

# Impact of Prior Infection on Protection and Transmission of SARS-CoV-2 in Golden Hamsters

4 Cheng Zhang<sup>1, 2&</sup>, Zhendong Guo<sup>1&</sup>, Nan Li<sup>1&</sup>, Huan Cui<sup>1, 3</sup>, Keyin Meng<sup>1</sup>, Lina Liu<sup>1</sup>, Li Zhao<sup>1</sup>,  
5 Shanshan Zhang<sup>1</sup>, Chengfeng Qin<sup>4</sup>, Juxiang Liu<sup>2</sup>, Yuwei Gao<sup>1#</sup>, Chunmao Zhang<sup>1#</sup>

6

<sup>7</sup> <sup>1</sup> Military Veterinary Research Institute, Changchun, China

<sup>8</sup> <sup>2</sup>College of Veterinary Medicine, Hebei Agricultural University, Baoding, China

9 <sup>3</sup>College of Veterinary Medicine, Jilin University, Changchun, China

<sup>4</sup> Beijing Institute of Microbiology and Epidemiology, Beijing, China

11 & Authors contributed equally to this work.

12 <sup>#</sup> Correspondence author:

13 Chunmao Zhang: jk704715@sina.com

14 Yuwei Gao: gaoyuwei@gmail.com

15

16 **Abstract**

17 The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 100 million  
18 confirmed human infections, and 2 million more deaths globally since its emergence in the end of  
19 2019. Several studies have shown that prior infection provided protective immunity against  
20 SARS-CoV-2 in non-human primate models. However, the effect of prior infection on blocking  
21 SARS-CoV-2 transmission is not clear. Here, we evaluated the impact of prior infection on  
22 protection and transmission of the SARS-CoV-2 virus in golden hamsters. Our results showed that  
23 prior infection provided protective immunity against SARS-CoV-2 re-challenge, but it was not  
24 sterilizing immunity. The transmission experiment results showed that SARS-CoV-2 was efficiently  
25 transmitted from naive hamsters to prior infected hamsters by direct contact and airborne route,  
26 but not by indirect contact. Further, the virus was efficiently transmitted from prior infected  
27 hamsters to naive hamsters by direct contact, but not by airborne route and indirect contact.  
28 Surprisingly, the virus can be transmitted between prior infected hamsters by direct contact during  
29 a short period of early infection. Taken together, our study demonstrated that prior infected  
30 hamsters with good immunity can still be naturally re-infected, and the virus can be transmitted  
31 between prior infected hamsters and the naive through different transmission routes, implying the  
32 potential possibility of human re-infection and the risk of virus transmission between prior  
33 infected population and the healthy. Our study will help to calculate the herd immunity threshold  
34 more accurately, make more reasonable public health decisions, formulate an optimized  
35 population vaccination program, as well as aid the implementation of appropriate public health  
36 and social measures to control COVID-19.

37 Key words: SARS-CoV-2, prior infection, re-infection, direct contact, airborne transmission

38    **The main text**

39    As of Jan 29, 2021, more than 100 million confirmed human infections and over 2 million deaths  
40    have been caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the  
41    causative agent of coronavirus infectious disease 2019 (COVID-19) pandemic, with devastating  
42    impact on lives and economy. At present, multiple vaccine candidates are in phase 3 clinical trials  
43    and several of them have been approved for emergency use authorization with conditions<sup>1-8</sup>.  
44    Previous studies have shown that prior infection or vaccination provided protective immunity  
45    against SARS-CoV-2 in different animal models<sup>9-17</sup>, but most are not sterilizing immunity. The prior  
46    infected or vaccinated animals still shed large quantities of virus in their upper respiratory  
47    tracts<sup>9,12,14,16</sup>. Besides protection from diseases, reducing or blocking SARS-CoV-2 transmission  
48    between humans is crucial for COVID-19 pandemic control. However, the impact of prior  
49    infection on blocking SARS-CoV-2 transmission is not clear. As a small animal model, golden  
50    hamsters have been used for studying pathogenesis<sup>18,19</sup>, transmission ability<sup>20</sup> of SARS-CoV-2 and  
51    for evaluating potential vaccines<sup>21,22</sup> and antiviral drugs<sup>23</sup>. Here, we evaluated the impact of prior  
52    infection on protection and transmission of SARS-CoV-2 in golden hamsters. Our results showed  
53    that prior infection provided good protective immunity against SARS-CoV-2 re-challenge, but the  
54    prior infected hamsters can still be re-infected. Moreover, the virus was efficiently transmitted  
55    from naive hamsters to prior infected hamsters by direct contact and airborne route, but not by  
56    indirect contact. The virus was also transmitted from prior infected hamsters to the naive and prior  
57    infected hamsters by direct contact, but not by airborne route. Our findings will help governments  
58    and public health agencies to make more reasonable public health decisions as well as aid the  
59    implementation of appropriate public health and social measures to control COVID-19.

60 **Prior infection protects hamsters against SARS-CoV-2 re-challenge**

61 We evaluated protective immunity of prior infection against SARS-CoV-2 re-challenge. Hamsters  
62 were divided into high dose infected group (HD) and low dose infected group (LD), and  
63 intranasally inoculated with  $10^5$  TCID<sub>50</sub> or  $10^3$  TCID<sub>50</sub> of the virus respectively (Supplementary  
64 Table S1). At 21 days post infection (dpi), Hamsters in HD and LD were inoculated with  $10^6$   
65 TCID<sub>50</sub> of the virus. As the infected control (IC), another six naive hamsters were inoculated with  
66  $10^6$  TCID<sub>50</sub> of the virus. At 2 and 4 dpi, nasal washes and the supernatants of the homogenized  
67 nasal turbinates and lungs were collected for virus titration in Vero-E6 cells and RNA  
68 quantification using real-time qPCR. The glutaraldehyde-fixed nasal turbinates were prepared for  
69 histological examination.

70 Serum was collected from hamsters in HD and LD at 21 dpi. The results of virus neutralization  
71 assay revealed that all hamsters inoculated with the virus had a much higher neutralizing antibody  
72 titer, and the neutralizing antibody titer in HD was slightly higher than that in LD (Figure S1),  
73 indicating that prior infection elicited effective immunity in hamsters. For nasal washes, viral load  
74 in IC peaked at 2 dpi, with a titer of  $10^{5.17}$  TCID<sub>50</sub>/mL, and was significantly much higher than that  
75 in HD and LD (Figure 1A). At 2 and 4 dpi, RNA copies in IC were slightly higher than that in HD  
76 and LD with significant difference (Figure 1D). For nasal turbinate, high levels of viral load were  
77 observed in IC at 2 and 4 dpi, with a titer of  $10^{5.75}$  TCID<sub>50</sub>/mL and  $10^{3.75}$  TCID<sub>50</sub>/mL respectively,  
78 about 3500-fold and 180-fold higher than that in HD and LD (Figure 1B). Viral load in HD and  
79 LD decreased to below the detection limit of TCID<sub>50</sub> assay at 4 dpi. RNA copies in IC at 2 dpi,  
80  $10^{10.45}$  copies/mL, were 80-fold and 25-fold higher than that in HD and LD respectively and RNA  
81 copies in IC at 4 dpi,  $10^{9.83}$  copies/mL, were about 4000-fold and 10000-fold higher than that in

