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16  Summary

17  Selectivity of cortical neurons for sensory stimuli can increase across days as animals learn
18  their behavioral relevance, and across seconds when animals switch attention. While both
19  phenomena are expressed in the same cortical circuit, it is unknown whether they rely on similar
20  mechanisms. We imaged activity of the same neuronal populations in primary visual cortex as
21 mice learned a visual discrimination task and subsequently performed an attention switching
22 task. Selectivity changes due to learning and attention were uncorrelated in individual neurons.
23 Selectivity increases after learning mainly arose from selective suppression of responses to one
24 of the task relevant stimuli but from selective enhancement and suppression during attention.
25  Learning and attention differentially affected interactions between excitatory and PV, SOM and
26 VIP inhibitory cell classes. Circuit modelling revealed that cell class-specific top-down inputs
27  Dbest explained attentional modulation, while the reorganization of local functional connectivity
28 accounted for learning related changes. Thus, distinct mechanisms underlie increased

29  discriminability of relevant sensory stimuli across longer and shorter time scales.
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31 Introduction

32 Learning and attention both selectively enhance processing of behaviorally relevant stimuli
33  (Gdalyahu et al., 2012; Goltstein et al., 2013; Li et al., 2008; McAdams and Maunsell, 1999;
34  Ni et al., 2018; Reynolds and Chelazzi, 2004; Rutkowski and Weinberger, 2005; Schoups et
35 al., 2001; Speed et al., 2020; Wiest et al., 2010; Yan et al., 2014; Yang and Maunsell, 2004).
36  When animals learn what sensory features are task-relevant, or when they focus their attention
37 on task-relevant features, early sensory cortical representations often undergo substantial
38 changes. However, it is currently not known whether cortical changes during learning and

39  attention rely on similar neural mechanisms.

40  The neural correlates of learning and attention share several characteristics. Visual learning
41  results in increased stimulus selectivity through changes in stimulus-evoked neural firing rates
42  (Gilbert and Li, 2012; Karmarkar and Dan, 2006; Li et al., 2008; Poort et al., 2015; Schoups et
43 al, 2001; Yan et al., 2014; Yang and Maunsell, 2004), and is accompanied by changes in the
44  interactions and correlations between neurons (Gu et al., 2011; Khan et al., 2018; Ni et al.,
45  2018). Similarly, visual attention can also result in increased selectivity of attended stimuli,
46  again through changes in stimulus-evoked firing rates (Reynolds and Chelazzi, 2004; Speed et
47  al., 2020; Spitzer et al., 1988; Wimmer et al., 2015) and neuronal interactions (Cohen and
48  Maunsell, 2009; Mitchell et al., 2009; Ni et al., 2018). Importantly, activity modulations during
49  learning and attention are not uniformly distributed throughout the neural population but
50 restricted to subsets of neurons (see for example (Chen et al., 2008; McAdams and Maunsell,
51  1999; Poort et al., 2015; Schoups et al., 2001; Yan et al., 2014)). Thus, both learning and
52  attention lead to sharper and more distinct information being sent to downstream regions though

53  subnetworks of learning- or attention-modulated cells.

54  Inhibition plays a crucial role in cortical plasticity (Froemke, 2015; van Versendaal and Levelt,
55  2016), and specific classes of inhibitory interneurons have been implicated in plasticity of
56  cortical circuits during both learning and attention (Chen et al., 2015; Kato et al., 2015;
57  Kuchibhotla et al., 2017; Makino and Komiyama, 2015; Sachidhanandam et al., 2016; Yazaki-
58  Sugiyama et al., 2009). The activity of interneurons can change during both learning (Kato et
59 al.,, 2015; Khan et al., 2018; Letzkus et al., 2011; Makino and Komiyama, 2015) and attention
60  (Mitchell et al., 2007; Snyder et al., 2016; Speed et al., 2020), which can result in more stimulus-

61  specific inhibition in the network.

62  Both learning and attention rely, to varying degrees, on the integration of top-down inputs with
63  bottom-up signals. During attention, higher-order brain regions are thought to provide feedback
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64  signals to bias bottom-up information processing (Desimone and Duncan, 1995; Gilbert and Li,
65  2013), most prominently through direct feedback projections (Leinweber et al., 2017; Zhang et
66 al., 2014) or through thalamic nuclei (Chalupa et al., 1976; Wimmer et al., 2015). These
67  feedback projections can target excitatory or specific inhibitory interneurons (Leinweber et al.,
68  2017; Zhang et al., 2014, 2016). In contrast, learning is thought to be primarily implemented
69 by long-term plasticity of synapses, and reorganization of connectivity patterns (Froemke,
70  2015; Khan et al., 2018; Whitlock et al., 2006; Xiong et al., 2015), although top-down
71  projections may also play a crucial role in guiding this process (Roelfsema and Holtmaat, 2018;

72 Williams and Holtmaat, 2019).

73 Thus, both learning and attention modulate the firing properties of subsets of excitatory and
74  inhibitory cortical neurons, leading to changes in firing rates and interactions between cells. It
75  has therefore been suggested that learning and attention rely on similar neural mechanisms (Ni
76 et al., 2018) or that attention-like processes may co-opt some of the underlying circuitry of
77 learning (Kuchibhotla et al., 2017). However, this has never directly been tested, and it is not
78  known if learning and attention engage the same neurons and circuits. A number of questions
79  thusarise. First, within a population, is a common subset of neurons modulated by both learning
80 and attention? Second, do learning-modulated and attention-modulated neurons undergo
81  similar changes in their firing rates in order to increase stimulus selectivity? Third, do learning
82 and attention result in similar changes in interactions between different excitatory and

83  inhibitory cell classes?

84  To address these questions, we compared the changes in activity and interactions of the same
85  population of neurons in V1 during learning and attention. We tracked the same identified
86  pyramidal (PYR) neurons and parvalbumin (PV), somatostatin (SOM) and vasoactive intestinal
87  peptide (VIP) positive interneurons as mice learnt to discriminate two visual stimuli and
88  subsequently performed an attention switching task involving the same visual stimuli. We
89  observed a similar profile of average changes in stimulus selectivity across the four cell classes
90 during learning and attention. However, we discovered that these changes were largely
91 uncorrelated at the single cell level, consistent with distinct mechanisms of selectivity changes
92  during learning and attention. In support of this idea, we found that neural stimulus responses
93  were dominated by selective suppression during learning, but displayed a combination of
94  suppression and enhancement during attention. In addition, learning and attention differentially
95  modulated interactions between excitatory and inhibitory cell classes. While learning-related
96 changes were well captured by a model invoking changes in functional interaction strengths,
97  attention-related changes were captured by a circuit model with top-down inputs targeted to
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98 PYR and SOM cells. These results reveal that more selective cortical representations for
99  behaviorally relevant stimuli arise through distinct mechanisms over longer and shorter

100  timescales.

