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Summary 16 

Selectivity of cortical neurons for sensory stimuli can increase across days as animals learn 17 

their behavioral relevance, and across seconds when animals switch attention. While both 18 

phenomena are expressed in the same cortical circuit, it is unknown whether they rely on similar 19 

mechanisms. We imaged activity of the same neuronal populations in primary visual cortex as 20 

mice learned a visual discrimination task and subsequently performed an attention switching 21 

task. Selectivity changes due to learning and attention were uncorrelated in individual neurons. 22 

Selectivity increases after learning mainly arose from selective suppression of responses to one 23 

of the task relevant stimuli but from selective enhancement and suppression during attention. 24 

Learning and attention differentially affected interactions between excitatory and PV, SOM and 25 

VIP inhibitory cell classes. Circuit modelling revealed that cell class-specific top-down inputs 26 

best explained attentional modulation, while the reorganization of local functional connectivity 27 

accounted for learning related changes. Thus, distinct mechanisms underlie increased 28 

discriminability of relevant sensory stimuli across longer and shorter time scales.  29 

  30 
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Introduction 31 

Learning and attention both selectively enhance processing of behaviorally relevant stimuli 32 

(Gdalyahu et al., 2012; Goltstein et al., 2013; Li et al., 2008; McAdams and Maunsell, 1999; 33 

Ni et al., 2018; Reynolds and Chelazzi, 2004; Rutkowski and Weinberger, 2005; Schoups et 34 

al., 2001; Speed et al., 2020; Wiest et al., 2010; Yan et al., 2014; Yang and Maunsell, 2004). 35 

When animals learn what sensory features are task-relevant, or when they focus their attention 36 

on task-relevant features, early sensory cortical representations often undergo substantial 37 

changes. However, it is currently not known whether cortical changes during learning and 38 

attention rely on similar neural mechanisms. 39 

The neural correlates of learning and attention share several characteristics. Visual learning 40 

results in increased stimulus selectivity through changes in stimulus-evoked neural firing rates 41 

(Gilbert and Li, 2012; Karmarkar and Dan, 2006; Li et al., 2008; Poort et al., 2015; Schoups et 42 

al., 2001; Yan et al., 2014; Yang and Maunsell, 2004), and is accompanied by changes in the 43 

interactions and correlations between neurons (Gu et al., 2011; Khan et al., 2018; Ni et al., 44 

2018). Similarly, visual attention can also result in increased selectivity of attended stimuli, 45 

again through changes in stimulus-evoked firing rates (Reynolds and Chelazzi, 2004; Speed et 46 

al., 2020; Spitzer et al., 1988; Wimmer et al., 2015) and neuronal interactions (Cohen and 47 

Maunsell, 2009; Mitchell et al., 2009; Ni et al., 2018). Importantly, activity modulations during 48 

learning and attention are not uniformly distributed throughout the neural population but 49 

restricted to subsets of neurons (see for example (Chen et al., 2008; McAdams and Maunsell, 50 

1999; Poort et al., 2015; Schoups et al., 2001; Yan et al., 2014)). Thus, both learning and 51 

attention lead to sharper and more distinct information being sent to downstream regions though 52 

subnetworks of learning- or attention-modulated cells. 53 

Inhibition plays a crucial role in cortical plasticity (Froemke, 2015; van Versendaal and Levelt, 54 

2016), and specific classes of inhibitory interneurons have been implicated in plasticity of 55 

cortical circuits during both learning and attention (Chen et al., 2015; Kato et al., 2015; 56 

Kuchibhotla et al., 2017; Makino and Komiyama, 2015; Sachidhanandam et al., 2016; Yazaki-57 

Sugiyama et al., 2009). The activity of interneurons can change during both learning (Kato et 58 

al., 2015; Khan et al., 2018; Letzkus et al., 2011; Makino and Komiyama, 2015) and attention 59 

(Mitchell et al., 2007; Snyder et al., 2016; Speed et al., 2020), which can result in more stimulus-60 

specific inhibition in the network. 61 

Both learning and attention rely, to varying degrees, on the integration of top-down inputs with 62 

bottom-up signals. During attention, higher-order brain regions are thought to provide feedback 63 
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signals to bias bottom-up information processing (Desimone and Duncan, 1995; Gilbert and Li, 64 

2013), most prominently through direct feedback projections (Leinweber et al., 2017; Zhang et 65 

al., 2014) or through thalamic nuclei (Chalupa et al., 1976; Wimmer et al., 2015). These 66 

feedback projections can target excitatory or specific inhibitory interneurons (Leinweber et al., 67 

2017; Zhang et al., 2014, 2016). In contrast, learning is thought to be primarily implemented 68 

by long-term plasticity of synapses, and reorganization of connectivity patterns (Froemke, 69 

2015; Khan et al., 2018; Whitlock et al., 2006; Xiong et al., 2015), although top-down 70 

projections may also play a crucial role in guiding this process (Roelfsema and Holtmaat, 2018; 71 

Williams and Holtmaat, 2019). 72 

Thus, both learning and attention modulate the firing properties of subsets of excitatory and 73 

inhibitory cortical neurons, leading to changes in firing rates and interactions between cells. It 74 

has therefore been suggested that learning and attention rely on similar neural mechanisms (Ni 75 

et al., 2018) or that attention-like processes may co-opt some of the underlying circuitry of 76 

learning (Kuchibhotla et al., 2017). However, this has never directly been tested, and it is not 77 

known if learning and attention engage the same neurons and circuits. A number of questions 78 

thus arise. First, within a population, is a common subset of neurons modulated by both learning 79 

and attention? Second, do learning-modulated and attention-modulated neurons undergo 80 

similar changes in their firing rates in order to increase stimulus selectivity? Third, do learning 81 

and attention result in similar changes in interactions between different excitatory and 82 

inhibitory cell classes?  83 

To address these questions, we compared the changes in activity and interactions of the same 84 

population of neurons in V1 during learning and attention. We tracked the same identified 85 

pyramidal (PYR) neurons and parvalbumin (PV), somatostatin (SOM) and vasoactive intestinal 86 

peptide (VIP) positive interneurons as mice learnt to discriminate two visual stimuli and 87 

subsequently performed an attention switching task involving the same visual stimuli. We 88 

observed a similar profile of average changes in stimulus selectivity across the four cell classes 89 

during learning and attention. However, we discovered that these changes were largely 90 

uncorrelated at the single cell level, consistent with distinct mechanisms of selectivity changes 91 

during learning and attention. In support of this idea, we found that neural stimulus responses 92 

were dominated by selective suppression during learning, but displayed a combination of 93 

suppression and enhancement during attention. In addition, learning and attention differentially 94 

modulated interactions between excitatory and inhibitory cell classes. While learning-related 95 

changes were well captured by a model invoking changes in functional interaction strengths, 96 

attention-related changes were captured by a circuit model with top-down inputs targeted to 97 
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PYR and SOM cells. These results reveal that more selective cortical representations for 98 

behaviorally relevant stimuli arise through distinct mechanisms over longer and shorter 99 

timescales.  100 

Results 101 

Increased response selectivity related to learning and attention switching 102 

To understand how the same neural populations change their responses to visual stimuli with 103 

learning and attention, we trained mice to learn a go-no go visual discrimination task and 104 

subsequently trained them to perform an attention switching task involving the same pair of 105 

visual stimuli (Figure 1A,B). Head-fixed mice ran through a virtual approach corridor (Figure 106 