82 HD and LD (Figure 1E). Compared with at 2 dpi, RNA copies at 4 dpi in HD and LD decreased  
83 about 200-fold and 1600-fold respectively (Figure 1E). Viral RNA assays were further confirmed  
84 by the sgmRNA assays. The sgmRNA copies in IC at 2 and 4 dpi,  $10^{7.1}$ copies/mL and  
85  $10^{6.4}$ copies/mL, were about 80-fold and 5000-fold higher than that in HD and LD, averagely  
86  $10^{5.2}$ copies/mL and  $10^{2.7}$ copies/mL respectively (Figure 1G). Compared with at 2 dpi, the  
87 sgmRNA copies in HD and LD at 4 dpi decreased about 250-fold and 600-fold respectively  
88 (Figure 1G). For lungs, viral load at 2 and 4 dpi in HD and LD was under the detection limit,  
89 which was significantly lower than that in IC,  $10^{5.33}$  TCID<sub>50</sub>/mL and  $10^{4.17}$  TCID<sub>50</sub>/mL respectively  
90 (Figure 1C). RNA copies at 2 and 4 dpi in IC,  $10^{10.2}$ copies/mL and  $10^{9.5}$ copies/mL, was about  
91 13000-fold and 40000-fold higher than that in HD and LD, about  $10^{6.1}$ copies/mL and  
92  $10^{4.9}$ copies/mL (Figure 1F). Similar to the trend of viral RNA copies, the sgmRNA in IG at 2 and  
93 4 dpi,  $10^{6.6}$ copies/mL and  $10^{6.0}$ copies/mL, was about 16000-fold and 8000-fold higher than that in  
94 HD and LD, averagely  $10^{2.4}$ copies/mL and  $10^{2.1}$ copies/mL respectively (Figure 1H). Additionally,  
95 we examined the presence of SARS-CoV-2 virus in nasal tissues using transmission electron  
96 microscopy. Several coronavirus-like particles were observed in intracellular compartments of  
97 nasal tissues of hamsters that were re-challenged with SARS-CoV-2 (Figure S2).  
98 The substantially reduced viral titers, RNA and sgmRNA copies in nasal washes, nasal turbinates  
99 and lungs showed that prior infection provided good protective immunity against SARS-CoV-2.  
100 However, a moderate level of live virus was still detected in nasal washes and nasal turbinates,  
101 despite with a relatively short shedding period, and considerable sgmRNA copies were also  
102 detected in nasal turbinates at 2 dpi. The results of the detected live virus and the considerable  
103 sgmRNA copies, in combined with observation of coronavirus-like particles in intracellular

104 compartments of nasal cells, powerfully proved that the virus can replicate in prior infected  
105 hamsters, especially in nasal turbinates, undoubtedly indicating that prior infected hamsters can be  
106 re-infected by the virus, even with a higher neutralizing antibody titer.

107 **Impact of prior infection on SARS-CoV-2 transmission in hamsters**

108 The SARS-CoV-2 virus was transmitted between hamsters via multiple routes, including direct  
109 contact, indirect contact and airborne transmission. Here we systematically evaluated the impact  
110 of prior infection on SARS-CoV-2 transmission between prior infected hamsters and the naive  
111 hamsters.

112 **Transmission of SARS-CoV-2 from naive hamsters to prior infected hamsters**

113 For the potential transmission of the virus from naive hamsters to prior infected hamsters by direct  
114 contact, three naive donor hamsters were intranasally inoculated with  $10^6$  TCID<sub>50</sub> of the virus.  
115 After 24 hours' inoculation, the three donors were transferred to a direct contact transmission cage  
116 (supplementary Figure S3A) and co-housed with another three prior infected hamsters that were  
117 inoculated with  $10^5$  TCID<sub>50</sub> or  $10^3$  TCID<sub>50</sub> of the virus 21 days ago. Nasal washes were collected  
118 every other day from the donors and the contacts for 8 days. For donors, the infectious viral load  
119 in nasal washes peaked at 2 dpi and then declined rapidly, while viral RNA copies was relatively  
120 stable during the first six infection days, and then substantially declined at 8 dpi (Figure 2A). At 1  
121 days post exposure (dpe), live SARS-CoV-2 virus was detected in nasal washes of two prior  
122 infected contact hamsters, and one with a very low viral titer. At 3 dpe, live virus was detected in  
123 all three prior infected contact hamsters (Figure 2A). The viral titers in the contacts were much  
124 lower than that in the donor hamsters. Viral RNA copies in two prior infected contact hamsters  
125 were significantly improved at 3 dpe (Figure 2A). The experiment results showed that the virus

126 was efficiently transmitted from the naïve donors to the prior infected contacts. For airborne  
127 transmission of the virus from naive hamsters to prior infected hamsters, three naive donor  
128 hamsters were inoculated with  $10^6$  TCID<sub>50</sub> of the virus, and at 24 hours' inoculation, the donor  
129 hamsters and another three prior infected recipient hamsters were transferred to the airborne  
130 transmission cage, with two wire-mesh partition that prevented the direct and indirect contact  
131 between animals and allowed the spread of the virus through air (supplementary Figure S3B). At 1  
132 dpe, live SARS-CoV-2 virus was detected in nasal washes of two prior infected recipient hamsters  
133 and one with a very low viral titer (Figure 2B). At 3 dpe, all three prior infected recipient hamsters  
134 were infected by SARS-CoV-2 and viral titers in nasal washes were significantly improved, and at  
135 5 dpe, the viral titer in one prior infected recipient hamster was still relatively high, about  $10^{3.25}$   
136 TCID<sub>50</sub>/mL (Figure 2B). Viral RNA copies in nasal washes in the prior infected recipient hamsters  
137 peaked at 3 dpe, and one hamster still had a higher viral RNA copies in nasal washes at 5 dpe  
138 (Figure 2B). Therefore, the virus was efficiently transmitted from the naive to prior infected  
139 hamsters by airborne route as well. For indirect contact transmission of the virus from the naive to  
140 prior infected hamsters, three naive donor hamsters were inoculated with  $10^6$  TCID<sub>50</sub> of the virus,  
141 and at 48 hours' inoculation, the donor hamsters were removed and transferred to a new cage, and  
142 another three prior infected recipient hamsters were placed into the initial cage housing the donor  
143 hamsters. During the whole experiment period, no live virus was detected in nasal washes of the  
144 three prior infected recipient hamsters (Figure 2C). The virus was not transmitted from the naive  
145 to prior infected hamsters by indirect contact. In summary, SARS-CoV-2 was efficiently  
146 transmitted from the naive donors to prior infected hamsters by direct contact and airborne  
147 transmission, but not by indirect contact.

148 **Transmission of SARS-CoV-2 from prior infected hamsters to naive hamsters**

149 For direct contact transmission of the virus from prior infected hamsters to naive hamsters, three

150 prior infected hamsters were as the donors, and another three naive hamsters were as the recipients

151 in direct contact transmission group. The donors were inoculated with  $10^6$  TCID<sub>50</sub> of the virus, and

152 at 24 hours' inoculation, the donors and the direct contacts were co-housed together in a new cage.

