 | 21111.111 | 23913.043 | 15535.714  | 25000      | 13267.327  | 0.2274407                      | 2.029   |

|                 |           |           |           |           |           |           |             |        |
|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|--------|
| CL 68:4         | 90854.701 | 82564.103 | 43695.652 | 13214.286 | 16339.286 | 13861.386 | 0.01647519  | 15.800 |
| CL 68:6         | 1092222.2 | 1137692.3 | 817934.78 | 269553.57 | 172410.71 | 111881.19 | 0.001638514 | 57.190 |
| CL 69:0         | 636495.73 | 660000    | 430108.7  | 88303.571 | 80892.857 | 60891.089 | 0.002459115 | 46.080 |
| CL 70:0         | 62136.752 | 79914.53  | 57173.913 | 58392.857 | 73571.429 | 54059.406 | 0.6536651   | 0.234  |
| CL 70:10        | 111880.34 | 130085.47 | 100326.09 | 111785.71 | 111428.57 | 89108.911 | 0.4324939   | 0.760  |
| CL 70:2         | 97179.487 | 114871.79 | 105652.17 | 106160.71 | 117321.43 | 89009.901 | 0.8664366   | 0.032  |
| CL 70:4         | 5811.9658 | 14102.564 | 13369.565 | 8839.2857 | 12946.429 | 7821.7822 | 0.7108664   | 0.159  |
| CL 70:6         | 113675.21 | 110512.82 | 45760.87  | 8571.4286 | 14464.286 | 19702.97  | 0.02761109  | 11.470 |
| CL 72:10        | 30427.35  | 39658.12  | 21521.739 | 17321.429 | 15625     | 30693.069 | 0.2582735   | 1.734  |
| CL 72:11        | 52307.692 | 75555.556 | 58260.87  | 46250     | 52232.143 | 50891.089 | 0.1642574   | 2.892  |
| CL 72:4         | 214871.79 | 201452.99 | 188913.04 | 183125    | 198214.29 | 152574.26 | 0.1969343   | 2.391  |
| CL 74:7         | 100341.88 | 94957.265 | 50217.391 | 68839.286 | 63125     | 35544.554 | 0.2413577   | 1.888  |
| DG 28:0 -(14:0) | 41232263  | 43517778  | 56964783  | 48507232  | 51229643  | 39195248  | 0.8867293   | 0.023  |
| DG 30:0 -(14:0) | 20333869  | 16738120  | 33330544  | 35592321  | 31987768  | 26947426  | 0.2262944   | 2.041  |
| DG 30:0 -(15:0) | 222116.8  | 189145.3  | 224782.6  | 84910.7   | 263125    | 203861.4  | 0.6286463   | 0.273  |
| DG 30:0 -(16:0) | 31792482  | 28049829  | 52891848  | 46444821  | 47469464  | 38735743  | 0.4640578   | 0.654  |
| DG 30:1 -(14:0) | 112222774 | 95524615  | 144444891 | 135975089 | 129559554 | 93132277  | 0.9176174   | 0.012  |
| DG 30:1 -(14:1) | 13757883  | 11986325  | 20162065  | 16855982  | 15285268  | 12458911  | 0.8838297   | 0.024  |
| DG 30:1 -(16:0) | 12133212  | 11247180  | 18532283  | 15314375  | 13634464  | 10981980  | 0.8132627   | 0.064  |
| DG 30:1 -(16:1) | 141050292 | 119525299 | 179823044 | 164481964 | 152594286 | 117753762 | 0.9383107   | 0.007  |
| DG 32:0 -(14:0) | 1981678.8 | 2075042.7 | 2994347.8 | 2233750   | 2945982.1 | 2221881.2 | 0.7858322   | 0.084  |
| DG 32:0 -(16:0) | 28784891  | 24649402  | 42998804  | 38700089  | 35333304  | 30870198  | 0.6625472   | 0.221  |
| DG 32:0 -(18:0) | 4620875.9 | 3709059.8 | 6845978.3 | 6595178.6 | 5694732.1 | 5813465.3 | 0.3728798   | 1.005  |
| DG 32:1 -(14:0) | 119655329 | 117577436 | 153631848 | 146367500 | 136873125 | 118173960 | 0.8181483   | 0.060  |
| DG 32:1 -(14:1) | 1084744.5 | 1191111.1 | 2034456.5 | 1757053.6 | 1613750   | 1260891.1 | 0.7648967   | 0.102  |
| DG 32:1 -(16:0) | 93221387  | 88162821  | 125805978 | 119928393 | 110233036 | 87595347  | 0.8280745   | 0.054  |
| DG 32:1 -(16:1) | 112397080 | 104677350 | 148316522 | 139003393 | 124129732 | 102728515 | 0.9931095   | 0.000  |
| DG 32:1 -(18:0) | 892335.8  | 1543418.8 | 2525978.3 | 2191607.1 | 1834732.1 | 1679505   | 0.6448556   | 0.248  |
| DG 32:1 -(18:1) | 137173577 | 129496667 | 183220326 | 171838125 | 156348125 | 127531980 | 0.9314351   | 0.008  |
| DG 32:2 -(14:0) | 8099197.1 | 7010427.4 | 9596304.3 | 8794107.1 | 9024553.6 | 6243069.3 | 0.8626771   | 0.034  |
| DG 32:2 -(14:1) | 16463504  | 14628974  | 23230109  | 20327679  | 18999107  | 14671881  | 0.9740802   | 0.001  |
| DG 32:2 -(16:1) | 204709270 | 186125812 | 293435000 | 296117857 | 290351339 | 218629703 | 0.3861522   | 0.945  |
| DG 32:2 -(18:1) | 13110438  | 11873162  | 17568261  | 17448482  | 14924643  | 13072574  | 0.6761583   | 0.202  |
| DG 32:2 -(18:2) | 12836788  | 11616068  | 18780326  | 13928304  | 15833839  | 9151980.2 | 0.6536608   | 0.234  |
| DG 34:0 -(14:0) | 180729.9  | 139743.6  | 273369.6  | 163928.6  | 226339.3  | 141089.1  | 0.6807093   | 0.196  |
| DG 34:0 -(16:0) | 5460729.9 | 4198547   | 7729239.1 | 7772678.6 | 7168303.6 | 5416435.6 | 0.4733192   | 0.625  |
| DG 34:0 -(18:0) | 6165255.5 | 4886837.6 | 9138369.6 | 8686607.1 | 8398571.4 | 7318019.8 | 0.34947     | 1.121  |
| DG 34:0 -(20:0) | 236496.4  | 342649.6  | 233587    | 268928.6  | 169732.1  | 255544.6  | 0.4520102   | 0.693  |
| DG 34:1 -(16:1) | 9410802.9 | 5651282.1 | 12105761  | 13179107  | 11926964  | 8892475.2 | 0.3713354   | 1.012  |

|                   |           |           |           |           |           |           |            |         |
|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|---------|
| DG 34:1 -(18:0)   | 7627445.3 | 4759401.7 | 7893369.6 | 7157678.6 | 7296517.9 | 8465445.5 | 0.4631568  | 0.657   |
| DG 34:1 -(18:1)   | 167782993 | 140669658 | 246624239 | 242133214 | 237998482 | 200824455 | 0.2893835  | 1.489   |
| DG 34:1 -(20:0)   | 131751.8  | 324615.4  | 272826.1  | 253303.6  | 267142.9  | 357326.7  | 0.4960737  | 0.559   |
| DG 34:2 -(16:0)   | 8007518.2 | 6161880.3 | 9911739.1 | 7007232.1 | 8140446.4 | 6580891.1 | 0.542135   | 0.443   |
