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SUMMARY 

Age is the major risk factor in most carcinomas, yet little is known about how proteomes 

change with age in any human epithelium. We present comprehensive proteomes 

comprised of >9,000 total proteins, and >15,000 phosphopeptides, from normal primary 

human mammary epithelia at lineage resolution from ten women ranging in age from 19 

to 68. Data were quality controlled, and results were biologically validated with cell-based 

assays. Age-dependent protein signatures were identified using differential expression 

analyses and weighted protein co-expression network analyses. Up-regulation of basal 

markers in luminal cells, including KRT14 and AXL, were a prominent consequence of 

aging. PEAK1 was identified as an age-dependent signaling kinase in luminal cells, which 

revealed a potential age-dependent vulnerability for targeted ablation. Correlation 

analyses between transcriptome and proteome revealed age-associated loss of 

proteostasis regulation. Protein expression and phosphorylation changes in the aging 

breast epithelium identify potential therapeutic targets for reducing breast cancer 

susceptibility. 
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INTRODUCTION 

Aging is a major risk factor for most diseases in humans, and it is the greatest risk 

factor for solid tissue carcinomas. Aging increases susceptibility to cancer initiation, but 

the underlying reasons for this are unclear (Marusyk and DeGregori, 2008). A majority of 

effort spent characterizing effects of age in various human tissues have utilized 

transcriptome and genome-wide analyses of whole tissues (Berchtold et al., 2008; de 

Vries et al., 2017; Glass et al., 2013; Haakensen et al., 2011). There is poor 

correspondence between transcriptome and proteome (Kelmer Sacramento et al., 2020; 

Wang et al., 2019), and proteomic approaches to investigate effects from aging in human 

tissues have been limited to whole tissues, obscuring lineage-specific changes (Johnson 

et al., 2020).  

We are using breast as a model for understanding how aging increases 

susceptibility to cancer because cell lineages are well-defined with biomarkers, and 

surgically discarded normal tissue is obtainable from cosmetic procedures. Age is the 

greatest risk factor for breast cancer as over 75% of new breast cancer diagnoses are 

made in women aged 50 or older (Benz, 2008). Whole breast tissue analyses identified 

a number of directional changes in gene expression (Lee and Lee, 2017; Song et al., 

2017). However, aging is associated with significant shifts in proportions of epithelial and 

stromal cells so whole tissue signals mask age-dependent intrinsic changes to the 

different cell types (Garbe et al., 2012). Proteomic examination of breast-related tissue 

has been mostly limited to breast cancer cell lines, which revealed pathways that are 

active in different cancer subtypes but teaches nothing about aging or cancer 

susceptibility (Kalocsay et al., 2020; Lawrence et al., 2015). Indeed, there is a paucity of 

proteomic resources for understanding the effects of aging in breast, or in any other 

human tissue. We performed proteomics on purified populations of the two principle 

epithelial lineages in breast: the contractile and tumor suppressive myoepithelial cells, 

and the secretory luminal epithelial cells, which are thought to be the cancer cells of origin 

for the luminal subtypes of breast cancer that are most age-related (Prat and Perou, 

2011). 

Here, we examined age-dependent changes in the proteomes and 

phosphoproteomes of human mammary luminal epithelial and myoepithelial cells from 10 
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women who were aged 19-68 years at the time of surgery. We identified differentially 

expressed proteins, enriched gene sets, weighted protein correlation network modules 

that change with age, and examined the age-dependent loss of matched mRNA-protein 

expression patterns. Previously identified age-dependent increases in expression of 

basal genes in luminal cells with age were verified proteomically, and extended to include 

the receptor tyrosine kinase AXL and other proteins that control epithelial plasticity and 

epithelial to mesenchymal transitions. Heretofore unrecognized changes in the 

DDR1/PEAK1 pathway in luminal cells were identified as a potential age-dependent 

vulnerability, and we performed proof of principle drug-targeted ablation of older luminal 

epithelial cells. Correlation analyses of genome-wide transcriptome and proteome data 

with subsequent biological validation showed age-dependent loss of proteostasis in 

luminal cells. Our data presents novel opportunities to understand the cellular aging 

processes at the proteomic and phospho-peptide levels in two epithelial lineages from a 

normal human tissue. 
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RESULTS 
Deep proteomic and phosphopeptide quantification of the mammary epithelium. 