153 At 2 dpi, viral titers in nasal washes of two donor hamsters were very low, and another donor

154 hamster with a moderate titer of  $10^{2.75}$  TCID<sub>50</sub>/mL (Figure 3A). At 4 dpi, live virus was not

155 detected in nasal washes of two donor hamsters, and another one with a low viral titer. Viral RNA

156 copies in nasal washes of the donor hamsters were about  $10^8$  copies/mL at 2 dpi, and substantially

157 declined at 6 and 8 dpi (Figure 3A). Live virus was detected in nasal washes of all three contact

158 hamsters at 3 days post exposure (dpe), one with a very high titer of  $10^{5.5}$  TCID<sub>50</sub>/mL, and another

159 with a very low titer of  $10^{0.75}$  TCID<sub>50</sub>/mL (Figure 3A). Viral titers in nasal washes of all hamsters

160 were very high at 5 dpe. Viral RNA copies in nasal washes of the contact hamsters were improved

161 rapidly at 3 dpe and later held at a high level. The results showed that the virus was efficiently

162 transmitted from prior infected hamsters to naive hamsters by direct contact. For airborne

163 transmission of the virus from prior infected hamsters to naive hamsters, three prior infected donor

164 hamsters were inoculated with  $10^6$  TCID<sub>50</sub> of the virus, and another three naive hamsters were as

165 recipients. At 24 hours' inoculation, the prior infected donor hamsters and the naïve recipient

166 hamsters were transferred to an airborne transmission cage. Live virus was not detected at 2 dpi

167 and later in nasal washes of the prior infected donor hamsters (Figure 3B). No live virus was also

168 detected in nasal washes of the recipient hamsters in the airborne transmission group (Figure 3B).

169 The airborne transmission experiment was also performed similarly at two hours' inoculation. A

170      moderate level of virus titer was detected at 1 and 3 dpi in prior infected donor hamsters, and no  
171      live virus was still detected in all recipient hamsters in the airborne transmission group during the  
172      whole experiment period (Figure S4B). The results demonstrated that the virus was not  
173      transmitted from prior infected donors to naive hamsters through airborne route. For indirect  
174      contact transmission of the virus from prior infected hamsters to naive hamsters, three prior  
175      infected donor hamsters were inoculated with  $10^6$  TCID<sub>50</sub> of the virus, and at 48 hours' inoculation,  
176      the prior infected donor hamsters were removed and transferred to a new cage, and another three  
177      naive recipient hamsters were placed into the initial cage housing the donors. No live virus was  
178      detected in nasal washes of the recipient hamsters in the indirect contact transmission group  
179      (Figure 3C). The virus was not transmitted from prior infected hamsters to the naive by indirect  
180      contact. To sum up, SARS-CoV-2 can be transmitted from prior infected hamsters to naive  
181      hamsters by direct contact, but not by airborne route and indirect contact.

182      **Transmission of SARS-CoV-2 between prior infected hamsters**

183      We evaluated the potential transmission of SARS-CoV-2 between prior infected hamsters by direct  
184      contact and airborne route. For direct contact transmission, four prior infected donor hamsters  
185      were inoculated with  $10^6$  TCID<sub>50</sub> of the virus. At two hours' inoculation, another four prior  
186      infected hamsters were co-housed together with those four donors in a new cage. A high level of  
187      virus titer was detected in nasal washes of the donor hamsters at 1 and 3 dpi, averagely  $10^{3.56}$   
188      TCID<sub>50</sub>/mL and  $10^{2.25}$  TCID<sub>50</sub>/mL, while viral RNA copies were maintained at  $10^7$  to  
189       $10^8$  copies/mL. Since 5 dpi, no live virus was found in nasal washes of the donors. At 3 dpe, live  
190      virus was detected in nasal washes in one contact hamster, with a titer of  $10^{4.25}$  TCID<sub>50</sub>/mL, and  
191      viral RNA load in this hamster was also greatly improved to  $10^{8.26}$  copies/mL (Figure 4A). At 5 dpe,

192 live virus was detected in nasal washes of another hamster in the contact transmission group, with  
193 a low titer of  $10^{0.75}$  TCID<sub>50</sub>/mL, while viral RNA copies were improved to  $10^6$  copies/mL. At 7 dpe,  
194 virus titer in nasal washes of this hamster was substantially improved to  $10^{3.25}$  TCID<sub>50</sub>/mL, and  
195 viral RNA copies were further improved to  $10^{8.46}$  copies/mL (Figure 4A). It seems that the virus  
196 was first transmitted from the artificially inoculated hamsters to a prior infected contact hamster,  
197 and then was sequentially transmitted to another prior infected contact hamster. The experiment  
198 was also performed similarly at 24 hours' inoculation, four prior infected donors and four prior  
199 infected contact hamsters were co-housed in a new cage at 24 hours' inoculation. No live virus  
200 was detected in nasal washes of all contact hamsters during the experiment period (Figure S5A).  
201 The experiment results showed that SARS-CoV-2 was transmitted between prior infected hamsters  
202 by direct contact during a very short period of early infection. For airborne transmission, three  
203 prior infected donor hamsters were inoculated with  $10^6$  TCID<sub>50</sub> of the virus and another three prior  
204 infected hamsters were as the recipients in airborne transmission group. The three donor hamsters  
205 and the three recipient hamsters were transferred to an airborne transmission cage at two hours' or  
206 24 hours' inoculation, no live virus was detected in nasal washes of all recipient hamsters in the  
207 two airborne transmission groups (Figure 4B & Figure S5B). The results showed that  
208 SARS-CoV-2 was not transmitted between prior infected hamsters by airborne route. Taken  
209 together, SARS-CoV-2 has limited transmission ability between prior infected hamsters by direct  
210 contact during a short period of early infection, but without the ability to transmit by airborne  
211 route.

## 212 **Impact of a lower dose inoculation on SARS-CoV-2 transmission**

213 We evaluated the impact of a lower dose inoculation on SARS-CoV-2 transmission between prior

214 infected hamsters and naïve hamsters by direct contact. For transmission of the virus from naïve  
215 donors to prior infected contacts, four naïve donor hamsters were inoculated with  $10^4$  TCID<sub>50</sub> of  
216 the virus, and at 24 hours' inoculation, the donors and another four prior infected hamsters were  
217 co-housed together in a new cage. Similar to the high dose inoculation, viral load in nasal washes  
218 was maintained at a higher level at 2 and 4 dpi as well, and then followed a rapid decline (Figure  
219 5A). Viral RNA copies were maintained at about  $10^9$  copies/mL during the first four infection days,  
220 and then slowly declined. Live virus was detected in two contact hamsters at 1 dpe, one with a  
221 very low titer of  $10^{0.75}$  TCID<sub>50</sub>/mL. At 3 dpe, live virus was found in nasal washes of all four prior  
222 infected hamsters, two of which was significantly improved than before (Figure 5A). Viral RNA  
223 copies in nasal washes at 3 dpe were also significantly improved than before. Obviously,  
224 SARS-CoV-2 was efficiently transmitted from naïve donor hamsters to prior infected hamsters by  
225 direct contact. For transmission of the virus from prior infected hamsters to naïve hamsters, four  
226 prior infected donor hamsters were inoculated with  $10^4$  TCID<sub>50</sub> of the virus. At 24 hours'  
227 inoculation, the donor hamsters and another four naïve hamsters were co-housed together in a new  
228 cage. At 2 dpi, virus load in nasal washes of the donor hamsters was at a moderate level, about  
229  $10^{2.25}$  TCID<sub>50</sub>/mL, and viral RNA copies were about  $10^{7.8}$  copies/mL (Figure 5B). Live virus was  
230 detected in nasal washes of three of the four naïve contacts at 3 dpe, with titers from  $10^{3.25}$   
231 TCID<sub>50</sub>/mL to  $10^{5.5}$  TCID<sub>50</sub>/mL (Figure 5B). At 5 dpe, another contact hamster was also infected by  
232 SARS-CoV-2, with a high viral titer of  $10^{5.25}$  TCID<sub>50</sub>/mL in nasal washes. Viral RNA copies were  
233 rapidly improved to  $10^{8.72}$  copies/mL at 3 dpe, and further improved to  $10^{10.15}$  copies/mL at 5 dpe,  
234 then slowly declined at 7 dpe. The results showed that SARS-CoV-2 was efficiently transmitted  
235 from prior infected donor hamsters to the naïve contacts. In summary, with a lower inoculation,

