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Abstract:	Organ	development	is	orchestrated	by	cell-	and	time-specific	gene	regulatory	networks.	Here	we	
investigated	the	regulatory	basis	of	mouse	cerebellum	development	from	early	neurogenesis	to	adulthood.	
By	acquiring	snATAC-seq	profiles	for	∼90,000	cells	spanning	eleven	stages,	we	mapped	all	major	cerebellar	
cell	 types	and	 identified	candidate	cis-regulatory	elements	 (CREs).	We	detected	extensive	spatiotemporal	
heterogeneity	 among	 progenitor	 cells	 and	 characterized	 the	 regulatory	 programs	 underlying	 the	
differentiation	of	 cerebellar	neurons.	Although	CRE	activity	 is	 predominantly	 cell	 type-	 and	 time-specific,	
periods	 of	 greater	 regulatory	 change	 are	 shared	 across	 cell	 types.	 There	 is	 a	 universal	 decrease	 in	 CRE	
conservation	 and	 pleiotropy	 during	 development	 and	 differentiation,	 but	 the	 degree	 of	 evolutionary	
constraint	differs	between	cerebellar	cell	types.	Our	work	delineates	the	developmental	and	evolutionary	
dynamics	 of	 gene	 regulation	 in	 cerebellar	 cells	 and	 provides	 general	 insights	 into	 mammalian	 organ	
development.	
	
Main	text:	The	cerebellum	is	primarily	known	for	its	role	in	motor	control,	but	it	also	contributes	to	other	
complex	functions,	such	as	language	and	memory	(1–4).	Abnormal	development	and	malfunctioning	of	the	
cerebellum	are	linked	to	a	series	of	human	disorders,	including	ataxia,	schizophrenia,	autism,	and	pediatric	
brain	tumors,	such	as	medulloblastoma	and	ependymoma	(1,	2).	The	basic	neural	circuit	of	the	cerebellum	
centers	on	the	 inhibitory	Purkinje	cells	 (PCs),	which	 integrate	 information	from	other	areas	of	the	central	
nervous	 system	 and	 transmit	 signals	 to	 the	 neurons	 of	 the	 cerebellar	 deep	 nuclei	 (DN).	 The	 incoming	
information	is	modulated	by	a	dense	layer	of	excitatory	granule	cells	(GCs)	and	a	diverse	set	of	 inhibitory	
GABAergic	interneurons	(INs).	Although	this	simple	circuit	is	conserved	across	jawed	vertebrate	species,	the	
size,	 morphology	 and	 developmental	 adaptations	 of	 the	 cerebellum	 show	 great	 variation	 (4,	 5).	 Such	
variation	is	especially	pronounced	in	the	mechanisms	underlying	the	amplification	and	migration	of	GCs	(4,	
6,	7),	which	are	the	most	abundant	neuron	type	in	the	cerebellum,	and	–	in	mammals	–	in	the	entire	brain	
(8).	
	
Cerebellum	development	 in	mammals	 relies	 on	a	 spatially	 and	 temporally	 restricted	 pattern	 of	 cell	 type	
specification.	Two	different	germinal	 zones,	 the	ventricular	 zone	and	 the	 rhombic	 lip	give	 rise	 to	distinct	
neuronal	 and	glial	populations	 in	a	 temporally	 restricted	manner.	GABAergic	deep	nuclei	neurons	 (GABA	
DNs),	PCs,	 INs	and	astrocytes	are	 sequentially	derived	 from	progenitors	 in	 the	ventricular	 zone,	whereas	
the	 emergence	 of	 glutamatergic	 deep	 nuclei	 neurons	 (Glut.	 DNs)	 from	 progenitors	 in	 the	 rhombic	 lip	 is	
followed	 by	 the	 generation	 of	 GC	 progenitors	 (GCPs)	 and	 unipolar	 brush	 cells	 (UBCs)	 (2).	 Decades	 of	
molecular	research	have	identified	major	regulators	of	these	processes,	including	the	transcription	factors	
(TFs)	 ATOH1	 and	 PTF1A,	 which	 are	 essential	 for	 the	 formation	 of	 the	 rhombic	 lip	 and	 ventricular	 zone,	
respectively	 (2,	 9).	 Two	 other	 TFs,	 OLIG2	 and	 GSX1,	 are	 responsible	 for	 the	 temporal	 switch	 of	 the	
ventricular	zone	from	PCs	towards	INs	(2,	10).	Single-cell	transcriptomics	studies	have	provided	additional	
cellular	 and	 molecular	 insights	 into	 cerebellum	 development	 (11–15)	 but	 the	 regulatory	 basis	 of	 these	
dynamic	expression	programs	remains	largely	unexplored.	
	
Developmental	 gene	 expression	 is	 largely	 controlled	 by	 the	 interplay	 between	 cis-regulatory	 elements	
(CREs),	such	as	enhancers,	silencers	and	promoters,	and	the	TFs	that	bind	to	them	(16,	17).	By	integrating	
information	 from	 the	 binding	 of	 lineage-determining	 and	 signal-dependent	 TFs,	 the	 3D	 chromosomal	
structure	and	 the	 local	 chromatin	 state,	distal	CREs	drive	 cell	 type-specific	 gene	expression	 (16,	18),	 and	
concomitant	specification	of	cell	type	identity	(19,	20),	thereby	contributing	to	the	precise	control	of	organ	
development	 (16,	 21,	 22).	 Bulk	 measurements	 of	 CRE	 activity	 from	 the	 hindbrain	 (22,	 23),	 postnatal	
cerebellum	 and	 in	 vitro	 differentiating	 GCs	 (24)	 have	 provided	 important	 insights	 but	 lack	 the	 cellular	
resolution	 required	 to	 characterize	 the	 regulatory	 programs	 associated	 with	 specification	 and	
differentiation	of	cell	types	in	the	developing	cerebellum.		
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Most	CREs	undergo	 rapid	evolutionary	 turnover	 (25–28),	 contrary	 to	 the	gene	expression	programs	 they	
control	 (29,	 30).	 However,	 a	 small	 number	 of	 regulatory	 regions,	 primarily	 those	 associated	 with	
developmental	 genes,	 show	 remarkable	 sequence	 and	 activity	 conservation,	 even	 comparable	 to	 that	 of	
protein-coding	exon	sequences	(31,	32).	Previous	studies	analyzing	whole	tissues	(21)	and	in	vitro	cultured	
cell	 lines	 (20)	 reported	 higher	 conservation	 levels	 of	 CREs	 active	 at	 early	 stages	 of	 organ	 development,	
which	 also	 show	 the	 strongest	 selective	 constraints	 in	 gene	 expression	 (30,	 33).	 However,	 potential	
differences	 in	 the	 regulatory	 conservation	 between	 cell	 types,	which	might	 have	 arisen	 due	 to	 different	
selective	pressures	and	evolutionary	histories,	 and	 their	 contributions	 to	 the	previously	observed	whole-
organ	patterns,	have	so	far	not	been	systematically	explored.	
	
Recent	 methods	 based	 on	 the	 Assay	 for	 Transposase	 Accessible	 Chromatin	 (ATAC-seq)	 (34)	 enable	 the	
measurement	of	chromatin	accessibility,	a	proxy	for	regulatory	element	activity,	at	the	single-cell	level	(35–
37).	These	have	been	employed	to	study	gene	regulatory	activities	in	adult	mouse	organs	(38),	including	the	
brain	(39),	as	well	as	a	 limited	number	of	cells	or	stages	from	the	developing	mouse	(40,	41)	and	human	
brain	 (42,	 43).	 In	 this	 study,	 we	 used	 single-nucleus	 ATAC-seq	 (snATAC-seq)	 to	 profile	 the	 chromatin	
accessibility	 landscape	 of	 ∼90,000	 cells	 across	 the	 development	 of	 the	 mouse	 cerebellum	
(https://apps.kaessmannlab.org/mouse_cereb_atac/).	 These	 data	 allowed	 us	 to	 identify	 cell	 type-	 and	
stage-specific	 patterns	 of	 CRE	 and	 TF	 activities	 and	 to	 characterize	 their	 contributions	 towards	 cell	 fate	
specification	 and	 differentiation	 in	 the	 developing	 cerebellum.	We	 further	 investigated	 the	 evolutionary	
dynamics	of	CREs	across	cell	types	and	stages,	unveiling	common	trends,	but	also	differences	between	cell	
types.	Our	work	 sheds	 light	on	 the	dynamics	of	 gene	 regulation	 in	 the	mouse	 cerebellum	at	 the	 level	of	
individual	 cell	 types,	 and	 provides	 further	 support	 for	 longstanding	 principles	 underlying	 the	 interplay	
between	organ	development	and	evolution.	
	
Results	
A	single-cell	chromatin	accessibility	atlas	of	the	developing	mouse	cerebellum	
We	dissected	mouse	cerebella	 from	6	prenatal	and	5	postnatal	developmental	stages,	ranging	from	early	
neurogenesis	 on	 embryonic	 day	 10	 (E10)	 to	 adulthood	 (postnatal	 day	 63;	 P63;	 Methods;	 Fig.	 1A).	 We	
included	 two	biological	 replicates	 per	 developmental	 stage,	 one	 from	each	 sex	 (Table	 S1).	We	extracted	
nuclei	from	the	entire	cerebellum	to	ensure	unbiased	coverage	of	cell	types,	prepared	snATAC-seq	libraries	
using	10x	Chromium	(36),	and	then	sequenced	each	library	to	an	average	depth	of	∼220	million	read	pairs.	
After	applying	strict	quality	control	metrics	(Methods)	(44),	including	the	in	silico	identification	and	removal	
of	 putative	 doublets	 (Fig.	 S1A-D),	 we	 acquired	 single-cell	 chromatin	 accessibility	 profiles	 for	 a	 total	 of	
91,922	high	quality	cells	with	a	median	of	20,558	fragments	per	cell	(Fig.	1B;	Table	S2).	Profiles	of	biological	
replicates	 show	 the	highest	 correlations	 (Spearman’s	 rho	=	0.94-0.98),	 followed	by	 correlations	between	
samples	 from	 adjacent	 developmental	 stages	 (Fig.	 S1E).	 Using	 an	 iterative	 clustering	 approach	 and	
approximating	gene	expression	based	on	the	aggregated	accessibility	across	a	gene’s	regulatory	landscape	
(gene	 activity;	Methods)	 (44),	 we	 identified	 15	major	 cell	 types	 (including	 9	 neuronal	 cell	 types),	 which	
were	further	subdivided	into	43	subtypes	and	cell	states	(Fig.	1C-E,	S1F-H,	S2A-B;	Table	S2).	
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Fig.	1.	A	chromatin	accessibility	atlas	of	mouse	cerebellum	development	at	single-cell	resolution.		
(A)	 Schematic	overview	of	 the	dataset.	Representative	mouse	 silhouettes	are	 shown	 for	E11,	E13,	E17,	P4	and	P63	
(brain	in	grey,	cerebellum	in	cyan).	The	insets	show	major	cell	types	and	their	location	in	the	cerebellum	for	E13	and	
P63.	Cell	type	colors	are	as	in	(D).	
(B,	 C)	 UMAP	 projection	 of	 91,922	 high	 quality	 cells	 colored	 by	 developmental	 stage	 (B)	 or	 cell	 type	 and	 state	 (C).	
Barplots	in	B	show	the	number	of	profiled	cells	per	stage	and	sex	(each	sex	corresponding	to	one	biological	replicate).	
Cell	type	abbreviations	as	in	text;	diff.,	differentiating;	OPC,	oligodendrocyte	progenitor	cell.	
(D)	 Proportions	 of	 broad	 cell	 types	 across	 developmental	 stages.	 Astroglia	 lineage	 includes	 neural	 progenitors	 and	
astrocytes.	
(E)	 Activity	 scores	 of	 genes	 used	 for	 the	 annotation	 of	major	 cell	 types	 (Z-score,	 capped	 to	 0-2).	 Detailed	 view	 of	
marker	genes	across	subtypes	and	states	in	Fig.	S2A.	
	
We	 validated	 the	 use	 of	 gene	 activity	 as	 a	 proxy	 for	 gene	 expression	 and	 the	 quality	 of	 our	 cell	 type	
annotation	 through	 the	 stage-wise	 integration	 of	 our	 snATAC-seq	 data	 with	 a	 scRNA-seq	 atlas	 of	 the	
developing	 mouse	 hindbrain	 and	 cerebellum	 (12).	 Despite	 differences	 in	 dissections	 and	 sampled	
developmental	stages,	we	observed	a	high	concordance	between	the	cell	type	labels	assigned	by	the	two	
studies	(Fig.	S2C),	and	good	correlations	between	gene	activities	and	integration-imputed	RNA	expression	
values	(Fig.	S2D).	Minor	discrepancies	between	the	two	annotations	can	be	explained	by	some	scRNA-seq	
clusters	containing	mixtures	of	multiple	cell	types	(Methods;	Fig.	S2E-F).	
	
The	 earliest	 developmental	 stages	 in	 our	 dataset	 (E10-E11)	 are	 dominated	 by	 neural	 progenitors	 (key	
marker	 genes:	Notch1,	 Cyp26b1;	 Fig.	 1C-E).	We	 also	 detected	midbrain-originating	 cells	 (MBO;	 Isl1)	 and	
parabrachial	neurons	(Parab.;	Lmx1b),	which	migrate	out	of	the	cerebellum	at	later	stages	(13,	45,	46),	as	
well	as	differentiating	GABA	DNs	 (Zfhx3,	Sox14)	and	nuclear	 transitory	 zone	 (NTZ)	glutamatergic	neurons	
(Meis2,	Neurod6).	From	E12	onwards,	the	NTZ	could	be	further	resolved	into	distinct	posterior	(Lmx1a)	and	
ventral	(Lmo3)	populations	of	Glut.	DNs,	and	into	anteriorly	located	isthmic	nuclei	neurons	(Isth.	N.;	Pax5)	
(13).	 The	 same	 developmental	 window	 is	 marked	 by	 the	 generation	 of	 a	 large	 number	 of	 PCs	 (Skor2,	
Foxp2),	which	are	 the	most	abundant	neuron	 type	until	E15,	gradually	being	outnumbered	by	 INs	 (Pax2)	
and	 GCPs	 (Atoh1).	 During	 these	 first	 five	 days	 of	 cerebellum	 development,	 the	 relative	 abundance	 of	
progenitor	cells	(not	including	GCPs),	decreases	from	83%	in	E10	to	17%	in	E15	(Fig.	1D).		
	
