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SUMMARY

Age is the major risk factor in most carcinomas, yet little is known about how proteomes
change with age in any human epithelium. We present comprehensive proteomes
comprised of >9,000 total proteins, and >15,000 phosphopeptides, from normal primary
human mammary epithelia at lineage resolution from ten women ranging in age from 19
to 68. Data were quality controlled, and results were biologically validated with cell-based
assays. Age-dependent protein signatures were identified using differential expression
analyses and weighted protein co-expression network analyses. Up-regulation of basal
markers in luminal cells, including KRT14 and AXL, were a prominent consequence of
aging. PEAK1 was identified as an age-dependent signaling kinase in luminal cells, which
revealed a potential age-dependent vulnerability for targeted ablation. Correlation
analyses between transcriptome and proteome revealed age-associated loss of
proteostasis regulation. Protein expression and phosphorylation changes in the aging
breast epithelium identify potential therapeutic targets for reducing breast cancer
susceptibility.
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INTRODUCTION

Aging is a major risk factor for most diseases in humans, and it is the greatest risk
factor for solid tissue carcinomas. Aging increases susceptibility to cancer initiation, but
the underlying reasons for this are unclear (Marusyk and DeGregori, 2008). A majority of
effort spent characterizing effects of age in various human tissues have utilized
transcriptome and genome-wide analyses of whole tissues (Berchtold et al., 2008; de
Vries et al.,, 2017; Glass et al., 2013; Haakensen et al., 2011). There is poor
correspondence between transcriptome and proteome (Kelmer Sacramento et al., 2020;
Wang et al., 2019), and proteomic approaches to investigate effects from aging in human
tissues have been limited to whole tissues, obscuring lineage-specific changes (Johnson
et al., 2020).

We are using breast as a model for understanding how aging increases
susceptibility to cancer because cell lineages are well-defined with biomarkers, and
surgically discarded normal tissue is obtainable from cosmetic procedures. Age is the
greatest risk factor for breast cancer as over 75% of new breast cancer diagnoses are
made in women aged 50 or older (Benz, 2008). Whole breast tissue analyses identified
a number of directional changes in gene expression (Lee and Lee, 2017; Song et al.,
2017). However, aging is associated with significant shifts in proportions of epithelial and
stromal cells so whole tissue signals mask age-dependent intrinsic changes to the
different cell types (Garbe et al., 2012). Proteomic examination of breast-related tissue
has been mostly limited to breast cancer cell lines, which revealed pathways that are
active in different cancer subtypes but teaches nothing about aging or cancer
susceptibility (Kalocsay et al., 2020; Lawrence et al., 2015). Indeed, there is a paucity of
proteomic resources for understanding the effects of aging in breast, or in any other
human tissue. We performed proteomics on purified populations of the two principle
epithelial lineages in breast: the contractile and tumor suppressive myoepithelial cells,
and the secretory luminal epithelial cells, which are thought to be the cancer cells of origin
for the luminal subtypes of breast cancer that are most age-related (Prat and Perou,
2011).

Here, we examined age-dependent changes in the proteomes and
phosphoproteomes of human mammary luminal epithelial and myoepithelial cells from 10
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women who were aged 19-68 years at the time of surgery. We identified differentially
expressed proteins, enriched gene sets, weighted protein correlation network modules
that change with age, and examined the age-dependent loss of matched mRNA-protein
expression patterns. Previously identified age-dependent increases in expression of
basal genes in luminal cells with age were verified proteomically, and extended to include
the receptor tyrosine kinase AXL and other proteins that control epithelial plasticity and
epithelial to mesenchymal transitions. Heretofore unrecognized changes in the
DDR1/PEAK1 pathway in luminal cells were identified as a potential age-dependent
vulnerability, and we performed proof of principle drug-targeted ablation of older luminal
epithelial cells. Correlation analyses of genome-wide transcriptome and proteome data
with subsequent biological validation showed age-dependent loss of proteostasis in
luminal cells. Our data presents novel opportunities to understand the cellular aging
processes at the proteomic and phospho-peptide levels in two epithelial lineages from a

normal human tissue.
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RESULTS
Deep proteomic and phosphopeptide quantification of the mammary epithelium.
To investigate age-dependent changes in the mammary epithelium, we utilized
tandem mass tag mass spectrometry (TMT-MS) to quantify the proteomic and
phosphopeptide landscape of normal human mammary epithelial cells (HMECs) from 5
younger (age < 30 years) and 5 older (age >50 years) women (Figure 1A). Lineages
were FACS enriched prior to TMT-MS into luminal epithelial (LEp, CD133*/CD271") and
myoepithelial (MEp, CD133/CD271%) cells. The two different lineages from the same
specimen were examined in tandem in separate runs. The proteomic analyses yielded
>9000 proteins (at 5% spectral mapping false discovery rate (FDR)) for both LEp and
MEp lineages, the majority (>84%) were detected in both data sets (Figure 1B). Samples
were analyzed as all LEp cells in tandem or all MEp cells in tandem enabling within
lineage comparisons, but not between lineage comparisons. The phosphopeptide
analyses detected 9799 and 15713 distinct phosphopeptides for the LEp and MEp data
sets, respectively (Figure 1B). The overall distributions of the median log2 abundances
were comparable between the datasets (Figure 1C). Samples consisting of older women
presented wider distributions indicative of a larger range of protein expression levels. A
global overview of the LEp and MEp MS datasets demonstrated that the largest number
of proteins observed were for proteins and peptides categorized as transcription factors
or mitochondria associated proteins (Figure 1D-G). Our previous work highlighted KRT14
and KRT19 as exemplar genes and proteins that show age-dependent changes in LEp
cells (Garbe et al., 2012; Pelissier Vatter et al., 2018) and we also detected an increase
in KRT14 and a decrease of KRT19 expression with age in these MS data (Figure 1H).
Additionally, we demonstrated examples of age-dependent expression of ZNF542P and
AVIL in the MEp cells as a characterization of the changing proteomic composition of the
mammary epithelium (Figure 11). These data provided a high-level overview of the
produced datasets that vastly enhanced a proteome and phosphopeptide wide

understanding of the aging mammary epithelium
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Age-dependent changes are more pronounced in luminal epithelial cells

To assess the contribution of age to the proteomic and phosphopeptide landscape
we conducted nonlinear dimension reduction analyses using both uniform manifold
approximation and projection (UMAP) as well as t-distributed stochastic neighbor
embedding (t-SNE) (Figure 2). A robust age group-related separation was observed in
the tSNE and UMAP plots for LEp cells along with a wider 95% confidence ellipse
indicative of increased expression variance in LEp cells with age (Figure 2A,C). This
observation was especially pronounced in 3-dimensional (3-D) tSNE data. Notably, MEp
cells were less clearly separated by age and the 95% confidence ellipses demonstrated
a greater overlap for both the proteomic and phosphopeptide data, indicative that effects
of aging were less pronounced in these cells (Figure 2B,D). These analyses show that

the age-dependent changes were more prominent in LEp cells compared to MEp cells.

Aging signatures of the mammary epithelium

Differential expression analyses were conducted to identify proteins that are age-
dependent and we detected 155 differentially expressed proteins (DEPs) in LEp cells and
234 in MEp cells (cutoff of adjusted p value < 0.05, only the 100 most significant proteins
shown in Figure 3A-B). In the LEp cells 114 DEPs were upregulated, including KRT14,
KRT10, KRT15, and AXL, while only 41 DEPs were downregulated. Inversely, for MEp
cells we detected that 197 of the 234 DEPs were downregulated and 37 were
upregulated. Differential expression analyses were also performed for phosphopeptides
(DEpP) in LEp cells (Figure 3C) and MEp cells (Figure 3D) and identified 77 DEpPs in
LEp cells with 61 upregulated and 16 downregulated peptides. We identified 365 DEpPs
for MEp cells; 53 were upregulated and 312 were downregulated.