1A) where the walls displayed a short stretch of circle patterns followed by grey walls for a 107 

random distance chosen from an exponential distribution (Figure 1C, top). Mice were then 108 

presented with one of two grating patterns, vertical or angled (40° relative to vertical), and were 109 

rewarded for licking a reward spout in response to the vertical grating. No punishment was 110 

given for licking the spout in response to angled gratings. All mice learned to discriminate the 111 

grating stimuli, reaching a threshold criterion of d′ > 2.0 (~85% accuracy) within 7-9 days 112 

(Figure S1 example lick rasters from sessions pre- and post-learning. Figure 1D, average 113 

behavioral d-prime pre-learning -0.18 ± 0.56 s.d., post-learning 3.32 ± 0.82, sign test, P = 0.008, 114 

N = 8 mice).  115 

We subsequently trained the mice to switch between blocks of the same visual discrimination 116 

task and an olfactory discrimination task, in which they learned to lick the reward spout to 117 

obtain a reward in response to one of two odors. During the olfactory discrimination blocks, the 118 

same grating stimuli used in the visual discrimination blocks were presented on 70% of trials 119 

but were irrelevant to the task (Figure 1C, bottom). Mice learnt this attention switching task in 120 

1 to 2 days. Mice switched between the two blocks within the same session, successfully 121 

attending to and discriminating the grating stimuli in the visual block but ignoring the same 122 

grating stimuli while successfully discriminating odors during the olfactory blocks (Figure S1 123 

example lick rasters from a session of attention switching behavior. Figure 1D, behavioral d-124 

prime attend visual 3.02 ± 0.41 vs. ignore visual 0.63 ± 0.25, sign test P = 0.015, d-prime 125 

discriminating olfactory stimuli 4.10 ± 0.27). 126 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2021. ; https://doi.org/10.1101/2021.01.31.429053doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.31.429053
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

 

 127 

Figure 1. Visual discrimination learning and attention switching in mice. (A) Top, schematic 128 

showing virtual reality and imaging setup. (B) Experimental timeline. (C) Schematic of behavioral tasks. 129 

Top, visual discrimination: Mice were rewarded for licking the reward spout when vertical gratings were 130 

presented and not when angled gratings were presented. Olfactory discrimination: mice were rewarded 131 

for licking when odor 1 was presented and not when odor 2 or vertical or angled gratings were presented. 132 

(D) Behavioral discrimination performance (behavioral d’) across learning and during attention 133 

switching (N = 8 mice). Connected closed points indicate visual discrimination in individual mice. Open 134 

circles indicate olfactory discrimination. 135 

 136 

 137 

Selectivity changes at the population level are similar across learning and attention 138 

We expressed the calcium indicator GCaMP6f in V1 using viral vectors and measured 139 

responses of L2/3 neurons using two-photon calcium imaging during the task. We re-identified 140 

the same neurons in co-registered, immunohistochemically stained brain sections from these 141 

animals and determined the identity of putative excitatory pyramidal (PYR) neurons and cells 142 

belonging to the three major classes of GABAergic inhibitory interneurons (Figure 2A). This 143 

approach allowed us to measure the simultaneous activity of PV, SOM and VIP positive 144 

interneurons along with the local excitatory neuron population (see Methods). We imaged the 145 

same 1249 PYR, 132 PV, 58 SOM and 175 VIP neurons before and after learning and a partially 146 

overlapping population of 5813 PYR, 477 PV, 245 SOM and 365 VIP neurons during the 147 

attention switching task (915, 105, 54 and 144 cells overlapping respectively, N = 8 mice).  148 

Neurons from each cell class showed varying degrees of responsiveness to the visual grating 149 

stimuli (Figure S2A,B). During learning, we observed changes in visual grating responses in 150 

subsets of neurons from all cell classes (Figure 2B, Figure S2A,B). This led to changes in 151 

stimulus selectivity (difference in the mean responses to the two grating stimuli normalized by 152 

response variability, see Methods) in individual cells to varying degrees (Figure 2C). On 153 
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average, PYR and PV cells significantly increased their stimulus selectivity during learning, as 154 

reported previously (Khan et al., 2018; Poort et al., 2015) (Figure 2D; PYR, average absolute 155 

selectivity pre-learning, 0.30 ± 0.31 (mean ± s.d.), post-learning 0.40 ± 0.44, sign test, P < 10-156 

9, N = 1249, PV, pre-learning, 0.24 ± 0.19, post-learning 0.40 ± 0.36, P = 0.002 , N = 132). In 157 

contrast, the average selectivity of SOM and VIP interneurons did not change significantly 158 

(SOM, pre-learning 0.25 ± 0.17, post-learning 0.39 ± 0.45, P = 0.51, N = 58, VIP, pre-learning 159 

0.18 ± 0.16, post-learning 0.20 ± 0.17, P = 0.45, N = 175).  160 

We found a similar profile of selectivity changes across cell classes between the ‘ignore’ and 161 

‘attend’ conditions of the attention switching task. Specifically, visual stimulus selectivity 162 

increased on average in PYR and PV cells but not in SOM and VIP cells when mice switched 163 

from ignoring to attending the same visual grating stimuli (Figure 2E-G; PYR, ignore 0.28 ± 164 

0.28, attend 0.33 ± 0.32, P < 10-10 , N = 5813, PV, ignore 0.24 ± 0.18, attend 0.29 ± 0.25, P = 165 

0.0007, N = 477, SOM, ignore 0.31 ± 0.31, attend 0.34 ± 0.31, P = 0.25, N = 245, VIP, ignore 166 

0.24 ± 0.19, attend 0.26 ± 0.19, P = 0.60, N = 365). Changes in running and licking could not 167 

account for the increased selectivity of responses during learning or attention (Figure S3A,B). 168 

Thus, learning and attention both led to similar changes in stimulus selectivity of V1 neurons 169 

on average, across excitatory and multiple inhibitory cell classes.  170 

  171 
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 172 

 173 

Figure 2. Similar changes in stimulus response selectivity across four cell classes during learning 174 

and attention switching. (A) Two example regions of in-vivo image planes with GCaMP6f-expressing 175 

neurons and the same regions after post hoc immunostaining for PV, SOM and VIP (orange, blue and 176 

magenta, respectively) following image registration. Identified interneurons are indicated by 177 

arrowheads. (B) Example cells from the 4 cell classes, average responses to vertical (blue line) and 178 

angled (red line) grating stimuli before (pre) and after (post) learning. Shaded area represents SEM. 179 

Gray shading indicates 0-1s window from stimulus onset used to calculate stimulus selectivity. (C) 180 

Stimulus selectivity of the same cells (rows) before and after learning (columns). Cells were ordered by 181 

their mean pre- and post-learning selectivity. Numbers of cells recorded both pre- and post-learning: 182 

1,249 PYR, 132 PV, 58 SOM and 175 VIP cells, here and in D. (D) Average absolute selectivity of the 183 