236 SARS-CoV-2 was still efficiently transmitted between prior infected hamsters and naïve hamsters.

237 **Discussion**

238 Our results showed that prior infection of SARS-CoV-2 elicited a higher titer of neutralizing

239 antibodies in hamsters, and provided protective immunity against SARS-CoV-2 re-challenge.

240 However, it was not sterilizing immunity, and the virus still moderately replicated in nasal

241 turbinates of prior infected hamsters, indicating that prior infected hamsters can be artificially

242 re-infected after a short recovery period, even with a high level of neutralization antibodies. The

243 conclusion is consistent with recent reports showing that recovered COVID-19 patients were

244 re-infected in the presence of neutralizing antibodies<sup>24,25</sup>. A large study of a recovered cohort of

245 175 COVID-19 patients revealed that 6% of COVID-19 patients did not show any antibody

246 response at all, and about 30% COVID-19 patients showed very low neutralizing antibodies<sup>26</sup>.

247 Considering the gradual decay of neutralizing antibodies<sup>27-30</sup> and a considerable population with

248 very low neutralizing antibodies, the re-infection of some recovered COVID-19 patients will be

249 unavoidable in the future. We also showed that prior infected hamsters can be naturally re-infected

250 by direct contact or airborne route. The results of transmission study showed that SARS-CoV-2

251 can be transmitted effectively from naïve hamsters to prior infected hamsters by direct contact and

252 airborne routes, but not by indirect contact. Additionally, SARS-CoV-2 can be transmitted

253 effectively from prior infected hamsters to naïve hamsters by direct contact, but not by airborne

254 route and indirect contact. Furthermore, SARS-CoV-2 can be transmitted between prior infected

255 hamsters by direct contact during a very short period of early infection, but the transmission

256 efficiency was limited. Taken together, prior infection substantially reduced the transmission

257 efficiency of SARS-CoV-2 from prior infected hamsters to the naïve or prior infected hamsters by

258 airborne route, but had limited impact on lowering the transmission by direct contact. In contrast  
259 with SARS-CoV-2, seasonal influenza A virus transmission between ferrets can be substantially  
260 reduced or blocked by natural infection or vaccination with live attenuated viruses<sup>31,32</sup>. The  
261 underlying mechanism behind the difference is not clear. Given the facts of re-infection, effective  
262 transmission between the prior infected hamsters and the naive, and waning immunity of the  
263 recovered COVID-19 patients<sup>28,29</sup>, it would be much more difficult to achieve herd immunity by  
264 natural infection or vaccination. A much higher vaccination coverage rate may be needed. At  
265 present, many governments and public health agencies are considering introducing immunity  
266 passport to help with recovery of social community and economy activities<sup>33</sup>, but evidence  
267 supporting this proposal is not enough. Reducing or blocking SARS-CoV-2 transmission is critical  
268 for COVID-19 pandemic control. A roaring increase in confirmed infections and hospitalized  
269 patients may lead to the collapse of the health care system, resulting in more deaths, social panic  
270 and even economic paralysis. How does vaccination with COVID-19 vaccines impact  
271 SARS-CoV-2 transmission in humans? There is still no clear-cut answer. Recent studies  
272 demonstrated that intranasal immunization with an Ad vector vaccine provided near complete  
273 sterilizing immunity to SARS-CoV-2 in mice<sup>34</sup>, which might block the virus transmission in  
274 humans. Further studies to evaluate the blocking efficiency of different vaccines vaccinated by  
275 different routes, in particular, intranasal vaccination, on SARS-CoV-2 transmission in humans and  
276 animal models are urgently needed. Our work will help to determine the herd immunity threshold  
277 more accurately, make more reasonable public health decisions, as well as aid the implementation  
278 of appropriate public health and social measures to control COVID-19.

279

280 **Acknowledgements**

281 This research was supported by the National Natural Science Foundation of China (32000134) and  
282 the National Major Research & Development Program (2020YFC0840800). We thank all staffs at  
283 Biosafety Level 3 Laboratories of Military Veterinary Research Institute for their all support and  
284 help.

285 **Author Contributions**

286 CMZ, YWG conceived and designed the project, CMZ, CZ, ZDG, NL, HC, LNL, LZ, KYM and  
287 SSZ performed the experiments. CMZ, CZ, ZDG and NL analyzed the data. CMZ drafted the  
288 manuscript, YWG, CFQ, ZDG and JXL revised the manuscript critically.

289 **Declaration of interests**

290 All authors declared no competing interests.

291 **Data sharing**

292 Data will be made available on request, directed to corresponding author CMZ.

293 **References**

294 1 Dai, L. & Gao, G. F. Viral targets for vaccines against COVID-19. *Nature reviews. Immunology*, doi:10.1038/s41577-020-00480-0 (2020).

295 2 Polack, F. P. *et al.* Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *The New England journal of medicine* **383**, 2603-2615, doi:10.1056/NEJMoa2034577 (2020).

296 3 Baden, L. R. *et al.* Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. *The New England journal of medicine*, doi:10.1056/NEJMoa2035389 (2020).

297 4 Ramasamy, M. N. *et al.* Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. *Lancet* **396**, 1979-1993, doi:10.1016/S0140-6736(20)32466-1 (2021).

298 5 Xia, S. *et al.* Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. *The Lancet. Infectious diseases* **21**, 39-51, doi:10.1016/S1473-3099(20)30831-8 (2021).

299 6 Zhu, F. C. *et al.* Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. *Lancet* **396**, 479-488, doi:10.1016/S0140-6736(20)31605-6 (2020).

300 7 Zhang, Y. *et al.* Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. *The Lancet. Infectious diseases*, doi:10.1016/S1473-3099(20)30843-4 (2020).

301 8 Logunov, D. Y. *et al.* Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. *Lancet* **396**, 887-897, doi:10.1016/S0140-6736(20)31866-3 (2020).

302 9 Chandrashekhar, A. *et al.* SARS-CoV-2 infection protects against rechallenge in rhesus macaques. *Science* **369**, 812-817, doi:10.1126/science.abc4776 (2020).

303 10 Bosco-Lauth, A. M. *et al.* Experimental infection of domestic dogs and cats with SARS-CoV-2: Pathogenesis, transmission, and response to reexposure in cats. *Proceedings of the National Academy of Sciences of the United States of America* **117**, 26382-26388, doi:10.1073/pnas.2013102117 (2020).