Gene set enrichment analyses (GSEA) were conducted for the proteome datasets
using a ranked gene list based on the product of log2 fold change (LFC) and the inverse
of the p value to identify hallmark signatures enriched with age for LEp cells (Figure 3E)
and MEp cells (Figure 3F). In LEp cells we identified 12 significantly enriched hallmark
terms (FDR < 0.05). Three gene sets were enriched in older LEp cells, including reduced
KRAS signaling, expression of E2F targets, and G2M checkpoint. In younger LEp cells
we identified 9 genemsets enriched including IFN-alpha and -gamma, allograft rejection,
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IL2 STAT2 signaling, cholesterol homeostasis, fatty acid metabolism, peroxisome, and
hypoxia (Figure 3E). Of the 15 significantly enriched genesets for MEp cells, 10 genesets
are enriched in older MEp cells including oxidative phosphorylation, peroxisome,
cholesterol homeostasis, bile acid metabolism, fatty acid metabolism, adipogenesis,
xenobiotic metabolism, complement, protein secretion, and late estrogen response. In
younger MEp cells 5 gene sets were found to be enriched including G2M checkpoint,
targets of the transcription factor E2F, spermatogenesis, MYC targets version 2, and
mitotic spindle (Figure 3F). For the phosphopeptides a phosphorylation site centric
enrichment was performed utilizing PTM signature enrichment analysis (PTM-SEA). In
LEp cells 7 significantly (FDR < 0.05) enriched signatures were identified including kinase
activity associated with cell cycle control (CHEK1, CDK2, CDK11, CSNK2A1, and
PRKACA) (Figure 3G). In the phosphoproteome of MEp cells 16 significant (FDR < 0.05)
signatures were found to be enriched. These also contained multiple signatures of
kinases associated with cell cycle control (CDK1, CSNK2A1, CDK2, PRKCA,AURKB, and
CHEK?1), and pathway activation of key signaling cascades (AKT1, ERK1, EGFR1, and
GSK2B) (Figure 3H). For both LEp and MEp cells these PTM-SEA results are consistent
with the protein centric GSEA analysis and increase the understanding of signaling events
in the mammary epithelium. Collectively, these analyses show that aging-dependent
changes are highly lineage specific. Moreover, for certain gene sets (including cholesterol
homeostasis, E2F targets, and G2M checkpoints) the age-dependent regulation was
inverse when comparing MEp cells to LEp cells.

Identification of age-dependent co-expression modules and targetable factors
Weighted correlation network analyses (WGCNA) were performed to identify novel
groups of proteins with expression profiles that correlate with age. A co-expression
network based on the protein and phosphopeptide expression profiles was constructed.
A soft threshold power  of 18, was determined in all datasets to reach a degree of
independence over 0.8. Eighteen co-expression modules (fast cluster algorithm with a
minimum module size of 100 proteins) were identified in the LEp proteome with 4 of the
modules significantly (adjusted p < 0.1) correlated with chronological age (Figure 4A-B).
Modules “grey60” (rvicor = 0.92, adjusted p = 0.003) and “lightcyan” (rvicor = -0.75, adjusted
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p = 0.06) were positively correlated with age, while modules “lightgreen” (rvicor = -0.75,
adjusted p = 0.06) and “midnightblue” (rvicor = -0.84, adjusted p = 0.02) were negatively
correlated with age. The “grey60” module contained 111 proteins (Figure 4C), while
module “midnightblue” contained 121 proteins. The expression patterns in these modules
were homogeneous per age group as indicated by eigengene expression plots (Figure
4C-4F). The most interconnected proteins of the “grey60” (positively correlated with age)
and “midnightblue” (negatively correlated with age) modules are shown in network plots
(Figure 4G-H). KRT14 was identified as one of the most interconnected proteins within
the “grey60” module, and other key signaling proteins such as PEAK1, IPPK, and CDK13
were also identified to be positively correlated with age (Figure 4G). Among the key
negatively correlated proteins in the “midnightblue” module were KRT19, ALDH1AS3,
UBAG, and AVIL (Figure 4H).

Importantly, the identification of key known age-dependent proteins such as
KRT14 and KRT19 within the modules serve as validation of the biological relevance of
the analyses. Additionally, we validated PEAK1 as an additional central kinase positively
correlated with age in our LEp cells. PEAK1 is heretofore unexamined in the context of
the aging breast epithelium and is a factor established downstream of discoidin domain
receptor 1 (DDR1), which is involved in pro-tumorigenic signaling in other carcinoma
model systems (Aguilera et al., 2017; Hur et al., 2017; Saby et al., 2018). PEAK1 is a
downstream effector of DDR1 in pancreatic cancer (Aguilera et al., 2017; Aguilera et al.,
2014) and we thought it remarkable to identify its age-dependent expression here. As a
biological validation of the WGCNA analysis we examined total PEAK1 protein expression
levels as a function of age in HMECs and showed an increased expression with age via
western blot (Figure 5A). By utilizing the DDR1-specific drug 7rh, which was previously
utilized to target DDR1 signaling in pancreatic cancer (Aguilera et al., 2017),
phosphorylation of both DDR1 and PEAK1 were reduced in HMECs from older women
(Figure 5B). Dose-response analyses were used to assess cell viability in different
concentrations of 7rh. Sensitivity to 7rh significantly increased with age (2-way ANOVA
p < 1e-4, Figure 5C).

Continuing the WGCNA analyses to interrogate the phosphopeptides, ten modules
were identified for the LEp dataset including the “brown” module (rvicor = 0.67, P = 0.03)
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which included 298 phosphopeptides significantly correlated with age (Figure 6A-C). We
generated a co-expression network plot that depicts up and down-regulated proteins
(Figure 6D) including cell cycle related peptides, a YAP pathway associated transcription
factor (TEAD3), multiple RAB peptides, and key pathway kinases (MAPK2K7 and ILK).
These results are consistent with PTM-SEA (Figure 3G). No co-expression modules
significantly correlated with age in the MEp datasets, indicating a reduced effect of aging
on co-expression networks. Thus, WGCNA analyses identified key protein correlation
networks for LEp cells that were associated with age and we presented data that
experimentally confirmed the findings and targetability.

Correlation of transcriptome and proteome

We correlated RNAseq-derived transcriptomes with proteomes (Figure 7A-B) and
demonstrated an observed median correlation of 0.19 (rvicor = 0.19) for LEp cells and 0.04
(roicor = 0.04) for MEp cells. The correlation of keratins and ribosomal transcripts and
proteins was greater in LEp cells compared to MEp cells. Whereas protein transport
genes and proteins showed a lower correlation in LEp cells compared to MEp cells. Using
the gene-protein correlation pairs we investigated differential correlation changes by age
(Figure 7C-D). For LEp cells four transcript-protein pairs that changed the direction of
correlation with age were identified. A positive correlation in younger cells that changed
to a negative correlation in older cells was observed for ACAT1 (mitochondria
associated), PRKACB (serine/threonine protein kinase), and TTC39C (unknown
function). A negative correlation in younger strains and strong positive correlation with
age was identified for NOP16 (ribosomal protein), which suggested a possible change of
the ribosomal complex assembly machinery. In MEp cells five differentially correlated
transcript/protein pairs were detected. POLR2M (RNA Pol I| Subunit M), PPP2CB (protein
phosphatase), and PEX6 (peroxisomal protein import) were highly positively correlated in
younger strains and anticorrelated with age. Two proteins/transcripts that gained
correlation with age were PPCS (metabolomic protein) and ANKMY 1 (ankyrin repeat and
MYND domain containing 1).

We further investigated the correlation between gene expression and protein levels
with age (Figure 7E). Whereas MEp cells did not show loss of correlation, there was a
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significant age-dependent loss of correlation between the transcriptome and proteome in
LEp cells (Wilcoxon test one sided, p = 0.048). Since proteostasis is considered a
hallmark of aging (Kaushik and Cuervo, 2015; Lopez-Otin et al., 2013), it was investigated
whether the loss of correlation was attributable to an alteration of overall protein
production. A significant increase in protein production was observed in an older HMEC
strain (age 66) as compared to a younger one (age 27) (Figure 7F) utilizing a OPP-AF594
based protein synthesis assay. To further investigate the dysregulation of the translational
machinery we evaluated stoichiometric changes of the proteasomal and ribosomal
subunits. Janssens et al. (2015) showed that loss of stoichiometry (uncoordinated change
of expression) can alter the assembly of multiprotein complexes, which ultimately alters
protein homeostasis (Kelmer Sacramento et al., 2020). Using the HUGO gene group
annotation for the ribosomal subunits and proteasome associated proteins we determined
a partial loss of stoichiometry for both LEp cells and MEp cells in an age-dependent
manner (Figure 7G-H). These data link the loss of the mRNA-protein correlation with age
and dysregulation of the proteostasis machinery.
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DISCUSSION

Age is the most important risk factor for developing cancer. Thus, there is an urgent
need to investigate the biology and mechanisms underlying this increased susceptibility
in order to develop prevention and screening modalities. Here we present the first
comprehensive and in-depth characterization of the proteomic and phosphopeptide
changes of the normal aging mammary epithelium at lineage resolution. We present
differentially expressed proteins and phosphopeptides and have identified key co-
expression modules that correlate with the chronological age of the tissue donor. We also
utilized matched RNAseq data to investigate the age-dependent decoupling between
transcriptome-proteome correlations. Current proteomic studies that investigate human
aging predominantly focus on blood samples generally lacking epithelial tissue (Johnson
et al., 2020; Ubaida-Mohien et al., 2019). Moreover, proteomic profiling of breast-derived
cells involve the use of abnormal and cancer cell lines (Kalocsay et al., 2020; Lawrence
et al., 2015). Here we present a data resource for gaining insight into expression and
phosphorylation of over 9000 proteins in normal primary breast epithelia at lineage- and
age-resolution.