To investigate age-dependent changes in the mammary epithelium, we utilized 

tandem mass tag mass spectrometry (TMT-MS) to quantify the proteomic and 

phosphopeptide landscape of normal human mammary epithelial cells (HMECs) from 5 

younger (age < 30 years) and 5 older (age >50 years) women (Figure 1A). Lineages 

were FACS enriched prior to TMT-MS into luminal epithelial (LEp, CD133+/CD271-) and 

myoepithelial (MEp, CD133-/CD271+) cells. The two different lineages from the same 

specimen were examined in tandem in separate runs. The proteomic analyses yielded 

>9000 proteins (at 5% spectral mapping false discovery rate (FDR)) for both LEp and 

MEp lineages, the majority (>84%) were detected in both data sets (Figure 1B). Samples 

were analyzed as all LEp cells in tandem or all MEp cells in tandem enabling within 

lineage comparisons, but not between lineage comparisons. The phosphopeptide 

analyses detected 9799 and 15713 distinct phosphopeptides for the LEp and MEp data 

sets, respectively (Figure 1B). The overall distributions of the median log2 abundances 

were comparable between the datasets (Figure 1C). Samples consisting of older women 

presented wider distributions indicative of a larger range of protein expression levels. A 

global overview of the LEp and MEp MS datasets demonstrated that the largest number 

of proteins observed were for proteins and peptides categorized as transcription factors 

or mitochondria associated proteins (Figure 1D-G). Our previous work highlighted KRT14 

and KRT19 as exemplar genes and proteins that show age-dependent changes in LEp 

cells (Garbe et al., 2012; Pelissier Vatter et al., 2018) and we also detected an increase 

in KRT14 and a decrease of KRT19 expression with age in these MS data (Figure 1H). 

Additionally, we demonstrated examples of age-dependent expression of ZNF542P and 

AVIL in the MEp cells as a characterization of the changing proteomic composition of the 

mammary epithelium (Figure 1I). These data provided a high-level overview of the 

produced datasets that vastly enhanced a proteome and phosphopeptide wide 

understanding of the aging mammary epithelium 
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Age-dependent changes are more pronounced in luminal epithelial cells 
To assess the contribution of age to the proteomic and phosphopeptide landscape 

we conducted nonlinear dimension reduction analyses using both uniform manifold 

approximation and projection (UMAP) as well as t-distributed stochastic neighbor 

embedding (t-SNE) (Figure 2). A robust age group-related separation was observed in 

the tSNE and UMAP plots for LEp cells along with a wider 95% confidence ellipse 

indicative of increased expression variance in LEp cells with age (Figure 2A,C). This 

observation was especially pronounced in 3-dimensional (3-D) tSNE data. Notably, MEp 

cells were less clearly separated by age and the 95% confidence ellipses demonstrated 

a greater overlap for both the proteomic and phosphopeptide data, indicative that effects 

of aging were less pronounced in these cells (Figure 2B,D). These analyses show that 

the age-dependent changes were more prominent in LEp cells compared to MEp cells.  

 

Aging signatures of the mammary epithelium 
 Differential expression analyses were conducted to identify proteins that are age-

dependent and we detected 155 differentially expressed proteins (DEPs) in LEp cells and 

234 in MEp cells (cutoff of adjusted p value < 0.05, only the 100 most significant proteins 

shown in Figure 3A-B). In the LEp cells 114 DEPs were upregulated, including KRT14, 

KRT10, KRT15, and AXL, while only 41 DEPs were downregulated. Inversely, for MEp 

cells we detected that 197 of the 234 DEPs were downregulated and 37 were 

upregulated. Differential expression analyses were also performed for phosphopeptides 

(DEpP) in LEp cells (Figure 3C) and MEp cells (Figure 3D) and identified 77 DEpPs in 

LEp cells with 61 upregulated and 16 downregulated peptides. We identified 365 DEpPs 

for MEp cells; 53 were upregulated and 312 were downregulated.   

Gene set enrichment analyses (GSEA) were conducted for the proteome datasets 

using a ranked gene list based on the product of log2 fold change (LFC) and the inverse 

of the p value to identify hallmark signatures enriched with age for LEp cells (Figure 3E) 

and MEp cells (Figure 3F). In LEp cells we identified 12 significantly enriched hallmark 

terms (FDR < 0.05). Three gene sets were enriched in older LEp cells, including reduced 

KRAS signaling, expression of E2F targets, and G2M checkpoint. In younger LEp cells 

we identified 9 genemsets enriched including IFN-alpha and -gamma, allograft rejection, 
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IL2 STAT2 signaling, cholesterol homeostasis, fatty acid metabolism, peroxisome, and 

hypoxia (Figure 3E). Of the 15 significantly enriched genesets for MEp cells, 10 genesets 

are enriched in older MEp cells including oxidative phosphorylation, peroxisome, 

cholesterol homeostasis, bile acid metabolism, fatty acid metabolism, adipogenesis, 

xenobiotic metabolism, complement, protein secretion, and late estrogen response. In 

younger MEp cells 5 gene sets were found to be enriched including G2M checkpoint, 

targets of the transcription factor E2F, spermatogenesis, MYC targets version 2, and 

mitotic spindle (Figure 3F). For the phosphopeptides a phosphorylation site centric 

enrichment was performed utilizing PTM signature enrichment analysis (PTM-SEA). In 

LEp cells 7 significantly (FDR < 0.05) enriched signatures were identified including kinase 

activity associated with cell cycle control (CHEK1, CDK2, CDK11, CSNK2A1, and 

PRKACA) (Figure 3G). In the phosphoproteome of MEp cells 16 significant (FDR < 0.05) 

signatures were found to be enriched. These also contained multiple signatures of 

kinases associated with cell cycle control (CDK1, CSNK2A1, CDK2, PRKCA,AURKB, and 

CHEK1), and pathway activation of key signaling cascades (AKT1, ERK1, EGFR1, and 

GSK2B) (Figure 3H). For both LEp and MEp cells these PTM-SEA results are consistent 

with the protein centric GSEA analysis and increase the understanding of signaling events 

in the mammary epithelium. Collectively, these analyses show that aging-dependent 

changes are highly lineage specific. Moreover, for certain gene sets (including cholesterol 

homeostasis, E2F targets, and G2M checkpoints) the age-dependent regulation was 

inverse when comparing MEp cells to LEp cells.  

