bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429610; this version posted February 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Title: Heartbeat-evoked potentials during interoceptive-exteroceptive integration are not

consistent with precision-weighting

Authors:

Leah Banellis'* and Damian Cruse!

* Corresponding author email: LXB681@student.bham.ac.uk, phone: +447901610093

Affiliations:

1. School of Psychology and Centre for Human Brain Health, University of Birmingham,

Edgbaston, B15 2TT, UK.


https://doi.org/10.1101/2021.02.03.429610
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429610; this version posted February 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Interoceptive-exteroceptive integration is fundamental for a unified interactive
experience of the world with the body. Predictive coding accounts propose that these
integrated signals operate predictively, with regulation by precision-weighting. Heartbeat-
evoked potentials (HEPS) are one means to investigate integrated processing. In a previous
study, consistent with predictive coding characterisations of precision-weighting, we
observed modulation of HEPs by attention. However, we found no evidence of HEP
modulation by participants’ interoceptive ability, despite the characterisation by predictive
coding theories of trait abilities as a similar reflection of differential precision-weighting. In
this study, we sought to more sensitively test the hypothesised trait-precision influences on
HEPs by using an individually-adjusted measure of interoceptive performance. However,
contrary to a precision-weighted predictive coding framework, we failed to find evidence in
support of the HEP modulations by attentional-precision or trait-precision. Nonetheless, we
observed robust HEP effects indicative of an expectation of a sound on the basis of a
heartbeat —i.e. interoceptive-exteroceptive integration. It is possible that under our more
individually-tailored task, participants relied less on attentional-precision to ‘boost’
predictions due to an enhanced perception of cardio-audio synchrony. Furthermore,
assessing interoceptive ability is challenging, thus variations in performance may not
accurately reflect trait-precision variations. Nevertheless, in sum, our findings are
inconsistent with a precision-weighted prediction error view of the HEP, and highlight the
need for clearer definitions of the manipulation and measurement of precision in predictive
coding. Finally, our robust interoceptive-exteroceptive integration HEP effects may provide a

valuable tool for investigating such integration in both clinical conditions and cognition.
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Impact statement

We investigate heart-evoked potentials during interoceptive-exteroceptive integration
to determine whether cross-modal integrated processes operate under a precision-weighted
predictive coding framework. Using a more sensitive individually-tailored task, we found no
evidence of the modulation of cardio-audio expectation by attention or individual differences
in interoceptive perception (i.e. by state or trait measures of precision). Nonetheless, we
replicate evidence of cardiac-driven predictions of auditory stimuli, providing a potential tool

for investigating their relationship with emotion and embodied selfhood.
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Predictive coding accounts describe the brain as probabilistically inferring the causes
of upcoming sensory events (Friston, 2010; Rao & Ballard, 1999). Under these accounts,
predictions from generative models are compared with inputted sensory information, with the
discrepancy computed as prediction error. Predictive mechanisms are accomplished
hierarchically, with predictions feeding into each layer top-down, and prediction errors
bottom-up. The predictive coding framework is linked to many aspects of cognition,
perception, and action, with ‘successful’ processes resulting from the minimisation of
prediction error across all levels of the hierarchy (Enns & Lleras, 2008; Wolpert & Flanagan,
2001; Kilner et al., 2007; DeLong et al., 2005; Frith & Frith, 2006; Clark, 2013; Friston,

2010).

Although initially applied to exteroceptive processing, it became apparent that for the
framework to encompass the integrated experience of perceiving and interacting with the
world via the body, inferences of both internal and external systems must be intertwined
(Allen & Friston, 2018; Friston, 2009; Petzschner et al., 2017; Pezzulo, 2014; Seth & Friston,
2016). Thus, predictive coding models emerged that encompassed the inferential processing
of the body — specifically, interoceptive signals reflecting visceral bodily sensations and
internal bodily states (Barrett & Simmons, 2015; Cameron, 2002; Seth, 2013; Seth et al.,

2012; Seth & Friston, 2016; Sherrington, 1952).

One method of measuring cortical interoceptive processing is via heartbeat-evoked
potentials (HEPS) — averaged neural electrophysiological signals time-locked to heartbeats
(Park & Blanke, 2019; Pollatos & Schandry, 2004). Although discovered more than 30 years
ago (Schandry et al., 1986), the study of HEPSs is still in its infancy, with debate over the
appropriate pre-processing/analysis methods, and controls for correcting confounds such as
the cardiac field artefact (CFA) (Coll et al., 2021; Park & Blanke, 2019). This may in part
explain the diverse spatial and temporal observation of the HEP across the literature.

However, it is likely that the HEP reflects contributions from multiple sources, including
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baroreceptors, cardiac afferents, cutaneous receptor somatosensory mapping, and neuro-

vascular coupling (Park & Blanke, 2019).

HEPs are primarily recorded from superficial pyramidal neurons via M/EEG (i.e. the
proposed location of prediction error units), therefore some have interpreted HEP amplitude
to reflect precision-weighted prediction error of each heartbeat (Ainley et al., 2016;
Petzschner et al., 2019). Precision is the weight given to predictions and subsequent errors,
reflected by the inverse of the variance, or the uncertainty. Attention is thought to increase
the precision of the prediction errors of the attended sensory channel via synaptic gain
control, enhancing model updating (Friston, 2009; Hohwy, 2012). Consistent with the role of
attentional precision in modulating predictive mechanisms, previous research demonstrated
attentional modulation of HEPs, supporting its interpretation as a precision-weighted
prediction error signal (Banellis & Cruse, 2020; Mai et al., 2018; Montoya et al., 1993;

Petzschner et al., 2019; Villena-Gonzalez et al., 2017; Yuan et al., 2007).

