

1 *Research article*

2 **Characterization of Critical Determinants of ACE2-RBD Interaction**

3

4 Emily E. F. Brown^{1,2}†, Reza Rezaei^{1,2}†, Taylor Jamieson^{1,2}†, Jaahnavi Dave^{1,2}†, Nikolas T.
5 Martin^{1,2}, Ragunath Singaravelu^{1,2}, Mathieu J.F. Crupi^{1,2}, Stephen Boulton^{1,2}, Sarah Tucker^{1,2},
6 Jessie Duong^{1,2}, Joanna Poutou^{1,2}, Adrian Pelin^{1,2}, Hamed Yasavoli-Sharahi⁴, Zaid Taha^{1,2},
7 Rozanne Arulanandam^{1,2}, Abera Surendran^{1,2}, Mina Ghahremani³, Bradley Austin^{1,2}, Chantal
8 Matar⁴, Jean-Simon Diallo^{1,2}, John C. Bell^{1,2}, Carolina S. Ilkow^{1,2}, and Taha Azad^{1,2*}

9 ¹ Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.

10 ² Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa,
11 ON K1H 8M5, Canada.

12 ³ Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.

13 ⁴ Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa,
14 Canada

15 * Correspondence: tazad@ohri.ca; Tel.: +1-613-737-8899 (ext. 75208).

16 † These authors contributed equally.

17

18

19

20

21

22 **Abstract**

23 Despite sequence similarity to SARS-CoV-1, SARS-CoV-2 has demonstrated greater
24 widespread virulence and unique challenges to researchers aiming to study its pathogenicity in
25 humans. The interaction of the viral receptor binding domain (RBD) with its main host cell
26 receptor, angiotensin-converting enzyme 2 (ACE2), has emerged as a critical focal point for the
27 development of anti-viral therapeutics and vaccines. Utilizing our recently developed NanoBiT
28 technology-based biosensor, we selectively identify and characterize the impact of mutating
29 certain amino acid residues in the RBD of SARS-CoV-2 and in ACE2. Specifically, we examine
30 the mutational effects on RBD-ACE2 binding ability, before and after the addition of competitive
31 inhibitors, as well as neutralizing antibody activity. These critical determinants of virus-host
32 interactions may provide more effective targets for ongoing vaccines, drug development, and
33 potentially pave the way for determining the genetic variation underlying disease severity.

34 **Keywords:** SARS-CoV-2; angiotensin-converting enzyme 2; receptor binding domain; NanoLuc
35 Binary Technology; spike protein; vaccine development, drug development, bioluminescence

36

37

38

39

40

41

42

43

44

45

46 **1. Introduction**

47 The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent
48 responsible for the COVID-19 pandemic and is an ongoing worldwide public health threat. As of
49 October 16th 2020, there have been over 39 million confirmed cases, and over 1 million confirmed
50 deaths resulting from SARS-CoV-2 infection (WHO reports,
51 <https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports>).
52 Tremendous efforts are currently underway to develop rapid drug screening methodologies and
53 novel vaccines. The large variability of disease severity among individuals infected with SARS-
54 CoV-2 continues to be investigated [1] and new findings in this field may shed light on strategies
55 to tailor these new therapeutics to patients.

56 Entry of SARS-CoV-2 is mediated by interaction of the viral Spike glycoprotein (S) with
57 its main target receptor angiotensin converting enzyme 2 (ACE2), found on the surface of
58 mammalian cells, primarily in the lower respiratory tract [2]. The S protein is composed of two
59 subunits, S1 and S2, which play cooperatively a role in viral entry and fusion of the viral membrane
60 with host cell membrane. Binding to ACE2 is mediated by the receptor binding domain (RBD),
61 located in the C-terminus of the S1 subunit [3]. The identification of amino acid residues that are
62 crucial for the interaction of RBD with ACE2 is of great interest to gain a better understanding of
63 the interplay between viral entry and host genetic factors which may contribute to the observed
64 variability in disease pathogenesis. As such, characterizing functional mutants of RBD and ACE2
65 may provide critical insights for the development of drugs and vaccines.

66 The development of biosensor technology is a highly valuable and sensitive analytical tool
67 with a broad spectrum of applications, such as diagnosis and drug development [4, 5]. Biosensors
68 designed to emit bioluminescence often rely on luciferase, a class of enzymes that catalyze
69 substrate to produce a bioluminescent signal. One such tool is the NanoLuc Binary Technology
70 (NanoBiT), which enables rapid analysis of protein-protein interactions through use of
71 Nanoluciferase, a small luciferase reporter [5-12]. By exploiting this technology, we have recently
72 developed an assay to rapidly investigate RBD and ACE2 interactions. In addition, this assay can
73 be used to elucidate the impact of both RBD and ACE2 amino acid mutations on their binding
74 abilities, as well as their potential implications for drug development and evaluating immune
75 responses.

76 Previous studies have examined crucial residues in ACE2 and the SARS-CoV-1 Spike
77 domain [13, 14]. Similarly, recent studies have begun to unravel important interactions in SARS-
78 CoV-2 RBD and ACE2 [15]. While some progress has been made towards examining the impact
79 of specific mutations within the SARS-CoV-2 RBD and ACE2, there remain much to be studied
80 with regards to their impact on binding, infectivity and host susceptibility to viral infection. In
81 addition, the impact of specific RBD mutations on the efficacy of potential therapeutics has not
82 been explored. For example, most vaccines under development are designed to contain the RBD
83 domain of S, and sequencing data has shown that RBD is among the most non-conservative domain
84 in SARS-CoV-2 S [16]. Thus, the question that still remain is whether SARS-CoV-2 viruses
85 harboring select RBD mutations would be controlled by immune responses mounted against the
86 RBD sequence encoded in the original virus strain. Another unexplored area is whether variations
87 in host ACE2 sequences could alter virus susceptibility and/or disease severity among individuals
88 or species. Comparisons on how mutations in ACE2 affect binding of the RBD from SARS-CoV-1
89 versus SARS-CoV-2 have yet to be performed. We believe that elucidating which variations may
90 have an impact in the ACE2: SARS-CoV-2 S binding affinity is worth investigating since this
91 information could impact the development of therapeutic options for COVID-19 patients. Here,
92 we investigate whether any of these critical amino acid sites in ACE2 exist in the human population
93 and may explain severity of the disease.

94 2. Results and Discussion

95 The first crucial step of SARS-CoV-2 viral entry is mediated by binding of RBD to ACE2,
96 its main cognate receptor expressed on the surface of the human airway epithelium (**Figure 1A**).
97 In this study, we aim to investigate whether selected mutations in both SARS-CoV-2 S protein
98 RBD and its host receptor ACE2 could impact their interactions with one another. We also examine
99 how specific mutations in ACE and RBD may alter the efficacy of drugs and neutralizing
100 antibodies being developed for treatment and disease prevention purposes, respectively. To
101 accomplish these aims, we use a NanoBiT SARS-CoV-2-RBD and ACE2 biosensor, previously
102 developed by our lab, to initially characterize the RBD: ACE2 interaction (**Figure 1B**) [17]. The
103 molecular basis of this technology involves the fusion of a Large Bit (LgBiT) subunit to one of the
104 proteins of interest, and the fusion of a Small Bit subunit (SmBiT) to the second protein being
105 investigated. As illustrated in **Figure 1B**, LgBiT and SmBiT alone have poor affinity for one

106 another; however, both subunits interact to produce a bioluminescent signal in the presence of
107 furimazine, the substrate for Nanoluciferase, if the fusion proteins interact with each other.

108 **Mutations within the ACE2 ectodomain alter binding affinity of ACE2 with SARS-CoV-2**
109 **RBD, SARS-CoV-2 S1 subunit, and SARS-CoV-1 RBD**

110 ACE2 is a key interacting partner involved in SARS-CoV-2 viral entry, thus we first
111 performed *in silico* mutagenesis analysis to assess putative ACE2 mutants that could be potentially
112 defective at interacting with SARS-CoV-2 RBD. Based on the overall 3D crystal structure analysis
113 of ACE2 bound to RBD (**Figure 2A, B**), we selectively identified 22 sites in ACE2, which are
114 most likely involved in ACE: RBD direct interaction (**Figure 2 A-D**). To analyze the contribution
115 of these 22 mutants on their ability to interact with RBD using our NanoBiT based biosensor
116 technology, we first engineered the 22 amino acid mutants of ACE2 (**Figure 2E**) and linked them
117 to SmBiT. Expression of ACE2 mutants from transfected HEK293T cells was demonstrated by
118 immunoblotting (**Figure 3A**).

119 We then investigated the binding affinity of ACE2 wild-type and mutants with both SARS-
120 CoV-2-RBD and SARS-CoV-2 S1 as complementary binding partner. The rationale for also
121 including an S1-based NanoBiT binding partner in our assays was that RBD is encompassed within
122 the S1 subunit of the S glycoprotein. Hence, including S1 would more closely mimic SARS-CoV-2
123 S behavior in the context of viral infection. Thus, we proceeded to compare whether S1 fused to
124 LgBiT and RBD-LgBiT constructs have similar binding affinity for ACE and its mutants. When
125 combined with SARS-CoV-2-RBD-LgBiT, 12 of the 22 mutants of ACE2 showed a significant
126 decrease in their binding affinity (**Figure 3B**). Specifically, ACE2 mutants Q24A, F28A, D38A,
127 Y41A, K353A, G354D, D355A, R357A, and NFS (residues 82-84) demonstrated reduced binding
128 to SARS-CoV-2-RBD (**Figure 3B**). We also found that 13 of the 22 mutants showed a significant
129 decrease in binding to S1 (**Figure 3C**). Specifically, ACE2 mutants Q24A, F28A, D38A, Y41A,
130 Q42A, L45A, M82A, Y83A, K353A, G354D, D355A, R357A, and NFS had reduced binding to
131 SARS-CoV-2 S1 (**Figure 3C**). In summary, we found that the same 12 ACE2 mutants that showed
132 decreased binding to SARS CoV-2 RBD also has impaired interactions with SARS CoV-2 S1,
133 with the addition of mutant Y83A that reported a reduced affinity for SARS-CoV-1 S1 only.

134 Since structural analysis has shown that certain residues in SARS-CoV-2 RBD are well
135 conserved within SARS-CoV-1 RBD [17], we decided to also combined the various ACE2-SmBiT
136 mutants with a LgBiT-SARS-CoV-1 RBD construct. This allowed us to also evaluate how ACE2
137 mutations could impact ACE2 : SARS-CoV-1 RBD interaction. In figure 3D, we further show that
138 14 different ACE2 mutations (T27D, F28A, H34A, E35A, E37A, Y41A, Q42A, L45A, Y83A,
139 K353A, G354D, D355A, R357A, and NFS) significantly alter its respective binding efficiency to
140 the wild type SARS-CoV-1 RBD. Of note, ten of these ACE2 mutants are in common with SARS-
141 CoV-2 RBD. These data suggest that in comparison with SARS-CoV-1 RBD, SARS-CoV-2 RBD
142 may be slightly more resistant to ACE2 mutants, which may arise from single nucleotide
143 polymorphisms (SNPs). This observation may have implications with regards to viral
144 susceptibility of various species or individuals based on their ACE2 gene sequence.