| DG 34:2 -(16:1)   | 84736861  | 76823846  | 118052283 | 114529911 | 111164911 | 92316535  | 0.4242981  | 0.790   |
| DG 34:2 -(18:1)   | 139355183 | 128887265 | 202773261 | 202966696 | 184341429 | 158678317 | 0.397652   | 0.895   |
| DG 34:2 -(18:2)   | 10302044  | 8617435.9 | 13534022  | 11898839  | 12304911  | 8522970.3 | 0.9636001  | 0.002   |
| DG 36:0 -(16:0)   | 188102.2  | 186153.8  | 236195.7  | 359285.7  | 235535.7  | 286831.7  | 0.08372604 | 5.251   |
| DG 36:0 -(18:0)   | 1768759.1 | 1696837.6 | 2512173.9 | 1393660.7 | 1547053.6 | 1807920.8 | 0.2270012  | 2.034   |
| DG 36:0 -(20:0)   | 269416.1  | 275213.7  | 423804.3  | 351160.7  | 163928.6  | 172970.3  | 0.3032436  | 1.393   |
| DG 36:1 -(16:1)   | 725912.4  | 732393.2  | 986195.7  | 524732.1  | 756964.3  | 828910.9  | 0.4255195  | 0.786   |
| DG 36:1 -(18:0)   | 8194452.6 | 3938803.4 | 14448696  | 12242500  | 9150446.4 | 9168415.8 | 0.7015448  | 0.170   |
| DG 36:1 -(18:1)   | 10549781  | 11541026  | 15197283  | 15342411  | 13948036  | 11321980  | 0.5795313  | 0.363   |
| DG 36:1 -(20:0)   | 800875.9  | 728547    | 360000    | 1111517.9 | 932500    | 912970.3  | 0.07718021 | 5.597   |
| DG 36:2 -(18:0)   | 999051.1  | 484017.1  | 1448913   | 1336250   | 1281250   | 828019.8  | 0.623064   | 0.283   |
| DG 36:2 -(18:1)   | 37264964  | 35416752  | 49351413  | 44835804  | 39012143  | 38627030  | 0.9770349  | 0.001   |
| DG 36:2 -(18:2)   | 800583.9  | 786752.1  | 1056195.7 | 1178928.6 | 848928.6  | 973168.3  | 0.4116126  | 0.839   |
| DG 36:3 -(16:0)   | 12043.8   | 25555.6   | 0         | 9017.9    | 11607.1   | 0         | 0.5270203  | 0.479   |
| DG 36:3 -(18:0)   | 146131.4  | 88547     | 71630.4   | 89107.1   | 100178.6  | 81980.2   | 0.6405598  | 0.254   |
| DG 36:3 -(18:1)   | 4758467.2 | 4183418.8 | 4991304.3 | 3499107.1 | 3485089.3 | 3721584.2 | 0.01296218 | 18.220  |
| DG 36:3 -(18:2)   | 5452335.8 | 4341111.1 | 6264891.3 | 4566785.7 | 4248303.6 | 3911584.2 | 0.1323347  | 3.558   |
| DG 36:3 -(18:3)   | 128686.1  | 168803.4  | 82173.9   | 41875     | 121785.7  | 81584.2   | 0.2584312  | 1.733   |
| DG 36:4 -(18:1)   | 304452.6  | 177265    | 181304.3  | 261339.3  | 462232.1  | 373861.4  | 0.1130596  | 4.094   |
| DG 36:4 -(18:2)   | 1052992.7 | 797008.5  | 930652.2  | 860535.7  | 743750    | 621485.1  | 0.1413992  | 3.345   |
| DG 36:4 -(18:3)   | 409051.1  | 301965.8  | 489565.2  | 294464.3  | 512053.6  | 334455.4  | 0.8289335  | 0.053   |
| DG 38:1 -(18:1)   | 3085839.4 | 3167435.9 | 3113043.5 | 3207500   | 1493482.1 | 3164158.4 | 0.4256607  | 0.785   |
| DG 38:1 -(20:0)   | 680948.9  | 401367.5  | 922391.3  | 841339.3  | 1216517.9 | 864950.5  | 0.1886158  | 2.506   |
| DG 38:4 -(20:3)   | 27226.3   | 15042.7   | 17391.3   | 9017.9    | 0         | 0         | 0.02438948 | 12.410  |
| DG 38:5 -(16:0)   | 14306.6   | 28290.6   | 27826.1   | 27410.7   | 15357.1   | 0         | 0.3712702  | 1.012   |
| DG 38:5 -(20:3)   | 166642.3  | 108803.4  | 97826.1   | 78750     | 146785.7  | 159505    | 0.9109031  | 0.014   |
| DG 38:5 -(22:5)   | 47080.3   | 27179.5   | 35760.9   | 15089.3   | 4017.9    | 19703     | 0.03276297 | 10.270  |
| DG 38:6 -(16:0)   | 464525.5  | 914359    | 253152.2  | 330446.4  | 512053.6  | 176633.7  | 0.4012172  | 0.880   |
| DG 38:6 -(22:5)   | 7299.3    | 20341.9   | 49021.7   | 21071.4   | 0         | 5940.6    | 0.2974293  | 1.433   |
| dhCer 16:0        | 259416.1  | 110427.4  | 237826.1  | 239285.7  | 158035.7  | 0         | 0.4520158  | 0.693   |
| dhCer 18:0        | 27810.2   | 26410.3   | 13152.2   | 34642.9   | 60982.1   | 33366.3   | 0.1127667  | 4.103   |
| dhCer 20:0        | 18832.1   | 47350.4   | 2934.8    | 0         | 84107.1   | 13762.4   | 0.7584759  | 0.108   |
| HOD 34:2-PC-/16:0 | 874160.6  | 350854.7  | 220869.6  | 107232.1  | 606517.9  | 393465.3  | 0.6708059  | 0.210   |
| HOD 34:3-PC-/16:0 | 20799051  | 20560769  | 20739457  | 19178214  | 18878214  | 18728218  | 0.0002974  | 138.700 |
| HOD 34:3-PE-/16:0 | 50000     | 66581.2   | 12608.7   | 15625     | 41517.9   | 39802     | 0.5829498  | 0.356   |

|                                      |           |           |           |           |           |           |             |        |
|--------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|--------|
| HOD 34:3-PG-/HOT 34:2 PG             | 163503.6  | 172051.3  | 45434.8   | 97767.9   | 84464.3   | 77920.8   | 0.3843419   | 0.953  |
| HOD 36:4-PC-/18:1                    | 1337518.2 | 1207777.8 | 1465108.7 | 994732.1  | 1312946.4 | 821188.1  | 0.1439454   | 3.289  |
| HOD 36:4-PC-/18:2                    | 1069854   | 672393.2  | 978478.3  | 322232.1  | 762321.4  | 464356.4  | 0.0917021   | 4.881  |
| HOD 36:4-PE-/18:1                    | 55401.5   | 81794.9   | 18260.9   | 41785.7   | 18750     | 52970.3   | 0.5419486   | 0.443  |
| HOD 36:4-PG-/18:1                    | 643211.7  | 651453    | 213913    | 319642.9  | 365714.3  | 391584.2  | 0.3802321   | 0.971  |
| HOD 36:5-PC-/18:2                    | 5985.4    | 4529.9    | 652.2     | 1964.3    | 3660.7    | 6633.7    | 0.8706898   | 0.030  |
| HOD 36:5-PC-/18:3                    | 374890.5  | 550256.4  | 403260.9  | 479642.9  | 464196.4  | 567920.8  | 0.3884604   | 0.934  |
| HOD 36:5-PG-/HOT 36:4 PG             | 89854     | 52564.1   | 37391.3   | 35267.9   | 38125     | 39405.9   | 0.2262988   | 2.041  |
| HOD 36:6-PC-/18:3                    | 301824.8  | 122478.6  | 134239.1  | 61696.4   | 69821.4   | 32475.2   | 0.08978089  | 4.965  |