Trait variations in uncertainty, such as individual differences in the ability to
accurately sense the heartbeat, are proposed to similarly modulate predictive mechanisms
via precision-weighting. For example, those with high heartbeat detection performance
demonstrate larger HEP amplitudes than low heartbeat perceivers, comparable to
internal/external attention contrasts (Katkin et al., 1991; Pollatos et al., 2005; Pollatos &
Schandry, 2004; Schandry et al., 1986). However, on the surface, this result appears at
odds with a prediction error interpretation as one might expect largest HEPs in
circumstances of highest error, i.e., for low heartbeat perceivers. This disparity is often
reconciled via appeal to precision-weighting, such that a small prediction error weighted by
high precision may result in a larger evoked potential than a large prediction error weighted
by low precision (Kok et al., 2012). However, care should be taken when interpreting trait
variations as different heartbeat detection tasks assess distinct processes and some tasks
may not validly measure ability (Brener & Ring, 2016; Corneille et al., 2020; Desmedt et al.,

2020; Ring & Brener, 2018).
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The cross-modal predictive mechanisms proposed to underlie an integrated
experience of perceiving the world via the body can be investigated by presenting
exteroceptive stimuli at different intervals from the heartbeat. For example, tones presented
at short delays from the heartbeat (~250ms) are typically perceived as synchronous, while
those presented at longer delays (~550ms) are typically perceived as asynchronous with the
heart. Furthermore, when participants listen to sequences of such synchronous or
asynchronous sounds, we previously observed an HEP effect in the period between the
heartbeat and the expected sound, potentially reflecting cardio-audio integrated expectations
(Banellis & Cruse, 2020). In support of attentional modulation of integrated predictive
mechanisms, we also observed a larger positivity to unexpectedly omitted sounds in a
sequence of cardio-audio synchronous sounds only when participants were attending to

their heartbeat.

However, in that same study we found no evidence of evoked potential modulation
by participants’ trait heartbeat perception abilities, thus failing to support the hypothesised
trait precision contribution to HEPs (Katkin et al., 1991; Pollatos et al., 2005; Pollatos &
Schandry, 2004; Schandry et al., 1986). One potential cause of this lack of evidence is that
we failed to account for individual differences in the temporal location of heartbeat
sensations (Brener & Ring, 2016). Multi-interval tasks, such as the Method of Constant
Stimuli (MCS), are more sensitive at determining interoceptive ability as the optimal relative
timing of heartbeat sensations is not presumed (Brener et al., 1993; Brener & Ring, 2016).
For example, higher accuracy in a two-interval task can be achieved by first determining the
optimal timing of each individual’'s heartbeat sensations in a multi-interval task (Brener &

Kluvitse., 1988a/b; Mesas & Chica., 2003).

Therefore, in this study, we sought to more sensitively test for trait precision
influences on HEPs using the above method of individually-adjusted timings. Furthermore,
we sought to replicate our previously observed effects of attention and cross-modal

expectations on HEPs. Together, this study tests the hypotheses of predictive coding
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theories that HEPs reflect precision-weighted predictive mechanisms, where precision can

be defined as both attentional gain and trait ability.
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Materials and Methods

Unless otherwise stated, all methods, analyses, and hypotheses were pre-registered

at [https://osf.io/ptbzf/]

Participants

Forty participants were recruited from the University of Birmingham via
advertisement on posters or the online SONA Research Participation Scheme. Our inclusion
criteria included: right-handed 18 to 35-year olds, with no reported cardiovascular or
neurological disorders. We compensated participants with course credit or payment at a rate
of £10 an hour. The STEM Research Ethics Board of the University of Birmingham granted
ethical approval for this study and written informed consent was completed by all
participants. Data of six participants were excluded due to EEG recording difficulties or poor
data quality, resulting in more than a third of trials of interest rejected. One participant was
rejected from part one (due to insufficient trials) but included in part two of the EEG analysis
(and the opposite for a different participant). A final sample of 34 participants were included
for both parts of subsequent EEG analyses (Median age = 20 years, Range = 18-35 years).
This sample size was chosen in advance, as it provides 95% power to detect the same
effect size (Cohen’s d’ = 0.58) as the within-subjects interaction between attention and
cardio-audio delay observed in our previous experiment (preregistered analysis: M=0.0349,
SD=0.0598; alpha=.05; note that the effect size in the final published version of that study
[Banellis & Cruse., 2020] was slightly larger [0.61] due to pre-processing changes suggested

by peer reviewers; GPower, (Faul et al., 2007)).

Stimuli and Procedure

Overview

The experiment consisted of two parts; the function of part one was to determine the

temporal location of perceived heartbeat sensations for each individual, using the Method of
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Constant Stimuli (MCS) (Brener et al., 1993; Brener & Kluvitse, 1988; Ring & Brener, 2018;
Schneider et al., 1998). Part two comprised of a variant of a two-interval forced choice
heartbeat discrimination task, with individually adjusted perceived synchronous and
perceived asynchronous cardio-audio delays calculated from the median of their linearly
interpolated cumulative distribution of choices from the MCS task (Brener & Kluvitse, 1988a,
Brener & Kluvitse, 1988b; Mesas & Chica, 2003). Additionally, part two included an attention
manipulation and interoceptive ability measurements, allowing the investigation of the effects

of precision on cross-modal predictive mechanisms.

Part one: Method of constant stimuli

Part one consisted of three blocks of 40 trials (120 trials total), with each trial
consisting of 5 to 7 auditory tones (1000Hz, 100ms duration, 44100 sampling rate)
presented via external speakers, with breaks given between each block. The onset of each
tone was triggered by the online detection of the participants R-peak from
electrocardiography (ECG) recordings using Lab Streaming Layer and a custom MATLAB
script (Kothe et al., 2018). The script analysed in real time the raw ECG signal by computing
the variance over the preceding 33ms window and determining if the signal exceeded an
individually adjusted threshold, at which point a tone was triggered to occur after one of six
cardio-audio delays (an average time of 113ms, 213ms, 314ms, 413ms, 510ms, or 612ms
delay). Due to computational variability in online detection of R-peaks, R->Sound intervals
had a standard deviation of between 24ms-26ms. A fixation cross was present during tone

presentation.

Participants focused on their heartbeat (without taking their pulse) and determined
whether the tones presented were synchronous or not with their heartbeat. At the end of
each trial, participants responded to the question ‘Were the tones synchronous with your
heart?’ by pressing ‘y’ for yes or ‘n’ for no on the keyboard. The inter-trial interval was

between 2 to 3 seconds, chosen from a uniform distribution on each trial (see Figure 1). The
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order of the experimental conditions was randomized to ensure no more than 3 of the same

condition on consecutive trials.

2 =optimum Tones at perceived

| synch delay synchronous/asynchrenous

delay from heartbeat
512 socs

Tones at 1of 6

delays from 0

heartbeat m 113213 314 413 510 612
4-10 secs 2-3secs

Response

Confidence Rating
(1-4)

Figure 1. (A) Part 1 of the experiment consisted of a multi-interval heartbeat discrimination
task (MCS) in which sounds were presented at 1 of 6 intervals from the heartbeat (113ms,
213ms, 314ms, 413ms, 510ms, or 612ms). (B) Calculation of each individuals perceived
synchronous delay from the median of the linearly interpolated cumulative distribution of
choices from the MCS task (marked as the question mark). (C) Part 2 of the experiment
consisted of an individually adjusted two-interval heartbeat discrimination task for half of the
trials (internal attention; as shown in C), and half consisted of an omission-detection task

(external attention).

