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Abstract

Functional magnetic resonanceimaging (fMRI) is among the foremost methods for mapping
human brain function but provides only an indirect measure of underlying neural activity. Recent
findings suggest that the neurophysiological correlates of the fMRI blood-oxygen-level-
dependent (BOLD) signal might be regionally specific. We examined the neurophysiological
correlates of the fMRI BOLD signal in the hippocampus and neocortex, where differencesin
neural architecture might result in a different relationship between the respective signals. Fifteen
human neurosurgical patients (10 female, 5 male) implanted with depth electrodes performed a
verbal free recall task while electrophysiological activity was recorded simultaneously from
hippocampal and neocortical sites. The same patients subsequently performed a similar version
of the task during alater fMRI session. Subsequent memory effects (SMES) were computed for
both imaging modalities as patterns of encoding-related brain activity predictive of later free
recall. Linear mixed-effects modelling revealed that the relationship between BOLD and gamma-
band SM Es was moderated by the lobar location of the recording site. BOLD and high gamma
(70-150 Hz) SMEs positively covaried across much of the neocortex. This relationship was
reversed in the hippocampus, where a negative correlation between BOLD and high gamma
SMEs was evident. We also observed a negative relationship between BOLD and low gamma
(30-70 Hz) SMEs in the medial temporal lobe more broadly. These results suggest that the
neurophysiological correlates of the BOLD signal in the hippocampus differ from those observed
in the neocortex.
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Significance Statement

The blood-oxygen-level-dependent (BOLD) signal forms the basis of fMRI but provides only an
indirect measure of neural activity. Task-related modulation of BOLD signals are typically
equated with changes in gamma-band activity; however, relevant empirical evidence comes
largely from the neocortex. We examined neurophysiological correlates of the BOLD signal in
the hippocampus, where the differing neural architecture might result in a different relationship
between the respective signals. We identified a positive relationship between encoding-related
changes in BOLD and gamma-band activity in frontal, temporal, and parietal cortex. This effect
was reversed in the hippocampus, where BOLD and gamma-band effects negatively covaried.
These results suggest regional variability in the transfer function between neural activity and the
BOLD signal in the hippocampus and neocortex.


https://doi.org/10.1101/2021.02.01.429258
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429258; this version posted February 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

I ntroduction

Functional magnetic resonance imaging (fMRI) is one of the foremost noninvasive
methods for the examination of human brain function. However, despite the near-ubiquity of
fMRI in cognitive neuroscience research, the blood oxygen level dependent (BOLD) signal, the
basis of fMRI, provides only an indirect measure of underlying neural activity. Prior studies that
acquired simultaneous fMRI BOLD and intracranial electrophysiological (iEEG) recordings
from primary sensory cortices of non-human mammals have consistently reported that stimulus
elicited BOLD signal changes are strongly correlated with changes in high frequency (> 30 Hz)
gamma-band activity measured in extracellular local field potentials (LFPs) (Goense &
Logothetis, 2008; Logothetis et al., 2001; Niessing et al., 2005). Subsequent multimodal imaging
investigations in humans have largely confirmed the close relationship between changesin
BOLD signal intensity and high frequency LFPs in auditory (Nir et al., 2007), sensorimotor
(Hermes et al., 2012), and association (Conner et a., 2011; Ojemann et al., 2010) cortices.

The relationship between the fMRI BOLD signal and its underlying neurophysiology has
generally been assumed to be uniform across different brain regions. Recent findings challenge
this assumption, however, raising questions about the possible regional specificity of coupling
between BOLD and LFP signal modulations (Conner et al., 2011; Ekstrom et al., 2009; for
reviews, see Ekstrom, 2010, 2020; Logothetis, 2008; Ojemann et al., 2013). Of particular
relevance to the current study is the potential for a dissociation between the fMRI BOLD signal
and the underlying neurophysiology in the hippocampus, where sparse vascularization and neural
coding schemes might lead to a different relationship between the respective signals evident in
the neocortex (for review, see Ekstrom, 2021). This possibility is strengthened by the very
different laminar organizations that are found in hippocampal allocortex and the neocortex,
including neocortical regions adjacent to the hippocampus such as the entorhinal and
parahippocampal cortices.

In the only multimodal fMRI-IEEG study of the human medial temporal lobe (MTL) to
date, Ekstrom and colleagues (2009) compared measures of fMRI BOLD signal with
extracellular iIEEG activity recorded from the hippocampus and parahippocampal gyrusin five
neurosurgical patients as they performed a virtual navigation task. A positive correlation between
changesin BOLD signal and theta (4-8 Hz) activity was evident in the parahippocampal gyrus
and, to aweaker extent, the hippocampus proper. Crucially, and in contradiction to the
aforementioned findings from sensory and association cortex, changes in high frequency gamma
activity did not correlate significantly with corresponding BOLD activity in either the
hippocampus or parahippocampal gyrus. It bears mentioning however that these findings were
based on a small sample of subjects (n = 5) with recordings confined tothe MTL. It is therefore
unclear whether the lack of correlation between BOLD and high frequency LFPs was the result
of insufficient power, and whether potential BOLD-LFP coupling in the hippocampus and
proximal MTL structurestruly differed from that observed on the cortical surface.