304 11 Corbett, K. S. *et al.* Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. *The New England journal of medicine* **383**, 1544-1555, doi:10.1056/NEJMoa2024671 (2020).

305 12 Yu, J. *et al.* DNA vaccine protection against SARS-CoV-2 in rhesus macaques. *Science* **369**, 806-811, doi:10.1126/science.abc6284 (2020).

306 13 Wang, H. *et al.* Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. *Cell* **182**, 713-721 e719, doi:10.1016/j.cell.2020.06.008 (2020).

307 14 Gao, Q. *et al.* Development of an inactivated vaccine candidate for SARS-CoV-2. *Science* **369**, 77-81, doi:10.1126/science.abc1932 (2020).

308 15 Zhang, N. N. *et al.* A Thermostable mRNA Vaccine against COVID-19. *Cell* **182**, 1271-1283 e1216, doi:10.1016/j.cell.2020.07.024 (2020).

337 16 van Doremalen, N. *et al.* ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in  
338 rhesus macaques. *Nature* **586**, 578-582, doi:10.1038/s41586-020-2608-y (2020).

339 17 Mercado, N. B. *et al.* Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus  
340 macaques. *Nature* **586**, 583-588, doi:10.1038/s41586-020-2607-z (2020).

341 18 Chan, J. F. *et al.* Simulation of the Clinical and Pathological Manifestations of Coronavirus  
342 Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease  
343 Pathogenesis and Transmissibility. *Clinical infectious diseases : an official publication of the*  
344 *Infectious Diseases Society of America* **71**, 2428-2446, doi:10.1093/cid/ciaa325 (2020).

345 19 Imai, M. *et al.* Syrian hamsters as a small animal model for SARS-CoV-2 infection and  
346 countermeasure development. *Proceedings of the National Academy of Sciences of the United*  
347 *States of America* **117**, 16587-16595, doi:10.1073/pnas.2009799117/-/DCSupplemental.  
348 (2020).

349 20 Sia, S. F. *et al.* Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. *Nature* **583**,  
350 834-838, doi:10.1038/s41586-020-2342-5 (2020).

351 21 Sanchez-Felipe, L. *et al.* A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine  
352 candidate. *Nature*, doi:10.1038/s41586-020-3035-9 (2020).

353 22 Tostanoski, L. H. *et al.* Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in  
354 hamsters. *Nature medicine* **26**, 1694-1700, doi:10.1038/s41591-020-1070-6 (2020).

355 23 Rosenke, K. *et al.* Hydroxychloroquine prophylaxis and treatment is ineffective in macaque  
356 and hamster SARS-CoV-2 disease models. *Jci Insight* **5**, doi:ARTN e143174  
357 10.1172/jci.insight.143174 (2020).

358 24 Zhang, J. *et al.* COVID-19 reinfection in the presence of neutralizing antibodies. *National*  
359 *Science Review*, doi:10.1093/nsr/nwab006 (2021).

360 25 Selhorst, P. *et al.* Symptomatic SARS-CoV-2 reinfection of a health care worker in a Belgian  
361 nosocomial outbreak despite primary neutralizing antibody response. *Clinical infectious*  
362 *diseases : an official publication of the Infectious Diseases Society of America*,  
363 doi:10.1093/cid/ciaa1850 (2020).

364 26 Wu, F., Liu, M. & Wang, A. Evaluating the association of clinical characteristics with  
365 neutralizing antibody levels in patients who have recovered from mild COVID-19 in Shanghai,  
366 China (vol 180, pg 1356, 2020). *Jama Intern Med* **180**, 1405-1405 (2020).

367 27 Wang, K. *et al.* Longitudinal dynamics of the neutralizing antibody response to SARS-CoV-2  
368 infection. *Clinical infectious diseases : an official publication of the Infectious Diseases*  
369 *Society of America*, doi:10.1093/cid/ciaa1143 (2020).

370 28 Ibarrodo, F. J. *et al.* Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild  
371 Covid-19. *The New England journal of medicine* **383**, 1085-1087,  
372 doi:10.1056/NEJM2025179 (2020).

373 29 Muecksch, F. *et al.* Longitudinal analysis of serology and neutralizing antibody levels in  
374 COVID19 convalescents. *The Journal of infectious diseases*, doi:10.1093/infdis/jiaa659  
375 (2020).

376 30 Long, Q. X. *et al.* Clinical and immunological assessment of asymptomatic SARS-CoV-2  
377 infections. *Nature medicine* **26**, 1200-1204, doi:10.1038/s41591-020-0965-6 (2020).

378 31 Houser, K. V., Pearce, M. B., Katz, J. M. & Tumpey, T. M. Impact of Prior Seasonal H3N2  
379 Influenza Vaccination or Infection on Protection and Transmission of Emerging Variants of  
380 Influenza A(H3N2)v Virus in Ferrets. *J Virol* **87**, 13480-13489, doi:10.1128/Jvi.02434-13

381 (2013).

382 32 Lowen, A. C. *et al.* Blocking Interhost Transmission of Influenza Virus by Vaccination in the  
383 Guinea Pig Model. *J Virol* **83**, 2803-2818, doi:10.1128/Jvi.02424-08 (2009).

384 33 Phelan, A. L. COVID-19 immunity passports and vaccination certificates: scientific, equitable,  
385 and legal challenges. *Lancet* **395**, 1595-1598, doi:10.1016/S0140-6736(20)31034-5 (2020).

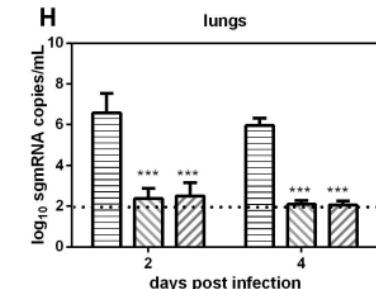
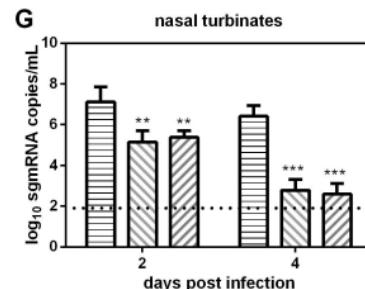
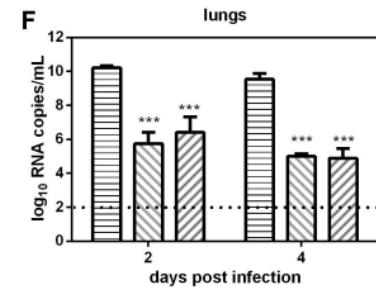
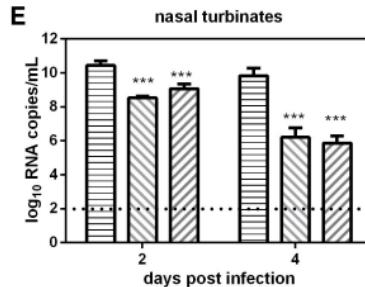
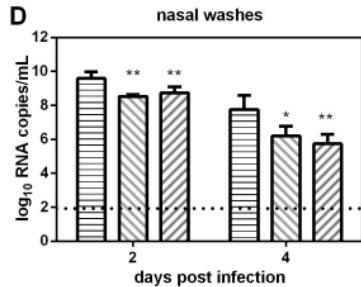
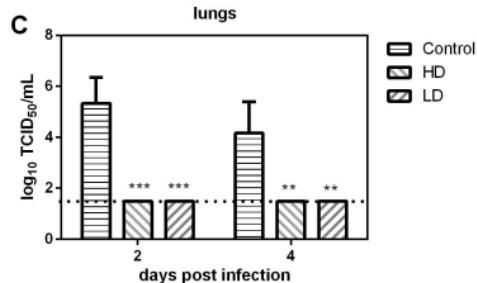
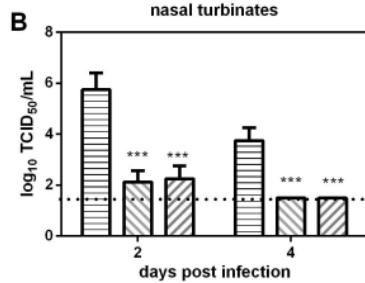
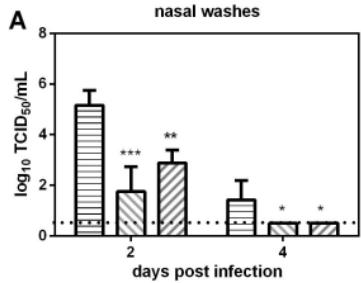
386 34 Hassan, A. O. *et al.* A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower  
387 Respiratory Tracts against SARS-CoV-2. *Cell* **183**, 169-184 e113,  
388 doi:10.1016/j.cell.2020.08.026 (2020).