| HOT 34:2-PC-/16:0                    | 16493723  | 19311880  | 20449348  | 16124554  | 14757679  | 14744753  | 0.04842608  | 7.884  |
| HOT 34:3-PC-/16:0                    | 16770073  | 16078120  | 16163696  | 13224464  | 14821875  | 13685545  | 0.009686196 | 21.590 |
| HOT 34:3-PG-/16:0                    | 66058.394 | 80000     | 24239.13  | 54642.57  | 65178.571 | 69009.901 | 0.7389952   | 0.128  |
| HOT 36:4-PC-/18:1                    | 24306.569 | 25555.556 | 11847.826 | 53035.714 | 14107.143 | 16633.663 | 0.6100945   | 0.305  |
| HOT 36:4-PC-/18:2                    | 374890.5  | 550256.4  | 403260.9  | 479642.9  | 464196.4  | 567920.8  | 0.3884604   | 0.934  |
| HOT 36:4-PG-/18:1                    | 175328.47 | 196410.26 | 52608.696 | 51696.429 | 95089.286 | 92079.208 | 0.258402    | 1.733  |
| HOT 36:5-PG-/oPDA 36:4 PG            | 21532.8   | 28119.7   | 5978.3    | 3125      | 5803.6    | 11287.1   | 0.1665093   | 2.852  |
| HOT 36:6-PC-/18:3                    | 48686.1   | 50000     | 47065.2   | 41160.7   | 29642.9   | 46138.6   | 0.1248379   | 3.751  |
| HPOD keto 34:2-PC-/16:0              | 34817.5   | 111025.6  | 36847.8   | 52321.4   | 53035.7   | 59604     | 0.8259478   | 0.055  |
| HPOD keto 34:2-PC-/16:0              | 172627.7  | 164188    | 222826.1  | 214196.4  | 224642.9  | 185049.5  | 0.381575    | 0.965  |
| HPOD keto 34:2-PE-/16:0              | 75109.5   | 98717.9   | 65326.1   | 108839.3  | 98214.3   | 89901     | 0.1641181   | 2.894  |
| HPOD keto 34:2-PG-/16:0              | 39416.1   | 43076.9   | 21847.8   | 54910.7   | 32053.6   | 36732.7   | 0.5370217   | 0.455  |
| HPOD keto 34:3-PC-/16:0              | 6820073   | 6517350.4 | 5980000   | 5792142.9 | 5799910.7 | 6127425.7 | 0.1191336   | 3.911  |
| HPOD keto 34:3-PC-/16:0              | 660802.9  | 655982.9  | 600760.9  | 519375    | 651517.9  | 619901    | 0.3937338   | 0.912  |
| HPOD keto 34:3-PC-/18:3              | 2117226.3 | 2741880.3 | 4474565.2 | 4585982.1 | 893750    | 4329405.9 | 0.9143147   | 0.013  |
| HPOD keto 34:3-PE-/HPOT keto 34:2-PE | 627591.2  | 662735    | 574130.4  | 684642.9  | 671607.1  | 866336.6  | 0.1536639   | 3.089  |
| HPOD keto 34:3-PG-/16:0              | 537591.24 | 621196.58 | 576847.83 | 649107.14 | 732589.29 | 841386.14 | 0.05535879  | 7.170  |
| HPOD keto 36:4-PC-/18:1              | 2698686.1 | 1997948.7 | 2249891.3 | 2194375   | 2144642.9 | 2142079.2 | 0.4925564   | 0.569  |
| HPOD keto 36:4-PC-/18:1              | 459416.1  | 482991.5  | 421739.1  | 447232.1  | 537946.4  | 525148.5  | 0.2193959   | 2.117  |
| HPOD keto 36:4-PC-/18:2              | 1645985.4 | 1309743.6 | 1104565.2 | 1317500   | 1562410.7 | 302475.2  | 0.5212564   | 0.493  |
| HPOD keto 36:4-PC-/18:2              | 262408.8  | 321709.4  | 255108.7  | 266696.4  | 328303.6  | 294059.4  | 0.5798696   | 0.362  |
| HPOD keto 36:4-PE-/18:1              | 724671.5  | 889572.6  | 579565.2  | 953660.7  | 858660.7  | 1001782.2 | 0.1048355   | 4.368  |
| HPOD keto 36:4-PE-/18:2              | 232992.7  | 253589.7  | 254782.6  | 232321.4  | 244553.6  | 221287.1  | 0.2139485   | 2.179  |
| HPOD keto 36:4-PE-/18:3              | 138832.12 | 154786.32 | 113913.04 | 131696.43 | 153482.14 | 221683.17 | 0.3259398   | 1.251  |
| HPOD keto 36:4-PG-/18:1              | 565328.47 | 751623.93 | 824673.91 | 907589.29 | 804017.86 | 981089.11 | 0.1186833   | 3.924  |
| HPOD keto 36:4-PG-/18:2              | 153868.61 | 155128.21 | 189130.43 | 177500    | 191339.29 | 229801.98 | 0.1600161   | 2.968  |
| HPOD keto 36:5-PC-/18:2              | 252700.7  | 283247.9  | 224782.6  | 190267.9  | 290178.6  | 221980.2  | 0.597846    | 0.327  |
| HPOD keto 36:5-PC-/18:3              | 3274233.6 | 2904786.3 | 2831630.4 | 2606875   | 2870892.9 | 2522574.3 | 0.1227032   | 3.810  |
| HPOD keto 36:5-PC-/18:3              | 24598.5   | 28461.5   | 20000     | 23928.6   | 19732.1   | 16336.6   | 0.2558532   | 1.755  |

|                                      |           |           |           |           |           |           |             |        |
|--------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|--------|
| HPOD keto 36:5-PE-/18:3              | 49927.007 | 57777.778 | 56956.522 | 80535.714 | 85892.857 | 85346.535 | 0.000651754 | 92.620 |
| HPOD keto 36:5-PE-/HPOT keto 36:4 PE | 254525.5  | 265384.6  | 203478.3  | 329553.6  | 233839.3  | 290891.1  | 0.265343    | 1.674  |
| HPOD keto 36:5-PG-/18:2              | 259562.04 | 325982.91 | 254021.74 | 280892.86 | 320714.29 | 356732.67 | 0.28169     | 1.546  |
| HPOD keto 36:6-PC-/18:3              | 947080.3  | 694871.8  | 864673.9  | 606339.3  | 794642.9  | 641683.2  | 0.1755711   | 2.702  |
| HPOT keto 34:2-PC-/16:0              | 660802.9  | 655982.9  | 600760.9  | 519375    | 651517.9  | 619901    | 0.3937338   | 0.912  |
| HPOT keto 34:2-PG-/16:0              | 526934.31 | 618632.48 | 576847.83 | 649107.14 | 735178.57 | 829801.98 | 0.04879957  | 7.841  |
| HPOT keto 34:3-PC-/16:0              | 53047518  | 49862906  | 44425326  | 47274554  | 47361250  | 47897426  | 0.5604839   | 0.402  |
| HPOT keto 34:3-PC-/16:0              | 117299.3  | 132307.7  | 78478.3   | 76071.4   | 110892.9  | 69703     | 0.3105298   | 1.346  |
| HPOT keto 34:3-PE-/16:0              | 25839.416 | 28547.009 | 47934.783 | 39017.857 | 66607.143 | 53960.396 | 0.1456039   | 3.253  |