 

Identification of age-dependent co-expression modules and targetable factors  
 Weighted correlation network analyses (WGCNA) were performed to identify novel 

groups of proteins with expression profiles that correlate with age. A co-expression 

network based on the protein and phosphopeptide expression profiles was constructed. 

A soft threshold power β of 18, was determined in all datasets to reach a degree of 

independence over 0.8. Eighteen co-expression modules (fast cluster algorithm with a 

minimum module size of 100 proteins) were identified in the LEp proteome with 4 of the 

modules significantly (adjusted p < 0.1)  correlated with chronological age (Figure 4A-B). 

Modules “grey60” (rbicor = 0.92, adjusted p = 0.003) and “lightcyan” (rbicor = -0.75, adjusted 
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p = 0.06) were positively correlated with age, while modules “lightgreen” (rbicor = -0.75, 

adjusted p = 0.06) and “midnightblue” (rbicor = -0.84, adjusted p = 0.02) were negatively 

correlated with age. The “grey60” module contained 111 proteins (Figure 4C), while 

module “midnightblue” contained 121 proteins. The expression patterns in these modules 

were homogeneous per age group as indicated by eigengene expression plots (Figure 
4C-4F). The most interconnected proteins of the “grey60” (positively correlated with age) 

and “midnightblue” (negatively correlated with age) modules are shown in network plots 

(Figure 4G-H). KRT14 was identified as one of the most interconnected proteins within 

the “grey60” module, and other key signaling proteins such as PEAK1, IPPK, and CDK13 

were also identified to be positively correlated with age (Figure 4G). Among the key 

negatively correlated proteins in the “midnightblue” module were KRT19, ALDH1A3, 

UBA6, and AVIL (Figure 4H).  

Importantly, the identification of key known age-dependent proteins such as 

KRT14 and KRT19 within the modules serve as validation of the biological relevance of 

the analyses. Additionally, we validated PEAK1 as an additional central kinase positively 

correlated with age in our LEp cells. PEAK1 is heretofore unexamined in the context of 

the aging breast epithelium and is a factor established downstream of discoidin domain 

receptor 1 (DDR1), which is involved in pro-tumorigenic signaling in other carcinoma 

model systems (Aguilera et al., 2017; Hur et al., 2017; Saby et al., 2018). PEAK1 is a 

downstream effector of DDR1 in pancreatic cancer (Aguilera et al., 2017; Aguilera et al., 

2014) and we thought it remarkable to identify its age-dependent expression here. As a 

biological validation of the WGCNA analysis we examined total PEAK1 protein expression 

levels as a function of age in HMECs and showed an increased expression with age via 

western blot (Figure 5A). By utilizing the DDR1-specific drug 7rh, which was previously 

utilized to target DDR1 signaling in pancreatic cancer (Aguilera et al., 2017), 

phosphorylation of both DDR1 and PEAK1 were reduced in HMECs from older women 

(Figure 5B). Dose-response analyses were used to assess cell viability in different 

concentrations of 7rh. Sensitivity to 7rh significantly increased with age (2-way ANOVA 

p < 1e-4, Figure 5C). 

 Continuing the WGCNA analyses to interrogate the phosphopeptides, ten modules 

were identified for the LEp dataset including the “brown” module (rbicor = 0.67, P = 0.03) 
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which included 298 phosphopeptides significantly correlated with age (Figure 6A-C). We 

generated a co-expression network plot that depicts up and down-regulated proteins 

(Figure 6D) including cell cycle related peptides, a YAP pathway associated transcription 

factor (TEAD3), multiple RAB peptides, and key pathway kinases (MAPK2K7 and ILK). 

These results are consistent with PTM-SEA (Figure 3G). No co-expression modules 

significantly correlated with age in the MEp datasets, indicating a reduced effect of aging 

on co-expression networks. Thus, WGCNA analyses identified key protein correlation 

networks for LEp cells that were associated with age and we presented data that 

experimentally confirmed the findings and targetability. 
 