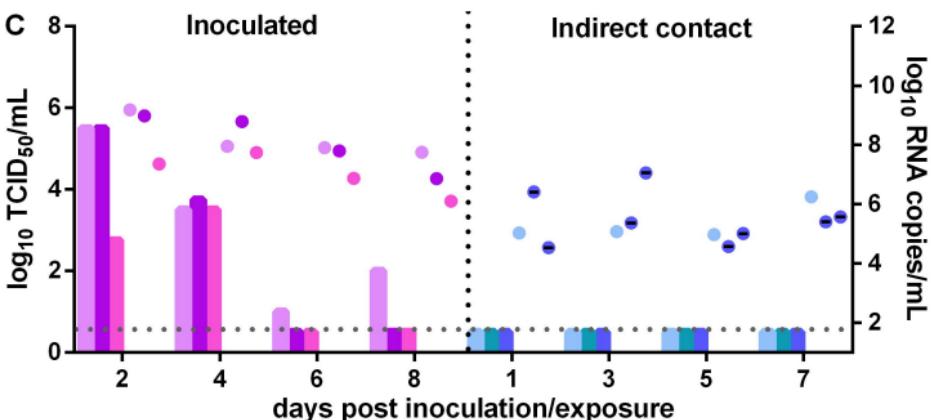
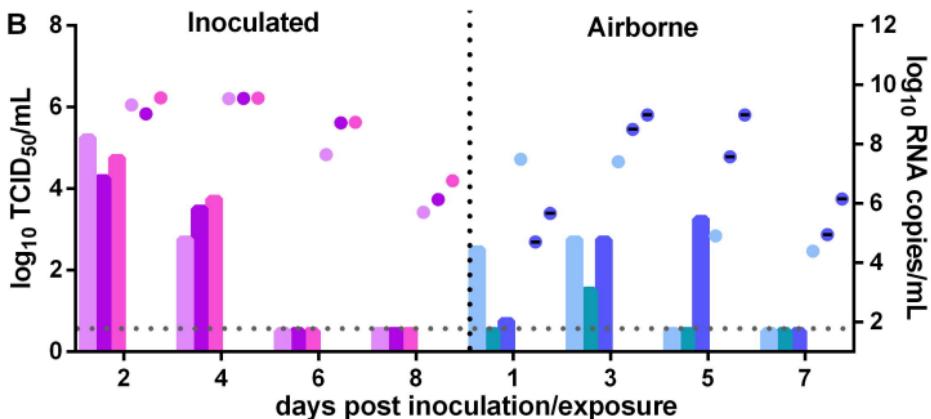
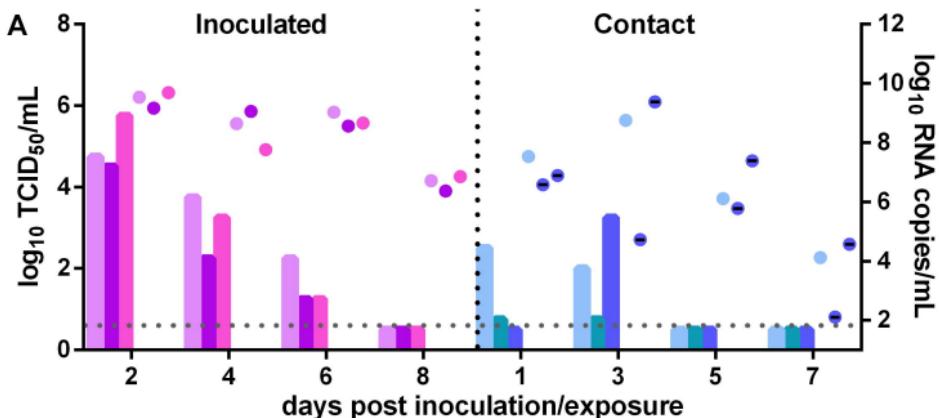
389