In the present study, 15 patients with medically resistant temporal |obe epilepsy (TLE)
implanted with depth electrodes performed a verbal delayed free recall task while iIEEG was
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recorded simultaneously from hippocampal and neocortical sites. The same patients
subsequently performed a similar version of the free recall task in alater fMRI session (Hill et
al., 2020). Subseguent memory effects (SMESs) were computed for fMRI and iIEEG as patterns of
encoding-related brain activity that were predictive of successful recall following a brief
distractor interval (Paller & Wagner, 2002). fMRI BOLD SMEs extracted from distributed
hippocampal and neocortical sites were correlated with electrophysiological SMEs obtained from
the same sites. The primary aim of the study was to identify the iEEG frequency band(s) that best
predicted a commensurate BOLD response, and to determine whether the relationships between
BOLD and iEEG SMEs varied between the hippocampus and neocortex.

Materialsand Methods

Behavioral and group-level fMRI data from this experiment were the topic of a prior
report (Hill et al., 2020). The present descriptions of the free recall task and behavioral results
overlap heavily with the descriptions given in that report and are only summarized here. The
fMRI and iEEG findings described below have not been reported previoudly.

Participants

Fifteen patients with medically resistant temporal lobe epilepsy were recruited to
participate in this experiment (21-59 years, M = 37 years, SD = 12 years, 10 females). Three
participants were left-handed, and all spoke fluent English before the age of five. Each patient
underwent iEEG to localize and monitor epileptogenic activity, during which time they
performed a verbal delayed free recall task similar to the one performed during a subsequent
fMRI session. The number and placement of the electrodes were determined solely on the basis
of clinical considerations. Origin of epileptogenic activity was right lateralized in seven patients,
left lateralized in four patients, and bilateral in the remaining four patients. Enrollment was
limited to patients who correctly recalled at least 10% of study items across a full iIEEG session.
No patient had radiological evidence of hippocampal sclerosis. The average delay between iIEEG
surgery and the fMRI session was 87 days (SD = 66 days). All patients gave informed consent in
accordance with the University of Texas at Dallas and University of Texas Southwestern
Institutional Review Boards and were financially compensated for their time.

Free Recall Task

Patients performed similar versions of a verbal delayed free recall task while undergoing
IEEG recording and fMRI scanning on separate occasions. All patients completed the iEEG
version of the experiment prior to enrolling in the fIMRI study. Both versions of the recall task
comprised three phases:. study, arithmetic distractor, and free recall (see below for session
specific parameters). During the study phase, participants viewed words randomly selected from
a database of high frequency concrete nouns (https://memory.psych.upenn.edu/\WordPools). All
words were concrete nouns between three and six lettersin length, with a mean frequency per
million of 46.89 (SD = 84.37, range 0.55 to 557.12) obtained from the SUBTLEX-US corpus
(Brysbaert & New, 2009). Concreteness ratings ranged between 3.75 and 5 (M = 4.80, SD = .20)
on ascale from 1 (most abstract) to 5 (most concrete) (Brysbaert et al., 2014). Participants were
instructed to form a mental image of the object denoted by each word and to refrain from saying
the word aloud or rehearsing previousy studied words. The study phase was followed by a brief
arithmetic distractor task to prevent rehearsal and to clear the contents of working memory.
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Immediately following the distractor interval, participants were prompted to freely recall as
many words from the immediately preceding study list as they could remember, in any order, for
30 seconds. Responses were made verbally and transcribed for subsequent analyses.

fMRI Session. Participants received instructions on the experimental tasks and
performed several practicetrials prior to entering the scanner. During the task proper, they
completed atotal of 18 Study-Distractor-Recall cycles divided equally over six functional
scanner runs. Structural T1 MPRAGE scans were collected upon completion of the final block.
The entire scanning session took approximately 65 minutes. During the study phase, participants
viewed lists of 15 words presented sequentially in white font on a black background. The
presentation of each word was preceded by a red warning fixation cross presented for 500 ms,
followed by the presentation of a single word for 1800 ms. An additional seven null trials (white
fixation cross) were pseudo-randomly interspersed throughout each study list under the
constraint that no more than three null trials occurred consecutively. This resulted in an inter-
stimulus fixation interval that jittered between 900 and 9600 ms. Immediately following the
study phase participants performed a 15s distractor task involving smple arithmetic problemsin
the form of * A+B=C? . Participants were tasked with indicating whether the expression was
correct or incorrect via a button press using their right index and middle fingers (counterbalanced
across participants). Each expression remained on the screen until a response was made, with the
ingtruction that responses should be made quickly and accurately. Verbal responses during the
free recall phase were recorded for later transcription using a scanner-compatible microphone
(Optoacoustics) and noise-cancelling software (OptiMRI v. 3.2) to filter out scanner noise.