4 cell classes before and after learning. Error bars represent SEM. Sign test, **P < 0.001; *P <  0.05. 184 

Selectivity distribution in Figure S4A. (E-G), Same as B-D for attention switching task. Numbers of 185 

cells recorded: 5813 PYR, 477 PV, 245 SOM and 365 VIP cells. 186 

 187 

Selectivity changes at single cell level are uncorrelated 188 

The similar profile of changes in average selectivity during learning and attention switching 189 

suggested that the neural basis of these two changes may be overlapping. Indeed, both learning 190 

and attention serve a similar purpose: to enhance an animal’s ability to detect and respond to 191 

relevant stimuli, and prior work has suggested that the two may be implemented by common 192 

neural mechanisms (Ni et al., 2018). We therefore asked whether the increase in selectivity 193 

during learning and attention was related at the single neuron level.  194 

Across the population of PYR neurons, we found that there was no significant correlation 195 

between the learning related and attention related changes in stimulus selectivity (Figure 3A, R 196 

= 0.01, P = 0.67, see also Figure S2C). This indicated that a cell’s change in stimulus selectivity 197 

during learning had no bearing on its change during attention. This absence of correlation was 198 

not due to extensive changes in the original visual response selectivity of these cells from the 199 
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post-learning session to the attention switching session – there was a strong correlation between 200 

the post-learning selectivity and the selectivity during the attend condition of the attention 201 

switching task (Figure 3B, R = 0.61, P < 10-99).  202 

We observed a moderate but significant correlation between the learning-related and attention-203 

related changes in stimulus selectivity in PV interneurons, but not SOM or VIP interneurons 204 

(Figure 3C, PV, R = 0.27, P = 0.01, SOM, R = 0.08, P = 0.57, VIP, R = 0.10, P = 0.25), raising 205 

the possibility that subsets of PV cells may be preferentially engaged in both learning and 206 

attention. All interneuron cell classes displayed strong correlations between the post-learning 207 

selectivity and the selectivity during the attend condition (Figure 3D, PV, R = 0.70, P < 10-16, 208 

SOM, R = 0.51, P < 10-4, VIP, R = 0.45, P < 10-8 ), again ruling out extensive changes in the 209 

stimulus tuning of cells between the post-learning and attention switching sessions.  210 

Thus, while increases in neural selectivity due to learning and attention were similar across 211 

excitatory and multiple inhibitory interneuron classes on average, they were largely 212 

uncorrelated at the single cell level. The lack of correlation between selectivity modulations 213 

during learning and attention suggested that these two processes may be driven by distinct 214 

neural mechanisms.  215 

 216 
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 217 

Figure 3. Changes in stimulus selectivity during learning and attention are uncorrelated. A) 218 

Relationship between ΔSelectivity with learning (positive values indicate increased selectivity after 219 

learning) and ΔSelectivity with attention (positive values indicate increased selectivity with attention) 220 

for PYR cells (N = 915 cells). B) Relationship between post-learning selectivity and selectivity in the 221 

attend condition for PYR cells. C, D) Same as A and B for the three interneuron classes (N = 105 PV, 222 

54 SOM and 144 VIP cells). 223 

 224 

Mechanisms of selectivity change 225 

Neurons can increase their stimulus selectivity by selective suppression of responses to non-226 

preferred stimuli (Lee et al., 2012), selective increase in responses to preferred stimuli 227 

(McAdams and Maunsell, 1999) or a combination of the two. We tested for the relative 228 

prevalence of these changes in the population of PYR cells during learning and attention.  229 

First, we studied changes in stimulus-evoked firing rates in all recorded PYR cells, regardless 230 

of their stimulus selectivity. We subtracted the pre-learning from the post-learning stimulus 231 

response profile of each cell for a given stimulus, to obtain the difference-PSTH. During 232 

learning, the difference-PSTHs of the PYR population were dominated by cells with negative 233 

deflections from baseline, i.e. cells which decreased their stimulus response amplitude to the 234 

same stimulus during learning (Figure 4A, left). This was true for both rewarded and non-235 
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rewarded stimuli (Figure S5A, left). Interestingly, the difference-PSTH during attention 236 

switching (attend minus ignore condition), revealed that changes with attention were more 237 

uniformly distributed across increases and decreases in response amplitude (Figure 4A, right). 238 

This was again true for both rewarded and non-rewarded stimuli (Figure S5A, right, difference-239 

PSTH averaged 0-1s significantly different between learning and attention, P < 10-28, sign test, 240 

Figure S5D). Thus, learning, unlike attention, was dominated by a suppression of responses. 241 

Learning and attention might lead to complex temporal changes in firing rate profiles, not 242 

captured in the above analysis. We therefore performed principal component analysis (PCA) to 243 

identify the components which captured the majority of variance in the shapes of all difference-244 

PSTHs. Interestingly, for both learning and attention, we found that a single component 245 

accounted for more than 80% of the variance across all cells, and this component was highly 246 

similar for both learning and attention (Figure 4B, C). However, the distributions of weights 247 

projected onto this PC during learning and attention were substantially different, with a 248 

predominance of negative weights during learning (Figure 4D, P < 10-38, sign test). Thus, while 249 

we did not find a difference in the temporal profile of firing rate changes, we confirmed the 250 

robust presence of stimulus response suppression during learning, but not during attention.  251 

At the single cell level, we found that the scores on the first PCA components were uncorrelated 252 

(Figure 4E, R = 0.04, P = 0.24, see Figure S5E for a similar effect with average calcium 253 

responses), suggesting independent firing rate modulation of individual cells by learning and 254 

attention.  255 

We next asked what changes in firing rates underlie the increased stimulus selectivity in the 256 

population. We restricted this analysis to recruited cells, that is, cells which changed from non-257 

selective to significantly selective during learning or attention. The average PSTHs of these 258 

cells showed markedly distinct features. During learning, recruited cells showed preferential 259 

suppression of responses to one of the two stimuli (Figure 4F). In contrast, with attention, cells 260 

became selective through a combination of enhancement and suppression of responses to the 261 

two stimuli (Figure 4G). (Percent changes in stimulus response amplitude to vertical and angled 262 

stimuli: Figure 4F left, -8%, -81%, Figure 4F right -89%, -27%. Figure 4G left, 72%, 10% (not 263 

significant), Figure 4G right -92%, 56%. Changes calculated as the percentage of the maximum 264 

in each category, all responses averaged 0-1s, all P values < 10-4 except where stated).  265 

Thus, learning was associated with suppression of evoked responses, particularly of the non-266 

preferred stimulus, while attention was mainly associated with increased responses of the 267 

preferred stimulus.   268 
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 269 
Figure 4. Increased stimulus selectivity through selective response suppression during learning 270 

but enhancement and suppression during attention. A) Difference in calcium responses to the 271 

rewarded vertical grating stimulus, post minus pre learning (left) or attend minus ignore conditions 272 