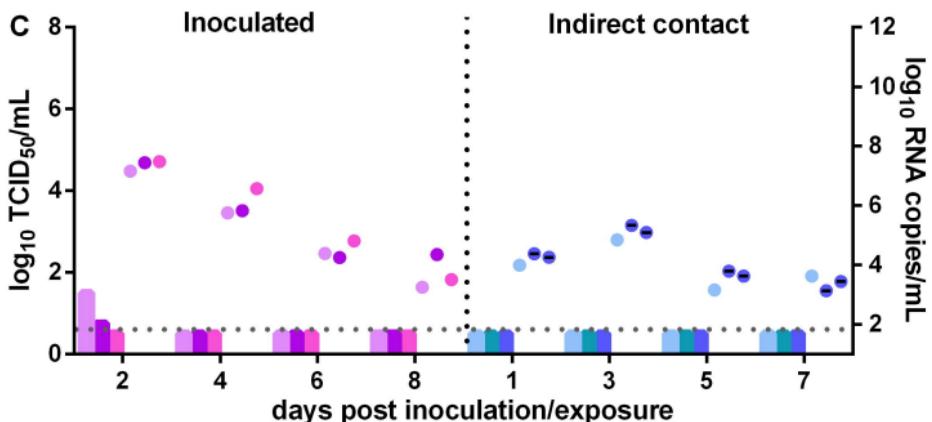
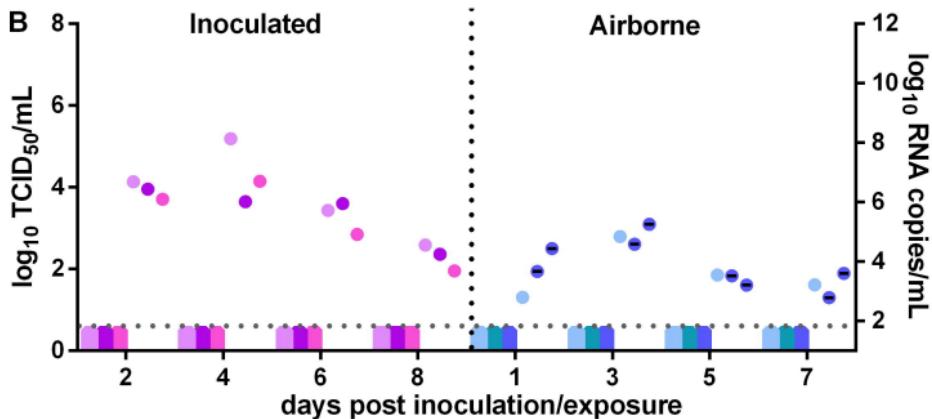
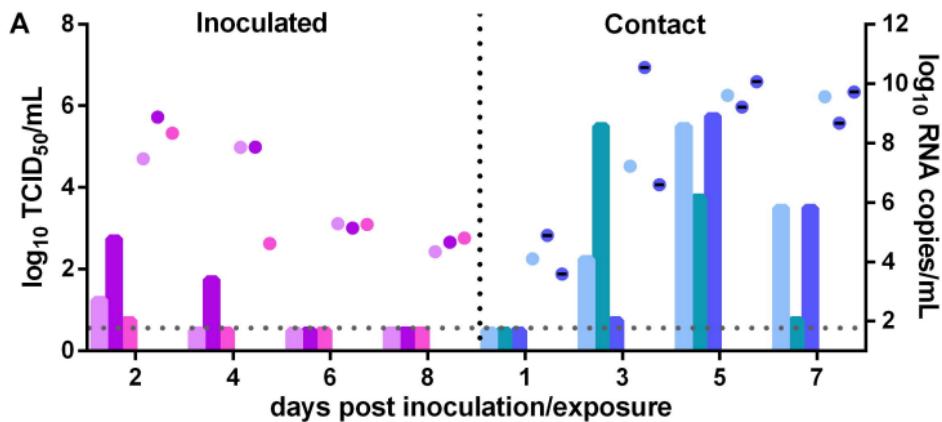
390 **Figure legends**

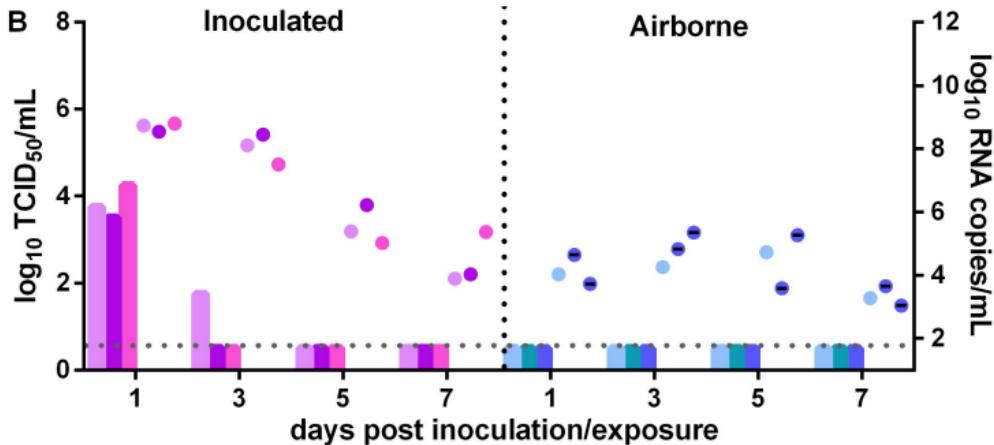
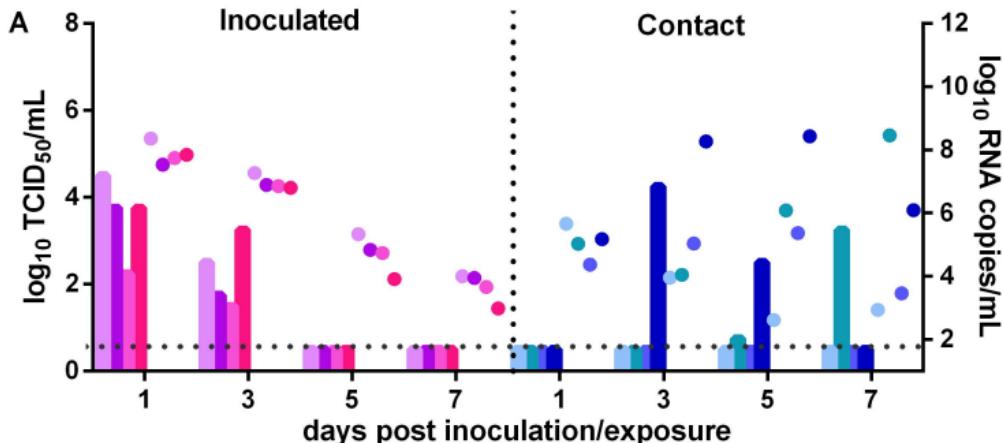
391 **Figure 1** Viral load and histological examination in prior infected hamsters intranasally inoculated  
392 with SARS-CoV-2. Sixteen hamsters were randomly divided into HD and LD groups and  
393 inoculated with  $10^5$  TCID<sub>50</sub> or  $10^3$  TCID<sub>50</sub> of the SARS-CoV-2 virus respectively. At 21 dpi,  
394 hamsters in HD and LD were re-challenged with  $10^6$  TCID<sub>50</sub> of the SARS-CoV-2 virus. At 2 and 4  
395 dpi, nasal washes, nasal turbinate and lungs were collected from hamsters for viral titration, RNA  
396 quantification and transmission electron microscopy examination. (A to C) Viral titers  
397 ( $\log_{10}$ TCID<sub>50</sub>/mL) detected in nasal washes (A), nasal turbinates (B) and lungs (C) of prior  
398 infected hamsters challenged with the SARS-CoV-2 virus. (D to F) Viral RNA copies ( $\log_{10}$ RNA  
399 copies/mL) detected in nasal washes (D), nasal turbinates (E) and lungs (F) of prior infected  
400 hamsters challenged with SARS-CoV-2. (G and H) Viral sgmRNA copies ( $\log_{10}$ sgmRNA  
401 copies/mL) detected in nasal turbinates (G) and lungs (H) of prior infected hamsters re-challenged  
402 with SARS-CoV-2. One-way analysis of variance (ANOVA) and Tukey's multiple comparisons  
403 test were used to analyze the statistical differences of viral titers, RNA copies and sgmRNA copies  
404 in nasal washes, nasal turbinates and lungs between different experimental groups ( $p > 0.05$ , not  
405 significant, [ns];  $p < 0.05$ , \* ;  $p < 0.01$ , \*\*;  $p < 0.001$ , \*\*\*).