IEEG Session. All patients performed a version of the free recall task similar to that
described above for the MRI session with the following differences. Patients performed 26
Study-Distractor-Recall cycles per session (the first of these being for practice and not included
in the analyses). Seven of 15 patients completed more than one session (Mean # sessons = 3,
range = 2-7), with multiple sessions per patient occurring on average two days apart. The task
was performed on a laptop computer during an inpatient hospital stay following intracranial
electrode placement. Study lists were composed of 12 concrete nouns selected at random without
replacement. Four patients completed a protocol that included 10 items per study list; for these
subjects the data analyzed came from an experiment that included brain stimulation, but only
listsin which all items were presented and recalled in the absence of stimulation (non-
stimulation lists) were included in the analyses. Each word was presented for 1800 ms followed
by a random inter-item fixation jitter (750-1000 ms). Following each study list, patients
performed a 20 s arithmetic distractor task comprising expressionsin the form of ‘A+B+C+7.
Patients were required to enter aresponse to each expression viathe keyboard. The free recall
phase was identical to that described for the MRI session.

MRI data acquisition and preprocessing.

Functional and anatomical images were acquired with a 3T Philips Achieva MRI scanner
(Philips Medical Systems, Andover, MA, USA) equipped with a 32-channel receiver head cail.
Functional images were acquired using a T2*-weighted, blood-oxygen level-dependent
echoplanar (EPI) sequence (sensitivity encoding [SENSE) factor 2, flip angle 70 deg, 80 x 78
matrix, field of view [FOV) = 24 cm, repetition time [ TR) = 2000 ms, and echo time[TE) = 30
ms). EPI volumes consisted of 34 dlices (1-mm interslice gap) with avoxel size of 3x3x3 mm.
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Slices were acquired in ascending order oriented parallel to the anterior commissure-posterior
commissure line. Each functional run included 201 EPI volumes. T1-weighted anatomical
images were acquired with a magnetization-prepared rapid gradient echo pulse sequence (FOV =
240 x 240, 1 x 1 x 1 mm isotropic voxels, 34 dlices, sagittal acquisition). Participants performed
atotal of 18 study-test cycles split evenly into six scanner runs.

All fMRI preprocessing and analyses were conducted with Statistical Parametric
Mapping (SPM12, Wellcome Department of Cognitive Neurology, London, UK), run under
Matlab R2017a (MathWorks). Functional images were realigned to the mean EPI image and
slice-time corrected using sinc interpolation to the 17" slice. The images were then reoriented
and spatially smoothed with an isotropic 8 mm full-width half maximum Gaussian kernel. The
data from the six scanning runs were concatenated using the spm_fmri_concatenate function. All
analyses reported below were performed in native space on smoothed data.

MRI data analysis.

A separate single-trial GLM was constructed for each participant. Note that group level
effects were reported previously by Hill et al. (2020) and are beyond the scope of the current
paper. Data from the six study sessions were concatenated and subjected to a ‘ |least-squares-all’
GLM (Mumford et a., 2014; Rissman et al., 2004) to estimate the BOLD response for each tria
separately. Each study event was modeled with a delta function convolved with the canonical
hemodynamic response function (HRF). Six regressors representing motion-related variance
(three for rigid-body trandation and three for rotation) and six session specific regressors were
included in each model as covariates of no interest.

For each ROI (see ‘ROI Localization’), we extracted parameter estimates for the single-trial
BOLD responses, averaged across all voxels falling within agiven ROI. Single-trial BOLD
values were used to compute SMEs as the standardized mean difference between subsequently
recalled (R) and not recalled (NR) study items using the formula:

Ur — Unr

fa,? + o5
2

In the above formula, pr and o’ refer to, respectively, the across trial mean and variance of
BOLD activity for subsequently recalled study items, and png and 6°n refer to the across trial
mean and variance of BOLD activity for subsequently forgotten study items. Thisformula
produces SME values for each ROI that are akin to a Cohen’ s d effect size estimate. Positive
values thus reflect regions where increased brain activity was predictive of subsequent
remembering (so-called positive subsequent memory effects) and negative values reflect regions
where arelative increase in brain activity is predictive of subsequent forgetting (so-called
negative subsequent memory effects).

SME =

IEEG data acquisition and preprocessing

Stereo-EEG data were recorded with a Nihon Kohden EEG-1200 clinical system. Each
electrode contained 8-12 contacts spaced 2-4 mm apart. Signals were sampled at 1000 Hz and
referenced to acommon intracranial contact. Raw signals were subsequently re-referenced to the
median white matter signal computed separately for each subject. All analyses were conducted
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using MATLAB with proprietary and custom-made scripts. We employed kurtosis-based artifact
rejection with athreshold of < 5 to excludeinterictal activity and abnormal trials (Sederberg et
al., 2006). Theraw signals were filtered for line noise on a session-by-session basisusing a first-
order bandstop Butterworth filter with a stopband from 58 to 62 Hz.