We identified a number of age-dependent protein and phosphopeptide changes
that could be leveraged as aging biomarkers or targets in future studies of aging in the
breast. The most prominent age-dependent changes were identified in LEp cells,
consistent with our previous findings (Pelissier Vatter et al., 2018). Previous studies by
our group characterized changes in human mammary epithelia with age and one of the
most striking changes between cells from young compared to older HMECs is keratin
expression in luminal cells (Garbe et al., 2012; Pelissier Vatter et al., 2018). KRT14 is a
lineage specific marker for MEp cells in young women, but LEp cells of older women
acquire expression of this intermediate filament. KRT14 downregulation in cancer cell
lines showed reduced proliferation, tumorigenicity, and reduced activation of the AKT
pathway and present a potential target to reduce cancer susceptibility with age (Alam et
al., 2011). Here we have detected a significant increase of KRT14 expression, as well as
KRT10 and KRT15, in our LEp dataset and detected KRT14 in the WGCNA module that
is most correlated with age. Given that the genes for these keratins, in addition to KRT19,
are proximally located to one another on chromosome 17 suggests that they may be co-
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regulated in an age-dependent manner. Taken together, our analyses of TMT-MS data
for known changes validates the approach we have taken, giving confidence for future
interrogation of other targets presented here.

WGCNA analysis revealed the age-dependent expression of PEAK1
(pseudopodium enriched atypical kinase 1), a signaling kinase previously unassociated
with aging. PEAK1 is a non-receptor tyrosine kinase ubiquitously expressed and
dysregulated in several cancer models including the pancreas (Aguilera et al., 2017,
Aguilera et al., 2014) and breast (Wang et al., 2010). Aguilera et al. (2014) established
PEAK1 as a downstream target of DDR1 (discoidin domain receptor 1) that can be
pharmacologically targeted with a small molecular inhibitor, 7rh (Aguilera et al., 2017;
Gao et al., 2013). We show sensitivity to 7rh in an age-dependent manner and confirm
decreased phosphorylation of PEAK1 after treatment. These experiments suggest a role
of PEAK1 in the mammary epithelium that is age-dependent, targetable, and could lead
to novel breast cancer prevention intervention strategies that include prophylactic ablation
of LEp cells or their precursors that exhibit increased PEAK1 expression and activity.
Mature LEps are thought to be the cells of origin for the luminal subtype breast cancers
(Prat and Perou, 2010), 80% of which are age-associated, and DDR1/PEAK1 represents
a heretofore unknown vulnerability.

Our findings uncover a loss of transcriptome-proteome quality control in an age-
dependent manner that is most prominent in LEp cells. We observed an increased overall
protein production and reduced correlation to the transcriptome. Loss of proteostasis
control has previously been proposed as a hallmark of aging (Balch et al., 2008) and
utilizing the approach proposed by Janssens et al. (2015) we established an increase of
interquartile range of multiple protein complexes involved in proteostasis. Dysregulation
of the stoichiometry of these complexes could contribute to the decoupling that has been
extensively studied in aging models of yeast and killifish (Janssens et al., 2015; Kelmer
Sacramento et al., 2020). We speculate that this decoupling may be the result, or the
cause, of age-dependent increased transcriptional variance that has been reported in
immune, pancreatic, and breast cells (Enge et al., 2017; Martinez-Jimenez et al., 2017).
The loss of correlation between RNA and protein highlights the need for protein evidence-
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based investigations, for example pediatric cancer subtypes were identified based on only
proteome data (Petralia et al., 2020).

The key to this study is the utilization of pre-stasis epithelial cells from reduction
mammoplasty tissues to examine the aging process, a model system which we generated
and is well established (Garbe et al., 2012; Garbe et al., 2014; Labarge et al., 2013;
Pelissier et al., 2014; Pelissier Vatter et al., 2018). In our present study, HMECs were
isolated from 10 different reduction mammoplasties spanning an expansive age range
from 19 to 68 years. LEp cells and MEp cells were isolated from finite primary cells that
were not exposed to immortalization factors, do not possess gross genetic alterations,
transformations, nor genomic instabilities (Stampfer et al., 2013). This is unlike the cell
lines, such as MCF10A or HMLER, which display high genetic instability and often require
overexpression of transformation factors, converting these cell lines into an abnormal cell
state (Stampfer et al., 2013). The power of using systems like these is that, unlike primary
tissues which can usually only support n of 1 analysis or functional assays, this HMEC
system enables one to follow-up and test predictions from the proteomics data in cell-
based assays.

The resource we provide here is a remarkable dataset that allows in-depth
analyses of aging in normal human mammary epithelium. We observe large scale
expression changes especially in the luminal subpopulation of the epithelium, which is
the most likely culprit of most age-associated breast cancers. Ultimately, these data could
lead to further interrogations that may uncover novel aging biomarkers, high risk
identifiers, and therapeutic interventions to prevent or treat age-associated breast

cancers.
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METHODS
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture
Primary HMECs at passage 4 were grown at 37°C in M87A medium containing cholera
toxin and oxytocin at 0.5 ng/ml and 0.1 nM (Garbe et al., 2009). HMEC strains used in
this study were 51L, 124, 163, 172L, 240L, 29, 112R, 117R, 191L, and 237. Media was
changed every 48h with the last media change at 24h prior to cell dissociation.

Flow Cytometry
Cells dissociated from primary HMEC strains (passage 4) were stained with anti-human
CD271-PerCP/Cy5.5 (Biolegend #345122) and anti-human CD133-PE (Biolegend
#372804) by following standard flow cytometry protocol. Cells were sorted by S3 Cell
Sorter (Bio-Rad). After sorting, cells were washed three times with PBS, snap frozen, and
stored at -80°C.

Mass Spectrometry
Cell pellets were dissolved in 0.5 M triethylammonium bicarbonate (TEAB) (T7408,
Sigma-Aldrich, St. Louis, MO, USA) and 0.05% sodium dodecyl sulphate (SDS) (71736,
50 pL in 10mL water/TEAB solution, Sigma-Aldrich, St. Louis, MO, USA), and lysed using
pulsed probe sonication (Misonix, Farmingdale, NY, USA). Lysates were centrifuged
(16,000 g, 10 min, 4°C) and supernatants were transferred to fresh tubes. Each sample
was measured for protein content using the PierceTM BCA protein assay kit-reducing
agent compatible per manufacturer’s instructions (23250, Thermo Fisher Scientific,
Waltham, MA, US). 100 ug of protein was used per sample, adjusted to the highest
volume using lysis buffer (0.5M TEAB, 0.05% SDS). Proteins were then reduced [4 uL of
100 mM tris (2-carboxyethyl) phosphine (TCEP); 646547, Sigma-Aldrich, St. Louis, MO,
USA], alkylated [2 pL of 100 mM S-methyl methanethiosulfonate (MMTS); 64306, Sigma-
Aldrich, St. Louis, MO, USA] and enzymatically proteolysed using trypsin/LysC (1:25
enzyme:protein ratio; V5072, Promega, Madison, WI, USA). Peptides from each sample
were labelled using the ten-plex TMT reagent kit (90110, Thermo Fisher Scientific,
Waltham, MA, US). Two ten-plex experiments were performed, one for MEp cells and
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one for LEp cells from ten subjects. Labelled peptides per ten-plex experiment were
mixed and phospho-enrichment was performed using the high-selectTM SMOAC protocol
per manufacturer’s instructions (A32992 and A32993, Thermo Fisher Scientific, Waltham,
MA, US). The flow-through containing native peptides was offline fractionated using
alkaline C4 reverse phase chromatography (Kromasil® C4 HPLC column, 100 A pore
size, 3.5 ym particle size, length x 1.D 150 x 2.1 mm, K08670362, Sigma-Aldrich, St.
Louis, MO, USA) and each collected fraction was analyzed using the Orbitrap Fusion
mass spectrometry system (Thermo Fisher Scientific, Waltham, MA, US).