101  Results
102 Increased response selectivity related to learning and attention switching

103  To understand how the same neural populations change their responses to visual stimuli with
104  learning and attention, we trained mice to learn a go-no go visual discrimination task and
105  subsequently trained them to perform an attention switching task involving the same pair of
106  visual stimuli (Figure 1A,B). Head-fixed mice ran through a virtual approach corridor (Figure
107  1A) where the walls displayed a short stretch of circle patterns followed by grey walls for a
108 random distance chosen from an exponential distribution (Figure 1C, top). Mice were then
109  presented with one of two grating patterns, vertical or angled (40° relative to vertical), and were
110  rewarded for licking a reward spout in response to the vertical grating. No punishment was
111 given for licking the spout in response to angled gratings. All mice learned to discriminate the
112 grating stimuli, reaching a threshold criterion of d’ > 2.0 (~85% accuracy) within 7-9 days
113 (Figure S1 example lick rasters from sessions pre- and post-learning. Figure 1D, average
114  behavioral d-prime pre-learning -0.18 + 0.56 s.d., post-learning 3.32 + 0.82, sign test, P = 0.008,
115 N =8 mice).

116  We subsequently trained the mice to switch between blocks of the same visual discrimination
117  task and an olfactory discrimination task, in which they learned to lick the reward spout to
118  obtain a reward in response to one of two odors. During the olfactory discrimination blocks, the
119  same grating stimuli used in the visual discrimination blocks were presented on 70% of trials
120  but were irrelevant to the task (Figure 1C, bottom). Mice learnt this attention switching task in
121 1 to 2 days. Mice switched between the two blocks within the same session, successfully
122 attending to and discriminating the grating stimuli in the visual block but ignoring the same
123 grating stimuli while successfully discriminating odors during the olfactory blocks (Figure S1
124  example lick rasters from a session of attention switching behavior. Figure 1D, behavioral d-
125  prime attend visual 3.02 £ 0.41 vs. ignore visual 0.63 + 0.25, sign test P = 0.015, d-prime
126  discriminating olfactory stimuli 4.10 £+ 0.27).
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128  Figure 1. Visual discrimination learning and attention switching in mice. (A) Top, schematic
129  showing virtual reality and imaging setup. (B) Experimental timeline. (C) Schematic of behavioral tasks.
130  Top, visual discrimination: Mice were rewarded for licking the reward spout when vertical gratings were
131  presented and not when angled gratings were presented. Olfactory discrimination: mice were rewarded
132 for licking when odor 1 was presented and not when odor 2 or vertical or angled gratings were presented.
133 (D) Behavioral discrimination performance (behavioral d’) across learning and during attention
134 switching (N = 8 mice). Connected closed points indicate visual discrimination in individual mice. Open
135  circles indicate olfactory discrimination.

136

137
138  Selectivity changes at the population level are similar across learning and attention

139  We expressed the calcium indicator GCaMP6f in V1 using viral vectors and measured
140  responses of L2/3 neurons using two-photon calcium imaging during the task. We re-identified
141  the same neurons in co-registered, immunohistochemically stained brain sections from these
142  animals and determined the identity of putative excitatory pyramidal (PYR) neurons and cells
143  belonging to the three major classes of GABAergic inhibitory interneurons (Figure 2A). This
144  approach allowed us to measure the simultaneous activity of PV, SOM and VIP positive
145  interneurons along with the local excitatory neuron population (see Methods). We imaged the
146 same 1249 PYR, 132 PV, 58 SOM and 175 VIP neurons before and after learning and a partially
147  overlapping population of 5813 PYR, 477 PV, 245 SOM and 365 VIP neurons during the
148  attention switching task (915, 105, 54 and 144 cells overlapping respectively, N = 8 mice).

149  Neurons from each cell class showed varying degrees of responsiveness to the visual grating
150  stimuli (Figure S2A,B). During learning, we observed changes in visual grating responses in
151  subsets of neurons from all cell classes (Figure 2B, Figure S2A,B). This led to changes in
152 stimulus selectivity (difference in the mean responses to the two grating stimuli normalized by

153  response variability, see Methods) in individual cells to varying degrees (Figure 2C). On
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154  average, PYR and PV cells significantly increased their stimulus selectivity during learning, as
155  reported previously (Khan et al., 2018; Poort et al., 2015) (Figure 2D; PYR, average absolute
156  selectivity pre-learning, 0.30 + 0.31 (mean = s.d.), post-learning 0.40 + 0.44, sign test, P < 10"
157 %, N = 1249, PV, pre-learning, 0.24 + 0.19, post-learning 0.40 £ 0.36, P = 0.002 , N = 132). In
158  contrast, the average selectivity of SOM and VIP interneurons did not change significantly
159  (SOM, pre-learning 0.25 + 0.17, post-learning 0.39 = 0.45, P = 0.51, N =58, VIP, pre-learning
160  0.18 £ 0.16, post-learning 0.20 + 0.17, P = 0.45, N = 175).

161  We found a similar profile of selectivity changes across cell classes between the ‘ignore’ and
162  ‘attend’ conditions of the attention switching task. Specifically, visual stimulus selectivity
163  increased on average in PYR and PV cells but not in SOM and VIP cells when mice switched
164  from ignoring to attending the same visual grating stimuli (Figure 2E-G; PYR, ignore 0.28 +
165  0.28, attend 0.33 +0.32, P < 1071, N = 5813, PV, ignore 0.24 £ 0.18, attend 0.29 + 0.25, P =
166  0.0007, N =477, SOM, ignore 0.31 £ 0.31, attend 0.34 £ 0.31, P =0.25, N =245, VIP, ignore
167  0.24 £0.19, attend 0.26 £ 0.19, P = 0.60, N = 365). Changes in running and licking could not
168  account for the increased selectivity of responses during learning or attention (Figure S3A,B).
169  Thus, learning and attention both led to similar changes in stimulus selectivity of V1 neurons

170  on average, across excitatory and multiple inhibitory cell classes.

171
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174  Figure 2. Similar changes in stimulus response selectivity across four cell classes during learning
175  and attention switching. (A) Two example regions of in-vivo image planes with GCaMP6f-expressing
176  neurons and the same regions after post hoc immunostaining for PV, SOM and VIP (orange, blue and
177  magenta, respectively) following image registration. Identified interneurons are indicated by
178  arrowheads. (B) Example cells from the 4 cell classes, average responses to vertical (blue line) and
179  angled (red line) grating stimuli before (pre) and after (post) learning. Shaded area represents SEM.
180  Gray shading indicates 0-1s window from stimulus onset used to calculate stimulus selectivity. (C)
181  Stimulus selectivity of the same cells (rows) before and after learning (columns). Cells were ordered by
182  their mean pre- and post-learning selectivity. Numbers of cells recorded both pre- and post-learning:
183 1,249 PYR, 132 PV, 58 SOM and 175 VIP cells, here and in D. (D) Average absolute selectivity of the
184 4 cell classes before and after learning. Error bars represent SEM. Sign test, **P < 0.001; *P < 0.05.
185  Selectivity distribution in Figure S4A. (E-G), Same as B-D for attention switching task. Numbers of
186  cells recorded: 5813 PYR, 477 PV, 245 SOM and 365 VIP cells.