IEEG data analysis

To compute spectral power, we convolved the median white matter re-referenced EEG
with 53 complex valued Morlet wavelets (width 6 cycles) spaced logarithmically from 2 to
150Hz. The magnitude of the wavelet transform was then squared and log-transformed to yield
instantaneous power. Power estimates for each electrode were z-scored separately for each
frequency bin using the mean and standard deviation of the power estimate from the 200 ms pre-
stimulus baseline interval. Normalized power was then averaged within six canonical frequency
bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), low gamma (30-70 Hz),
and high gamma (70-150 Hz). SM Es were computed over the entire 1800 ms epoch during
which the study item was presented using the same formula used to compute BOLD SMEs (see
above). For subsidiary analyses, additional SMESs were computed separately for early (0-900 ms)
and late (900-1800 ms) epochs.

ROI Localization

Intracranial contacts were localized using post-implant computed tomography (CT) and
structural T1 MR scans. CT images were linearly co-registered to the T1 MRI obtained during
the fMRI session using FSL FLIRT (FSL version 6.0.1) (Greve & Fischl, 2009; Jenkinson et al.,
2002; Jenkinson et al., 2012; Jenkinson & Smith, 2001). For each participant, the native T1
image was then loaded into MRIcron stereotaxic space and overlaid with the co-registered native
CT image. Asillustrated in Figure 1, microelectrode contacts were visible as high intensity
artifacts on the CT overlay. Contacts were manually localized with reference to stereotaxic
coordinates in standard MNI space for each patient.

T1 Native T1 w/ CT Overlay

H

t':li
ceta o MRl

S il
Ev”‘,ﬁ"

Figure 1. ROI Localization Pipeline. Example of a hippocampal contact localized on a co-
registered native CT (left panel) and T1 (middle panel) image. Note that the left and middle
panels are for illustrative purposes only. The CT image was overlaid on the T1 image (right
pandl, CT overlay shown in blue) so that contacts could be manually localized with reference to
stereotaxic coordinates in standard MNI space.
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Each patient’ s native mean functional T2* image was manually inspected to ensure
adeguate alignment with the native T1 image. To eliminate contacts affected by signal dropout
and distortions caused by susceptibility artifacts, we loaded the mean T2* image into MRIcron
and visually inspected the coordinates for each contact to ensure adequate signal quality.
Contacts falling within areas affected by magnetic susceptibility artifact were flagged and
excluded from subsequent analyses. This procedure identified atotal of 139 contracts (10%) for
exclusion.

To identify contacts located in white matter, tissue segmentation of the structural T1
scans was performed using FAST in FSL (Zhang et al., 2001) with white matter pattern
probability set at 70%. Contacts visible on the CT overlay were manually inspected with
reference to the white matter mask, and those falling within the mask in all three stereotaxic
directions (x, y, z) were labeled as white matter contacts. For each subject, these white matter
contacts were combined to provide a grand median reference signal that was used to compute
SMEs (see iEEG Data Analysis). We note that the criteria for selecting white matter contacts was
more conservative than those for localizing grey matter contacts, ensuring that the white matter
reference signal was unlikely to include any residual signal from grey matter. Contacts located
outside of the skull were flagged and excluded from further analyses, as were all grey matter
contacts showing evidence of ictal activity or other pathology.

For the fMRI analyses, spherical ROIs (3mm radius) were generated using the MarsBaR
(v. 0.44) toolbox for SPM. Each ROI was centered on the native stereotaxic coordinates
corresponding to the grey matter contacts localized in the aforementioned paragraphs. The mean
fMRI BOLD SME was then computed across all voxels falling within each sphere using the
procedures described above (see ‘MRI Data Analysis').

Each contact was labeled by a trained neuroradiologist according to the Automated
Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et a., 2002). For quality assurance, all
hippocampal and parahippocampal labeled contacts were also manually inspected and their
locations confirmed by the first author. The AAL labels were used to sort ROIs into |obar and
sub-lobar parcels in the region-based analyses reported below. The mean number of ROIs for
each patient per lobe are reported in Table 1.

