

1
2
3
4
5
6 **PML-Dependent Memory of Type I Interferon Treatment Results in a Restricted**
7 **Form of HSV Latency**
8
9

10 Jon B. Suzich¹, Sean R. Cuddy², Hiam Baidas¹, Sara Dochnal¹, Eugene Ke¹, Austin R.
11 Schinlever¹, Aleksandra Babnis¹, Chris Boutell³ and Anna R. Cliffe^{1*}

12
13 1. Department of Microbiology, Immunology and Cancer Biology, University of
14 Virginia, Charlottesville, VA, 22908.

15 2. Neuroscience Graduate Program, University of Virginia, Charlottesville, VA,
16 22908

17 3. MRC-University of Glasgow Centre for Virus Research (CVR), Garscube
18 Campus, Glasgow, Scotland, United Kingdom

19
20 * Correspondence to Anna R. Cliffe, cliffe@virginia.edu

21

22 **Abstract**

23 Herpes simplex virus (HSV) establishes latent infection in long-lived neurons.
24 During initial infection, neurons are exposed to multiple inflammatory cytokines but the
25 effects of immune signaling on the nature of HSV latency is unknown. We show that
26 initial infection of primary murine neurons in the presence of type I interferon (IFN)
27 results in a form of latency that is restricted for reactivation. We also found that the
28 subnuclear condensates, promyelocytic leukemia-nuclear bodies (PML-NBs), are
29 absent from primary sympathetic and sensory neurons but form with type I IFN
30 treatment and persist even when IFN signaling resolves. HSV-1 genomes colocalized
31 with PML-NBs throughout a latent infection of neurons only when type I IFN was
32 present during initial infection. Depletion of PML prior to or following infection did not
33 impact the establishment latency; however, it did rescue the ability of HSV to reactivate
34 from IFN-treated neurons. This study demonstrates that viral genomes possess a
35 memory of the IFN response during *de novo* infection, which results in differential
36 subnuclear positioning and ultimately restricts the ability of genomes to reactivate.

37

38

39

40

41

42

43

44

45 **Introduction**

46 Herpes simplex virus-1 (HSV-1) is a ubiquitous pathogen that persists in the form
47 of a lifelong latent infection in the human host. HSV-1 can undergo a productive lytic
48 infection in a variety of cell types; however, latency is restricted to post-mitotic neurons,
49 most commonly in sensory, sympathetic and parasympathetic ganglia of the peripheral
50 nervous system (Bloom, 2016). During latent infection, the viral genome exists as an
51 episome in the neuronal nucleus, and there is considerable evidence that on the
52 population level viral lytic gene promoters assemble into repressive heterochromatin
53 (Cliffe et al., 2009, Knipe and Cliffe, 2008). The only region of the HSV genome that
54 undergoes active transcription, at least in a fraction of latently infected cells, is the
55 latency associated transcript (LAT) locus (Kramer and Coen, 1995, Stevens et al.,
56 1987). Successful establishment of a latent gene expression program requires a
57 number of molecular events, likely influenced by both cellular and viral factors, and is
58 not uniform (Efstathiou and Preston, 2005). Significant heterogeneity exists in
59 expression patterns of both lytic and latent transcripts in latently-infected neurons, as
60 well as in the ability of latent genomes to reactivate in response to different stimuli
61 (Proenca et al., 2008, Sawtell, 1997, Bertke et al., 2011, Nicoll et al., 2016, Ma et al.,
62 2014, Catez et al., 2012, Maroui et al., 2016). This heterogeneity could arise from viral
63 genome copy number, exposure to different inflammatory environments or intrinsic
64 differences in the neurons themselves. Furthermore, there is growing evidence that
65 heterogeneity in latency may ultimately be reflected in the association of viral genomes
66 with different nuclear domains or cellular proteins (Catez et al., 2012, Maroui et al.,
67 2016). However, what determines the subnuclear distribution of latent viral genomes is

68 not known. In addition, it is currently unclear whether viral genome association with
69 certain nuclear domains or cellular proteins results in an increased or decreased ability
70 of the virus to undergo reactivation. The aim of this study was to determine whether the
71 presence of interferon during initial HSV-1 infection can intersect with the latent viral
72 genome to regulate the type of gene silencing and ultimately the ability to undergo
73 reactivation. Because the fate of viral genomes and their ability to undergo reactivation
74 can be readily tracked, latent HSV-1 infection of neurons also serves as an excellent
75 system to explore how exposure to innate immune cytokines can have a lasting impact
76 on peripheral neurons.

77

78 Latent HSV-1 genomes have been shown to associate with Promyelocytic
79 leukemia nuclear bodies (PML-NBs) in mouse models of infection, as well as in human
80 autopsy material (Catez et al., 2012, Maroui et al., 2016). PML-NBs are heterogenous,
81 phase-separated nuclear condensates that have been associated with the
82 transcriptional activation of cellular genes (Lallemand-Breitenbach and de The, 2010,
83 Bernardi and Pandolfi, 2007, McFarlane et al., 2019, Wang et al., 2004, Kim and Ahn,
84 2015), but also can recruit repressor proteins, including ATRX, Daxx and Sp100, that
85 promote transcriptional repression and inhibition of both DNA and RNA virus replication
86 (Zhong et al., 2000, Garrick et al., 2004, Xu and Roizman, 2017, Everett and Chelbi-
87 Alix, 2007, Bishop et al., 2006). In the context of lytic infection of non-neuronal cells,
88 PML-NBs have been shown to closely associate with HSV-1 genomes (Maul et al.,
89 1996, Maul, 1998), and the HSV-1 viral regulatory protein ICP0 is known to disrupt the
90 integrity of these structures by targeting PML and other PML-NB associated proteins for

91 degradation (Everett and Maul, 1994, Boutell et al., 2002, Chelbi-Alix and de The,
92 1999). PML-NBs entrapment of HSV-1 genomes during lytic infection of fibroblasts
93 (Alandijany et al., 2018) is hypothesized to create a transcriptionally repressive
94 environment for viral gene expression, as PML directly contributes to the cellular
95 repression of ICP0-null mutant viruses (Everett et al., 2006). In the context of latency,
96 neurons containing PML-encased latent genomes exhibit decreased expression levels
97 of the LAT (Catez et al., 2012), suggesting that they are more transcriptionally silent
98 than latent genomes localized to other nuclear domains and raising the question as to
99 whether PML-NB-associated genomes are capable of undergoing reactivation. Studies
100 have shown that replication-defective HSV genomes associated with PML-NBs are
101 capable of derepressing following induced expression of ICP0 in fibroblasts (Cohen et
102 al., 2018) and following addition of the histone deacetylase inhibitor trichostatin A (TSA)
103 in cultured adult TG neurons (Maroui et al., 2016). However, it is not known if
104 replication-competent viral genomes associated with PML-NBs are capable of
105 undergoing reactivation triggered by activation of cellular signaling pathways in the
106 absence of viral protein.

107

108 PML-NBs can undergo significant changes in number, size and localization
109 depending on cell type, differentiation stage and cell-cycle phase, as well as in
110 response to cellular stress and soluble factors (Lallemand-Breitenbach and de The,
111 2010, Bernardi and Pandolfi, 2007). Interferon (IFN) treatment directly induces the
112 transcription of PML, Daxx, Sp100 and other PML-NB constituents, which leads to
113 elevated protein synthesis and a robust increase in both size and number of PML-NBs

114 (Chelbi-Alix et al., 1995, Stadler et al., 1995, Greger et al., 2005, Shalginskikh et al.,
115 2013, Grotzinger et al., 1996). During HSV-1 infection, type I IFNs are among the first
116 immune effectors produced and restrict HSV viral replication and spread both *in vitro*
117 and *in vivo* through multiple pathways (Jones et al., 2003, Mikloska et al., 1998,
118 Hendricks et al., 1991, Mikloska and Cunningham, 2001, Sainz and Halford, 2002).
119 Although type I IFNs are elevated within peripheral ganglia during HSV-1 infection (Carr
120 et al., 1998) and have been linked with control of lytic HSV-1 replication, whether type I
121 IFN exposure modulates entry into latency is not known. Importantly, exposure to IFN
122 and other cytokines has also been shown to generate innate immune memory or
123 'trained immunity' in fibroblasts and immune cells (Kamada et al., 2018, Moorlag et al.,
124 2018), and PML-NBs themselves are potentially important in the host innate immune
125 response. A previous study found that the histone chaperone HIRA is re-localized to
126 PML-NBs in response to the innate immune defenses induced by HSV-1 infection, and
127 in this context, PML was required for the recruitment of HIRA to ISG promoters for
128 efficient transcription (McFarlane et al., 2019). Prior exposure to type I interferons has
129 also been shown to promote a transcriptional memory response in fibroblasts and
130 macrophages (Kamada et al., 2018). This interferon memory lead to faster and more
131 robust transcription of ISGs following restimulation and coincided with acquisition of
132 certain chromatin marks and accelerated recruitment of transcription and chromatin
133 factors (Kamada et al., 2018). Thus far, long term memory of cytokine exposure has
134 only been investigated in non-neuronal cells, but it is conceivable that neurons, being
135 non-mitotic and long-lived cells, also possess unique long-term responses to prior
136 cytokine exposure.

137

138 Although *in vivo* models are incredibly powerful tools to investigate the
139 contribution of the host immune response to HSV infection, they are problematic for
140 investigating how individual components of the host's immune response specifically
141 regulate neuronal latency. Conversely, *in vitro* systems provide a simplified model that
142 lack many aspects of the host immune response. Therefore, to investigate the role of
143 type I IFN on HSV-1 latency and reactivation, we utilized a model of latency in primary
144 murine sympathetic neurons (Cliffe et al., 2015), which allowed us to manipulate
145 conditions during initial HSV-1 infection and trigger synchronous robust reactivation.
146 Using this model, we show that primary neurons isolated from mouse peripheral ganglia
147 are largely devoid of PML-NBs but PML-NBs form following type I IFN exposure and
148 persist even when ISG gene expression and production of other antiviral proteins have
149 returned to baseline. Latency can be established in the presence of acyclovir, indicating
150 that neither exogenous type I IFN nor PML-NBs are essential for HSV gene silencing
151 and entry into latency in this model system. Importantly, the presence of IFN α
152 specifically at the time of initial infection results in the entrapment of viral genomes in
153 PML-NBs and a more restrictive form of latency that is less able to undergo reactivation.
154 This study therefore demonstrates how the viral latent genome has a long-term memory
155 of the innate response during *de novo* HSV infection that results in entrapment of
156 genomes in PML-NBs and a more repressive form of latency.

157

158

159 **Results**

160 Interferon induces the formation of PML-NBs in primary sympathetic and sensory
161 neurons isolated from postnatal and adult mice.

162 We initially set out to investigate the contribution of PML-NBs to HSV latency and
163 reactivation using primary sympathetic and sensory neurons that have been well
164 characterized as *in vitro* models of HSV latency and reactivation (Camarena, 2011,
165 Cliffe et al., 2015, Ives and Bertke, 2017, Wilcox and Johnson, 1987, Wilcox et al.,
166 1990, Cuddy et al., 2020). In addition, primary neuronal systems allow for much more
167 experimental control of specific conditions during *de novo* infection and can be easily
168 manipulated either immediately prior to or following infection. Peripheral neurons were
169 isolated from the superior cervical ganglia (SCG) or trigeminal ganglia (TG) from young
170 (post-natal day; P1) or adult (>P28) mice and cultured for 6 days prior to staining. PML-
171 NBs were defined as punctate nuclear structures by staining for PML protein. Strikingly,
172 we observed that both SCG and TG neurons were largely devoid of PML-NBs (Fig. 1A).

173

174 In certain cell types, the transcription of certain PML-NB associated proteins,
175 including PML, can be induced by either type I or type II interferon (IFN) treatment,
176 which is correlated with an increase in PML-NB size and/or number per cell (Chelbi-Alix
177 et al., 1995, Stadler et al., 1995). Therefore, we were interested in determining whether
178 exposure of primary sensory or sympathetic neurons to different types of IFN resulted in
179 PML-NB formation. Type I IFN treatment using IFN-alpha (IFN α) or IFN-beta (Fig. S1A)
180 led to a significant induction of PML-NBs in both sensory and sympathetic neurons
181 isolated from postnatal and adult mice. Representative images of IFN α -treated neurons

182 are shown (Fig. 1B) and number of PML-NBs per neurons are quantified (Fig. 1C-1F).
183 The increase in PML-NBs was comparable for both 150 IU/ml and 600 IU/ml of IFN α .
184 Type II IFN (IFN γ) led to a more variable response with a small but significant increase
185 in PML-NBs in a subpopulation of sympathetic neurons. However, IFN γ treatment of
186 sensory neurons did not result in the formation of PML-NBs. Exposure of neurons to
187 IFN-lambda 2 (IFN- λ 2), a type III IFN, did not induce the formation of PML-NBs in either
188 sympathetic or sensory neuron cultures (Fig. 1C-1F; Fig. S1B). Therefore, primary
189 sympathetic and sensory neurons are largely devoid of PML-NBs but can form bodies
190 upon exposure to type I IFNs.

191

192 The absence of PML-NBs in untreated primary neurons prompted us to
193 investigate other known components of PML-NBs. We were particularly interested in
194 ATRX and Daxx because like PML they have previously been found to be involved in
195 restricting HSV lytic replication in non-neuronal cells (McFarlane et al., 2019, Alandijany
196 et al., 2018, Lukashchuk and Everett, 2010, Cabral et al., 2018). Therefore, we
197 investigated the localization of ATRX and Daxx in primary peripheral neurons. ATRX is
198 a multifunctional, heterochromatin associated protein that is localized to PML-NBs in
199 human and mouse mitotic cells and is largely characterized as interacting with the Daxx
200 histone chaperone (Clynes et al., 2013, Lewis et al., 2010). In untreated neurons, we
201 observed abundant ATRX staining throughout the nucleus in regions that also stained
202 strongly with Hoechst (Fig. S1C, D). This potential co-localization of ATRX with regions
203 of dense chromatin is consistent with a previous study demonstrating that in neurons
204 ATRX binds certain regions of the cellular genome associated with the constitutive

205 heterochromatin modification H3K9me3 (Noh et al., 2015). Importantly, this distribution
206 of ATRX differs from what is seen in murine dermal fibroblasts (Fig. S1C, D) and other
207 non-neuronal cells, where there is a high degree of colocalization between ATRX and
208 PML (Alandijany et al., 2018). Following treatment with IFN α , we found a redistribution
209 of ATRX staining and colocalization between ATRX and the formed PML-NBs, but the
210 majority of ATRX staining remained outside the context of PML-NBs (Fig. S1C, D).
211 Similar to PML, sympathetic SCG and sensory TG neurons isolated from both postnatal
212 and adult mice were devoid of discrete puncta of Daxx staining (Fig. S1D), and we did
213 not observe extensive Daxx staining in untreated neurons as we did for ATRX. We were
214 unable to directly co-stain for Daxx and PML; however, treatment of neurons with IFN α
215 did induce punctate Daxx staining that strongly colocalized with puncta of ATRX (Fig.
216 S1D), which given our previous observation of ATRX co-localization with PML following
217 type I IFN treatment we used as a correlate for PML-NBs. Therefore, PML-NBs
218 containing their well characterized associated proteins are not present in cultured
219 primary neurons but form in response to type I IFN exposure.

220

221 Type I IFN treatment specifically at time of infection restricts reactivation of HSV-1 from
222 primary sympathetic neurons without affecting initial infectivity or LAT expression.

223 Because we observed that primary SCG neurons are largely devoid of PML-NBs
224 and that PML-NBs form upon treatment with type I IFN treatment, we first wanted to
225 clarify that latency was maintained in the absence of IFN and presumably without PML-
226 NB formation, consistent with our previous data (Cuddy et al., 2020). SCG neurons
227 were infected at a multiplicity of infection (MOI) of 7.5 plaque forming units (PFU)/cell

228 with HSV-1 Us11-GFP presence of acyclovir (ACV). The ACV was removed after 6
229 days and the neuronal cultures were monitored to ensure the no GFP-positive neurons
230 were present (Fig. 2A). We found that latency could be established and maintained for
231 up to 5 days following removal of ACV (Fig. 2B). Reactivation was triggered by PI3K
232 inhibition using LY294002, as previously described (Cliffe et al., 2015, Camarena, 2011,
233 Kim et al., 2012, Kobayashi et al., 2012), and quantified based on the number of Us11-
234 GFP neurons in the presence of WAY-150138 which blocks packaging of progeny
235 genomes and thus cell-to-cell spread (Cliffe et al., 2015, van Zeijl et al., 2000). These
236 data therefore indicate that exogenous IFN is not required to induce a latent state in this
237 model system.

238

239 We next turned our attention to whether type I IFN treatment at the time of
240 infection impacted the ability of HSV to establish latency or reactivate in this model
241 system. SCG neurons were pre-treated with IFN α (600 IU/ml) for 18h and during the
242 initial 2h HSV inoculation. Following inoculation, IFN α was washed out and an IFNAR1
243 blocking antibody was used to prevent subsequent type I IFN signaling through the
244 receptor. Reactivation was induced and initially quantified based on the number of GFP
245 positive neurons at 3-days post-stimuli. We found that full reactivation was restricted in
246 neurons exposed to type I IFN just prior to and during *de novo* infection (Fig. 2C). We
247 further confirmed this IFN α -mediated restriction of latency by the induction of lytic
248 mRNAs upon reactivation. IFN α treatment at the time of infection significantly
249 decreased the expression of immediate early gene (ICP27), early gene (ICP8) and late
250 gene (gC) at 3 days post-reactivation (Fig. 2D, S2A, B). There were very few GFP-

251 positive neurons and little to no viral gene expression in mock reactivated controls,
252 further indicating that latency can be established in the presence and absence of IFN.