Part two: Individually-adjusted two-interval task

Part two consisted of three blocks of 56 trials (168 trials total), with each trial
consisting of 7 to 10 auditory tones triggered by the online detection of the participant’s R-
peak (as above in part one), presented via external speakers, with breaks given between
each block. We selected each individual's perceived synchronous cardio-audio delay from
their performance in part one (i.e. the MCS), by calculating the median from the linearly
interpolated cumulative percentage sum of their response counts for each delay (Brener &
Kluvitse, 1988a, Brener & Kluvitse, 1988b; Mesas & Chica, 2003), and we selected the
perceived asynchronous delay to be 300ms later (SD= 0.001) than the perceived
synchronous delay, as in Mesas and Chica (2003). Due to computational variability in the

online detection of R-peaks, R->Sound intervals had a standard deviation of 45ms for both
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the perceived synchronous and asynchronous trials. In half of the trials, we omitted the third
from last tone, resulting in an R-peak without an auditory stimulus — an omission. We

presented a fixation cross during tone presentation.

A cue at the start of each trial (200ms) directed participants’ attention to focus
internally (‘Heart’) or externally (‘Tone’). During the internal task, participants focused on
their heartbeat sensations (without taking their pulse) and determined whether the tones
presented were synchronous or not with their heartbeat. During the external task,
participants were told to ignore their heartbeat sensations and direct attention towards the
sounds alone. The external task was to determine whether there was a missing sound
during that trial. After each task response, participants rated their confidence in their
decision from 1 to 4 (1 = Total Guess, 2 = Somewhat Confident, 3 = Fairly Confident, 4 =
Complete Confidence). The inter-trial interval was between 2 to 3 seconds, chosen from a
uniform distribution on each trial (see Figure 1). We randomized the order of the
experimental conditions to ensure no more than 3 of the same condition on consecutive
trials. Finally, participants completed the short Porges Body Perception Questionnaire

(BPQ), including a body awareness and autonomic reactivity subscale (Porges, 1993).

EEG/ECG acquisition

We recorded EEG throughout the experiment using a gel-based 128-channel
Biosemi ActiveTwo system, acquired at 512Hz, referenced to the Common Mode Sense
electrode located approximately 2-cm to the left of CPz. Two additional electrodes recorded
data from the mastoids, and ECG was measured using two electrodes placed on either side

of the chest, also sampled at 512Hz.

EEG/ECG Pre-Processing

First, we filtered the continuous EEG data in two steps (i.e. low-pass then high pass)

between 0.5Hz and 40Hz using the finite impulse response filter implemented in EEGLAB


https://doi.org/10.1101/2021.02.03.429610
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429610; this version posted February 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(function: pop_eedfiltnew). We filtered ECG between 0.5Hz and 150Hz (Kligfield et al., 2007)
and in addition to that preregistered, we notch-filtered the ECG between 48Hz and 52Hz to
remove line noise. Next, we segmented the filtered EEG signals into epochs from -300ms to
900ms relative to the R-peak of the ECG recording during within-task omission periods. In
addition to that preregistered, we segmented EEG data during silent periods at the end of
trials without an omission as equivalent to a within-task omission, to increase power. End-
trial silences are comparable to within-task omissions because participants could not predict
when the trial would end due to the variable number of sounds in each trial. We segmented
auditory-evoked potentials (AEPs) from -500ms to 500ms relative to the sounds during the
MCS task and segmented HEPs -300 to 900ms relative to the first R-peak during end trial

silent periods of the MCS task.

Initially, we re-referenced EEG data to the average of the mastoids. We detected the
R-peaks using a custom MATLAB script, and subsequently checked the accuracy of R-peak
detection via visual inspection. When necessary, we manually corrected the estimated
timing of R-peaks to ensure accurate R-peak detection. To account for online heartbeat
detection errors (i.e. missed or multiple sounds per R-peak), we rejected blocks with R-R
intervals > 1.5 seconds or < 0.4 seconds from both behavioural and EEG analyses. In
addition to that preregistered, to avoid contaminating responses within the analysis window,
we rejected trials with triggers within 100ms prior to ERP onset (i.e., contaminating sounds
for HEP trials and heartbeats for AEP trials). For AEPs this included the rejection of trials
with R-peaks within the analysis window (sound-500ms). The subsequent artefact rejection
proceeded in the following steps based on a combination of methods described by Mognon

et al., 2011 and Nolan et al., 2010.

First, bad channels were identified and removed from the data. We consider a
channel to be bad if its absolute z-score across channels exceeds 3 on any of the following
metrics: 1) variance of the EEG signal across all time-points, 2) mean of the correlations

between the channel in question and all other channels, and 3) the Hurst exponent of the
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EEG signal (estimated with the discrete second order derivative from the Matlab function
wfbmesti). After removal of bad channels, we identified and removed trials containing non-
stationary artefacts. Specifically, we considered a trial to be bad if its absolute z-score
across trials exceeds 3 on any of the following metrics: 1) the mean across channels of the
voltage range within the trial, 2) the mean across channels of the variance of the voltages
within the trial, and 3) the mean across channels of the difference between the mean voltage
at that channel in the trial in question and the mean voltage at that channel across all trials.
After removal of these individual trials, we conducted an additional check for bad channels,
and removed them, by interrogating the average of the channels across all trials (i.e. the
evoked response potential (ERP), averaged across all conditions). Specifically, we
considered a channel to be bad in this step if its absolute z-score across channels exceeds
3 on any of the following metrics: 1) the variance of voltages across time within the ERP, 2)
the median gradient of the signal across time within the ERP, and 3) the range of voltages

across time within the ERP.

To remove stationary artefacts, such as blinks and eye-movements, the pruned EEG
data is subjected to independent component analysis (ICA) with the runica function of
EEGLAB. The Matlab toolbox ADJUST subsequently identified which components reflect
artefacts on the basis of their exhibiting the stereotypical spatio-temporal patterns
associated with blinks, eye-movements, and data discontinuities, and the contribution of
these artefact components is then subtracted from the data (Mognon et al., 2011). Next, we
interpolated the data of any previously removed channels via the spherical interpolation

method of EEGLAB, and re-referenced the data to the average of the whole head.