(right) for all recorded PYR cells (Difference-PSTHs). Responses are baseline corrected (subtraction of 273 

baseline ΔF/F –0.5 to 0 s before stimulus onset) and aligned to grating onset (dashed line). Cells are 274 

sorted by their average amplitude 0–1 s from stimulus onset. N = 915 matched cells, in A to E, N = 8 275 

mice. B) First principal component (PC) of the difference-PSTHs from the learning (left) and attention 276 
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data (right). Circles indicate the time points (0-1s) used to determine the PCs. C) Percentage of variance 277 

explained by each PC during learning (left) and attention (right). D) Distribution of weights from each 278 

cell onto the first PC during learning and attention. E) Relationship between the weights of cells on the 279 

first PC during learning and attention. Values greater than the axis limits are pegged to the maximum 280 

displayed value. F) Average PSTHs of all recruited cells, i.e. cells which changed from non-selective to 281 

selective stimulus responses during learning, N = 243 and 216 cells recruited with preference for vertical 282 

stimulus or angled stimulus respectively. G) Average PSTHs of all recruited cells during attention, N = 283 

672 and 676 cells recruited with preference for vertical stimulus or angled stimulus respectively. Shaded 284 

area represents SEM. Gray shading indicates 0-1s window from stimulus onset used for analysis. 285 

 286 

Changes in interactions between excitatory and inhibitory cell classes  287 

Changes in cortical processing are accompanied by a reconfiguration of network dynamics and 288 

interactions. We previously demonstrated that interactions between PV cells and surrounding 289 

PYR cells are reorganized during learning (Khan et al., 2018). Specifically, we measured the 290 

correlation between PV cell selectivity and the selectivity of the PYR cell population within 291 

100 μm of each PV cell. The slope and correlation coefficient of this relationship significantly 292 

decreased during learning (Figure 5A top, pre learning, slope = 0.21, confidence intervals (CI) 293 

0.14 to 0.29, R = 0.48, post learning, slope = 0.05, CI 0.00 to 0.10, R = 0.19, reduction in slope 294 

bootstrap test P < 10-4), suggesting that during learning, PV cell activity became less dependent 295 

on the average stimulus preference of surrounding PYR cells. However, when we performed 296 

the same analysis comparing ignore and attend conditions, we found no difference in the 297 

correlation coefficient or slope of this relationship (Figure 5A bottom, ignore, slope = 0.05, CI 298 

0.03 to 0.07, R = 0.23, attend, slope = 0.03, CI 0.01 to 0.05, R = 0.15, reduction in slope 299 

bootstrap test P = 0.06). Indeed, the relationship appeared similar to that observed at the end of 300 

learning. This was despite the fact that PV cells displayed a comparable degree of selectivity 301 

increase with attention as with learning.   302 

To further explore the network signatures of changes during learning and attention, we 303 

computed noise correlations during the grating stimulus period between pairs of neurons within 304 

and across cell classes, before and after learning and during attend and ignore conditions. Since 305 

noise correlations are a measure of the stimulus-independent trial-to-trial co-variability of 306 

neural responses, they provide an estimate of mutual connectivity and shared inputs. As 307 

reported earlier, we found that during learning, SOM cells become de-correlated from 308 

pyramidal, PV and VIP neurons, with the largest changes between cell classes (sign test, all 309 

reductions in noise correlation were significant, with the exception of SOM–SOM cell pairs, 310 

P=0.8, see also (Khan et al., 2018)). Specifically, we observed a large reduction in noise 311 

correlation between SOM-PV, SOM-PYR and SOM-VIP cell pairs during learning (Figure 312 

5B,C, top, vertical grating stimulus. Full distributions in Figure S4B). 313 
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In contrast, during attention switching, we found that the largest absolute changes in noise 314 

correlation were within cell classes, namely between SOM-SOM and VIP-VIP cell pairs 315 

(Figure 5B,C bottom). SOM-SOM cell pairs displayed an increase in noise correlation (sign 316 

test, P < 10-9) whereas VIP-VIP pairs displayed decreased noise correlation (P = 0.02). In 317 

addition, PYR-PYR, PYR-PV, PYR-SOM and PV-PV cell pairs also showed a significant 318 

reduction in noise correlation, although the absolute change was smaller (all Ps < 0.03). 319 

Changes in running speed or licking could not account for the observed changes in noise 320 

correlations (Figure S3C,D). 321 

Thus, learning and attention are associated with different patterns of changes in noise 322 

correlations between excitatory and multiple inhibitory cell classes, consistent with the idea that 323 

distinct mechanisms underlie these processes. 324 

 325 

 326 

 327 

Figure 5. Distinct changes in interactions between excitatory and inhibitory cells during learning 328 

and attention. A) Top, relationship between the selectivity of individual PV cells and the mean 329 

selectivity of the local PYR population within 100 μm of each PV cell, before (pre) and after learning 330 

(post). Bottom, same comparison for the ignore and attend conditions of the attention switching task. B) 331 

Average noise correlations between cell pairs belonging to the same or different cell classes, before and 332 

after learning (top) or in the ignore and attend conditions (bottom). Only cells with significant responses 333 

to the grating stimuli were included. The number of cell pairs in each cell class combination was as 334 

follows: pre-, post-learning, PYR–PYR 74,581, 64,921; VIP–VIP 1166, 907; SOM–SOM 215, 99; PV–335 

PV 1,731, 1,369; PV–VIP 790, 718; PV–PYR 17,792, 15,283; PYR–VIP 14,681, 12,009; SOM–PV 336 

1,250, 690; SOM–PYR 7,112, 4,952; SOM–VIP 455, 377. Ignore/attend conditions, PYR–PYR 61,175; 337 

VIP–VIP 58; SOM–SOM 381; PV–PV 777; PV–VIP 129; PV–PYR 11,312; PYR–VIP 3024; SOM–PV 338 

814; SOM–PYR 6,626; SOM–VIP 136. Error bars represent SEM. Full data distribution can be seen in 339 

Figure S4B. C) Changes in noise correlations (shown in B) due to learning (top) or attention (bottom) 340 

as indicated by line thickness and color code. Shorter line segments indicate change in noise correlations 341 

between cells of the same type. 342 

 343 
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Modelling response changes during learning and attention 344 

What changes in network properties underlie the observed changes during learning and 345 

attention? We recently developed a multivariate autoregressive (MVAR) linear dynamical 346 

system model to predict the activity of single cells based on interaction weights with their local 347 

neighbors. Analysis of the MVAR model fit to the neural responses during learning revealed 348 

that increased response selectivity after learning was associated with the reorganization of 349 

interaction weights between cells (Figure S6A-C see also (Khan et al., 2018)). We tested if 350 

similar changes in functional connectivity can account for the changes in stimulus responses 351 

observed with attention. We compared a model that allowed interaction weights to change 352 

across the attend and ignore conditions against a simpler model that used the same weights 353 

across both conditions. We found that the fit quality of the MVAR model, quantified by the 354 

cross-validated R2, was actually lower for the model allowing weights to change across the 355 

attend and ignore conditions, demonstrating that changing interaction weights during attention 356 

conferred no advantage to the model (Figure S6B). Even when weights were allowed to change 357 

in the MVAR model, we found stable PYR-PV interaction weights, in contrast to the changes 358 

in weights observed during learning (Figure S6C). Together with the absence of reorganization 359 

of PYR-PV interactions during attention (Figure 5A, bottom), these results suggest that 360 

functional connectivity is relatively stable during attention, but changes during learning, 361 

possibly through long-term synaptic plasticity mechanisms. 362 

Since the data-driven MVAR model analysis indicated that the selectivity changes were not 363 

predicted by changes in local functional interactions, we developed a detailed theoretical model 364 

of the local circuit enabling us to evaluate what type of external inputs could explain the 365 

attentional modulation of the local circuit. In this model, we represented each of the four cell 366 

types (PYR, PV, SOM, VIP) by their population activity, corresponding to the average response 367 

across all cells with a given stimulus preference in the population. Population activity was 368 

determined by baseline activity, feedforward stimulus-related input, top-down attentional 369 

modulatory input, and connection weights with other cell populations (see Methods). The four 370 

neural populations were connected using experimentally derived connectivity values, similar to 371 