| HPOT keto 34:3-PG-/16:0              | 151240.88 | 178034.19 | 220652.17 | 271875    | 266517.86 | 311980.2  | 0.01559205  | 16.330 |
| HPOT keto 36:4-PC-/18:1              | 193795.6  | 193418.8  | 154239.1  | 156428.6  | 185982.1  | 188316.8  | 0.8405656   | 0.046  |
| HPOT keto 36:4-PC-/18:2              | 3274233.6 | 2904786.3 | 1378804.3 | 1300000   | 1052053.6 | 1609405.9 | 0.1173185   | 3.964  |
| HPOT keto 36:4-PE-/18:1              | 56861.314 | 53076.923 | 55869.565 | 48214.286 | 45535.714 | 37425.743 | 0.02829819  | 11.290 |
| HPOT keto 36:4-PG-/18:1              | 261970.8  | 358888.89 | 328695.65 | 410625    | 380446.43 | 525445.54 | 0.08080388  | 5.400  |
| HPOT keto 36:4-PG-/18:2              | 144452.55 | 310940.17 | 125326.09 | 176517.86 | 284821.43 | 258712.87 | 0.5285003   | 0.475  |
| HPOT keto 36:5-PG-/18:2              | 35839.416 | 57521.368 | 42934.783 | 43928.571 | 56250     | 76336.634 | 0.3047591   | 1.383  |
| HPOT keto 36:6-PC-/18:3              | 34525.5   | 48974.4   | 30108.7   | 75089.3   | 26517.9   | 7722.8    | 0.94878     | 0.005  |
| LPC 13:0                             | 49416.1   | 163675.2  | 314565.2  | 253839.3  | 229910.7  | 168118.8  | 0.6358375   | 0.262  |
| LPC 14:0                             | 8076642.3 | 4993162.4 | 14069457  | 12130714  | 12435268  | 8329207.9 | 0.5539772   | 0.416  |
| LPC 15:0                             | 746496.4  | 650170.9  | 1462826.1 | 807321.4  | 687678.6  | 702475.2  | 0.442365    | 0.725  |
| LPC 16:0                             | 14026788  | 10416923  | 20962717  | 19103304  | 20641339  | 15737129  | 0.3812535   | 0.966  |
| LPC 16:1                             | 39893796  | 28366752  | 63312174  | 60188661  | 51952946  | 39569307  | 0.6028051   | 0.318  |
| LPC 18:0                             | 1140583.9 | 729145.3  | 1611195.7 | 1083660.7 | 1394464.3 | 645643.6  | 0.7401258   | 0.126  |
| LPC 18:1                             | 39195839  | 26416581  | 60837391  | 58727232  | 50934464  | 37574257  | 0.588399    | 0.345  |
| LPC 18:2                             | 14800365  | 10596752  | 18063478  | 15727679  | 15956607  | 12186238  | 0.9587349   | 0.003  |
| LPC 18:3                             | 392700.7  | 422991.5  | 452391.3  | 496875    | 397946.4  | 394554.5  | 0.8599162   | 0.035  |
| LPC 20:0                             | 15401.5   | 25470.1   | 14565.2   | 24375     | 199821.4  | 8415.8    | 0.3906945   | 0.925  |
| LPC 20:1                             | 97153.3   | 23333.3   | 20326.1   | 75535.7   | 50178.6   | 68415.8   | 0.5352611   | 0.459  |
| LPC 20:2                             | 16569.3   | 9230.8    | 16847.8   | 13035.7   | 72500     | 14653.5   | 0.3857165   | 0.946  |
| LPC 20:3                             | 27956.2   | 28034.2   | 16521.7   | 17053.6   | 0         | 12178.2   | 0.08560258  | 5.159  |
| LPC 20:5                             | 5839.4    | 72649.6   | 21739.1   | 43839.3   | 17767.9   | 0         | 0.617779    | 0.292  |
| LPC 22:1                             | 20146     | 9658.1    | 34565.2   | 10892.9   | 16517.9   | 990.1     | 0.2324764   | 1.977  |
| LPC 22:6                             | 9635      | 16410.3   | 19891.3   | 6160.7    | 17857.1   | 23267.3   | 0.9427165   | 0.006  |
| LPC 26:0                             | 135328.5  | 96495.7   | 0         | 122767.9  | 92232.1   | 187920.8  | 0.3103567   | 1.347  |
| LPC(O-16:0)                          | 406204.4  | 106495.7  | 664021.7  | 753035.7  | 508839.3  | 401584.2  | 0.4451153   | 0.716  |
| LPC(O-18:0)                          | 344744.5  | 134871.8  | 777065.2  | 766160.7  | 504196.4  | 179207.9  | 0.8127114   | 0.064  |
| LPC(O-18:1)                          | 344890.5  | 322051.3  | 674565.2  | 651428.6  | 573750    | 434752.5  | 0.461139    | 0.663  |
| LPC(O-20:1)                          | 145839.4  | 77692.3   | 196304.3  | 165892.9  | 243303.6  | 94257.4   | 0.6394144   | 0.256  |

|                  |           |           |           |           |           |           |             |        |
|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|--------|
| LPC(O-24:2)      | 94379.6   | 58205.1   | 67608.7   | 64553.6   | 27232.1   | 43762.4   | 0.1388797   | 3.402  |
| LPE(14:0))       | 1097737.2 | 777094    | 1574673.9 | 1436428.6 | 1166071.4 | 775445.5  | 0.9406096   | 0.006  |
| LPE(16:0)        | 24217007  | 19993504  | 26377500  | 21817679  | 18649464  | 17911683  | 0.1413573   | 3.346  |
| LPE(18:0)        | 3360438   | 2230769.2 | 3450869.6 | 1545357.1 | 2310000   | 2203663.4 | 0.09651274  | 4.681  |
| LPE(18:1)        | 37572555  | 32011197  | 50273696  | 46774196  | 35402232  | 31949307  | 0.7989406   | 0.074  |
| LPE(18:2)        | 5296277.4 | 4930341.9 | 6888587   | 5913125   | 4717589.3 | 4617524.8 | 0.4426274   | 0.725  |
| M34:2-PC-/16:0   | 395180876 | 363748034 | 351048261 | 342870268 | 342812589 | 336958218 | 0.09316898  | 4.818  |
| M34:2-PC-/16:0   | 394306.57 | 407094.02 | 522282.61 | 325982.14 | 387321.43 | 498514.85 | 0.5961013   | 0.331  |
| M34:2-PC-/18:2   | 1160292   | 1162991.5 | 1193260.9 | 1130803.6 | 1363839.3 | 1273465.3 | 0.2889831   | 1.492  |
| M34:2-PE-/16:0   | 428978.1  | 411452.99 | 599347.83 | 498035.71 | 554464.29 | 598217.82 | 0.3504465   | 1.116  |
| M34:2-PE-/18:2   | 431970.8  | 490854.7  | 535434.78 | 558839.29 | 787232.14 | 649108.91 | 0.06995686  | 6.034  |
| M34:2-PG-/16:0   | 87080.3   | 50598.3   | 86087     | 61428.6   | 64553.6   | 52970.3   | 0.2976693   | 1.431  |