145 **SARS-CoV-2 Spike pseudotyped lentiviral particle assay confirm that mutations within the**
146 **ACE2 ectodomain alter binding affinity of ACE2 with SARS-CoV-2 RBD**

147 To reinforce the ACE2 mutational findings observed with our biosensor technology
148 described above, we then decided to utilize a lentiviral-based pseudovirus infectivity assay. We
149 hypothesized that ACE2 mutants which retain their binding capacity to SARS-CoV-2 RBD should
150 act as competitive inhibitors for SARS-CoV-2 pseudovirus binding to ACE2 in the host cell, and
151 thus reducing its infectivity (**Figure 4A**). To test this notion, we combined each of the 22 ACE2
152 mutants with SARS-CoV-2 spike pseudotyped lentivirus expressing luciferase, and then added the
153 pre-treated pseudovirus samples to HEK293X cells expressing ACE2 and TMPRSS2 (the host
154 protease responsible for cleaving S glycoprotein[18]). We then measured the infectivity with a
155 luciferase assay - a lower signal is indicative of reduced infection, resulting from ACE2 mutants
156 retaining RBD binding capacity, thereby acting as competitive inhibitors (**Figure 4B**). These
157 results very closely align with mutant binding affinity changes observed with our biosensor
158 technology (**Figure 3B-C**).

159 **Utilizing ACE2 sequences as a predictor for the SARS-CoV-2 susceptibility of various**
160 **species and mutation prevalence in humans**

161 Our findings suggest that identification of ACE2 amino acid sites which impact RBD
162 binding may provide insights as to SARS-CoV-2 susceptibilities of different individuals or species

163 based on their genetics. Using multiple sequence alignments of the 12 target mutation sites
164 identified to be essential for RBD binding (**Figure 3**), we propose a method to predict SARS-CoV-
165 2 virus susceptibility (**Figure 5A**). It is plausible to hypothesize that any species with an identical
166 ACE2 amino acid sequence to the human ACE2 receptor would theoretically be highly susceptible
167 to the virus, and possibly act as a source of transmission, such as the common chimpanzee (*Pan*
168 *troglodytes*; **Figure 5A**). With the presence of only one or two differences at key ACE2 binding
169 sites, it is likely that species such as *Tursiops truncatus* (bottlenose dolphin) or *Cricetulus griseus*
170 (Chinese hamster) would still be infected by SARS-CoV-2. In contrast, species such as
171 domesticated horses (*Equus caballus*) or brown rats (*Rattus norvegicus*), which have many
172 differences at key ACE2 residues, are expected to be less susceptible to SARS-CoV-2 infection,
173 due to reduced binding efficiency between ACE2 and RBD. With reduced binding efficacy, viral
174 infection and spread would likely be impaired in these animals, leading them to pose less of a risk
175 for shedding large amounts of infectious virus potentially leading to reduced viral pathogenesis
176 (**Figure 5A**). These findings are consistent with literature studies of optimal SARS-CoV-2 disease
177 models [19]. For example, increasing studies have indicated that hamsters are a better suited
178 animal model to study SARS-CoV-2 in comparison to mice [20].

179 Looking at the prevalence of these mutations in people, we observe that some of these
180 SNPs (namely NFS, G354, and D355) already exist in a small fraction of the population (**Figure**
181 **5B**). Our data suggest the possibility that individuals harboring these SNPs may be more resistant
182 to the SARS-CoV-2 virus infection. Genetic differences in the ACE2 receptor of individuals may
183 also provide a partial explanation for the variability in disease severity among individuals.
184 Interestingly, *in silico* studies from other groups have also suggested that genetic influences cause
185 interindividual variability in ACE2 expression [21], [22]. In this study, we experimentally
186 validated for the first time the effects of ACE2 mutants on RBD binding affinity, which may pave
187 the path for clinical studies.

188 **Mutations in SARS-CoV-2 RBD that alter its ability to bind to ACE2 do not impact the**
189 **activity of a competitive inhibitor nor the efficacy of a neutralizing antibody**

190

191

192 A key concern surrounding RNA viruses, and viruses in general, is their capacity to evolve
193 through the accumulation of mutations. Such mutations may drive resistance to therapeutics and/or
194 evasion of host immune responses acquired through infection or vaccination against the wild-type
195 virus. Recently two mutations in the SARS-CoV-2 RBD have been reported in Africa and the UK.
196 We have investigated one of the critical mutation sites reported by the UK, asparagine residue at
197 location 501 (N501), by altering the residue to both to Alanine and Tyrosine *in silico* (Figure 6
198 A-D). The change to alanine preserved the internal interactions of the residue with two glutamine
199 residues at positions 498 and 506 but abolished the interaction with tyrosine 41 in ACE2. However,
200 mutation to the tyrosine variant preserved all internal interactions and slightly strengthened them.
201 Moreover, this mutation introduced a new strong interaction site, 2.3 Å, with lysine 353 in ACE2
202 structure. Another recently discovered mutation is the change of glutamic acid at position 484 to
203 lysine. We did not detect any significant change in internal or RBD-ACE2 interaction sites which
204 may be due to the fact that this residue is located in a very flexible loop structure (Figure 6E-F).

205

206 Additionally, we selected 16 of the 25 RBD mutants used in our recent study which retained
207 some level of ACE2 binding capacity to further assess the effects of a competitive inhibitor and a
208 neutralizing antibody with our biosensor assay. From a therapeutic perspective, recombinant RBD
209 is under clinical consideration for use as a potential viral attachment inhibitor, given its ability to
210 competitively inhibit SARS-CoV-2 virus particles [24]. We found that recombinant RBD
211 expressed from mammalian cells was capable of out-competing all 16 of the RBD mutants
212 tested (Figure 6I). These results suggest that competitive drugs developed to combat the wild-type
213 virus are still applicable to virus strains which may acquire these mutations in the RBD domain
214 leading to reduced receptor binding over time. Neutralizing antibodies (nAb) play a key role in
215 generating protective immunity against viral agents, and are developed through exposure to the
216 virus itself, or to viral antigens in the form of a vaccine. We found that addition of a nAb
217 significantly decreased, if not abolished, the interaction between all examined RBD mutants and
218 ACE2 (Figure 6J). Importantly, this data may indicate that these receptor binding mutations do not
219 provide an immune evasive advantage to the virus, and as a result, should not pose a serious threat
220 to the efficacy of developed vaccines, and immunity, to viruses harboring these mutations.

221 **Conservation of RBD across coronavirus strains**

222 We used multiple sequence alignment tools to further investigate amino acid conservation
223 patterns of the RBD mutants under examination across multiple betacoronavirus strains. This
224 analysis could provide interesting insights on the possible contributions of these specific residues
225 in RBD and their link to infectivity. The variation in amino acid sites is indicative of which amino
226 acids are critical for maintaining the structural integrity of RBD, and which can be modified for
227 therapeutic purposes. For example, amino acid C361 is present in the bottom of the RBD core, and
228 not at the contact site. Considering the cross-species conservation of this residue, it may exert an
229 important role in stabilizing the overall structure of the protein. Of the analyzed amino acids, K417
230 was the only one which was not part of RBM, yet is still in close proximity to the contact site,
231 providing important contact with residue D30 in the ACE2 structure [3]. Of the other
232 Betacoronavirus species analyzed in this study, the presence of K417 is limited to SARS-CoV-2.
233 This unique event could be one of the possible reason for which SARS-CoV-2 exhibits a higher
234 binding efficiency to ACE2 compared to other viruses in the same family. It is also likely to expect
235 that Betacoronaviruses harboring low amino acid sequence similarity to SARS-CoV-2 likely
236 utilize a different host receptor for viral entry. In addition, when analyzing tyrosine residues at
237 position Y449 and Y505, it seems that the hydroxyl (OH) group in the tyrosine side chain may
238 possibly contact two different amino acids on ACE2 structure, appearing critical for effective
239 binding of the receptor-ligand structure. Precisely, Y449 contacts D38 and Q42 in ACE2, and
240 Y505 contacts E37 and R393 in ACE2, respectively [3].

241 Elucidating which amino acids are conserved and occupy critical roles in viral ligand-host
242 receptor binding could deepen our understanding of antiviral drug development. To increase the
243 spectrum of antiviral agents directed towards betacoronaviruses, targeting conserved amino acids
244 which are crucial for receptor binding may prove to be an interesting strategy. Given the
245 conservation of amino acids between SARS-CoV-2, SARS-CoV-1 and MERS, it would be of
246 interest to develop a therapeutics targeting this triad of viruses.

247 It has been theorized that the SARS-CoV-2 virus originated from bats, was then transmitted
248 to pangolins, and finally spilled over to humans [25], [26], [27]. We examined the conservation of
249 the 25 RBD point mutants generated in our study to determine if variations in amino acid sequence
250 would follow the predicted path of interspecies transmission. Interestingly, these sites were mostly

251 conserved across all three species, with only three sites (V445, F486, and Y505) differing in bat
252 CoV, when compared to pangolin Co-V and human SARS-CoV-2, and only one site (K417)
253 differing in pangolin CoV compared to the bat and human viruses (Figure 7). These observations
254 are in line with a recent report by Liu *et al.* [27]. In this study, the authors aligned the full-length
255 spike sequence of SARS-CoV-2, Pangolin-CoV and Bat-CoV-RaTG13. These results and our
256 predictions reported herein support the hypothesis that the path of viral transmission originated
257 from bats, continued to pangolins as intermediate hosts, and then followed its dispersal route to
258 the human population.

259 **3. Conclusions**

260 In this study, we provide for the first time a comprehensive overview of the effects of select
261 mutations in both the ectodomain of ACE2 and the RBD of SARS-CoV-2. Our findings suggest
262 that ACE2 SNPs in the human population may account for the variability in infectivity and disease
263 progression in the context of SARS-CoV-2 infection. Furthermore, our observations from RBD
264 mutational scanning also provide potential sites for drug targeting and therapeutic development.
265 By combining ACE2 and RBD mutational analyses, we provide insights into the genetics
266 underlying virus susceptibility and the development of possible therapeutic targets.

267 **4. Materials and Methods**

268 **4.1. Cell lines**

269 HEK293T (ATCC® CRL-3216) human embryonic kidney cells were obtained from ATCC. Cells
270 were maintained in Dulbecco's Modified Eagle's Medium (Gibco), supplemented with 10% FBS
271 (VWR) and 1% penicillin/streptomycin (Invitrogen). Cells were incubated in a humidified 37°C
272 incubator at 5% CO₂. Cells are routinely tested for mycoplasma by PCR testing, and used for up
273 to 20 passages after thawing.

274 **4.2. Plasmids**

275 Engineered inserts are outlined in Supplementary Table 1 (GenScript). All biosensor subunits were
276 cloned into the BamHI/NotI sites of pcDNA3.1 to generate mammalian expression constructs.