253

254 Reactivation of HSV in this system proceeds over two phases. GFP-positive
255 neurons is a readout for full reactivation or Phase II. However, we and others have
256 observed an initial wave of lytic gene expression that occurs prior to and independently
257 of viral DNA replication at around 20 hours post-stimulus, termed Phase I (Cliffe and
258 Wilson, 2017, Kim et al., 2012, Du et al., 2011, Cliffe et al., 2015). Therefore, to
259 determine if IFN α treatment at the time of infection restricted the Phase I wave of lytic
260 we carried out RT-qPCR to detect representative immediate-early (ICP27), early (ICP8),
261 and late (gC) transcripts at 20 hours post addition of LY294002. We found significantly
262 decreased expression in the IFN α -treated neurons (Fig. 2E, S2C, D). Therefore, type I
263 IFN treatment solely at the time of infection has a long-term effect on the ability of HSV
264 to initiate lytic gene expression and undergo reactivation.

265

266 Because IFN treatment could reduce nuclear trafficking of viral capsids during
267 initial infection or impact infection efficiency, we next determined whether equivalent
268 numbers of viral genomes were present in the neuronal cultures. At 8dpi, we measured
269 relative viral DNA genome copy numbers in SCG neurons that were treated with IFN α
270 compared to untreated controls and found no significant difference (Fig 2F). To further
271 confirm that equivalent genomes were present in the neuronal nuclei, we infected
272 neurons with HSV-1 containing EdC-incorporated genomes and performed click
273 chemistry to detect vDNA foci. At 8 dpi, we found no significant difference in the

274 average number of vDNA foci per nucleus of neurons treated with IFN α at the time of
275 initial infection compared to untreated controls (Fig. 2G). Therefore, the restricted
276 reactivation phenotype mediated by IFN α was not due to a decrease in the number of
277 latent viral genomes.

278

279 The decreased reactivation observed with IFN α treatment could be secondary to
280 changes in expression of the LAT and/or directly as a result of decreased viral genome
281 accessibility. The HSV LAT, one of the only highly expressed gene products during
282 latent infection, has been shown to modulate several features of latency, including the
283 viral chromatin structure, lytic gene expression, and neuronal survival, as well as the
284 efficiency of latency establishment and reactivation (Knipe and Cliffe, 2008, Cliffe et al.,
285 2009, Chen et al., 1997, Thompson and Sawtell, 2001, Thompson and Sawtell, 1997,
286 Gordon et al., 1995, Branco and Fraser, 2005). Therefore, the ability of HSV to undergo
287 reactivation could be due to changes in LAT expression following IFN α treatment.

288 However, when we evaluated LAT expression levels at 8 dpi by RT-qPCR, we found no
289 difference between IFN α -treated and untreated neurons. This suggests that the IFN α -
290 mediated restriction in reactivation does not appear to occur as a result of changes in
291 expression of the LAT (Fig. 2H). Therefore, it is possible that the type I IFN-mediated
292 restriction of HSV latency is due to changes to the latent genome that results in a
293 decreased ability to undergo reactivation following PI3-kinase inhibition.

294

295 Primary neurons have a memory of prior IFN α exposure characterized by persistence of
296 PML-NBs

297 Because we observed a restriction in the ability of HSV to reactivate that
298 occurred 7-8 days following type I IFN exposure, we went on to examine any long-term
299 changes resulting from IFN α exposure. First, we investigated the kinetics of
300 representative ISG expression. As expected, we saw a robust induction of *Isg15* and
301 *Irf7* in IFN α -treated (600 IU/ml) neurons that persisted for at least 42 hours post-
302 treatment post-addition of IFN α (this represents 1-day post-infection (dpi)). However, by
303 8 dpi, the time at which neurons were induced to reactivate, there was no difference in
304 *Isg15* or *Irf7* expression in IFN α treated neurons vs untreated controls (Fig. 3A, B),
305 indicating that these representative ISGs were not elevated at the time of reactivation.
306 We also found no difference in *Isg15* or *Irf7* expression in HSV-1 infected neurons
307 compared to uninfected controls in either the presence or absence of IFN α , suggesting
308 that HSV-1 infection was not impacting IFN signaling pathways at a population level.
309 PML has been previously characterized as an ISG product in non-neuronal cells
310 (Chelbi-Alix et al., 1995, Stadler et al., 1995), and we found an approximate 5-fold-
311 increased expression of *Pml* in primary sympathetic neurons following IFN α treatment
312 which was less than the increased expression of *Irf7* and *Isg15* (approximate 350-fold-
313 and 100-fold-increased expression respectively). *Pml* expression returned to untreated
314 levels by 1 dpi (Fig. 3C).

315
316 Although we did not detect maintained induction of IFN stimulated gene
317 expression including *Pml*, we were intrigued as to whether PML-NBs persisted
318 throughout the course of infection. To assess this, we first established whether PML-
319 NBs persist even in the absence of sustained ISG expression. Quantifying the number

320 of PML-NBs following IFN α (600 IU/ml) treatment, we found that the number of bodies
321 remain elevated through 15 days post-treatment (Fig. 3D). We went on to investigate
322 additional products of ISGs including STAT1 and Mx1 because of the availability of
323 specific antibodies against these proteins. We observed robust STAT1 staining
324 following IFN α exposure for 18 hours. However, by 8 days post infection we could not
325 detect STAT1 staining in primary neurons indicating that synthesis of this IFN α -induced
326 protein had returned to baseline (Fig. 3E). Similarly, we found induction of punctate Mx1
327 staining in neurons exposed to IFN α for 18 hours that was undetectable by day 6 post-
328 treatment (Fig. 3F). Therefore, exposure of primary neurons to type I IFN led to a
329 modest induction of *Pml* mRNA but resulted in long-term persistence of PML-NBs, even
330 in the absence of continued IFN signaling and when antiviral protein products of other
331 ISGs were undetectable.

332

333 PML-NBs Persist and Stably Entrap Latent HSV-1 Genomes only if IFN α is Present at
334 the Time of Initial Infection

335 The persistence of PML-NBs following IFN exposure raised the possibility that
336 viral genomes are maintained within PML-NBs only in type I IFN-treated neurons. This
337 would also suggest that PML-NB-associated genomes are less permissive for
338 reactivation and provide us with an experimental system to investigate the contribution
339 of PML-NBs to the maintenance of HSV latency. To determine whether viral genomes
340 localize with PML-NBs in type I IFN-treated neurons, SCG neurons were pretreated with
341 IFN α (600 IU/ml) then infected with HSV-1^{EdC} at an MOI of 5 PFU/cell in the presence of
342 ACV and IFN α as described above. By co-staining for PML, we found that a large

343 proportion of vDNA foci colocalized with PML-NBs in the IFN α -treated neurons over the
344 course of infection. In untreated neurons that are largely devoid PML-NBs, very few
345 genomes were colocalized to PML puncta as expected. Representative images are
346 shown (Fig. 4A) and the percent of genome foci colocalized to PML-NBs is quantified
347 (Fig. 4B). Furthermore, high-resolution Airy scan-based 3D confocal microscopy of
348 IFN α -treated neurons revealed that vDNA foci were entrapped within PML-NBs (Fig.
349 4C, D), as has also been reported upon lytic infection of non-neuronal cell lines
350 (Alandijany et al., 2018) and in latently infected TG *in vivo* (Catez et al., 2012). Rapid
351 colocalization of viral DNA by PML-NBs during lytic HSV-1 infection of human
352 fibroblasts occurs independently of type I IFN exposure, and we confirmed this was also
353 true in dermal fibroblasts isolated from postnatal mice (Fig. S3A). Therefore, the
354 presence of IFN α during initial infection can impact the long-term subnuclear localization
355 of latent viral genomes in neurons by inducing PML-NBs that persist and stably entrap
356 latent viral genomes.

357

358 Thus far, our data indicate that the presence of IFN α during initial infection
359 determines subnuclear positioning of latent viral genomes and the ability of genomes to
360 reactivate in response to loss inhibition of PI3 kinase activity. We considered that type I
361 IFN treatment could have a long-term effect on cell signaling pathways which could
362 impact the ability of HSV to reactivate, so to determine the direct versus indirect effects
363 on the viral genome itself, we next investigated whether the timing of IFN α exposure
364 had a differential effect on the ability of viral genomes to reactivate. Therefore, we
365 treated postnatal SCG neurons with IFN α (600 IU/ml) for 18h and during the 2h HSV

366 inoculation (-18hpi) or exposed neurons to IFN α for 18h at 3 days prior to infection (-
367 3dpi). Following pretreatment at -3dpi, IFN α was washed out and an IFNAR1 blocking
368 antibody was used. As expected, IFN α during initial infection significantly inhibited HSV
369 reactivation, but surprisingly, IFN α treatment at -3dpi did not restrict reactivation as
370 shown by the similar number of GFP-positive neurons at 72 hours post-reactivation
371 when compared to untreated neurons (Fig. 5A). Surprisingly, we found that vDNA foci
372 did not localize to PML-NBs in SCG neurons treated with IFN α at -3dpi (Fig. 5B). We
373 confirmed that PML-NBs were present at the time of infection in neurons treated 3 day
374 prior to infection (Fig. 5C), although we did detect slightly fewer PML-NBs per nucleus in
375 neurons treated -3dpi compared to -18hpi (a mean of 17.57 versus 12.47 per nucleus
376 respectively). We also confirmed comparable recruitment of known PML-NB-associated
377 proteins ATRX and Daxx at 3 days post-IFN α treatment (Fig S4A, B). When IFN α
378 treatment of SCG neurons is continued from -3pi through infection, or if SCG neurons
379 treated at -3pi receive a second treatment of IFN α during infection, then a similar
380 proportion of latent viral genomes colocalize with PML-NBs as with a single treatment
381 during infection (Fig. S4C). This indicates type I IFN must be present during infection for
382 vDNA to colocalize with IFN-induced PML-NBs.

383

384 The HSV Infected Cell Protein 0 (ICP0) is a RING-finger E3 ubiquitin ligase that
385 disrupts PML-NBs (Boutell et al., 2011, Boutell et al., 2002, Alandijany et al., 2018,
386 Cuchet-Loureiro et al., 2012, Chelbi-Alix and de The, 1999, Muller et al., 1998, Everett
387 et al., 1998) and known to be expressed during the establishment of latency (Cliffe et
388 al., 2013). Therefore, the colocalization of latent viral genomes to PML-NBs and

389 ultimately the ability of HSV to undergo reactivation could be due the presence of IFN α
390 during initial infection and its effect on the localization or amount of ICP0. To investigate
391 the distribution of ICP0 at early time points post-infection, SCG neurons were treated
392 with IFN α at either -3dpi or -18hpi and infected at a MOI of 7.5 PFU/cell with HSV-1
393 Us11-GFP in the presence of acyclovir (ACV). In both treatment groups, ICP0 staining
394 similarly colocalized with puncta of ATRX, a correlate for PML-NBs, at 3, 6 and 9 hours
395 post-infection (Fig. S4D, E). To further investigate the effect of ICP0 on the
396 colocalization of latent viral genomes to PML-NBs, we generated an EdC-labeled ICP0-
397 null mutant strain (n212) and found that ICP0 had no impact on the ability of vDNA foci
398 to colocalize to PML-NBs (Fig. 5D). Taken together, these data demonstrate that
399 association of latent viral genomes with PML-NBs in peripheral neurons is dependent
400 on the formation of type I IFN-induced PML-NBs and the presence of type I IFN during
401 initial infection and is independent of ICP0 expression.

402

403 PML is Required for the IFN α -dependent Restriction of HSV-1 Latency

404 To determine whether the stable association of viral genomes with PML-NBs
405 directly contributes to the IFN α -dependent restriction of HSV reactivation, we
406 investigated whether PML depletion was sufficient to restore the ability of the latent viral
407 genomes to reactivate. A previous study has shown that PML-dependent recruitment of
408 HIRA to ISG promoters contributes to the up-regulation of gene expression as a result
409 of cytokine release in response to HSV infection (McFarlane et al., 2019). Although
410 carried out in non-neuronal cells, this study and others (Ulbricht et al., 2012, Kim and
411 Ahn, 2015, Scherer et al., 2016, Chen et al., 2015) suggest that PML itself may

412 contribute to ISG upregulation, so to determine whether PML was indeed required for
413 ISG stimulation in SCG neurons we carried out RNA sequence analysis in IFN α -treated
414 neurons depleted of PML. Postnatal SCG neurons were transduced with lentiviral
415 vectors expressing non-targeting control or PML-targeting shRNAs (shCtrl and shPML,
416 respectively) and then mock treated or treated with IFN α (600 IU/ml) for 18h prior to
417 RNA extraction for next generation sequencing. High confidence reads were used for
418 gene expression and gene ontology (GO) analysis. As expected, treatment of shCtrl
419 transduced neurons with IFN α caused large changes in differentially regulated gene
420 expression, with an enrichment of upregulated genes involved in immune system
421 regulation. Similar to control neurons, PML depleted neurons also significantly
422 upregulated the expression of genes involved in the response to IFN α stimulation. We
423 found that of the total of 248 genes upregulated >1.5-fold following IFN α treatment,
424 83.47% of these genes were shared between the shCtrl- and shPML-treated groups
425 (Fig. 6A). Furthermore, we found similar ISG expression (Fig. 6B) and GO pathway
426 enrichment (Fig. 6C). Therefore, in primary SCG neurons, the expression of ISGs in
427 response to exogenous IFN α is largely independent of PML expression.

428

429 Because PML depletion did not prevent the induction of type I IFN response
430 genes in SCG neurons, we were able to examine the effect of PML depletion prior to
431 infection on the IFN α -mediated restriction of HSV-1 reactivation. SCG neurons were
432 transduced with lentiviral vectors expressing different PML-targeting shRNA or control
433 non-targeting shRNA. PML depletion was confirmed by average number of PML-NBs
434 per nucleus in neurons transduced for 3 days then treated with IFN α (Fig. 7A). As

435 expected, we found a significant decrease in the percent of vDNA foci stably
436 colocalizing with PML-NBs at 8 dpi in the shPML-treated neurons compared to shCtrl-
437 treated neurons (Fig. 7B). Furthermore, we assessed reactivation in neurons infected
438 with HSV-1 in the presence or absence of IFN α (150 IU/ml) at 3 days post-transduction.
439 In these experiments, neurons were infected with a Us11-GFP gH-null virus, which is
440 defective in cell-to-cell spread and eliminates the need for WAY-150138 during
441 reactivation. In untreated neurons, we found no difference in reactivation (Fig. 7C, D). In
442 addition, PML depletion had no effect on the number of GFP-positive neurons in the
443 non-reactivated samples, indicating that in this system that PML was not required for
444 the establishment of latency. However, in neurons treated with IFN α at the time of initial
445 infection, depletion of PML using either of the three PML shRNAs significantly increased
446 the ability of HSV to reactivate (Fig. 7E, F). Moreover, there was no significant
447 difference between the PML depleted, IFN α -treated neurons and the non-IFN α treated
448 neurons, indicating that PML depletion fully restored the ability of HSV to reactivate from
449 type I IFN treated neurons. Taken together, these data demonstrate that type I IFN
450 exposure solely at the time of infection results in entrapment of viral genomes in PML-
451 NBs to directly promote a deeper form of latency that is restricted for reactivation.
452

453 Depletion of PML After the Establishment of Latency Enhances Reactivation in IFN α -
454 treated Neurons

455 To explore the long-term effect of stable PML-NB-association on the latent viral
456 genome, we next tested whether PML depletion after the establishment of latency was
457 sufficient to restore the ability of the latent viral genomes to reactivate following

458 treatment with a physiological stimulus of reactivation. In these experiments, neurons
459 were infected with Us11-GFP gH null HSV-1 virus in the presence or absence of IFN α
460 (150 IU/ml) and subsequently transduced with lentiviral vectors expressing PML-
461 targeting shRNA or control non-targeting shRNA at 1 dpi. Under these experimental
462 conditions, PML knockdown post-infection significantly increased the ability of HSV to
463 reactivate from IFN α treated neurons but not untreated neurons, albeit reactivation was
464 not restored to levels seen in untreated neurons (Fig. 8A-D). As expected, we found that
465 only a small proportion of vDNA foci stably colocalize with PML-NBs at 8 dpi in the
466 shPML-treated neurons compared to vDNA foci in the shCtrl-treated neurons.
467 Representative images are shown (Fig. 8E) and the percent of genome foci colocalized
468 to PML-NBs is quantified (Fig. 8F). Therefore, PML depletion post-infection does not
469 result in spontaneous reactivation of PML-NB-associated viral genomes, indicating that
470 they are still in a repressed state and/or lack the necessary factors required to initiate
471 gene expression. However, depletion of PML does partially restore the ability of HSV to
472 enter the lytic from IFN-treated neurons in response to a reactivation stimulus.

473

474 **Discussion**

475 The considerable heterogeneity observed at the neuronal level in the
476 colocalization of viral genomes with different nuclear domains may reflect in different
477 types of latency that are more or less susceptible to reactivation. The determinants of
478 this heterogeneity and a direct link between the subnuclear localization of a latent
479 genome and its ability to reactivate following a given stimulus was not known. Using a
480 primary neuronal model of HSV latency and reactivation, we found that the presence of

481 type I IFN solely at that time of initial infection acts as a key mediator of the subnuclear
482 distribution of latent viral genomes in neurons and promotes a more restricted form of
483 latency that is less capable of reactivation following disruption of NGF-signaling.
484 Importantly, we show that activation of the type I IFN signaling pathway in peripheral
485 neurons induces the formation of PML-NBs, which stably entrap a proportion of latent
486 genomes. Importantly, we show that this IFN-dependent restriction is mediated by PML,
487 suggesting that PML-NBs are directly responsible for the observed restriction of
488 reactivation.