| M34:2-PG-/18:2   | 84525.5   | 75897.4   | 59456.5   | 64732.1   | 102589.3  | 69405.9   | 0.7088742   | 0.161  |
| M34:3-PC-/16:0   | 205288248 | 179579316 | 164971304 | 144733661 | 158990714 | 144623366 | 0.05633544  | 7.081  |
| M34:3-PE-/16:0   | 31751.825 | 14102.564 | 43260.87  | 13482.143 | 28482.143 | 30198.02  | 0.6023434   | 0.319  |
| M36:4-PC-/18:1   | 39896058  | 35002821  | 33049022  | 23547321  | 28926875  | 26943960  | 0.02087534  | 13.670 |
| M36:4-PC-/18:2   | 332481.75 | 404358.97 | 355434.78 | 268928.57 | 421785.71 | 346930.69 | 0.7287801   | 0.138  |
| M36:4-PE-/18:2   | 489416.06 | 420000    | 553913.04 | 415535.71 | 515089.29 | 506930.69 | 0.8722579   | 0.029  |
| M36:4-PG-/18:2   | 39708     | 70683.8   | 51304.3   | 40357.1   | 51160.7   | 25445.5   | 0.2719967   | 1.620  |
| M36:5-PC-/18:3   | 2145036.5 | 1607948.7 | 1478695.7 | 977767.9  | 1344375   | 1143564.4 | 0.06260717  | 6.556  |
| M36:6-PC-/18:3   | 26277.4   | 21453     | 5543.5    | 29553.6   | 5625      | 20198     | 0.9439353   | 0.006  |
| modPC 540.5/0.78 | 92481.8   | 23418.8   | 154347.8  | 77678.6   | 115178.6  | 98415.8   | 0.8672662   | 0.032  |
| modPC 666.4/1.90 | 46058.4   | 71282.1   | 126413    | 48928.6   | 130625    | 42970.3   | 0.8573074   | 0.037  |
| modPC 843.6/7.10 | 3430.7    | 17265     | 20108.7   | 0         | 16607.1   | 39802     | 0.7017777   | 0.169  |
| oddPC 29:0       | 10380073  | 9096923.1 | 10458044  | 7985625   | 8461696.4 | 7681980.2 | 0.01754043  | 15.210 |
| oddPC 31:0       | 25436788  | 24147863  | 24158913  | 19602768  | 19123036  | 17848416  | 0.00106708  | 71.660 |
| oddPC 31:1       | 66959489  | 67651880  | 65388370  | 53069643  | 53174732  | 48502970  | 0.000850249 | 80.680 |
| oddPC 33:0       | 6205985.4 | 6853675.2 | 7004782.6 | 5535982.1 | 5872142.9 | 5309703   | 0.01929991  | 14.350 |
| oddPC 33:1       | 66628613  | 67228889  | 62993696  | 52742857  | 52192143  | 51158515  | 0.000635075 | 93.880 |
| oddPC 33:2       | 42559051  | 42484274  | 38779783  | 30696429  | 35250536  | 30897129  | 0.009766168 | 21.490 |
| oddPC 33:3       | 4135255.5 | 3081453   | 3306304.3 | 2100803.6 | 2673214.3 | 2546237.6 | 0.0428324   | 8.582  |
| oddPC 35:1       | 20165620  | 21617180  | 21501196  | 17508036  | 18260625  | 17546931  | 0.003213736 | 39.900 |
| oddPC 35:3       | 7914817.5 | 8185128.2 | 7362500   | 4722678.6 | 5345089.3 | 5648811.9 | 0.002097904 | 50.160 |
| oddPC 35:4       | 474233.6  | 471623.9  | 595543.5  | 295267.9  | 385625    | 328613.9  | 0.0218825   | 13.280 |
| oddPC 35:5       | 112481.8  | 20427.4   | 53369.6   | 96785.7   | 19642.9   | 50594.1   | 0.8635523   | 0.034  |
| oddPC 37:4       | 176350.4  | 205384.6  | 149239.1  | 124107.1  | 76517.9   | 93168.3   | 0.02088114  | 13.670 |
| oddPC 37:6       | 93795.6   | 115641    | 150000    | 114732.1  | 211071.4  | 81485.1   | 0.7244094   | 0.143  |
| oddPC 39:5       | 47591.2   | 30769.2   | 0         | 20357.1   | 8392.9    | 22673.3   | 0.5723056   | 0.377  |
| oddPC 39:6       | 148613.1  | 95726.5   | 29673.9   | 69196.4   | 22232.1   | 62574.3   | 0.345093    | 1.144  |

|                    |           |           |           |           |           |           |             |         |
|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|---------|
| oddP C 39:7        | 796496.4  | 665213.7  | 629347.8  | 590000    | 598750    | 735544.6  | 0.4673957   | 0.644   |
| oPDA 34:2-PG-/16:0 | 48613.139 | 69743.59  | 24239.13  | 45625     | 65178.571 | 57623.762 | 0.5802333   | 0.361   |
| oPDA 34:3-PC-/18:3 | 2557007.3 | 2462136.8 | 2601630.4 | 1867500   | 2110267.9 | 2009505   | 0.002615363 | 44.580  |
| PC 26:0            | 9043576.6 | 8403247.9 | 9340543.5 | 7820267.9 | 6904196.4 | 7282574.3 | 0.01421074  | 17.260  |
| PC 28:0            | 41012336  | 38012051  | 37600978  | 28233750  | 30338482  | 30657426  | 0.002270525 | 48.090  |
| PC 30:0            | 49890511  | 48509658  | 48320435  | 40671875  | 41163036  | 40201188  | 0.000131507 | 210.300 |
| PC 32:0            | 64124964  | 47951880  | 51744348  | 46508571  | 45863839  | 46619109  | 0.1657249   | 2.866   |
| PC 32:1            | 1.096E+09 | 949320598 | 894489891 | 823483750 | 800763839 | 772320495 | 0.04326788  | 8.523   |
| PC 32:2            | 714605766 | 759194103 | 686336957 | 619474018 | 587793929 | 578263564 | 0.007095336 | 25.780  |
| PC 32:3            | 7523941.6 | 6919572.6 | 6176195.7 | 4118482.1 | 5242857.1 | 4881386.1 | 0.01420326  | 17.260  |
| PC 34:0            | 39407080  | 29774872  | 29731848  | 26926607  | 26941161  | 23915446  | 0.1049374   | 4.364   |
| PC 34:1            | 526784234 | 455642650 | 418366196 | 373336696 | 369518839 | 372850891 | 0.04049888  | 8.916   |
| PC 34:2            | 722742263 | 662743419 | 590456739 | 536332054 | 546671161 | 524416139 | 0.03393236  | 10.030  |
| PC 34:3            | 111489927 | 97736410  | 81599783  | 57655982  | 66711607  | 63167723  | 0.01889716  | 14.540  |
| PC 34:4            | 16517445  | 12425128  | 12039022  | 8745357.1 | 10262679  | 8776138.6 | 0.04418801  | 8.401   |
| PC 34:5            | 22481.8   | 79572.6   | 27500     | 19285.7   | 13125     | 19207.9   | 0.2301068   | 2.001   |
| PC 36:0            | 4284744.5 | 3784273.5 | 3380760.9 | 3212767.9 | 2584464.3 | 3357128.7 | 0.09608195  | 4.698   |
| PC 36:1            | 39466496  | 36233504  | 31654891  | 30757411  | 32092946  | 30801782  | 0.1189434   | 3.916   |