The	next	stages	(E17-P4)	are	marked	by	the	continuous	generation	of	INs,	the	emergence	of	UBCs	(Lmx1a,	
Eomes),	and	the	rapid	expansion	of	the	proliferating	(Atoh1,	Gli2)	and	differentiating	(Neurod1,	Grin2b)	GC	
populations,	which	 account	 for	 77%	 of	 the	 cerebellar	 cells	 in	 P4	 (Fig.	 1C-E).	 Small	 numbers	 of	microglia	
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(Ccr1,	 Hexb)	 and	 oligodendrocytes	 (Sox10),	 most	 of	 which	 are	 of	 extracerebellar	 origin	 (2),	 are	 also	
detectable	from	E17	onwards.	The	last	two	developmental	stages	(P14,	P63)	are	dominated	by	mature	GCs	
(Etv1,	Cbln3;	89%	of	all	cells	in	both	stages),	with	additional	neuronal	and	glial	populations	being	traceable,	
including	 mature	 astroglia	 such	 as	 Bergmann	 glia	 (Gdf10)	 and	 parenchymal	 astrocytes	 (Aqp4,	 Scl6a11).	
Throughout	 this	 study,	we	use	 the	 term	astroglia	more	generally	 to	 refer	 to	 cells	 transitioning	along	 the	
lineage	 of	 neuroepithelial	 progenitors,	 radial	 glial	 progenitors	 and	 mature	 astrocytes	 (Fig.	 1D-E),	 in	
agreement	with	 their	 overlapping	 functions	 and	molecular	 features	 (47,	48).	Overall,	 the	 developmental	
dynamics	of	cerebellar	cell	abundances	observed	in	this	study	closely	resemble	those	from	single-cell	RNA	
sequencing	 (scRNA-seq)	 atlases	 (11,	 12).	 However,	 some	 cell	 types,	 especially	 the	 early-born	 neurons	
(GABA	DNs,	glut.	DNs,	isth.N	and	parab.)	are	better	resolved	in	our	snATAC-seq	atlas.	
	
The	cis-regulatory	landscape	of	cerebellar	cell	types	
Having	established	a	cellular	atlas	of	mouse	cerebellum	development,	we	next	sought	to	characterize	the	
regulatory	profiles	of	 individual	cerebellar	cell	 types.	We	employed	a	cluster-specific	and	replicate-aware	
peak	 calling	 approach	 (44),	 identifying	 a	 total	 of	 261,643	 high-confidence	 putative	 CREs	 (Fig.	 S3A-B;	
Methods).	36,461	(14%)	of	these	peaks	overlap	a	protein-coding	gene	promoter	or	exon,	with	an	additional	
24,228	(9%)	peaks	being	associated	with	a	 long	non-coding	RNA	(lncRNA),	small	RNA,	or	other	annotated	
transcript	(Fig.	2A).	However,	the	majority	of	the	peaks	are	 intergenic	(67,630;	26%)	or	 intronic	(133,323;	
51%)	(herein	collectively	referred	to	as	distal).	Benchmarking	this	putative	CRE	(hereafter:	CRE)	set	against	
external	datasets	(38,	49,	50)	revealed	a	strong	enrichment	for	putative	enhancer	activity	during	hindbrain	
development	and	high	activity	 in	cells	 from	the	adult	cerebellum	when	compared	with	other	organs	 (Fig.	
S3C-F).		
	
We	assigned	CREs	to	their	putative	target	genes	based	on	correlations	between	gene	activity	and	adjacent	
peak	accessibility	 (Methods;	Fig.	2B,	S3A).	More	than	25%	(68,015)	of	 the	CREs	were	assigned	to	at	 least	
one	gene,	with	80%	of	protein-coding	genes	showing	dynamic	expression	during	cerebellum	development	
(30)	being	associated	with	at	 least	one	CRE	 (57%	with	a	distal	CRE).	On	average,	each	gene	 is	associated	
with	a	single	distal	CRE,	but	1,058	protein-coding	genes	were	assigned	to	five	or	more	distal	CREs	(Fig.	2C).	
These	 genes	 are	 enriched	 for	 developmental	 processes,	 such	 as	 cell	 fate	 commitment	 and	 neuron	
differentiation,	as	well	as	mature	neuron	functions	like	synapse	organization	and	signaling	(Fig.	S3G).	
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Fig.	2.	CRE	identification,	annotation	and	activity	in	cerebellum	development.		
(A)	Genomic	features	of	261,642	putative	CREs.	Inner	and	outer	circles	illustrate	the	genomic	class	of	the	CREs	(inner)	
and	the	biotype	of	the	associated	genes	(outer).		
(B)	 Density	 plot	 of	 Pearson’s	 r	 correlation	 coefficients	 between	 CRE	 accessibility	 and	 gene	 activity	 in	 +/-250	 Kb	
windows	considered	 for	 target	assignment	 (green)	and	 in	different	 chromosomes	used	as	 control	 (purple).	 The	 red	
line	indicates	the	cutoff	used	for	assignment	at	a	false	discovery	rate	(FDR)	<	1%.	
(C)	Number	 of	 distal	 CREs	 per	 gene	 in	 decreasing	 order.	 Enriched	 biological	 processes	 for	 genes	with	 five	 or	more	
distal	CREs	are	shown	(BH	adjusted	P	<	0.05;	hypergeometric	test).	
(D)	Heatmap	illustrating	CRE	activity	(in	counts	per	million,	CPM,	scaled	by	its	maximum	value)	across	cell	types	and	
developmental	stages	(top).	CREs	are	grouped	by	activity	cluster	and	genomic	class	(left).	CRE	clusters	are	arranged	in	
decreasing	order	of	pleiotropy	(here:	mean	activity	across	rows)	and	then	by	cell	type	and	developmental	stage	with	
maximum	activity.	Representative	enrichments	for	biological	processes	of	adjacent	genes	(black)	and	motifs	for	TFs	or	
TF	 families	 (red)	are	 shown	on	 the	 right.	50,000	CREs	confidently	assigned	 to	 their	 cluster	 (Pearson’s	 r	with	cluster	
mean	greater	than	0.5)	were	chosen	randomly	for	visualization	purposes.	
(E)	Mean	scaled	activity	of	CRE	clusters	active	in	different	cell	types	across	developmental	stages.	
	
We	 then	 used	 an	 iterative	 clustering	 procedure	 to	 identify	 the	 major	 patterns	 of	 CRE	 activity	 during	
cerebellum	development	 (Methods).	We	 identified	 26	 activity	 clusters,	most	 of	which	 are	 cell	 type-	 and	
time-specific	(Fig.	2D-E).	Cell	type-specific	CREs	are	close	to	genes	associated	with	relevant	gene	ontology	
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terms	 (e.g.,	 myelination	 for	 oligodendrocyte-specific	 CREs)	 and	 enriched	 for	 motifs	 of	 TFs	 known	 to	 be	
active	in	the	respective	cell	types	(e.g.,	ATOH1	for	GCs,	SOX	family	TFs	for	progenitors,	PU.1	for	microglia;	
Fig.	 S3J-K).	 Although	 most	 CREs	 are	 cell	 type-	 and	 time-specific,	 we	 also	 identified	 a	 cluster	 showing	
constitutive	activity	(cluster	12;	Fig.	2D)	that	is	enriched	for	promoters	as	well	as	distal	elements	with	CTCF	
motifs	(Fig.	S3H-I).	We	further	observed	groups	of	CREs	active	in	multiple	early-born	neuron	types	(clusters	
2,	 11),	 glial	 populations	 (cluster	 18)	 and	 late-born	 cell	 types	 (cluster	 14),	 supporting	 the	 notion	 that	 a	
sizeable	fraction	of	CREs	shows	pleiotropic	activity	(51,	52).	
	
Periods	of	greater	regulatory	change		
In	our	global	clustering	analysis	(Fig.	2D),	most	CRE	clusters	are	cell	type-specific	and	characterized	by	sharp	
inflexion	points	in	their	activity	during	development	(e.g.,	Fig.	2E).	This	suggests	that	specific	developmental	
stages	are	associated	with	 coordinated	 changes	 in	 the	activity	of	multiple	CREs	within	each	 cell	 type.	 To	
assess	this	hypothesis,	we	identified	CREs	with	significant	changes	in	accessibility	between	adjacent	stages	
for	the	most	abundant	cerebellar	cell	types	(Methods;	Fig.	3A).	Each	cell	type	is	characterized	by	a	distinct	
set	of	differentially	accessible	CREs	(Fig.	3B,	S4A)	and	developmental	pattern.	For	example,	major	changes	
in	 PCs	 occur	 one	 day	 after	major	 changes	 in	GABA	DNs,	 reflecting	 the	 temporal	 order	 in	which	 the	 two	
neuronal	 types	 are	 generated	 (Fig.	 1D,	 3A).	 Despite	 these	 differences,	 cell	 type-specific	 changes	 in	 CRE	
activity	 tend	to	be	concentrated	around	the	same	developmental	windows,	 leading	to	specific	periods	of	
greater	regulatory	change	that	can	be	detected	at	the	level	of	the	entire	organ	(Fig.	3C).	Since	our	power	to	
detect	differentially	accessible	CREs	depends	on	cell	abundance,	and	thus	library	size	(Methods;	Fig.	S4B),	
we	 repeated	 this	 analysis	 using	 the	 same	 number	 of	 fragments	 for	 each	 sample.	 Although	we	 detected	
fewer	differentially	accessible	CREs,	we	identified	the	same	developmental	windows	to	be	associated	with	
greater	change	(Fig.	S4C).	These	periods	were	also	marked	by	lower	correlations	in	chromatin	accessibility	
profiles	of	cell	types	across	adjacent	stages	(Methods;	Fig.	S4D).	

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.29.428632doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428632
http://creativecommons.org/licenses/by-nd/4.0/


	 8	

	
Fig.	3.	Periods	of	greater	regulatory	change.		
(A)	Number	of	differentially	accessible	(DA)	CREs	across	adjacent	developmental	stages	in	major	cerebellar	cell	types	
(up:	increasing	accessibility;	down:	decreasing	accessibility).	Horizontal	bars	in	the	bottom	indicate	the	developmental	
window	for	which	each	cell	 type	was	 tested	 (restricted	by	 its	abundance).	The	y-axis	 is	 interrupted	 for	visualization	
purposes.	
(B)	 Number	 of	 conditions	 (cell	 type	 and	 developmental	 stage)	 in	 which	 each	 CRE	 was	 identified	 as	 differentially	
accessible.	
(C)	Number	of	differentially	accessible	CREs	per	developmental	stage	after	aggregating	the	accessibility	profiles	across	
cell	types.	
(D)	Overlap	between	CREs	(left)	and	putative	target	genes	(right)	with	increased	accessibility	between	adjacent	stages	
in	 early	 progenitors	 (top)	 and	 postnatal	 GCs	 (bottom).	 Similarity	 across	 sets	 is	 quantified	 with	 Jaccard	 similarity	
indexes	(JI).	
(E)	 Sum	of	 absolute	 differences	 in	 cell	 type	 proportions	 across	 adjacent	 developmental	 stages	 (blue)	 and	 between	
biological	 replicates	 (orange).	 The	 size	 of	 the	 blue	 dots	 corresponds	 to	 the	 –log10	 P-value	 of	 a	 t-test	 comparing	
differences	 across	 stages	 and	 between	 replicates.	 Horizontal	 lines	 correspond	 to	 mean	 values	 across	 stages.	 A	
summary	of	the	method	is	illustrated	in	the	inset.	T1	and	T2	correspond	to	consecutive	stages,	A	and	B	to	biological	
replicates,	lines	indicate	pairwise	differences	in	cell	type	proportions.	Differences	between	(blue)	and	within	(orange)	
stages	are	compared	with	a	t-test.		
	
During	early	embryogenesis	 (E10-E13),	both	progenitor	cells	 (included	 in	 the	astroglia	 lineage)	and	early-
born	neurons	(GABA	DNs,	Glut.	DNs	and	PCs)	show	major	changes	in	their	regulatory	landscapes	(Fig.	3A).	
In	 progenitor	 cells,	 CREs	 enriched	 for	 nuclear	 receptor	motifs	 (NR2C2,	NR2F2)	 are	 gradually	 replaced	 by	
regions	 enriched	 for	 POU	and	homeobox	motifs	 (E10-E11),	 and	 eventually	NFI	motifs	 (E11-E12	 and	 E12-
E13;	Fig.	S4E).	CREs	proximal	 to	genes	 involved	 in	neuron	differentiation	and	migration,	and	enriched	for	
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RFX	binding	sites,	are	activated	in	GABA	DNs	(E10-E11)	and	PCs	(E11-E12;	Fig.	S4E-F).	Despite	this	similarity,	
opening	CREs	in	PCs	also	contain	binding	sites	for	homeobox	TFs	and	RAR-related	orphan	receptors	(RORs;	
Fig.	S4E).	This	highly	dynamic	period	of	early	organogenesis	is	followed	by	a	period	of	fewer	changes	(E13-
P0).		
	
Immediately	after	birth	 (P0-P4),	 there	 is	another	period	of	greater	regulatory	change	 in	the	astroglia	and	
GC	populations,	primarily	 involving	the	activation	of	CREs	enriched	for	motifs	of	the	NFI	TF	family	in	both	
cell	types	(Fig.	3A,	S4E).	Finally,	major	changes	occur	in	GCs	and	INs	between	P7-P14	and	P14-P63,	leading	
to	 the	 closing	 of	 CREs	 near	 developmental	 genes	 and	 the	 opening	 of	 CREs	 adjacent	 to	 genes	 associated	
with	ion	transport	and	synaptic	signaling	(Fig.	S4F).	Unlike	early	progenitors	(E10-E12),	the	putative	target	
genes	of	CREs	activated	in	postnatal	GCs	are	largely	shared	between	stages	(Fig.	3D,	S4F).	However,	despite	
this	 convergence	 in	 gene	 targets,	 the	underlying	differentially	 accessible	CREs	are	distinct	 for	each	 stage	
(Fig.	3B,	3D,	S4A).	CREs	with	increasing	accessibility	in	P7-P14	are	enriched	for	motifs	of	the	ZEB,	MEF	and	
ROR	 TF	 families,	 whereas	 those	 activated	 in	 P14-P63	 contain	 motifs	 recognized	 by	 basic	 leucine	 zipper	
domain	(bZIP)	factors,	such	as	JUN	(Fig.	S4E).	Thus,	the	activation	of	the	same	gene	sets	in	postnatal	GCs	is	
regulated	 by	 TFs	 and	 CREs	 with	 temporally	 distinct	 activities.	 Furthermore,	 the	 fraction	 of	 intergenic	
elements	and	average	distance	to	the	closest	transcription	start	site	(TSS)	decrease	with	time	during	these	
late	postnatal	stages	(Fig.	S4G-H),	as	previously	observed	for	the	developing	forebrain	(21).	
	
Notably,	 the	 first	 two	periods	of	greater	regulatory	change	coincide	with	major	alterations	 in	 the	cellular	
composition	of	the	cerebellum	(emergence	of	PCs	in	E11-E12	and	expansion	of	GCs	in	P0-P4;	Fig.	3E,	1D).	
By	 contrast,	 few	 changes	 in	 cell	 type	 composition	 occur	 during	 later	 stages	 (P14-P63)	 of	 cerebellum	
development,	 which	 are	 dominated	 by	 GCs.	 Collectively,	 our	 analyses	 identified	 four	 highly	 dynamic	
periods	 during	 cerebellum	 development	 (E10-E13,	 P0-P4,	 P7-P14,	 P14-P63),	 characterized	 by	 greater	
changes	in	CRE	activity	across	multiple	cell	types	and,	for	the	first	two	periods,	in	cellular	composition.	
	