Correlation of transcriptome and proteome  
 We correlated RNAseq-derived transcriptomes with proteomes (Figure 7A-B) and 

demonstrated an observed median correlation of 0.19 (rbicor = 0.19) for LEp cells and 0.04 

(rbicor = 0.04) for MEp cells. The correlation of keratins and ribosomal transcripts and 

proteins was greater in LEp cells compared to MEp cells. Whereas protein transport 

genes and proteins showed a lower correlation in LEp cells compared to MEp cells. Using 

the gene-protein correlation pairs we investigated differential correlation changes by age 

(Figure 7C-D). For LEp cells four transcript-protein pairs that changed the direction of 

correlation with age were identified. A positive correlation in younger cells that changed 

to a negative correlation in older cells was observed for ACAT1 (mitochondria 

associated), PRKACB (serine/threonine protein kinase), and TTC39C (unknown 

function). A negative correlation in younger strains and strong positive correlation with 

age was identified for NOP16 (ribosomal protein), which suggested a possible change of 

the ribosomal complex assembly machinery. In MEp cells five differentially correlated 

transcript/protein pairs were detected. POLR2M (RNA Pol II Subunit M), PPP2CB (protein 

phosphatase), and PEX6 (peroxisomal protein import) were highly positively correlated in 

younger strains and anticorrelated with age. Two proteins/transcripts that gained 

correlation with age were PPCS (metabolomic protein) and ANKMY1 (ankyrin repeat and 

MYND domain containing 1).  

We further investigated the correlation between gene expression and protein levels 

with age (Figure 7E). Whereas MEp cells did not show loss of correlation, there was a 
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significant age-dependent loss of correlation between the transcriptome and proteome in 

LEp cells (Wilcoxon test one sided, p = 0.048). Since proteostasis is considered a 

hallmark of aging (Kaushik and Cuervo, 2015; Lopez-Otin et al., 2013), it was investigated 

whether the loss of correlation was attributable to an alteration of overall protein 

production. A significant increase in protein production was observed in an older HMEC 

strain (age 66) as compared to a younger one (age 27) (Figure 7F) utilizing a OPP-AF594 

based protein synthesis assay. To further investigate the dysregulation of the translational 

machinery we evaluated stoichiometric changes of the proteasomal and ribosomal 

subunits. Janssens et al. (2015) showed that loss of stoichiometry (uncoordinated change 

of expression) can alter the assembly of multiprotein complexes, which ultimately alters 

protein homeostasis (Kelmer Sacramento et al., 2020). Using the HUGO gene group 

annotation for the ribosomal subunits and proteasome associated proteins we determined 

a partial loss of stoichiometry for both LEp cells and MEp cells in an age-dependent 

manner (Figure 7G-H). These data link the loss of the mRNA-protein correlation with age 

and dysregulation of the proteostasis machinery. 
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DISCUSSION 

Age is the most important risk factor for developing cancer. Thus, there is an urgent 

need to investigate the biology and mechanisms underlying this increased susceptibility 

in order to develop prevention and screening modalities. Here we present the first 

comprehensive and in-depth characterization of the proteomic and phosphopeptide 

changes of the normal aging mammary epithelium at lineage resolution. We present 

differentially expressed proteins and phosphopeptides and have identified key co-

expression modules that correlate with the chronological age of the tissue donor. We also 

utilized matched RNAseq data to investigate the age-dependent decoupling between 

transcriptome-proteome correlations. Current proteomic studies that investigate human 

aging predominantly focus on blood samples generally lacking epithelial tissue (Johnson 

et al., 2020; Ubaida-Mohien et al., 2019). Moreover, proteomic profiling of breast-derived 

cells involve the use of abnormal and cancer cell lines (Kalocsay et al., 2020; Lawrence 

et al., 2015). Here we present a data resource for gaining insight into expression and 

phosphorylation of over 9000 proteins in normal primary breast epithelia at lineage- and 

age-resolution. 

We identified a number of age-dependent protein and phosphopeptide changes 

that could be leveraged as aging biomarkers or targets in future studies of aging in the 

breast. The most prominent age-dependent changes were identified in LEp cells, 

consistent with our previous findings (Pelissier Vatter et al., 2018). Previous studies by 

our group characterized changes in human mammary epithelia with age and one of the 

most striking changes between cells from young compared to older HMECs is keratin 

expression in luminal cells (Garbe et al., 2012; Pelissier Vatter et al., 2018). KRT14 is a 

lineage specific marker for MEp cells in young women, but LEp cells of older women 

acquire expression of this intermediate filament. KRT14 downregulation in cancer cell 

lines showed reduced proliferation, tumorigenicity, and reduced activation of the AKT 

pathway and present a potential target to reduce cancer susceptibility with age (Alam et 

al., 2011). Here we have detected a significant increase of KRT14 expression, as well as 

KRT10 and KRT15, in our LEp dataset and detected KRT14 in the WGCNA module that 

is most correlated with age. Given that the genes for these keratins, in addition to KRT19, 

are proximally located to one another on chromosome 17 suggests that they may be co-
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regulated in an age-dependent manner. Taken together, our analyses of TMT-MS data 

for known changes validates the approach we have taken, giving confidence for future 

interrogation of other targets presented here. 