| PC 36:2            | 208114891 | 182903077 | 166959674 | 149641339 | 139804018 | 149805644 | 0.03339886  | 10.140  |
| PC 36:3            | 60267372  | 49016838  | 44360544  | 35052946  | 37733839  | 35523663  | 0.03442903  | 9.939   |
| PC 36:4            | 111821752 | 81995385  | 71465109  | 46801161  | 56191964  | 57489505  | 0.0495952   | 7.753   |
| PC 36:5            | 109263723 | 87146325  | 78250870  | 48961964  | 57864732  | 56272673  | 0.01805269  | 14.950  |
| PC 36:6            | 168394.2  | 262393.2  | 85652.2   | 52410.7   | 58125     | 70594.1   | 0.09504217  | 4.740   |
| PC 38:2            | 1659708   | 1375641   | 980543.5  | 673392.9  | 1054732.1 | 1000990.1 | 0.1358585   | 3.472   |
| PC 38:3            | 193868.6  | 91025.6   | 146087    | 115178.6  | 247053.6  | 36930.7   | 0.8838343   | 0.024   |
| PC 38:4            | 18686.1   | 22478.6   | 45760.9   | 0         | 5714.3    | 32475.2   | 0.2829759   | 1.536   |
| PC 38:5            | 48175.2   | 31709.4   | 0         | 13125     | 15357.1   | 9405.9    | 0.3813321   | 0.966   |
| PC 38:6            | 160948.9  | 104615.4  | 73913     | 338482.1  | 248928.6  | 281485.1  | 0.008455633 | 23.340  |
| PC 38:7            | 287810.2  | 223418.8  | 296739.1  | 240982.1  | 212500    | 100297    | 0.1572595   | 3.020   |
| PC 40:5            | 40583.9   | 20341.9   | 12500     | 28303.6   | 22500     | 19108.9   | 0.9004058   | 0.018   |
| PC 40:6            | 45401.5   | 35299.1   | 30543.5   | 84464.3   | 47232.1   | 37821.8   | 0.2622913   | 1.700   |
| PC 40:7            | 98467.2   | 96068.4   | 136739.1  | 81964.3   | 27053.6   | 199207.9  | 0.8906324   | 0.021   |
| PC(O-32:2)         | 7722043.8 | 8168803.4 | 6812500   | 4728750   | 5706339.3 | 4507920.8 | 0.008879353 | 22.700  |
| PC(O-34:4)         | 485839.4  | 265384.6  | 352065.2  | 259553.6  | 84732.1   | 150396    | 0.06847504  | 6.133   |
| PC(O-36:0)         | 3907080.3 | 2801880.3 | 2993478.3 | 2106071.4 | 2392321.4 | 2437326.7 | 0.06084011  | 6.695   |
| PC(O-36:2)         | 18313796  | 17914872  | 14745870  | 9512410.7 | 12060000  | 11010891  | 0.01046839  | 20.640  |
| PC(P-30:0)         | 4440365   | 4291880.3 | 4975543.5 | 4104642.9 | 3714017.9 | 3886435.6 | 0.04763074  | 7.975   |
| PC(P-36:5)         | 735109.5  | 575128.2  | 514782.6  | 696517.9  | 525892.9  | 510297    | 0.7463084   | 0.120   |
| PE 32:0            | 17247956  | 17929487  | 16842717  | 14872946  | 14450714  | 15012178  | 0.00204525  | 50.840  |

|                 |           |           |           |           |           |           |             |        |
|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|--------|
| PE 32:1         | 237484818 | 243279658 | 244171196 | 206988839 | 209591071 | 197340495 | 0.000980205 | 74.920 |
| PE 34:0         | 43958759  | 41572137  | 46956413  | 35512679  | 35359375  | 37024257  | 0.007593431 | 24.810 |
| PE 34:1         | 401046861 | 389968291 | 434603696 | 354046607 | 346661339 | 348633960 | 0.0124396   | 18.670 |
| PE 34:2         | 346979051 | 334245214 | 380795217 | 297941250 | 290788571 | 292068119 | 0.01269138  | 18.450 |
| PE 34:3         | 76113577  | 64712650  | 72089130  | 52336429  | 58277857  | 49321188  | 0.01420512  | 17.260 |
| PE 35:1         | 12525256  | 12132992  | 15209565  | 9970803.6 | 11053125  | 11285941  | 0.07409138  | 5.776  |
| PE 35:2         | 25839416  | 27483932  | 32513044  | 23332500  | 22913036  | 23436634  | 0.05557629  | 7.150  |
| PE 36:0         | 5636861.3 | 4813076.9 | 5885652.2 | 4352321.4 | 4122589.3 | 4281089.1 | 0.02269401  | 12.980 |
| PE 36:1         | 57491971  | 52846325  | 60681196  | 51065000  | 52192857  | 52151188  | 0.08687463  | 5.098  |
| PE 36:2         | 157669051 | 159036154 | 181564891 | 145613214 | 142621071 | 153202970 | 0.08618244  | 5.131  |
| PE 36:3         | 70605110  | 68882992  | 78503370  | 54173661  | 58903482  | 54501584  | 0.007259783 | 25.450 |
| PE 36:4         | 20607299  | 18850513  | 20995326  | 12487946  | 13167054  | 14135050  | 0.001072643 | 71.470 |
| PE 36:5         | 2020438   | 1528205.1 | 1512608.7 | 825892.9  | 940803.6  | 911881.2  | 0.009557675 | 21.760 |
| PE 38:3         | 563649.6  | 759829.1  | 684347.8  | 500803.6  | 482767.9  | 472079.2  | 0.03329404  | 10.160 |
| PE 38:4         | 24598.5   | 13846.2   | 23587     | 0         | 29732.1   | 16336.6   | 0.5961335   | 0.331  |
| PE 40:7         | 37153.3   | 43846.2   | 14130.4   | 0         | 0         | 10099     | 0.04197704  | 8.701  |
| PE(O-18:1/18:2) | 9493868.6 | 7559401.7 | 11073152  | 8231339.3 | 7616785.7 | 7541089.1 | 0.2032972   | 2.308  |
| PE(O-18:2/18:2) | 41897.8   | 153418.8  | 193369.6  | 46517.9   | 52053.6   | 43168.3   | 0.1440109   | 3.288  |
| PE(O-34:1)      | 8661386.9 | 8199914.5 | 10076630  | 7716964.3 | 8143839.3 | 6629306.9 | 0.1094467   | 4.211  |
| PE(O-34:2)      | 6361678.8 | 5982649.6 | 7311739.1 | 4888125   | 5676071.4 | 4957425.7 | 0.04238376  | 8.644  |
| PE(O-36:2)      | 27859562  | 29841624  | 34486087  | 23993929  | 24490000  | 24988317  | 0.03473333  | 9.881  |
| PE(O-36:5)      | 19854     | 19914.5   | 41304.3   | 22053.6   | 13571.4   | 7425.7    | 0.2016655   | 2.329  |
| PE(O-36:6)      | 832919.7  | 690427.4  | 813587    | 472053.6  | 636696.4  | 452277.2  | 0.02452114  | 12.370 |
| PE(P-34:1)      | 6361678.8 | 5982649.6 | 7311739.1 | 4888125   | 5676071.4 | 4957425.7 | 0.04238376  | 8.644  |