277 **4.3. Transient transfection**

278 HEK293T cells were grown in 100 mm or 150 mm cell culture dishes to 70% confluence. Cells
279 were transfected with 10 µg of DNA using PolyJet (SignaGen) according to manufacturer's
280 protocol. 48 hours post-transfection, cell supernatants or cell lysates were harvested for subsequent
281 testing.

282 ***4.4. In vitro NanoBit assay***

283 293T cells were lysed using passive lysis buffer (Promega). NanoBiT assays were performed using
284 native coelenterazine (CTZ; 3.33 mM final concentration; Nanolight Technologies – Prolume Ltd.,
285 Pinetop, AZ, USA). Synergy Microplate Reader (BioTek, Winooski, VT, USA) was used to
286 measure luminescence. Results are presented as raw RLU (Relative Luminescence Unit), or
287 normalized to control where indicated. The data presented are the mean of three biological
288 replicates.

289 ***4.5. Western immunoblotting***

290 293T cells were lysed using passive lysis buffer. Protein concentration in clarified whole cell
291 lysates was quantified using bicinchoninic acid assay (BCA) (Pierce). 20 µg of total protein was
292 prepared in 1x Laemmli buffer, loaded into 4-12% gradient Bis-Tris acrylamide gels and resolved.
293 Following transfer onto nitrocellulose membrane, blots were incubated in 0.1% Ponceau S solution
294 (in 5% v/v acetic acid-distilled water) for 5 minutes at room temperature, imaged, then washed
295 with TBST for 10 minutes. Blots were then blocked using 5% skimmed milk powder in TBST for 1
296 hour. Blots were subsequently probed using anti-beta-actin primary antibody (1:5000), anti-HA
297 tag (1:1000), or anti-FLAG tag (1:1000) in 5% milk overnight at 4°C. Following washing with
298 TBST, membranes were probed with HRP-conjugated secondary antibodies (1:10000) in 5% milk
299 at room temperature for 1 hour. Blots were washed with TBST, then developed using BioRad
300 Clarity-Western ECL and the BioRad ChemiDoc imaging system.

301 ***4.6. Lentiviral Pseudovirus Assay***

302 Plasmid encoding SARS-CoV-2 spike pseudotyped lentivirus was kindly provided by Dr. Jesse
303 Bloom (Fred Hutchinson Cancer Research Center, Seattle, WA) and lentivirus was generated as
304 previously described (Crawford et. al., 2020). HEK293T cells were seeded in 6 wells plates to
305 70% confluency and were transfected with 1ug of individual smBiT ACE2 mutant DNA using

306 PolyJet (SignaGen) according to manufacturer's protocol. 48 hours post-transfection, supernatants
307 of transfected cells were harvested. Pseudotyped lentiviruses were incubated with each of the
308 smBiT-ACE2 mutant containing supernatants for 1 hour at 37°C. Immediately following the
309 incubation period, polyclonal HEK293X cells stably overexpressing ACE2 and TMPRSS2 were
310 transduced in 96 well format (300 000 cells). 4 hours post-transduction all media was replaced. 48
311 hours post-transduction, cells were lysed using 1X PLB, cell lysates were transferred to an opaque
312 96-well plate, and infection efficiency was measured by luciferase assay using the Bright-Glo
313 Luciferase Assay system following manufacturer's protocols (Promega).

314 **4.7. Statistical analysis**

315 All graphs and statistical analyses were generated in Excel or GraphPad Prism v.8. Means of two
316 groups were compared using two-tailed unpaired Student's t-test. Means of more than two groups
317 were compared by one-way ANOVA with Dunnett's or Tukey's multiple comparisons correction.
318 Alpha levels for all tests were 0.05, with a 95% confidence interval. Error is graphed as the
319 standard deviation (SD). Measurements were taken from distinct samples (biological replicates).
320 For all analyses, *P<0.05, **P<0.01, ***P<0.005, n.s. = not significant.

321 **4.8. Multiple Sequence Alignment of ACE2 and Spike Sequences, and finding ACE2 SNPs in
322 the target positions**

323 All of the represented sequences were retrieved from NCBI refseq protein database. Multiple
324 sequence alignment (MSA) was performed using Clustal Omega (Madeira et.al., 2019) algorithm
325 with default parameters. Alignments were visualized and prepared for illustration using Jalview
326 software (Waterhouse et.al., 2009). The multiple sequence alignment of ACE2 polypeptides was
327 reordered based on the binding efficiency data in the J. Damas et al (Damas et.al., 2020). The
328 NCBI dbSNP database was searched for possible single nucleotide polymorphisms (SNPs) in
329 target mutation sites and the related information were gathered in a table using Microsoft Excel.

330 **Funding:**

331 The authors disclosed receipt of the following financial support for the research, authorship,
332 and/or publication of this article: This work was funded by the generous support from the Ottawa
333 Hospital Foundation and a grant from the Canadian Institutes of Health Research (#448323) to

334 J.C.B., C.S.I. and J-S.D. This work was also supported by a Fast Grant for COVID-19 Science to
335 J.C.B. and C.S.I. as well as an Ontario Together Grant to J-S-D. T.A. is funded by a CIHR
336 Banting Fellowship. R.S. is funded by a CIHR postdoctoral fellowship and a cluster MITACs
337 fellowship. T.R.J. is funded by a CIHR Frederick Banting and Charles Best Canada and
338 Graduate Scholarship and an Ontario Graduate Scholarship. E.E.F.B. is funded by a CIHR
339 Frederick Banting and Charles Best Canada Graduate Scholarship and a Lebovic Fellowship.
340 A.S. and S.T. were supported by NSERC Graduate Scholarships. M.J.F.C., J.D., S.B., N.T.M.,
341 J.P., J.T.W, J.D. and S.T. are funded by cluster MITACs fellowships. Finally, we would like to
342 thank the excellent technical assistance of Xiaohong He, Ricardo Marius, Julia Petryk and
343 Christiano Tanese De Souza.

344 **Conflicts of Interest:** The authors declare no conflict of interest

345

346

347

348

349 **Supplemental Table 1**

Insert	DNA sequence	Amino Acid sequence
SmBiT-ACE2	ATGTGCCCCAAAAGTTGACCATCTC ATGGTTCGCAATTGTACTACTAGTGA GTCCCTTGATGGCAGGCAGGAAGTGG	MCPQKLTIS WFAIVLLVS PLMAGGSG

(IL12 secretion signal-ACE2-HA-His)	GGTCCTCTGGAGTGACCGGATACAG GCTGTCGAGGAGATCCTGCAGAGCA CAATCGAGGAGCAGGCCAAGACCTT CCTGGACAAGTTAACACGAGGCCG AGGATCTGTTTATCAGAGCTCCCTG GCCTCCTGGAACTACAATACCAACAT CACAGAGGAGAATGTGCAGAACATG AACAAATGCCGGCGACAAGTGGTCTGC CTTCCTGAAGGAGCAGAGCACACTGG CCCAGATGTACCCCTCTGCAGGAGATC CAGAACCTGACCGTGAAGCTGCAGCT GCAGGCCCTGCAGCAGAACATGGCTCTA GCGTGCTGTCCGAGGATAAGTCTAAG CGGCTGAATACAATCCTGAACACCAT GAGCACAAATCTATTCCACCGGCAAGG TGTGCAATCCGACAACCCCTCAGGAG TGTCTGCTGCTGGAGCCTGGCCTGAA TGAGATCATGGCCAACAGCCTGGATT ACAATGAGAGGCTGTGGCATGGGA GTCCTGGCGCTCTGAAGTGGCAAGC AGCTCGGCCACTGTACGAGGAGTAT GTGGTGCTGAAGAACGAGATGCCA GAGCCAATCACTACGAGGACTATGGC GATTACTGGAGGGCGACTATGAGGT GAACGGCGTGGACGGCTACGATTATA GCCCGGGCCAGCTGATCGAGGATGTG GAGCACACATTGAGCACCTGCACGCCTAC CCCTGTATGAGCACCTGCACGCCTAC GTGCGGGCCAAGCTGATGAATGCCTA TCCAAGCTACATCTCCCCAATCGGAT GCCTGCCTGCACACCTGCTGGCGAC	GSSGVTGYR LFEEILQSTIE EQAKTFLDK FNHEAEDLF YQSSLASWN YNTNITEEN VQNMNNAG DKWSAFLKE QSTLAQMYP LQEIQNLTV KLQLQALQQ NGSSVLSED KSKRLNTIL NTMSTIYST GKVCNPDNP QECLLLEPG LNEIMANSL DYNERLWA WESWRSEV GKQLRPLYE EYVVLKNE MARANHYE DYGDYWRG DYEVNGVD GYDYSRGQL IEDVEHTFEE IKPLYEHLH AYVRAKLM NAYPSYISPI GCLPAHLLG DMWGRFWT
-------------------------------------	---	--

	ATGTGGGGCAGATTCTGGACAAACCT GTACTCCCTGACCGTGCCATTGGCC AGAAGCCAATATCGACGTGACCGAT GCCATGGTGGACCAGGCCTGGGATGC CCAGAGGATCTCAAGGAGGCCGAG AAGTTCTCGTGAGCGTGGGCCTGCC AAACATGACACAGGGCTTTGGGAG AATAGCATGCTGACCGACCCAGGCA ACGTGCAGAAGGCCGTGTGCCACCCA ACAGCATGGACCTGGCAAGGGCG ATTCCGCATCCTGATGTGACCAAG GTGACAATGGACGATTTCTGACCGC CCACCACGAGATGGCCACATCCAGT ATGATATGGCATACGCAGCACAGCCC TTCCTGCTGAGGAATGGCGCCAACGA GGGCTTCACGAGGCCGTGGCGAG ATCATGTCTCTGAGCGCCGCCACACC TAAGCACCTGAAGAGCATCGGCCTGC TGTCCCCAGACTCCAGGAGGATAAC GAGACCGAGATCAATTCTGCTGAA GCAGGCCCTGACCATCGTGGCACAC TGCCTTCACCTATATGCTGGAGAAG TGGCGCTGGATGGTGTAAAGGGGA GATCCCTAAGGACCAAGTGGATGAAG AAGTGGTGGAGATGAAGCGGGAGA TCGTGGCGTGGTGGAGCCTGTGCCA CACGACGAGACCTACTGTGATCCTGC CAGCCTGTTCCACGTGTCAACGACT ATAGCTTATCAGGTACTATACCCGC ACACTGTACCAGTCCAGTTCAAGGA GGCCCTGTGCCAGGCAGCAAAGCAC	NLYSLTVPF GQKPNIDVT DAMVDQAW DAQRIFKEA EKFFVSVGL PNMTQGFW ENSMLTDPG NVQKAVCH PTAWDLGK GDFRILMCT KVTMDDFLT AHHEMGHIQ YDMAYAAQ PFLLRNGAN EGFHEAVGE IMSLSAATP KHLKSIGLLS PDFQEDNET EINFLLKQA LTIVGTLPFT YMLEKWRW MVFKGEIPK DQWMKKW WEMKREIV GVVEPVPHD ETYCDPASL FHVSNDYSFI RYYTRTLYQ FQFQEALCQ AAKHEGPLH KCDISNSTE
--	--	---