Unprocessed raw files were submitted to Proteome Discoverer 2.3.0.523 for target decoy
search using Byonic. The UniProtKB homo sapiens database (release date Dec 2019)
was utilized. The search allowed for up to two missed cleavages, a precursor mass
tolerance of 10 ppm, a minimum peptide length of six and a maximum of two dynamic
modifications of; oxidation (M), deamidation (N, Q), or phosphorylation (S, T, Y).
Methylthio (C) and TMT (K, N-terminus) were set as static modifications. FDR corrected
p-value at the peptide level was set at < 0.05 for native proteins and at < 0.01 for
phosphopeptides. Percent co-isolation excluding peptides from quantitation was set at
50.

Differential Expression
Differential expression was determined utilizing multiple t-tests (1 per
protein/phosphopeptide) with pooled standard deviation based on the log2 transformed
abundance values. To correct for multiple comparisons the Benjamini, Krieger & Yekutieli
(2006) method was deployed and proteins were considered differentially expressed for
FDRsky < 0.05.

Gene Set Enrichment Analyses
GSEA were conducted using the fgsea R package (Sergushichev, 2016). Proteome wide
expression profiles were ranked using the product of the log2 fold change and inverse of
the p-value. Gene sets were accessed through MySigDB V7.0 (Subramanian et al., 2005)
and PTM signature enrichment analysis signatures were retrieved via PTMsigDB v1.9.0
(Krug et al., 2019). Terms were considered significantly enriched if FDR < 0.05.
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Weighted Correlation Network Analysis (WGCNA)

To perform weighted correlation network analysis the R package WGCNA (Langfelder
and Horvath, 2008) utilizing the biweight midcorrelation was used. Scale independence
and mean connectivity were then tested using a gradient method. Minimum scale
independence of at least 0.80 was met for every dataset with soft threshold of 18. The
modules were detected by hierarchical average linkage clustering analysis for the protein
dendrogram of the topology overlap matrix. To identify age-dependent modules the
module-age relationships were calculated using bicor function and significance was
determined (FDR < 0.1). Most interconnected proteins and phosphopeptide networks
were illustrated using cytoscape 3.8.0 (Shannon et al., 2003).

RNA-Protein Correlation Analysis
Correlations between RNA and proteins were calculated using biweight midcorrelation.
Differential correlation has been assessed using the fisher r-z-transformation based in the
correlation coefficient. P-value was calculated using two-sided t-test and p-value
adjustments was performed using Benjamini, Krieger & Yekutieli (2006) method.
Changes were considered significant for FDRgky < 0.1.

Protein Synthesis Assay
HMECs were cultured as previously described on 4-well chamber slides. When cells
reached subconfluence media was changed. Protein synthesis assay (Thermo Fisher #
C10457) was performed according to manufacturer’s instructions. Images were captured
in the same imaging session using Nikon DS-Qi2 camera (3s exposure) on a Nikon Ti2
Microscope. Single cell level of nuclear fluorescence was quantified using Cell Profiler
3.1.5.

Cell Viability assay
HMECs were plated in white walled 96-well plates at 1500 cells per well. After 24h cells
were treated with increasing concentrations of 7rh for 72h. Cell viability was determined
using CellTiter-Glo (Promega) and measured using Cytation 3 Cell Imaging Multi-Mode
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Reader (BioTek). Graphs were plotted and significance was assessed using Graphpad

Prism.

Western blot
Sub-confluent HMECs were lysed, centrifugated at 13,000 rpm, and supernatend protein
concentration was measured using BCA assay. Equal amounts of total protein were
separated by SDS-PAGE and transferredonto PVDF membranes. Membranes were
underwent blockade for 1 hour in 5% milk in TBS-T. Primary antibody was incubated
overnight at 4°C. Membranes were incubated with corresponding HRP-conjugated
secondary antibody for 2 hours. Bands were detected using the enhanced

chemiluminescence reagent using Oddyssey Fc (Licor).

Statistical Analysis
All performed tests were two-sided unless otherwise specified and calculated in R
(V3.6.1) or Prism (Graphpad, V9).

KEY RESOURCES TABLE
REAGENT or RESOURCE ‘ SOURCE IDENTIFIER
Antibodies
CD271-PerCP/Cy5.5 Biolegend 345112 Lot:B253157
CD133-PE Biologend 372804 Lot:B262395

Biological Samples

Human mammary epithelial cells City of Hope NA

Chemicals, Peptides, and Recombinant Proteins

TMT10plex Isobaric Label Reagent | ThermoFisher | A37725
Set
Trypsin-Lys-C-Mix Promega V5072

Critical Commercial Assays
Molecular Probes Click-iT Plus OPP | Thermo Fisher | C10457
Alexa Fluor 594 Protein Synthesis

Assay Kit
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BCA protein assay kit Thermo Fisher | 23250
Scientific
CellTiter-Glo Promega G7571
Software and Algorithms
R (V3.6.1) r-project r-project.org/
RStudio (V1.2.1335) RStudio, Inc. rstudio.com
tidyverse (V1.3.0) CRAN https://cran.r-
project.org/web/packages/tidyverse/index.html
ggrepel (V0.8.2) CRAN https://cran.r-project.org/web/packages/ggrepel/index.html
cp4p (V0.3.6) CRAN https://cran.r-project.org/web/packages/cp4p/index.html
gridExtra (V2.3 CRAN https://cran.r-

project.org/web/packages/gridExtra/index.html

gage (V2.34.0)

Biconductor

https://bioconductor.org/packages/release/bioc/html/gage.
html

here (V0.1) CRAN https://cran.r-project.org/web/packages/here/index.html
janitor (V2.0.1) CRAN https://cran.r-project.org/web/packages/janitor/index.html
biomaRt (2.40.4) Bioconductor https://bioconductor.org/packages/release/bioc/html/bioma

Rt.html

org.HS.eg.db (V3.8.2)

Bioconductor

https://bioconductor.org/packages/release/data/annotation
/html/org.Hs.eg.db.html

RColorBrewer (V1.1-2) CRAN https://cran.r-

project.org/web/packages/RColorBrewer/index.html
ggpubr (V0.2.5) CRAN https://cran.r-project.org/web/packages/ggpubr/index.html
cowplot (V1.0.0) CRAN https://cran.r-project.org/web/packages/cowplot/index.html
pheatmap (V1.0.12) CRAN https://cran.r-

project.org/web/packages/pheatmap/index.html

fgsea (V1.13.4)

Bioconductor

https://bioconductor.org/packages/release/bioc/html/fgsea.
html

WGCNA (V1.68) CRAN https://cran.r-
project.org/web/packages/WGCNA/index.html
flashclust (V1.01-2) CRAN https://cran.r-

project.org/web/packages/flashClust/index.html

gvalue (V2.16.0)

Bioconductor

https://www.bioconductor.org/packages/release/bioc/html/

qgvalue.html

Cell Profiler 3.1.5

Broad Institute

https://cellprofiler.org/

Proteome Discoverer 2.3.0.523

Thermo Fisher

Scientific

https://www.thermofisher.com/

UNIPROT (release 2019_11)

UniProt

http://ftp.uniprot.org/release-2019_11

Prism V9

GraphPad
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Figure Legends

Figure 1: Proteomic and phosphopeptide lineage specific profiling of primary
mammary epithelial cells. A) Flowchart of experimental workflow. B) Venn diagram of
quantified proteins and phosphopeptides across datasets. C) Density plot of log2
transformed proteins abundances. D-G) Overview of proteins’ and phosphopeptides’ log2
fold changes (old vs young) in selected functional protein classes (young: from women
<30 years (n = 5), old: > 50 years old (n = 5)). H) KRT14 and KRT19 expression as a
function of age in luminal epithelial (LEp) cells. I) ZNF542P and AVIL expression as a

function of age in myoepithelial (MEp) cells.