187

188  Selectivity changes at single cell level are uncorrelated

189  The similar profile of changes in average selectivity during learning and attention switching
190  suggested that the neural basis of these two changes may be overlapping. Indeed, both learning
191  and attention serve a similar purpose: to enhance an animal’s ability to detect and respond to
192  relevant stimuli, and prior work has suggested that the two may be implemented by common
193  neural mechanisms (Ni et al., 2018). We therefore asked whether the increase in selectivity

194  during learning and attention was related at the single neuron level.

195  Across the population of PYR neurons, we found that there was no significant correlation
196  between the learning related and attention related changes in stimulus selectivity (Figure 3A, R
197 =0.01,P=0.67, see also Figure S2C). This indicated that a cell’s change in stimulus selectivity
198  during learning had no bearing on its change during attention. This absence of correlation was

199  not due to extensive changes in the original visual response selectivity of these cells from the
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200 post-learning session to the attention switching session — there was a strong correlation between
201  the post-learning selectivity and the selectivity during the attend condition of the attention

202 switching task (Figure 3B, R = 0.61, P < 10™).

203  We observed a moderate but significant correlation between the learning-related and attention-
204  related changes in stimulus selectivity in PV interneurons, but not SOM or VIP interneurons
205  (Figure 3C,PV,R=0.27,P=0.01, SOM, R=0.08, P=0.57, VIP, R =0.10, P = 0.25), raising
206  the possibility that subsets of PV cells may be preferentially engaged in both learning and
207  attention. All interneuron cell classes displayed strong correlations between the post-learning
208  selectivity and the selectivity during the attend condition (Figure 3D, PV, R = 0.70, P < 10°!¢,
209 SOM, R =0.51,P <10 VIP, R = 0.45, P < 10*®), again ruling out extensive changes in the

210  stimulus tuning of cells between the post-learning and attention switching sessions.

211 Thus, while increases in neural selectivity due to learning and attention were similar across
212 excitatory and multiple inhibitory interneuron classes on average, they were largely
213 uncorrelated at the single cell level. The lack of correlation between selectivity modulations
214  during learning and attention suggested that these two processes may be driven by distinct

215  neural mechanisms.

216
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218  Figure 3. Changes in stimulus selectivity during learning and attention are uncorrelated. A)
219  Relationship between ASelectivity with learning (positive values indicate increased selectivity after
220 learning) and ASelectivity with attention (positive values indicate increased selectivity with attention)
221 for PYR cells (N = 915 cells). B) Relationship between post-learning selectivity and selectivity in the
222 attend condition for PYR cells. C, D) Same as A and B for the three interneuron classes (N = 105 PV,
223 54 SOM and 144 VIP cells).

224

225  Mechanisms of selectivity change

226  Neurons can increase their stimulus selectivity by selective suppression of responses to non-
227  preferred stimuli (Lee et al., 2012), selective increase in responses to preferred stimuli
228  (McAdams and Maunsell, 1999) or a combination of the two. We tested for the relative

229  prevalence of these changes in the population of PYR cells during learning and attention.

230  First, we studied changes in stimulus-evoked firing rates in all recorded PYR cells, regardless
231 of their stimulus selectivity. We subtracted the pre-learning from the post-learning stimulus
232 response profile of each cell for a given stimulus, to obtain the difference-PSTH. During
233 learning, the difference-PSTHs of the PYR population were dominated by cells with negative
234 deflections from baseline, i.e. cells which decreased their stimulus response amplitude to the
235  same stimulus during learning (Figure 4A, left). This was true for both rewarded and non-
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236 rewarded stimuli (Figure S5A, left). Interestingly, the difference-PSTH during attention
237  switching (attend minus ignore condition), revealed that changes with attention were more
238 uniformly distributed across increases and decreases in response amplitude (Figure 4A, right).
239  This was again true for both rewarded and non-rewarded stimuli (Figure S5A, right, difference-
240  PSTH averaged 0-1s significantly different between learning and attention, P < 102% sign test,

241 Figure S5D). Thus, learning, unlike attention, was dominated by a suppression of responses.

242 Learning and attention might lead to complex temporal changes in firing rate profiles, not
243 captured in the above analysis. We therefore performed principal component analysis (PCA) to
244 identify the components which captured the majority of variance in the shapes of all difference-
245  PSTHs. Interestingly, for both learning and attention, we found that a single component
246 accounted for more than 80% of the variance across all cells, and this component was highly
247  similar for both learning and attention (Figure 4B, C). However, the distributions of weights
248  projected onto this PC during learning and attention were substantially different, with a
249  predominance of negative weights during learning (Figure 4D, P < 108, sign test). Thus, while
250  we did not find a difference in the temporal profile of firing rate changes, we confirmed the

251  robust presence of stimulus response suppression during learning, but not during attention.

252 Atthe single cell level, we found that the scores on the first PCA components were uncorrelated
253  (Figure 4E, R = 0.04, P = 0.24, see Figure S5E for a similar effect with average calcium
254  responses), suggesting independent firing rate modulation of individual cells by learning and

255  attention.

256  We next asked what changes in firing rates underlie the increased stimulus selectivity in the
257  population. We restricted this analysis to recruited cells, that is, cells which changed from non-
258  selective to significantly selective during learning or attention. The average PSTHs of these
259  cells showed markedly distinct features. During learning, recruited cells showed preferential
260  suppression of responses to one of the two stimuli (Figure 4F). In contrast, with attention, cells
261  became selective through a combination of enhancement and suppression of responses to the
262 two stimuli (Figure 4G). (Percent changes in stimulus response amplitude to vertical and angled
263 stimuli: Figure 4F left, -8%, -81%, Figure 4F right -89%, -27%. Figure 4G left, 72%, 10% (not
264  significant), Figure 4G right -92%, 56%. Changes calculated as the percentage of the maximum

265  in each category, all responses averaged 0-1s, all P values < 10" except where stated).