We subjected the data to a second round of ICA, to remove the CFA. This deviated
from our preregistration, as ICA was deemed a more stringent CFA correction method than
subtracting a rest template (see Supplementary Figure 8) and is the most frequently used
CFA-correction method in the HEP literature (Coll et al., 2021; Park & Blanke, 2019). First,

for the ICA computation, we filtered the ECG between 0.5Hz and 40Hz to ensure equivalent
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filtering as the EEG data and segmented the data into smaller epochs (-200ms to 200ms)
with respect to the R-peak. We completed ICA on the shorter epoched data using the runica
function of fieldtrip. To prevent multiple components with identical or symmetrical
topographies, we set the maximum number of components to the rank of the data after trials
concatenated. To select CFA components, we computed the pairwise phase coherence
(PPC) of each component with the ECG. We selected a component if its PPC exceeded
three standard deviations above the mean PPC of all components within the 0-25Hz range.
We completed this selection procedure iteratively until no more than three components were
selected. After visual inspection to ensure non-neural components had been identified, we
removed the selected components from the original -300ms-900ms pre-processed EEG
data. Finally, we visually inspected the data before and after CFA-correction and if the CFA
was not visually diminished, we completed the cardiac ICA procedure again with an
increased maximum number of rejected components, up to a maximum of six. The median

number of components rejected across participants was 3 (range = 1-6).

Before proceeding to group-level analyses, we finalised single-subject CFA-corrected
averages for HEP analysis in the following way. First, we generated a robust average for
each condition separately, using the default parameters of SPM12. Robust averaging
iteratively down-weights outlier values by time-point to improve estimation of the mean
across trials. As recommended by SPM12, we low-pass filtered the resulting HEP below
20Hz (again, with EEGLAB’s pop_neweedfilt). In deviation from our pre-registration, but
following discussions with peer reviewers and investigation of similar decisions in previous
studies of HEPs (Azzalini et al., 2019; Babo-Rebelo et al., 2016, 2019; Banellis & Cruse,
2020; Park et al., 2014; Petzschner et al., 2019), we chose not to apply any baseline
correction to our data as cardiac activity is cyclical by nature and may therefore insert
artefactual effects in post-R data. This decision also allows direct comparison with published

results of Banellis and Cruse (2020).
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Finally, we visually inspected averaged ERPs to ensure the automated artefact
rejection procedure was successful. If excessively large voltages remained in the averaged
ERP, we visually inspected individual trials to ensure that any remaining channels/trials with
excessively large voltages were removed. Additionally, if oculomotor artefacts remained then

we identified additional ICA components and removed them manually.

ERP analysis

We compared ERPs with the cluster mass method of the open-source Matlab toolbox
FieldTrip (Oostenveld et al., 2011: fieldtrip-20181023). This procedure involves an initial
parametric step followed by a non-parametric control of multiple-comparisons (Maris &
Oostenveld, 2007). Specifically, we conducted either two-tailed dependent samples t-tests
(part 1 AEPs, part 1 HEPs, and part 2 attention and delay comparisons, see Supplementary
Table 1: comparisons 1, 2, 3 and 4) or a combination of two-tailed independent and
dependent samples t-tests (part 2 delay and interoceptive ability, and part 2 attention and
interoceptive ability comparisons, see Supplementary Table 1: comparisons 5 and 6) at each
spatio-temporal data-point within time window of interest. We clustered spatiotemporally
adjacent t-values with p-values < 0.05 based on their proximity, with the requirement that a
cluster must span more than one time-point and at least 4 neighbouring electrodes, with an
electrode’s neighbourhood containing all electrodes within a distance of .15 within the
Fieldtrip layout coordinates (median nhumber of neighbours = 11, Range = 2-16). Finally, we
summed the t-values at each spatio-temporal point within each cluster. Next, we estimated
the probability under the null hypothesis of observing cluster sum Ts more extreme than
those in the experimental data - i.e. the p-value of each cluster. Specifically, Fieldtrip
randomly shuffles the trial labels between conditions, performs the above spatio-temporal
clustering procedure, and retains the largest cluster sum T. Consequently, the p-value of
each cluster observed in the data is the proportion of the largest clusters observed across

1000 such randomisations that contain larger cluster sum T's.
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For the HEP analyses, to account for the lag difference in tone presentation across
delay conditions, we completed one set of analyses on HEP data before omission onset
relative to the R-peak (part 1: R+0-113ms post-R (i.e. earliest perceived synchronous cardio-
audio delay); part 2: 0-129ms post-R (i.e. first percentile of the R->sound intervals for the
participant with the earliest perceived synchronous delay, thus before >99% of anticipated
tones) and a second set of analyses relative to the onset of the omitted sound (part 1: O-
250ms relative to the most rated and least rated synchronous delay time; part 2: 95-138ms
post-omission (i.e. significant attention and delay interaction from Banellis & Cruse., 2020)).
This allows the investigation of cardio-audio expectation and unfulfiled expectation
mechanisms separately. The AEP analysis windows were determined by the global field
power (GFP) and global mass dissimilarity (GMD) of the most and least rated synchronous
conditions together (i.e. first three components preregistered: 0-74ms, 74-154ms, 154-
209ms, fourth and fifth component exploratory: 209-289ms, 289-500ms). See

Supplementary Table 1 for analysis details for all comparisons.

Control Analyses

We performed a myriad of control analyses. This included analyses on physiological
data (ECG, interbeat intervals (IBI's), heart rate variability (HRV)), as well as additional
analyses on EEG data (HEP control analyses and analytical controls such as baseline
correction and CFA correction control analyses). For details of all control analyses and

control results, see Supplementary Material.

Interoceptive ability correlations

We correlated interoceptive ability (awareness, accuracy) with the mean difference in
voltage across cardio-audio delay conditions during internal trials, using the electrodes and
time-windows that demonstrated a significant main effect of cardio-audio delay (79-128ms
post-R, and 94-137ms post-omission). In addition to that preregistered, to explore all

aspects of interoceptive ability, we applied the same correlations during external trials and
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assessed the relationship of the above effects with interoceptive sensibility (body awareness

and autonomic reactivity BPQ subsection separately), resulting in a total of 16 correlations.