Table 1. Mean # of ROI's (with range) per subject in each of thefour lobar regions

Region Mean (range) # ROIs
Frontal 24 (3-55)
Temporal 26 (9-37)
Parietal 14 (2-32)
MTL 11 (4-22)

Statistical Analyses.
Statistical analyses were carried out using R software (R Core Team, 2017). ANOVASs

were conducted using the afex package (Singmann et al., 2016) and the Greenhouse-Geli sser
procedure (Greenhouse & Geisser, 1959) was used to correct degrees of freedom for non-
sphericity when necessary. Post-hoc tests on significant effects from the ANOV Aswere
conducted using the emmeans package (Lenth, 2018). Multiple regression and correlation
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analyses were performed using the Imand cor .test functions in the base R package, respectively.
Linear mixed-effects models were performed using the Ime4 package (Bates et al., 2015), and
degrees of freedom estimated using the Kenward-Roger method. 95% confidence intervals for
fixed effects were computed via parametric bootstrapping in the broom.mixed package (Bolker,
2020). All modelsincluded arandom intercept per subject. Inclusion of additional random
intercept and slope terms are described in the relevant sections below. All models were fit using
maximum likelihood Laplace approximation, and were refit using restricted maximum likelihood
prior to performing nested model comparisons.

Results

Behavioral Results.

Behavioral results from the fMRI session were previously reported (Hill et al., 2020). The
proportion of freely recalled study items from the fMRI session (M = .30, SD = .11) closely
approximated performance during the iEEG session (M = .27, SD = .09). However, the i EEG
session always preceded the fMRI session (M = 87 days, SD = 66 days). Given the consequent
possibility of order effects, and the slight methodological differences between the free recall
paradigms administered during the respective sessions (see Methods and Materials), we did not
perform adirect statistical test to compare recall performance between the two testing sessions.

Coupling between BOLD and LFP SMEsvariesacross brain regionsand frequency bands.

In thefirst set of analyses, we examined whether variance in the magnitude of memory-
related BOLD signal change could be predicted by variance in memory-related iEEG changes
measured from the same anatomical locations, and whether the relationship between BOLD and
IEEG effects varied across brain regions. Each ROl was assigned to one of four lobar labels:
frontal, temporal, parietal, and medial temporal (including hippocampus, parahippocampal gyrus,
and amygdala). Due to sparse coverage, data extracted from ROIsin the occipital lobe (derived
from atotal of only 8 contacts) were not included in these analyses. For each subject, the across-
ROI vector of BOLD SMEs from each of the four lobar regions was entered into the model as
the dependent variable. IEEG SMEs recorded from the same ROIs in each frequency band were
entered as the fixed effect of interest, along with hemisphere of ictal onset (right, |eft, bilateral)
and handedness (l&ft, right) as nuisance regressors. Using the lobar labels provided for each ROI,
region- and subject-wise intercept and slope terms were entered into the respective LME models
asfully crossed random effects.

Using nested maximum likelihood ratio tests, we found that, compared to the models
with only the subject-level random effects factor, inclusion of the regional random effects
significantly improved mode fit in each of the six frequency bands (Table 2). These results
suggest that the magnitude and/or direction of the relationships between BOLD and iEEG SMEs
are regionally variant. Motivated by these findings we specified an additional set of subsidiary
LME models separately for each lobar region. Because the number of ROIs per |obe in any given
subject was highly variable (Table 1), we elected to perform subject-wise intercept only models
(i.e., random intercepts, fixed slopes). The models were otherwise specified as before. Note that
modeling the relationship between BOLD and iIEEG effects at the level of sub-lobar cortical and
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subcortical loci (loci here referring to the AAL labels assigned to each ROI) did not explain any
additional variance over and above the lobar models (cf. Conner et al., 2011). We therefore
report below only the results of the LME models corresponding to each lobar region.

Table 2. Comparison of nested random effects

Frequency X2 p-value AAIC
Deta 23.73 2.847 18
Theta 25.72 1.09° 20
Alpha 25.34 1.31° 19
Beta 23.47 3.22° 18
Low Gamma 53.56 139 48
High Gamma 29.69 1.61° 24

The results of the low and high gamma LME analyses are illustrated in Figure 2. BOLD
SMEs positively co-varied with high gamma SMEsin frontal (8 = .11, t=2.92, 95% CI = .03,
.18), temporal (8 = .11, t=3.06, 95% CI = .04, .18), and parietal (5 = .26, t= 4.86, 95% CI = .15,
.36) cortices. BOLD SMEsin the MTL negatively covaried with low gamma SMEs (f = -.14, t=
-2.39, 95% CI = -.26, -.03). Note that each of these effects remained significant after controlling
for theiEEG SMEsin al other frequency bands. Thus, gamma-band power changes explained
unique sources of variance in encoding-related BOLD signal change in the neocortex and MTL.
BOLD SMEs negatively covaried with theta SMEs in frontal lobe (8 = -.12, t=-2.35, 95% CI = -
.22, -.02) and positively with alpha SMEsin the parietal lobe (8 = .21, t=2.98, 95% CI = .07,
.34). When controlling for iIEEG SMEs in all other frequency bands, only the negative BOLD-
theta relationship in the frontal lobe remained significant.
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Figure 2. Scatterplots showing the relationship between BOLD and gamma-band subsequent
memory effectsin the MTL and neocortex. (Left) A significant negative relationship between
BOLD and low gamma SMEs was evident in the MTL. The relationship between BOLD and low
gamma SMEs in frontal, temporal, and parietal cortex was not significant. (Right) A significant
positive relationship between BOLD and high gamma SM Es was evident in frontal, temporal and
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parietal cortex. These effects were accompanied by a negative but nonsignificant relationship
between BOLD and high gamma SMEsin the MTL. Data are binned into quintiles based on the
magnitude of BOLD SMEs for visualization purposes.