WGCNA analysis revealed the age-dependent expression of PEAK1 

(pseudopodium enriched atypical kinase 1), a signaling kinase previously unassociated 

with aging. PEAK1 is a non-receptor tyrosine kinase ubiquitously expressed and 

dysregulated in several cancer models including the pancreas (Aguilera et al., 2017; 

Aguilera et al., 2014) and breast (Wang et al., 2010). Aguilera et al. (2014) established 

PEAK1 as a downstream target of DDR1 (discoidin domain receptor 1) that can be 

pharmacologically targeted with a small molecular inhibitor, 7rh (Aguilera et al., 2017; 

Gao et al., 2013). We show sensitivity to 7rh in an age-dependent manner and confirm 

decreased phosphorylation of PEAK1 after treatment. These experiments suggest a role 

of PEAK1 in the mammary epithelium that is age-dependent, targetable, and could lead 

to novel breast cancer prevention intervention strategies that include prophylactic ablation 

of LEp cells or their precursors that exhibit increased PEAK1 expression and activity. 

Mature LEps are thought to be the cells of origin for the luminal subtype breast cancers 

(Prat and Perou, 2010), 80% of which are age-associated, and DDR1/PEAK1 represents 

a heretofore unknown vulnerability. 

Our findings uncover a loss of transcriptome-proteome quality control in an age-

dependent manner that is most prominent in LEp cells. We observed an increased overall 

protein production and reduced correlation to the transcriptome. Loss of proteostasis 

control has previously been proposed as a hallmark of aging (Balch et al., 2008) and 

utilizing the approach proposed by Janssens et al. (2015) we established an increase of 

interquartile range of multiple protein complexes involved in proteostasis. Dysregulation 

of the stoichiometry of these complexes could contribute to the decoupling that has been 

extensively studied in aging models of yeast and killifish (Janssens et al., 2015; Kelmer 

Sacramento et al., 2020). We speculate that this decoupling may be the result, or the 

cause, of age-dependent increased transcriptional variance that has been reported in 

immune, pancreatic, and breast cells (Enge et al., 2017; Martinez-Jimenez et al., 2017). 

The loss of correlation between RNA and protein highlights the need for protein evidence-
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based investigations, for example pediatric cancer subtypes were identified based on only 

proteome data (Petralia et al., 2020). 

The key to this study is the utilization of pre-stasis epithelial cells from reduction 

mammoplasty tissues to examine the aging process, a model system which we generated 

and is well established (Garbe et al., 2012; Garbe et al., 2014; Labarge et al., 2013; 

Pelissier et al., 2014; Pelissier Vatter et al., 2018). In our present study, HMECs were 

isolated from 10 different reduction mammoplasties spanning an expansive age range 

from 19 to 68 years. LEp cells and MEp cells were isolated from finite primary cells that 

were not exposed to immortalization factors, do not possess gross genetic alterations, 

transformations, nor genomic instabilities (Stampfer et al., 2013). This is unlike the cell 

lines, such as MCF10A or HMLER, which display high genetic instability and often require 

overexpression of transformation factors, converting these cell lines into an abnormal cell 

state (Stampfer et al., 2013). The power of using systems like these is that, unlike primary 

tissues which can usually only support n of 1 analysis or functional assays, this HMEC 

system enables one to follow-up and test predictions from the proteomics data in cell-

based assays. 

The resource we provide here is a remarkable dataset that allows in-depth 

analyses of aging in normal human mammary epithelium. We observe large scale 

expression changes especially in the luminal subpopulation of the epithelium, which is 

the most likely culprit of most age-associated breast cancers. Ultimately, these data could 

lead to further interrogations that may uncover novel aging biomarkers, high risk 

identifiers, and therapeutic interventions to prevent or treat age-associated breast 

cancers. 
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METHODS 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 
Cell Culture 

Primary HMECs at passage 4 were grown at 37°C in M87A medium containing cholera 

toxin and oxytocin at 0.5 ng/ml and 0.1 nM (Garbe et al., 2009). HMEC strains used in 

this study were 51L, 124, 163, 172L, 240L, 29, 112R, 117R, 191L, and 237. Media was 

changed every 48h with the last media change at 24h prior to cell dissociation.  

 

Flow Cytometry 
Cells dissociated from primary HMEC strains (passage 4) were stained with anti-human 

CD271-PerCP/Cy5.5 (Biolegend #345122) and anti-human CD133-PE (Biolegend 

#372804) by following standard flow cytometry protocol. Cells were sorted by S3 Cell 

Sorter (Bio-Rad). After sorting, cells were washed three times with PBS, snap frozen, and 

stored at -80°C. 

 

Mass Spectrometry 
Cell pellets were dissolved in 0.5 M triethylammonium bicarbonate (TEAB) (T7408, 

Sigma-Aldrich, St. Louis, MO, USA) and 0.05% sodium dodecyl sulphate (SDS) (71736, 

50 µL in 10mL water/TEAB solution, Sigma-Aldrich, St. Louis, MO, USA), and lysed using 

pulsed probe sonication (Misonix, Farmingdale, NY, USA). Lysates were centrifuged 

(16,000 g, 10 min, 4°C) and supernatants were transferred to fresh tubes. Each sample 

was measured for protein content using the PierceTM BCA protein assay kit-reducing 

agent compatible per manufacturer’s instructions (23250, Thermo Fisher Scientific, 