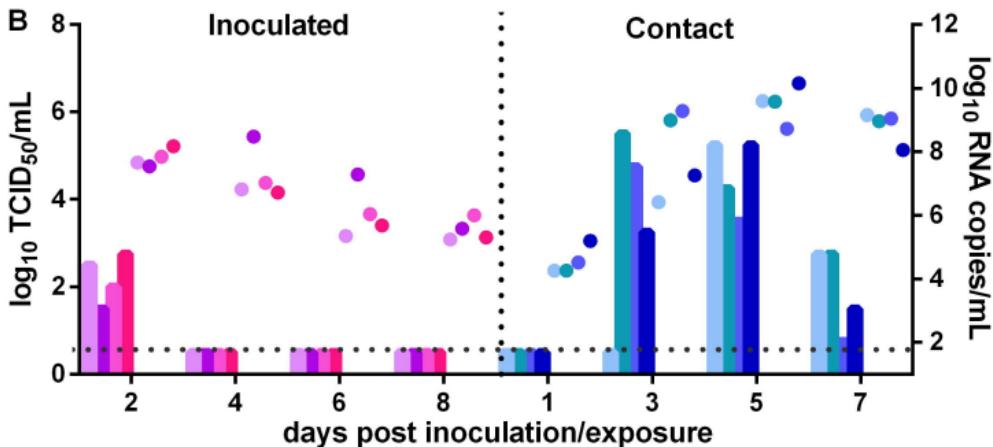
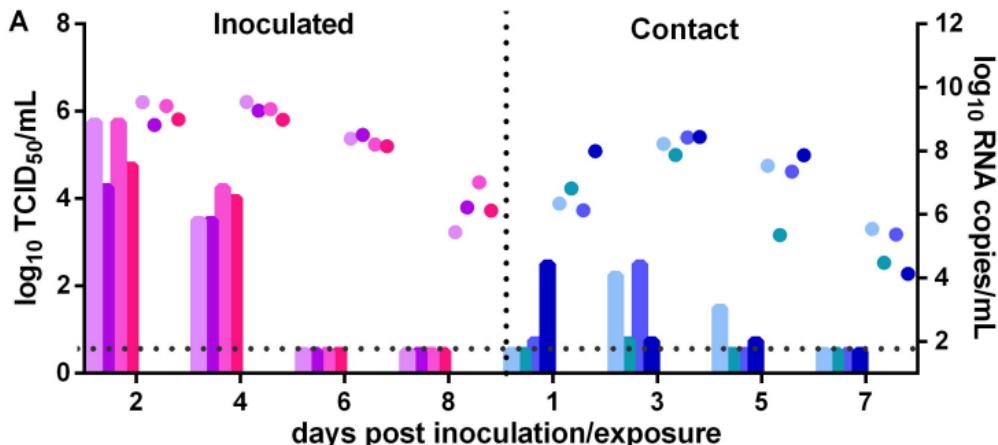
406 **Figure 2** Transmission of SARS-CoV-2 from naïve hamsters to prior infected hamsters. (A)  
407 Infectious viral load ( $\log_{10}$ TCID<sub>50</sub> shown in bars) and viral RNA copies ( $\log_{10}$ RNA copies/mL,  
408 shown in dots with matched color) detected in nasal washes of the naïve donor hamsters  
409 inoculated with  $10^6$  TCID<sub>50</sub> of SARS-CoV-2 and prior infected contact hamsters in the  
410 transmission group, which were previously inoculated with  $10^5$  TCID<sub>50</sub> or  $10^3$  TCID<sub>50</sub> of  
411 SARS-CoV-2 twenty-one days ago. At 24 hours' inoculation, the donor hamsters and the prior









412 infected contact hamsters were co-housed together in a new cage. (B) Viral titers and viral RNA  
413 copies detected in nasal washes of the naïve donor hamsters inoculated with SARS-CoV-2 and  
414 those prior infected hamsters in airborne transmission group. At 24 hours' inoculation, the donor  
415 hamsters and the prior infected hamsters were transferred to an airborne transmission cage. (C)  
416 Viral titers and viral RNA copies detected in nasal washes of the naïve donor hamsters inoculated  
417 with SARS-CoV-2 and the prior infected hamsters in the indirect contact transmission group. At  
418 48 hours' inoculation, the donor hamsters were removed and transferred to a new cage and prior  
419 infected hamsters were placed into the cage housing the naïve hamsters before. Nasal washes were  
420 collected from all hamsters in different experiment groups every other day for virus titration and  
421 RNA quantification.




422 **Figure 3** Transmission of SARS-CoV-2 from prior infected hamsters to naive hamsters. (A)  
423 Infectious viral load ( $\log_{10}$ TCID<sub>50</sub> shown in bars) and viral RNA copies ( $\log_{10}$ RNA copies/mL,  
424 shown in dots with matched color) detected in nasal washes of prior infected hamsters inoculated  
425 with  $10^6$  TCID<sub>50</sub> of SARS-CoV-2 and the naïve contact hamsters. At 24 hours' inoculation, the  
426 prior infected donor hamsters and the naïve contact hamsters were co-housed together in a new  
427 cage. (B) Viral titers and viral RNA copies detected in nasal washes of the prior infected hamsters  
428 inoculated with SARS-CoV-2 and naive hamsters in airborne transmission group. At 24 hours'  
429 inoculation, the prior infected donor hamsters and naive hamsters were transferred to an airborne  
430 transmission cage. (C) Viral titers and viral RNA copies detected in nasal washes of prior infected  
431 hamsters inoculated with SARS-CoV-2 and naive hamsters in indirect contact transmission group.  
432 At 48 hours' inoculation, the donor hamsters were removed and transferred to a new cage and the  
433 naive hamsters were placed into the cage housing the prior infected donor hamsters before. Nasal




434 washes were collected from all hamsters every other day for viral titration and RNA  
435 quantification.



436 **Figure 4** Transmission of SARS-CoV-2 between prior infected hamsters. A. Infectious viral load  
437 ( $\log_{10}$ TCID<sub>50</sub> shown in bars) and viral RNA copies ( $\log_{10}$ RNA copies/mL, shown in dots with  
438 matched color) detected in nasal washes of prior infected hamsters inoculated with  $10^6$  TCID<sub>50</sub> of  
439 SARS-CoV-2 and the prior infected contact hamsters. At two hours' inoculation, the donor  
440 hamsters and the contact hamsters were co-housed together in a new cage. (B) Viral titers and viral  
441 RNA copies detected in nasal washes of the prior infected donor hamsters inoculated with  
442 SARS-CoV-2 and the prior infected hamsters in airborne transmission group. At two hours'  
443 inoculation, the donor hamsters and other hamsters were transferred to the airborne transmission  
444 cage. Nasal washes were collected from all hamsters every other day for viral titration and RNA  
445 quantification.



446 **Figure 5** Impact of a lower dose infection on SARS-CoV-2 transmission between naïve hamsters  
447 and prior infected hamsters. (A) Infectious viral load ( $\log_{10}$ TCID<sub>50</sub> shown in bars) and viral RNA  
448 copies ( $\log_{10}$ RNA copies/mL, shown in dots with matched color) detected in nasal washes of the  
449 naïve hamsters inoculated with  $10^4$  TCID<sub>50</sub> of SARS-CoV-2 and the prior infected contact  
450 hamsters. At 24 hours' inoculation, the naïve donor hamsters and the prior infected contact  
451 hamsters were co-housed together in a new cage. (B) Viral titers and viral RNA copies detected in  
452 nasal washes of the prior infected donor hamsters inoculated with  $10^4$  TCID<sub>50</sub> of SARS-CoV-2 and  
453 naïve contact hamsters. At 24 hours' inoculation, the prior infected donor hamsters and naïve  
454 contact hamsters were co-housed together in a new cage. Nasal washes were collected from all  
455 hamsters for viral titration and RNA quantification.