Relationship between BOL D and gamma-band SM Esin the hippocampus and
par ahippocampal gyrus

We next performed a set of subsidiary linear regression analyses to examine whether the
relationship between BOLD and iEEG SMEs recorded from the MTL differed between
parahippocampal neocortex and hippocampal allocortex (see Introduction). Due to sparse
coverage, data extracted from ROIs in the amygdala (derived from atotal of only 13 contacts
from 5 patients) were not included in these analyses. BOLD SMES were entered as the dependent
variable, and iEEG SMEs, region, and the i EEG x region interaction terms were entered as
predictor variables along with hemisphere of ictal onset and handedness as nuisance regressors.
The number of ROIs localized to the hippocampus (M = 6, range = 0-15) and parahippocampal
gyrus (M =5, range = 2-8) was highly variable across subjects. We therefore elected to run linear
regression rather than LME analyses, as the error term in the latter can be biased in cases with
too few observations per random effect (in this case subject). We note that although these
analyses are limited in that ROIs, rather than subjects, are treated as arandom effect, a separate
set of by-subject LME analyses produced identical results. Thus, for parsmony we report only
the results of the linear regression analyses.

The results of the low and high gamma regression analyses are illustrated in Figure 3.
The analysis of high gamma effects revealed a significant interaction between region and high
gamma SMEs (F, 1s5) = 6.21, p = .014) which was driven by a negative relationship between
BOLD and high gamma SMEs in the hippocampus (r = -.22, p = .041), and a positive but
nonsignificant relationship in the parahippocampal gyrus (r = .20, p =.132). Regression models
for the remaining frequency bands failed to identify any significant region x iEEG interactions
(al ps>.1). Consistent with the results of the MTL LME analysis reported above, the low
gamma model revealed a significant main effect of iIEEG (F(1, 1s9) = 11.28, p = .001), such that
BOLD SMEs negatively covaried with low gamma SM Es recorded from the hippocampus (r = -
.32, p =.002) and tended to do so in the parahippocampal gyrus (r =-.21, p = .08).
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Figure 3. Scatter plotsillustrating the relationship between BOLD and gamma-band SMEsin the
hippocampus and parahippocampal gyrus. (Left) A significant negative correlation between
BOLD and low gamma SMEs was evident in both the hippocampus and parahippocampal gyrus,
and the magnitude of these correlations did not differ between the two regions. (Right) A
significant negative correlation between BOLD and high gamma SMEs was evident in the
hippocampus, accompanied by a positive but nonsignificant correlation between BOLD and high
gammain the parahippocampal gyrus.

We performed a set of follow-up multiple regression analyses with BOLD SMEs asthe
dependent variable, and the relevant gamma-band iIEEG SME (low, high), ROl hemisphere, and
the iIEEG x ROI hemisphere interaction term as predictor variables, along with handedness and
hemisphere of ictal onset as nuisance regressors. The analysis of gamma-band effects in the
hippocampus revealed nonsignificant interactions between hemisphere and low gamma (F (1, s) =
0.63, p = .429) and high gamma (F(1, ss) = 0.00, p = .968) SMES. In the parahippocampal gyrus,
there was a significant interaction between hemisphere and high gamma SMEs (F1, 58y = 7.10, p
.010) which was driven by arobust positive BOLD-IiEEG relationship in the left hemisphere (r
.52, p = .002) accompanied by a nonsignificant relationship in the right hemisphere (r =-.14, p
A77). The interaction between hemisphere and low gamma SMEs in the parahippocampal
gyrus was not significant (F(, sy = 0.11, p = .740).

Frontal BOLD effects are differentially predicted by early and late components of delta-
and theta-band activity.

In the foregoing analyses, IEEG SM Es were computed over the entire 1800 ms encoding
period during which a study word was displayed. Although this roughly approximated the
sampling rate of fMRI volume acquisition (2000 ms), it risks collapsing across meaningful
temporal variation in the electrophysiological effects. Therefore, in afinal set of analyses, we
examined whether the relationship between BOLD and iIEEG effects differed when iEEG SMEs
were estimated for early (0-900) and late (900-1800) encoding epochs. We specified LME
models separately for each lobar location using an approach similar to that described in previous
sections. For each subject, the across-ROI vector of BOLD SMESs from a given lobar region was
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entered into the model as the dependent variable. Early and late iEEG effects, epoch (early, late),
and the iIEEG x epoch interaction were entered as fixed effects of interest, along with handedness
and hemisphere of ictal onset as nuisance regressors. Subject-wise intercepts were entered as a
random effect (i.e., random intercepts, fixed slopes). Given our a priori interest in hippocampal
effects, we also performed linear regression analyses on hippocampal BOLD and iEEG SMEs
separately for each frequency band. For the multiple regression analyses, BOLD SMEs were
entered into each respective model as the dependent variable, and iEEG SMES, epoch, and the
IEEG x epoch interaction term were entered as predictor variables along with handedness and
hemisphere of ictal onset as covariates of no interest.