489

490 PML-NBs typically number 1-30 bodies per nucleus in non-neuronal cells
491 (Bernardi and Pandolfi, 2007). In the mouse nervous system, however, PML mRNA
492 expression levels have previously been found to be low as measured by *in situ*
493 hybridization (Gray et al., 2004). PML protein is enriched in neural progenitor cells, but
494 the induction of differentiation results in the downregulation of PML both at a
495 transcriptional and protein level, and PML mRNA expression is undetectable in post-
496 mitotic neurons in many regions of the developing brain (Regad et al., 2009). Our
497 findings in postnatal peripheral neurons further support these observations.
498 Interestingly, PML has been shown to be re-expressed in both adult mouse and human
499 brains, but often PML-NBs are associated with intranuclear inclusions in the context of
500 pathological conditions, such as Guillain-Barre syndrome (Hall et al., 2016, Woulfe et
501 al., 2004, Villagra et al., 2004). In our study, we could not detect PML-NBs in adult
502 primary neurons isolated from the SCG or the TG. In contrast to our findings, PML-NBs
503 have previously been shown to be present in adult TG neurons (Catez et al., 2012,

504 Maroui et al., 2016). However, Catez et al. (2012) describes a subpopulation of adult
505 TG neurons that did not display any PML signal in the nucleus. In addition, adult TG
506 neurons isolated from humans at autopsy may reflect neurons that had previously been
507 exposed to type I IFNs. The functional significance of peripheral neurons lacking PML-
508 NBs is unclear, but could be linked to the capacity of neurons to undergo dynamic
509 rearrangement of local and global nuclear architecture during maturation or neuronal
510 excitation. An absence of PML-NBs in neurons could also contribute to their resistance
511 to apoptosis, as PML has also been shown to play a role in cell death through the
512 induction of both p53-dependent and -independent apoptotic pathways (Guo et al.,
513 2000, Wang et al., 1998, Quignon et al., 1998). Whether PML-mediated regulation of
514 these pathways occurs in the context of PML-NBs or by PML itself is unclear, but
515 interestingly, the pro-apoptotic functions of Daxx, a PML-NB-associated protein, may
516 require localization to PML-NBs in certain cell types (Croxton et al., 2006). Furthermore,
517 our *in vitro* model using pure populations of intact neurons is devoid of the immune
518 responses and complexities of intact animals, and we cannot rule out the possibility that
519 axotomy or the processing of the neurons *ex vivo* could lead to PML-NB disruption or
520 dispersal. However, notwithstanding these caveats, primary neurons provide an
521 excellent model system to understand the impact of extrinsic immune factors and PML-
522 NBs to the altering the nature of HSV latency.

523

524 Peripheral neurons are capable of responding to type I IFN signaling, given the
525 robust induction in ISG expression and formation of PML-NBs following treatment with
526 IFN α , and this is supported by a number of previous studies (Yordy et al., 2012,

527 Katzenell and Leib, 2016, Song et al., 2016, Barragan-Iglesias et al., 2020). Importantly,
528 however, peripheral neurons produce little to no type I interferons upon HSV infection
529 (Yordy et al., 2012, Rosato and Leib, 2014), indicating that IFN production arises from
530 other surrounding infected cells. Infected fibroblasts at the body surface, as well as
531 professional immune cells, have been shown to produce high levels of IFN α/β after HSV
532 infection (Hochrein et al., 2004, Rasmussen et al., 2007, Rasmussen et al., 2009, Li et
533 al., 2006). In addition, there is evidence of elevated type I IFN in peripheral ganglia
534 during HSV-1 infection (Carr et al., 1998), suggesting that glial or immune cells located
535 adjacent to peripheral neuron cell bodies are capable of type I IFN production. It will be
536 important to delineate if the inflammatory environment at the initial site of infection acts
537 on neuronal axons to prime the neuron for a more repressed latent infection or if
538 inflammatory cytokines in the ganglia are crucial for promoting a more repressive state.
539 Although responsive to IFN, primary peripheral and cortical mouse neurons have
540 previously been shown to have inefficient type I IFN-mediated anti-viral protection
541 compared to non-neuronal mitotic cells (Yordy et al., 2012, Kreit et al., 2014). One study
542 showed that DRG neurons are less responsive to type I IFN signaling and used an
543 absence of cell death upon IFN treatment as one of their criteria (Yordy et al., 2012). It
544 should be noted that different cell types display specific responses to type I IFN
545 signaling and peripheral neurons have even been reported to be more protected from
546 cell death stimuli following IFN treatment (Chang et al., 1990). Our model of HSV-1
547 latency and reactivation in primary sympathetic neurons highlights a type I IFN
548 response that is PML-dependent and suggests a role for neuronal IFN signaling in
549 promoting a more restricted latent HSV-1 infection.

550

551 Prior to this study, it was not clear whether viral genomes associated with PML-
552 NBs were capable of undergoing reactivation. In response to inhibition of NGF-
553 signaling, our data demonstrate that PML-NB associated genomes are more restricted
554 for reactivation given that 1) IFN induces PML-NB formation and increased association
555 with viral genomes with PML-NBs, 2) IFN pretreatment promotes restriction of viral
556 reactivation and 3) the ability of viral genomes to reactivate from IFN-treated neurons
557 increases with PML knock-down either prior to or following infection. Previous work by
558 Cohen et al. (2018) showed that quiescent genomes associated with PML-NBs in
559 fibroblasts can be transcriptionally reactivated by induced expression of ICP0. However,
560 this previous study did not address the capability of viral genomes to reactivate in the
561 absence of viral lytic protein (i.e. during reactivation from latency in neurons). In a
562 further study using primary neurons, treatment of quiescently-infected neurons with the
563 histone deacetylase inhibitor, trichostatin A (TSA), could lead to disruption of PML-NBs
564 and induce active viral transcription in a subset of PML-NB-associated genomes
565 (Maroui et al., 2016). However, the mechanisms of reactivation following TSA treatment
566 are not known, and may be direct via altering the HSV chromatin structure or indirect via
567 increasing the acetylation levels of histones or non-histone proteins, including PML.
568 How increased acetylation relates to the physiological triggers that induce HSV
569 reactivation is not clear. In contrast, loss of neurotrophic signaling can occur in
570 response to known physiological stimuli that trigger HSV reactivation (Suzich and Cliffe,
571 2018). Although we cannot rule out the possibility that different stimuli have the potential
572 for PML-NB associated genomes to undergo reactivation, this study clearly

573 demonstrates that at least one well characterized trigger of reactivation cannot
574 efficiently induce PML-NB associated genomes to undergo transcription.

575

576 Our results identify a persistence of PML-NBs, an IFN-mediated innate immune
577 response, that allows for long-term restriction of latent viral genomes in the absence of
578 continued ISG expression. Interestingly, type I IFN-induced PML-NBs persisted for up to
579 15 days post-treatment both in the presence and absence of viral infection. Given the
580 absence of PML-NBs in our untreated peripheral neurons, this induction and
581 persistence could represent neuron-specific innate immune memory. The persistence of
582 PML-NBs in neurons may alter the subsequent response to IFN and/or viral infection,
583 and it will be interesting to determine whether there is trained immunity in neurons such
584 that subsequent responses differ from the first exposure. What is clear from our results
585 however is the role of PML and IFN exposure in sustained repression of the latent HSV
586 genome. Even in the absence of known chromatin changes that occur on the PML
587 associated viral genome, this long-term effect on the ability of the HSV-1 genome to
588 respond to an exogenous signal and restriction of reactivation is reminiscence of the
589 classical definition of an epigenetic change (of course in the case of post-mitotic
590 neurons in the absence of inheritance).

591

592 PML-NBs are known to play a role in the restriction of viral gene expression in
593 non-neuronal cells, but the potential mechanism of PML-NB-mediated HSV gene
594 silencing in neurons is unknown. During latency, the viral genome is enriched with
595 histone post-translational modifications (PTMs) consistent with repressive

596 heterochromatin, including H3K9me2/3 and H3K27me3, and it is possible that PML-NBs
597 play a role in the association of viral genomes with core histones, repressive PTMs or
598 heterochromatin-associated proteins (Cliffe et al., 2009, Kwiatkowski et al., 2009, Wang
599 et al., 2005). In a model of quiescence utilizing human primary fibroblasts and a
600 replication deficient virus, HSV genomes associated with PML-NBs were almost
601 exclusively enriched with the H3.3K9me3 chromatin mark (Cohen et al., 2018).
602 Therefore, it is tempting to speculate that PML-associated latent genomes are
603 specifically enriched for H3K9me3 and not H3K27me3. However, in a previous study,
604 we have found that H3S10 becomes phosphorylated during transcriptional activation
605 following a reactivation stimulus (Cliffe et al., 2015) and viral genomes co-localize with
606 regions of H3K9me3S10p in neurons that were not pre-treated with IFN (Cuddy et al.,
607 2020). In addition, removal of H3K9 methylation is required for HSV reactivation (Liang
608 et al., 2013, Liang et al., 2009). Together, these studies suggest that H3K9me3 is
609 present on reactivation component genomes. However, it may be that different
610 combinations of modifications exist on reactivation competent versus repressive
611 genomes or that PML-NB associated genomes are less accessible for reactivation due
612 to physical compaction of the genome and/or association with different histone reader
613 proteins. Going forward, the primary neuronal system provides an excellent model to
614 delineate the specific epigenetic contributions of PML-NBs to promoting a more
615 repressive form of HSV latency.

616

617 Although PML-NBs promote a more restricted form of latency, we have shown
618 that latency can be established in the absence of IFN treatment and PML-NBs. Even in

619 IFN-treated neurons, only a proportion of the latent viral genomes co-localized with
620 PML-NBs. This indicates that latent genomes associate with other subnuclear regions
621 and proteins that may promote the assembly and/or maintenance of repressive
622 heterochromatic histone modifications. This supports previous observations that HSV-1
623 viral genomes also co-localize with centromeric repeats and other, undefined nuclear
624 domains in latently infected TG *in vivo* (Catez et al., 2012). For example, the viral
625 genome is known to be enriched for H3K27me3 (Cliffe et al., 2009, Kwiatkowski et al.,
626 2009, Wang et al., 2005), which can be bound by Polycomb group proteins.
627 Interestingly, we have found that the multi-functional, chromatin remodeler protein
628 ATRX has abundant nuclear staining in neurons and, in contrast to non-neuronal cells,
629 is localized outside of PML-NBs. ATRX staining overlapped with Hoechst DNA staining
630 in our primary neurons, suggesting its localization with AT-rich heterochromatin regions
631 (Bucevicius et al., 2019). ATRX has previously been shown to interact with a variety of
632 proteins, including methyltransferases and other heterochromatin-associated proteins,
633 to promote transcriptional repression (Clynes et al., 2013, Lewis et al., 2010, Noh et al.,
634 2015), as well as target chromatin through direct interactions with specific histone
635 posttranslational modifications (PTMs), including H3K9me3-containing peptides (Noh et
636 al., 2015). ATRX can also act as a histone chaperone, forming a complex with the death
637 domain associated protein (Daxx) to catalyze the deposition of histone H3.3 (Lewis et
638 al., 2010). Although we saw only faint staining of Daxx in our primary neurons, the
639 ATRX/Daxx complex has been shown to promote the initial repression of the infecting
640 viral genomes in non-neuronal cells (Lukashchuk and Everett, 2010). Ultimately, the
641 repressive PTMs on latent viral genomes are likely bound by ATRX, Polycomb group

642 proteins or other repressive cellular proteins independently of PML-NBs. Investigating
643 the identity, mechanism of targeting and role of these proteins in the induction and
644 maintenance of latency will ultimately facilitate the development of antiviral therapeutics
645 that target the latent stage of infection to prevent reactivation.

646

647

648 **Acknowledgements**

649 We thank Dr. Ian Mohr at New York University for the gift of the Us11-GFP virus and
650 Gary Cohen at the University of Pennsylvania for SCgHZ. This work was supported by
651 R21AI151340 (ARC), R01NS105630 (ARC), NIH/NEI F30EY030397 (JBS), NIH/NIAID
652 T32AI007046 (JBS and SRC), T32GM007267 (JBS), NIH/NIGMS T32GM008136 (SD)
653 and MRC (<https://mrc.ukri.org>) MC_UU_12014/5 (CB).