Figure 2: Dimension reduction analyses of datasets. UMAP and tSNE plots with 95%
confidence ellipse of HMEC datasets by age (young: from women <30 years (n = 5), old:
> 50 years old (n = 5)) for proteins in A) LEp, B) MEp, and phosphopeptides (p-peptides)
for C) LEp, D) MEp.

Figure 3: Differential expression analyses between younger and older HMECs by
lineage. Heatmaps of the top 100 differentially expressed proteins for LEp (A), MEp (B)
and phosphopeptide (p-peptide) level (z score scale). Differentially expressed
phosphopeptides for LEp (C) and MEp (D). Gene set enrichment analyses of protein
samples for E) LEp and F) MEp cells. Phosphorylation site-specific signature enrichment

analysis for G) LEp and H) MEp cells.

Figure 4: Weighted correlation network analyses for protein expression in LEp
cells. A) Protein dendrogram acquired by average linkage hierarchical clustering. Module
assignment determined through dynamic tree cut and indicated by color row. B) Module
eigengene correlation with age. Heatmap color refer to the biweight midcorrelation and
the Benjamini-Hochberg adjusted p-value is given in parenthesis. C-F) Heatmaps of
modules significantly correlation with age (z score scale) and barplots of eigengene
expression of samples within the modules. Network plots of the most correlated modules

G) “grey60” and H) “midnightblue”. Modules are colored by the protein expression log2
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fold change and the size of the nodes are relative to the number of connections. The
network only displays connections if the topological overlap is above a threshold of 0.08.
Nodes with less than 3 connections were removed from plot.

Figure 5: Targeting PEAK1 expression through DDR1 inhibition: A) Western blot of
PEAK1 expression in younger (SubjectID 163, age 27) and older (SubjectID 237, age 66).
B) Western blot of phospho-PEAK1 and phospho-DDR1 after inhibition of DDR1
mediated signaling through 24h treatment with 1 yM 7rh. C) Cell viability assay (cell titer
glo) after 72h treatment with 7rh.

Figure 6: Weighted correlation network analyses for phosphopeptide expression
in LEp cells. A) Protein dendrogram acquired by average linkage hierarchical clustering.
Module assignment determined through dynamic tree cut and indicated by color row. B)
Module eigengene correlation with age. Heatmap color refer to the biweight
midcorrelation and the p-value is given in parenthesis. C) Heatmap of brown module (z
score scale) and barplots of eigengene expression of samples. D) Network plots of the
most correlated modules. Modules are colored by the proteins log2 fold change and the
size of the nodes are relative to the number of connections. The network only displays
connections if the topological overlap is above a threshold of 0.2. Nodes with less than 3

connections were removed.

Figure 7: Correlation between protein and RNA expression. Histogram of the biweight
midcorrelation distribution between protein and RNA expression for A) LEp and B) MEp
with ridgeplot depicting distribution of selected gene groups curated by HGNC. C)
Differentially correlated transcripts-proteins pairs by age for LEp cells and D) MEp cells.
E) Box and whisker plots of protein-transcript biweight midcorrelation by age and lineage
(Wilcoxon one sided signed rank test). F) Protein synthesis quantification using OPP-
AF594 with quantification of nuclear integrated density per cell for 2 strains (scale bar
50 um). Change in protein expression stoichiometry of G) ribosomal and H) proteasomal

proteins by age and lineage.


https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.02.429276; this version posted February 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

References

Aguilera, K.Y., Huang, H., Du, W., Hagopian, M.M., Wang, Z., Hinz, S., Hwang, T.H.,
Wang, H., Fleming, J.B., Castrillon, D.H., et al. (2017). Inhibition of Discoidin Domain
Receptor 1 Reduces Collagen-mediated Tumorigenicity in Pancreatic Ductal
Adenocarcinoma. Mol Cancer Ther 16, 2473-2485.

Aguilera, K.Y., Rivera, L.B., Hur, H., Carbon, J.G., Toombs, J.E., Goldstein, C.D.,
Dellinger, M.T., Castrillon, D.H., and Brekken, R.A. (2014). Collagen signaling enhances
tumor progression after anti-VEGF therapy in a murine model of pancreatic ductal
adenocarcinoma. Cancer Res 74, 1032-1044.

Alam, H., Sehgal, L., Kundu, S.T., Dalal, S.N., and Vaidya, M.M. (2011). Novel function
of keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells. Mol Biol
Cell 22, 4068-4078.

Balch, W.E., Morimoto, R.I., Dillin, A., and Kelly, J.W. (2008). Adapting proteostasis for
disease intervention. Science 3719, 916-919.

Benz, C.C. (2008). Impact of aging on the biology of breast cancer. Crit Rev Oncol
Hematol 66, 65-74.

Berchtold, N.C., Cribbs, D.H., Coleman, P.D., Rogers, J., Head, E., Kim, R., Beach, T.,
Miller, C., Troncoso, J., Trojanowski, J.Q., et al. (2008). Gene expression changes in the
course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A 105,
15605-15610.

de Vries, M., Faiz, A., Woldhuis, R.R., Postma, D.S., de Jong, T.V., Sin, D.D., Bosse, Y.,
Nickle, D.C., Guryev, V., Timens, W., et al. (2017). Lung tissue gene-expression signature
for the ageing lung in COPD. Thorax.

Enge, M., Arda, H.E., Mignardi, M., Beausang, J., Bottino, R., Kim, S.K., and Quake, S.R.
(2017). Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of
Aging and Somatic Mutation Patterns. Cell 7771, 321-330 e314.

Gao, M., Duan, L., Luo, J., Zhang, L., Lu, X., Zhang, Y., Zhang, Z., Tu, Z., Xu, Y., Ren,
X., et al. (2013). Discovery and optimization of 3-(2-(Pyrazolo[1,5-a]pyrimidin-6-
yhethynyl)benzamides as novel selective and orally bioavailable discoidin domain
receptor 1 (DDR1) inhibitors. J Med Chem 56, 3281-3295.

Garbe, J.C., Bhattacharya, S., Merchant, B., Bassett, E., Swisshelm, K., Feiler, H.S.,
Wyrobek, A.J., and Stampfer, M.R. (2009). Molecular distinctions between stasis and
telomere attrition senescence barriers shown by long-term culture of normal human
mammary epithelial cells. Cancer Res 69, 7557-7568.

Garbe, J.C., Pepin, F., Pelissier, F.A., Sputova, K., Fridriksdottir, A.J., Guo, D.E.,
Villadsen, R., Park, M., Petersen, O.W., Borowsky, A.D., et al. (2012). Accumulation of


https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.02.429276; this version posted February 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

multipotent progenitors with a basal differentiation bias during aging of human mammary
epithelia. Cancer Res 72, 3687-3701.

Garbe, J.C., Vrba, L., Sputova, K., Fuchs, L., Novak, P., Brothman, A.R., Jackson, M.,
Chin, K., LaBarge, M.A., Watts, G., et al. (2014). Immortalization of normal human
mammary epithelial cells in two steps by direct targeting of senescence barriers does not
require gross genomic alterations. Cell Cycle 13, 3423-3435.

Glass, D., Vinuela, A., Davies, M.N., Ramasamy, A., Parts, L., Knowles, D., Brown, A.A.,
Hedman, A.K., Small, K.S., Buil, A., et al. (2013). Gene expression changes with age in
skin, adipose tissue, blood and brain. Genome Biol 74, R75.

Haakensen, V.D., Lingjaerde, O.C., Luders, T., Riis, M., Prat, A., Troester, M.A., Holmen,
M.M., Frantzen, J.O., Romundstad, L., Navjord, D., et al. (2011). Gene expression profiles
of breast biopsies from healthy women identify a group with claudin-low features. BMC
Med Genomics 4, 77.

Hur, H., Ham, I.H., Lee, D., Jin, H., Aguilera, K.Y., Oh, H.J., Han, S.U., Kwon, J.E., Kim,
Y.B., Ding, K., et al. (2017). Discoidin domain receptor 1 activity drives an aggressive
phenotype in gastric carcinoma. BMC Cancer 17, 87.

Janssens, G.E., Meinema, A.C., Gonzalez, J., Wolters, J.C., Schmidt, A., Guryev, V.,
Bischoff, R., Wit, E.C., Veenhoff, L.M., and Heinemann, M. (2015). Protein biogenesis
machinery is a driver of replicative aging in yeast. Elife 4, e08527.