Source Reconstruction

In addition to the analyses preregistered, we performed source reconstruction to
estimate the neural origin of each significant ERP effect using the open-source software
Brainstorm, which implements a distributed dipoles fitting approach (Tadel et al., 2011). We
completed our source estimation approach for each time-window separately in which we
observed a significant sensor level effect. Specifically, within Brainstorm, we computed a
forward model using the Symmetric Boundary Element Method (BEM) as implemented in
OpenMEEG, based on the default MRI anatomy (ICBM152). We imported into Brainstorm
each participant’s pre-processed EEG data prior to robust averaging, grouped by each
attention and delay pair condition. We used a standard 128 Biosemi electrode position file
for all participants. We generated the inverse model based on a minimum-norm solution
using the current density map measure and unconstrained orientations, with an equal noise
covariance matrix. We computed a grand average of the source results for each condition
and subsequently averaged across the time window of each significant sensor-level effect.
We calculated the difference between source maps and subsequently computed the norm of
the three orientations, thus reflecting changes in source amplitude and orientation but not
sign between source maps. We projected the estimated source results onto a canonical
inflated brain surface for visualisation (plotting parameters: local maximum, amplitude=70%,

minimum cluster=5).
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Results
Behavioural data
Part one: MCS performance

We calculated the percentage preference for each delay by dividing the simultaneous
judgement counts (total ‘yes’ responses for each delay trial) by the total trials for each delay
after the removal of faulty blocks (R-R intervals > 1.5 seconds or < 0.4 seconds, as
described above). Across patrticipants, the mean delay at which sounds were perceived
synchronous with the heart was 295.686 (SD=39.081). We classified a good heartbeat
perceiver in part one on the basis of a Chi? test which determined if the distribution of each
individual’'s simultaneous judgements deviated significantly from chance (Ring & Brener,
2018). This revealed a significant Chi? effect for 8/34 participants for part 1 and part 2 each,
and therefore defined 9 high heartbeat perceivers in total and 26 low heartbeat perceivers

(see Supplementary Table 2 for individual performance).
Part two: Internal performance

Interoceptive accuracy (internal task d-prime), calculated from hits (responding ‘yes’
to a short ‘perceived synchronous’ cardio-audio delay trial) and false alarms (responding
‘yes’ to a long ‘perceived asynchronous’ cardio-audio delay trial; Macmillan & Creelman,
1990), was significantly greater than zero on average across the group (Mdn=0.271,
Range=-0.445-2.166; Z = 530, p < .001, rp, = 0.782), indicating that the sounds presented at
individually adjusted cardio-audio delays were successfully perceived as synchronous and
asynchronous. However, a Bayesian equivalent analysis indicated the evidence was weak

relative to the null (BFy, = 2.876).

To determine whether individually-adjusted cardio-audio delays improved heartbeat
perception, we compared internal performance here with that reported in an equivalent

previous experiment without individually-adjusted delays (Banellis & Cruse, 2020). While
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interoceptive accuracy was more variable and had a higher median in this experiment
(Mdn=0.271, Range=-0.445-2.166), than in the previous experiment with fixed delays
(Mdn=0.204, Range=-0.447-1.274), this difference was not statistically significant (U = 502,
p .134, ry, = -0.156, BFi0 = 0.463; note this remains non-significant with the removal of

outliers).

Part two: External performance

Exteroceptive accuracy (external task d-prime), calculated from hits (responding ‘yes’
to a trial including an omission) and false alarms (responding ‘yes’ to a trial without an
omission), was significantly greater than zero on average across the group (Mdn=3.134,
Range=1.334-4.520; Z = 630, p < .001, ryp = 1.000, BFp = 93.999), demonstrating that

participants were attentive, as required by the task demands.

There was no significant difference between the external accuracy scores during
perceived synchronous trials (M=3.011, SD=0.804) and perceived asynchronous trials
(M=2.918, SD = 0.934; t(34) = 0.836, p = .409, Cohen’s d' = 0.141, BF;, = 0.251), indicating
that external performance was not influenced by heartbeat perception. There was no
significant correlation between internal and external performance (rs = 0.131, p = .455, BF,

=.291), further signifying that internal and external task performance is unrelated.
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Figure 2. (A) boxplots of percentage preferences for each cardio-audio delay during the
MCS, asterisks mark significant differences. (B) mean percentage preferences during the
MCS split into high and low perceivers using Chi2, error bars reflect standard error of the
mean. (C) boxplots of internal d’ performance comparing experiment 1 (‘Not Tailored’
delays: Banellis & Cruse., 2020) with this experiment (‘Tailored’ delays) split into high and

low heartbeat perceivers using Chi2 of MCS performance.

Event-related potentials

Part one: Method of constant stimuli

To test our hypothesis of reduced prediction error for sounds perceived as
synchronous with the heart, we compared AEPs during cardio-audio delay trials most rated
as synchronous with delay trials least rated as synchronous (comparison 1; see
Supplementary Table 1 for analysis details). However, contrary to our hypothesis, we
observed no significant AEP differences across perceived synchrony conditions (smallest p

= .190).

Because there is an implicit omission for the first heartbeat after the end of each
MCS trial, we also compared HEPs during periods of silence after the presentation of
sounds to further test the hypothesis that HEPs reflect cardio-audio expectations.
Specifically, we expected the first HEP during silent periods following a stream of stimuli
perceived to be in cardio-audio synchrony to be larger relative to the HEP following stimuli
perceived as asynchronous with the heartbeat. However, cluster-based permutation tests
failed to reveal evidence of such expectation effects in this analysis when comparing the
most rated synchronous trials with the least rated (R-locked: no clusters; omission-locked p
= .248). Nevertheless, as the majority of participants (26) displayed a distribution of
simultaneous choices at chance, it may not be meaningful to compare the most and least
rated synchronous trials in this way. Subsequently, we exploratorily compared the MCS

interval closest to the median of their simultaneous judgements with a 300ms later perceived
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asynchronous interval (as in the Part two HEP comparisons). While we didn’t observe a pre-
omission HEP effect of perceived synchrony in this analysis (small p = .155), we did observe
an end-trial omission-locked perceived effect of synchrony (cluster extending 176-248ms,
positive cluster p = .004), consistent with HEPs reflecting processes linked to cardio-audio

integration.