(Kuchibhotla et al., 2017) (Figure 6A). The model’s population responses resembled the 372 

average population stimulus responses of all four cell classes (Figure 6B) (Khan et al., 2018).  373 

In the model, each population received fluctuations from cell-intrinsic sources (e.g. due to ion 374 

channel noise) and shared external sources (stimulus and top-down modulatory inputs, Figure 375 

6A). The simulated noise correlations thus reflected both connectivity and fluctuations in the 376 
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stimulus and modulatory inputs. Since functional connectivity weights between cell classes 377 

were stable across attend and ignore conditions, we modelled the changes in noise correlations 378 

during attention switching as arising from changes in the shared external fluctuations.  379 

It is unclear whether attention has a multiplicative effect (Goris et al., 2014; Reynolds and 380 

Heeger, 2009) or an additive effect (Buracas and Boynton, 2007; Thiele et al., 2009). We 381 

therefore considered two different types of models with an additive or multiplicative effect of 382 

attentional modulation. We systematically simulated all conditions in which attentional 383 

modulation targeted different cell classes and combinations of cell classes. We then evaluated 384 

the stimulus selectivity changes and noise correlation changes induced by attentional 385 

modulation (Figure 6C). We looked for conditions which replicated our experimental findings, 386 

including (a) attention increased only PYR and PV stimulus selectivity (Figure 2G) and (b) 387 

attention mainly increased SOM-SOM and decreased VIP-VIP noise correlations (Figure 5C, 388 

bottom). Of all conditions, only one matched both these experimental findings, where PYR and 389 

SOM cells received multiplicative attentional modulation (Figure 6C, arrows).  390 
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 391 

 392 

Figure 6. A circuit model can distinguish between different patterns of top-down attentional 393 

modulation (A) The model architecture, indicating connectivity between different cell classes and 394 

possible sources of shared external fluctuations. (B) Simulated responses of the four cell types to the 395 

preferred stimulus. (C) Changes in stimulus selectivity and noise correlations (NC) obtained from 396 

models with attentional modulation applied to different combinations of cell populations. Both additive 397 

and multiplicative modulations were tested. Arrow indicates the condition which best replicated the 398 

experimental changes in selectivity and noise correlation. (D) Absolute selectivity of different cell 399 

classes without (Ignore) and with (Attend) attentional modulation provided to PYR and SOM 400 

populations, with PYR receiving 0.7 times the modulation of SOM (see Figure S6D,E). (E) Changes in 401 

noise correlations (NC change) with attentional modulation as in (D) between and within the four cell 402 

classes, as indicated by line thickness and color code. 403 

 404 

 405 

The model so far assumed equal influence of attentional modulation onto all cells. We next 406 

varied the relative strengths of modulation received by PYR and SOM cells to test whether the 407 

match to experimental findings could be improved. Specifically, the current model produced an 408 

increase in noise correlations between PYR-PYR, PYR-SOM, SOM-PV and SOM-VIP cells, 409 

which was not observed experimentally. A model in which the attentional modulation of PYR 410 

was 0.7 times the modulation of SOM improved the match to the data (Figure S6D). This model 411 
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replicated the increase in PYR and PV stimulus selectivity (Figure 6D) as well as the changes 412 

in SOM-SOM and VIP-VIP noise correlations, with only minor changes in noise correlations 413 

between other cell types (Figure 6E). Thus, a model in which PYR and SOM populations 414 

received different degrees of multiplicative attentional modulation best accounted for the 415 

changes in selectivity and noise correlations observed in the data (Figure S6E). 416 

 417 

Discussion 418 

We show that improvements in sensory coding arising from learning or attention rely on distinct 419 

mechanisms, based on three lines of evidence. First, at the single-cell level, the effects of 420 

learning and attention are uncorrelated. Second, distinct firing rate changes underlie the 421 

increases in selectivity during learning and attention. Third, learning and attention are 422 

associated with different changes in functional interactions between cell classes. Our 423 

computational models suggest that learning relies on reorganization of interactions in the local 424 

circuit, whereas attention relies on multiplicative top-down signals that target specific cell-425 

classes. 426 

Subpopulations of excitatory neurons modulated by learning and attention 427 

Learning and attention are closely linked: attended objects are preferentially learnt, and learning 428 

can bias the allocation of attention (Gilbert et al., 2000; Vartak et al., 2017). Although we show 429 

that learning and attention both lead to a similar increase in stimulus selectivity on average in 430 

PYR cells, these increases are not driven by the same subset of neurons. Importantly, this does 431 

not mean that cells are either modulated by learning or attention. Instead, learning and attention 432 

each modulate the same neurons to varying degrees, and a neuron’s degree of modulation 433 

during learning is uncorrelated with its degree of modulation by attention.  434 

The basis of neural susceptibility to either learning- or attention-related modulations is poorly 435 

understood. For example, it may be related to intrinsic excitability (Brebner et al., 2020), 436 

expression of immediate-early genes (e.g. CREB (Han et al., 2007) or Arc (Gouty-Colomer et 437 

al., 2016), see also (Holtmaat and Caroni, 2016)), and pre- or post-synaptic expression of 438 

neuromodulator receptors (Disney et al., 2007; Herrero et al., 2008), or connectivity with distal 439 

and top-down inputs (Iacaruso et al., 2017; Marques et al., 2018). Our results impose an 440 

important restriction: these molecular or circuit mechanisms must be independent or exert a 441 

minimal influence on each other, since the effects of learning and attention on individual 442 

pyramidal cells are uncorrelated. 443 
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We found a small but significant correlation in the learning- and attention-related selectivity 444 

changes in PV interneurons. Given the lack of correlation for PYR cells, and the fact that this 445 

effect is difficult to account for by a model in which PV cells inherit their stimulus response 446 

properties from neighboring PYR cells (Kerlin et al., 2010; Khan et al., 2018; Scholl et al., 447 

2015) this effect requires further investigation.  448 

Suppression and enhancement of stimulus responses 449 

We find that learning and attention lead to distinct patterns of suppression and enhancement of 450 

firing rates. Learning was dominated by selective suppression of responses to the non-preferred 451 

stimulus, perhaps because it is metabolically more efficient for implementing long-term 452 

selectivity changes (Howarth et al., 2012). Previous studies of associative conditioning have 453 

described both suppression and enhancement of responses in sensory cortex (Gdalyahu et al., 454 