654

655

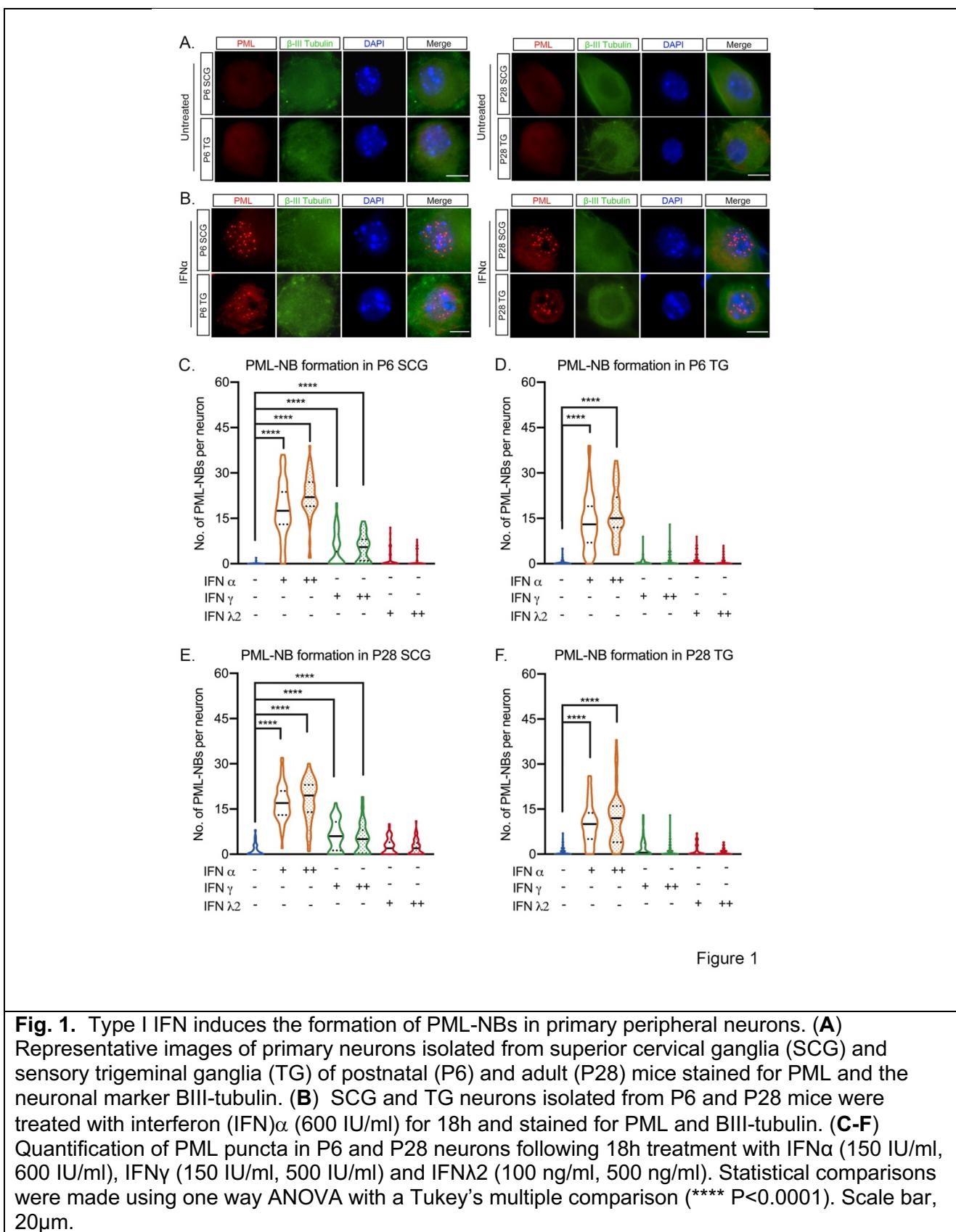
656

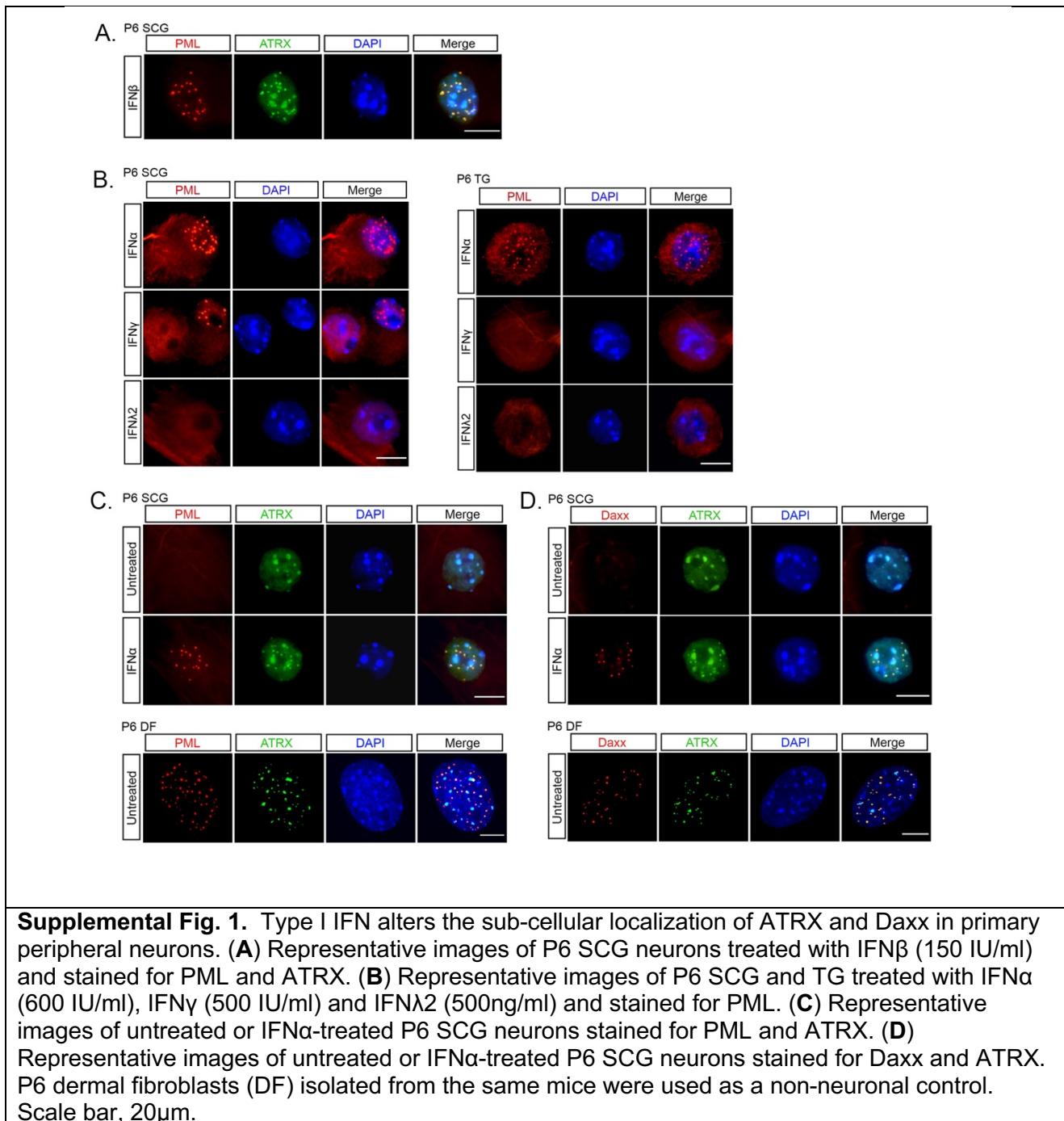
657

658

659

660


661


662

663

664

665

666

667

668

669

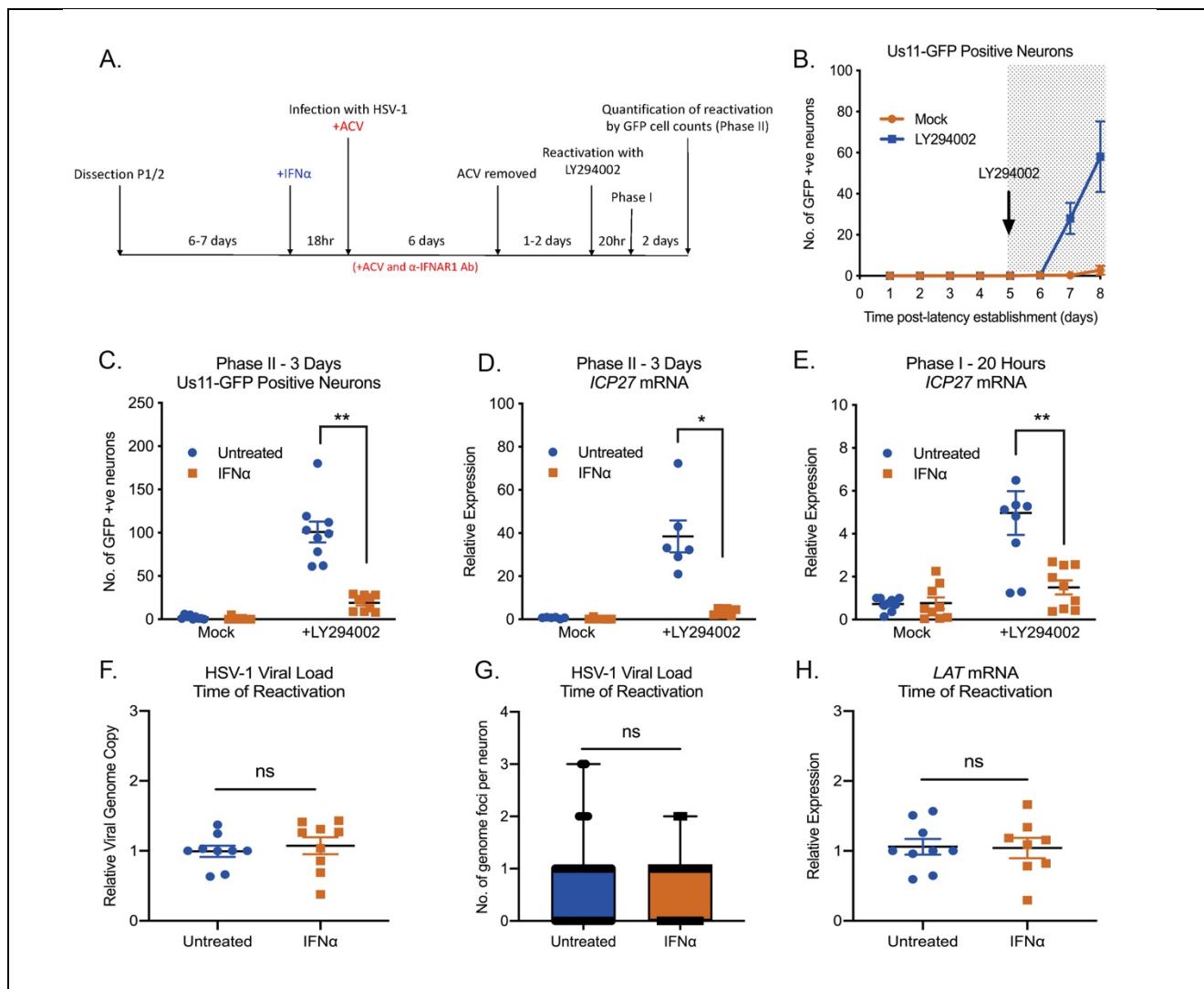
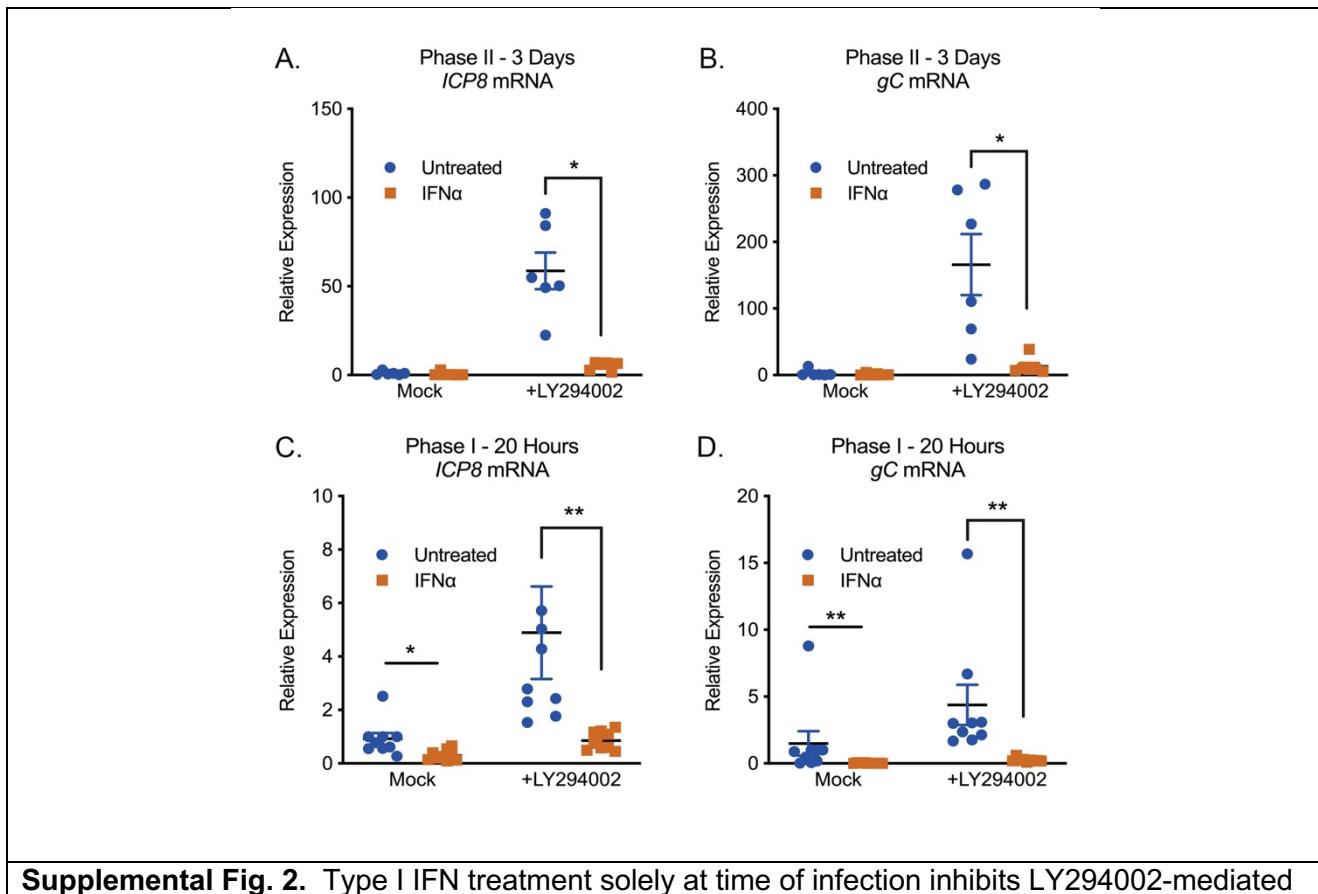



Figure 2

Fig. 2. Type I IFN treatment solely at time of infection inhibits LY294002-mediated reactivation of HSV-1 in primary sympathetic SCG neurons. **(A)** Schematic of the primary postnatal sympathetic neuron-derived model of HSV-1 latency. **(B)** Reactivation from latency is quantified by Us11-GFP expressing neurons following addition of the PI3K inhibitor LY294002 (20 μ M) in the presence of WAY-150168, which prevents cell-to-cell spread. **(C)** Number of Us11-GFP expressing P6 SCG neurons infected with HSV-1 in the presence or absence of IFN α (600 IU/ml), then treated with an α -IFNAR1 neutralizing antibody. **(D)** RT-qPCR for viral mRNA transcripts at 3 days post-reactivation of SCGs infected with HSV-1 in the presence or absence of IFN α . **(E)** RT-qPCR for viral mRNA transcripts at 20 hours post-reactivation in SCGs infected with HSV-1 in the presence or absence of IFN α . **(F)** Relative amount of viral DNA at time of reactivation (8dpi) in SCG neurons infected with HSV-1 in the presence or absence of IFN α (600 IU/ml). **(G)** Quantification of vDNA foci detected by click chemistry at time of reactivation (8dpi) in SCG neurons infected with HSV-1 in the presence or absence of IFN α (600 IU/ml). **(H)** LAT mRNA expression at time of reactivation (8dpi) in neurons infected with HSV-1 in the presence or absence of IFN α (600 IU/ml). Statistical comparisons were made using Wilcoxon signed-rank test (ns not significant, * P<0.05, ** P<0.01).

Supplemental Fig. 2. Type I IFN treatment solely at time of infection inhibits LY294002-mediated reactivation of HSV-1 in primary sympathetic SCG neurons. **(A)** RT-qPCR for viral mRNA transcripts at 3 days post-reactivation of SCGs infected with HSV-1 in the presence or absence of IFN α (600 IU/ml). **(B)** RT-qPCR for viral mRNA transcripts at 20 hours post-reactivation in SCGs infected with HSV-1 in the presence or absence of IFN α (600 IU/ml). Statistical comparisons were made using one way ANOVA with a Wilcoxon signed-rank test (ns not significant, * P<0.05, ** P<0.01).

670

671

672

673

674

675

676

677

678

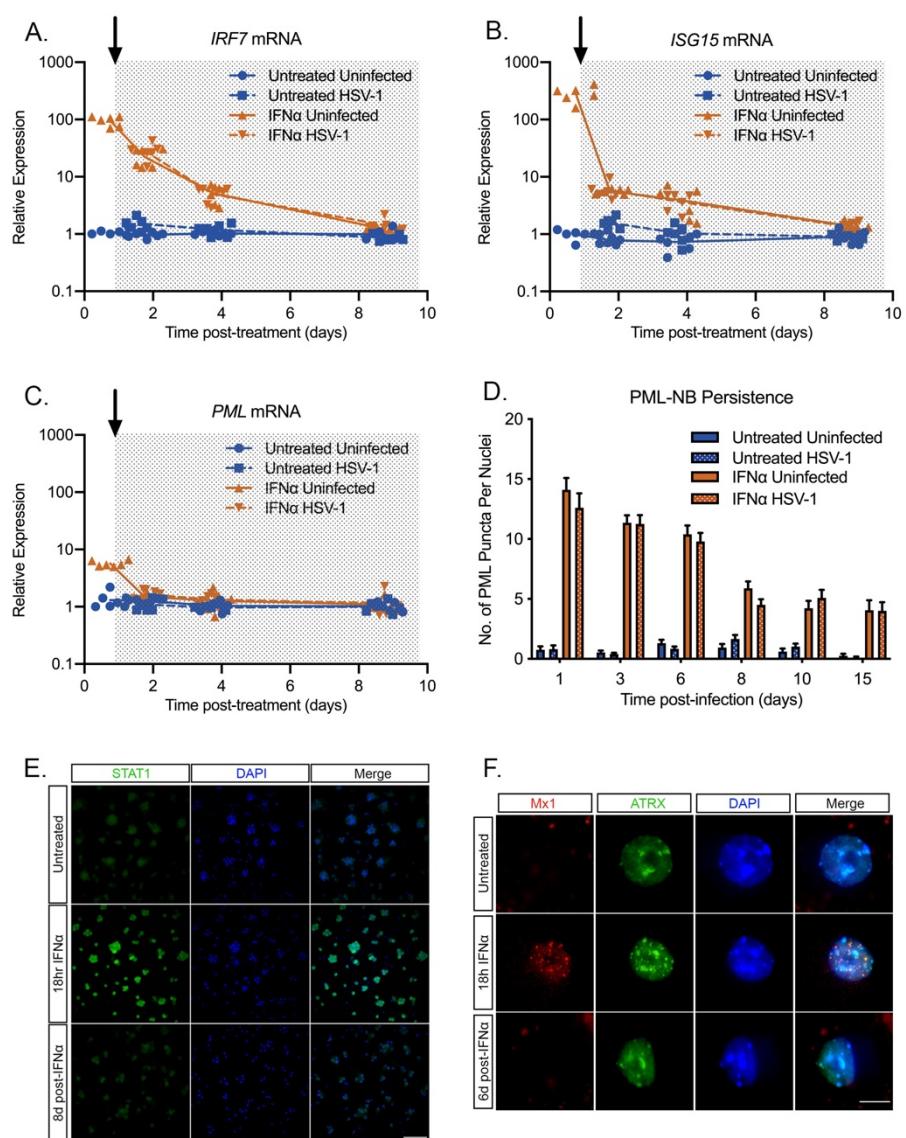


Figure 3

Fig. 3. Type I IFN-induced PML-NBs persist in primary sympathetic neurons despite resolution of IFN signaling. **(A-C)** Kinetics of *ISG15*, *IRF7* and *PML* mRNA expression at 0.75, 1.75, 3.75 and 8.75 days post-IFN α (600 IU/ml) treatment. Arrow indicates the time of HSV-1 infection at 18hr post-interferon treatment. **(D)** Quantification of PML puncta at 1-, 3-, 6-, 8-, 10- and 15-days post-infection with HSV-1 in untreated and IFN α (600 IU/ml)-treated SCG neurons. **(E)** Representative images of P6 SCG neurons treated with IFN α (600 IU/ml) and stained for STAT1 at 18 hours and 8 days post-treatment. Scale bar, 100 μ m. **(F)** Representative images of P6 SCG neurons treated with IFN α (600 IU/ml) and stained for Mx1 at 18 hours and 6 days post-treatment. Scale bar, 20 μ m.