Heterogeneity	of	cerebellar	progenitors	reflects	cell	fate	decisions	
The	observed	temporal	differences	in	cell	type	proportions	(Fig.	1D,	3E)	are	largely	due	to	the	generation	of	
distinct	cell	types	in	a	spatially	and	temporally	restricted	manner	(2,	53).	We	asked	whether	this	mode	of	
cell	 fate	 specification	was	 associated	with	 spatiotemporal	 heterogeneity	 amongst	 cerebellar	 progenitors.	
Chromatin	 accessibility	 data	 are	 especially	 suitable	 for	 investigating	 this	 question,	 as	 regulatory	 changes	
often	foreshadow	gene	expression	during	cell	fate	decisions	(Ziffra	et	al.,	2019;	Ma	et	al.,	2020)	and	are	not	
obscured	by	cell	cycle	related	genes,	a	major	confounding	factor	in	transcriptomics	data	(Ma	et	al.,	2020).	
We	thus	subclustered	cells	from	the	astroglia	lineage	(progenitors	and	astrocytes).	Our	iterative	clustering	
approach	 identified	 progenitors	 from	 all	 major	 germinal	 regions	 throughout	 cerebellum	 development,	
although	without	sharp	boundaries	within	a	given	stage	(Fig.	4A-B,	S5A-C).	Early	progenitors	(E10-E12)	can	
be	divided	into	isthmic	(En1,	Pax5),	anterior	ventricular	zone	(anterior	VZ;	Gsx1,	Wnt8b),	ventricular	zone	
(VZ;	Dll1,	Ptf1a	 from	E11)	 and	 rhombic	 lip	 (RL;	Cdon,	Atoh1)	 populations,	 as	well	 as	progenitors	with	no	
apparent	commitment	towards	a	cell	fate	(Fig.	4A-C,	S5A-C),	in	accord	with	recent	reports	(54).	E13	and	E15	
are	marked	by	 the	appearance	of	 two	 late	progenitor	populations	 (Fig.	4A-B)	 that	broadly	correspond	 to	
the	 previously	 described	 bipotent	 (Gsx1,	 Wnt8b)	 and	 gliogenic	 (Slc1a3,	 Grm3)	 progenitors	 (55).	 The	
bipotent	progenitors	migrate	from	the	VZ	to	the	prospective	white	matter	(WM)	and	have	been	shown	to	
generate	 interneurons	 and	WM	 astrocytes;	 whereas	 the	 gliogenic	 progenitors	 locate	 to	 the	 developing	
Purkinje	cell	layer	and	give	rise	to	Bergmann	glia	and	granule	cell	layer	(GCL)	astrocytes	(55,	56).	In	line	with	
this,	 we	 detected	 two	 populations	 of	 differentiating	 parenchymal	 astrocytes,	 astroblast	 WM	 (Slc6a11,	
Olig2,	Kcnd2)	and	astroblast	GCL	(Aqp4,	Tekt5)	at	late	prenatal	and	early	postnatal	stages	(E15-P7;	Fig.	4A-
C,	S5A-C).	
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Fig.	4.	Spatiotemporal	heterogeneity	in	cerebellar	progenitor	populations.		
(A,	B)	UMAP	projections	of	21,830	astroglia	cells	(progenitors	and	astrocytes)	colored	by	their	developmental	stage	(A)	
and	cell	type	(B).	
(C)	 Gene	 activity	 scores	 for	 marker	 genes	 used	 for	 the	 annotation	 of	 progenitor	 populations	 (Counts	 per	 104	
fragments,	capped	at	10th	and	99th	quantiles	and	log10	transformed).	
(D)	Heatmap	illustrating	CRE	activity	(CPM	scaled	by	its	maximum	value)	across	progenitor	types	and	developmental	
stages	(top).	CREs	are	grouped	by	activity	cluster	and	genomic	class	(left).	Representative	enrichments	for	biological	
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processes	of	adjacent	genes	(black)	and	TF	motifs	(red)	are	shown	on	the	right	(BH	adjusted	P	<	0.05;	hypergeometric	
test).	50,000	CREs	confidently	assigned	to	their	cluster	(Pearson’s	r	with	cluster	mean	greater	than	0.5)	were	chosen	
randomly	for	visualization	purposes.	
(E)	Hierarchical	 clustering	and	heatmap	of	Spearman’s	correlation	coefficients	 in	CRE	accessibility	across	progenitor	
types	and	developmental	stages.	
(F)	 Fraction	 of	 fragments	 in	 bipotent	 progenitor-specific	 CREs	 (E13-E15)	 for	 different	 progenitor	 populations	 and	
developmental	stages.	
	
Surprisingly,	progenitor	cells	cluster	primarily	by	developmental	stage	and	not	by	germinal	zone	(Fig.	4A-B,	
E),	despite	our	dense	sampling	of	developmental	stages	and	ability	to	 identify	the	same	germinal	regions	
through	 consecutive	 stages,	often	on	 the	basis	of	 the	 same	marker	 genes	 (e.g.,	RL	 in	E10-E12;	 Fig.	 S5A).	
These	 temporal	 signals	 are	 strongest	 in	 early	 embryonic	 stages	 (E10-E12),	 a	 period	 coinciding	 with	 the	
generation	of	a	diverse	set	of	neuronal	cell	types	(Fig.	4E,	1D).	For	example,	within	these	two	days,	the	VZ	
sequentially	gives	rise	to	parabrachial	neurons,	which	exit	the	cerebellum	towards	ventral	brainstem,	GABA	
DNs,	 and	 PCs	 (2,	 45).	 Indeed,	 many	 CREs	 show	 temporally	 dynamic	 activity	 patterns	 that	 are	 shared	
between	germinal	zones	(Fig.	4D),	arguing	for	a	mode	of	cell	fate	induction	through	shared	temporal	cues	
(4,	9,	57).		
	
From	E15	onwards,	 temporal	differences	become	smaller	and	progenitors	 from	adjacent	stages	group	by	
germinal	 region	 (gliogenic	 and	 bipotent;	 Fig.	 4E).	 Notably,	 this	 period	 coincides	 with	 the	 protracted	
generation	of	 INs	and	astrocytes.	Thus,	although	spatiotemporal	heterogeneity	among	 the	progenitors	 is	
prominent	 throughout	 cerebellum	 development,	 early	 stages	 are	 characterized	 by	 stronger	 temporal	
signals,	 in	 agreement	 with	 the	 large	 number	 of	 differentially	 accessible	 CREs	 we	 identified	 in	 the	 same	
developmental	 window	 (Fig.	 3A),	 whereas	 spatial	 signals	 increase	 towards	 late	 prenatal	 and	 postnatal	
stages.		
	
A	major	temporal	transition	in	cerebellar	cell	fate	specification	occurs	in	the	VZ	around	E13	when	Olig2+	PC	
progenitors	 switch	 to	 Gsx1+	 bipotent	 progenitors	 that	 give	 rise	 to	 INs	 and	 eventually	 astrocytes	 (10).	
However,	we	identified	a	Gsx1+	progenitor	population	already	at	E10,	three	days	before	we	detected	the	
first	 INs	 (Fig.	 4A-C,	 S5A-C),	 consistent	with	 an	 earlier	 study	 (10).	Using	 in	 situ	 hybridization	data	 (58)	we	
confirmed	 the	presence	of	 these	progenitors	 in	 the	anterior	VZ	of	 the	E11	 cerebellum,	between	 the	PC-
generating	posterior	VZ	and	 the	 isthmus	 (Fig.	 S5B).	Although	 this	 early	Gsx1+	 progenitor	population	was	
previously	 observed	 (10),	 its	 relationship	 to	 the	 bipotent	 progenitors	 remains	 elusive.	We	 assessed	 the	
similarity	 of	 these	 temporally	 distinct	 Gsx1+	 progenitor	 populations	 and	 found	 that	 additional	 marker	
genes,	 such	 as	Ndnf,	Robo1	 and	Wnt8b,	 are	 shared	 between	 them	 (Fig.	 S5D).	 Furthermore,	 anterior	 VZ	
progenitors	 from	E10-E12	 showed	 the	highest	 similarity	 in	CRE	activity	 to	bipotent	progenitors	 from	E13	
and	E15,	both	globally	and	when	focusing	on	cell	type-specific	CREs,	across	stage-matched	progenitor	types	
(Fig.	4F,	S5E).	Thus,	our	data	provide	support	that	early	Gsx1+	anterior	VZ	progenitors	are	developmentally	
related	 to	 the	Gsx1+	 bipotent	 progenitors	 from	 later	 developmental	 stages,	 generating	 a	 hypothesis	 for	
future	lineage	tracing	studies	(59).	
	
Evolutionary	dynamics	of	CREs	across	cell	types	and	developmental	stages	
Motivated	by	the	pronounced	changes	in	CRE	activity	we	observed	during	development,	both	in	specified	
cell	 types	 (Fig.	 3A)	 and	 within	 progenitor	 populations	 (Fig.	 4A-E),	 we	 next	 investigated	 whether	 such	
temporal	 differences	are	 also	 reflected	 in	 the	evolutionary	histories	of	CREs.	A	 temporal	 decline	 in	 gene	
regulatory	(21)	and	expression	(30,	33)	conservation	has	been	reported	for	whole	organs,	but	differences	
between	 cell	 types,	 and	 their	 contributions	 to	 these	 developmental	 patterns,	 have	 not	 been	 explored.	
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Hence,	we	decided	to	test	for	differences	in	the	evolutionary	dynamics	of	CREs	both	across	cell	types	and	
throughout	development.	
	
We	 assessed	 the	 selective	 (functional)	 constraints	 on	 CRE	 sequences	 using	 estimates	 of	 evolutionary	
conservation	(phastCons	scores)	(60),	and	inferred	their	minimum	age	(i.e.,	when	they	first	appeared)	using	
syntenic	 sequence	 alignments	 between	 high-quality	 genomes	 from	 mouse	 and	 16	 other	 vertebrates	 at	
various	 phylogenetic	 distances	 (Fig.	 S6A;	 Table	 S5;	 Methods).	 We	 then	 assessed	 these	 regulatory	
conservation	metrics	at	the	single-cell	level	(Methods;	Fig.	S6A-F),	enabling	comparisons	between	different	
cell	 types	 and	 developmental	 stages.	 Across	 all	 cell	 types,	 both	 sequence	 constraints	 and	 the	 predicted	
ages	of	distal	(intronic	and	intergenic)	CREs	decreased	significantly	during	development	(Fig.	5A-B	and	S6G).	
This	 shows	 that	 the	previous	 observations	 for	whole	 organs	 (21)	 extend	 to	 individual	 cell	 types.	Ancient	
CREs,	shared	across	or	even	beyond	mammals,	are	primarily	active	during	embryonic	development,	when	
cell	 types	 are	 specified	 and	 begin	 their	 differentiation	 (Fig.	 5E).	 As	 cell	 types	mature	 and	 activate	 their	
terminal	 effector	 genes,	 elements	 specific	 to	 eutherians	 and	murid	 rodents	 (Muridae)	 gradually	 increase	
their	 activity,	 potentially	 contributing	 to	 species/lineage-specific	 phenotypic	 innovations	 of	 ancestral	 cell	
types	(Fig.	5C,	E).	Consistent	with	these	observations,	TF	genes,	which	are	central	to	cell	type	identity	(19),	
are	associated	with	older	and	more	constrained	CREs	(Fig.	5D,	P	<	10-15,	Mann-Whitney	U	test).	
	
We	 also	 observed	 pronounced	 differences	 in	 the	 conservation	 of	 distal	 CREs	 between	 cell	 types.	 Most	
strikingly,	 CREs	 active	 in	 microglia	 show	 a	 much	 faster	 evolutionary	 turnover	 compared	 with	 all	 other	
cerebellar	cell	types	(Fig.	5A-B	and	S6G;	P	<	10-15,	Mann-Whitney	U	test),	in	line	with	the	rapid	divergence	in	
gene	 expression	 and	 morphology	 of	 microglia	 (61).	 In	 agreement	 with	 their	 younger	 age	 and	 reduced	
sequence	 constraint,	 CREs	 active	 in	 microglia	 are	 also	 enriched	 for	 genomic	 repeats	 (Fig.	 5C).	 This	
enrichment	 is	driven	by	 recently	 expanded	 transposable	elements	 in	 rodents,	 such	as	 short	 interspersed	
nuclear	elements	(SINEs)	B1,	B2	and	B4,	endogenous	retrovirus	sequences	(ERVs),	and	L1	elements,	and	not	
by	more	ancient	sequences	shared	across	mammals	(Fig.	5F).	By	contrast,	astroglial	cells	(progenitors	and	
astrocytes)	 show	 the	most	 conserved	 distal	 CREs	 in	 the	mature	 cerebellum	 (Fig.	 5A	 and	 S6G;	 P	 <	 10-15,	
Mann-Whitney	 U	 test)	 and	 constitute	 the	 only	 cell	 population	 without	 an	 increasing	 contribution	 of	
Muridae-specific	and	repeat-derived	CREs	during	development	(Fig.	5C,	E).	Instead,	postnatal	astroglia	are	
enriched	for	distal	CREs	that	originated	160-177	million	years	ago	in	common	mammalian	and	therian	(i.e.,	
eutherian-marsupial)	ancestors	(Mya;	Fig.	5E,	P	<	10-15,	Mann-Whitney	U	test)	and	have	since	been	strongly	
preserved	by	 purifying	 selection	 across	 eutherian	mammals	 (Fig.	 S6G),	 overall	 suggestive	 of	 a	 regulatory	
innovation	 in	 astroglia	 around	 the	 emergence	 of	 the	 major	 mammalian	 lineages.	 We	 confirmed	 and	
extended	 these	 observations	 using	 a	 single-cell	 chromatin	 accessibility	 atlas	 of	 adult	mouse	 organs	 (38).	
Notably,	we	found	that	astrocytes	have	the	most	conserved	distal	CREs,	not	only	 in	the	adult	cerebellum	
but	also	across	all	adult	organs	(Fig.	5G;	P	<	10-15,	Mann-Whitney	U	test).	Moreover,	eight	of	the	ten	most	
conserved	cell	types	across	all	organs	were	neural	(Fig.	5G),	highlighting	the	overall	stronger	evolutionary	
constraints	 in	 the	 brain	 (30,	 62).	 Consistently,	 despite	 having	 the	 most	 rapidly	 evolving	 regulatory	
landscape	in	the	cerebellum,	microglia	constitute	the	most	conserved	immune	cell	type	(Fig.	5G).	
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Fig.	5.	Evolutionary	dynamics	of	CREs	across	cell	types	and	developmental	stages.		
(A,	B,	C)	Average	sequence	constraint	 (A),	 inferred	age	 (B)	and	 fraction	covered	by	 repeats	 (C)	 in	distal	CREs	active	
across	 cell	 types	 and	 developmental	 stages.	 Vertical	 bars	 illustrate	 95%	 confidence	 intervals	 of	 the	 estimates.	
Pearson’s	 r	 correlation	 coefficients	 between	 the	 estimates	 and	 development	 are	 shown	 (median	 across	 cell	 types;	
P<0.05*,	P<0.01**,	P<0.001***).	
(D)	Sequence	constraint	(left)	and	inferred	age	(right)	of	distal	CREs	associated	with	TFs	and	other	genes	with	dynamic	
expression	in	mouse	cerebellum	development.	
(E)	Fraction	of	fragments	in	distal	CREs	of	different	age	groups	per	cell	type	and	stage	(CRE	numbers	indicated	on	top).	
Vertical	 bars	 illustrate	 95%	 confidence	 intervals	 of	 the	 estimates.	 Pearson’s	 r	 correlation	 coefficients	 between	 the	
estimates	and	development	are	shown	(median	across	cell	types;	P<0.05*,	P<0.01**,	P<0.001***).	
(F)	Fraction	of	fragments	in	distal	CREs	overlapping	TEs	of	different	classes	in	cell	types	of	the	adult	mouse	cerebellum	
(P63).	
(G)	 Average	 sequence	 constraint	 of	 distal	 CREs	 active	 in	 different	 cell	 types	 of	 the	 adult	 mouse.	 The	 ten	 most	
conserved	(left)	and	all	immune	(right)	cell	types	are	shown.	Data,	cell	type	and	CRE	annotations	are	from	Cusanovich	
et	al.	2018.	
	