2012; Goltstein et al., 2013; Makino and Komiyama, 2015). By longitudinally tracking the same 455 

neurons, we find that learning is largely accompanied by sparsification of cortical responses. 456 

Attention, in contrast, largely led to selectivity changes through selective enhancement of 457 

responses. This is consistent with a large body of work showing that enhancement of attended 458 

responses is a common form of attentional modulation (McAdams and Maunsell, 1999; Speed 459 

et al., 2020; Spitzer et al., 1988; Wilson et al., 2019). Here, by studying the same neural 460 

population across both learning and attention, we demonstrate that V1 neurons are remarkably 461 

versatile, capable of displaying either selective enhancement or selective suppression of 462 

stimulus responses according to the current behavioural demand. 463 

Changes in interactions 464 

Imaging the activity of multiple cell classes simultaneously allowed us to investigate both 465 

interactions within and between excitatory and inhibitory cell classes. We found changes in 466 

interactions at two levels.  467 

First, we observed a reorganization of interaction weights between PYR and PV cells during 468 

learning, possibly through long-term synaptic plasticity, which was captured quantitatively by 469 

a linear dynamical systems model. In contrast, attention did not lead to a similar change in 470 

interaction weights, suggesting that the short timescale of attention does not permit large-scale 471 

reorganization of connectivity patterns.  472 

Second, we found changes in noise correlations between pairs of the same or different cell 473 

classes. Changes in noise correlations have been implicated in improved behavioral abilities 474 
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during learning and attention (Jeanne et al., 2013; Ni et al., 2018). We found that noise 475 

correlation changes were dramatically different across learning and attention. Learning was 476 

marked by reductions in inter-cell class correlations. Specifically, SOM cells became 477 

decorrelated from the rest of the network. This transition potentially facilitates plasticity in the 478 

network, by reducing the amount of dendritic inhibition from SOM cells that coincides with 479 

visual responses in excitatory cells (Khan et al., 2018). In contrast, attention changed 480 

correlations of SOM-SOM and VIP-VIP cell pairs, leaving inter cell-class correlations 481 

relatively unchanged. Our model demonstrates that these changes can be explained by top-down 482 

input in the absence of local connectivity changes. Importantly, this relies on specific 483 

connectivity motifs across cell classes (Fino and Yuste, 2011; Hofer et al., 2011; Jiang et al., 484 

2015; Pfeffer et al., 2013).  485 

To account for the increased stimulus selectivity and noise correlation changes, we tested a 486 

variety of circuit architectures (Prinz et al., 2004). Top-down attentional modulation signals can 487 

be multiplicative (Goris et al., 2014; Reynolds and Heeger, 2009) or additive (Buracas and 488 

Boynton, 2007; Thiele et al., 2009), and they can target specific cell classes (Leinweber et al., 489 

2017; Zhang et al., 2014, 2016). Here, the experimental results limited possible model 490 

architectures to a single one, with multiplicative top-down modulation targeting SOM and PYR 491 

cells. Top-down projections with specific targeting have been proposed to be central to the 492 

gating of plasticity, allowing attention to guide learning (Roelfsema and Holtmaat, 2018). These 493 

specific predictions of targeted top-down projections provide a basis for future experimental 494 

work.  495 

In summary, learning and attention lead to similar increases in neural response selectivity, but 496 

the effects are driven by different subsets of cells. Cells undergo distinct patterns of activity 497 

changes to achieve increased neural response selectivity during learning and attention. These 498 

results highlight the remarkable versatility by which a cortical circuit implements computations 499 

across short and long time scales. 500 

 501 
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Lead Contact 684 

Further information and requests for resources and reagents should be directed to and will be 685 

fulfilled by the lead contacts and corresponding authors Jasper Poort (jp816@cam.ac.uk) and 686 

Adil Khan (khan.adil@kcl.ac.uk). 687 

 688 

Materials Availability 689 

This study did not generate new unique reagents 690 

 691 

Data and code availability 692 

The data and code that support the findings of this study are available from the corresponding 693 

authors upon request. 694 

 695 

Methods 696 

Experimental procedures for the behavioral task, surgery, two-photon calcium imaging, post-697 

hoc immunostaining and image registration have been described in detail in previous studies 698 

(Khan et al., 2018; Poort et al., 2015). 699 

Animals and two-photon calcium imaging 700 

All experimental procedures were carried out in accordance with institutional animal welfare 701 

guidelines and licensed by the UK Home Office and the Swiss cantonal veterinary office. Mice 702 

were C57Bl/6 wild type mice (3 males, 1 female, Janvier Labs), crosses between Rosa-CAG-703 

LSL-tdTomato (JAX: 007914) and PV-Cre (JAX: 008069) (2 males), and crosses between 704 

Rosa-CAG-LSL-tdTomato and VIP-Cre (JAX: 010908) (1 male, 1 female) all obtained from 705 

Jackson Laboratory. Data from these mice were used in a prior study (Khan et al., 2018). 706 

Mice aged P48-P58 were implanted with a chronic imaging window following viral injections 707 

of AAV2.1-syn-GCaMP6f-WPRE (Chen et al., 2013). Multi-plane two-photon imaging began 708 

approximately three weeks after surgery, during which 4 planes were imaged with 20 µm 709 

spacing at an imaging rate of 8 Hz for each imaging plane. Eight mice were imaged both pre-710 

learning (either first or second day of training) and post-learning (either day 7, 8 or 9 of 711 

training), and during an attention switching task (1 session each, after 1 to 2 days of learning 712 
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the attention switching task). Before each imaging session the same site was found by matching 713 

anatomical landmarks.  714 

Behavioral training  715 

Details of the behavioral task have been described in previous studies (Khan et al., 2018; Poort 716 

et al., 2015). Food restricted mice were trained in a virtual environment to perform a visual go-717 

no go discrimination task. Trials were initiated by head-fixed mice running on a Styrofoam 718 

wheel for a randomly chosen distance in an approach corridor (black and white circle pattern 719 

unrelated to the task for 111cm followed by gray walls for 74-185 cm plus a random distance 720 

of gray walls chosen from an exponential distribution with mean 37 cm). Mice were then 721 

presented with either a vertical grating pattern (square wave gratings, 100% contrast) or an 722 

angled grating pattern (rotated 40° relative to vertical) on the walls of the virtual environment. 723 

Mice were rewarded with a drop of soy milk for licking a reward spout in response to the 724 

vertical grating (hits). One or more licks in the angled grating corridor were considered errors 725 

(false alarms). Mouse performance was quantified using a behavioral d-prime: 726 

, where is the normal inverse cumulative distribution function, H is 727 

the rate of hit trials and F is the rate of false alarm trials.  728 

After reaching high levels of discrimination performance, all mice were trained to switch 729 

between blocks of an olfactory and visual discrimination task (the attention switching task). 730 

The visual blocks were the same as the visual discrimination task described above. In olfactory 731 

blocks, mice performed an olfactory go-no go discrimination task in which odor 1 (10% soya 732 

milk odor) was rewarded and odor 2 (10% soya milk with 0.1% limonene mixture) was not 733 

rewarded. Odors were delivered through a flow dilution olfactometer calibrated with a mini 734 