	GAGGGCCCACTGCACAAGTGTGATAT CTCCAACCTACAGAGGCCGGCCAGA AGCTGTTCAATATGCTGAGACTGGC AAGTCCGAGCCATGGACCCTGGCCCT GGAGAACGTGGTGGGAGCCAAGAAT ATGAACGTGAGGCCTCTGCTGAATTA TTTCGAGCCACTGTTACATGGCTGA AGGACCAGAATAAGAACTCCTTGTG GGCTGGTCCACCGACTGGTCTCCATA CGCCGATCAGTCTATCAAGGTGAGGA TCTCTCTGAAGAGCGCCCTGGCGAC AAGGCCTATGAGTGGATGATAACG AGATGTACCTGTTCAGATCCTCTGTG GCCTATGCCATGAGGCAGTACTCCT GAAGGTGAAGAACCAAGATGATCCTG TTTGGCGAGGAGGACGTGCGGGTGG CCAATCTGAAGCCCAGAACATCAGCTT AACTTCTTGTGACAGCCCCAAGAA CGTGAGCGATATCATCCCTCGCACCG AGGTGGAGAACGCCATCCGGATGAG CCGGTCCAGAACATCACGACGCCTCA GACTGAATGATAAACAGCCTGGAGTT CTGGGCATCCAGCCTACCCCTGGGACC ACCTAACATGCCACCCGTGTGGCA GCGGCTACCCATATGACGTGCCGAT TACGCCTATCCTTACGACGTGCCAGA TTATGCCTACCCCTATGACGTGCCTG ATTACGCAAGCTCCGGACACATCGAG GGCAGGCACATGCTGGAGATGGGCC	AGQKLFNM LRLGKSEPW TLEALENVVG AKNMNVRP LLNYFEPLFT WLKDQNKN SFVGWSTD WSPYADQSI KVRISLKSA LGDKAYEW NDNEMYLF RSSVAYAM RQYFLKVKN QMILFGEED VRVANLKPR ISFNFFVTAP KNVSDIIPRT EVEKAIRMS RSRINDAFR LNDNSLEFL GIQPTLGPPN QPPVSGSGY PYDVPDYAY PYDVPDYAY PYDVPDYAS SGHIEGRHM LEMGHHHH HHHHHH
--	---	--

	ATCATCACCATCATCACACCAC CACTGA	
RBD-LgBiT (IgK leader-3XFLAG-RBD- LgBiT-His)	ATGGAGACAGACACACTCCTGCTATG GGTACTGCTGCTGGGTTCCAGGTT CCACTGGTGACTCTGGCTCTAGCGGC TCTGGCAGCGGCGACTACAAGGACC ACGACGGTGACTACAAGGACCACGA CATCGACTACAAGGACGACGACGAC AAGGGAGGAGGAGGCTTAGCGCG GCAACATCACAAATCTGTGCCCATTC GGCGAGGTGTTAACGCCACCAGATT TGCCAGCGTGTATGCCTGGAACCGGA AGAGAATCTCTAATTGCGTGGCCGAC TATAGCGTGCTGTACAATAGCGCCTC CTTCTCTACCTTAAGTGCTATGGCGT GTCCCCCACAAAGCTGAACGACCTGT GCTTCACCAACGTGTACGCCACTCT TTTGTGATCAGGGGCGATGAGGTGCG CCAGATCGCACCTGGACAGACAGGC AAGATGCCGACTACAACATAAGCT GCCAGACGATTCACCGGCTGCGTGA TCGCCTGGAATAGCAACAATCTGGAT TCCAAAGTGGCGGCAACTACAATT TCTGTACCGGCTGTTCAGAAAGAGCA ACCTGAAGCCCTTGAGCGGGATATC AGCACAGAGATCTACCAGGCAGGCT CCACCCCTGCAACGGAGTGGAGGGC TTCAATTGTTATTTCCCCTGCAGAGC TACGGCTTCCAGCCTACAAATGGCGT GGGCTATGCCATACAGGGTGGTGG	METDTLLL WVLLLWVP GSTGDSGSS GSGSGDYKD HDGDYKDH DIDYKDDDD KGGGGSSGG NITNLCPFGE VFNATRFAS VYAWNRKR ISNCVADYS VLYNSASFS TFKCYGVSP TKLNDLCFT NVYADSFVI RGDEVRQIA PGQTGKIAD YNYKLPDDF TGCVIAWNS NNLDSKVG GNYNLYR LFRKSNLKP FERDISTEIY QAGSTPCNG VEGFNCYFP LQSYGFQPT NGVGYQPY RVVVLSFEL

	TGCTGTCCTTGAGCTGCTGCACGCA CCTGCAACCGTGGGGAGTTCCGGTGG TGGCGGGAGCGGAGGTGGAGGCTCG AGCGGTGGAGTGTTCACACTGGAGG ACTTTGTGGCGATTGGGAGCAGACC GCCGCCTACAACCTGGACCAGGTGCT GGAGCAGGGAGGCCTGTCCTCTCTGC TGCAGAACATCTGGCCGTGTCTGTGACA CCAATCCAGAGGATCGTGCAGCG GCGAGAACGCCCTGAAGATCGACAT CCACGTGATCATCCCTACGAGGGCC TGTCCGCCGATCAGATGCCAGATC GAGGAGGTGTTCAAGGTGGTGTATCC AGTGGACGATCACCACCAAAGTGA TCCTGCCCTACGGCACCCCTGGTCATC GACGGAGTGACCCCCAACATGCTGA ATTATTCGGCCGGCCTACGAGGGC ATCGCCGTGTTGATGGCAAGAAGAT CACCGTGACAGGCACCCCTGTGGAACG GCAATAAGATCATCGACGAGCGGCT GATCACACCTGATGGCTCCATGCTGT TCAGAGTGACCATCAACTCCTCCTCT GGACACATCGAGGGCCGCCACATGCT GGAGATGGGCCATCATCACCATCATC ACCACCAACCACCACTGA	LHAPATVGS SGGGGSGGG GSSGGVFTL EDFVGDWE QTAAYNLD QVLEQGGVS SLLQNLAVS VTPIQRIVRS GENALKIDI HVIIPYEGLS ADQMAQIEE VFKVVYPVD DHHFKVILP YGTLVIDGV TPNMLNYFG R PYEGIAVF DGKKITVTG TLWNGNKII DERLITPDGS MLFRVTINS SSGHIEGRH MLEMGHHH HHHHHHH
--	--	--

350

351

352

353

354

355 Bibliography

- 356 1. Casanova, J.L., H.C. Su, and C.H.G. Effort, *A Global Effort to Define the Human Genetics of*
357 *Protective Immunity to SARS-CoV-2 Infection*. *Cell*, 2020. **181**(6): p. 1194-1199.
- 358 2. Hikmet, F., et al., *The protein expression profile of ACE2 in human tissues*. *Mol Syst Biol*, 2020.
359 **16**(7): p. e9610.
- 360 3. Lan, J., et al., *Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2*
361 *receptor*. *Nature*, 2020. **581**(7807): p. 215-220.
- 362 4. Vigneshvar, S., et al., *Recent Advances in Biosensor Technology for Potential Applications - An*
363 *Overview*. *Front Bioeng Biotechnol*, 2016. **4**: p. 11.
- 364 5. Azad, T., A. Tashakor, and S. Hosseinkhani, *Split-luciferase complementary assay: applications,*
365 *recent developments, and future perspectives*. *Anal Bioanal Chem*, 2014. **406**(23): p. 5541-60.
- 366 6. Azad, T., et al., *A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in*
367 *angiogenesis*. *Nat Commun*, 2018. **9**(1): p. 1061.
- 368 7. Azad, T., et al., *A gain-of-functional screen identifies the Hippo pathway as a central mediator of*
369 *receptor tyrosine kinases during tumorigenesis*. *Oncogene*, 2020. **39**(2): p. 334-355.
- 370 8. Nouri, K., et al., *Identification of Celastrol as a Novel YAP-TEAD Inhibitor for Cancer Therapy by*
371 *High Throughput Screening with Ultrasensitive YAP/TAZ-TEAD Biosensors*. *Cancers (Basel)*, 2019.
372 **11**(10).
- 373 9. Nouri, K., et al., *A kinome-wide screen using a NanoLuc LATS luminescent biosensor identifies ALK*
374 *as a novel regulator of the Hippo pathway in tumorigenesis and immune evasion*. *FASEB J*, 2019.
375 **33**(11): p. 12487-12499.
- 376 10. Yang, X., T. Azad, and K. Nouri, *Hippo Pathway Bioluminescent Biosensor*. 2019, US Patent App.
377 16/177,691.
- 378 11. England, C.G., E.B. Ehlerding, and W. Cai, *NanoLuc: a small luciferase is brightening up the field of*
379 *bioluminescence*. *Bioconjugate chemistry*, 2016. **27**(5): p. 1175-1187.
- 380 12. Dixon, A.S., et al., *NanoLuc complementation reporter optimized for accurate measurement of*
381 *protein interactions in cells*. *ACS chemical biology*, 2016. **11**(2): p. 400-408.
- 382 13. Han, D.P., A. Penn-Nicholson, and M.W. Cho, *Identification of critical determinants on ACE2 for*
383 *SARS-CoV entry and development of a potent entry inhibitor*. *Virology*, 2006. **350**(1): p. 15-25.
- 384 14. Li, W., et al., *Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2*.
385 *EMBO J*, 2005. **24**(8): p. 1634-43.
- 386 15. Li, Q., et al., *The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity*. *Cell*,
387 2020. **182**(5): p. 1284-1294 e9.
- 388 16. Chen, J., et al., *Mutations strengthened SARS-CoV-2 infectivity*. arXiv preprint arXiv:2005.14669,
389 2020.
- 390 17. Azad, T., et al., *Nanoluciferase complementation-based biosensor reveals the importance of N-*
391 *linked glycosylation of SARS-CoV-2 Spike for viral entry*. 2020.
- 392 18. Hoffmann, M., et al., *SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a*
393 *clinically proven protease inhibitor*. *Cell*, 2020.
- 394 19. Mohandas, S., et al., *Evaluation of the susceptibility of mice & hamsters to SARS-CoV-2 infection*.
395 *The Indian Journal of Medical Research*, 2020. **151**(5): p. 479.
- 396 20. Mohandas, S., et al., *Evaluation of the susceptibility of mice & hamsters to SARS-CoV-2 infection*.
397 *Indian J Med Res*, 2020. **151**(5): p. 479-482.

398 21. Brest, P., et al., *Host Polymorphisms May Impact SARS-CoV-2 Infectivity*. Trends Genet, 2020.
399 22. Cao, Y., et al., *Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2)*
400 *receptor ACE2 in different populations*. Cell Discov, 2020. **6**: p. 11.
401 23. Starr, T.N., et al., *Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals*
402 *Constraints on Folding and ACE2 Binding*. Cell, 2020. **182**(5): p. 1295-1310 e20.
403 24. Tai, W., et al., *Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus:*
404 *implication for development of RBD protein as a viral attachment inhibitor and vaccine*. Cell Mol
405 Immunol, 2020. **17**(6): p. 613-620.
406 25. Lam, T.T., et al., *Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins*. Nature, 2020. **583**(7815): p. 282-285.
407 26. Zhang, T., Q. Wu, and Z. Zhang, *Probable Pangolin Origin of SARS-CoV-2 Associated with the*
408 *COVID-19 Outbreak*. Curr Biol, 2020. **30**(7): p. 1346-1351 e2.
409 27. Liu, P., et al., *Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)?*
410 PLoS Pathog, 2020. **16**(5): p. e1008421.