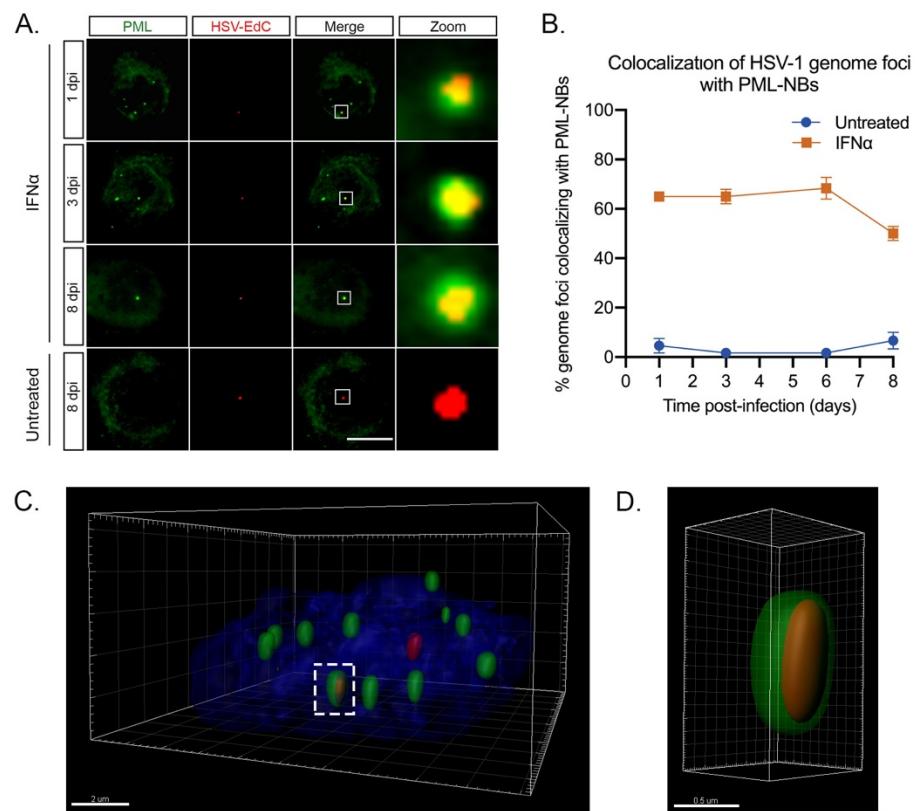
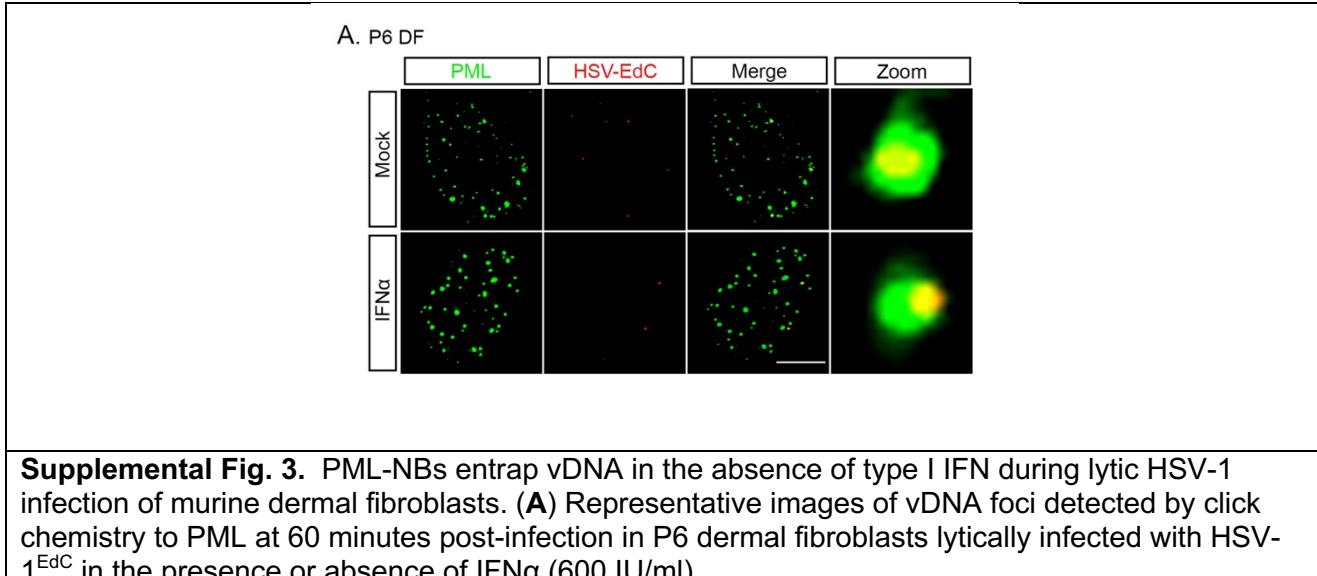


Figure 4

Fig. 4. Type I IFN induced PML-NBs stably entrap vDNA throughout a latent HSV-1 infection of primary sympathetic neurons. **(A)** Representative images of vDNA foci detected by click chemistry to PML at 1, 3, 6 and 8 dpi in P6 SCG neurons infected with HSV-1^{EdC} in the presence or absence of IFN α (600 IU/ml). **(B)** Percent colocalization of vDNA foci detected by click chemistry to PML at 1, 3, 6 and 8 dpi in SCG neurons infected with HSV-1^{EdC} in the presence or absence of IFN α (600 IU/ml). Scale bar, 20 μ m. **(C)** 3D reconstruction of a high-resolution Z-series confocal image showing PML entrapping of a HSV-1^{EdC} vDNA foci. Scale bar, 2 μ m. **(D)** Enlargement of PML entrapped vDNA outlined by white dashed box. Scale bar, 0.5 μ m.

681


682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

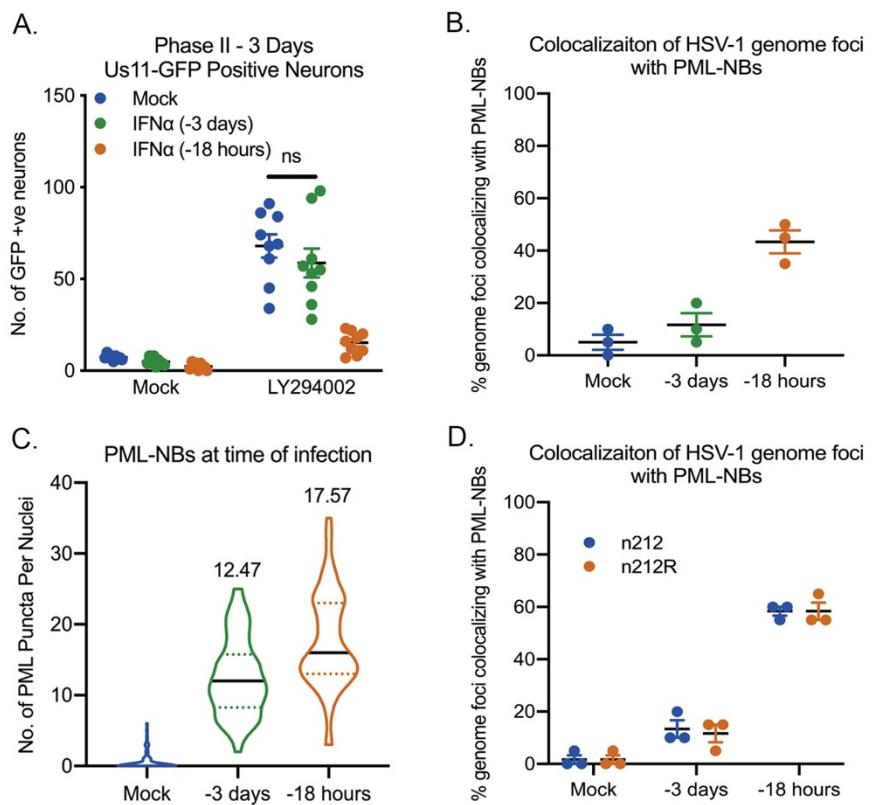
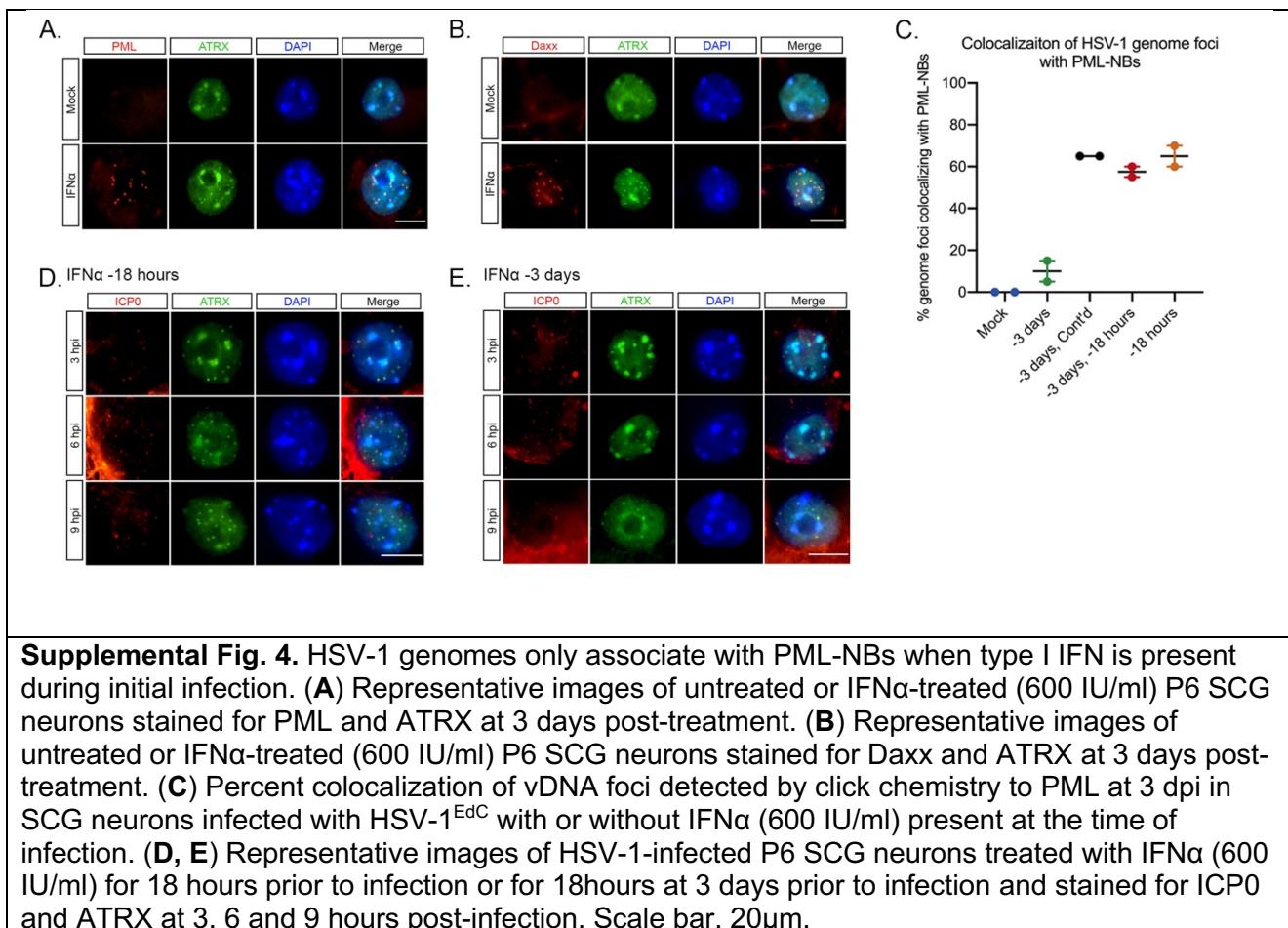


Figure 5

Fig. 5. HSV-1 genomes only associate with PML-NBs when type I IFN is present during initial infection. **(A)** Number of Us11-GFP expressing P6 SCG neurons infected with HSV-1 following IFN α treatment for 18 hours prior to infection or for 18 hours at 3 days prior to infection. **(B)** Percent colocalization of vDNA foci detected by click chemistry to PML at 8 dpi in SCG neurons infected with HSV-1 EdC following IFN α treatment for 18 hours prior to infection or for 18 hours at 3 days prior to infection. **(C)** Quantification of PML puncta at time of infection in P6 SCG neurons treated with IFN α (600 IU/ml) for 18 hours prior to infection or for 18 hours at 3 days prior to infection. **(D)** Percent colocalization of vDNA foci detected by click chemistry to PML at 3 dpi in SCG neurons with HSV-1 EdC infected with ICP0-null mutant HSV-1, n212, or a rescued HSV-1 virus, n212R, in P6 SCG neurons treated with IFN α for 18 hours prior to infection or for 18 hours at 3 days prior to infection.


703

704

705

706

707

Supplemental Fig. 4. HSV-1 genomes only associate with PML-NBs when type I IFN is present during initial infection. **(A)** Representative images of untreated or IFN α -treated (600 IU/ml) P6 SCG neurons stained for PML and ATRX at 3 days post-treatment. **(B)** Representative images of untreated or IFN α -treated (600 IU/ml) P6 SCG neurons stained for Daxx and ATRX at 3 days post-treatment. **(C)** Percent colocalization of vDNA foci detected by click chemistry to PML at 3 dpi in SCG neurons infected with HSV-1^{EdC} with or without IFN α (600 IU/ml) present at the time of infection. **(D, E)** Representative images of HSV-1-infected P6 SCG neurons treated with IFN α (600 IU/ml) for 18 hours prior to infection or for 18 hours at 3 days prior to infection and stained for ICP0 and ATRX at 3, 6 and 9 hours post-infection. Scale bar, 20 μ m.

708

709

710

711

712

713

714

715

716

717

718

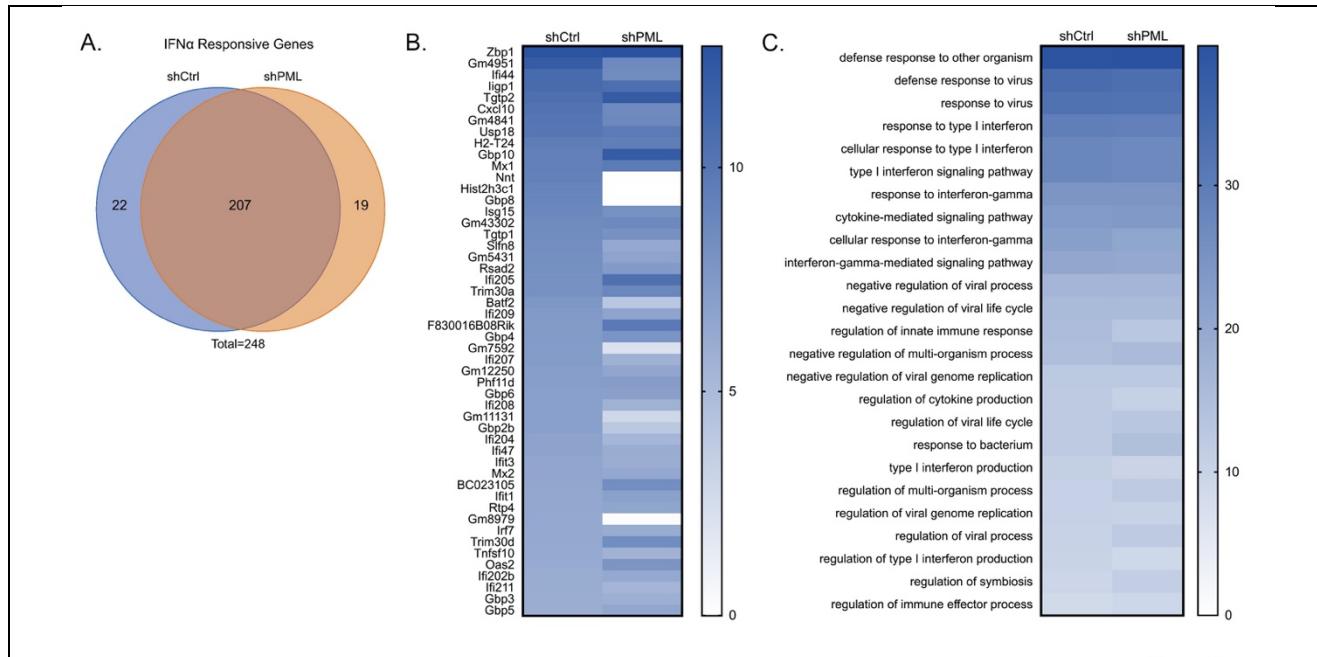


Figure 6

Fig. 6. PML is not required for ISG induction in primary postnatal sympathetic neurons. **(A)** P6 SCG neurons were transduced with either control non-targeting shRNA or shRNA targeting PML for 3 days, then treated with IFN α (600 IU/ml) for 18 hours. Total genes >1.5-fold higher in IFN α (600 IU/ml) treated cells than untreated cells were subdivided into three groups: shCtrl-treated neurons only. shPML-treated neurons only. Both shCtrl and shPML neurons (Shared). **(B)** Gene expression heat map of top 50 most upregulated genes in P6 neurons transduced with control non-targeting shRNA or shRNA targeting PML for 3 days, then treated with IFN α (600 IU/ml) for 18 hours. **(C)** Heat map of the top 25 shared upregulated GO terms in P6 neurons transduced with control non-targeting shRNA or shRNA targeting PML for 3 days, then treated with IFN α for 18 hours.