266  Thus, learning was associated with suppression of evoked responses, particularly of the non-
267  preferred stimulus, while attention was mainly associated with increased responses of the
268  preferred stimulus.
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270  Figure 4. Increased stimulus selectivity through selective response suppression during learning

271  but enhancement and suppression during attention. A) Difference in calcium responses to the
272 rewarded vertical grating stimulus, post minus pre learning (left) or attend minus ignore conditions
273 (right) for all recorded PYR cells (Difference-PSTHs). Responses are baseline corrected (subtraction of
274 baseline AF/F —0.5 to 0 s before stimulus onset) and aligned to grating onset (dashed line). Cells are
275  sorted by their average amplitude 0—1 s from stimulus onset. N = 915 matched cells, in A to E, N=8
276  mice. B) First principal component (PC) of the difference-PSTHs from the learning (left) and attention
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277  data (right). Circles indicate the time points (0-1s) used to determine the PCs. C) Percentage of variance
278  explained by each PC during learning (left) and attention (right). D) Distribution of weights from each
279  cell onto the first PC during learning and attention. E) Relationship between the weights of cells on the
280  first PC during learning and attention. Values greater than the axis limits are pegged to the maximum
281  displayed value. F) Average PSTHs of all recruited cells, i.e. cells which changed from non-selective to
282  selective stimulus responses during learning, N =243 and 216 cells recruited with preference for vertical
283  stimulus or angled stimulus respectively. G) Average PSTHs of all recruited cells during attention, N =
284 672 and 676 cells recruited with preference for vertical stimulus or angled stimulus respectively. Shaded
285  arearepresents SEM. Gray shading indicates 0-1s window from stimulus onset used for analysis.

286

287  Changes in interactions between excitatory and inhibitory cell classes

288  Changes in cortical processing are accompanied by a reconfiguration of network dynamics and
289 interactions. We previously demonstrated that interactions between PV cells and surrounding
290  PYR cells are reorganized during learning (Khan et al., 2018). Specifically, we measured the
291  correlation between PV cell selectivity and the selectivity of the PYR cell population within
292 100 pm of each PV cell. The slope and correlation coefficient of this relationship significantly
293 decreased during learning (Figure SA top, pre learning, slope = 0.21, confidence intervals (CI)
294  0.14 t0 0.29, R = 0.48, post learning, slope = 0.05, C1 0.00 to 0.10, R = 0.19, reduction in slope
295  bootstrap test P < 10™), suggesting that during learning, PV cell activity became less dependent
296  on the average stimulus preference of surrounding PYR cells. However, when we performed
297  the same analysis comparing ignore and attend conditions, we found no difference in the
298  correlation coefficient or slope of this relationship (Figure SA bottom, ignore, slope = 0.05, CI
299  0.03 to 0.07, R = 0.23, attend, slope = 0.03, CI 0.01 to 0.05, R = 0.15, reduction in slope
300 bootstrap test P = 0.06). Indeed, the relationship appeared similar to that observed at the end of
301 learning. This was despite the fact that PV cells displayed a comparable degree of selectivity

302 increase with attention as with learning.

303 To further explore the network signatures of changes during learning and attention, we
304  computed noise correlations during the grating stimulus period between pairs of neurons within
305 and across cell classes, before and after learning and during attend and ignore conditions. Since
306 noise correlations are a measure of the stimulus-independent trial-to-trial co-variability of
307 neural responses, they provide an estimate of mutual connectivity and shared inputs. As
308 reported earlier, we found that during learning, SOM cells become de-correlated from
309 pyramidal, PV and VIP neurons, with the largest changes between cell classes (sign test, all
310 reductions in noise correlation were significant, with the exception of SOM—SOM cell pairs,
311 P=0.8, see also (Khan et al., 2018)). Specifically, we observed a large reduction in noise
312 correlation between SOM-PV, SOM-PYR and SOM-VIP cell pairs during learning (Figure
313  5B,C, top, vertical grating stimulus. Full distributions in Figure S4B).
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314  In contrast, during attention switching, we found that the largest absolute changes in noise
315  correlation were within cell classes, namely between SOM-SOM and VIP-VIP cell pairs
316  (Figure 5B,C bottom). SOM-SOM cell pairs displayed an increase in noise correlation (sign
317  test, P < 10”) whereas VIP-VIP pairs displayed decreased noise correlation (P = 0.02). In
318 addition, PYR-PYR, PYR-PV, PYR-SOM and PV-PV cell pairs also showed a significant
319 reduction in noise correlation, although the absolute change was smaller (all Ps < 0.03).
320 Changes in running speed or licking could not account for the observed changes in noise

321  correlations (Figure S3C,D).

322 Thus, learning and attention are associated with different patterns of changes in noise
323  correlations between excitatory and multiple inhibitory cell classes, consistent with the idea that

324  distinct mechanisms underlie these processes.

325
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328  Figure 5. Distinct changes in interactions between excitatory and inhibitory cells during learning
329 and attention. A) Top, relationship between the selectivity of individual PV cells and the mean
330  selectivity of the local PYR population within 100 um of each PV cell, before (pre) and after learning
331  (post). Bottom, same comparison for the ignore and attend conditions of the attention switching task. B)
332 Average noise correlations between cell pairs belonging to the same or different cell classes, before and
333  after learning (top) or in the ignore and attend conditions (bottom). Only cells with significant responses
334  to the grating stimuli were included. The number of cell pairs in each cell class combination was as
335 follows: pre-, post-learning, PYR—PYR 74,581, 64,921; VIP-VIP 1166, 907; SOM-SOM 215, 99; PV—
336 PV 1,731, 1,369; PV-VIP 790, 718; PV-PYR 17,792, 15,283; PYR-VIP 14,681, 12,009; SOM-PV
337 1,250, 690; SOM—PYR 7,112, 4,952; SOM-VIP 455, 377. Ignore/attend conditions, PYR-PYR 61,175;
338  VIP-VIP 58; SOM-SOM 381; PV-PV 777; PV-VIP 129; PV-PYR 11,312; PYR-VIP 3024; SOM-PV
339 814; SOM-PYR 6,626; SOM—VIP 136. Error bars represent SEM. Full data distribution can be seen in
340  Figure S4B. C) Changes in noise correlations (shown in B) due to learning (top) or attention (bottom)
341  asindicated by line thickness and color code. Shorter line segments indicate change in noise correlations
342 between cells of the same type.

343
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344  Modelling response changes during learning and attention

345  What changes in network properties underlie the observed changes during learning and
346  attention? We recently developed a multivariate autoregressive (MVAR) linear dynamical
347  system model to predict the activity of single cells based on interaction weights with their local
348 neighbors. Analysis of the MVAR model fit to the neural responses during learning revealed
349 that increased response selectivity after learning was associated with the reorganization of
350 interaction weights between cells (Figure S6A-C see also (Khan et al., 2018)). We tested if
351  similar changes in functional connectivity can account for the changes in stimulus responses
352  observed with attention. We compared a model that allowed interaction weights to change
353  across the attend and ignore conditions against a simpler model that used the same weights
354  across both conditions. We found that the fit quality of the MVAR model, quantified by the
355  cross-validated R?, was actually lower for the model allowing weights to change across the
356 attend and ignore conditions, demonstrating that changing interaction weights during attention
357  conferred no advantage to the model (Figure S6B). Even when weights were allowed to change
358 in the MVAR model, we found stable PYR-PV interaction weights, in contrast to the changes
359  in weights observed during learning (Figure S6C). Together with the absence of reorganization
360 of PYR-PV interactions during attention (Figure 5A, bottom), these results suggest that
361 functional connectivity is relatively stable during attention, but changes during learning,

362  possibly through long-term synaptic plasticity mechanisms.