413

414

415 **Figure Legends:**

416 **Figure 1. Schematic of SARS-CoV-2 viral entry and the NanoBiT biosensor.** (A) Schematic
417 of SARS-CoV-2 viral entry via the interaction between the receptor binding domain (RBD) of
418 the spike glycoprotein and the host cell receptor ACE2. (B) Illustration of the NanoBiT
419 complementation-based biosensor which detects interactions between RBD fused to LgBiT and
420 ACE2 fused to SmBiT.

421 **Figure 2. ACE2 amino acids in 3D structure of the bound RBD and ACE2 and schematic
422 representation of mutations in ACE2.** (A) 3D illustration of the overall structure of RBD bound
423 to ACE2. RBD is colored in green, receptor-binding motif (RBM) of RBD is in dark blue, and
424 ACE2 is in dark cyan. (B) Enlarged view of the overall structure depicting ACE2 target mutation
425 sites in stick rendition. Sticks are represented in yellow color. (C-D) ACE2 target mutation sites
426 in stick representation at the contact site of two molecules. Dotted lines connect the mutant AAs
427 to their contacting AAs in RBM. The structure is from PDB: 6M0J based on the information
428 provided in Lan et al. 2020 (E) Illustration of the amino acid changes used to examine ACE2 in
429 this study.

430

431 **Figure 3. ACE2 mutational analyses with CoV-NanoBiT facilitates delineation of critical host
432 and viral determinants of ACE2-RBD interaction.** (A) Immunoblot of SmBiT-ACE2 mutant
433 expression from the cell lysates of transfected HEK293T cells. β -actin and total protein loading
434 are shown as controls. (B-D) Biosensor assay with SmBiT-ACE2 mutants and (B) LgBiT-SARS
435 CoV-2 RBD, (C) LgBiT-SARS CoV-2 Spike S1, or (D) LgBiT- SARS-CoV-1 RBD demonstrating
436 altered binding affinity of various mutants.

437

438 **Figure 4. Lentiviral pseudovirus infectivity assay of ACE2 mutational analyses reinforces
439 critical host and viral determinants of ACE2-RBD interaction.** (A) Schematic of the lentiviral
440 SARS-CoV-2 pseudovirus infectivity assay demonstrating spike-pseudotyped lentiviral
441 attachment to ACE2 host receptor or mutant ACE2 proteins. (B) Lentiviral pseudovirus infectivity
442 assay demonstrating the capacity of each mutant examined to act as a competitive inhibitor for the
443 spike-host ACE2 interaction.

444 **Figure 5. Multiple Sequence Alignment Analysis and SNP Frequency Analysis of ACE2**
445 **Mutants.** (A) Sequences were reordered based on their binding efficiency to RBD. Only the target
446 mutation sites are shown and the non-target amino acids (AA) has been cut out from the alignment
447 representation. The alignment coloring scheme is based on the chemical properties of each AA
448 (each Human AA is green, the AA from the same chemistry is orange, and AA with different
449 chemistry is red. Except for the last column with three AAs which the number of identical AAs to
450 the human determines the color. WebLogo (<http://weblogo.threeplusone.com>) representation
451 shows a relative scale of the presence of each AA in each column. (B) dbSNP data on single
452 nucleotide Polymorphism in the ACE2 nucleotide sequence on the target amino acid codons. The
453 frequency of each SNP in different datasets was gathered in the last column. A synonymous
454 mutation (no effect on the protein sequence) is green and missense mutations are red.

455 **Figure 6. (A-F)** Visualization of RBD N501 and E484 mutations. (A) overall structure of RBD
456 and ACE2 interaction. (B) the loop structure in RBD containing E484 residue. (C) Predicted
457 structure following E484 residue mutation to lysine which would not significantly change the
458 nature of its interaction in the loop structure of RBD, (D) the N501 residue and its interacting
459 residues in RBM and ACE2. (E) Predictedstructure when the N501 residue mutates to Alanine
460 which would eliminate ACE2 interaction but preserve internal RBM interactions. (F) Predicted
461 structure when the N501 residue mutates to tyrosine which would preserve and slightly boosts
462 internal interactions and introduces an stronger interaction site with ACE2 compared to the wild
463 type residue. (G) ACE2 demonstrating altered binding affinity of various mutants of RBD-LgBiT-
464 mutants.(H) Immunoblot of RBD-LgBiT mutant expression from the cell lysates of transfected
465 HEK293T cells. β -actin and total protein loading are shown as controls. Competition biosensor
466 assay with LgBiT-RBD mutants which maintained any binding capacity pre-incubated with (I)
467 recombinant RBD protein or (J) neutralizing antibody to examine therapeutic implications of
468 various mutants.

469 **Figure 7. Multiple Sequence Alignment Analysis of RBD Mutants.** (A) Only the target
470 mutation sites are shown and the non-target amino acids (AA) has been cut out from the alignment
471 representation. The alignment coloring scheme is based on the chemical properties of each AA
472 (each SARS-CoV-2 AA is green, the AA from the same chemistry is orange, and AA with different
473 chemistry is red. WebLogo (<http://weblogo.threeplusone.com>) representation shows a relative

474 scale of the presence of each AA in each column. (B) Cross species comparison of RBD amino
475 acids in SARS-CoV-2, Pangolin-CoV 2020 and Bat-CoV-RaTG13. Selected mutants are identified
476 by colored boxes. Colored changes indicate RBD AA differences (V445A and F486A and
477 Y505A).

478

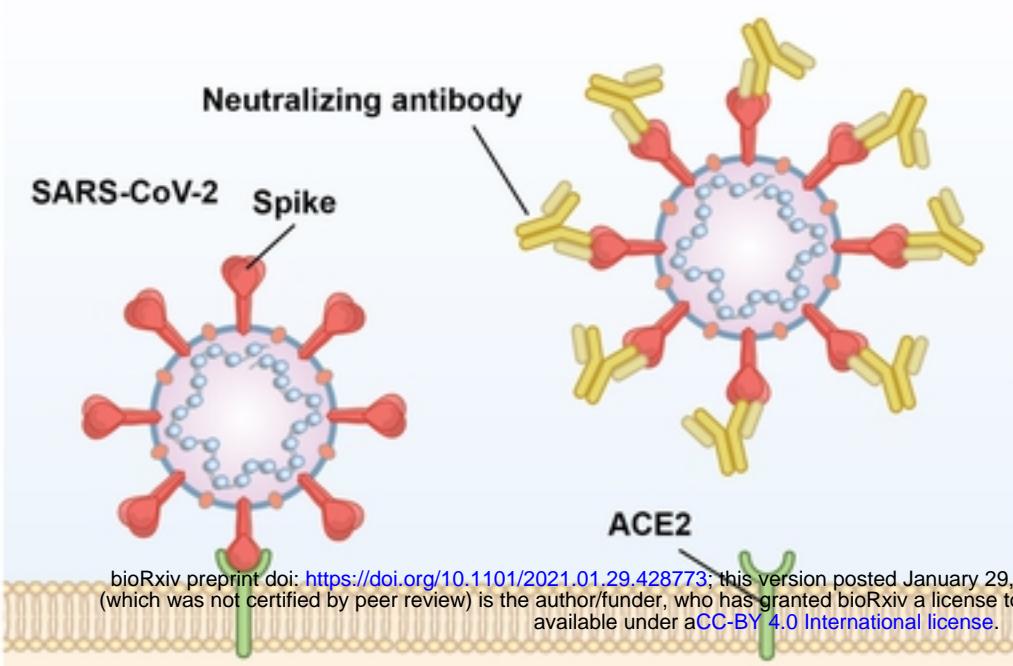
479

480

481

482

483


484

485

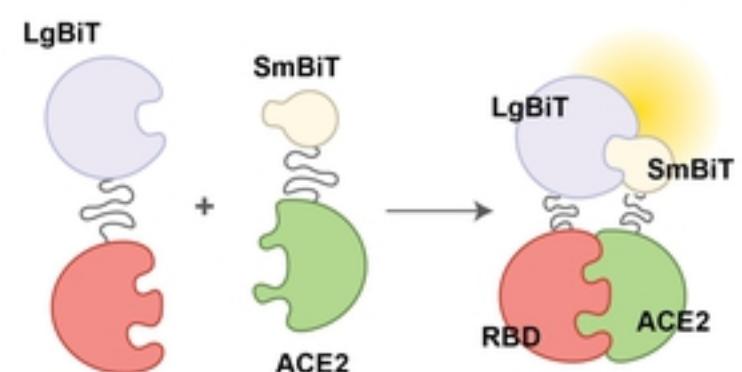
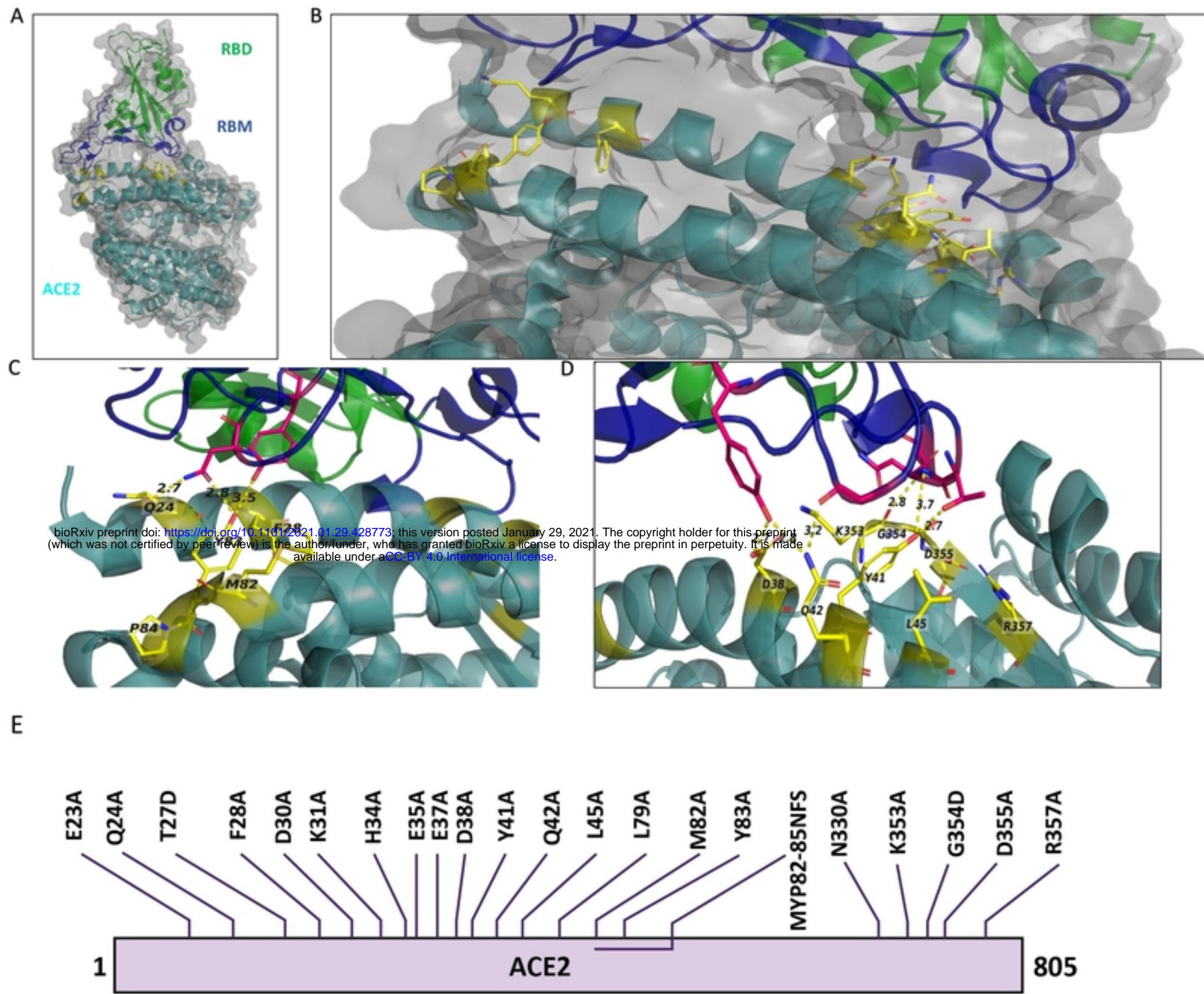