Johnson, A.A., Shokhirev, M.N., Wyss-Coray, T., and Lehallier, B. (2020). Systematic
review and analysis of human proteomics aging studies unveils a novel proteomic aging
clock and identifies key processes that change with age. Ageing Res Rev 60, 101070.

Kalocsay, M., Berberich, M.J., Everley, R.A., Nariya, M.K., Chung, M., Gaudio, B., Victor,
C., Bradshaw, G.A., Hafner, M., Sorger, P.K,, et al. (2020). Data Descriptor: Proteomic
profiling across breast cancer cell lines and models. bioRxiv, 2020.2012.2015.422823.

Kaushik, S., and Cuervo, A.M. (2015). Proteostasis and aging. Nat Med 217, 1406-1415.

Kelmer Sacramento, E., Kirkpatrick, J.M., Mazzetto, M., Baumgart, M., Bartolome, A., Di
Sanzo, S., Caterino, C., Sanguanini, M., Papaevgeniou, N., Lefaki, M., et al. (2020).
Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and
aggregation. Mol Syst Biol 16, €9596.

Krug, K., Mertins, P., Zhang, B., Hornbeck, P., Raju, R., Ahmad, R., Szucs, M., Mundt,
F., Forestier, D., Jane-Valbuena, J., et al. (2019). A Curated Resource for Phosphosite-
specific Signature Analysis. Mol Cell Proteomics 18, 576-593.

Labarge, M.A., Garbe, J.C., and Stampfer, M.R. (2013). Processing of human reduction
mammoplasty and mastectomy tissues for cell culture. J Vis Exp.


https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.02.429276; this version posted February 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics 9, 559.

Lawrence, R.T., Perez, E.M., Hernandez, D., Miller, C.P., Haas, K.M., Irie, H.Y ., Lee, S.I.,
Blau, C.A., and Villen, J. (2015). The proteomic landscape of triple-negative breast
cancer. Cell Rep 7171, 630-644.

Lee, G., and Lee, M. (2017). Classification of Genes Based on Age-Related Differential
Expression in Breast Cancer. Genomics Inform 15, 156-161.

Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The
hallmarks of aging. Cell 1563, 1194-1217.

Martinez-Jimenez, C.P., Eling, N., Chen, H.C., Vallejos, C.A., Kolodziejczyk, A.A.,
Connor, F., Stojic, L., Rayner, T.F., Stubbington, M.J.T., Teichmann, S.A., et al. (2017).
Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science
355, 1433-1436.

Marusyk, A., and DeGregori, J. (2008). Declining cellular fitness with age promotes
cancer initiation by selecting for adaptive oncogenic mutations. Biochim Biophys Acta
1785, 1-11.

Pelissier, F.A., Garbe, J.C., Ananthanarayanan, B., Miyano, M., Lin, C., Jokela, T.,
Kumar, S., Stampfer, M.R., Lorens, J.B., and LaBarge, M.A. (2014). Age-related
dysfunction in mechanotransduction impairs differentiation of human mammary epithelial
progenitors. Cell Rep 7, 1926-1939.

Pelissier Vatter, F.A., Schapiro, D., Chang, H., Borowsky, A.D., Lee, J.K., Parvin, B.,
Stampfer, M.R., LaBarge, M.A., Bodenmiller, B., and Lorens, J.B. (2018). High-
Dimensional Phenotyping |dentifies Age-Emergent Cells in Human Mammary Epithelia.
Cell Rep 23, 1205-1219.

Petralia, F., Tignor, N., Reva, B., Koptyra, M., Chowdhury, S., Rykunov, D., Krek, A., Ma,
W., Zhu, Y., Ji, J., et al. (2020). Integrated Proteogenomic Characterization across Major
Histological Types of Pediatric Brain Cancer. Cell 183, 1962-1985 e1931.

Prat, A., and Perou, C.M. (2010). WITHDRAWN: Deconstructing the molecular portraits
of breast cancer. Mol Oncol.

Prat, A., and Perou, C.M. (2011). Deconstructing the molecular portraits of breast cancer.
Mol Oncol 5, 5-23.

Saby, C., Rammal, H., Magnien, K., Buache, E., Brassart-Pasco, S., Van-Gulick, L.,
Jeannesson, P., Maquoi, E., and Morjani, H. (2018). Age-related modifications of type |
collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells. Cell Adh
Migr 12, 335-347.


https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.02.429276; this version posted February 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Sergushichev, A.A. (2016). An algorithm for fast preranked gene set enrichment analysis
using cumulative statistic calculation. bioRxiv, 060012.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N.,
Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res 13, 2498-2504.

Song, M.A., Brasky, T.M., Weng, D.Y., McElroy, J.P., Marian, C., Higgins, M.J.,
Ambrosone, C., Spear, S.L., Llanos, A.A., Kallakury, B.V.S., et al. (2017). Landscape of
genome-wide age-related DNA methylation in breast tissue. Oncotarget 8, 114648-
114662.

Stampfer, M.R., LaBarge, M.A., and Garbe, J.C. (2013). An integrated human mammary
epithelial cell culture system for studying carcinogenesis and aging. In Cell and Molecular
Biology of Breast Cancer (Springer), pp. 323-361.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.,
Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set
enrichment analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550.

Ubaida-Mohien, C., Lyashkov, A., Gonzalez-Freire, M., Tharakan, R., Shardell, M.,
Moaddel, R., Semba, R.D., Chia, C.W., Gorospe, M., Sen, R., et al. (2019). Discovery
proteomics in aging human skeletal muscle finds change in spliceosome, immunity,
proteostasis and mitochondria. Elife 8.

Wang, D., Eraslan, B., Wieland, T., Hallstrom, B., Hopf, T., Zolg, D.P., Zecha, J., Asplund,
A, Li,L.H., Meng, C,, et al. (2019). A deep proteome and transcriptome abundance atlas
of 29 healthy human tissues. Mol Syst Biol 75, e8503.

Wang, Y., Kelber, J.A., Tran Cao, H.S., Cantin, G.T., Lin, R., Wang, W., Kaushal, S.,
Bristow, J.M., Edgington, T.S., Hoffman, R.M., et al. (2010). Pseudopodium-enriched
atypical kinase 1 regulates the cytoskeleton and cancer progression [corrected]. Proc Natl
Acad Sci U S A 107, 10920-10925.


https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1

bioRxiv preprint dék https
(which was not certified by
<30a >552a

172L 237
240L 112R

51L 191L

124 117R

163 29

Proteome

:gjﬁ{i@%ﬂéouzom .02.02neagpy Byatationrsion postBligestiomry PMIBdbdlirgcopyright holder for this preprint

the author/funder, who has granted bioRxiv
avallaWer aCC BY-NC-ND 4.0 Internatiohal

nse to dlspla the preprint in perpetuity. It is made

MEp [CD133" CD271*]

—

’ LEp [CD133* CD271]

Phospho-peptide

— —
— - - enrichment
Qa1 — !
15 2 \L7 ) 5 P — —
..’) _. ; - _/ ﬁ
T . v|
— Phospho—peptlde — ke
enrichment
Analyses Mass-Spec Pooling
12 ME;
C I WEP |
i 4
= = Prote
P-Peptides £ i
a younger LEp
T2 older MEp
] younger MEp

O

3 4 5 6 7 3 4 5
Median Log2{Abundance]