Waltham, MA, US). 100 ug of protein was used per sample, adjusted to the highest 

volume using lysis buffer (0.5M TEAB, 0.05% SDS). Proteins were then reduced [4 µL of 

100 mM tris (2-carboxyethyl) phosphine (TCEP); 646547, Sigma-Aldrich, St. Louis, MO, 

USA], alkylated [2 µL of 100 mM S-methyl methanethiosulfonate (MMTS); 64306, Sigma-

Aldrich, St. Louis, MO, USA] and enzymatically proteolysed using trypsin/LysC (1:25 

enzyme:protein ratio; V5072, Promega, Madison, WI, USA). Peptides from each sample 

were labelled using the ten-plex TMT reagent kit (90110, Thermo Fisher Scientific, 

Waltham, MA, US). Two ten-plex experiments were performed, one for MEp cells and 
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one for LEp cells from ten subjects. Labelled peptides per ten-plex experiment were 

mixed and phospho-enrichment was performed using the high-selectTM SMOAC protocol 

per manufacturer’s instructions (A32992 and A32993, Thermo Fisher Scientific, Waltham, 

MA, US). The flow-through containing native peptides was offline fractionated using 

alkaline C4 reverse phase chromatography (Kromasil® C4 HPLC column, 100 Å pore 

size, 3.5 µm particle size, length x I.D 150 x 2.1 mm, K08670362, Sigma-Aldrich, St. 

Louis, MO, USA) and each collected fraction was analyzed using the Orbitrap Fusion 

mass spectrometry system (Thermo Fisher Scientific, Waltham, MA, US). 

Unprocessed raw files were submitted to Proteome Discoverer 2.3.0.523 for target decoy 

search using Byonic. The UniProtKB homo sapiens database (release date Dec 2019) 

was utilized. The search allowed for up to two missed cleavages, a precursor mass 

tolerance of 10 ppm, a minimum peptide length of six and a maximum of two dynamic 

modifications of; oxidation (M), deamidation (N, Q), or phosphorylation (S, T, Y). 

Methylthio (C) and TMT (K, N-terminus) were set as static modifications. FDR corrected 

p-value at the peptide level was set at < 0.05 for native proteins and at < 0.01 for 

phosphopeptides. Percent co-isolation excluding peptides from quantitation was set at 

50. 

 

Differential Expression 
Differential expression was determined utilizing multiple t-tests (1 per 

protein/phosphopeptide) with pooled standard deviation based on the log2 transformed 

abundance values. To correct for multiple comparisons the Benjamini, Krieger & Yekutieli 

(2006) method was deployed and proteins were considered differentially expressed for 

FDRBKY < 0.05. 

 

Gene Set Enrichment Analyses 
GSEA were conducted using the fgsea R package (Sergushichev, 2016). Proteome wide 

expression profiles were ranked using the product of the log2 fold change and inverse of 

the p-value. Gene sets were accessed through MySigDB V7.0 (Subramanian et al., 2005) 

and PTM signature enrichment analysis signatures were retrieved via PTMsigDB v1.9.0 

(Krug et al., 2019). Terms were considered significantly enriched if FDR < 0.05. 
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Weighted Correlation Network Analysis (WGCNA) 
To perform weighted correlation network analysis the R package WGCNA (Langfelder 

and Horvath, 2008) utilizing the biweight midcorrelation was used. Scale independence 

and mean connectivity were then tested using a gradient method. Minimum scale 

independence of at least 0.80 was met for every dataset with soft threshold of 18. The 

modules were detected by hierarchical average linkage clustering analysis for the protein 

dendrogram of the topology overlap matrix. To identify age-dependent modules the 

module-age relationships were calculated using bicor function and significance was 

determined (FDR < 0.1). Most interconnected proteins and phosphopeptide networks 

were illustrated using cytoscape 3.8.0 (Shannon et al., 2003).  

 

RNA-Protein Correlation Analysis 
Correlations between RNA and proteins were calculated using biweight midcorrelation. 

Differential correlation has been assessed using the fisher r-z-transformation based in the 

correlation coefficient. P-value was calculated using two-sided t-test and p-value 

adjustments was performed using Benjamini, Krieger & Yekutieli (2006) method. 

Changes were considered significant for FDRBKY < 0.1. 

 

Protein Synthesis Assay 
HMECs were cultured as previously described on 4-well chamber slides. When cells 

reached subconfluence media was changed. Protein synthesis assay (Thermo Fisher # 

C10457) was performed according to manufacturer’s instructions. Images were captured 

in the same imaging session using Nikon DS-Qi2 camera (3s exposure) on a Nikon Ti2 

Microscope. Single cell level of nuclear fluorescence was quantified using Cell Profiler 

3.1.5. 

 

Cell Viability assay 
HMECs were plated in white walled 96-well plates at 1500 cells per well. After 24h cells 

were treated with increasing concentrations of 7rh for 72h. Cell viability was determined 

using CellTiter-Glo (Promega) and measured using Cytation 3 Cell Imaging Multi-Mode 
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Reader (BioTek). Graphs were plotted and significance was assessed using Graphpad 

Prism. 