486

Figure 1


A

B

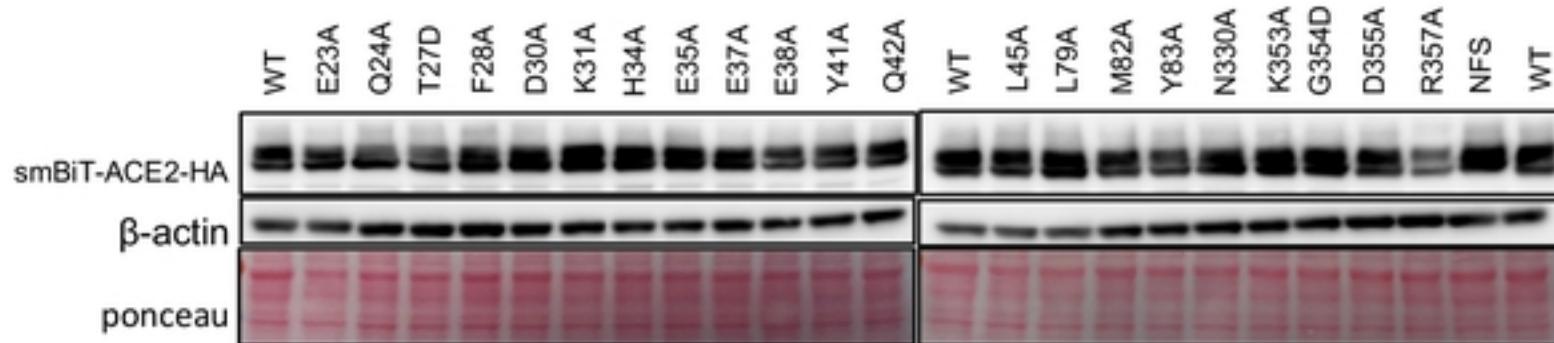


Figure 2

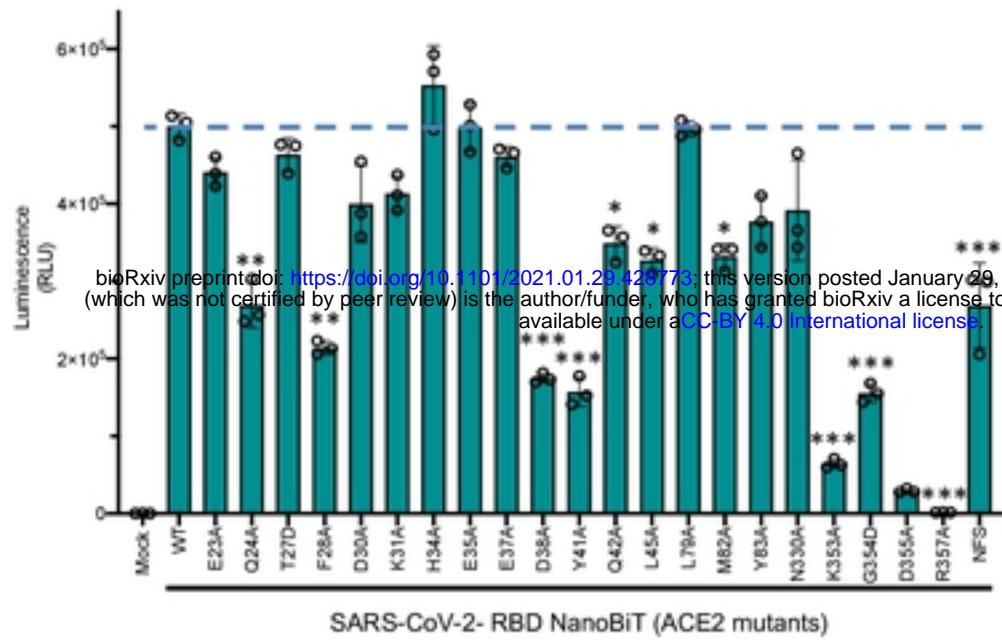
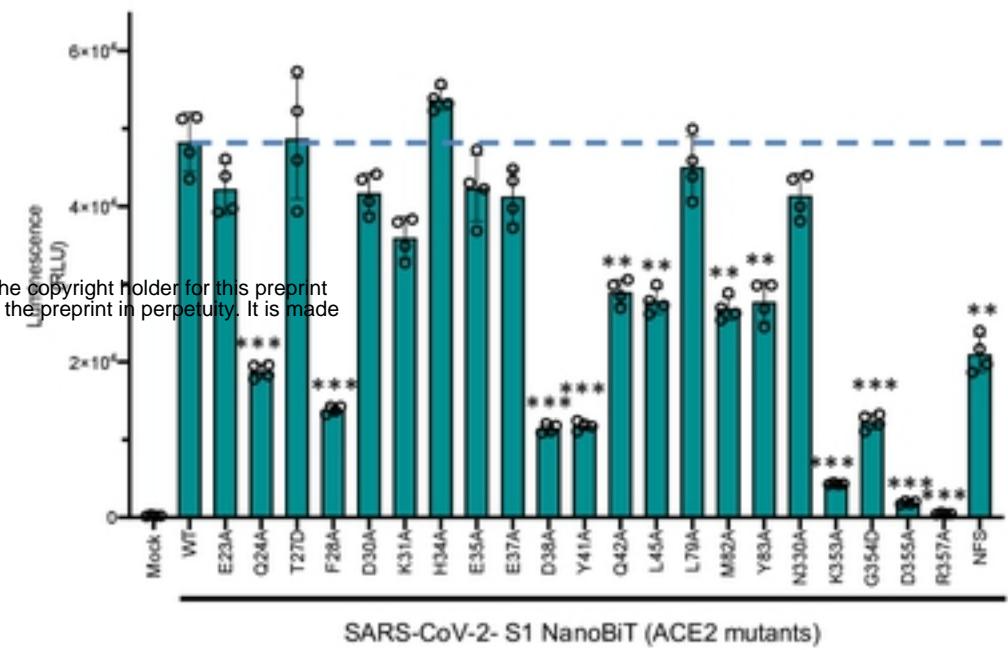
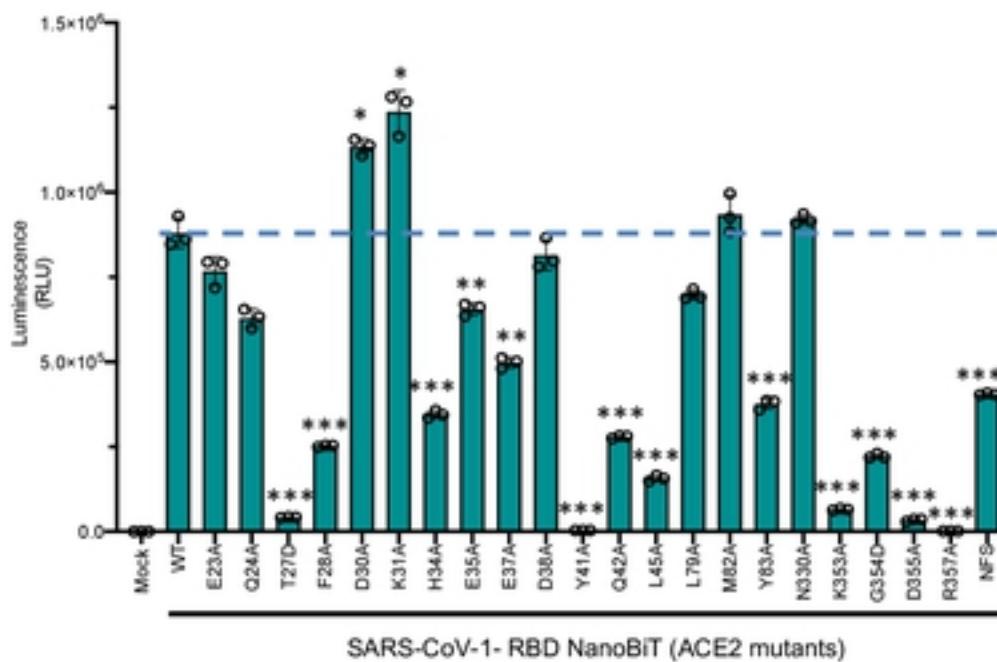
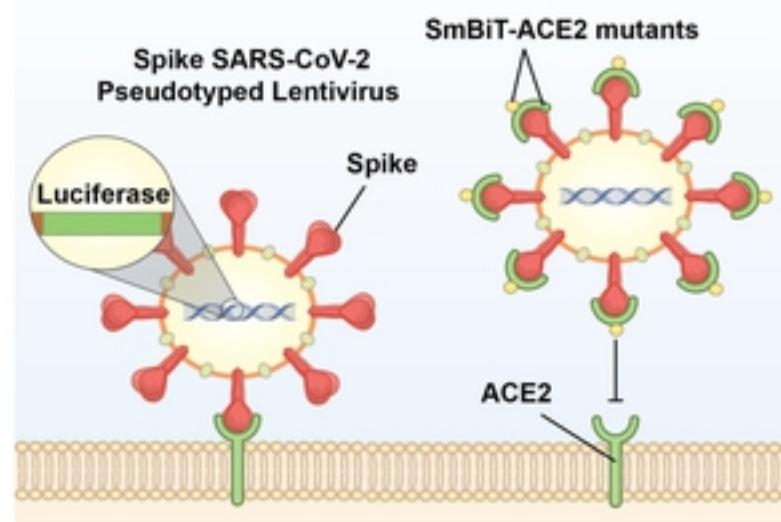