| PE(P-34:2)      | 76569.3   | 58717.9   | 24782.6   | 49017.9   | 9821.4    | 37722.8   | 0.3307738   | 1.223  |
| PE(P-36:1)      | 25839416  | 27483932  | 32513044  | 23384196  | 22913036  | 23436634  | 0.05611401  | 7.101  |
| PE(P-36:2)      | 9493868.6 | 7559401.7 | 11271957  | 8231339.3 | 7616785.7 | 7541089.1 | 0.2070589   | 2.262  |
| PE(P-38:5)      | 140219    | 142820.5  | 68804.3   | 39107.1   | 81071.4   | 32178.2   | 0.08112035  | 5.383  |
| PE(P-38:6)      | 4187372.3 | 3996495.7 | 4022608.7 | 3143839.3 | 3957767.9 | 3114455.4 | 0.07879739  | 5.507  |
| PE(P-40:6)      | 2060802.9 | 2177777.8 | 1853587   | 1458750   | 1420892.9 | 1367227.7 | 0.00334377  | 39.050 |
| PG 34:0         | 1762481.8 | 1901623.9 | 1815217.4 | 1444107.1 | 1196517.9 | 1467227.7 | 0.00878318  | 22.840 |
| PG 34:1         | 12057226  | 10262821  | 9922717.4 | 8390625   | 7864732.1 | 8854851.5 | 0.03003732  | 10.870 |
| PG 36:1         | 1354744.5 | 1532307.7 | 1240108.7 | 1013303.6 | 889285.7  | 860198    | 0.009422124 | 21.940 |
| PG 36:2         | 7116569.3 | 6103418.8 | 5485652.2 | 5169732.1 | 3989821.4 | 4499009.9 | 0.04530112  | 8.258  |
| PI 32:0         | 3993284.7 | 2875555.6 | 2184021.7 | 2248303.6 | 2382232.1 | 2093465.3 | 0.2194537   | 2.116  |
| PI 32:1         | 40995183  | 36499573  | 28978370  | 28570179  | 24804107  | 25120990  | 0.06565587  | 6.329  |
| PI 34:1         | 36341168  | 31234615  | 26673152  | 24915446  | 22990179  | 22066139  | 0.05005534  | 7.703  |
| PI 36:2         | 33692117  | 27380427  | 23406087  | 21551518  | 21750982  | 20047723  | 0.08160964  | 5.358  |
| PI 36:3         | 56620584  | 44548974  | 35233044  | 28327679  | 30646250  | 28564059  | 0.05926568  | 6.825  |

|                   |           |           |           |           |           |           |            |        |
|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|--------|
| PI 36:4           | 9890365   | 8441709.4 | 6787282.6 | 5392321.4 | 6050625   | 4503861.4 | 0.03800073 | 9.307  |
| PI 38:2           | 784890.5  | 634017.1  | 568152.2  | 567589.3  | 5022321   | 575445.5  | 0.1702278  | 2.789  |
| PI 38:3           | 363065.7  | 291111.1  | 267065.2  | 236339.3  | 274732.1  | 192475.2  | 0.1241131  | 3.771  |
| PI 38:4           | 20656.9   | 23931.6   | 3260.9    | 35357.1   | 55982.1   | 47623.8   | 0.02580159 | 11.980 |
| PI 38:5           | 13868.6   | 6923.1    | 1087      | 982.1     | 9375      | 990.1     | 0.4908351  | 0.574  |
| PS 34:0           | 1448175.2 | 1458034.2 | 536413    | 427142.9  | 504910.7  | 264257.4  | 0.07541851 | 5.697  |
| PS 36:1           | 19808832  | 15226667  | 4062282.6 | 4888660.7 | 5184910.7 | 4778514.9 | 0.1591018  | 2.985  |
| PS 36:2           | 47652920  | 38141197  | 11469783  | 13370714  | 15620000  | 12785050  | 0.1638741  | 2.899  |
| PS 38:3           | 353211.7  | 206581.2  | 0         | 62946.4   | 136339.3  | 52772.3   | 0.3870919  | 0.940  |
| PS 38:4           | 33138.7   | 51111.1   | 26195.7   | 446.4     | 625       | 26237.6   | 0.07086002 | 5.976  |
| TG 14:0 16:0 18:2 | 630494526 | 669751966 | 759477391 | 581729911 | 568705804 | 571942970 | 0.04279537 | 8.587  |
| TG 14:0 16:1 18:1 | 535521898 | 549114444 | 615328696 | 479630625 | 465754107 | 510458119 | 0.04369724 | 8.466  |
| TG 14:0 16:1 18:2 | 74904015  | 76900940  | 93190109  | 61805625  | 70173304  | 66145347  | 0.0675003  | 6.199  |
| TG 14:0 18:0 18:1 | 59737883  | 66918974  | 35529348  | 58514554  | 22126339  | 22946436  | 0.270761   | 1.630  |
| TG 14:0 18:2 18:2 | 230948.9  | 152906    | 236087    | 96607.1   | 241607.1  | 226930.7  | 0.7493702  | 0.117  |
| TG 14:1 16:0 18:1 | 40544380  | 46924957  | 133421848 | 104736071 | 91062500  | 104773168 | 0.4301815  | 0.768  |
| TG 14:1 16:1 18:0 | 1.567E+09 | 1.696E+09 | 1.83E+09  | 1.446E+09 | 1.34E+09  | 1.432E+09 | 0.02454911 | 12.360 |
| TG 14:1 18:0 18:2 | 2523065.7 | 2262991.5 | 3556521.7 | 3186696.4 | 6131607.1 | 3363564.4 | 0.2337074  | 1.964  |
| TG 14:1 18:1 18:1 | 32043.8   | 427350.4  | 108804.3  | 159285.7  | 18660.7   | 188019.8  | 0.6360887  | 0.261  |
| TG 15:0 18:1 16:0 | 108613.1  | 0         | 8587      | 71875     | 51160.7   | 12475.2   | 0.8831162  | 0.025  |
| TG 15:0 18:1 18:1 | 675401.5  | 627777.8  | 616087    | 445535.7  | 316785.7  | 491881.2  | 0.01613838 | 15.990 |
| TG 16:0 16:0 16:0 | 97078540  | 109914957 | 114342283 | 103131071 | 88310625  | 80965248  | 0.1216602  | 3.839  |
| TG 16:0 16:0 18:0 | 21970365  | 27405043  | 26078370  | 23567143  | 11130357  | 10018218  | 0.09184627 | 4.875  |
| TG 16:0 16:0 18:1 | 3375036.5 | 4664957.3 | 4567282.6 | 2775892.9 | 3246339.3 | 3252277.2 | 0.06648643 | 6.270  |
| TG 16:0 16:0 18:2 | 6980365   | 6661111.1 | 20597391  | 6279196.4 | 14378661  | 13268812  | 0.9851243  | 0.000  |
| TG 16:0 16:1 18:1 | 5438394.2 | 6583418.8 | 6842608.7 | 5629375   | 5803392.9 | 6096039.6 | 0.3807717  | 0.968  |
| TG 16:0 18:0 18:1 | 59024380  | 108557094 | 58420544  | 53022768  | 34311964  | 36052079  | 0.1246996  | 3.755  |
| TG 16:0 18:1 18:1 | 4514671.5 | 5233162.4 | 5572173.9 | 4505714.3 | 4380446.4 | 6134059.4 | 0.8844064  | 0.024  |
| TG 16:0 18:1 18:2 | 327445.3  | 400085.5  | 417717.4  | 302767.9  | 359464.3  | 305742.6  | 0.1497534  | 3.167  |
| TG 16:0 18:2 18:2 | 164160.6  | 251623.9  | 122717.4  | 222232.1  | 170178.6  | 231386.1  | 0.5402058  | 0.447  |