 

Western blot 
Sub-confluent HMECs were lysed, centrifugated at 13,000 rpm, and supernatend protein 

concentration was measured using BCA assay. Equal amounts of total protein were 

separated by SDS-PAGE and transferredonto PVDF membranes. Membranes were 

underwent blockade for 1 hour in 5% milk in TBS-T. Primary antibody was incubated 

overnight at 4°C. Membranes were incubated with corresponding HRP-conjugated 

secondary antibody for 2 hours. Bands were detected using the enhanced 

chemiluminescence reagent using Oddyssey Fc (Licor). 

 

Statistical Analysis 
All performed tests were two-sided unless otherwise specified and calculated in R 

(V3.6.1) or Prism (Graphpad, V9). 

 

KEY RESOURCES TABLE 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

CD271-PerCP/Cy5.5 Biolegend 345112 Lot:B253157 

CD133-PE Biologend 372804 Lot:B262395 

Biological Samples 

Human mammary epithelial cells City of Hope NA 

Chemicals, Peptides, and Recombinant Proteins 

TMT10plex Isobaric Label Reagent 
Set  

ThermoFisher A37725 

Trypsin-Lys-C-Mix Promega V5072 

   

   

   

Critical Commercial Assays 

Molecular Probes Click-iT Plus OPP 

Alexa Fluor 594 Protein Synthesis 
Assay Kit 

Thermo Fisher C10457 
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BCA protein assay kit Thermo Fisher 

Scientific 

23250 

CellTiter-Glo Promega G7571 

Software and Algorithms 

R (V3.6.1) r-project r-project.org/ 

RStudio (V1.2.1335) RStudio, Inc. rstudio.com 

tidyverse (V1.3.0) CRAN https://cran.r-
project.org/web/packages/tidyverse/index.html 

ggrepel (V0.8.2) CRAN https://cran.r-project.org/web/packages/ggrepel/index.html 

cp4p (V0.3.6) CRAN https://cran.r-project.org/web/packages/cp4p/index.html 

gridExtra (V2.3 CRAN https://cran.r-

project.org/web/packages/gridExtra/index.html 

gage (V2.34.0) Biconductor https://bioconductor.org/packages/release/bioc/html/gage.

html 

here (V0.1) CRAN https://cran.r-project.org/web/packages/here/index.html 

janitor (V2.0.1) CRAN https://cran.r-project.org/web/packages/janitor/index.html 

biomaRt (2.40.4) Bioconductor https://bioconductor.org/packages/release/bioc/html/bioma
Rt.html 

org.HS.eg.db (V3.8.2) Bioconductor https://bioconductor.org/packages/release/data/annotation

/html/org.Hs.eg.db.html 

RColorBrewer (V1.1-2) CRAN https://cran.r-
project.org/web/packages/RColorBrewer/index.html 

ggpubr (V0.2.5) CRAN https://cran.r-project.org/web/packages/ggpubr/index.html 

cowplot (V1.0.0) CRAN https://cran.r-project.org/web/packages/cowplot/index.html 

pheatmap (V1.0.12) CRAN https://cran.r-

project.org/web/packages/pheatmap/index.html 

fgsea (V1.13.4) Bioconductor https://bioconductor.org/packages/release/bioc/html/fgsea.
html 

WGCNA (V1.68) CRAN https://cran.r-

project.org/web/packages/WGCNA/index.html 

flashclust (V1.01-2) CRAN https://cran.r-
project.org/web/packages/flashClust/index.html 

qvalue (V2.16.0) Bioconductor https://www.bioconductor.org/packages/release/bioc/html/

qvalue.html 

Cell Profiler 3.1.5 Broad Institute https://cellprofiler.org/ 

Proteome Discoverer 2.3.0.523 Thermo Fisher 

Scientific 

https://www.thermofisher.com/ 

UNIPROT (release 2019_11) UniProt http://ftp.uniprot.org/release-2019_11 

Prism V9 GraphPad   

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2021. ; https://doi.org/10.1101/2021.02.02.429276doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

ACKNOWLEDGEMENTS  

We gratefully acknowledge Dr. Rolf A. Brekken for kindly providing 7rh, and our patient 

advocates Susan Samson and Sandy Preto or providing much needed context. Funding: 

DOD CDMRP (BC141351 Era of Hope Scholar Award & BC181737), Hilton-Ludwig 

Foundation, and City of Hope Center for Cancer and Aging to ML; Margaret Early 

Memorial Research Trust, Pediatric Cancer Research Foundation to LDW; National 

Institutes of Health/National Cancer Institute (NIH/NCI) grants R01CA237602, 

U01CA244109, R33AG059206 to ML; and R01EB024989 to LLS and MAL; K08 

CA201591 to LDW; NCI Cancer Metabolism Training Program Postdoctoral Fellowship 

T32CA221709 to RWS; American Cancer Society Postdoctoral Fellowship (131311-PF-

18-188-01-TBG) to M.E.T. Research reported in this publication included work performed 

in the Mass Spectrometry and Proteomics Core, Analytical Cytometry Core, and 

Integrative Genomics and Bioinformatics Core supported by the National Cancer Institute 

of the National Institutes of Health under grant number P30CA033572. The content is 

solely the responsibility of the authors and does not necessarily represent the official 

views of the National Institutes of Health. 