Modelling the relationship between BOLD and i EEG effects in the frontal cortex
revealed significant interactions between epoch and low-frequency SMEsin both the delta (F,
695.79) = 8.60, p = .003) and theta (F(1, s04.59 = 6.32, p = .012) frequency bands (Figure 4). Post-
hoc analyses of the delta-band effects revealed a significant positive relationship between BOLD
and delta SM Es during the late epoch (8 = .19, t = 3.84, 95% CI = .09, .29), along with anegative
but nonsignificant relationship during the early epoch (5 = -.06, t=-1.32, 95% CI = -.15, .03). By
contrast, post-hoc analyses of the theta-band effects revealed a significant negative relationship
between BOLD and theta SM Es during the early epoch (8 = -.18, t=-3.67, 95% CI = -.27, -.08),
along with a positive but nonsignificant relationship during the late epoch (8 = .07, t=1.21, 95%
Cl =-.04, .17). The early and late temporal epochs did not moderate the relationship between
BOLD and iEEG effects in any of the remaining lobar models (all ps> .08). Nor did we observe
any evidence that epoch moderated the relationship between BOLD and i EEG effectsin the
hippocampus (all ps> .4).
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Figure 4. Scatter plots showing the relationship between BOLD and low frequency iEEG
SMEs that were moderated by epoch (early, late) in the frontal cortex. Data are binned into
quintiles based on the magnitude of BOLD SMESs for visualization purposes.

Discussion

We examined whether encoding-related differencesin electrophysiological activity could
predict analogous differencesin fMRI BOLD signal magnitude, and whether any such
relationshi ps between these neurophysiological and hemodynamic signals varied according to
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region. BOLD and high gamma (70-150 Hz) SMESs positively covaried across much of the
neocortex, with reliable relationships evident in frontal, temporal, and parietal cortices. Notably,
this relationship was reversed in the hippocampus, where a negative correlation between BOLD
and high gamma SM Es was evident. We also observed a negative relationship between BOLD
and low gamma (30-70 Hz) SMEs in the MTL more broadly. In frontal cortex, low-frequency
delta (2-4 Hz) and theta (4-8 Hz) activity explained unique variance in BOLD SMEs, and these
effects were moderated by epoch (early vs. late). Below, we discuss the significance of these
findings in respect of regional variability in the transfer function between neural activity and the
fMRI BOLD signal.

Asjust noted, using the subsequent memory procedure (Paller & Wagner, 2002), we
identified robust coupling between encoding-related modulation of high gamma power and
BOLD signal amplitude across much of the neocortex, including frontal, temporal, and parietal
cortices. The relationship between BOLD and high gamma SMEs did not vary at the level of
sub-lobar cortical loci. These findings are notable for two reasons. First, the regionally invariant
relationship between BOLD and high gamma effects across much of the neocortex observed in
the present study is consistent with numerous prior reports of preferential coupling between
BOLD and high freguency iEEG activity measured from primary sensory, motor, and association
cortex in behaving humans (Conner et al., 2011; Hermes et al., 2012; Nir et al., 2007; Ojemann
et al., 2010). Second, the present findings replicate and extend these prior studies by establishing
alink between modulation of BOLD and high frequency iEEG activity during a memory
encoding task.

In stark contrast to the robust positive relationships observed across much of the
neocortex, we identified a negative relationship between BOLD and both low and high gamma
SMEs in the hippocampus. Moreover, the negative relationship between BOLD and high gamma
SMEs observed in the hippocampus was dissociable from the relationship evident in
anatomically proxima MTL neocortex. These findings are consi stent with the proposal that
regional variability in patterns of coupling between BOLD and high gamma SMEs reflect
regional differencesin neurovascular coupling, specifically, between the hippocampus and
neocortex (for review, see Ekstrom, 2021). Sparse coding and vascularization schemes might
explain the existence of anull relationship between BOLD and gamma-band iEEGs in the
hippocampus relative to the neocortex (should that have been observed), but such factors cannot
readily account for the reliable negative relationships that were actually observed for both low
and high gamma effects in the present study. Sparse firing of principal cellsin the hippocampus
(particularly in dentate gyrus and CA3) is made possible by dense recurrent inhibitory
interneurons that promote pattern separation (Yassa & Stark, 2011). Because inhibition is
metabolically costly, it may bethat it is these signals that were responsible for heightened
hippocampal BOLD responses, while simultaneously down-regulating high frequency iEEG
signals. This account might also explain why variation in the firing of sparsaly distributed
principal neuronsin the hippocampus can seemingly be associated with the robust hippocampal
BOLD effectsthat are evident across a variety of behavioral tasks such as memory encoding
(Kim, 2011; Spaniol et al., 2009) and spatial navigation (e.g., Doeller et al., 2008). Alternatively,
sparse capillary density in the hippocampus (Borowsky & Collins, 1989) might produce
situations in which stimulus evoked increases in brain activity and oxygen consumption
(CMRO,) outpace the regional supply of oxygenated hemoglobin, leading to a negative BOLD
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response reflective of increased venous deoxygenated hemoglobin despite an increase in neural
activity (Schriddle et al., 2008; see also Ances et al., 2008).