363  Since the data-driven MVAR model analysis indicated that the selectivity changes were not
364  predicted by changes in local functional interactions, we developed a detailed theoretical model
365  of the local circuit enabling us to evaluate what type of external inputs could explain the
366  attentional modulation of the local circuit. In this model, we represented each of the four cell
367 types (PYR, PV, SOM, VIP) by their population activity, corresponding to the average response
368  across all cells with a given stimulus preference in the population. Population activity was
369  determined by baseline activity, feedforward stimulus-related input, top-down attentional
370  modulatory input, and connection weights with other cell populations (see Methods). The four
371  neural populations were connected using experimentally derived connectivity values, similar to
372 (Kuchibhotla et al., 2017) (Figure 6A). The model’s population responses resembled the

373  average population stimulus responses of all four cell classes (Figure 6B) (Khan et al., 2018).

374  In the model, each population received fluctuations from cell-intrinsic sources (e.g. due to ion
375  channel noise) and shared external sources (stimulus and top-down modulatory inputs, Figure

376  6A). The simulated noise correlations thus reflected both connectivity and fluctuations in the
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377  stimulus and modulatory inputs. Since functional connectivity weights between cell classes
378  were stable across attend and ignore conditions, we modelled the changes in noise correlations

379  during attention switching as arising from changes in the shared external fluctuations.

380 It is unclear whether attention has a multiplicative effect (Goris et al., 2014; Reynolds and
381  Heeger, 2009) or an additive effect (Buracas and Boynton, 2007; Thiele et al., 2009). We
382  therefore considered two different types of models with an additive or multiplicative effect of
383  attentional modulation. We systematically simulated all conditions in which attentional
384  modulation targeted different cell classes and combinations of cell classes. We then evaluated
385 the stimulus selectivity changes and noise correlation changes induced by attentional
386  modulation (Figure 6C). We looked for conditions which replicated our experimental findings,
387 including (a) attention increased only PYR and PV stimulus selectivity (Figure 2G) and (b)
388  attention mainly increased SOM-SOM and decreased VIP-VIP noise correlations (Figure 5C,
389  bottom). Of all conditions, only one matched both these experimental findings, where PYR and

390 SOM cells received multiplicative attentional modulation (Figure 6C, arrows).
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393  Figure 6. A circuit model can distinguish between different patterns of top-down attentional
394  modulation (A) The model architecture, indicating connectivity between different cell classes and
395  possible sources of shared external fluctuations. (B) Simulated responses of the four cell types to the
396  preferred stimulus. (C) Changes in stimulus selectivity and noise correlations (NC) obtained from
397  models with attentional modulation applied to different combinations of cell populations. Both additive
398  and multiplicative modulations were tested. Arrow indicates the condition which best replicated the
399  experimental changes in selectivity and noise correlation. (D) Absolute selectivity of different cell
400  classes without (Ignore) and with (Attend) attentional modulation provided to PYR and SOM
401  populations, with PYR receiving 0.7 times the modulation of SOM (see Figure S6D,E). (E) Changes in
402  noise correlations (NC change) with attentional modulation as in (D) between and within the four cell
403  classes, as indicated by line thickness and color code.

404

405

406  The model so far assumed equal influence of attentional modulation onto all cells. We next
407  varied the relative strengths of modulation received by PYR and SOM cells to test whether the
408  match to experimental findings could be improved. Specifically, the current model produced an
409 increase in noise correlations between PYR-PYR, PYR-SOM, SOM-PV and SOM-VIP cells,
410  which was not observed experimentally. A model in which the attentional modulation of PYR

411 was 0.7 times the modulation of SOM improved the match to the data (Figure S6D). This model
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412 replicated the increase in PYR and PV stimulus selectivity (Figure 6D) as well as the changes
413  in SOM-SOM and VIP-VIP noise correlations, with only minor changes in noise correlations
414  between other cell types (Figure 6E). Thus, a model in which PYR and SOM populations
415  received different degrees of multiplicative attentional modulation best accounted for the

416  changes in selectivity and noise correlations observed in the data (Figure S6E).

417

418  Discussion

419  We show that improvements in sensory coding arising from learning or attention rely on distinct
420 mechanisms, based on three lines of evidence. First, at the single-cell level, the effects of
421  learning and attention are uncorrelated. Second, distinct firing rate changes underlie the
422  increases in selectivity during learning and attention. Third, learning and attention are
423  associated with different changes in functional interactions between cell classes. Our
424  computational models suggest that learning relies on reorganization of interactions in the local
425  circuit, whereas attention relies on multiplicative top-down signals that target specific cell-

426  classes.
427  Subpopulations of excitatory neurons modulated by learning and attention

428  Learning and attention are closely linked: attended objects are preferentially learnt, and learning
429  can bias the allocation of attention (Gilbert et al., 2000; Vartak et al., 2017). Although we show
430  that learning and attention both lead to a similar increase in stimulus selectivity on average in
431  PYR cells, these increases are not driven by the same subset of neurons. Importantly, this does
432  not mean that cells are either modulated by learning or attention. Instead, learning and attention
433  each modulate the same neurons to varying degrees, and a neuron’s degree of modulation

434 during learning is uncorrelated with its degree of modulation by attention.

435  The basis of neural susceptibility to either learning- or attention-related modulations is poorly
436  understood. For example, it may be related to intrinsic excitability (Brebner et al., 2020),
437  expression of immediate-early genes (e.g. CREB (Han et al., 2007) or Arc (Gouty-Colomer et
438  al., 2016), see also (Holtmaat and Caroni, 2016)), and pre- or post-synaptic expression of
439  neuromodulator receptors (Disney et al., 2007; Herrero et al., 2008), or connectivity with distal
440 and top-down inputs (lacaruso et al., 2017; Marques et al., 2018). Our results impose an
441  important restriction: these molecular or circuit mechanisms must be independent or exert a
442  minimal influence on each other, since the effects of learning and attention on individual

443  pyramidal cells are uncorrelated.
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444  We found a small but significant correlation in the learning- and attention-related selectivity
445  changes in PV interneurons. Given the lack of correlation for PYR cells, and the fact that this
446  effect is difficult to account for by a model in which PV cells inherit their stimulus response
447  properties from neighboring PYR cells (Kerlin et al., 2010; Khan et al., 2018; Scholl et al.,
448  2015) this effect requires further investigation.