719

720

721

722

723

724

725

726

727

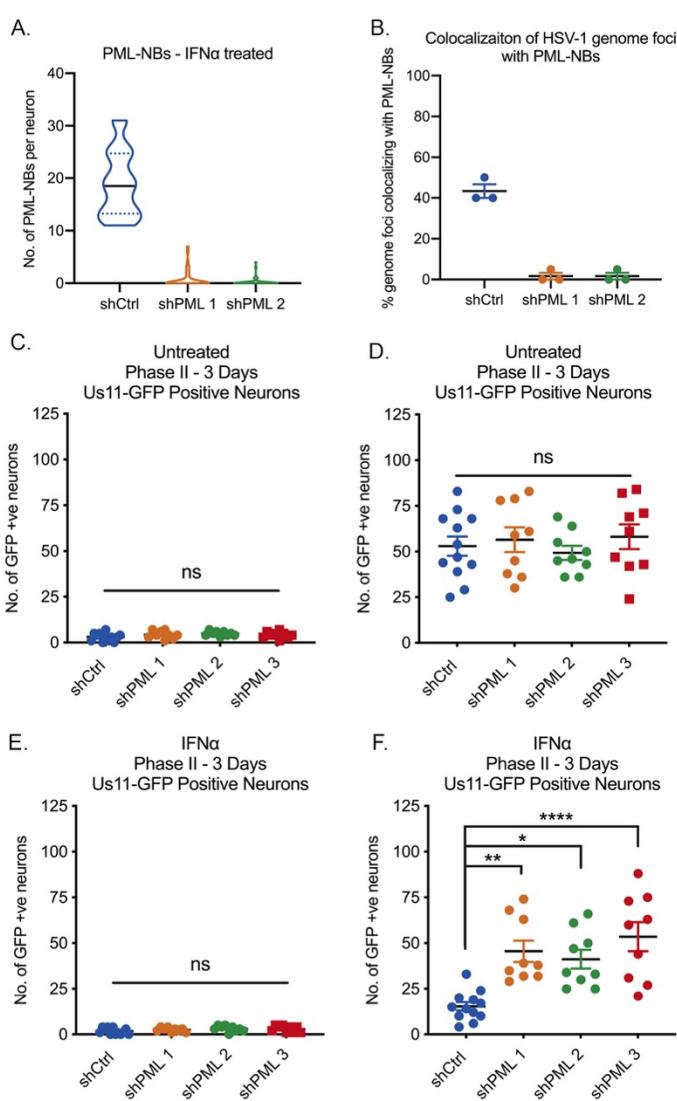


Figure 7

Fig. 7. Depletion of PML with shRNA-mediated knockdown prior to infection restores HSV-1 reactivation in type I interferon-treated primary sympathetic neurons. (A) Quantification of PML puncta in P6 SCG neurons transduced with either control non-targeting shRNA or shRNA targeting PML for 3 days, then treated with IFN α (600 IU/ml) for 18 hours. **(B)** Quantification of colocalization of vDNA foci detected by click chemistry to PML in primary SCG neurons transduced with shRNA targeting PML for 3 days prior to being infected with HSV-1^{EdC} in the presence or absence of IFN α (150 IU/ml). **(C-F)** Number of Us11-GFP expressing P6 SCG transduced with shRNA targeting PML for 3 days prior to infection with HSV-1 in the presence or absence of IFN α (150 IU/ml). Statistical comparisons were made using one way ANOVA with a Tukey's multiple comparison (ns not significant, * P<0.05, ** P<0.01, **** P<.0001).

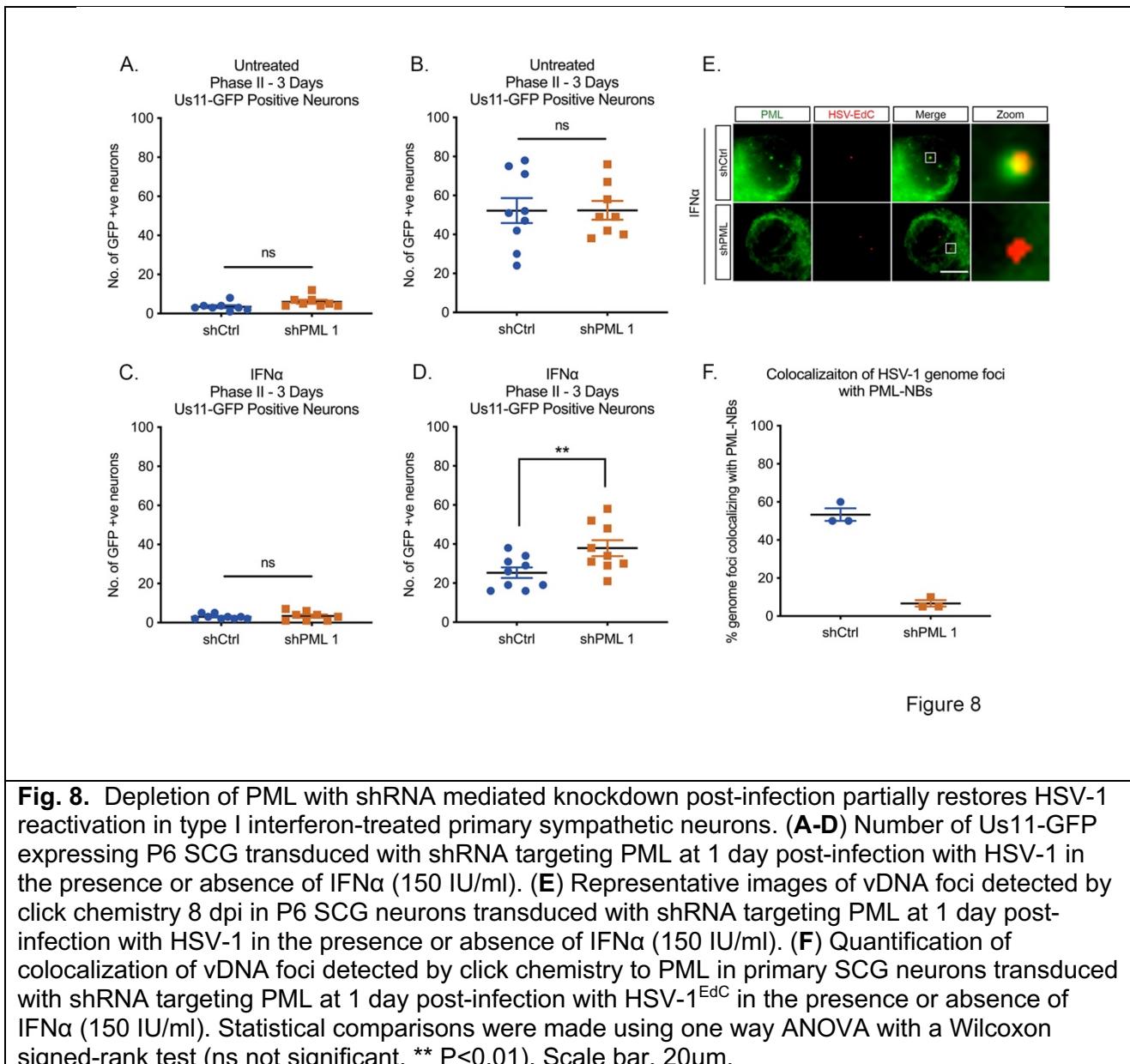


Figure 8

Fig. 8. Depletion of PML with shRNA mediated knockdown post-infection partially restores HSV-1 reactivation in type I interferon-treated primary sympathetic neurons. **(A-D)** Number of Us11-GFP expressing P6 SCG transduced with shRNA targeting PML at 1 day post-infection with HSV-1 in the presence or absence of IFN α (150 IU/ml). **(E)** Representative images of vDNA foci detected by click chemistry 8 dpi in P6 SCG neurons transduced with shRNA targeting PML at 1 day post-infection with HSV-1 in the presence or absence of IFN α (150 IU/ml). **(F)** Quantification of colocalization of vDNA foci detected by click chemistry to PML in primary SCG neurons transduced with shRNA targeting PML at 1 day post-infection with HSV-1^{EdC} in the presence or absence of IFN α (150 IU/ml). Statistical comparisons were made using one way ANOVA with a Wilcoxon signed-rank test (ns not significant, ** P<0.01). Scale bar, 20 μ m.

729

730

731

732

733

734

735

736 **Materials and Methods**

737 **Reagents**

738 Compounds used in the study are as follows: Acycloguanosine, FUDR, LY 294002,
739 Nerve Growth Factor 2.5S (Alomone Labs), Primocin (Invivogen), Aphidicolin (AG
740 Scientific), IFN- α (EMD Millipore IF009), IFN- β (EMD Millipore IF011), IFN- γ (EMD
741 Millipore IF005), IFN- λ 2 (PeproTech 250-33); WAY-150138 was kindly provided by
742 Pfizer, Dr. Jay Brown and Dr. Dan Engel at the University of Virginia, and Dr. Lynn
743 Enquist at Princeton University. Compound information and concentrations used can be
744 found below in Table S1.

745

746 **Preparation of HSV-1 Virus Stocks**

747 HSV-1 stocks of eGFP-Us11 Patton were grown and titrated on Vero cells obtained
748 from the American Type Culture Collection (Manassas, VA). Cells were maintained in
749 Dulbecco's Modified Eagle's Medium (Gibco) supplemented with 10% FetalPlex
750 (Gemini Bio-Products) and 2 mM L-Glutamine. eGFP-Us11 Patton (HSV-1 Patton strain
751 with eGFP reporter protein fused to true late protein Us11 (Benboudjema et al., 2003))
752 was kindly provided by Dr. Ian Mohr at New York University.

753

754 Stayput Us11-GFP was created by inserting an eUs11-GFP tag into the previously
755 created gH-deficient HSV-1 SCgHZ virus (strain SC16) through co-transfection of
756 SCgHZ viral DNA and pSXZY-eGFP-Us11 plasmid (Forrester et al., 1992). Stayput
757 Us11-GFP is propagated and titrated on previously constructed Vero F6 cells, which
758 contain copies of the gH gene under the control of an HSV-1 gD promoter, as described

759 in Forrester et al. (1992). Vero F6s are maintained in Dulbecco's Modified Eagle's
760 Medium (Gibco) supplemented with 10% FetaPlex (Gemini BioProducts). They are
761 selected with The supplementation of 250 ug/mL of G418/Geneticin (Gibco).

762

763 **Primary Neuronal Cultures**

764 Sympathetic neurons from the Superior Cervical Ganglia (SCG) of post-natal day 0-2
765 (P0-P2) or adult (P21-P24) CD1 Mice (Charles River Laboratories) were dissected as
766 previously described (Cliffe et al., 2015). Sensory neurons from Trigeminal Ganglia (TG)
767 of post-natal day 0-2 (P0-P2) CD1 mice (Charles River Laboratories) were dissected
768 using the same protocol. Sensory neurons from TG of adult were dissected as
769 previously described (Bertke et al., 2011) with a modified purification protocol using
770 Percoll from the protocol published by Malin et al. (2007). Rodent handling and
771 husbandry were carried out under animal protocols approved by the Animal Care and
772 Use Committee of the University of Virginia (UVA). Ganglia were briefly kept in
773 Leibovitz's L-15 media with 2.05 mM L-Glutamine before dissociation in Collagenase
774 Type IV (1 mg/mL) followed by Trypsin (2.5 mg/mL) for 20 minutes each at 37 °C.
775 Dissociated ganglia were triturated, and approximately 10,000 neurons per well were
776 plated onto rat tail collagen in a 24-well plate. Sympathetic neurons were maintained in
777 CM1 (Neurobasal® Medium supplemented with PRIME-XV IS21 Neuronal Supplement
778 (Irvine Scientific), 50 ng/mL Mouse NGF 2.5S, 2 mM L-Glutamine, and Primocin).
779 Aphidicolin (3.3 µg/mL) was added to the CM1 for the first five days post-dissection to
780 select against proliferating cells. Sensory neurons were maintained in the same media
781 supplemented with GDNF (50ng/ml; Peprotech 450-44)

782

783 **Establishment and Reactivation of Latent HSV-1 Infection in Primary Neurons**

784 Latent HSV-1 infection was established in P6-8 sympathetic neurons from SCGs.

785 Neurons were cultured for at least 24 hours without antimitotic agents prior to infection.

786 The cultures were infected with eGFP-Us11 (Patton recombinant strain of HSV-1

787 expressing an eGFP reporter fused to true late protein Us11) or StayPut. Neurons were

788 infected at a Multiplicity of Infection (MOI) of 7.5 PFU/cell with eGFP-Us11 and at an

789 MOI of 5 PFU/cell with StayPut (assuming 1.0×10^4 neurons/well/24-well plate) in DPBS

790 $+CaCl_2 +MgCl_2$ supplemented with 1% Fetal Bovine Serum, 4.5 g/L glucose, and 10 μM

791 Acyclovir (ACV) for 2-3 hours at 37 °C. Post-infection, inoculum was replaced with CM1

792 containing 50 μM ACV and an anti-mouse IFNAR-1 antibody (Leinco Tech I-1188,

793 1:1000) for 5-6 days, followed by CM1 without ACV. Reactivation was carried out in

794 DMEM/F12 (Gibco) supplemented with 10% Fetal Bovine Serum, Mouse NGF 2.5S (50

795 ng/mL) and Primocin. WAY-150138 (10 $\mu g/mL$) was added to reactivation cocktail to

796 limit cell-to-cell spread. Reactivation was quantified by counting number of GFP-positive

797 neurons or performing Reverse Transcription Quantitative PCR (RT-qPCR) of HSV-1

798 lytic mRNAs isolated from the cells in culture.

799

800 **Analysis of mRNA expression by reverse-transcription quantitative PCR (RT-**

801 **qPCR)**

802 To assess relative expression of HSV-1 lytic mRNA, total RNA was extracted from

803 approximately 1.0×10^4 neurons using the Quick-RNA™ Miniprep Kit (Zymo Research)

804 with an on-column DNase I digestion. mRNA was converted to cDNA using the

805 SuperScript IV First-Strand Synthesis system (Invitrogen) using random hexamers for
806 first strand synthesis and equal amounts of RNA (20-30 ng/reaction). To assess viral
807 DNA load, total DNA was extracted from approximately 1.0×10^4 neurons using the
808 Quick-DNA™ Miniprep Plus Kit (Zymo Research). qPCR was carried out using *Power*
809 SYBR™ Green PCR Master Mix (Applied Biosystems). The relative mRNA or DNA copy
810 number was determined using the Comparative C_T ($\Delta\Delta C_T$) method normalized to mRNA
811 or DNA levels in latently infected samples. Viral RNAs were normalized to mouse
812 reference gene GAPDH. All samples were run in duplicate on an Applied Biosystems™
813 QuantStudio™ 6 Flex Real-Time PCR System and the mean fold change compared to
814 the reference gene calculated. Primers used are described in Table S2.

815

816 **Immunofluorescence**

817 Neurons were fixed for 15 minutes in 4% Formaldehyde and blocked in 5% Bovine
818 Serum Albumin and 0.3% Triton X-100 and incubated overnight in primary antibody.
819 Following primary antibody treatment, neurons were incubated for one hour in Alexa
820 Fluor® 488-, 555-, and 647-conjugated secondary antibodies for multi-color imaging
821 (Invitrogen). Nuclei were stained with Hoechst 33258 (Life Technologies). Images were
822 acquired using an sCMOS charge-coupled device camera (pco.edge) mounted on a
823 Nikon Eclipse Ti Inverted Epifluorescent microscope using NIS-Elements software
824 (Nikon). Images were analyzed and processed using ImageJ.

825

826 **Click Chemistry**

827 For EdC-labeled HSV-1 virus infections, an MOI of 5 was used. EdC labelled virus was
828 prepared using a previously described method (McFarlane et al., 2019). Click chemistry
829 was carried out a described previously (Alandijany et al., 2018) with some modifications.
830 Neurons were washed with CSK buffer (10 mM HEPES, 100 mM NaCl, 300 mM
831 Sucrose, 3 mM MgCl₂, 5 mM EGTA) and simultaneously fixed and permeabilized for 10
832 minutes in 1.8% methonal-free formaldehyde (0.5% Triton X-100, 1%
833 phenylmethylsulfonyl fluoride (PMSF)) in CSK buffer, then washed twice with PBS
834 before continuing to the click chemistry reaction and immunostaining. Samples were
835 blocked with 3% BSA for 30 minutes, followed by click chemistry using EdC-labelled
836 HSV-1 DNA and the Click-iT EdU Alexa Flour 555 Imaging Kit (ThermoFisher Scientific,
837 C10638) according to the manufacturer's instructions with AFDye 555 Picolyl Azide
838 (Click Chemistry Tools, 1288). For immunostaining, samples were incubated overnight
839 with primary antibodies in 3% BSA. Following primary antibody treatment, neurons were
840 incubated for one hour in Alexa Fluor® 488- and 647-conjugated secondary antibodies
841 for multi-color imaging (Invitrogen). Nuclei were stained with Hoechst 33258 (Life
842 Technologies). Epifluorescence microscopy images were acquired at 60x using an
843 sCMOS charge-coupled device camera (pco.edge) mounted on a Nikon Eclipse Ti
844 Inverted Epifluorescent microscope using NIS-Elements software (Nikon). Images were
845 analyzed and processed using ImageJ. Confocal microscopy images were acquired
846 using a Zeiss LSM 880 confocal microscope using the 63x Plan-Apochromat oil
847 immersion lens (numerical aperture 1.4) using 405 nm, 488 nm, 543 nm, and 633 nm
848 laser lines. Zen black software (Zeiss) was used for image capture, generating cut mask
849 channels, and calculating weighted colocalization coefficients. Exported images were

850 processed with minimal adjustment using Adobe Photoshop and assembled for
851 presentation using Adobe Illustrator.

852

853 **Preparation of Lentiviral Vectors**

854 Lentiviruses expressing shRNA against PML (PML-1 TRCN0000229547, PML-2
855 TRCN0000229549, PML-3 TRCN0000314605), or a control lentivirus shRNA (Everett et
856 al., 2006) were prepared by co-transfection with psPAX2 and pCMV-VSV-G (Stewart et
857 al., 2003) using the 293LTV packaging cell line (Cell Biolabs). Supernatant was
858 harvested at 40- and 64-hours post-transfection. Sympathetic neurons were transduced
859 overnight in neuronal media containing 8 μ g/ml protamine and 50 μ M ACV.

860

861 **RNA Sequence Analysis**

862 Reads were checked for quality using FASTQC (v0.11.8), trimmed using BBMAP
863 (v3.8.16b), and aligned to the mouse genome with GENCODE (vM22) annotations
864 using STAR (v2.7.1a). Transcripts per million calculations were performed by RSEM
865 (v1.3.1), the results of which were imported into R (v4.0.2) and Bioconductor (v3.12)
866 using tximport (v1.18.0). Significant genes were called using DESeq2, using fold
867 change cutoffs and pvalue cutoffs of 0.5 and 0.05 respectively. Results were visualized
868 using Heatplus (v2.36.0), PCAtools (v2.2.0), and UpSetR (v1.4.0). Functional
869 enrichment was performed using GSEA and Metascape.