Figure 3

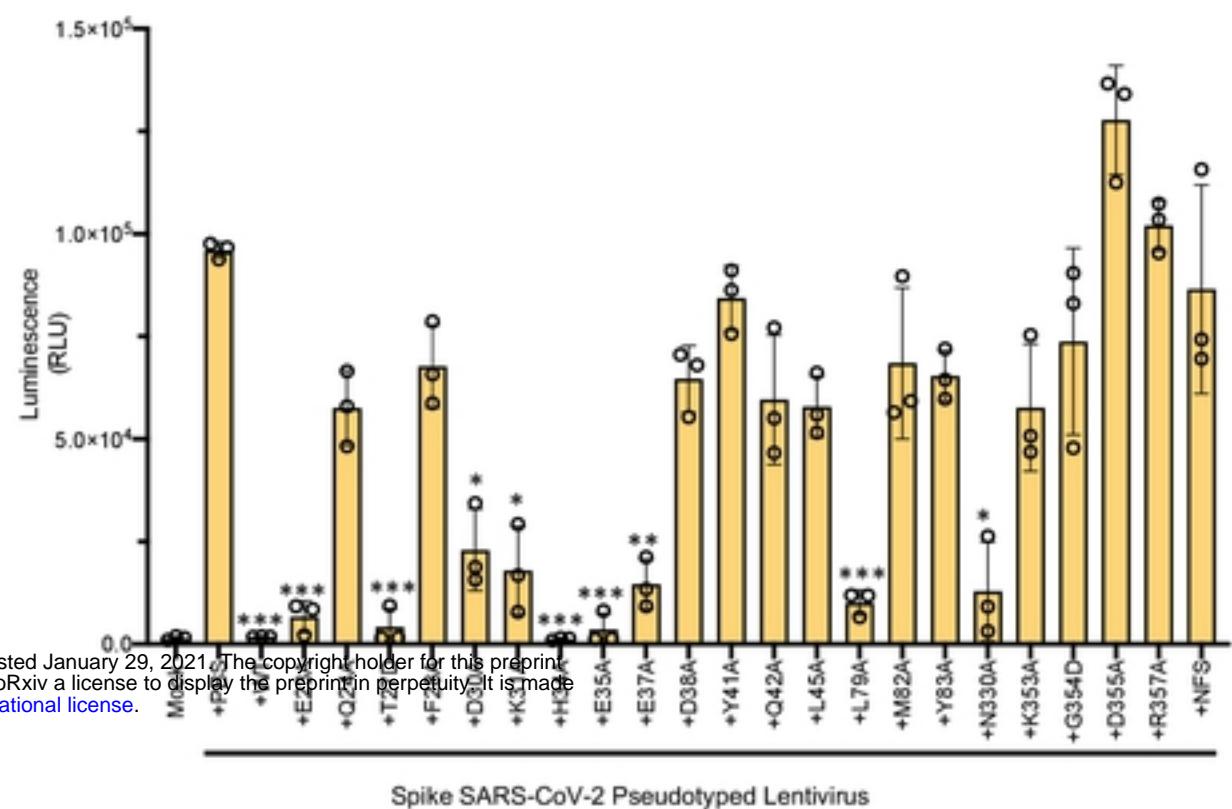

A


B

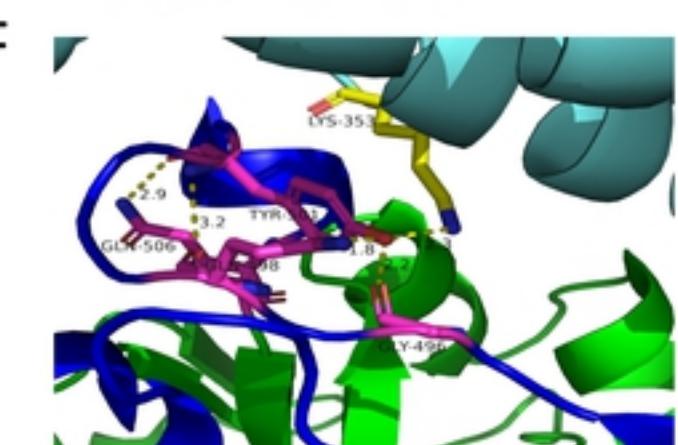
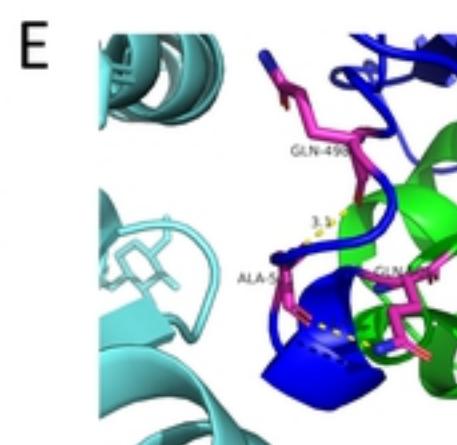
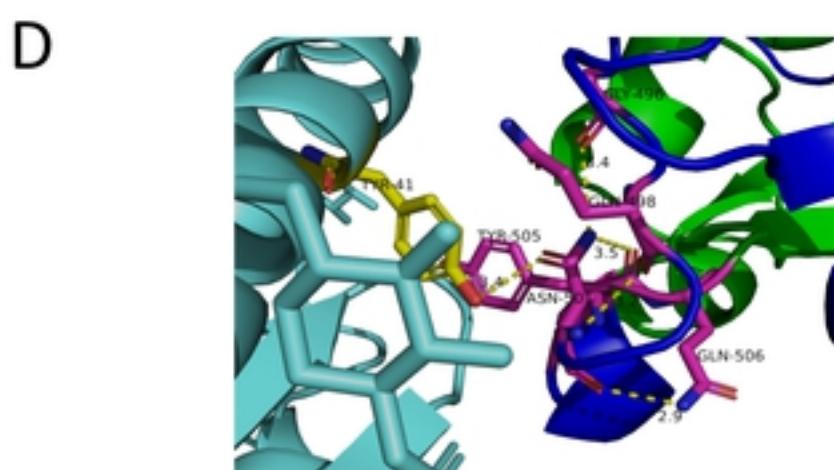
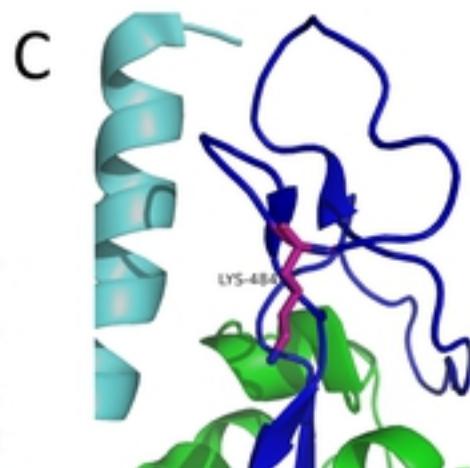
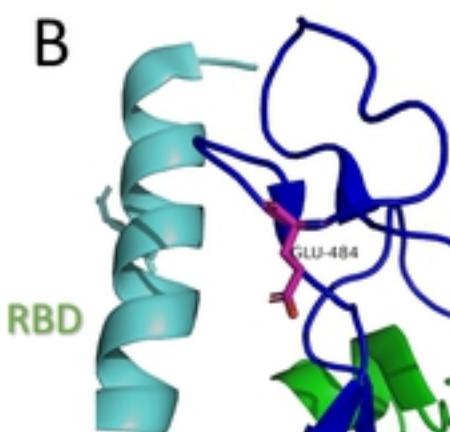
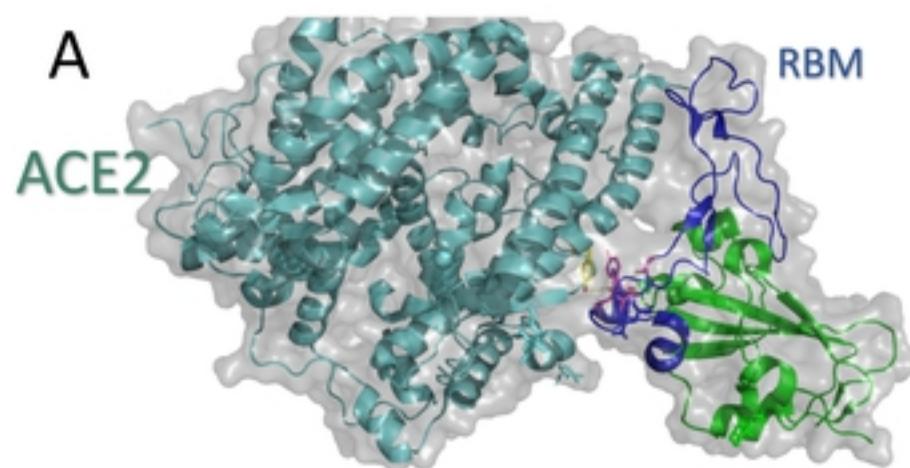
C



D


Figure 4

A







bioRxiv preprint doi: <https://doi.org/10.1101/2021.01.29.428773>; this version posted January 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B