Among	neurons,	we	also	observed	a	decrease	in	the	conservation	of	distal	CREs	during	development,	but	
the	differences	between	cell	types	are	subtler	than	among	glial	cells	(Fig.	5A-B,	S6G).	In	particular,	GCs	and	
UBCs	exhibit	 significantly	 lower	 conservation	 levels	 compared	with	 stage-matched	Glut.	DNs,	GABA	DNs,	
PCs	and	INs,	especially	during	prenatal	development	(Fig.	5A,	B;	E13:	P	<	10-15,	Mann-Whitney	U	test).	This	
difference	 might	 reflect	 the	 overall	 high	 turnover	 in	 developmental	 adaptations	 associated	 with	 GC	
amplification	across	vertebrates	(4),	including	the	emergence	of	the	external	granule	cell	layer,	a	secondary	
germinal	 zone	 of	 proliferating	 GCs	 that	 is	 thought	 to	 be	 specific	 to	 amniotes	 (6,	 7).	 In	 agreement,	
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developing	GCs	are	depleted	 from	ancient	 regulatory	elements	 (shared	across	or	beyond	mammals)	 and	
enriched	 for	eutherian	and	Muridae-specific	 elements	 (Fig.	 5E).	As	 in	microglia,	 distal	 CREs	 in	embryonic	
GCs	(E13)	are	enriched	for	ERV	and	L1	transposable	elements.	However,	in	contrast	to	microglia,	the	most	
enriched	 SINE	 elements	 are	 mammalian	 interspersed	 repeats	 (MIRs),	 which	 were	 amplified	 before	 the	
mammalian	radiation	(63),	with	little	to	no	enrichment	for	elements	with	rodent-specific	expansion,	such	as	
B1	and	B2	(Fig.	S6H).	Collectively,	our	results	reveal	common	temporal	trends	as	well	as	cell	type-specific	
differences	in	the	evolutionary	dynamics	of	the	cis-regulatory	landscape	of	the	developing	cerebellum.		
	
Regulatory	activity	during	neuron	differentiation	and	maturation	
We	 next	 sought	 to	 assess	 the	 contribution	 of	 gradual	 processes,	 such	 as	 cell	 type	 differentiation	 and	
maturation,	 to	 the	 observed	 temporal	 differences	 in	 CRE	 activity	 and	 conservation.	 We	 used	 diffusion	
pseudotime	(64)	 to	model	 these	processes	 for	 the	three	major	neuron	types	of	 the	cerebellum:	GCs,	PCs	
and	 INs.	 We	 integrated	 data	 across	 multiple	 developmental	 stages	 starting	 immediately	 after	 cell	 fate	
commitment;	that	is,	when	cells	could	be	unambiguously	assigned	to	specific	cell	types	(Methods,	Fig.	S7A-
C).	As	expected,	average	pseudotime	values	increase	with	developmental	stage	(Fig.	6A-C).	We	observed	a	
considerable	overlap	of	differentiation	states	across	stages	for	GCs	and	INs	consistent	with	their	protracted	
differentiation	dynamics	 that	 span	 several	weeks	and	expand	 into	postnatal	development	 (2).	While	GCs	
appear	 as	 a	 largely	 homogeneous	 differentiating	 population,	 INs	 are	 clearly	 stratified	 into	 distinct,	
temporally-specified	subtypes	(Fig.	6B,	S7D-E).	These	include	early-born	INs	(Zfhx4,	Slit2)	detected	at	E13-
E15,	mid-born	Golgi	(Chrm2),	and	Purkinje	layer	INs	(PLI;	Nxph1,	Klhl1)	prevalent	at	E17-P7,	and	late-born	
molecular	layer	INs	of	type	1	(MLI1;	Sorcs3,	Grm8)	and	2	(MLI2;	Nxph1,	Pvalb),	which	are	abundant	at	P14-
P63	 (Fig.	 S7D-E)	 (2,	 65).	 Contrary	 to	 the	 protracted	 trajectory	 of	 GCs	 and	 INs,	 PCs	 undergo	 rapid	
differentiation,	primarily	during	E12	and	E13,	and	then	remain	in	a	mostly	steady	differentiation	state	(Fig.	
6C).	
	
We	then	used	the	modeled	trajectories	to	assess	the	conservation	of	distal	CREs	across	differentiation.	The	
sequence	constraint	decreases	linearly	during	differentiation	of	GCs	and	INs,	whereas	in	PCs	it	peaks	at	an	
intermediate	 state	 and	 then	 declines	 (Fig.	 6D).	 Thus,	 differentiation	 signals	modeled	 by	 pseudotime	 are	
mostly	consistent,	but	not	always	identical,	with	temporal	patterns	observed	across	development	(Fig.	5A).	
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Fig.	6.	Regulatory	landscape	of	neuronal	differentiation	in	the	developing	cerebellum.	
(A,	 B,	 C)	 UMAP	 projections	 of	 35,153	 GCs	 (A),	 5,113	 INs	 (B)	 and	 13,214	 PCs	 (C)	 following	 integration	 across	
developmental	stages.	Cells	are	coded	by	pseudotime	value	(left)	and	developmental	stage	(middle).	The	violin	plots	
(right)	 show	 the	 distribution	 of	 pseudotime	 values	 across	 developmental	 stages.	 The	 red	 points	 in	 the	 left	 panels	
indicate	the	pseudotime	root.	
(D)	 Average	 sequence	 constraint	 of	 distal	 CREs	 across	 neuron	 differentiation.	 Cells	 are	 grouped	 in	 20	 bins	 in	
pseudotime	intervals	with	a	step	of	0.05.	Vertical	bars	illustrate	95%	confidence	intervals	of	the	estimates.	
(E)	Examples	of	TFs	classified	as	activators	and	repressors.	The	points	mark	Z-score	scaled	values	for	gene	(blue)	and	
motif	 (orange)	 activity.	 Cells	 are	 grouped	 in	 50	 bins	 based	 on	 pseudotime	 ranks.	 Curves	 are	 drawn	 using	 LOESS	
regression	and	gray	areas	indicate	95%	confidence	intervals.	
(F)	Heatmap	of	Z-score	scaled	activity	of	dynamic	CREs	across	GC	differentiation.	Cells	are	grouped	in	50	bins	based	on	
pseudotime	ranks.	The	contribution	of	different	developmental	stages	and	mean	pseudotime	value	for	each	bin	are	
shown	 above	 the	 heatmap.	 Representative	 enrichments	 for	 biological	 processes	 of	 adjacent	 genes	 (black)	 and	 TF	
motifs	(red)	are	shown	on	the	right	(BH	adjusted	P	<	0.05;	hypergeometric	test).	CRE	clusters	are	shown	on	the	left.	
(G)	 Chord	 diagram	 illustrating	 the	 overlap	 between	 activity	 clusters	 for	 CREs	 dynamic	 in	 two	 or	 more	 neurons	
(pleiotropic).	The	outer	circle	is	colored	by	the	neuron	type.	The	inner	circle	indicates	the	activity	clusters,	indexed	as	
in	 F	 and	 ordered	 from	 early	 (red,	 orange)	 to	 late	 (green,	 blue)	 activity.	 Each	 node	 represents	 a	 pairwise	 overlap	
between	clusters	from	different	neuron	types.	
(H)	 Differences	 in	 sequence	 conservation	 (top)	 and	 abundance	 (bottom)	 of	 distal	 CREs	 with	 increasing	 pleiotropy	
(shading)	active	in	different	stages	of	GC	differentiation	(indicated	by	cluster	numbers,	as	in	F).	
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Next,	we	characterized	the	gene	regulatory	dynamics	along	the	differentiation	trajectories	of	 these	three	
cerebellar	 neuron	 types.	 For	 each	 neuron	 type	 we	 identified	 TFs	 with	 dynamic	 activity	 during	
differentiation	 and	 integrated	 the	 accessibility	 of	 the	 respective	 binding	 motifs	 (66)	 with	 their	 inferred	
expression	levels	to	classify	TFs	into	putative	activators	and	repressors	(67)	(Fig.	S7F-H;	Table	S3;	Methods).	
These	candidate	TFs	include	known	regulators	of	neuronal	differentiation,	such	as	BARHL1	and	ETV1	in	GCs,	
MYT1L	 and	 NEUROD6	 in	 INs,	 and	 OLIG2	 and	 FOXP2	 in	 PCs	 (Fig.	 6E).	 At	 the	 level	 of	 individual	 CREs	 we	
observed	a	 gradual	 transition	 from	CREs	proximal	 to	 genes	 associated	with	embryonic	development	 and	
cell	fate	commitment,	towards	genes	associated	with	neuron	differentiation,	followed	by	genes	with	roles	
in	axon	guidance	and	neuron	migration	across	all	 three	neuron	 types	 (Fig.	6F,	 S7I-J).	CREs	active	at	 later	
pseudotime	 states	 are	 proximal	 to	 genes	 involved	 in	 the	 formation	 of	 the	 synapse	 and,	 eventually,	 in	
neurotransmitter	 secretion	 and	 ion	 transport	 (Fig.	 6F,	 S7I-J).	 In	 support	 of	 this	 convergence	 in	 biological	
processes,	43%	of	protein-coding	genes	with	dynamic	activity	across	pseudotime	are	shared	by	at	least	two	
neuron	 types	 (Fig.	 S7K),	 in	 accordance	 with	 similar	 observations	 in	 the	 developing	 neocortex	 (68).	 By	
contrast,	 only	 20%	 of	 dynamic	 CREs	 are	 shared	 across	 neuron	 types	 (i.e.,	 they	 are	 pleiotropic),	 further	
highlighting	the	pronounced	cell	type-specificity	of	the	cis-regulatory	landscape	(Fig.	S7L).	Pleiotropic	CREs	
often	show	similar	activity	profiles	across	neuron	types	 (Fig.	6G;	early-early:	P	<	10-15,	 late-late:	P	<	10-15,	
early-late:	P	=	1,	hypergeometric	test)	and	are	primarily	active	in	the	early	stages	of	neuron	differentiation	
(Fig.	6H,	S7M-N).	The	higher	similarity	of	the	early	stages	is	also	supported	by	principal	component	analysis	
(PCA)	in	which	the	regulatory	landscapes	of	the	three	neuron	types	gradually	diverge	as	they	differentiate	
(Fig.	S7O).	Pleiotropic	CREs	are	also	significantly	more	conserved	 than	 those	 that	are	dynamic	 in	a	 single	
neuron	type	throughout	all	stages	of	differentiation	(Fig.	6H,	S7M-N).	These	results	support	the	notion	that	
pleiotropy	imposes	major	constraints	on	the	evolution	of	regulatory	elements	(51,	69).	As	pleiotropic	CRE	
activity	decreases	during	development	and	differentiation,	so	does	the	degree	of	regulatory	constraint,	 in	
agreement	with	previous	observations	for	gene	expression	(30,	33).	
	
Temporal	signals	in	GC	differentiation	
Although	we	found	that	the	dynamics	of	CRE	activity	and	conservation	across	development	can	mostly	be	
explained	 by	 cellular	 differentiation	 and	 maturation,	 additional	 temporal	 differences	 could	 be	 present,	
even	between	cells	at	the	same	differentiation	state.	Such	differences	could	arise	from	intrinsic	temporal	
patterning	cues,	as	recently	described	in	the	context	of	cell	 fate	specification	(57,	68),	as	well	as	extrinsic	
factors,	such	as	changes	in	the	availability	of	a	morphogen	or	a	ligand,	synaptic	simulation	and	interactions	
with	neighboring	cells	(16).	To	assess	the	contribution	of	such	temporal	signals	we	focused	on	GCs,	because	
these	 cells	 have	 a	 protracted	 differentiation	 trajectory	 (E13-P14)	 and	 do	 not	 have	 distinct	 temporally-
specified	subtypes.	By	stratifying	GCs	based	on	their	differentiation	state	(pseudotime)	and	developmental	
stage,	 we	 observed	 that	 both	 factors	 contribute	 to	 the	 decrease	 of	 conservation	 of	 distal	 CREs	 during	
development,	 with	 cells	 at	 early	 differentiation	 states	 and	 developmental	 stages	 showing	 the	 most	
conserved	 regulatory	 program	 (Fig.	 7A,	 S6I-J).	 To	 further	 characterize	 these	 differences,	 we	 divided	 the	
differentiating	GCs	 into	broad	bins	 along	 the	pseudotime	 (Fig.	 7B)	 and	 identified	differentially	 accessible	
CREs	between	cells	 from	adjacent	developmental	 stages	within	 the	 same	differentiation	bin.	 In	 line	with	
our	previous	observations	(Fig.	1B,	3A),	most	radical	changes	could	be	detected	postnatally,	between	P0-
P4,	 P7-P14	 and	 P14-P63	 (Fig.	 7C).	 These	 changes	 include	 opening	 of	 CREs	 near	 genes	 associated	 with	
neuron	 projection	 and	 synaptic	 ion	 transport	 in	 proliferating	 and	migrating	GCs	 (P0-P4),	 respectively,	 as	
well	 as	 downregulation	of	 developmental	 genes	 in	mature	GCs	 (P14-P63;	 Table	 S4).	 In	 all	 differentiation	
state-matched	 comparisons,	 distal	 CREs	 closing	 during	 development	 are	 under	 stronger	 constraint	 than	
opening	distal	CREs	(Fig.	7D).	
	