449  Suppression and enhancement of stimulus responses

450  We find that learning and attention lead to distinct patterns of suppression and enhancement of
451  firing rates. Learning was dominated by selective suppression of responses to the non-preferred
452  stimulus, perhaps because it is metabolically more efficient for implementing long-term
453  selectivity changes (Howarth et al., 2012). Previous studies of associative conditioning have
454  described both suppression and enhancement of responses in sensory cortex (Gdalyahu et al.,
455  2012; Goltstein et al., 2013; Makino and Komiyama, 2015). By longitudinally tracking the same
456  neurons, we find that learning is largely accompanied by sparsification of cortical responses.
457  Attention, in contrast, largely led to selectivity changes through selective enhancement of
458  responses. This is consistent with a large body of work showing that enhancement of attended
459  responses is a common form of attentional modulation (McAdams and Maunsell, 1999; Speed
460 et al., 2020; Spitzer et al., 1988; Wilson et al., 2019). Here, by studying the same neural
461  population across both learning and attention, we demonstrate that V1 neurons are remarkably
462  versatile, capable of displaying either selective enhancement or selective suppression of

463  stimulus responses according to the current behavioural demand.
464  Changes in interactions

465  Imaging the activity of multiple cell classes simultaneously allowed us to investigate both
466  interactions within and between excitatory and inhibitory cell classes. We found changes in

467  interactions at two levels.

468  First, we observed a reorganization of interaction weights between PYR and PV cells during
469  learning, possibly through long-term synaptic plasticity, which was captured quantitatively by
470  a linear dynamical systems model. In contrast, attention did not lead to a similar change in
471  interaction weights, suggesting that the short timescale of attention does not permit large-scale

472  reorganization of connectivity patterns.

473  Second, we found changes in noise correlations between pairs of the same or different cell

474  classes. Changes in noise correlations have been implicated in improved behavioral abilities
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475  during learning and attention (Jeanne et al., 2013; Ni et al., 2018). We found that noise
476  correlation changes were dramatically different across learning and attention. Learning was
477 marked by reductions in inter-cell class correlations. Specifically, SOM cells became
478  decorrelated from the rest of the network. This transition potentially facilitates plasticity in the
479  network, by reducing the amount of dendritic inhibition from SOM cells that coincides with
480  visual responses in excitatory cells (Khan et al., 2018). In contrast, attention changed
481  correlations of SOM-SOM and VIP-VIP cell pairs, leaving inter cell-class correlations
482  relatively unchanged. Our model demonstrates that these changes can be explained by top-down
483 input in the absence of local connectivity changes. Importantly, this relies on specific
484  connectivity motifs across cell classes (Fino and Yuste, 2011; Hofer et al., 2011; Jiang et al.,

485  2015; Pfeffer et al., 2013).

486  To account for the increased stimulus selectivity and noise correlation changes, we tested a
487  variety of circuit architectures (Prinz et al., 2004). Top-down attentional modulation signals can
488  be multiplicative (Goris et al., 2014; Reynolds and Heeger, 2009) or additive (Buracas and
489  Boynton, 2007; Thiele et al., 2009), and they can target specific cell classes (Leinweber et al.,
490 2017; Zhang et al., 2014, 2016). Here, the experimental results limited possible model
491  architectures to a single one, with multiplicative top-down modulation targeting SOM and PYR
492  cells. Top-down projections with specific targeting have been proposed to be central to the
493  gating of plasticity, allowing attention to guide learning (Roelfsema and Holtmaat, 2018). These
494  specific predictions of targeted top-down projections provide a basis for future experimental

495  work.

496  In summary, learning and attention lead to similar increases in neural response selectivity, but
497  the effects are driven by different subsets of cells. Cells undergo distinct patterns of activity
498  changes to achieve increased neural response selectivity during learning and attention. These
499  results highlight the remarkable versatility by which a cortical circuit implements computations

500 across short and long time scales.
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684  Lead Contact

685  Further information and requests for resources and reagents should be directed to and will be
686  fulfilled by the lead contacts and corresponding authors Jasper Poort (jp816@cam.ac.uk) and
687  Adil Khan (khan.adil@kcl.ac.uk).

688

689  Materials Availability

690  This study did not generate new unique reagents

691

692  Data and code availability

693  The data and code that support the findings of this study are available from the corresponding

694  authors upon request.

695

696 Methods

697  Experimental procedures for the behavioral task, surgery, two-photon calcium imaging, post-
698  hoc immunostaining and image registration have been described in detail in previous studies

699 (Khanetal., 2018; Poort et al., 2015).

700  Animals and two-photon calcium imaging

701  All experimental procedures were carried out in accordance with institutional animal welfare
702  guidelines and licensed by the UK Home Office and the Swiss cantonal veterinary office. Mice
703  were C57B1/6 wild type mice (3 males, 1 female, Janvier Labs), crosses between Rosa-CAG-
704  LSL-tdTomato (JAX: 007914) and PV-Cre (JAX: 008069) (2 males), and crosses between
705  Rosa-CAG-LSL-tdTomato and VIP-Cre (JAX: 010908) (1 male, 1 female) all obtained from

706  Jackson Laboratory. Data from these mice were used in a prior study (Khan et al., 2018).

707  Mice aged P48-P58 were implanted with a chronic imaging window following viral injections
708  of AAV2.1-syn-GCaMP6f-WPRE (Chen et al., 2013). Multi-plane two-photon imaging began
709  approximately three weeks after surgery, during which 4 planes were imaged with 20 pm
710  spacing at an imaging rate of 8 Hz for each imaging plane. Eight mice were imaged both pre-
711  learning (either first or second day of training) and post-learning (either day 7, 8 or 9 of

712 training), and during an attention switching task (1 session each, after 1 to 2 days of learning
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713 the attention switching task). Before each imaging session the same site was found by matching

714  anatomical landmarks.

715 Behavioral training

716  Details of the behavioral task have been described in previous studies (Khan et al., 2018; Poort
717  etal., 2015). Food restricted mice were trained in a virtual environment to perform a visual go-
718  no go discrimination task. Trials were initiated by head-fixed mice running on a Styrofoam
719  wheel for a randomly chosen distance in an approach corridor (black and white circle pattern
720  unrelated to the task for 111cm followed by gray walls for 74-185 c¢cm plus a random distance
721 of gray walls chosen from an exponential distribution with mean 37 cm). Mice were then
722 presented with either a vertical grating pattern (square wave gratings, 100% contrast) or an
723 angled grating pattern (rotated 40° relative to vertical) on the walls of the virtual environment.
724  Mice were rewarded with a drop of soy milk for licking a reward spout in response to the
725  vertical grating (hits). One or more licks in the angled grating corridor were considered errors
726  (false alarms). Mouse performance was quantified using a behavioral d-prime:

727  bd'=®'(H)-® '(F),where ® ' is the normal inverse cumulative distribution function, H is

728  the rate of hit trials and F is the rate of false alarm trials.