PID (Aurora) at 10-20% saturated vapor concentration of the above solutions, and at 1 L/min 735 

flow rate. Before the presentation of odors, in 70% of randomly chosen trials mice were also 736 

presented with the same vertical or angled grating stimuli at different positions in the approach 737 

corridor, with random delays from trial start chosen from the same distribution as in the visual 738 

block. Mice learnt to ignore these irrelevant grating stimuli while accurately discriminating the 739 

odors. On switching to the visual block, mice licked selectively to the rewarded grating as 740 

before. Mice typically performed two visual and two olfactory blocks in each session, data was 741 

pooled across blocks of the same type. After each block transition, we excluded trials in which 742 

the behavior of the mice was ambivalent (Poort et al., 2015). Each block typically contained 743 

70-150 trials. Mice typically learnt to switch successfully within 1-2 days.  744 
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Immunohistochemistry and image registration 745 

Brain fixation was performed by transcardial perfusion with 4 % paraformaldehyde in 746 

phosphate buffer 0.1 M followed by 24 hours of post-fixation in the same solution at 4°C. The 747 

brains underwent two freeze-thaw cycles in liquid nitrogen, and were sliced tangentially to the 748 

surface of visual cortex. 80 µm slices were cut on a vibratome (Zeiss Hydrax V50) and were 749 

immunostained for PV, SOM and VIP (Khan et al., 2018). Primary and secondary antibodies 750 

are listed in (Khan et al., 2018). We imaged the slices with a confocal microscope (Zeiss LSM 751 

700), and confocal z-stacks were registered with the previously acquired in vivo imaging planes 752 

and z-stacks of the recording sites. Cells were identified manually and assigned to cell classes 753 

based on immunostaining. 754 

Data analysis 755 

Regions of interest (ROIs) from motion-corrected image stacks were selected for each cell in 756 

each session. We adapted the method of (Chen et al., 2013) to correct for neuropil 757 

contamination of calcium traces.  Neuropil masks were created for each cell by extending the 758 

ROI by 25μm and including all pixels that were more than 10μm away from the cell boundary, 759 

excluding pixels assigned to other cells or segments of dendrites and axons (pixels that were 760 

more than 2 standard deviations brighter than the mean across all pixels in the neuropil mask). 761 

We performed a robust regression on the fluorescence values of the ROI and neuropil mask. 762 

We inspected the slope of this regression in a sample of our dataset and obtained a factor of 0.7 763 

by which we multiplied the neuropil mask fluorescence (median subtracted) before subtracting 764 

it from the ROI fluorescence to obtain the neuropil-corrected raw fluorescence time series F(t). 765 

Baseline fluorescence F0(t) was computed by smoothing F(t) (causal moving average of 0.375s) 766 

and determining for each time point the minimum value in the preceding 600s time window. 767 

The change in fluorescence relative to baseline, ΔF/F, was computed by taking the difference 768 

between F and F0, and dividing by F0. All data used in this study for the learning epoch is the 769 

same as that used in (Khan et al., 2018), except with neuropil corrected signals used throughout. 770 

Responses were analyzed for the vertical and angled grating corridor by aligning neuronal 771 

activity to the onset of the stimuli. We used a Wilcoxon rank-sum test to determine if the 772 

response of a cell (average ΔF/F in a time window of 0-1 s after grating onset) was significantly 773 

different between vertical and angled gratings (P < 0.05). We used a Wilcoxon signed-rank test 774 

to determine if the response (ΔF/F 0-1 s) to the gratings significantly increased or decreased 775 

relative to baseline (-0.5 to 0 s). For visualizing stimulus-evoked responses and for computing 776 
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the change in stimulus-evoked responses with learning and attention, we subtracted the pre-777 

stimulus baseline (-0.5 to 0 s before stimulus onset) from the average response. 778 

The selectivity of each cell was quantified as the selectivity index (SI), the difference between 779 

the mean response (0-1 s) to the vertical and angled grating divided by the pooled standard 780 

deviation, which was positive or negative for cells that preferred the vertical or angled grating 781 

respectively. We took the average of the absolute selectivity of all cells to obtain an average 782 

measure of the selectivity across a population of cells (including vertical and angled preferring 783 

cells). We calculated the selectivity of the local PYR population around each PV cell by 784 

averaging the responses of all PYR cells, within 100 μm distance, to the two grating stimuli. 785 

Confidence intervals were calculated by a bootstrap procedure where we randomly selected 786 

cells with replacement 10,000 times to obtain the 2.5 and 97.5 percentiles. The P value was 787 

given by the percentage of bootstrapped pre-learning or ignore condition slope values that were 788 

lower than the post-learning or attend slope multiplied by two (two-sided test). To compute 789 

Δselectivity during learning and attention, we took the difference SIpost – SIpre or SIattend – SIignore 790 

for cells with positive selectivity post learning or in the attend condition. Similarly, we took the 791 

difference –(SIpost – SIpre) or –(SIattend – SIignore) for cells with negative selectivity post learning 792 

or in the attend condition. 793 

To compute noise correlation, we first subtracted for each trial and each cell the average 794 

responses across all trials. We then used the Pearson correlation coefficient to quantify the 795 

correlation between responses of pairs of cells. Changes in noise correlations with learning and 796 

attention between different cell types were tested using a sign test on all cells imaged pre- and 797 

post-learning or in the ignore and attend conditions.  798 

In a previous study based on the learning dataset used here, we controlled for the effects of 799 

running and licking on neural responses (Khan et al., 2018, Supplementary figures 5 and 8). 800 

Here we performed similar analysis on the attention dataset. We controlled for the possible 801 

effect of variations in running speed across the ignore and attend conditions on stimulus 802 

selectivity and noise correlations using a stratification approach. We selected a subset of trials 803 

with similar distributions of running speed in the ignore and attend condition for each stimulus. 804 

We then recomputed the stimulus selectivity and noise correlations in the attend and ignore 805 

conditions and obtained similar results with and without stratification (Fig. S3A,C). On 806 

excluding trials with licks in the analysis window (0-1 s after grating onset), we also obtained 807 

similar results for stimulus selectivity and noise correlations (Fig. S3B,D).  808 

 809 
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Linear Multivariate Autoregressive System Model 810 

Details of the MVAR model are described in a previous study (Khan et al., 2018). We fit the 811 

activity of all simultaneously imaged neurons using a multivariate autoregressive (MVAR) 812 

linear dynamical system incorporating stimulus-related input, the simultaneously measured co-813 

fluctuations from multiple cells of different cell types and the mouse running speed. We 814 

estimated the interaction weights between pairs of cells which describe the relationship between 815 

the activity of one cell and the activity of another cell at previous timepoints, conditioned over 816 

the activity of all other cells and over behavioral and sensory variability. 817 

The learning-related data was previously studied in detail using this model (Khan et al., 2018). 818 