| TG 16:1 16:1 16:1 | 544308905 | 561594786 | 630601957 | 504186339 | 493976607 | 519528119 | 0.05619388 | 7.093  |
| TG 16:1 16:1 18:0 | 28997226  | 31229145  | 42371739  | 28500625  | 29610982  | 35104158  | 0.5349839  | 0.460  |
| TG 16:1 16:1 18:1 | 32561314  | 36603248  | 43274783  | 33790625  | 34746518  | 39146733  | 0.6768423  | 0.201  |
| TG 16:1 18:1 18:1 | 35266423  | 35700855  | 49396413  | 36790893  | 38025000  | 47227525  | 0.9263327  | 0.010  |
| TG 16:1 18:1 18:2 | 2711824.8 | 2434444.4 | 5661195.7 | 2660892.9 | 11846518  | 5588712.9 | 0.345706   | 1.141  |
| TG 17:0 16:0 16:1 | 76938029  | 98935385  | 84180326  | 76551696  | 72030089  | 75574455  | 0.144803   | 3.271  |
| TG 17:0 16:0 18:0 | 3445620.4 | 6447008.5 | 3920000   | 4506964.3 | 4204910.7 | 4150792.1 | 0.7526708  | 0.114  |
| TG 17:0 17:0 17:0 | 3174671.5 | 4165470.1 | 2765326.1 | 3332321.4 | 3427321.4 | 3391584.2 | 0.9725453  | 0.001  |
| TG 17:0 18:1 14:0 | 19571971  | 24934188  | 21418044  | 19981339  | 18069464  | 19664753  | 0.1787818  | 2.652  |

|                   |           |           |           |           |           |           |             |        |
|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|--------|
| TG 17:0 18:1 16:0 | 12858248  | 18501709  | 15449239  | 12354107  | 19445179  | 14553069  | 0.9570205   | 0.003  |
| TG 17:0 18:1 16:1 | 15497153  | 16956496  | 17988478  | 14367946  | 14165089  | 17637822  | 0.3470592   | 1.133  |
| TG 17:0 18:1 18:1 | 855182.5  | 997435.9  | 820760.9  | 1189196.4 | 778214.3  | 940000    | 0.5841013   | 0.354  |
| TG 17:0 18:2 16:0 | 27540073  | 32246325  | 28521630  | 24370089  | 24639643  | 26549505  | 0.05556407  | 7.151  |
| TG 18:0 18:0 18:0 | 304525.5  | 271196.6  | 322173.9  | 317767.9  | 170446.4  | 338118.8  | 0.6863361   | 0.189  |
| TG 18:0 18:0 18:1 | 1717080.3 | 3172222.2 | 1811195.7 | 3300892.9 | 2347857.1 | 1529108.9 | 0.8301572   | 0.052  |
| TG 18:0 18:1 18:1 | 3664671.5 | 11226239  | 3179130.4 | 2476517.9 | 2002767.9 | 2120495   | 0.2166787   | 2.147  |
| TG 18:0 18:2 18:2 | 40219     | 11282.1   | 34565.2   | 34642.9   | 18214.3   | 130792.1  | 0.4197964   | 0.807  |
| TG 18:1 14:0 16:0 | 485358029 | 561037949 | 554505326 | 498236250 | 413928393 | 414283960 | 0.06900065  | 6.097  |
| TG 18:1 18:1 18:1 | 250656.9  | 229658.1  | 290760.9  | 91250     | 199285.7  | 132079.2  | 0.03273679  | 10.270 |
| TG 18:1 18:1 18:2 | 207518.2  | 96666.7   | 62500     | 49821.4   | 19285.7   | 224752.5  | 0.7698867   | 0.098  |
| TG 18:1 18:2 18:2 | 2992.7    | 37179.5   | 10000     | 0         | 0         | 0         | 0.1839589   | 2.573  |
| TG 48:0           | 46913942  | 52399915  | 47269674  | 39552500  | 33949732  | 33776139  | 0.007249388 | 25.470 |
| TG 48:1           | 164514015 | 177732821 | 186932174 | 148161786 | 132334732 | 132367228 | 0.009802697 | 21.440 |
| TG 48:2           | 80404599  | 76567350  | 85193261  | 63469911  | 61652500  | 67153366  | 0.005018251 | 31.270 |
| TG 48:3           | 36990073  | 40431966  | 41958370  | 31656429  | 32390625  | 35573465  | 0.02559527  | 12.040 |
| TG 49:1           | 6306934.3 | 5606068.4 | 6853804.3 | 5206964.3 | 5459910.7 | 6153168.3 | 0.2300537   | 2.002  |
| TG 50:0           | 27762847  | 33635983  | 29193478  | 24392679  | 9178571.4 | 10506931  | 0.04013028  | 8.971  |
| TG 50:1           | 106276204 | 115199915 | 61127609  | 93400000  | 40514286  | 43302079  | 0.2169026   | 2.145  |
| TG 50:2           | 64464380  | 68555470  | 72122500  | 58767411  | 52781696  | 65158218  | 0.08714236  | 5.086  |
| TG 50:3           | 20103723  | 20226239  | 23291739  | 18187768  | 17085268  | 20766535  | 0.1692936   | 2.805  |
| TG 50:4           | 556934.3  | 1131880.3 | 1488804.3 | 910714.3  | 3175178.6 | 1605643.6 | 0.3107319   | 1.345  |
| TG 51:0           | 952116.8  | 1751709.4 | 1355434.8 | 1456160.7 | 1380982.1 | 1535247.5 | 0.6800052   | 0.197  |
| TG 51:2           | 4082408.8 | 3913247.9 | 4600434.8 | 2924642.9 | 3567500   | 4434455.4 | 0.3141488   | 1.323  |
| TG 52:1           | 17029562  | 27634274  | 16381630  | 15477232  | 10756518  | 14801980  | 0.1652533   | 2.874  |
| TG 52:2           | 18027226  | 19326068  | 22579565  | 15288304  | 7028482.1 | 19112772  | 0.1811814   | 2.615  |
| TG 52:4           | 233941.6  | 283418.8  | 284565.2  | 222410.7  | 827232.1  | 382376.2  | 0.3120675   | 1.336  |
| TG 53:2           | 16276350  | 28321111  | 18355544  | 14912321  | 15642679  | 17134555  | 0.2489284   | 1.817  |
| TG 54:1           | 594087.6  | 828974.4  | 395652.2  | 621785.7  | 68928.6   | 100891.1  | 0.1924001   | 2.452  |
| TG 54:2           | 9854      | 35299.1   | 7500      | 37857.1   | 14821.4   | 19207.9   | 0.6026968   | 0.318  |
| TG 54:3           | 1263211.7 | 1341025.6 | 1254456.5 | 1124285.7 | 1370535.7 | 1770198   | 0.5157417   | 0.507  |
| TG 54:4           | 276204.4  | 135213.7  | 39565.2   | 274107.1  | 339821.4  | 200099    | 0.2035415   | 2.305  |
| TG 54:5           | 172627.7  | 133589.7  | 86630.4   | 51160.7   | 93482.1   | 46039.6   | 0.0811771   | 5.380  |
| TG 54:6           | 199124.1  | 232051.3  | 338587    | 206250    | 203660.7  | 211782.2  | 0.3066598   | 1.371  |
| TG 56:6           | 76715.3   | 142649.6  | 244347.8  | 86071.4   | 91071     | 136930.7  | 0.2763682   | 1.586  |
| TG 56:8           | 518978.1  | 423589.7  | 645108.7  | 423482.1  | 379107.1  | 515940.6  | 0.3019053   | 1.402  |

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199