729  After reaching high levels of discrimination performance, all mice were trained to switch
730  between blocks of an olfactory and visual discrimination task (the attention switching task).
731 The visual blocks were the same as the visual discrimination task described above. In olfactory
732 blocks, mice performed an olfactory go-no go discrimination task in which odor 1 (10% soya
733 milk odor) was rewarded and odor 2 (10% soya milk with 0.1% limonene mixture) was not
734  rewarded. Odors were delivered through a flow dilution olfactometer calibrated with a mini
735  PID (Aurora) at 10-20% saturated vapor concentration of the above solutions, and at 1 L/min
736 flow rate. Before the presentation of odors, in 70% of randomly chosen trials mice were also
737  presented with the same vertical or angled grating stimuli at different positions in the approach
738  corridor, with random delays from trial start chosen from the same distribution as in the visual
739  block. Mice learnt to ignore these irrelevant grating stimuli while accurately discriminating the
740  odors. On switching to the visual block, mice licked selectively to the rewarded grating as
741 before. Mice typically performed two visual and two olfactory blocks in each session, data was
742 pooled across blocks of the same type. After each block transition, we excluded trials in which
743 the behavior of the mice was ambivalent (Poort et al., 2015). Each block typically contained

744 70-150 trials. Mice typically learnt to switch successfully within 1-2 days.
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745  Immunohistochemistry and image registration

746  Brain fixation was performed by transcardial perfusion with 4 % paraformaldehyde in
747  phosphate buffer 0.1 M followed by 24 hours of post-fixation in the same solution at 4°C. The
748  brains underwent two freeze-thaw cycles in liquid nitrogen, and were sliced tangentially to the
749  surface of visual cortex. 80 um slices were cut on a vibratome (Zeiss Hydrax V50) and were
750  immunostained for PV, SOM and VIP (Khan et al., 2018). Primary and secondary antibodies
751  are listed in (Khan et al., 2018). We imaged the slices with a confocal microscope (Zeiss LSM
752 700), and confocal z-stacks were registered with the previously acquired in vivo imaging planes
753  and z-stacks of the recording sites. Cells were identified manually and assigned to cell classes

754  based on immunostaining.

755  Data analysis

756  Regions of interest (ROIs) from motion-corrected image stacks were selected for each cell in
757  each session. We adapted the method of (Chen et al.,, 2013) to correct for neuropil
758  contamination of calcium traces. Neuropil masks were created for each cell by extending the
759  ROI by 25um and including all pixels that were more than 10pm away from the cell boundary,
760  excluding pixels assigned to other cells or segments of dendrites and axons (pixels that were
761  more than 2 standard deviations brighter than the mean across all pixels in the neuropil mask).
762  We performed a robust regression on the fluorescence values of the ROI and neuropil mask.
763  We inspected the slope of this regression in a sample of our dataset and obtained a factor of 0.7
764 by which we multiplied the neuropil mask fluorescence (median subtracted) before subtracting
765 it from the ROI fluorescence to obtain the neuropil-corrected raw fluorescence time series F(t).
766  Baseline fluorescence Fo(t) was computed by smoothing F(t) (causal moving average of 0.375s)
767  and determining for each time point the minimum value in the preceding 600s time window.
768  The change in fluorescence relative to baseline, AF/F, was computed by taking the difference
769  between F and Fo, and dividing by Fo. All data used in this study for the learning epoch is the

770  same as that used in (Khan et al., 2018), except with neuropil corrected signals used throughout.

771 Responses were analyzed for the vertical and angled grating corridor by aligning neuronal
772 activity to the onset of the stimuli. We used a Wilcoxon rank-sum test to determine if the
773 response of a cell (average AF/F in a time window of 0-1 s after grating onset) was significantly
774  different between vertical and angled gratings (P < 0.05). We used a Wilcoxon signed-rank test
775  to determine if the response (AF/F 0-1 s) to the gratings significantly increased or decreased

776  relative to baseline (-0.5 to 0 s). For visualizing stimulus-evoked responses and for computing
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777  the change in stimulus-evoked responses with learning and attention, we subtracted the pre-

778  stimulus baseline (-0.5 to 0 s before stimulus onset) from the average response.

779  The selectivity of each cell was quantified as the selectivity index (SI), the difference between
780  the mean response (0-1 s) to the vertical and angled grating divided by the pooled standard
781  deviation, which was positive or negative for cells that preferred the vertical or angled grating
782  respectively. We took the average of the absolute selectivity of all cells to obtain an average
783  measure of the selectivity across a population of cells (including vertical and angled preferring
784  cells). We calculated the selectivity of the local PYR population around each PV cell by
785  averaging the responses of all PYR cells, within 100 um distance, to the two grating stimuli.
786  Confidence intervals were calculated by a bootstrap procedure where we randomly selected
787  cells with replacement 10,000 times to obtain the 2.5 and 97.5 percentiles. The P value was
788  given by the percentage of bootstrapped pre-learning or ignore condition slope values that were
789  lower than the post-learning or attend slope multiplied by two (two-sided test). To compute
790  Aselectivity during learning and attention, we took the difference SIP*! — SIP™ or SJ?ttend _ gyignore
791  for cells with positive selectivity post learning or in the attend condition. Similarly, we took the
792 difference —(SIP* — SIP™) or —(SI**end _ S for cells with negative selectivity post learning

793  or in the attend condition.

794  To compute noise correlation, we first subtracted for each trial and each cell the average
795  responses across all trials. We then used the Pearson correlation coefficient to quantify the
796  correlation between responses of pairs of cells. Changes in noise correlations with learning and
797  attention between different cell types were tested using a sign test on all cells imaged pre- and

798  post-learning or in the ignore and attend conditions.

799  In a previous study based on the learning dataset used here, we controlled for the effects of
800 running and licking on neural responses (Khan et al., 2018, Supplementary figures 5 and 8).
801  Here we performed similar analysis on the attention dataset. We controlled for the possible
802 effect of variations in running speed across the ignore and attend conditions on stimulus
803  selectivity and noise correlations using a stratification approach. We selected a subset of trials
804  with similar distributions of running speed in the ignore and attend condition for each stimulus.
805  We then recomputed the stimulus selectivity and noise correlations in the attend and ignore
806 conditions and obtained similar results with and without stratification (Fig. S3A,C). On
807  excluding trials with licks in the analysis window (0-1 s after grating onset), we also obtained

808  similar results for stimulus selectivity and noise correlations (Fig. S3B,D).

809
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810  Linear Multivariate Autoregressive System Model

811  Details of the MVAR model are described in a previous study (Khan et al., 2018). We fit the
812  activity of all simultaneously imaged neurons using a multivariate autoregressive (MVAR)
813  linear dynamical system incorporating stimulus-related input, the simultaneously measured co-
814  fluctuations from multiple cells of different cell types and the mouse running speed. We
815  estimated the interaction weights between pairs of cells which describe the relationship between
816 the activity of one cell and the activity of another cell at previous timepoints, conditioned over

817 the activity of all other cells and over behavioral and sensory variability.