L

- Phospho-

B Peptides

,§ older LEp

3 younger LEp
51 older MEp

- younger MEp

Medlan LogaAbundance]

m

g A ZNF542P
XBP1 \ FOXR2
5 %
OE, ZI.\IFZ.EGA Agee GE,
7 cvTe SLC22AICAN 1
o) ADGRG4 FebE BMPR2 UNG T i (o] P iciic PABPCS MT2A
@ dp;gg PLPP3 ’l cTDP1 A ick atnd (V] OR13F1 G = PSKH1 VDAC2 MGST3 e
- (A 5 46 TRRAT PTFﬁN HACD! oy IRAKE . N
o ¥
O B | ; Ik .
2 DUSP27 % . ol EY D T ¢
o - - DUSPS . 2% ol o =3
o PLPP2 NT5C Hok Sk g i ot By Lk BNGTT| | ke *NEK3 e, ¢ L * 0>
Q. RIPK3 RIPK3 Gory HBBGSTM‘ o - PXYLP1 R LE N otRL L g <
E " ERk HBAT g PROX2 KCNHPDETB o
° ‘,g 21 oReT1 a
B2 1155 1158 =T s i n=35 n=163 n=163 n=1216 n=876 nass | ¥
F GPCR Phosphatase Kinase Transcription Factor Mitochondria Drug Targets GPCR Phosphatase Kinase Transcription Factor Mitochondria Drug Targets
, - o scinl o acind ey A
sicerlieon
0 -l Ao »
i - ()] 5 . -~
e s swigi
T P el e =
— Py s - - A
S M || | e B :
. ) ks & 2 st £ ¢ c
PSR [k ol “EppEn s (6] bebliioii SPTAUNREDTE | | asra s1ea) ® = s 0| Jogr0E =
o . ) oL fep v s x
o 3o BEE = a "o
: et AL 2N, 1 %500 . ) v [
a o] | a2 | | B o ' o ]| sama® S TANE )
norpe whmo ‘ i il &, PR meigr
o =t = [g;w« = o st il TRRAR (240 ouaihy, U o = s v;‘;:s::
w v corufacs w - wiem P e ’
-l = n=34 n=184 n=335 n=3033 nZA05" n=158
B =9 H=JT: n=Ap14 0=258) =TS Y GPCR Phosphatase Kinase Transcription Factor Mitochondria Drug Targets
GPCR Phosphatase Kinase Transcription Factor Mitochondria Drug Targets
H LEp Protein Expression I MEp Protein Expression
7.5 7.5+
» 237
@ @ L] Q = 240L
g 2 S 3
< 7.0 < 7.0 k-] '
° ° c 74 S 71
: - 2" i E
2 3 | e 3 191L 29m
& & N6 < 61 y
N 6.51 N, 6.5 o ~
b s — 2
o [
< o . & 5 *240L = g 112R
=z = 12R 3 5 27
.UT U u > L]
[ . oc og L <
X 51L % p=4 "
. N 4 . 124 4 -
249£0.7,p=0.025 r=-0.74,p=0.015 51L r=0.81, p=0.005 r=-0.8, p=0.0053

20 30 40 50 60 70
Chronological Age of Donor

20 30 40 50 60 70
Chronological Age of Donor

20 30 40 50 60 70
Chronological Age of Donor

20 30 40 50 60 70
Chronological Age of Donor


https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2
A

UMAP tSNE
3
o 200
g 2
O £ g o
LR 5 -
=< o 191L 147R
(2]
o> . 200 oA
o
L
- = —400
5
12 15 16 17 18 -400 200 0 200 400
UMAP Dim 1 tSNE Dim 1
UMAP tSNE
22 40
(7))
()
© 20
2,
O £
S o
CE. 5, o
o g 5
o
T =
-l
-40

-7.5

-5.0
UMAP Dim 1

0
tSNE Dim 1

10

LEp

Age Group
-=- Younger
& Older

LEp

Age Group
-~ Younger
-& Older

UMAP

tSNE Dim 2

tSNE

()
£
B
8
22
o3
o -2
Ll
=

-4
D

-2
()
[}
T -3
=
Q.
O g4
o °
I &

25
o
'-é-' -

=

12

13 14
UMAP Dim 1

UMAP

15

tSNE Dim 2

o 4

=15
UMAP Dim 1

-13

100

=100

-100 0
tSNE Dim 1

tSNE

117R
© 324 29
B 1
. 163
191L
511
3
112R

100

MEp
Age Group

-#~ Younger
-&= Older

MEp

Age Group
~#~ Younger
~& Older

—200 0
tSNE Dim 1

200


https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3

Ep @Whichtwasimotcertified by pdef

bioRxiv preprint doi: https: //d0| org/lO 1101/2021 02.02.429276; this version
@/funder, wh@as gramtedbi
nger aCC-BY-NC:ND.4.0.1n ehse.

CASP14

Increase

%osted February 2, 2021. Th

POLRMT {5324)

Ruror gns ST

CHOLESTEROL HOMEOSTASISA
FATTY ACID METABOLISM+
INTERFERON ALPHA RESPONSEH
INTERFERON GAMMA RESPONSE
ALLOGRAFT REJECTIONH
ANDROGEN RESPONSE-

IL2 STAT5 SIGNALING 1
PEROXISOME

HYPOXIA+

KRAS SIGNALING DN+

E2F TARGETS+

G2M CHECKPOINT A

G LEp

NES

2 Age LEp

1 Younger
E Older

0 § Age MEp

AP

Younger
Older

not detected

d Hallmark GSEA
with Age
el

F o MEp

G2M CHECKPOINT

E2F TARGETS1
SPERMATOGENESISH

MYC TARGETS V21

MITOTIC SPINDLE

ESTROGEN RESPONSE LATEH
PROTEIN SECRETION
COMPLEMENT 1

XENOBIOTIC METABOLISM+
ADIPOGENESIS 1

FATTY ACID METABOLISM+

BILE ACID METABOLISM+
PEROXISOMEH

CHOLESTEROL HOMEOSTASIS 1
OXIDATIVE PHOSPHORYLATION

Phospho Site Specific (PTM)

KINASE-PSP Chk1/CHEK1 1
KINASE-PSP AurB/AURKBH
PERT-PSP NOCODAZOLE+
KINASE-PSP PKACA/PRKACA A
KINASE-PSP CDK2+
KINASE-PSP CDK1+

KINASE-PSP CK2A1/CSNK2A 1+

[ J
[ ]
[ ]
[ ]
[ ]
®
[ ]
00 05 10 15 20

NES

H  MEp

se to display the prep

e copyright holder for this preprint
%ﬂ nNI

adkes

Sample
WDRM (S391)

TYWI (T167)

TPD52L2(S166)
TPD52L2(5166)
TPD52L1 (5149)
SLOIBAT (483
SLCI6AT {5498)

SRRM? (S2082; T2034)
SLC12A9 (T566; S572; S575; Y582)

RPS6 (5244)

RREB1 {51475)
SPEN (S1380; $1382)
SCNN1A (STT)

TPS3BP1 (1214)

RPS5 (Y48)

TECPR2 (S1129;T1133;51137)
VPS35 (TIS)

SHDaB(om)

MYM?2 (S/T)
PRED a1y
USP34 (13385; S3886; T/S)
1

ON (S1
THHAP (T2401)
P7 (Y)

Sopim 5591)
SLC39AT 43275 5276)
STKIS (1450

0

Ao, msm
UBE2K (T65)
THSD1 (S191)
VEMA (S1444)
VPS33E (556)
‘SPATA20 (T479)
R:

VIPAS3Y (121; S30)
SRR (566)

RPTOR (11206}
UGGTI (¥779)
TAF2 (Y/T/S)

UBNI (Y/5)
TMCCT (292)
TSN (Y195)
SSU72 (T59; TrY)
SDK2 (51430)
TEX2 (1655 5656)
2 (SY)
SEPTIN7 10129

oy 18281)
USP40 (S337)
TDRDY (Y31; 533, T35)

ZNF652 (5139)
TANC? (T660)

SORLI (T/S)

TOP2A (S1106)
STMN1 (538)
TNKSIBPI (S1620; S1621)
SRRMI (260)

RRMI (T751)

WDR36 (5478)

TANG? (S1744; S1748)
USP14(S)

PGI (Y111)
TORTAIP1 (S135)
RRMI (Y726)
SPAILT (S1181)
SECI6A (51069)
TMISF2 (Y/T75)
TRMT1T (T412)

Age 27]29/27|28/19]68|61/56/56/66

PATH-NP TSLP PATHWAY 1
KINASE-PSP Chk1/CHEK1 +
PERT-PSP SII ANGIOTENSIN 21
KINASE-PSP GSK3B1
PERT-PSP EGF

PERT-PSP NOCODAZOLE 1
KINASE-PSP AurB/AURKB1
KINASE-PSP ERK1/MAPK31
KINASE-PSP Akt1/AKT14
KINASE-PSP PKCA/PRKCA 1
KINASE-PSP PKACA/PRKACA 1
KINASE-PSP ERK2/MAPK1 -
PATH-NP EGFR1 PATHWAY 1
KINASE-PSP CDK21
KINASE-PSP CK2A1/CSNK2A1 1
KINASE-PSP CDK1 {

Increased
\ with Age
e
®
e
o
®
°
°
°
[ ]
o
[ ]
®
[ ]
[ ]
i | | —2|  _log.o(FDR)
-2 -1 - 10.0
NES ,s
5.0
Increased with Age R 25
°
@
( ]
e
®
®
[ ]
®
[ ]
[ ]
( J
o
®
[ ]
o
®
0 1 2
NES


https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4

A

Cc

111 Proteins

Height

(which was not certified bE
L

o
b

0.9

0.8

0.7

0.6

Modules

grey60 Module Expression

06-

Eigengene Expression

0.8~
0.0

-0.3-§

-0.6-

SubjectiD =

i

-

no
=

(2]
[95]

_;\_;‘_;

N
~

5 ‘

\*]
S
(=]
=

L8

N N | =

melweiine

o= ==
B

‘w‘_k_k@

Age 27|29]27/28]19]68/61/56]56/66

G

WDR24
\

Module grey60

‘ H‘M I

il

(i ry—
T r——

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.02.429276; this version posted February 2, 2021. The copw
peer review) is the author/funder, who has granted bioRxiv a license|

p Proteome Geng,Ritnidieograrerand dlasiule Colayss .0 International license.