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.29.428632doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428632
http://creativecommons.org/licenses/by-nd/4.0/


	 17	

	
Fig.	7.	Temporal	differences	across	matched	differentiation	states	in	GCs.	
(A)	Average	sequence	constraint	of	distal	CREs	across	GC	differentiation.	Cells	are	separated	by	developmental	stage	
and	grouped	in	20	bins	in	pseudotime	intervals	with	a	step	of	0.05.	Vertical	bars	illustrate	95%	confidence	intervals	of	
the	estimates.	
(B)	Distribution	of	pseudotime	values	across	35,153	GCs	 (left).	Red	vertical	 lines	show	the	breaks	 for	 the	 five	broad	
differentiation	 bins	 (also	 estimated	 based	 on	 cluster	 inflexion	 points).	 P4	 in	 situ	 hybridization	 data	 of	 selected	
differentiation	bin	marker	genes	are	shown	above	(58).	Gradual	shift	of	expression	signals	 from	external	 to	 internal	
granule	layer	of	the	cerebellar	cortex	is	observed.	Scale	bar:	50	μm.		
(C)	 Number	 of	 differentially	 accessible	 (DA)	 CREs	 across	 adjacent	 developmental	 stages	 identified	 for	 each	
differentiation	bin	(as	in	B).	
(D)	Sequence	conservation	of	distal	CREs	opening	(blue)	and	closing	(red)	across	adjacent	developmental	stages	only	
considering	 cells	 from	 the	 same	 differentiation	 bin	 (as	 in	 B).	 Numbers	 above	 the	 boxplots	 indicate	 the	 number	 of	
differentially	accessible	distal	CREs.	
(E)	Identification	of	temporal	differences	in	CRE	activity	in	prenatal	GCPs	(top;	UMAP	of	35,153	GCs	prior	to	alignment	
across	developmental	stages,	as	 in	S7A).	Z-score	scaled	temporal	activity	of	opening	and	closing	CREs	(bottom).	The	
black	lines	indicate	the	mean	values	of	the	clusters.	
(F,	G,	H)	Characterization	of	developmentally	dynamic	CREs	 in	prenatal	GCPs	 in	 terms	of	enriched	(BH	adjusted	P	<	
0.05;	hypergeometric	test)	biological	processes	for	adjacent	genes	(F),	TF	motifs	(G)	and	sequence	constraint	(H).	(F)	
and	(G)	show	enrichments	for	all	CREs,	(H)	shows	constraint	only	for	distal	CREs.	
(I)	Fraction	of	CPMs	per	cell	in	CREs	that	are	closing	(left)	or	opening	(right)	during	development	in	prenatal	GCPs.	
(J)	 Fraction	 of	 UMIs	 per	 cell	 in	 putative	 target	 genes	 of	 CREs	 that	 are	 closing	 (left)	 or	 opening	 (right)	 during	
development	in	prenatal	GCPs.	Data	and	annotations	are	from	(12).	
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P-values	in	(D),	(H)	and	(J)	are	estimated	by	two-sided	Mann-Whitney	U	tests.	
	
We	 then	 focused	 on	 prenatal	 GCPs,	 which	 formed	 a	 single	 cluster	 prior	 to	 any	 alignment	 across	
developmental	 stages,	 and	 are	 thus	 at	 a	 similar	 differentiation	 state	 (Fig.	 7E,	 S7A).	 This	 allowed	 us	 to	
control	for	potential	artifacts	caused	by	our	 inference	of	differentiation	through	the	pseudotime	analysis.	
Despite	 the	overall	 high	 similarity	 of	 prenatal	GCPs,	we	 identified	CREs	with	 significant	 temporal	 activity	
changes	 (Methods)	 and	 classified	 them	 into	 two	 major	 clusters	 of	 decreasing	 (7,527)	 and	 increasing	
(11,972)	accessibility	across	prenatal	developmental	stages	(Fig.	7E).	CREs	with	decreasing	activity	are	more	
conserved	 than	 those	 with	 increasing	 activity	 and	 are	 associated	 with	 developmental	 functions	 and	
enriched	 for	motifs	 recognized	by	pluripotency	TFs,	 such	as	SOX2	and	BRN1	(Fig.	7F-H).	 In	contrast,	CREs	
with	increasing	activity	are	associated	with	ion	transport	and	enriched	for	motifs	of	TFs	active	in	GCPs,	such	
as	ATOH1	and	GLI2	(Fig.	7F-H).	We	also	observed	that	closing	CREs	are	active	in	other	types	of	progenitor	
and	early	differentiating	cells,	whereas	opening	CREs	show	the	highest	activity	 in	postnatal	GCPs	(Fig.	7I),	
further	 supporting	 the	 link	between	CRE	pleiotropy	and	evolutionary	 constraint	 that	we	observed	 in	 the	
pseudotime	analysis	(Fig.	6H,	S7M-N).	
	
Since	CREs	with	decreasing	activity	 in	 the	prenatal	GCPs	 (E13-P0)	are	also	active	 in	progenitor	 cells	 from	
earlier	developmental	stages	(E10-E12),	we	asked	whether	they	still	have	an	effect	on	gene	expression	or	
whether	 we	 were	 capturing	 the	 delayed	 compaction	 of	 already	 inactive	 CREs	 (24).	 To	 investigate	 this	
question,	we	considered	the	expression	of	their	putative	target	genes	 in	a	scRNA-seq	atlas	of	cerebellum	
development	 (12).	We	used	proximity	 to	assign	CREs	 to	 genes	 to	avoid	 the	 circularity	 introduced	by	our	
correlation-based	 approach,	 which	 requires	 genes	 and	 CREs	 to	 show	 similar	 patterns.	 The	 aggregate	
expression	of	genes	adjacent	to	closing	CREs	decreased	significantly	in	GCPs	across	prenatal	developmental	
stages	 (Fig.	 7J),	 suggesting	 that	 the	 progressive	 decline	 in	 CRE	 accessibility	 has	 an	 effect	 on	 gene	
expression.	Collectively,	 our	 analyses	provide	evidence	 for	 temporal	 differences	 in	CRE	activity	 and	gene	
expression	in	GCs	that	are	not	explained	by	differentiation	and	maturation	processes.		
	
Discussion	
In	 this	 study,	we	profiled	∼90,000	cells	 to	generate	a	 regulatory	atlas	of	 the	mouse	cerebellum	spanning	
eleven	developmental	stages,	from	the	beginning	of	neurogenesis	to	adulthood.	We	showed	that	all	major	
cerebellar	cell	types	could	be	detected	on	the	basis	of	their	chromatin	accessibility	landscape.	We	identified	
candidate	CREs	 for	each	cell	 type,	most	of	which	 show	cell	 type-	and	 time-specific	 activity,	 and	assigned	
them	to	putative	target	genes.	We	characterized	the	differentiation	and	maturation	dynamics	of	the	three	
major	neuron	types	in	the	cerebellar	circuit	(PCs,	GCs	and	INs),	and	identified	CREs	and	TFs	associated	with	
these	 processes.	 Thus,	we	 provide	 a	 comprehensive	 resource	 that	will	 facilitate	 further	 research	 on	 the	
impact	 of	 gene	 regulation	 in	 cerebellum	 development	 and	 disease	
(https://apps.kaessmannlab.org/mouse_cereb_atac/).		
	
Temporal	signals	in	CRE	activity	within	cell	types	
Throughout	 our	 analyses	 we	 detected	 strong	 temporal	 differences	 in	 CRE	 activity	 within	 individual	 cell	
types.	These	are	most	apparent	in	the	four	periods	of	greater	regulatory	change	(E10-E13,	P0-P4,	P7-P14,	
P14-P63).	Although	the	first	two	periods	are	also	associated	with	changes	in	the	cellular	composition	of	the	
cerebellum,	 the	 large	 number	 of	 radical	 changes	 identified	 at	 the	 cell	 type	 level	 suggests	 that	 the	 rapid	
temporal	 turnover	 in	CRE	activity	previously	described	 for	whole	organs	 (21)	 is	mostly	driven	by	changes	
within	cell	types.	Despite	being	reminiscent	of	periods	associated	with	major	changes	in	the	expression	of	
coding	 and	 noncoding	 transcripts	 in	 the	 cerebellum	 and	 other	 mammalian	 organs	 (30,	 33),	 changes	 in	
regulatory	 activity	 seem	more	 pervasive	 than	 at	 the	 level	 of	 the	 transcriptome.	 For	 example,	 very	 few	
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radical	 expression	 changes	 occur	 in	 the	 cerebellum	 between	 P14	 and	 P63	 (30,	 33),	 while	 we	 observed	
numerous	 changes	 in	 CRE	 accessibility	 in	 this	 developmental	 window.	 The	 large	 number	 of	 CREs	 with	
decreasing	 accessibility	 in	 P14-P63	 could	 be	 explained	 by	 the	 delayed	 closing	 of	 already	 deactivated	
developmental	 enhancers	 (24),	whereas	 the	 high	 overlap	 between	 the	 putative	 target	 genes	 of	 opening	
CREs	in	P7-P14	and	P14-P63	supports	the	idea	that	the	expression	of	terminal	effector	genes	in	postmitotic	
neurons	is	maintained	by	the	successive	activation	of	transient	enhancers	(70).	
	
Another	 manifestation	 of	 strong	 temporal	 signals	 was	 observed	 in	 cerebellar	 progenitors.	 Although	 we	
detected	 pronounced	 spatiotemporal	 heterogeneity	 across	 progenitor	 populations,	 we	 rarely	 identified	
CREs	that	were	specific	to	a	single	germinal	zone	and	developmental	stage.	 Instead,	our	analyses	suggest	
that	 this	 heterogeneity	 is	 driven	 by	 a	 combination	 of	 spatial	 and	 temporal	 signals.	 This	 in	 turn	 provides	
support	 for	 a	 model	 of	 cell	 fate	 induction,	 where	 different	 germinal	 zones	 jointly	 experience	 common	
temporal	 cues.	 These	 could	 involve	 intrinsic	 patterning	 through	 a	 shared	 temporal	 code,	 as	 recently	
suggested	for	multiple	regions	of	the	central	nervous	system	(57).	In	support	of	this	hypothesis,	we	found	
that	late	progenitor	populations	(E13-P7)	are	enriched	for	motifs	of	the	NFI	TF	family,	which	is	associated	
with	the	generation	of	late-born	neurons	in	several	brain	regions	(57).	Additionally,	common	extrinsic	cues,	
such	as	factors	secreted	from	the	choroid	plexus	might	also	explain	the	coordinated	changes	in	CRE	activity	
across	germinal	zones	(4).	
	
We	also	observed	temporal	signals	 in	GCs	that	could	not	be	explained	by	differentiation	and	maturation.	
Although	 these	 temporal	 differences	 in	 CRE	 activity	 have	 an	 effect	 on	 gene	 expression,	 their	 functional	
impact	 remains	 unclear.	 They	 could	 emerge	 as	 a	 byproduct	 of	 GCs	 experiencing	 the	 same	 intrinsic	 and	
extrinsic	 temporal	cues	as	all	other	cells	 in	 the	cerebellum.	Alternatively,	 the	developmental	 functions	of	
genes	downregulated	in	GCPs	during	prenatal	development	could	suggest	a	reduction	in	cell	fate	plasticity	
and	 increasing	 commitment	 towards	 the	 GC	 fate.	 Moreover,	 the	 timing	 of	 GC	 neurogenesis	 has	 been	
shown	to	vary	across	cerebellar	 lobules	(71)	and	to	affect	the	axonal	projection	patterns	of	GCs	(72),	but	
understanding	how	such	differences	relate	to	gene	expression	and	regulation	warrants	further	study.		
	
Evolutionary	dynamics	of	CREs	
We	 also	 characterized	 the	 evolutionary	 dynamics	 of	 CRE	 activity	 across	 cell	 types	 and	 developmental	
stages.	A	limitation	of	our	work	is	that	we	can	only	assess	conservation	of	the	regulatory	landscape	through	
the	conservation	of	CRE	sequences.	Comparative	studies	have	shown	that	regulatory	activity,	especially	for	
distal	 elements,	 typically	 evolves	 faster	 than	DNA	 sequences	 (25,	26,	28,	73).	However,	 here	we	did	not	
attempt	to	define	regulatory	conservation	 in	absolute	terms,	but	only	performed	comparisons	across	cell	
types	and	developmental	stages.	To	this	end,	sequence	conservation	is	one	of	the	strongest	predictors	of	
regulatory	 element	 activity	 conservation	 (25,	 26,	 74),	 suggesting	 that,	 in	 the	 absence	 of	 comparative	
developmental	 epigenomic	 atlases	 at	 single-cell	 resolution,	 differences	 in	 sequence	 constraint	 can	 be	
extended	to	infer	differences	in	activity	conservation.		
	
We	detected	 a	 common	 trend	across	 all	 cell	 types,	with	both	distal	 CRE	 age	 and	 sequence	 conservation	
decreasing	 during	 development.	 This	 adds	 to	 the	 accumulating	 molecular	 evidence	 (21,	 30,	 33,	 75)	 in	
support	 of	 von	 Baer’s	 observations	 from	 the	 nineteenth	 century	 that	 morphological	 similarity	 between	
developing	embryos	from	different	species	decreases	during	development	(76).	This	developmental	pattern	
is	largely	explained	by	cell	type	differentiation	and	maturation,	but	also	by	additional	temporal	differences	
between	 cells	 from	 matched	 differentiation	 states.	 In	 both	 cases,	 CRE	 pleiotropy	 is	 intertwined	 with	
evolutionary	constraint	(51,	69).	Both	pleiotropy	and	regulatory	conservation	decrease	during	development	
and	differentiation,	in	accord	with	observations	in	gene	expression	studies	(30,	33).	
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Besides	 these	 shared	 developmental	 patterns,	 we	 also	 identified	 differences	 in	 regulatory	 conservation	
between	cell	types.	The	regulatory	landscape	of	microglia,	the	immune	cells	of	the	brain,	shows	the	fastest	
evolutionary	 turnover	 among	 all	 cerebellar	 cell	 types.	 On	 the	 other	 hand,	 mature	 astrocytes,	 including	
Bergmann	glia,	 have	 the	most	 conserved	distal	 CREs,	not	only	 in	 the	adult	 cerebellum,	but	 also	across	 a	
wide	 selection	 of	 cell	 types	 in	 adult	 mouse	 organs.	 Given	 our	 observations	 pertaining	 to	 the	 effect	 of	
development	and	pleiotropy	on	evolutionary	conservation,	this	difference	might	be	explained	by	astrocytes	
maintaining	 some	 of	 the	 functional	 properties	 of	 neural	 progenitors,	 including	 the	 ability	 to	 reactivate	
proliferation	after	injury	(77),	and/or	by	stronger	pleiotropic	constraints	due	to	their	bridging	interactions	
with	multiple	cell	 types	of	 the	otherwise	disconnected	neuronal	and	vascular	networks	 in	 the	brain	 (78).	
Finally,	 among	 neuron	 types,	 throughout	 development	 and	 especially	 in	 embryonic	 stages,	 GCs	 are	
characterized	 by	 reduced	 conservation,	 which	 might	 be	 associated	 with	 the	 more	 recent	 evolutionary	
emergence	 of	 the	 proliferative	 external	 granule	 cell	 layer	 (6,	 7)	 as	 well	 as	 the	 overall	 degree	 of	
developmental	adaptations	in	GCs	across	vertebrates	(4).	
		