818  The learning-related data was previously studied in detail using this model (Khan et al., 2018).
819  Here we fit the model separately to the learning and attention switching tasks, in each case
820 fitting either separate interaction weights for the pre/post learning or ignore/attend conditions
821  orasingle set of weights to account for activity in both conditions. The different MVAR models
822  were compared using leave-one-out cross validation (Figure S6B), measuring prediction quality
823  onheld-out data. We held out one vertical grating trial from the post learning or attend condition
824  in the test set, using the remaining trials of all types for training. The MVAR model was fit to
825 these training data, and the error in the model prediction was calculated for each time sample
826 in the test trial. This procedure was repeated, leaving out each vertical grating trial in turn. We
827  calculated an R? value for each cell combining errors across all of these trials. Specifically, the
828  R? was defined relative to a baseline model which incorporated only the trial-averaged response
829  profile of each cell, i.e. R? = 1 — (sum of squared errors in MVAR prediction)/(sum of squared
830 errors in the trial-averaged response profile prediction). Running speed was not included in the
831  model for the cross-validation analysis to facilitate comparison with alternative models.

832
833  Circuit model

834  We modeled a circuit consisting of an excitatory population PYR, and three inhibitory
835  populations, corresponding to PV, SOM, and VIP interneurons. The activity of the population
836 i is described by its calcium response r;, which evolves over time according to one of the

837  following equations:

838  Additive model:
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dri
T E

840 + /1 —xi° = xiF&®))

841  Multiplicative model:

839 = Tk QUL +IF TP+ ) Wyt + 0 (X Eer(®) + (X6 (0)
J

dr; . .
842 T = o GUPPUP 4 I+ Y Wity + o0 (a6 () + X 6ro®
J

843 ; J1 X — AFFED)),

844  where i,j € {PYR,PV,SOM,VIP} and
845  t; is the time constant of population i.
846 Iib is the baseline input to population i,
847 I is the stimulus-dependent feedforward input to population i,
848  IP is the modulatory top-down input - the attentional modulation of population i, and
849 ) ;W;j1j is the recurrent input from the local circuit and W;; is the effective synaptic weight.
850  Asin earlier models (Kanashiro et al., 2017), each population received private and shared
851  noise. §;(t) is noise, private to each population, corresponding to noise arising from ion
852  channels, or the activation function.
853  &rp(t) and &pp(t) are shared noise terms arising from shared modulatory top-down and/or
854  feedforward inputs. &;(t), érp(t), and Exp(t) are drawn from a Gaussian distribution with zero
855  mean and unit variance. We assume that external noise sources contribute equally.
856 ¢ (x) is the activation function:

0 ifx<0
857 ¢ = {(rmax — ro)tanh(x/(fpax — 1)) ifx > 0
858  PYR and PV populations receive an input current I upon presentation of their preferred
859  stimulus (Ji et al., 2016) representing thalamic inputs. They receive a fraction of this input
860  current (0.2- I) upon presentation of their non-preferred stimulus. Similar results were
861  observed when SOM and VIP populations also received the same input current as PV cells.
862  All populations received a constant baseline current input I”. Each modulated population i
863  received a top-down modulation I7?, which took one of two values
864  {Xignores Xattena} depending on the absence or presence of attention (see Tables 1 and 2).

865 1y = 1.0 and 13,4, = 20.0 denote the minimum and maximum activity, respectively.
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Population baseline I stimulus I7 top-down I/°
PYR 6.0 17.8 (1.0, 2.0}
PV 4.0 10.0 (1.0, 2.0}
SOM 12 0.0 {1.0,2.0}
VIP 4.6 0.0 {1.0, 2.0}

866

867  Table 1: Inputs to the multiplicative model. Shown are the values for the baseline, stimulus, and
868  top-down inputs to the populations PYR, PV, SOM, and VIP. Top-down inputs depend on the

869  condition, which is either ignore or attend: {X;gnores Xattend -

870
Population baseline I stimulus I7 top-down [/
PYR 6.0 17.8 {0.0, 1.0}
PV 4.0 10.0 {0.0, 1.0}
SOM 1.2 0.0 {0.0, 1.0}
VIP 4.6 0.0 10.0, 1.0}

871

872  Table 2: Inputs to the additive model. Shown are the values for the baseline, stimulus, and top-down
873  inputs to the populations PYR, PV, SOM, and VIP. Top-down inputs depend on the condition, which
874  is either ignore or attend: {X;gnore, Xattend}-

875

876  We changed the contributions of noise sources to the overall noise in the populations,

877  depending on the inputs population i received, according to Kanashiro et al. (Kanashiro et al.,

878  2017). If population i received attentional modulation:

1
879 XL‘TD = §

880  otherwise:
881 xIP =o.
882  If population i received feedforward input:

1
883 xfF = 3
884  otherwise:
885 xFF =0.
886  The standard deviation of the total noise was given by:

887 o; = 0.5v2

888

32


https://doi.org/10.1101/2021.01.31.429053
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.31.429053; this version posted February 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

889  Connectivity

890  We took the weight matrix W from (Kuchibhotla et al., 2017), and adjusted only the baseline

891  and stimulus inputs I? and I such that the simulated neural responses matched the data.

Wi Wgp Wgs Wey .017 .956 .512 .045
892 W = Wpp Wpp Wps Wpy | _[.8535 .99 .307 .09

Wsg Wsp Wss Wy 1.285 0 0 .14

Wy Wyp Wy Wyy 2.104 .184 .734 0

893  Each population was represented twice in the model, allowing us to measure noise

894  correlations within cell classes.

895  We simulated the network without stimulus input for 5s until the neural activity for each cell
896  class reached steady state. Then we presented the non-preferred stimulus for 3s, following
897  which we waited another 4s before we presented the preferred stimulus for 3s. The simulation
898  time step was Ims. We repeated this protocol for 100 trials. Tpyg was 800ms and 7; with i €

899  {SOM,VIP, PV} was 400ms.

900 To calculate the selectivity of cell populations in the model, we subtracted the mean activity
901 to the non-preferred stimulus X, from the mean activity to the preferred stimulus xp during 1s

902  after stimulus onset and normalized by their pooled standard deviation $,07eq:

Xp— X
s =£_"N
Spooled
903
(n—1Ds3 + (n—1)s3
S =
pooled n—2

904  where n is the number of trials, sp is the standard deviation of the activity during the
905  preferred stimulus, and sy is the standard deviation of the activity during the non-preferred

906  stimulus.

907 To determine the noise correlation between cell populations in the model, we calculated the
908  average activity in populations x and y in each trial i in a 1s time window after onset of the
909  preferred stimulus: x; and y;. We calculated the means x and y and standard deviations o,

910  and oy, of the activity over trials for each population. We then calculated noise correlations

911  between populations x and y over n = 100 trials according to the following equation:

X, —X
912 NCy, = n—1z<l Yio y).
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913 For Figure S6D, 112 and ITP, were 0.0, and we varied 172, continuously between 1 and 2.2
914  and IF2, proportionally to 115, as indicated in the figure.

915
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