As an exploratory analysis, we computed the above in high and low perceivers
separately, as defined by the Chi? of each individual's MCS performance (comparison 3).
When analysing AEPs in high heartbeat perceivers only (although only a small sample of 8
participants in part one, determined by a Chi®on individual MCS performance), we observe a
larger early fronto-central positivity for trials perceived as synchronous (cluster extending
176-209ms, positive cluster p = .021), followed by a larger fronto-central negativity for
perceived asynchronous trials (cluster extending 240-289ms, positive cluster p = .007)
consistent with cardiac-driven auditory prediction error. As all equivalent comparisons in low
perceivers were not significant (smallest p = .311), this result is also consistent with a role of

trait precision on HEP amplitude.

Source estimates of the initial AEP effect demonstrated the largest clusters in the left
inferior frontal cortex and left temporopolar area, with smaller clusters including left premotor
cortex and left primary sensory cortex. Source analysis of the following AEP effect
demonstrated the largest clusters in the left inferior frontal cortex, bilateral anterior frontal
cortex and left temporopolar area, with smaller clusters including left premotor cortex, right

primary sensory cortex, bilateral visual association area.

All other ERP comparisons for part one (MCS) high perceivers were not significant

(smallest p = .046).
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Main effect: synchrony (sound+176ms-209ms & +240-289ms)
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Figure 3. Main effect of perceived synchrony from 176 to 209ms and 240 to 289ms
relative to most (synch) and least (asynch) rated synchronous sounds during the MCS task
(part 1), in high heartbeat perceivers only. Scalp distribution of the average significant
difference across perceived synchrony conditions (A) 176-209ms and (C) 240-289ms with
electrodes contributing to the cluster marked. (B) Estimated sources of the 176-209ms main
effect include largest clusters in the left inferior frontal cortex and left temporopolar area,
smaller clusters included left premotor cortex and left primary sensory cortex. (D) Estimated
sources of the 240-289ms main effect include largest clusters in the left inferior frontal
cortex, bilateral anterior frontal cortex and left temporopolar area, smaller clusters included

left premotor cortex, right primary sensory cortex, bilateral visual association area. (E)
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average AEP across participants at electrode C24, light blue shaded regions represent the

time of the significant positive effect.

Part two: Individually-adjusted two-interval task

Cardio-audio expectation

To test our hypothesis of cardiac-driven expectations of sounds, we compared HEPs
across cardio-audio delay conditions pre-omission. We observed a pre-omission main effect
of delay (positive cluster p = .024) locked to the R-peak, replicating our previous finding with
fixed cardio-audio delays and supporting our hypothesis of heartbeat-driven predictions of
auditory stimuli (Banellis & Cruse, 2020). The positive cluster extended from 79-128ms.
Source estimates of this effect include largest clusters in left middle temporal gyrus and right
supramarginal gyrus and smaller clusters in bilateral frontal eye fields, left dorsolateral

prefrontal cortex, left visual association area, right superior temporal gyrus and right fusiform

gyrus.
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Main effect: cardio-audio delay (R-peak+79ms-128ms)
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Figure 4. Main effect of cardio-audio delay from 79 to 128ms relative to R-peak
during pre-omission periods in the individually-adjusted two interval task (part 2). (A) Scalp
distribution of the average significant difference across delay conditions 79-128ms, with
electrodes contributing to the cluster marked. (B) Estimated sources of the main effect
include largest clusters in left middle temporal gyrus and right supramarginal gyrus and
smaller clusters in bilateral frontal eye fields, left dorsolateral prefrontal cortex, left visual
association area, right superior temporal gyrus and right fusiform gyrus. (C) average HEP
across participants at electrode D13, light blue shaded region represents the time of the

significant positive effect.
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To test our hypothesis of attentional precision modulating predictive mechanisms, we
calculated the attention and delay interaction as the difference between short-delay and
long-delay trials between attention groups (i.e. a double-subtraction; comparison 4).
However, we did not observe a significant R-locked delay and attention interaction (p =
.401). Nevertheless, we observed a significant main effect of attention on pre-omission
responses (negative cluster p = .013, cluster extending 37-68ms). Source estimates of this
effect include largest clusters in left anterior prefrontal cortex and right visual association

area, with smaller clusters in left dorsolateral prefrontal cortex and right fusiform gyrus.
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Figure 5. Main effect of attention from 37 to 68ms relative to R-peak during pre-
omission periods in the individually-adjusted two interval task (part 2). (A) Scalp distribution
of the average significant difference across attention conditions 37-68ms, with electrodes
contributing to the cluster marked. (B) Estimated sources of the main effect include largest
clusters in left anterior prefrontal cortex and right visual association area, smaller clusters in
left dorsolateral prefrontal cortex and right fusiform gyrus. (C) average HEP across
participants at electrode C10, light blue shaded region represents the time of the significant

negative effect.

Unfulfilled expectation

Inconsistent with our hypothesis of attentional precision modulating predictive
mechanisms, and inconsistent with evidence from a previous study (Banellis and Cruse,
2020), the attention and delay interaction for omission-locked responses was also not
significant (p = .159). One potential cause of this lack of replication is that in this experiment
we defined omissions to include not only within-task silent periods, but also silent periods at
the end of trials without an omission to increase power. However, when we selected within-
task omissions only and analysed the significant electrodes and time window of the delay
and attention interaction from our previous study (Banellis & Cruse, 2020) this interaction is

also not significant (F(1,32) = 2.141, p = .153, n?=0.022, BFj¢ = 0.100).

To test our hypothesis of higher prediction error during omission periods in a stream
of auditory stimuli perceived as synchronous with the heart, we compared omission-evoked
responses across cardio-audio delay conditions. We observed an omission-locked main
effect of delay, with the positive cluster extending 94-137ms (positive cluster p = .022).
Source estimates include largest clusters in left inferior frontal gyrus, right anterior frontal

cortex, with smaller clusters in left superior temporal gyrus.
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Figure 6. Main effect of cardio-audio delay from 94 to 137ms relative to the omission
during the individually-adjusted two interval task (part 2). (A) Scalp distribution of the
average significant difference across delay conditions 94-137ms, with electrodes
contributing to the cluster marked. (B) Estimated sources of the main effect include largest
clusters in left inferior frontal gyrus, right anterior frontal cortex, smaller clusters in left

superior temporal gyrus. (C) average omission-evoked response across participants at

electrode D17, light blue shaded region represents the time of the significant positive effect.