?W\

'allic‘)’P i|g$preprint

displayMfeeyspepl tuity. It is made
1

MElightcyan
MEgrey
MEtan
MEpink
MEturquoise ’ o5 g
: [9)
MEcyan (0'_5) gg_
MEgreenyellow ?027‘; g
MEred e g
MEmagenta 2)272) FO @
019 2
MEyellow on b5
MEbrown ot g
©7) °
MEpurple _0(‘10)02 %
-0.16 I}
MEbiue ©7) H-05 3
=0e
MEgreen ©7)
-0.29
MEblack ©7)
MEsalmon ol
MElightgreen

MEmidnightblue .

lightcyan Module Expression

116 Proteins

0.6~

0.3~

0.0+

-0.3-

Eigengene Expression

-0.6-
ms_;_;y\)m_;_;_;y\)
i -
SubjectID .—p%%éo
{ | —

Age 27]29]27]28]19]68/61/56/56/66

&%

E

Node Color: Log2FC

F

lightgreen Module Expression midnightblue Module Expression

Z-score

102 Proteins
121 Proteins

Age Group

g
Older

06- 0.5
c c
8 B
7 %2}
g os- g 087
g &
i iy
4 0o0- g 00° I
& , =
& [}
8’_03_ ?—03'
g —0. T
o g
fin 1T}
-0.6- -0.6-
; 'y o[~ — |—[cO : i —hof it
SubjectID —RANBICR LS SubjectlD '_E%sgcom\lgg
—r oo -~ P

Age 27]2927/28/19]6861/56/56/66 Age 27/2927/28]19]68]61/5656/66

D

Module midnightblue

-

o
I\ :
D‘\ | \\\ /.

Ler e
e :
and 1

— Heer

v
- -

N\ ~
\
X

e

==

ot
__sremn

soaTt

e


https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5

A B
SubjectID 237

SubjectlD 237 163 7rh  Ctrl 1uM
Age 66 27
g p-PEAKA1

PEAK1 |! o
PEAK1

>
-

GAPDH _
- - p-DDR1 . -
_— -

C DDR1
150
SubjectlD 163
2
% Loa g\gbe' 2:I)D 237
_m Subjec
g (Age 66)
© )
¢ 50— RelaveAUC =1
~° younger
=)
Relative AUC =07
older
0 1 1 1 1
0.0001 0.01 1 100 10000 1000000

7rh [nM]


https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 6

A

LEp P-Peptides Gene Dendrogram and Module Colors

00

§

I

il

- | Ttk b W T
2 (U T e
C brown Module Expression D Module brown

298 P-Peptides

0.

0.3-

0.0+

-0.3-

Eigengene Expression

-0.6-
SubjectiD

Age

I
6 -

MAP2K7

Z-sScore

Age Group
‘Younger

SLC6A14

N
~
@
~
(o))
[e<]
o
=
(o
O]
o
[©)]
[0
(]

3

N
XNR

MEerwnI- !
0.43

MEyellow

MEturquoise

MEblue

MEpink

MEblack

MEred

MEmagenta

MEgreen

MEgrey

BA1C

|
A\

SERPINB2

Module-trait relationships

©.2)

0.39
0.3)

0.28
0.4)

0.27
(0.5)

0.19
(0.6)

-0.026
©.9)

-0.081
©0.8)

-0.25
0.5)

-0.51
©.1)

Age

SLC25A12

HUWE1

Node Color: Log2FC

T
o
o

~-0.5

1WaI011J800 UoNe[e1I0opIW JyBiemiq



https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 7
A

LEp Transcriptome—Proteome Correlation

ARHGEF3{ppMm3
EIFRR | /| MEGFS
” DCAFT ARID5B
S 7504 MIA2
5 PTAR{ ]
o
g SETD5 ARMC9
$ 5001 ) [
& NFATC2IP
=) TRAF5 TGFBI
g \ |
£ 2501 KIF9 KRT19 KRT14
= KIF2:
ANKRD1 VIM
ZNF516 |
=1:0 05 0.0 05 10
Biweight Midcorrelation
Ribosome Biogenesis - | 1 LRI RRE TUE MOCOE DN IO 00O OO O OO
Protein Transport
AlongMicroigble_ 11 (i onrmermmrruerm m 11
Proteasome - I IR IR IR R R
Keratins - Loreen (NIl 11 11 i
.0 05 00 05 10

ACATA | D
NOP16 < 107 ANKMY1 -
2 106
8 105
S 104 PPCS
ACAT14 i
103 401 y

< oL
Z . O POLR2M
C  6.006.256.506.757.00 6.5 6.6 6.7 6.8

PRKACBA E TTC39C PRKACB
8 PPP2CB
=
o
i

TTC39C PEXE

Young Old Young QOld
Group 6.4 65 66 67 6465666768 Group
Log2 Protein Abundance
r I 1 - k|

-1.0-05 00 05 1.0

LEp Transcriptome—Proteome

Age Group === Younger-a= Older

MEp Transcriptome—Proteome

-1.0-050.0 05 1.0

DAPI/OPP-AF594

F

MEp Transcriptome—Proteome Correlation

ceOce71
2 900 ALOX15B /RRM1
o) MCl{R1 EDDAL
o TRIM28
B ACP2 <
8 | GSDMC
g 600 AHSG I
Y RABIGAPS | a1
o
5 NATY EPB41L1
£ 300 coperr /| COPA
2 CORY7 NSMAF
RNF13 LCP1
TAF11 R/
0 i
1.0 05 0.0 05 10
Biweight Midcorrelation
Ribosome Biogenesis - [LLLI R W R (AR {107 [ [ |
Aﬁ’gﬁ‘;‘&g@?ﬁm’; (R 11 O VTR T TR T T AT
Proteasome - N TN TR T R T I
Keratins - Il L 1 T | A 11 O A 1 |
o 05 00 05 10

ANKMY1 PPCS

<

Regularized RN.

® © ©
® M o

8.4

1911
29.

5.75 6.00 6.25 6.50 6.75 7.00

64 66 68 70
Log2 Protein Abundance

Age Group == Younger=a= Older

Wilcoxon, p < 2.2e-16

Wilcoxon, p < 0.048 =
& 1 0.2 2
=> b2 172L ' 8 3
@ <40
o E 1]
8 26
<Z< 29 2 (&)
T 011 1911 &l £
S »g
w £535
® 85
8 sz
s} 0.01 oo
2 00 S
= 2401 N~ 9
= 1731 &)
2 3.0
& -0.14 oL Age 27 Age 66
-0.11 237 n =468 n=521
Younger Older Younger Older (Bhr0200 ln=nate
163 237
G Ribosomal Subunits H Proteasome
Small Subunit Large Subunit Small Subunit Large Subunit 03 0.3
- T
T 03 0.34 0.3 03 <]
g =
% 240L o 3
] k]
g 240L 291 - . 237 =02 240L 5 0.2
= 1 29 T
g 0.2 0.2 0.2 1731 0.2 %
S ]
2 —_ 1178 29 s 2401
o 27 L or o1 o1 0.1 23 0.1 pas
j 191 -1 5 3 =
5 v s ek 5 112R § 163 1B1L T
8 51 ? 124
g a
200 0.04 0.0 0.0 0.0 0.0
Younger Older Younger Older Younger Older Younger Older Younger Older Younger Older


https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/

	20210201 Hinz et al HMEC MS Manuscript Bioarxiv
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