Despite	 these	 differences	 between	 cell	 types,	 our	 data	 suggest	 that	 previous	 observations	 regarding	
declining	regulatory	constraint	during	organ	development	(21)	are	largely	explained	by	changes	within	cell	
types	during	development	rather	than	temporal	changes	in	cellular	composition.	Given	that	the	cerebellum	
has	 been	 successfully	 used	 as	 a	 model	 system	 to	 study	 cell	 fate	 specification,	 neurogenesis	 and	 other	
developmental	 processes	 (4,	 10,	 24),	 we	 expect	 that	 many	 of	 our	 observations	 regarding	 the	
developmental	 and	 evolutionary	 dynamics	 of	 regulatory	 elements,	 and	 their	 interplay,	 are	 generally	
applicable	to	many	mammalian	organs.	
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Materials	and	Methods	
Ethics	statement	and	sample	collection.	
All	animal	procedures	were	performed	in	compliance	with	international	ethical	guidelines	for	the	care	and	
use	of	laboratory	animals,	and	were	approved	by	the	local	animal	welfare	authorities	(Regierungspräsidium	
Karlsruhe).	RjOrl:SWISS	 time-mated	pregnant	mice,	 litters	 at	 postnatal	 days	 P0-P14	 and	 adult	 (P63)	mice	
were	purchased	from	Janvier	Labs	(France).	The	adult	mice	were	sacrificed	by	cervical	dislocation,	the	pups	
by	decapitation.	Prenatal	samples	were	collected	before	noon	and	are	referred	to	by	full	completed	days	
post	 coitum	 (e.g.	 E10).	 Cerebella	 from	 animals	 from	 both	 sexes	were	 dissected	 as	whole	 or	 in	 2	 halves	
(Table	S1).	 E10	and	E11	 samples	were	pooled	 from	2-4	 littermates.	During	dissection	 the	developmental	
samples	were	kept	in	ice-cold	PBS	and	most	of	the	meninges	was	removed.	All	samples	were	snap-frozen	in	
liquid	nitrogen.		
	
Single	nucleus	ATAC-seq	data	generation.		
To	isolate	nuclei	from	frozen	pre-	and	postnatal	cerebellum	samples	we	made	use	of	a	published	protocol	
(79),	 which	 we	 optimized	 with	 the	 aim	 to	 maximize	 the	 recovery	 of	 nuclei.	 The	 frozen	 tissue	 was	
homogenized	on	ice	in	250	mM	sucrose,	25	mM	KCl,	5	mM	MgCl2,	10	mM	Tris-HCl	(pH	8),	0.1%	IGEPAL,	1	
μM	DTT,	0.4	U/μl	Murine	RNase	Inhibitor	(New	England	BioLabs),	0.2	U/μl	SUPERas-In	(Ambion),	cOmplete	
Protease	Inhibitor	Coctail	(Roche)	by	trituration	and/or	by	using	a	micropestle.	After	5	minutes	incubation	
the	 remaining	 bits	 of	 unlysed	 tissue	were	 pelleted	 by	 centrifugation	 at	 100	 g	 for	 1	minute.	 The	 cleared	
homogenate	was	 centrifuged	 at	 400	 g	 for	 4	minutes	 to	 pellet	 the	 nuclei.	 Nuclei	 from	 pre-	 or	 postnatal	
samples	were	washed	in	the	homogenization	buffer	once	or	twice,	respectively,	collected	by	centrifugation	
and	 resuspended	 in	 the	 Nuclei	 Buffer	 (10x	 Genomics).	 If	 needed	 the	 nuclei	 were	 strained	 using	 40	 μm	
Flowmi	strainers	(Sigma).	For	estimation	of	nuclei	concentration,	Hoechst	DNA	dye	was	added	and	nuclei	
were	 counted	 on	 Countess	 II	 FL	 Automated	 Cell	 Counter	 (Thermo	 Fisher	 Scientific).	 15,000	 nuclei	 per	
sample	were	subjected	to	tagmentation,	single	cell	barcoding	and	library	construction	using	the	Chromium	
Single	Cell	ATAC	Reagent	kits	 (v1)	and	Chromium	Controller	 instrument	 (10x	Genomics)	according	 to	 the	
manufacturer’s	protocols.	Libraries	were	amplified	 in	10	PCR	cycles	and	quantified	on	Qubit	Fluorometer	
(Thermo	Fisher	Scientific).	Average	fragment	size	was	determined	on	Fragment	Analyzer	(Agilent).	Libraries	
were	sequenced	on	Illumina	NextSeq	550	(34	cycles	for	both	Read	1	and	Read	2,	8	cycles	for	i7	index	and	16	
cycles	for	i5	index)	with	∼220	million	read	pairs	per	library.	
	
snATAC-seq	processing	and	quality	control	
Raw	 sequencing	 data	 were	 demultiplexed	 and	 converted	 to	 fastq	 format	 using	 cellranger-atac	 mkfastq	
(1.1.0)	 (36).	 The	 command	 cellranger-atac	 count	 (1.1.0)	 was	 used	 to	 correct	 droplet	 barcodes	 for	
sequencing	 errors,	 align	 reads	 to	 the	 mouse	 genome	 (mm10),	 generate	 position-corrected	 tabular	
fragment	 files	 and	 identify	 PCR	 duplicates	 from	 fragments	 with	 identical	 positions	 originating	 from	 the	
same	droplet	barcode.	Position-corrected	fragments	were	used	as	an	input	to	ArchR	(0.9.2)	for	subsequent	
processing,	quality	control	and	analysis	(44).	Using	ArchR	we	tiled	the	genome	in	500	bp	bins	and	counted	
fragments	per	barcode	and	bin.	Gene	activity	scores	were	inferred	by	counting	all	fragments	overlapping	a	
gene’s	body	and	applying	an	exponential	decay	weighting	function	to	distal	regulatory	elements.	We	used	a	
series	of	established	quality	control	metrics	to	assess	the	quality	of	our	libraries.	All	samples	included	in	our	
dataset	showed	the	expected	periodicity	 in	 the	 frequency	of	 fragment	sizes	 (Fig.	S1A)	and	a	minimum	5-
fold	enrichment	of	insertions	around	annotated	TSS	(Fig.	S1B).	Following	the	identification	of	putative	CREs	
active	 in	cerebellum	development	 (see	below)	we	estimated	rank	based	(Spearman’s)	correlations	across	
the	 accessibility	 profiles	 of	 our	 samples.	 For	 all	 stages,	 the	 highest	 correlation	 was	 observed	 between	
biological	replicates	(Spearman’s	rho:	0.94-0.98;	Fig.	S1E).	
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Cell	identification	and	doublet	removal	
Barcodes	 corresponding	 to	 nuclei	 of	 cells	 were	 distinguished	 from	 empty	 droplets	 by	 requiring	 at	 least	
5,000	fragments	and	a	minimum	TSS	enrichment	of	3.	A	total	of	117,713	barcodes	passed	this	first	filtering	
step.	A	common	issue	of	single-cell	technologies	arises	from	two	or	more	cells	being	included	in	the	same	
droplet	 and	 thus	 sharing	 the	 same	 barcode.	 Such	 putative	 doublets	 were	 identified	 in	 silico	 using	 the	
functions	addDoubletScores()	from	ArchR.	This	method	is	based	on	simulating	artificial	doublets	by	adding	
up	 the	 fragment	 counts	 of	 random	 cell	 pairs	 from	 the	 same	 sample.	 The	 simulated	 doublets	 are	 co-
embedded	with	the	real	cells	and	putative	doublets	are	identified	as	cells	that	are	consistently	found	near	
simulated	 doublets	 in	 the	 embedding.	 We	 used	 latent	 semantic	 indexing	 (LSI,	 as	 described	 in	
“Dimensionality	reduction	and	clustering”)	to	embed	our	cells	into	50	dimensions	and	performed	10	trials,	
each	marking	the	10	nearest	neighbors	of	every	simulated	doublet.	Cells	from	the	same	sample	were	then	
ranked	 based	 on	 their	 doublet	 enrichment	 score,	 i.e.,	 the	 number	 of	 simulated	 doublets	 identified	 as	 a	
nearest	neighbor	divided	by	the	expected	number	given	a	random	uniform	distribution.	We	then	used	the	
function	 filterDoublets()	 to	 remove	the	top	X%	of	cells	 from	each	sample,	where	X	 is	proportional	 to	 the	
number	of	cells	per	sample,	as	the	fraction	of	expected	doublets	depends	linearly	on	the	number	of	loaded	
cells	(36).	We	used	a	filterRatio	of	1,	removing	5%	from	a	sample	of	5,000	cells	(1st	pass	doublets).	111,201	
cells	passed	 this	 filtering	 step.	However,	 in	downstream	stages	of	 the	analysis	we	noticed	 that	cells	with	
high	number	of	fragments	and	doublet	enrichment	scores	were	clustering	together.	We	thus	implemented	
an	additional	filtering	step,	removing	all	cells	with	more	than	45,000	fragments	(approximately	double	the	
median	number	of	fragments	per	cell)	or	a	doublet	enrichment	score	greater	than	4	(Fig.	S1C).	This	filtering	
step	removed	an	additional	13,855	cells	(2nd	pass	doublets).	We	also	marked	six	clusters	that	were	enriched	
for	 these	 putative	 doublets	 (Fig.	 S1D).	 To	 assess	 whether	 the	 remaining	 cells	 in	 these	 clusters	 also	
corresponded	 to	 doublets	 or	 low	 quality	 cells,	 we	 identified	 marker	 genes	 per	 cluster	 using	 the	 gene	
activity	matrix	as	an	input	to	the	function	getMarkerFeatures()	from	ArchR.	Even	after	removing	the	1st	and	
2nd	pass	doublets,	four	of	the	six	clusters	(C5,	C18,	C21,	C55)	showed	no	enrichment	for	gene	activity	or	a	
mixture	of	marker	genes	for	distinct	cell	types	present	in	the	same	sample.	Thus,	we	decided	to	exclude	all	
cells	belonging	to	these	four	spurious	clusters	 from	subsequent	analyses.	This	 iterative,	stringent	filtering	
procedure	resulted	in	a	total	of	91,922	high	quality	cells	with	a	median	of	20,558	unique	fragments	per	cell	
and	a	median	TSS	enrichment	score	of	7.8.	Following	cell	type	annotation	(see	“Iterative	clustering	and	cell	
annotation”)	 a	 total	 of	 2,435	 cells,	 some	 of	 which	 might	 represent	 remaining	 doublets,	 could	 not	 be	
confidently	assigned	to	a	cell	type	and	were	labeled	as	“Other/mixture”.	
	
Dimensionality	reduction	and	clustering	
Dimensionality	 reduction	 for	 snATAC-seq	 data	 is	 particularly	 challenging	 due	 to	 the	 sparsity	 of	 the	 data.	
Furthermore,	 the	nearly	binary	nature	of	 the	data	does	not	allow	 for	 the	 identification	of	highly	variable	
features.	To	overcome	these	limitations,	we	used	a	recently	developed	iterative	procedure	from	the	ArchR	
package	 (0.9.2),	 based	on	a	widely	used	method	 for	 snATAC-seq	data,	 latent	 semantic	 indexing	 (LSI).	 LSI	
scales	each	feature	by	the	sequencing	depth	of	each	cell,	as	well	as	with	the	inverse	of	its	frequency	across	
all	cells,	thus	assigning	a	higher	weight	to	features	with	restricted	activity	across	cells	(80).	The	transformed	
features	are	then	used	as	input	for	dimensionality	reduction	based	on	singular	value	decomposition	(SVD).	
However,	in	the	absence	of	additional	information	about	cell	types	or	states,	this	procedure	assigns	higher	
weight	to	both	cell	type-restricted	CREs,	as	well	as	features	that	show	low-level,	noisy	activity	across	cells	in	
a	cell	type-independent	manner.	The	iterative	procedure	implemented	in	ArchR	overcomes	this	limitation	
by	performing	LSI	multiple	times	in	a	subset	of	the	dataset.	With	each	LSI	round,	cells	are	clustered	in	the	
SVD	 space	 using	 Louvain	 clustering	 as	 implemented	 in	 Seurat	 (3.0.1)	 (81),	 the	 most	 variable	 features	
between	clusters	are	 identified	and	 then	used	as	 input	 for	 the	next	 LSI	 round.	Thus,	with	each	 iteration,	
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ArchR	converges	towards	a	set	of	features	that	is	most	informative	in	distinguishing	cell	types	and	states	in	
the	dataset.		
	
For	 our	 analyses,	 we	 used	 five	 iterations,	 each	 time	 sampling	 20,000	 cells	 (10,000	 for	 subclustering	
analyses,	 see	 “Iterative	 clustering	 and	 cell	 type	 annotation”)	 with	 ten	 random	 starts	 and	 gradually	
increasing	the	clustering	resolution	(0.1,	0.2,	0.4,	0.8).	We	used	500	bp-wide	genome	tiles	as	input	to	avoid	
biases	against	rare	cell	types	and	states,	excluded	mitochondrial	and	sex	chromosomes	and	binarized	the	
count	matrix.	Features	were	transformed	with	TF-log(IDF)	and	the	100,000	most	variable	features	(50,000	
for	subclustering	analyses)	were	reduced	to	100	dimensions	with	SVD	(50	for	subclustering	analyses).	Each	
component	was	weighted	by	 the	percentage	of	variance	 it	explained.	Components	 showing	an	unusually	
high	 correlation	 with	 sequencing	 depth	 (Pearson’s	 r	 >	 0.75)	 were	 excluded	 from	 downstream	 analyses.	
These	SVD	components	were	used	as	 input	 for	 Louvain	 clustering	and	projection	 to	a	UMAP	embedding	
(Fig.	1B-C	and	S1F).	
	
Iterative	clustering	and	cell	type	annotation	
The	multidimensional	nature	of	our	dataset	poises	challenges	to	cell	type	annotation	as	similarity	between	
cells	 might	 be	 driven	 by	 factors	 other	 than	 cell	 type	 identity,	 such	 as	 developmental	 stage,	 or	
differentiation	and	maturation	state.	To	overcome	this	challenge,	we	 implemented	an	 iterative	clustering	
approach	to	identify	high	quality	cells	and	assign	them	to	cerebellar	cell	types	and	states.	First	we	applied	
Louvain	clustering	to	the	full	dataset,	identifying	47	distinct	clusters	(resolution	1.5;	Fig.	S1F).	We	used	gene	
activity	 as	 a	 proxy	 for	 gene	 expression	 to	 assign	 clusters	 to	 putative	 cell	 types	 and	 states	 (Fig.	 1E,	 S2A)	
based	on	previously	described	marker	genes	(2,	13),	as	well	as	manual	investigation	of	in	situ	hybridization	
data	 from	the	Allen	Developing	Mouse	Brain	Atlas	 resource	 (58).	We	observed	that	many	of	our	clusters	
contained	additional	substructure,	which	we	were	unable	to	recover	when	considering	the	entire	dataset,	
even	when	 increasing	 the	clustering	 resolution.	Thus,	we	decided	 to	subcluster	 cells	 from	clusters	where	
additional	structure	was	apparent	(Fig.	S1F-H).	We	grouped	these	cells	 into	three	major	groups	(astroglia,	
early-born	neurons,	and	GABAergic	neuroblasts	 from	E13)	and	 repeated	 the	LSI	dimensionality	 reduction	
and	clustering	 (38,	37	and	21	subclusters	obtained	with	a	 resolution	of	2.5,	2.5	and	2.0	 respectively;	Fig.	
S1I-H).	We	followed	the	same	approach,	relying	on	gene	activity	of	marker	genes	to	identify	cell	types	and	
their	subtypes.	Cluster	3	from	the	astroglia	group	was	further	split	into	three	subclusters.	We	then	assigned	
each	 cell	 to	 the	 most	 specific	 cell	 type	 and	 state	 label	 available	 from	 the	 full	 dataset	 or	 subclustering	
analysis.	Following	 inspection	of	 individual	developmental	stages	(Fig.	S2B),	we	 identified	a	total	of	2,435	
cells	 (E11:	C13,	E12:	C14-C15,	P14:	C12)	that	could	not	be	confidently	assigned	to	a	specific	cell	 type	and	
that	 likely	 include	remaining	doublets	or	unresolved	clusters.	These	were	 labeled	as	“Other/mixture”	and	
excluded	from	further	analyses.	Taken	together,	we	were	able	to	provide	broad	cell	type	and	subtype/cell	
state	labels	to	97%	of	the	cells	in	the	dataset.	
	