Interoceptive ability
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For all evoked potential analyses, we separated our participants into groups of
high/low interoceptive accuracy, sensibility, and awareness with median splits. As
mentioned, we defined interoceptive accuracy as the difference between the normalised
proportion of hits and the normalised proportion of false alarms (i.e. internal task d’, see
above) (Macmillan & Creelman, 1990). As in previous studies (Ewing et al., 2017; Garfinkel
et al., 2015), we quantified sensibility to a variety of internal bodily sensations with the score
on the awareness subsection of the Porges Body Perception Questionnaire (BPQ) (Porges,
1993) and defined sensibility to heartbeat sensations as the median confidence rating during
internal trials (Ewing et al., 2017; Forkmann et al., 2016; Garfinkel et al., 2015). We also
calculated interoceptive awareness using type 2 signal detection theory analysis comparing
observed type 2 sensitivity (meta-d’) with expected type 2 sensitivity (d’) (i.e. meta-d’ — d’)
(Maniscalco & Lau, 2012). Meta-d’ is the d’ expected to generate the observed type 2 hit
rates and type 2 false alarm rates and was estimated using maximum likelihood estimation
(MLE) (Maniscalco & Lau, 2014). This determined the extent to which confidence ratings

predicted heartbeat detection accuracy, and thus interoceptive awareness.

First, we tested our hypothesis of interoceptive ability modulating the attention effect
observed previously in Banellis & Cruse (2020) (comparison 6). We observed a significant
omission-locked interaction of interoceptive awareness and attention during synchronous
trials (positive cluster p = .014, cluster extending 96-139ms). Source estimates of this effect
include right frontal eye fields and bilateral visual association cortex. Pairwise comparisons
of omission responses during synchronous trials revealed a significant difference between
attention conditions in participants with high interoceptive awareness (negative cluster p =
.019, cluster extending 105-131ms); no clusters were observed when comparing low
awareness participants. Source estimates of the attention effect in high awareness
participants reveal the left anterior frontal cortex, left dorsolateral prefrontal cortex and right

visual association cortex. Source estimates of the same time-window in the low awareness
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group includes bilateral visual association cortex, right angular gyrus and right fusiform

gyrus.

Interaction: awareness & attention interaction (synch trials only) (omiss+96ms-139ms)
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Figure 7. Interaction of interoceptive awareness and attention from 96 to 139ms

relative to the omission during synchronous trials only in the individually-adjusted two
interval task (part 2). (A - left) Average omission-evoked response across participants at
electrode D17, light blue shaded region represents the time of the significant effect. (A-right)
Scalp distribution of the average significant interaction (awareness x attention) 96-139ms,
with electrodes contributing to the cluster marked. (B) Estimated sources of the interaction
include right frontal eye fields and bilateral visual association cortex. (C) Analysis of the
simple effects showing qualitatively different topographic distributions across interoceptive
awareness groups (105-131ms) and a significant effect of attention in high awareness
participants only. (D-left) Estimated sources of high awareness simple effects analysis

reveal the left anterior frontal cortex, left dorsolateral prefrontal cortex and right visual
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association cortex. (D-right) Estimated sources of low awareness simple effects analysis

includes bilateral visual association cortex, right angular gyrus and right fusiform gyrus.

All other omission-locked interoceptive ability interactions with attention during synchronous
trials were not significant (interoceptive accuracy (smallest p = .097), interoceptive
sensibility: median confidence (smallest p = .161), the awareness subsection (smallest p =
.081) and the autonomic reactivity subsection (smallest p = .061) of the BPQ separately).
Additionally, no significant R-locked interoceptive ability and attention interactions during

synchronous trials were observed (smallest p =.099).

Next, we tested our hypothesis of interoceptive ability modulating the delay effect
(comparison 5) and observed no omission-locked interactions during internal trials
(interoceptive accuracy (no clusters), awareness (no clusters) or sensibility (median
confidence (smallest p = .127), the awareness (smallest p = .350) and the autonomic
reactivity (smallest p = .210) subsection of the BPQ separately). Additionally, no significant
R-locked interoceptive ability and delay interactions during internal trials were observed

(smallest p = .107).

Finally, we observed no significant correlations of interoceptive ability with the
amplitude of the omission-locked delay effect (smallest p = .184). However, we observed an
uncorrected significant correlation of the awareness subsection of the BPQ and the R-locked
delay effect during external attention (p = .022), however this is 1 out of the 16 correlations
(bonferroni corrected alpha = .003). All other correlations of interoceptive ability and the R-

locked delay effect were not significant (smallest p =.233).
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Discussion

Interoceptive and exteroceptive integration is fundamental for the interwoven
interactive experience of the body with the external world. These integrated signals are
proposed to operate predictively, with regulation by precision-weighting (Barrett & Simmons,
2015; Cameron, 2002; Seth, 2013; Seth et al., 2012; Seth & Friston, 2016). In a previous
study, we observed integrated cardio-audio predictive mechanisms by studying HEPs during
heartbeat-predicted omissions (Banellis & Cruse., 2020). While our data in that study were
consistent with the modulation of HEPs by attentional precision, we found no evidence of the
influence of trait precision — i.e., individual interoceptive ability — contrary to the expectations
of predictive coding. Consequently, in this study, we tailored the cardio-audio delays used
for each individual to more accurately investigate trait-precision modulations of predictive
signals, and subsequently determine if intero-extero integration operates in accordance with

the predictive coding framework.

Despite our use of an arguably more sensitive and individually-tailored heartbeat
perception task, we found no evidence for an HEP relationship between any measure of
interoceptive ability and cardio-audio delay. One interpretation is that this may be due to the
difficulties of assessing interoceptive performance, as we assess this indirectly with a
relatively difficult task. For example, even with a more sensitive measure of objective
performance across multiple cardio-audio delay intervals, only 9/35 participants were
classified as high heartbeat perceivers. Additionally, influences of interoceptive ability may
occur much later than can be observed with our design. For example, ERPs associated with
metacognition often occur up to 1900ms post-stimulus, thus overlapping with forthcoming
heartbeats and/or sounds (Skavhaug et al., 2010; Sommer et al., 1995; Tsalas et al., 2018).
Furthermore, metacognitive awareness may be reflected in other features of the EEG, such
as global long-range connectivity patterns, rather than local HEP differences (Canales-

Johnson et al.,, 2015). Our specific HEP results here, nevertheless, fail to support a
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predictive coding account of interoceptive-exteroceptive integration under which predictive

processes are modulated by trait-level precision.