 

AUTHOR CONTRIBUTIONS 

Conceptualization, SH, AM, MM, KYA, LDW and MAL. Writing - Original Draft, SH, KYA 

and MAL. Writing – Review & Editing, SH, AM, MM, RWS, KYA, MET, JCL, SDG, LLS, 

LDW, and MAL. Investigation, SH, AM, MM, KYA, RWS, and JCL. Formal Analysis, SH 

and AM. Data Curation, SH, SD and AM. Visualization, SH. Supervision, LLS, LDW, and 

MAL. Funding Acquisition, LLS, LDW, and MAL. 

 

DECLARATION OF INTERESTS 

No competing interests to declare. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2021. ; https://doi.org/10.1101/2021.02.02.429276doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure Legends 
 
Figure 1: Proteomic and phosphopeptide lineage specific profiling of primary 
mammary epithelial cells. A) Flowchart of experimental workflow. B) Venn diagram of 

quantified proteins and phosphopeptides across datasets. C) Density plot of log2 

transformed proteins abundances. D-G) Overview of proteins’ and phosphopeptides’ log2 

fold changes (old vs young) in selected functional protein classes (young: from women 

<30 years (n = 5), old:  > 50 years old (n = 5)). H) KRT14 and KRT19 expression as a 

function of age in luminal epithelial (LEp) cells. I) ZNF542P and AVIL expression as a 

function of age in myoepithelial (MEp) cells. 

 

Figure 2: Dimension reduction analyses of datasets. UMAP and tSNE plots with 95% 

confidence ellipse of HMEC datasets by age (young: from women <30 years (n = 5), old: 

> 50 years old (n = 5)) for proteins in A) LEp, B) MEp, and phosphopeptides (p-peptides) 

for C) LEp, D) MEp. 

 

Figure 3: Differential expression analyses between younger and older HMECs by 
lineage. Heatmaps of the top 100 differentially expressed proteins for LEp (A), MEp (B) 

and phosphopeptide (p-peptide) level (z score scale). Differentially expressed 

phosphopeptides for LEp (C) and MEp (D). Gene set enrichment analyses of protein 

samples for E) LEp and F) MEp cells. Phosphorylation site-specific signature enrichment 

analysis for G) LEp and H) MEp cells. 

 

Figure 4: Weighted correlation network analyses for protein expression in LEp 
cells. A) Protein dendrogram acquired by average linkage hierarchical clustering. Module 

assignment determined through dynamic tree cut and indicated by color row. B) Module 

eigengene correlation with age. Heatmap color refer to the biweight midcorrelation and 

the Benjamini-Hochberg adjusted p-value is given in parenthesis. C-F) Heatmaps of 

modules significantly correlation with age (z score scale) and barplots of eigengene 

expression of samples within the modules. Network plots of the most correlated modules 

G) “grey60” and H) “midnightblue”. Modules are colored by the protein expression log2 
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fold change and the size of the nodes are relative to the number of connections. The 

network only displays connections if the topological overlap is above a threshold of 0.08. 

Nodes with less than 3 connections were removed from plot. 

 

Figure 5: Targeting PEAK1 expression through DDR1 inhibition: A) Western blot of 

PEAK1 expression in younger (SubjectID 163, age 27) and older (SubjectID 237, age 66). 

B) Western blot of phospho-PEAK1 and phospho-DDR1 after inhibition of DDR1 

mediated signaling through 24h treatment with 1 µM 7rh. C) Cell viability assay (cell titer 

glo) after 72h treatment with 7rh. 
 

Figure 6: Weighted correlation network analyses for phosphopeptide expression 
in LEp cells. A) Protein dendrogram acquired by average linkage hierarchical clustering. 

Module assignment determined through dynamic tree cut and indicated by color row. B) 

Module eigengene correlation with age. Heatmap color refer to the biweight 

midcorrelation and the p-value is given in parenthesis. C) Heatmap of brown module (z 

score scale) and barplots of eigengene expression of samples. D) Network plots of the 

most correlated modules. Modules are colored by the proteins log2 fold change and the 

size of the nodes are relative to the number of connections. The network only displays 

connections if the topological overlap is above a threshold of 0.2. Nodes with less than 3 

connections were removed. 

 

Figure 7: Correlation between protein and RNA expression. Histogram of the biweight 

midcorrelation distribution between protein and RNA expression for A) LEp and B) MEp 

with ridgeplot depicting distribution of selected gene groups curated by HGNC. C) 

Differentially correlated transcripts-proteins pairs by age for LEp cells and D) MEp cells. 

E) Box and whisker plots of protein-transcript biweight midcorrelation by age and lineage 

(Wilcoxon one sided signed rank test). F) Protein synthesis quantification using OPP-

AF594 with quantification of nuclear integrated density per cell for 2 strains (scale bar 

50 µm). Change in protein expression stoichiometry of G) ribosomal and H) proteasomal 

proteins by age and lineage. 
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