Integration	with	scRNA-seq	data	
We	 used	 single-cell	 RNA-seq	 data	 from	 a	 previous	 study	 profiling	 mouse	 hindbrain	 and	 cerebellum	
development	(12)	to	validate	our	cell	type	annotation	and	assess	the	value	of	gene	activity	as	a	proxy	for	
gene	expression.	To	improve	the	computational	efficiency	and	accuracy	of	our	approach	we	performed	the	
integration	in	a	stage-wise	manner,	matching	developmental	stages	between	studies	as	closely	as	possible.	
We	reprocessed	the	RNA-seq	data	per	stage	using	a	widely-used	pipeline	as	 implemented	 in	the	package	
Seurat	 (3.0.1)	 (81).	 Briefly,	 we	 used	 high	 quality	 cells,	 as	 previously	 filtered	 by	 the	 authors,	 applied	
SCTransform()	to	scale	the	data	and	identify	highly	variable	genes,	and	reduced	the	dimensions	of	the	data	
to	50	principal	components.		
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We	 also	 reprocessed	 our	 snATAC-seq	 data	 in	 a	 stage-wise	manner	 using	 ArchR	 as	 described	 above	 (see	
“Dimensionality	reduction	and	clustering”;	Fig.	S2B)	and	with	the	following	modifications:	50,000	variable	
features,	 50	 SVD	 components,	 clustering	 resolution	 of	 1.0.	 When	 analyzing	 the	 data	 in	 a	 stage-wise	
manner,	 we	 observed	 mild	 batch	 effects	 in	 the	 P14	 and	 P63	 datasets.	 Given	 the	 very	 high	 correlation	
between	the	biological	replicates	(Spearman’s	rho:	0.98	for	both	stages),	we	reasoned	that	the	separation	
between	 the	 batches	was	more	 obvious	 due	 to	 the	 low	 cellular	 complexity	 of	 these	 samples,	which	 are	
both	dominated	by	GCs.	We	corrected	these	mild	batch	effects	using	Harmony	(1.0)	in	the	LSI	space	(82).	
Although	batch	effects	were	only	visible	 in	P14	and	P63,	we	applied	the	Harmony	correction	to	all	stages	
for	consistency	in	our	analysis.	We	then	created	a	custom	Seurat	object	containing	the	gene	activity	scores,	
metadata	and	embeddings	of	each	snATAC-seq	sample.	
	
The	 integration	 between	 matching	 scRNA-seq	 and	 snATAC-seq	 datasets	 was	 performed	 using	 canonical	
correlation	 analysis	 (CCA)	 as	 implemented	 in	 Seurat	 (81).	 RNA	 UMI	 counts	 and	 ATAC-seq	 derived	 gene	
activity	scores	were	scaled	down	to	10,000	counts	per	cell	and	the	highly	variable	genes	from	the	RNA-seq	
sample	(reference)	for	which	gene	activity	estimates	were	available	in	the	ATAC-seq	sample	(query)	were	
used	 as	 features	 to	 identify	 transfer	 anchors	 in	 the	CCA	 space.	We	 then	 transferred	 cell	 type	 labels	 and	
RNA-seq	UMI	counts	 to	 the	 snATAC-seq	Seurat	object	using	 the	10	 (for	 cell	 type	 labels)	and	15	 (for	RNA	
imputation)	 nearest	 neighbors	 in	 the	 LSI	 space	 to	 weigh	 the	 predictions.	 We	 estimated	 the	 Jaccard	
similarity	 index	 between	 our	 cell	 type	 annotations	 and	 those	 transferred	 from	 the	 RNA-seq	 data	 and	
visualized	 the	 results	 in	 a	 heatmap	 (only	 showing	 sets	 that	 had	 a	 similarity	 index	 of	 at	 least	 0.15	 with	
another	group).	
	
Overall,	 we	 observed	 high	 concordance	 between	 the	 two	 annotations	 (Fig.	 S2C).	 However,	 there	 were	
three	 notable	 discrepancies.	 First,	 GABAergic	 DNs	 in	 our	 dataset	 best	 matched	 a	 scRNA-seq	 cluster	
annotated	 as	 excitatory	 (glutamatergic)	 nuclei	 (DN)	 neurons.	 GABAergic	 and	 glutamatergic	 DNs	 share	
several	marker	genes	and	are	both	abundant	in	early	cerebellum	development	(Fig.	1	and	S2A).	Given	that	
GABAergic	DNs	were	not	identified	as	a	distinct	cell	type	in	the	scRNA-seq	data,	we	hypothesized	that	the	
scRNA-seq	cluster	could	contain	a	mixture	of	both	glutamatergic	and	GABAergic	DN	neurons.	 Indeed,	we	
observed	additional	substructure	 in	 this	scRNA-seq	cluster	with	the	majority	of	 the	cells	expressing	Gad2	
and	 Sox14	 (Fig.	 S2F),	which	 are	markers	 for	 GABAergic	 DNs	 (83).	 Second,	 our	 differentiating	GCs	 during	
prenatal	development	were	labeled	as	unipolar	brush	cells	(UBCs)	after	the	integration	with	the	scRNA-seq	
data.	As	 before,	we	discovered	 additional	 substructure	within	 this	 cluster	 (Fig.	 S2E),	with	only	 a	 fraction	
being	 positive	 for	 the	 UBC	marker	 Lmx1a	 (84),	 and	 a	 sizeable	 group	 of	 cells	 expressing	 the	 GC-specific	
marker	Kcnd2.	Third,	differentiating	PCs	in	our	dataset	matched	with	brainstem	progenitors	in	the	scRNA-
seq	atlas.	However,	given	 that	we	dissected	cerebella,	we	expect	only	 small	 contaminating	contributions	
from	 the	 brainstem.	 Indeed,	we	 identified	 a	 small	 population	 of	 brainstem	progenitors	 in	 our	 data	 (222	
cells,	 80%	 of	 which	 from	 E10-E12),	 characterized	 by	 high	 gene	 activity	 for	 several	 Hox	 genes	 (Hoxc13,	
Hoxc6,	 Hoxc4,	 Hoxa3).	 These	 are	 expressed	 in	 the	 lower	 brainstem	 (pons	 and	 medulla)	 but	 not	 in	 the	
cerebellum	(4).	Our	PC	differentiating	population	showed	no	activity	for	these	Hox	genes	and	was	instead	
enriched	for	PC	markers,	such	as	Skor2	and	Lhx5	(Fig.	S2A).	
	
Compared	 with	 our	 study,	 the	 scRNA-seq	 dataset	 includes	 entire	 hindbrain	 samples	 for	 E10-E12,	
cerebellum	samples	from	shifted	stages	for	later	prenatal	development	and	no	P63	samples.	Despite	these	
differences,	we	observed	high	concordance	in	the	cell	type	annotations	(Fig.	S2C)	and	cell	type	prediction	
scores	 (median	 prediction	 score:	 0.81).	 Similarly	 the	 imputed	 RNA-seq	 data	 of	 the	 genes	 used	 for	 the	
integration	 were	 robustly	 correlated	 with	 the	 gene	 activity	 scores	 obtained	 from	 the	 snATAC-seq	 data	
(median	Pearson’s	r:	0.5;	Fig.	S2D).	This	high	correlation	motivated	us	to	use	gene	activity	scores	as	a	proxy	
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for	 gene	 expression	 for	 downstream	 analyses.	 We	 preferred	 gene	 activity	 to	 imputed	 RNA	 expression	
because	 it	 was	 derived	 directly	 from	 our	 data,	 thus	 overcoming	 issues	 with	 the	 compatibility	 of	 the	
dissections	and	developmental	stages	between	the	two	studies.	
	
Identification	and	annotation	of	putative	CREs	
Cluster	and	sample-based	pseudobulk	generation	and	peak	calling		
We	used	ArchR’s	function	addReproduciblePeakSet()	to	identify	regions	of	accessible	chromatin,	as	a	proxy	
for	putative	CREs	(Fig.	S3A).	We	opted	for	this	framework	because	it	allowed	us	to	account	for	differences	
in	the	abundance	and	heterogeneity	of	cell	 types	 in	our	dataset	and	to	utilize	our	biological	 replicates	to	
assess	peak	reproducibility.	Briefly,	we	used	the	47	clusters	from	the	full	dataset	to	generate	pseudobulks	
comprised	of	cells	from	the	same	cluster	and	sample	(biological	replicate).	This	allowed	us	to	identify	cell	
type/state-specific	 peaks	 while	 retaining	 the	 information	 of	 the	 sample	 the	 cells	 came	 from	 (and	 thus	
filtering	 out	 irreproducible	 peaks).	 Depending	 on	 the	 number	 of	 cells	 contained	 in	 each	 sample,	 we	
constructed	2-10	pseudobulk	 groups,	 each	 containing	 a	minimum	of	 100	 and	 a	maximum	of	 1,000	 cells,	
while	limiting	the	maximum	number	of	fragments	per	sample	to	50	million.	The	minimum	threshold	for	the	
number	of	groups	and	cells	(2	x	100	=	200)	was	estimated	by	subsampling	analysis	as	the	minimum	number	
of	sampled	cells	required	to	obtain	a	Pearson’s	correlation	of	at	least	r=0.90	with	the	entire	pseudobulk	of	
a	 given	 cluster.	 The	 rationale	 behind	 setting	 a	maximum	 threshold	was	 to	 limit	 the	 contribution	 of	 very	
abundant	 cell	 types	 and	 states	 (e.g.,	 mature	 GCs)	 to	 the	 peak	 set.	We	 chose	 to	 restrict	 this	 parameter	
primarily	 through	the	number	of	cells	 in	a	group	(1,000)	rather	than	the	number	of	samples,	 to	 facilitate	
the	 identification	 of	 CREs	 from	 cell	 types	 that	 are	 consistently	 rare	 in	 our	 data	 but	 present	 in	multiple	
samples	(e.g.,	microglia	or	postnatal	PCs).	If	a	cluster	did	not	have	100	cells	from	at	least	two	samples,	we	
allowed	 up	 to	 80%	 of	 the	 cells	 from	 a	 group	 to	 be	 resampled	 with	 replacement	 to	 reach	 the	 required	
number.	In	practice,	this	only	affected	two	clusters	(C1:	erythroid	and	C15:	mature	UBCs).	We	then	called	
peaks	 within	 each	 group	 (cluster	 +	 sample)	 using	MACS2	 (2.1.2)	 (85)	 through	 ArchR	 with	 the	 following	
parameters	 “--shift	 -75	 --extsize	 150	 --nomodel	 --call-summits	 --nolambda	 --keep-dup	 all	 -q	 0.01”.	 We	
allowed	up	to	200,000	peaks	to	be	identified	from	a	single	group,	or	up	to	1,000	peaks	per	cell	(thus	for	a	
group	of	50	cells	that	would	be	50,000	peaks).		
	
Union	peak	set	generation	
Calling	peaks	in	a	cluster-	and	sample-aware	manner	resulted	in	multiple	peak	sets	that	had	to	be	collapsed	
into	a	single	peak	annotation.	Given	that	many	of	our	subsequent	analyses	depended	on	the	overlap	with	
various	 genomic	 elements	 (see	 Peak	 annotation),	 which	 can	 be	 biased	 by	 the	 width	 of	 each	 peak,	 we	
followed	ArchR’s	iterative	overlap	merging	procedure	to	obtain	the	maximum	number	of	500	bp-wide	non-
overlapping	 peaks	 (Fig.	 S3A).	 Briefly,	 ArchR’s	 approach	 is	 based	 on	 extending	 peak	 summits	 from	 each	
group	by	250	bp	 in	 each	 flank,	 then	 identifying	overlapping	windows	and	 ranking	 them	based	on	peak’s	
significance,	normalized	by	the	sequencing	depth	of	each	group.	The	most	significant	peak	is	retained	and	
all	other	overlapping	peaks	are	removed.	This	approach	avoids	chain-merging	of	adjacent	peaks	as	well	as	
the	 removal	of	peaks	 that	 are	proximal	but	non-overlapping	 to	 the	most	 significant	peak	 (44).	 For	 some	
analyses	we	still	allowed	for	 the	presence	of	broader	peaks	by	 identifying	streaks	of	adjacent	peaks	with	
very	similar	activity	patterns	throughout	the	dataset	and	grouping	them	into	a	shared	functional	unit	(see	
“Peak	co-accessibility	and	broad	CRE	 identification”).	We	 required	each	peak	 to	be	supported	by	at	 least	
two	biological	samples	(i.e.,	replicates),	which	resulted	to	499,146	non-redundant	peaks	(permissive	peak	
set).	To	avoid	the	inclusion	of	noisy	peaks	from	clusters	with	very	large	numbers	of	cells	or	replicates,	we	
further	filtered	for	peaks	that	were	active	in	at	least	5%	of	at	least	one	cluster	(robust	peak	set;	Fig.	S3A-B).	
These	robust	peaks	were	associated	with	higher	summit	scores	and	reproducibility	and	were	enriched	for	
overlap	with	H3K27ac	histone	marks	during	hindbrain	development	and	were	more	likely	to	be	assigned	to	
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putative	target	genes	(see	Assignment	to	putative	target	genes).	Thus,	reasoning	that	these	robust	peaks	
were	 more	 likely	 to	 correspond	 to	 putative	 CREs,	 we	 limited	 all	 our	 downstream	 analyses	 to	 this	 set.	
However,	we	also	provide	the	permissive	set	as	a	resource	as	 it	could	contain	CREs	with	more	restrained	
activity	to	specific	cell	types/states	(https://apps.kaessmannlab.org/mouse_cereb_atac/).	
	