Furthermore, we also failed to replicate the previously reported attention and delay
interaction of omission-evoked potentials, contrary to a predictive coding account in which
attention modulates expectations by precision-weighting. One possible interpretation is that,
in this study, participants relied less on attentional-precision to ‘boost’ their predictions due
to the enhanced perception of cardio-audio synchrony, reflected in the trend for increased
performance relative to the previous experiment (see Figure 2C). As a result, attentional
modulations of HEPs may have been weaker in this study. Despite this, we did observe a
significant omission-locked delay effect, demonstrating the presence of cardio-audio
predictive mechanisms, although without evidence of attentional modulation (see Figure 6).
This is comparable to findings by Pfieffer and De Lucia (2017) who also found an HEP
difference during omission periods when comparing cardio-audio synchronous streams with
asynchronous streams in participants who were not actively attending to cardio-audio
synchronicity. However, in that study, due to the timing of the auditory stimuli, it was not
possible to separate omission-evoked effects from expectation effects. While we overcame
this in our study by employing cardio-audio delays, allowing for the independent
investigation of expectation and unfulfilled expectation effects, we also observe no evidence
of the necessity of attention for generating auditory expectations on the basis of the
heartbeat. Indeed, despite our previous observations (Banellis and Cruse, 2020), our
Bayesian analysis in this study indicated strong evidence (i.e. BF=10 in favour of the null) for

the absence of an interaction with attention — inconsistent with a predictive coding account.

Upon visual inspection of our data, we were concerned about the presence of HEP
differences prior to omissions in some comparisons, in particular that shown in Figure 6.
These baseline differences may subsequently confound any apparent post-omission effects.
Due to the cyclical nature of the heartbeat, and to be consistent with some previous

literature (Azzalini et al., 2019; Babo-Rebelo et al., 2016, 2019; Banellis & Cruse, 2020; Park
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et al., 2014; Petzschner et al.,, 2019), we did not apply baseline correction in our pre-
processing above. However, this choice is not ubiquitous in the HEP literature. Indeed, the
issues for replication that are posed by the range of pre-processing / analysis / CFA
correction methods employed across the field have recently been highlighted (Coll et al.,
2021; Park & Blanke, 2019). Consequently, we re-analysed all effects reported here using
an additional five sets of pre-processing pipelines (e.g., with baseline correction / without
CFA correction, etc.; see Supplementary Table 3 for details) to identify the consistency of
our observed effects (Botvinik-Nezer et al., 2020; Simonsohn et al., 2015; Steegen et al.,
2016). We were reassured to find that the post-omission delay effect remains significant
across all pre-processing pipelines, strengthening our interpretation that it reflects cross-
modal integrative predictive processes, rather than analytical confounds (see Supplementary

Figure 9).

Additionally, we replicated our previously observed pre-omission HEP difference
across cardio-audio delay trials, likely reflecting a difference in cardio-audio expectation and
supporting the hypothesis of interoceptive signals guiding expectations of exteroceptive
stimuli (see Figure 4). However, the scalp topography and estimated sources of the pre-
omission delay effect here are not entirely overlapping with those observed previously. For
example, although source estimates from both studies revealed the middle temporal gyrus,
supramarginal gyrus, and broad frontal regions, somatosensory and motor regions were also
evident in Banellis and Cruse (2020), while visual and fusiform areas were evident in this
study only. One possible reason for this disparity is that the previously reported expectation
effect (Banellis and Cruse, 2020) extended to 230ms post-R, while the pre-omission window
in this study was necessarily shorter (R+129ms) due to our use of individualised delays.
Nevertheless, the topographical differences across experiments persist even when using a
shorter time-window in our previous study. It may therefore be that our use of tailored delays

in this study enhanced heartbeat-driven expectations in more participants, as supported by
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the trend for better objective performance, thus more accurately reflecting cross-modal

expectations and subsequent predictive sources.

Although not interacting with cardio-audio delay, we did observe some evidence of
the influence of interoceptive ability on HEPs in our omission-locked interaction of attention
with interoceptive awareness (see Figure 7). This significant interaction reflected an
attentional difference in high awareness participants only. Consistent with this result,
previous research has reported a greater attentional HEP difference in good heartbeat
perceivers, relative to poor perceivers (Montoya et al., 1993; Yuan et al., 2007). However,
rather than the heartbeat discrimination task we employed here, those previous studies used
the heartbeat counting task, which problematically confounds heartbeat perception with the
ability to estimate heartrate or time (Brener & Ring, 2016; Ring & Brener, 2018). The effect
observed here temporally overlaps with an effect of delay, potentially indicating that with
high awareness, attention alters intero-extero predictive mechanisms. However, this effect
was present in only a subset of the pre-processing pipelines, thus requiring cautious
interpretation. Indeed, when studying neural activity time-locked to bodily events, it is crucial
to test for the confounding influence of both peripheral physiological signals and analytical
decisions. For example, we observed no heartrate or HRV differences in the directions of
interest, and no ECG differences across conditions of interest for all analyses reported here,
giving us confidence that our results reflect neural activity. Conversely, the behaviour of HEP
effects across multiple pre-processing pipelines provides a valuable indicator of confidence
in the observed effects. As described above, standardisation and understanding of HEP pre-
processing and analyses are vital for the progress of the field (Bigdely-Shamlo et al., 2016;

Coll et al., 2021; Farzan et al., 2017).

Despite our lack of evidence for precision-weighting of HEPs by either attention or
interoceptive ability, the robust pre- and post-omission delay effects observed here (and
previously; Banellis and Cruse, 2020), are consistent with HEPs reflecting aspects of an

integrated cardio-audio expectation process. Some accounts describe intero-extero
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expectation mechanisms as fundamental for embodied selfhood, emotion, and the
generation of an integrated first-person perspective (Azzalini et al., 2019; Seth, 2013; Seth
et al., 2012; Seth & Friston, 2016). Therefore, our paradigm may provide a tool for
investigating cross-modal expectation processes in clinical conditions, as well as assessing

its influence on cognition.

In conclusion, here we replicate evidence of cardiac signals guiding expectations of
auditory stimuli. Despite this, we observe no evidence of either attentional-precision or trait-
precision modulating these predictive processes, suggesting that intero-extero integration
may not operate entirely within a precision-weighted predictive coding framework. Our
results demonstrate a need for a clearer definition of the manipulation and measurement of
precision on HEP effects, and the specific predictions made by predictive coding theories
more generally. Finally, the robust delay effects observed here, and previously, may be
useful for the investigation of the role of intero-extero integration in cognition, as well as for

assessing its dysfunction in clinical groups.
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