BOLD SMEs in the hippocampus negatively covaried with both low and high gamma
SMEs recorded from the same locations. Low gamma effects remained significant when
controlling for concurrent high gamma SMES (though the high gamma effect was rendered
nonsignificant when controlling for concurrent low gamma effects). This functional dissociation
between negative BOLD effects and low and high gamma is consistent with prior research
reporting that low and high gamma LFPs are distinct in both their neurophysiological correlates
(Buzsaki & Wang, 2012; Colgin et al., 2009; Ray & Maunsell, 2011) and their functional
significance (Bieri et a., 2014; Colgin, 2015; Colgin & Moser, 2010). The present findings thus
extend much of the rodent work to humans while providing novel evidence for unique low and
high gamma components to the hippocampal BOLD signal. We remain agnostic, however, asto
the neurophysiological significance of these effects, and acknowledge that future work is needed
to elucidate whether low and high gamma effects do indeed reflect distinct neural correlates of
the hippocampal BOLD signal.

In the frontal cortex, BOLD SMEs were related to low frequency delta and theta SMEs
and, for each frequency band, this relationship was moderated by encoding epoch (early vs. late).
Asisillustrated in Figure 4, both the delta- and theta-band effects were characterized by a
negative relationship with BOLD during the early epoch, accompanied by a modest positive
relationship during the later epoch (though the reliability of these effects differed as a function of
frequency band and epoch). We caution that because these results were unanticipated, they
should be interpreted cautiously and are clearly in need of replication.

Due to safety considerations, simultaneous IEEG and fMRI recordings are not readily
obtainable in humans. We therefore obtained e ectrophysiological and hemodynamic recordings
from the sameindividualsin sequential experimental sessions, raising the possibility that order
or practice effects may have confounded behavioral performance during the fMRI session.
Another potential limitation of the present study concerns the methodological differences
between the free recall paradigms employed during the fMRI and iEEG sessions. Study listsin
the fMRI session comprised 15 concrete nouns compared to the 10 or 12 study items employed
in the iIEEG sessions. The length of the distractor interval also differed between the fMRI (15s)
and iEEG (20s) sessions, as did the amount of time each study item was presented on the screen
(1800 vs. 1600 msfor the fMRI and iEEG sessions, respectively). Variability in each of these
task parameters has been shown to influence free recall performance (Murdock et a., 1962;
Roberts et al., 1972; Ward, 2002). Although we are encouraged by the similar behavioral
performance observed during the fMRI and iEEG versions of the task, we are unable to
definitively rule out the possibility that these task discrepancies impacted the relationship
between the two classes of SME.

Experimental applications of IEEG are currently limited to patients with medically
refractory epilepsy, introducing potential constraints on the generalizability of intra-cerebral
findings. Leveraging the noninvasiveness afforded by fMRI, we recently reported that group
level BOLD SMEsin the same TLE patient cohort reported here did not reliably differ from
SMEs observed in an age-matched neurologically healthy control group (Hill et al., 2020). Thus,


https://doi.org/10.1101/2021.02.01.429258
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429258; this version posted February 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

neuropathology associated with TLE was apparently insufficient to give rise to detectable
differences in the functional neuroanatomy of episodic memory encoding as thisis reflected by
the fMRI BOLD signal. These findings do not, however, rule out the possibility that coupling
between el ectrophysiological and BOLD effects might be altered by disease status. We note that
thisissue cannot be resolved using within subjects designs owing to the aforementioned
invasiveness of iIEEG.

In conclusion, we identified a robust positive relationship between encoding-related
BOLD and high gamma activity in frontal, temporal, and parietal cortex, replicating findings
from numerous prior studies (for reviews, see Ekstrom, 2021; Ojemann et al., 2013).
Importantly, this relationship was reversed in the hippocampus, where BOLD SMEs negatively
covaried with both low and high gamma SMEs. These results suggest that the neurophysiological
bases of the BOLD signal in the hippocampus differ from those in the neocortex.
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