Here we fit the model separately to the learning and attention switching tasks, in each case 819 

fitting either separate interaction weights for the pre/post learning or ignore/attend conditions 820 

or a single set of weights to account for activity in both conditions. The different MVAR models 821 

were compared using leave-one-out cross validation (Figure S6B), measuring prediction quality 822 

on held-out data. We held out one vertical grating trial from the post learning or attend condition 823 

in the test set, using the remaining trials of all types for training. The MVAR model was fit to 824 

these training data, and the error in the model prediction was calculated for each time sample 825 

in the test trial. This procedure was repeated, leaving out each vertical grating trial in turn. We 826 

calculated an �� value for each cell combining errors across all of these trials. Specifically, the 827 �� was defined relative to a baseline model which incorporated only the trial-averaged response 828 

profile of each cell, i.e. �� = 1 – (sum of squared errors in MVAR prediction)/(sum of squared 829 

errors in the trial-averaged response profile prediction). Running speed was not included in the 830 

model for the cross-validation analysis to facilitate comparison with alternative models. 831 

 832 

Circuit model 833 

We modeled a circuit consisting of an excitatory population PYR, and three inhibitory 834 

populations, corresponding to PV, SOM, and VIP interneurons. The activity of the population 835 � is described by its calcium response ��, which evolves over time according to one of the 836 

following equations: 837 

Additive model: 838 
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�� ����� = −�� + �(��� + ��� + ���� + � ���� �� + �� ⋅ (��������(�) + ��������(�)839 

+ �1 − ���� − ������(�))) 840 

Multiplicative model: 841 

�� ����� = −�� + �(����(��� + ���) + � ���� �� + �� ⋅ (��������(�) + ��������(�)842 

+ �1 − ���� − ������(�))), 843 

where �, � ∈ {"#�, "$, %&', $�"} and 844 �� is the time constant of population �. 845 ��� is the baseline input to population �, 846 ��� is the stimulus-dependent feedforward input to population �, 847 ���� is the modulatory top-down input - the attentional modulation of population �, and 848 ∑ ���� �� is the recurrent input from the local circuit and ��� is the effective synaptic weight. 849 

As in earlier models (Kanashiro et al., 2017), each population received private and shared 850 

noise. ��(�) is noise, private to each population, corresponding to noise arising from ion 851 

channels, or the activation function. 852 ���(�) and ���(�) are shared noise terms arising from shared modulatory top-down and/or 853 

feedforward inputs. ��(t), ���(�), and ���(�) are drawn from a Gaussian distribution with zero 854 

mean and unit variance. We assume that external noise sources contribute equally.  855 �(+) is the activation function: 856 

�(+) = ,0 if + < 0(�123 − �4)�56ℎ(+/(�123 − �4)) if + ≥ 0 857 

PYR and PV populations receive an input current ��� upon presentation of their preferred 858 

stimulus (Ji et al., 2016) representing thalamic inputs. They receive a fraction of this input 859 

current (0.2⋅ ��) upon presentation of their non-preferred stimulus. Similar results were 860 

observed when SOM and VIP populations also received the same input current as PV cells. 861 

All populations received a constant baseline current input ��� . Each modulated population � 862 

received a top-down modulation ����, which took one of two values 863 {+�:;<=> , +2??>;@} depending on the absence or presence of attention (see Tables 1 and 2). 864 �4 = 1.0 and �123 = 20.0 denote the minimum and maximum activity, respectively. 865 
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Population baseline ���  stimulus ��� top-down ����     

PYR 6.0 17.8 {1.0, 2.0}     

PV 4.0 10.0 {1.0, 2.0}     

SOM 1.2 0.0 {1.0, 2.0}     

VIP 4.6 0.0 {1.0, 2.0}     

 866 

Table 1: Inputs to the multiplicative model. Shown are the values for the baseline, stimulus, and 867 

top-down inputs to the populations PYR, PV, SOM, and VIP. Top-down inputs depend on the 868 

condition, which is either ignore or attend: {+�:;<=>, +2??>;@}. 869 

 870 

Population baseline ���  stimulus ��� top-down ����     

PYR 6.0 17.8 {0.0, 1.0}     

PV 4.0 10.0 {0.0, 1.0}     

SOM 1.2 0.0 {0.0, 1.0}     

VIP 4.6 0.0 {0.0, 1.0}     

 871 

Table 2: Inputs to the additive model. Shown are the values for the baseline, stimulus, and top-down 872 

inputs to the populations PYR, PV, SOM, and VIP. Top-down inputs depend on the condition, which 873 

is either ignore or attend: {+�:;<=> , +2??>;@}. 874 

 875 

We changed the contributions of noise sources to the overall noise in the populations, 876 

depending on the inputs population � received, according to Kanashiro et al. (Kanashiro et al., 877 

2017). If population � received attentional modulation: 878 

���� = 13 879 

otherwise: 880 

���� = 0. 881 

If population � received feedforward input: 882 

��� = 13 883 

otherwise: 884 

��� = 0. 885 

The standard deviation of the total noise was given by: 886 

�� = 0.5√2 887 

 888 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2021. ; https://doi.org/10.1101/2021.01.31.429053doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.31.429053
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33 

 

Connectivity 889 

We took the weight matrix � from (Kuchibhotla et al., 2017), and adjusted only the baseline 890 

and stimulus inputs ��� and ��� such that the simulated neural responses matched the data. 891 

� = F�GG �GH �GI �GJ�HG �HH �HI �HJ�IG �IH �II �IJ�JG �JH �JI �JJ
K = F . 017 . 956 . 512 . 045. 8535 . 99 . 307 . 091.285 0 0 . 142.104 . 184 . 734 0 K 892 

Each population was represented twice in the model, allowing us to measure noise 893 

correlations within cell classes. 894 

We simulated the network without stimulus input for 5s until the neural activity for each cell 895 

class reached steady state. Then we presented the non-preferred stimulus for 3s, following 896 

which we waited another 4s before we presented the preferred stimulus for 3s. The simulation 897 

time step was 1ms. We repeated this protocol for 100 trials. �HQR was 800ms and �� with � ∈898 {%&', $�", "$} was 400ms. 899 

To calculate the selectivity of cell populations in the model, we subtracted the mean activity 900 

to the non-preferred stimulus +S from the mean activity to the preferred stimulus +H during 1s 901 

after stimulus onset and normalized by their pooled standard deviation TU<<V>@: 902 

%� = +H − +STU<<V>@
TU<<V>@ = W(6 − 1)TH� + (6 − 1)TS�26 − 2

 903 

where 6 is the number of trials, TH is the standard deviation of the activity during the 904 

preferred stimulus, and TS is the standard deviation of the activity during the non-preferred 905 

stimulus. 906 

To determine the noise correlation between cell populations in the model, we calculated the 907 

average activity in populations + and X in each trial � in a 1s time window after onset of the 908 

preferred stimulus: +�  and X�. We calculated the means +  and X  and standard deviations �3 909 

and �Y of the activity over trials for each population. We then calculated noise correlations 910 

between populations + and X over 6 = 100 trials according to the following equation: 911 

Z[3Y = 16 − 1 � \+� − +�3
X� − X�Y ];

�^_ . 912 
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For Figure S6D, �HJ�� and �J`H��  were 0.0, and we varied �Iab��  continuously between 1 and 2.2 913 

and �HQR��  proportionally to �Iab��  as indicated in the figure. 914 

 915 

 916 
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