870

871 **Statistical Analysis**

872 Power analysis was used to determine the appropriate sample sizes for statistical
873 analysis. All statistical analysis was performed using Prism V8.4. An unpaired t-test was
874 used for all experiments where the group size was 2. All other experiments were
875 analyzed using a one-way ANOVA with a Tukey's multiple comparison. Specific
876 analyses are included in the figure legends. For all reactivation experiments measuring
877 GFP expression, viral DNA, gene expression or DNA load, individual biological
878 replicates were plotted (an individual well of primary neurons) and all experiments were
879 repeated from pools of neurons from at least 3 litters.

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

910 **References**

911

912 ALANDIJANY, T., ROBERTS, A. P. E., CONN, K. L., LONEY, C., MCFARLANE, S., ORR,
913 A. & BOUTELL, C. 2018. Distinct temporal roles for the promyelocytic leukaemia
914 (PML) protein in the sequential regulation of intracellular host immunity to HSV-1
915 infection. *PLoS Pathogens*, 14, e1006769-36.

916 BARRAGAN-IGLESIAS, P., FRANCO-ENZASTIGA, U., JEEVAKUMAR, V., SHIERS, S.,
917 WANGZHOU, A., GRANADOS-SOTO, V., CAMPBELL, Z. T., DUSSOR, G. &
918 PRICE, T. J. 2020. Type I Interferons Act Directly on Nociceptors to Produce Pain
919 Sensitization: Implications for Viral Infection-Induced Pain. *J Neurosci*, 40, 3517-3532.

920 BENBOUDJEMA, L., MULVEY, M., GAO, Y., PIMPLIKAR, S. W. & MOHR, I. 2003.
921 Association of the herpes simplex virus type 1 Us11 gene product with the cellular
922 kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides.
923 *J Virol*, 77, 9192-203.

924 BERNARDI, R. & PANDOLFI, P. P. 2007. Structure, dynamics and functions of promyelocytic
925 leukaemia nuclear bodies. *Nat Rev Mol Cell Biol*, 8, 1006-16.

926 BERTKE, A. S., SWANSON, S. M., CHEN, J., IMAI, Y., KINCHINGTON, P. R. &
927 MARGOLIS, T. P. 2011. A5-positive primary sensory neurons are nonpermissive for
928 productive infection with herpes simplex virus 1 in vitro. *J Virol*, 85, 6669-77.

929 BISHOP, C. L., RAMALHO, M., NADKARNI, N., MAY KONG, W., HIGGINS, C. F. &
930 KRAUZEWICZ, N. 2006. Role for centromeric heterochromatin and PML nuclear
931 bodies in the cellular response to foreign DNA. *Mol Cell Biol*, 26, 2583-94.

932 BLOOM, D. C. 2016. Alphaherpesvirus Latency: A Dynamic State of Transcription and
933 Reactivation. *Adv Virus Res*, 94, 53-80.

934 BOUTELL, C., CUCHET-LOURENCO, D., VANNI, E., ORR, A., GLASS, M.,
935 MCFARLANE, S. & EVERETT, R. D. 2011. A viral ubiquitin ligase has substrate
936 preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral
937 defence. *PLoS Pathog*, 7, e1002245.

938 BOUTELL, C., SADIS, S. & EVERETT, R. D. 2002. Herpes simplex virus type 1 immediate-
939 early protein ICP0 and its isolated RING finger domain act as ubiquitin E3 ligases in
940 vitro. *J Virol*, 76, 841-50.

941 BRANCO, F. J. & FRASER, N. W. 2005. Herpes simplex virus type 1 latency-associated
942 transcript expression protects trigeminal ganglion neurons from apoptosis. *J Virol*, 79,
943 9019-25.

944 BUCEVICIUS, J., KELLER-FINDEISEN, J., GILAT, T., HELL, S. W. & LUKINAVICIUS, G.
945 2019. Rhodamine-Hoechst positional isomers for highly efficient staining of
946 heterochromatin. *Chem Sci*, 10, 1962-1970.

947 CABRAL, J. M., OH, H. S. & KNIPE, D. M. 2018. ATRX promotes maintenance of herpes
948 simplex virus heterochromatin during chromatin stress. *Elife*, 7.

949 CAMARENA, V. 2011. Nerve Growth Factor Signaling maintains HSV latency. 1-254.

950 CARR, D. J., VERESS, L. A., NOISAKRAN, S. & CAMPBELL, I. L. 1998. Astrocyte-targeted
951 expression of IFN-alpha1 protects mice from acute ocular herpes simplex virus type 1
952 infection. *J Immunol*, 161, 4859-65.

953 CATEZ, F., PICARD, C., HELD, K., GROSS, S., ROUSSEAU, A., THEIL, D., SAWTELL, N.,
954 LABETOULLE, M. & LOMONTE, P. 2012. HSV-1 genome subnuclear positioning and

955 associations with host-cell PML-NBs and centromeres regulate LAT locus transcription
956 during latency in neurons. *PLoS Pathog*, 8, e1002852.

957 CHANG, J. Y., MARTIN, D. P. & JOHNSON, E. M., JR. 1990. Interferon suppresses
958 sympathetic neuronal cell death caused by nerve growth factor deprivation. *J Neurochem*,
959 55, 436-45.

960 CHELBI-ALIX, M. K. & DE THE, H. 1999. Herpes virus induced proteasome-dependent
961 degradation of the nuclear bodies-associated PML and Sp100 proteins. *Oncogene*, 18,
962 935-41.

963 CHELBI-ALIX, M. K., PELICANO, L., QUIGNON, F., KOKEN, M. H., VENTURINI, L.,
964 STADLER, M., PAVLOVIC, J., DEGOS, L. & DE THE, H. 1995. Induction of the PML
965 protein by interferons in normal and APL cells. *Leukemia*, 9, 2027-33.

966 CHEN, S. H., KRAMER, M. F., SCHAFFER, P. A. & COEN, D. M. 1997. A viral function
967 represses accumulation of transcripts from productive-cycle genes in mouse ganglia
968 latently infected with herpes simplex virus. *Journal of Virology*, 71, 5878-5884.

969 CHEN, Y., WRIGHT, J., MENG, X. & LEPPARD, K. N. 2015. Promyelocytic Leukemia
970 Protein Isoform II Promotes Transcription Factor Recruitment To Activate Interferon
971 Beta and Interferon-Responsive Gene Expression. *Mol Cell Biol*, 35, 1660-72.

972 CLIFFE, A. R., ARBUCKLE, J. H., VOGEL, J. L., GEDEON, M. J., ROTHBART, S. B.,
973 CUSACK, C. L., STRAHL, B. D., KRISTIE, T. M. & DESHMUKH, M. 2015. Neuronal
974 Stress Pathway Mediating a Histone Methyl/Phospho Switch Is Required for Herpes
975 Simplex Virus Reactivation. *Cell Host Microbe*, 18, 649-58.

976 CLIFFE, A. R., COEN, D. M. & KNIPE, D. M. 2013. Kinetics of facultative heterochromatin
977 and polycomb group protein association with the herpes simplex viral genome during
978 establishment of latent infection. *MBio*, 4, e00590-12-e00590-12.

979 CLIFFE, A. R., GARBER, D. A. & KNIPE, D. M. 2009. Transcription of the herpes simplex
980 virus latency-associated transcript promotes the formation of facultative heterochromatin
981 on lytic promoters. *J Virol*, 83, 8182-90.

982 CLIFFE, A. R. & WILSON, A. C. 2017. Restarting Lytic Gene Transcription at the Onset of
983 Herpes Simplex Virus Reactivation. *J Virol*, 91, e01419-16-6.

984 CLYNES, D., HIGGS, D. R. & GIBBONS, R. J. 2013. The chromatin remodeler ATRX: a
985 repeat offender in human disease. *Trends in Biochemical Sciences*, 38, 461-466.

986 COHEN, C., CORPET, A., ROUBILLE, S., MAROUI, M. A., POCCARDI, N., ROUSSEAU,
987 A., KLEIJWEGT, C., BINDA, O., TEXIER, P., SAWTELL, N., LABETOULLE, M. &
988 LOMONTE, P. 2018. Promyelocytic leukemia (PML) nuclear bodies (NBs) induce
989 latent/quiescent HSV-1 genomes chromatinization through a PML NB/Histone
990 H3.3/H3.3 Chaperone Axis. *PLoS Pathog*, 14, e1007313.

991 CROXTON, R., PUTO, L. A., DE BELLE, I., THOMAS, M., TORII, S., HANAI, F., CUDDY,
992 M. & REED, J. C. 2006. Daxx represses expression of a subset of antiapoptotic genes
993 regulated by nuclear factor-kappaB. *Cancer Res*, 66, 9026-35.

994 CUCHET-LOURENCO, D., VANNI, E., GLASS, M., ORR, A. & EVERETT, R. D. 2012.
995 Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces
996 its SUMO-independent degradation. *J Virol*, 86, 11209-22.

997 CUDDY, S. R., SCHINLEVER, A. R., DOCHNAL, S., SEEGREN, P. V., SUZICH, J.,
998 KUNDU, P., DOWNS, T. K., FARAH, M., DESAI, B. N., BOUTELL, C. & CLIFFE, A.
999 R. 2020. Neuronal hyperexcitability is a DLK-dependent trigger of herpes simplex virus
1000 reactivation that can be induced by IL-1. *Elife*, 9.

1001 DU, T., ZHOU, G. & ROIZMAN, B. 2011. HSV-1 gene expression from reactivated ganglia is
1002 disordered and concurrent with suppression of latency-associated transcript and miRNAs.
1003 *Proceedings of the National Academy of Sciences*, 108, 18820-18824.

1004 EFSTATHIOU, S. & PRESTON, C. M. 2005. Towards an understanding of the molecular basis
1005 of herpes simplex virus latency. *Virus Res*, 111, 108-19.

1006 EVERETT, R. D. & CHELBI-ALIX, M. K. 2007. PML and PML nuclear bodies: implications in
1007 antiviral defence. *Biochimie*, 89, 819-30.

1008 EVERETT, R. D., FREEMONT, P., SAITO, H., DASSO, M., ORR, A., KATHORIA, M. &
1009 PARKINSON, J. 1998. The disruption of ND10 during herpes simplex virus infection
1010 correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. *J
1011 Virol*, 72, 6581-91.

1012 EVERETT, R. D. & MAUL, G. G. 1994. HSV-1 IE protein Vmw110 causes redistribution of
1013 PML. *EMBO J*, 13, 5062-9.

1014 EVERETT, R. D., RECHTER, S., PAPIOR, P., TAVALAI, N., STAMMINGER, T. & ORR, A.
1015 2006. PML contributes to a cellular mechanism of repression of herpes simplex virus
1016 type 1 infection that is inactivated by ICP0. *J Virol*, 80, 7995-8005.

1017 FORRESTER, A., FARRELL, H., WILKINSON, G., KAYE, J., DAVIS-POYNTER, N. &
1018 MINSON, T. 1992. Construction and properties of a mutant of herpes simplex virus type
1019 1 with glycoprotein H coding sequences deleted. *Journal of Virology*, 66, 341-348.

1020 GARRICK, D., SAMARA, V., McDOWELL, T. L., SMITH, A. J., DOBBIE, L., HIGGS, D. R.
1021 & GIBBONS, R. J. 2004. A conserved truncated isoform of the ATR-X syndrome protein
1022 lacking the SWI/SNF-homology domain. *Gene*, 326, 23-34.

1023 GORDON, Y. J., ROMANOWSKI, E. G., ARAULLO-CRUZ, T. & KINCHINGTON, P. R.
1024 1995. The proportion of trigeminal ganglionic neurons expressing herpes simplex virus
1025 type 1 latency-associated transcripts correlates to reactivation in the New Zealand rabbit
1026 ocular model. *Graefes Arch Clin Exp Ophthalmol*, 233, 649-54.

1027 GRAY, P. A., FU, H., LUO, P., ZHAO, Q., YU, J., FERRARI, A., TENZEN, T., YUK, D. I.,
1028 TSUNG, E. F., CAI, Z., ALBERTA, J. A., CHENG, L. P., LIU, Y., STENMAN, J. M.,
1029 VALERIUS, M. T., BILLINGS, N., KIM, H. A., GREENBERG, M. E., MCMAHON, A.
1030 P., ROWITCH, D. H., STILES, C. D. & MA, Q. 2004. Mouse brain organization
1031 revealed through direct genome-scale TF expression analysis. *Science*, 306, 2255-7.

1032 GREGER, J. G., KATZ, R. A., ISHOV, A. M., MAUL, G. G. & SKALKA, A. M. 2005. The
1033 cellular protein daxx interacts with avian sarcoma virus integrase and viral DNA to
1034 repress viral transcription. *J Virol*, 79, 4610-8.

1035 GROTZINGER, T., JENSEN, K. & WILL, H. 1996. The interferon (IFN)-stimulated gene
1036 Sp100 promoter contains an IFN-gamma activation site and an imperfect IFN-stimulated
1037 response element which mediate type I IFN inducibility. *J Biol Chem*, 271, 25253-60.

1038 GUO, A., SALOMONI, P., LUO, J., SHIH, A., ZHONG, S., GU, W. & PANDOLFI, P. P. 2000.
1039 The function of PML in p53-dependent apoptosis. *Nat Cell Biol*, 2, 730-6.

1040 HALL, M. H., MAGALSKA, A., MALINOWSKA, M., RUSZCZYCKI, B., CZABAN, I.,
1041 PATEL, S., AMBROZEK-LATECKA, M., ZOLOCINSKA, E., BROSZKIEWICZ, H.,
1042 PAROBCZAK, K., NAIR, R. R., RYLSKI, M., PAWLAK, R., BRAMHAM, C. R. &
1043 WILCZYNISKI, G. M. 2016. Localization and regulation of PML bodies in the adult
1044 mouse brain. *Brain Struct Funct*, 221, 2511-25.

1045 HENDRICKS, R. L., WEBER, P. C., TAYLOR, J. L., KOUMBIS, A., TUMPEY, T. M. &
1046 GLORIOSO, J. C. 1991. Endogenously produced interferon alpha protects mice from
1047 herpes simplex virus type 1 corneal disease. *J Gen Virol*, 72 (Pt 7), 1601-10.

1048 HOCHREIN, H., SCHLATTER, B., O'KEEFFE, M., WAGNER, C., SCHMITZ, F.,
1049 SCHIEMANN, M., BAUER, S., SUTER, M. & WAGNER, H. 2004. Herpes simplex
1050 virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -
1051 independent pathways. *Proc Natl Acad Sci U S A*, 101, 11416-21.

1052 IVES, A. M. & BERTKE, A. S. 2017. Stress Hormones Epinephrine and Corticosterone
1053 Selectively Modulate Herpes Simplex Virus 1 (HSV-1) and HSV-2 Productive Infections
1054 in Adult Sympathetic, but Not Sensory, Neurons. *Journal of Virology*, 91, e00582-17-12.

1055 JONES, C. A., FERNANDEZ, M., HERC, K., BOSNIJAK, L., MIRANDA-SAKSENA, M.,
1056 BOADLE, R. A. & CUNNINGHAM, A. 2003. Herpes simplex virus type 2 induces rapid
1057 cell death and functional impairment of murine dendritic cells in vitro. *J Virol*, 77,
1058 11139-49.

1059 KAMADA, R., YANG, W., ZHANG, Y., PATEL, M. C., YANG, Y., OUDA, R., DEY, A.,
1060 WAKABAYASHI, Y., SAKAGUCHI, K., FUJITA, T., TAMURA, T., ZHU, J. &
1061 OZATO, K. 2018. Interferon stimulation creates chromatin marks and establishes
1062 transcriptional memory. *Proceedings of the National Academy of Sciences*, 115, E9162-
1063 E9171.

1064 KATZENELL, S. & LEIB, D. A. 2016. Herpes Simplex Virus and Interferon Signaling Induce
1065 Novel Autophagic Clusters in Sensory Neurons. *J Virol*, 90, 4706-4719.

1066 KIM, J. Y., MANDARINO, A., CHAO, M. V., MOHR, I. & WILSON, A. C. 2012. Transient
1067 reversal of episome silencing precedes VP16-dependent transcription during reactivation
1068 of latent HSV-1 in neurons. *PLoS Pathog*, 8, e1002540.

1069 KIM, Y. E. & AHN, J. H. 2015. Positive role of promyelocytic leukemia protein in type I
1070 interferon response and its regulation by human cytomegalovirus. *PLoS Pathog*, 11,
1071 e1004785.

1072 KNIPE, D. M. & CLIFFE, A. 2008. Chromatin control of herpes simplex virus lytic and latent
1073 infection. *Nat Rev Microbiol*, 6, 211-21.

1074 KOBAYASHI, M., WILSON, A. C., CHAO, M. V. & MOHR, I. 2012. Control of viral latency
1075 in neurons by axonal mTOR signaling and the 4E-BP translation repressor. *Genes Dev*,
1076 26, 1527-32.

1077 KRAMER, M. F. & COEN, D. M. 1995. Quantification of transcripts from the ICP4 and
1078 thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. *J
1079 Virol*, 69, 1389-99.

1080 KREIT, M., PAUL, S., KNOOPS, L., DE COCK, A., SORGELOOS, F. & MICHELS, T. 2014.
1081 Inefficient type I interferon-mediated antiviral protection of primary mouse neurons is
1082 associated with the lack of apolipoprotein l9 expression. *J Virol*, 88, 3874-84.

1083 KWIATKOWSKI, D. L., THOMPSON, H. W. & BLOOM, D. C. 2009. The polycomb group
1084 protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive
1085 histone marks during latency. *J Virol*, 83, 8173-81.

1086 LALLEMAND-BREITENBACH, V. & DE THE, H. 2010. PML nuclear bodies. *Cold Spring
1087 Harb Perspect Biol*, 2, a000661.

1088 LEWIS, P. W., ELSAESER, S. J., NOH, K.-M., STADLER, S. C. & ALLIS, C. D. 2010. Daxx
1089 is an H3.3-specific histone chaperone and cooperates with ATRX in replication-

1090 independent chromatin assembly at telomeres. *Proceedings of the National Academy of*
1091 *Sciences of the United States of America*, 107, 14075-14080.