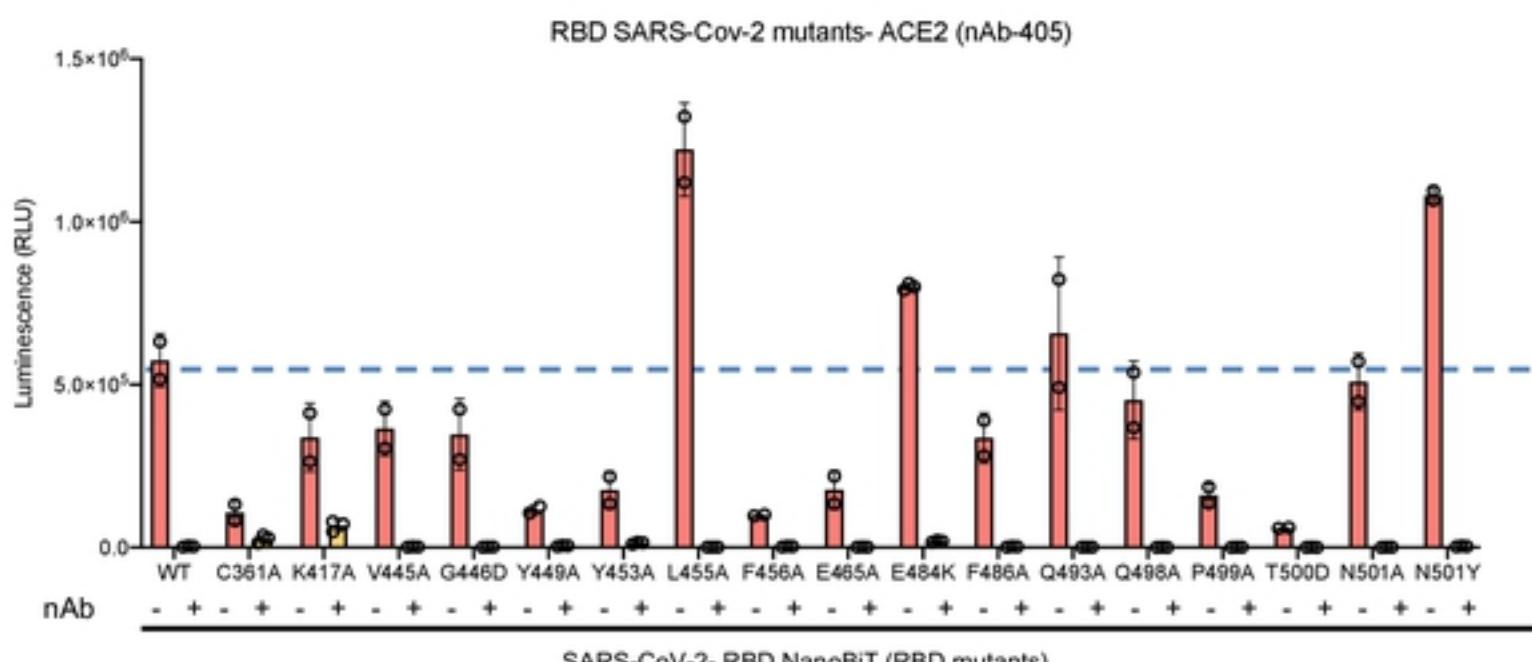
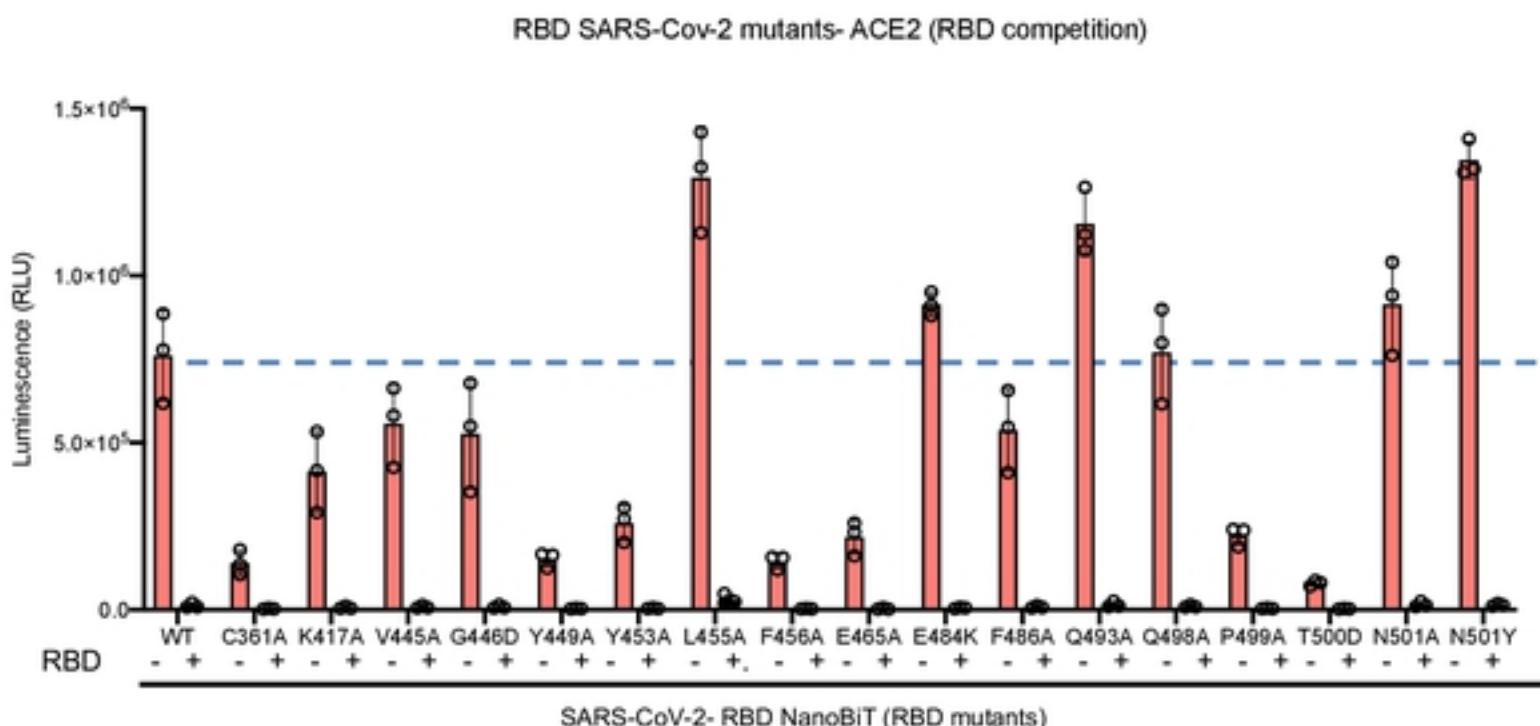
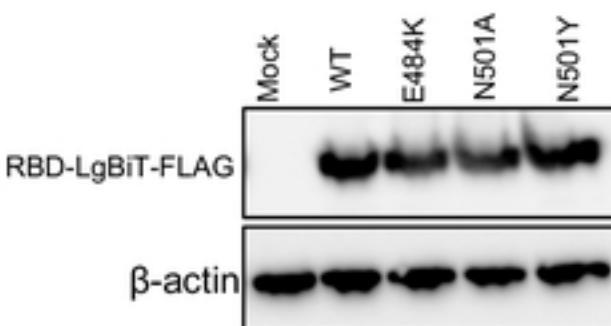
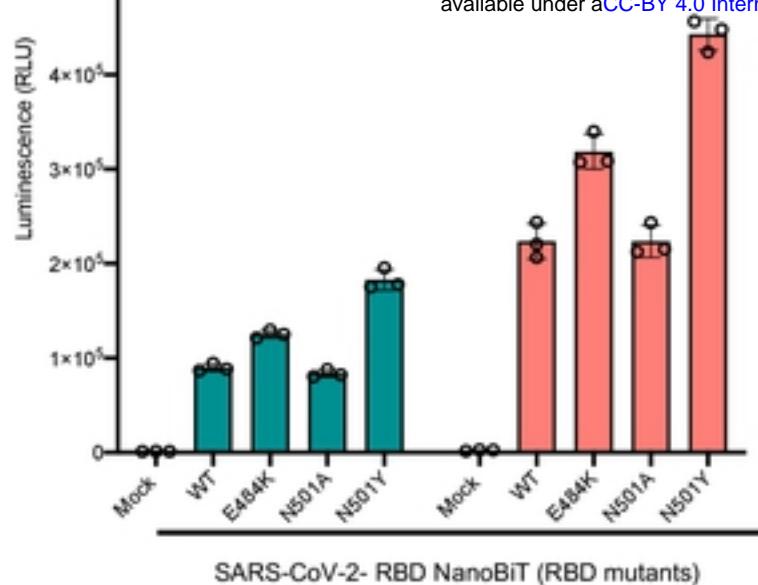





Figure 6

bioRxiv preprint doi: <https://doi.org/10.1101/2021.01.29.428773>; this version posted January 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 7

A

Multiple Sequence Alignment		Mutations																				
Virus Species	C361A	K417A	V445A	G446D	Y449A	Y453A	I455A	F456A	E465A	D467A	Y473A	A475D	C480A	F486A	N487A	C488A	Y489A	G496D	P499A	T500D	G502D	Y505A
SARS-CoV-2	C	K	V	G	Y	Y	L	F	E	D	Y	A	C	F	N	C	Y	G	P	T	G	Y
Betacoronavirus_Erinaceus	C	A	N	F	N	Y	L	L	R	P	F	Y	-	R	-	-	-	-	L	G	K	K
MERS-CoV	C	P	-	I	P	Y	L	V	T	W	Y	K	L	G	-	-	-	-	V	A	G	V
Rabbit coronavirus_HKU14	C	Y	-	R	P	R	F	K	T	P	L	C	-	-	-	-	-	P	A	F	G	V
Bat coronavirus_BM48-31/BGR/2008	C	V	-	-	N	Y	R	F	S	D	F	P	C	C	L	N	C	Y	Q	S	G	F
Human coronavirus_HKU1	C	F	-	N	P	R	F	S	G	P	R	C	C	G	S	Y	N	T	A	F	G	Y
Bovine coronavirus	C	Y	-	R	P	R	F	K	T	P	L	C	-	-	-	-	-	P	A	F	G	V
Pipistrellus bat coronavirus_HKU3	C	A	-	I	P	Y	N	G	S	-	-	-	-	-	-	-	-	-	T	A	T	G
Rousettus bat coronavirus_HKU9	C	T	A	V	-	-	-	G	Q	I	T	-	-	-	-	-	-	-	-	-	-	F
Betacoronavirus_England_1	C	P	-	I	P	Y	L	V	T	W	Y	K	L	G	-	-	-	-	A	V	G	V
Tylonycteris bat coronavirus_HKU4	C	N	-	I	P	Y	Y	I	G	S	F	R	L	G	-	-	-	-	H	A	G	G
SARS coronavirus_Tor2	C	V	S	T	Y	Y	Y	L	E	D	F	P	C	L	N	C	Y	T	T	G	Y	
Rousettus bat coronavirus	C	A	V	A	V	P	-	-	G	Q	V	Q	-	-	-	-	-	-	P	A	Q	P
Human coronavirus_OC43	C	Y	-	R	P	K	F	K	T	P	L	C	-	-	-	-	-	P	F	G	A	A
Betacoronavirus_HKU24	C	Y	-	K	P	N	F	N	T	Y	C	C	G	N	S	I	N	A	W	S	A	V
Bat H _{Co} V_Zhejiang2013	C	D	A	T	Q	Y	A	W	Q	W	Y	C	Q	R	N	C	Y	M	F	F	G	K
Rat coronavirus_Parker	C	L	-	N	P	R	F	T	N	P	R	C	-	-	-	-	-	A	F	T	Y	

bioRxiv preprint doi: <https://doi.org/10.1101/2021.01.29.428773>; this version posted January 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B

<i>SARS-CoV-2</i> <i>Pangolin-CoV</i> <i>Bat-CoV-RaTG13</i>	C361A . K417A . V445A . G446D . Y449A . Y453A . L455A . F456A NRKR I SNCVADY PGQTGK I ADNYNYK I AWNSNNLDSKVGGNYNYLYRLFRKSN NRKR I SNCVADY PGQTGR I ADNYNYK I AWNSNNLDSKVGGNYNYLYRLFRKSN NRKR I SNCVADY PGQTGK I ADNYNYK I AWNSKHIDAKEGGNFNYLYRLFRKAN
<i>SARS-CoV-2</i> <i>Pangolin-CoV</i> <i>Bat-CoV-RaTG13</i>	E465A . D467A . Y473A . A475D . C480A . F486A . N487A . C488A . Y489A . G496D . P499A . T500D . G502D . Y505A KPFERDI STEI YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVL KPFERDI STEI YQAGSTPCNGVEGFNCYFPLQSYGFHPTNGVGYQPYRVVVL KPFERDI STEI YQAGSKPCNGQTGLNCYYPLYRYGFYPTDGVGHQPYRVVVL