1092 LI, H., ZHANG, J., KUMAR, A., ZHENG, M., ATHERTON, S. S. & YU, F. S. 2006. Herpes
1093 simplex virus 1 infection induces the expression of proinflammatory cytokines,
1094 interferons and TLR7 in human corneal epithelial cells. *Immunology*, 117, 167-76.

1095 LIANG, Y., VOGEL, J. L., ARBUCKLE, J. H., RAI, G., JADHAV, A., SIMEONOV, A.,
1096 MALONEY, D. J. & KRISTIE, T. M. 2013. Targeting the JMJD2 histone demethylases
1097 to epigenetically control herpesvirus infection and reactivation from latency. *Sci Transl*
1098 *Med*, 5, 167ra5.

1099 LIANG, Y., VOGEL, J. L., NARAYANAN, A., PENG, H. & KRISTIE, T. M. 2009. Inhibition
1100 of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and
1101 reactivation from latency. *Nat Med*, 15, 1312-7.

1102 LUKASHCHUK, V. & EVERETT, R. D. 2010. Regulation of ICP0-null mutant herpes simplex
1103 virus type 1 infection by ND10 components ATRX and hDaxx. *J Virol*, 84, 4026-40.

1104 MA, J. Z., RUSSELL, T. A., SPELMAN, T., CARBONE, F. R. & TSCHARKE, D. C. 2014.
1105 Lytic Gene Expression Is Frequent in HSV-1 Latent Infection and Correlates with the
1106 Engagement of a Cell-Intrinsic Transcriptional Response. *PLoS Pathogens*, 10,
1107 e1004237.

1108 MALIN, S. A., DAVIS, B. M. & MOLLIVER, D. C. 2007. Production of dissociated sensory
1109 neuron cultures and considerations for their use in studying neuronal function and
1110 plasticity. *Nat Protoc*, 2, 152-60.

1111 MAROUI, M. A., CALLÉ, A., COHEN, C., STREICHENBERGER, N., TEXIER, P.,
1112 TAKISSIAN, J., ROUSSEAU, A., POCCARDI, N., WELSCH, J., CORPET, A.,
1113 SCHAEFFER, L., LABETOULLE, M. & LOMONTE, P. 2016. Latency Entry of Herpes
1114 Simplex Virus 1 Is Determined by the Interaction of Its Genome with the Nuclear
1115 Environment. *PLoS Pathogens*, 12, e1005834-28.

1116 MAUL, G. G. 1998. Nuclear domain 10, the site of DNA virus transcription and replication.
1117 *Bioessays*, 20, 660-7.

1118 MAUL, G. G., ISHOV, A. M. & EVERETT, R. D. 1996. Nuclear domain 10 as preexisting
1119 potential replication start sites of herpes simplex virus type-1. *Virology*, 217, 67-75.

1120 MCFARLANE, S., ORR, A., ROBERTS, A. P. E., CONN, K. L., ILIEV, V., LONEY, C., DA
1121 SILVA FILIPE, A., SMOLLETT, K., GU, Q., ROBERTSON, N., ADAMS, P. D., RAI,
1122 T. S. & BOUTELL, C. 2019. The histone chaperone HIRA promotes the induction of
1123 host innate immune defences in response to HSV-1 infection. *PLOS Pathogens*, 15,
1124 e1007667.

1125 MIKLOSKA, Z. & CUNNINGHAM, A. L. 2001. Alpha and gamma interferons inhibit herpes
1126 simplex virus type 1 infection and spread in epidermal cells after axonal transmission. *J*
1127 *Virol*, 75, 11821-6.

1128 MIKLOSKA, Z., DANIS, V. A., ADAMS, S., LLOYD, A. R., ADRIAN, D. L. &
1129 CUNNINGHAM, A. L. 1998. In vivo production of cytokines and beta (C-C)
1130 chemokines in human recurrent herpes simplex lesions--do herpes simplex virus-infected
1131 keratinocytes contribute to their production? *J Infect Dis*, 177, 827-38.

1132 MOORLAG, S., RORING, R. J., JOOSTEN, L. A. B. & NETEA, M. G. 2018. The role of the
1133 interleukin-1 family in trained immunity. *Immunol Rev*, 281, 28-39.

1134 MULLER, S., MATUNIS, M. J. & DEJEAN, A. 1998. Conjugation with the ubiquitin-related
1135 modifier SUMO-1 regulates the partitioning of PML within the nucleus. *EMBO J*, 17, 61-
1136 70.

1137 NICOLL, M. P., HANN, W., SHIVKUMAR, M., HARMAN, L. E., CONNOR, V., COLEMAN,
1138 H. M., PROENCA, J. T. & EFSTATHIOU, S. 2016. The HSV-1 Latency-Associated
1139 Transcript Functions to Repress Latent Phase Lytic Gene Expression and Suppress Virus
1140 Reactivation from Latently Infected Neurons. *PLoS Pathog*, 12, e1005539.

1141 NOH, K. M., MAZE, I., ZHAO, D., XIANG, B., WENDERSKI, W., LEWIS, P. W., SHEN, L.,
1142 LI, H. & ALLIS, C. D. 2015. ATRX tolerates activity-dependent histone H3 methyl/phos-
1143 switching to maintain repetitive element silencing in neurons. *Proc Natl Acad Sci U S A*,
1144 112, 6820-7.

1145 PROENCA, J. T., COLEMAN, H. M., CONNOR, V., WINTON, D. J. & EFSTATHIOU, S.
1146 2008. A historical analysis of herpes simplex virus promoter activation in vivo reveals
1147 distinct populations of latently infected neurones. *Journal of General Virology*, 89, 2965-
1148 2974.

1149 QUIGNON, F., DE BELS, F., KOKEN, M., FEUNTEUN, J., AMEISEN, J. C. & DE THE, H.
1150 1998. PML induces a novel caspase-independent death process. *Nat Genet*, 20, 259-65.

1151 RASMUSSEN, S. B., JENSEN, S. B., NIELSEN, C., QUARTIN, E., KATO, H., CHEN, Z. J.,
1152 SILVERMAN, R. H., AKIRA, S. & PALUDAN, S. R. 2009. Herpes simplex virus
1153 infection is sensed by both Toll-like receptors and retinoic acid-inducible gene- like
1154 receptors, which synergize to induce type I interferon production. *J Gen Virol*, 90, 74-8.

1155 RASMUSSEN, S. B., SORENSEN, L. N., MALMGAARD, L., ANK, N., BAINES, J. D.,
1156 CHEN, Z. J. & PALUDAN, S. R. 2007. Type I interferon production during herpes
1157 simplex virus infection is controlled by cell-type-specific viral recognition through Toll-
1158 like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel
1159 recognition systems. *J Virol*, 81, 13315-24.

1160 REGAD, T., BELLODI, C., NICOTERA, P. & SALOMONI, P. 2009. The tumor suppressor
1161 Pml regulates cell fate in the developing neocortex. *Nat Neurosci*, 12, 132-40.

1162 ROSATO, P. C. & LEIB, D. A. 2014. Intrinsic innate immunity fails to control herpes simplex
1163 virus and vesicular stomatitis virus replication in sensory neurons and fibroblasts. *J Virol*,
1164 88, 9991-10001.

1165 SAINZ, B., JR. & HALFORD, W. P. 2002. Alpha/Beta interferon and gamma interferon
1166 synergize to inhibit the replication of herpes simplex virus type 1. *J Virol*, 76, 11541-50.

1167 SAWTELL, N. M. 1997. Comprehensive quantification of herpes simplex virus latency at the
1168 single-cell level. *J Virol*, 71, 5423-31.

1169 SCHERER, M., OTTO, V., STUMP, J. D., KLINGL, S., MULLER, R., REUTER, N.,
1170 MULLER, Y. A., STICHT, H. & STAMMINGER, T. 2016. Characterization of
1171 Recombinant Human Cytomegaloviruses Encoding IE1 Mutants L174P and 1-382
1172 Reveals that Viral Targeting of PML Bodies Perturbs both Intrinsic and Innate Immune
1173 Responses. *J Virol*, 90, 1190-205.

1174 SHALGINSKIKH, N., POLESHKO, A., SKALKA, A. M. & KATZ, R. A. 2013. Retroviral
1175 DNA methylation and epigenetic repression are mediated by the antiviral host protein
1176 Daxx. *J Virol*, 87, 2137-50.

1177 SONG, R., KOYUNCU, O. O., GRECO, T. M., DINER, B. A., CRISTEA, I. M. & ENQUIST,
1178 L. W. 2016. Two Modes of the Axonal Interferon Response Limit Alphaherpesvirus
1179 Neuroinvasion. *mBio*, 7, e02145-15.

1180 STADLER, M., CHELBI-ALIX, M. K., KOKEN, M. H., VENTURINI, L., LEE, C., SAIB, A.,
1181 QUIGNON, F., PELICANO, L., GUILLEMIN, M. C., SCHINDLER, C. & ET AL. 1995.
1182 Transcriptional induction of the PML growth suppressor gene by interferons is mediated
1183 through an ISRE and a GAS element. *Oncogene*, 11, 2565-73.
1184 STEVENS, J. G., WAGNER, E. K., DEVI-RAO, G. B., COOK, M. L. & FELDMAN, L. T.
1185 1987. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently
1186 infected neurons. *Science*, 235, 1056-1059.
1187 STEWART, S. A., DYKXHOORN, D. M., PALLISER, D., MIZUNO, H., YU, E. Y., AN, D. S.,
1188 SABATINI, D. M., CHEN, I. S., HAHN, W. C., SHARP, P. A., WEINBERG, R. A. &
1189 NOVINA, C. D. 2003. Lentivirus-delivered stable gene silencing by RNAi in primary
1190 cells. *Rna*, 9, 493-501.
1191 SUZICH, J. B. & CLIFFE, A. R. 2018. Strength in diversity: Understanding the pathways to
1192 herpes simplex virus reactivation. *Virology*, 522, 81-91.
1193 THOMPSON, R. L. & SAWTELL, N. M. 1997. The herpes simplex virus type 1 latency-
1194 associated transcript gene regulates the establishment of latency. *J Virol*, 71, 5432-40.
1195 THOMPSON, R. L. & SAWTELL, N. M. 2001. Herpes simplex virus type 1 latency-associated
1196 transcript gene promotes neuronal survival. *J Virol*, 75, 6660-75.
1197 ULBRECHT, T., ALZRIGAT, M., HORCH, A., REUTER, N., VON MIKECZ, A., STEIMLE,
1198 V., SCHMITT, E., KRAMER, O. H., STAMMINGER, T. & HEMMERICH, P. 2012.
1199 PML promotes MHC class II gene expression by stabilizing the class II transactivator. *J
1200 Cell Biol*, 199, 49-63.
1201 VAN ZEIJL, M., FAIRHURST, J., JONES, T. R., VERNON, S. K., MORIN, J., LAROCQUE,
1202 J., FELD, B., O'HARA, B., BLOOM, J. D. & JOHANN, S. V. 2000. Novel class of
1203 thiourea compounds that inhibit herpes simplex virus type 1 DNA cleavage and
1204 encapsidation: resistance maps to the UL6 gene. *J Virol*, 74, 9054-61.
1205 VILLAGRA, N. T., BERCIANO, J., ALTABLE, M., NAVASCUES, J., CASAFONT, I.,
1206 LAFARGA, M. & BERCIANO, M. T. 2004. PML bodies in reactive sensory ganglion
1207 neurons of the Guillain-Barre syndrome. *Neurobiol Dis*, 16, 158-68.
1208 WANG, J., SHIELS, C., SASIENI, P., WU, P. J., ISLAM, S. A., FREEMONT, P. S. & SHEER,
1209 D. 2004. Promyelocytic leukemia nuclear bodies associate with transcriptionally active
1210 genomic regions. *J Cell Biol*, 164, 515-26.
1211 WANG, Q.-Y., ZHOU, C., JOHNSON, K. E., COLGROVE, R. C., COEN, D. M. & KNIPE, D.
1212 M. 2005. Herpesviral latency-associated transcript gene promotes assembly of
1213 heterochromatin on viral lytic-gene promoters in latent infection. *Proceedings of the
1214 National Academy of Sciences*, 102, 16055-16059.
1215 WANG, Z. G., RUGGERO, D., RONCHETTI, S., ZHONG, S., GABOLI, M., RIVI, R. &
1216 PANDOLFI, P. P. 1998. PML is essential for multiple apoptotic pathways. *Nat Genet*,
1217 20, 266-72.
1218 WILCOX, C. L. & JOHNSON, E. M. 1987. Nerve growth factor deprivation results in the
1219 reactivation of latent herpes simplex virus in vitro. *Journal of Virology*, 61, 2311-2315.
1220 WILCOX, C. L., SMITH, R. L., FREED, C. R. & JOHNSON, E. M. 1990. Nerve growth factor-
1221 dependence of herpes simplex virus latency in peripheral sympathetic and sensory
1222 neurons in vitro. *Journal of Neuroscience*, 10, 1268-1275.
1223 WOULFE, J., GRAY, D., PRICHETT-PEJIC, W., MUÑOZ, D. G. & CHRETIEN, M. 2004.
1224 Intranuclear rodlets in the substantia nigra: interactions with marinesco bodies, ubiquitin,
1225 and promyelocytic leukemia protein. *J Neuropathol Exp Neurol*, 63, 1200-7.

1226 XU, P. & ROIZMAN, B. 2017. The SP100 component of ND10 enhances accumulation of PML
1227 and suppresses replication and the assembly of HSV replication compartments. *Proc Natl
1228 Acad Sci U S A*, 114, E3823-E3829.

1229 YORDY, B., IIJIMA, N., HUTTNER, A., LEIB, D. & IWASAKI, A. 2012. A neuron-specific
1230 role for autophagy in antiviral defense against herpes simplex virus. *Cell Host and
1231 Microbe*, 12, 334-345.

1232 ZHONG, S., SALOMONI, P. & PANDOLFI, P. P. 2000. The transcriptional role of PML and
1233 the nuclear body. *Nat Cell Biol*, 2, E85-90.

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272 **Supplemental Materials and Methods Tables**

1273

1274 **Table S1: Compounds Used and Concentrations**

Compound	Supplier	Identifier	Concentration
Acycloguanosine	Millipore Sigma	A4669	10 μ M, 50 μ M
FUDR	Millipore Sigma	F-0503	20 μ M
L-Glutamic Acid	Millipore Sigma	G5638	3.7 μ g/mL
LY 294002	Tocris	1130	20 μ M
IFN α	EMD Millipore	IF009	150 IU/ml, 600 IU/ml
IFN β	EMD Millipore	IF011	150 IU/ml
IFN γ	EMD Millipore	IF005	150 IU/ml, 500 IU/ml
IFN λ 2	PeproTech	250-33	100 ng/ml, 500 ng/ml
NGF 2.5S	Alomone Labs	N-100	50 ng/mL
Primocin	Invivogen	ant-pm-1	100 μ g/mL
Aphidicolin	AG Scientific	A-1026	3.3 μ g/mL
WAY-150138	Pfizer	N/A	10 μ g/mL
AFDye 555 Azide Plus	Click Chemistry Tools	1479-1	10uM

1275

1276

1277

1278 Table S2: Primers Used for RT-qPCR

1279

Primer	Sequence 5' to 3'
mGAP 1SF	CAT GGC CTT CCG TGT GTT CCT A
mGAP 1SR	GCG GCA CGT CAG ATC CA
ICP27 F	GCA TCC TTC GTG TTT GTC ATT CTG
ICP27 R	GCA TCT TCT CTC CGA CCC CG
ICP8 1SF	GGA GGT GCA CCG CAT ACC
ICP8 1SR	GGC TAA AAT CCG GCA TGA AC
gC #1 F	GAG TTT GTC TGG TTC GAG GAC
gC #1R	ACG GTA GAG ACT GTG GTG AA
PML F	GGG AAA CAG AGG AGC GAG TT
PML R	AAG GCC TTG AGG GAA TTG GG
ISG15 F	CAA GCA GCC AGA AGC AGA CT
ISG15 R	CCC AGC ATC TTC ACC TTT AGG
IRF7 F	CCA GTT GAT CCG CAT AAG GT
IRF7 R	GAG GCT CAC TTC TTC CCT ATT T
LAT F	TGT GTG GTG CCC GTG TCT T
LAT R	CCA GCC AAT CCG TGT CGG

1280

1281

1282

1283

1284 Table S4: Antibodies Used for Immunofluorescence and Concentrations

1285

Antibody	Supplier	Identifier	Concentration
Ms PML	EMD Millipore	MAB3738	1:200
Ch Beta-III Tubulin	Millipore sigma	AB9354	1:500
Rb ATRX (H-300)	Santa Cruz Bio	sc-15408	1:250
Ms Daxx (H-7)	Santa Cruz Bio	sc-8043	1:250
Rb STAT1 (D1K9Y)	CST	mAb 14994	1:400
Ms Mx1/2/3	Santa Cruz Bio	sc-166412	1:250
Ms HSV-1 ICP0	East Coast Bio	H1A027	1:200
F(ab') Goat anti Mouse IgG (H+L) Alexa Fluor® 555	Thermo Fisher	A21425	1:1000
F(ab')2 Goat anti-Rabbit IgG (H+L) Alexa Fluor® 488	Thermo Fisher	A11070	1:1000
F(ab')2 Goat anti-Rabbit IgG (H+L) Alexa Fluor® 488	Thermo Fisher	A11017	1:1000
Goat anti Chicken IgY (H+L) Alexa Fluor® 647	abcam	ab150175	1:1000

1286