Peak	annotation	
ArchR	automatically	annotated	peaks	based	on	their	genomic	context	as	promoters	(-2,000/+100	bp	from	a	
TSS),	exonic,	intronic	or	intergenic	based	on	UCSC	annotations	for	the	mm10	genome	(86).	We	integrated	
this	annotation	with	the	biotypes	of	 the	associated	gene,	acquired	from	Ensembl	Biomart	 (v94)	 (87),	and	
collapsed	 to	 four	main	biotypes:	protein-coding,	 lncRNA	 (including	antisense,	bidirectional	and	 intergenic	
lncRNAs),	 small	 RNA	 (miRNA,	 snRNA	 and	 snoRNA)	 and	 other	 (mostly	 pseudogenes).	 We	 further	
supplemented	 the	 UCSC	 annotation	 with	 a	 recently	 described	 set	 of	 lncRNAs	 expressed	 during	 mouse	
organ	development	 (33).	We	used	bedtools	 intersect	 (2.29)	 (88)	 to	 identify	overlaps	between	peaks	 and	
lncRNA	promoters,	exons	and	gene	models,	updating	the	annotations	of	previously	intergenic	and	intronic	
CREs	based	on	their	overlap	with	lncRNA	features.		
	
To	determine	peak	overlap	with	TF	motifs	and	to	assess	TF	activity	based	on	the	aggregate	accessibility	of	
these	motifs,	we	used	the	ArchR	implementation	of	the	package	chromVAR	(66).	We	scanned	our	peak	set	
for	instances	of	the	motifs	present	in	the	cisBP	collection	(89)	using	the	default	cutoff	of	P	<	5e-05.	We	then	
computed	per-cell	deviations	for	all	motifs	using	a	GC-content	matched	background	peak	set.	
	
To	assess	sequence	constraint	in	putative	CREs	we	used	estimates	of	evolutionary	conservation	(phastCons	
scores)	based	on	multiple	alignments	(60).	We	downloaded	phastCons	scores	for	vertebrates	and	eutherian	
mammals	 (commonly	 referred	 to	 as	 placental	mammals)	 for	mm10	 as	 bigWig	 files	 from	 the	UCSC	 table	
browser.	As	selective	constraint	is	often	concentrated	to	specific	regions	of	a	CRE	(e.g.,	TF	binding	sites),	we	
employed	a	sliding	window	approach	to	identify	the	most	conserved	100	bp	region	of	each	CRE	using	the	
UCSC	 utility	 bigWigAverageOverBed	 (90).	 The	mean	 phastCons	 score	within	 the	most	 conserved	 100	 bp	
region	was	considered	as	a	metric	of	constraint	for	each	CRE.	
	
To	assign	a	minimum	evolutionary	age	for	each	putative	CRE	we	used	syntenic	alignments	between	mouse	
and	16	high	quality	vertebrate	genomes	of	various	phylogenetic	distances	(Fig.	S6A,	Table	S5)	to	assess	the	
presence	 or	 absence	 of	 our	 putative	 CREs	 in	 the	 genomes	 of	 other	 species.	 We	 downloaded	 chain	
alignments	from	UCSC	and	used	liftover	(-minMatch=0.1	-multiple	-minSizeQ=50	-minSizeT=50)	to	identify	
syntenic	regions	in	each	species.	We	then	assigned	a	putative	age	to	each	CRE	based	on	the	estimated	age	
of	divergence	between	mouse	and	the	most	distant	species	in	which	a	syntenic	region	could	be	detected.	
We	 observed	 that	 older	 regions	 were	 also	 found	 in	 more	 species,	 suggesting	 that	 the	 number	 of	 false	
positive	alignments	was	overall	low	(Fig.	S6B).	
	
To	determine	the	contribution	of	transposable	elements	to	the	identified	putative	CREs,	we	used	bedtools	
(2.29)	 (88)	 to	 intersect	our	CREs	with	 the	RepeatMasker	 track	 for	 the	mm10	genome,	downloaded	 from	
UCSC	Table	Browser	 (91).	Per	CRE,	we	estimated	the	 fraction	covered	by	 repeats	and	retained	 the	name	
and	class	of	the	overlapping	repeats.	
	
Peak	co-accessibility	and	broad	CRE	identification	
Imposing	a	fixed	width	to	our	peaks	was	favorable	for	many	downstream	analyses	but	precluded	us	from	
identifying	broad	regions	of	accessible	chromatin,	such	as	super-enhancers,	which	have	been	reported	as	
important	 regulators	 of	 cell	 identity	 (92,	93).	 To	 facilitate	 the	 identification	 and	 characterization	 of	 such	
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elements	during	mouse	cerebellum	development,	we	grouped	adjacent	peaks	with	correlated	accessibility	
profiles	 into	broad	CRE	units	 (Fig.	 S3A).	 First,	we	 computed	 correlations	 in	 accessibility	 profiles	 between	
peaks	located	up	to	100	kb	from	each	other	using	ArchR’s	addCoAccessibility()	function.	Since	the	sparsity	
of	single-cell	data	can	preclude	the	identification	of	correlations,	we	created	5,000	pseudocells	(groups	of	
50	nearest	neighbors	based	on	their	distance	 in	 the	LSI	space)	and	aggregated	their	accessibility	profiles.	
Pseudocells	 showing	 more	 than	 50%	 overlap	 in	 their	 members	 with	 another	 aggregate	 were	 excluded	
resulting	to	a	total	of	4,083	groupings.	The	aggregated	accessibility	profiles	were	log	normalized	and	pair-
wise	 Pearson’s	 correlations	 were	 computed	 between	 neighboring	 peaks.	 Focusing	 on	 directly	 adjacent	
peaks,	we	observed	a	strong	negative	correlation	between	peak	distance	and	co-accessibility	with	a	clear	
elbow	point	at	1,000	bp	and	a	correlation	coefficient	of	0.4	(data	not	shown).	Thus,	we	grouped	together	
peaks	with	a	Pearson’s	r	of	at	least	0.4	and	a	maximum	distance	of	1,000	bp	into	a	common	regulatory	unit.	
We	allowed	consecutive	chains	of	adjacent	and	co-accessible	peaks	 to	be	grouped	 together	 into	a	 single	
regulatory	unit.	The	maximum	number	of	peaks	in	a	chain	was	35	but	75%	of	the	chains	contained	up	to	3	
peaks.		
	
Assignment	to	putative	target	genes	
As	 CREs	 can	 act	 over	 larger	 distances	 in	 the	 linear	 genome,	 the	 identification	 of	 their	 target	 genes	 is	
particularly	challenging.	Whereas	bona	fide	regulatory	interactions	can	only	be	established	by	perturbation	
or	genetic	studies,	CREs	and	their	target	genes	are	expected	to	be	active	in	the	same	cell	types/states.	We	
thus	used	the	correlation	between	peak	accessibility	and	gene	expression	(approximated	by	gene	activity	
scores)	 across	 cell	 types	 and	 states	 in	 our	 dataset	 to	 assign	 CREs	 to	 their	 putative	 target	 genes,	 akin	 to	
previous	 studies	 (22,	 39).	 We	 opted	 for	 using	 gene	 activity	 over	 imputed	 gene	 expression	 from	 the	
integration	 with	 the	 scRNA-seq	 data	 (see	 “Integration	 with	 scRNA-seq	 data”),	 because	 matched	
transcriptomics	 data	were	 not	 available	 for	 some	 stages	 due	 to	 differences	 in	 dissections	 and	 sampling,	
whereas	the	two	metrics	were	overall	highly	correlated	in	properly	matched	stages	(Fig.	S2D).	We	used	the	
same	 cell	 groupings	 with	 the	 peak	 co-accessibility	 analysis	 (see	 Peak	 co-accessibility	 and	 broad	 CRE	
identification)	and	ArchR’s	function	addPeak2GeneLinks()	to	compute	Pearson’s	correlations	between	gene	
activity	 and	 the	 accessibility	 of	 all	 peaks	 within	 250	 bp	 upstream	 or	 downstream	 of	 the	 gene’s	 TSS.	
Although	ArchR	provides	parametric	estimates	of	significance	for	these	correlations,	we	observed	that	the	
obtained	P-values	were	very	small	even	for	 low	correlation	coefficients,	 likely	due	to	the	large	size	of	our	
dataset.	 We	 thus	 adapted	 a	 previously	 described	 method	 based	 on	 computing	 interchromosomal	
correlations	to	obtain	an	empirical	null	distribution	and	identify	a	biologically	meaningful	correlation	cutoff	
(94).	We	 randomly	 selected	1,000	peaks	 from	chromosome	1	and	correlated	 their	expression	with	1,000	
random	genes	from	chromosomes	2,	3	and	4.	The	99th	quantile	of	these	interchromosomal	correlations	was	
r=0.425.	Thus,	we	identified	peak-to-gene	links	based	on	a	cutoff	of	0.45	(FDR	<	1%;	Fig.	2B).	To	estimate	
the	number	of	distal	CREs	associated	with	each	gene	(Fig.	2C),	we	collapsed	CREs	to	their	broad	regulatory	
units	(see	“Peak	co-accessibility	and	broad	CRE	identification”)	and	counted	the	number	of	non-redundant	
(i.e.,	unique	or	belonging	to	different	broad	regulatory	units)	distal	CREs	per	gene.	
	
Benchmarking	of	putative	cerebellum	CREs	with	external	datasets	
We	 compared	 the	 identified	 putative	 CREs	 with	 relevant	 bulk	 and	 single-cell	 datasets	 from	 previous	
studies.	We	downloaded	Encode	chromHMM	annotations	 (50)	 for	mouse	candidate	CREs	 for	a	variety	of	
different	tissues	and	developmental	stages	(Table	S5)	and	intersected	them	with	our	peaks	using	bedtools	
(2.29)	 (88).	 For	 each	 sample	 (tissue	 and	 developmental	 stage)	 we	 estimated	 the	 fraction	 of	 Encode-
annotated	enhancers	(“Enh”)	and	heterochromatin	(“Het”)	elements	that	overlapped	our	peaks.	Predicted	
enhances	active	in	the	nervous	tissues	and	in	particular	hindbrain	showed	very	high	overlap	with	our	peaks,	
whereas	the	percentage	of	recovered	enhancers	for	tissues	of	mesoderm	and	endoderm	origin	was	much	
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lower	(Fig.	S3C).	The	same	was	true	for	experimentally	validated	enhancers	(Fig.	S3E)	(49).	By	contrast,	our	
peaks	were	depleted	of	putative	heterochromatin	regions	for	the	nervous	tissues,	whereas	the	overlap	was	
higher,	 although	overall	 below	20%,	 for	 the	other	 tissues	 (Fig.	 S3D).	We	also	benchmarked	our	peak	 set	
against	 a	 recently	 published	 single-cell	 atlas	 of	 chromatin	 accessibility	 in	 adult	mouse	 organs	 (38).	 After	
identifying	overlapping	peaks	using	bedtools	 intersect,	we	estimated	 the	 fraction	of	 reads	per	 cell	 in	 the	
mouse	atlas	within	regions	overlapping	our	peak	set.	Cells	of	cerebellar	origin	showed	the	highest	fraction	
of	reads	in	our	peaks	(median	80%;	Fig.	S3F).		
	
Characterization	of	enriched	CRE	sets	
Throughout	 this	 study	 we	 aimed	 to	 characterize	 groups	 of	 CREs	 with	 similar	 activity	 patterns	 (e.g.,	
belonging	 to	 the	 same	 cluster,	 showing	 differential	 accessibility	 across	 developmental	 stages	 or	 during	
differentiation).	To	associate	CREs	with	the	biological	processes	(BP)	of	their	putative	target	genes	we	used	
the	R	 implementation	of	GREAT	 (rGREAT,	1.18.0)	 (95)	 to	 identify	enriched	gene	ontologies.	 Similarly,	we	
used	Homer	(4.11.1)	(96)	to	identify	enriched	TF	motifs	in	each	cluster	of	CREs.	We	performed	motif	search	
using	the	command	findMotifsGenome.pl	with	the	options	–gc	to	account	for	GC	content	biases	and	–size	
given	to	scan	the	entire	peak	regions.	For	both	BP	and	motif	enrichment	all	CREs	tested	in	the	analysis	were	
combined	and	used	as	a	background	peak	set.	The	P-values	of	the	enrichment	of	each	term	for	each	CRE	
set	were	capped	for	visualization	purposes	(typically	to	10-100	 for	motifs	and	10-30	 for	BP	enrichment)	and	
plotted	in	a	heat	map.	For	BP	enrichment,	when	the	number	of	CRE	sets	was	large	and/or	processes	were	
too	similar,	we	collapsed	BP	terms	to	a	non-redundant	set	using	Revigo	(97)	with	the	following	parameters:	
allowed	similarity:	0.5,	semantic	similarity	measure:	SimRel.	
	
CRE	activity	across	cell	types	and	developmental	stages	
To	profile	the	activity	of	CREs	during	the	development	of	different	cerebellar	cell	types,	we	aggregated	the	
activity	 of	 all	 cells	 into	 pseudobulks	 for	 a	 given	 cell	 type	 and	 developmental	 time	 point.	 We	 excluded	
samples	 from	cell	 type	mixtures	 (e.g.,	NTZ,	Parab.	and	 isth.	N.,	Other/mixture)	and	non-neural	 cell	 types	
(e.g.,	 erythroid,	 vascular),	 as	well	 as	 pseudobulks	 comprised	 of	 fewer	 than	 50	 cells.	We	only	 considered	
robust	 CREs	 for	 this	 analysis.	We	 estimated	 CPM	 values	 to	 account	 for	 differences	 in	 cell	 numbers	 and	
sequencing	depth	and	standardized	our	data	by	scaling	by	the	maximum	CPM	value	of	each	CRE.	
	
We	 used	 a	 two-stage	 clustering	 approach	 inspired	 by	 a	 recent	 study	 (98).	 First	 we	 performed	 K-means	
clustering	with	a	high	number	of	primary	clusters	(n=50).	Then,	for	each	primary	cluster	we	estimated	the	
mean	 activity	 pattern	 and	 used	 it	 as	 input	 for	 hierarchical	 clustering	 (based	 on	 the	 correlation	 distance	
matrix	 between	 cluster	 centers).	We	 then	 used	 the	 clustering	 dendrogram	 to	 iteratively	merge	 the	 two	
most	similar	branches	and	compute	the	silhouette	score	for	each	new	set	of	clusters.	We	determined	the	
optimal	 number	 of	 final	 clusters	 to	 be	 26,	 based	 on	 the	 distances	 between	 the	 hierarchical	 clustering	
branches,	 the	 silhouette	 score	 distribution	 of	 each	 iterative	merge,	 and	 the	 original	 number	 of	 optimal	
clusters	suggested	by	the	silhouettes	of	different	K-means	runs.		
	
We	further	assessed	the	clustering	quality	for	each	CRE	by	estimating	the	correlation	between	its	activity	
and	its	cluster’s	mean.	The	median	Pearson’s	r	estimate	for	a	CRE	with	its	own	cluster	was	0.63.	CREs	with	a	
correlation	 estimate	 of	 at	 least	 0.5	 with	 their	 cluster	 center	 were	 considered	 to	 be	 “confident	 cluster	
members”.	These	“confident	cluster	members”	were	associated	with	gene	ontology	terms	based	on	their	
nearby	 genes	 using	 GREAT	 and	 enriched	 TF	 motifs	 using	 Homer	 (see	 Characterization	 of	 enriched	 peak	
sets).	To	visualize	the	clustering	results	(Fig.	2D),	we	randomly	selected	50,000	CREs	(with	r	>	0.5	to	their	
cluster	mean	or	belonging	to	the	ubiquitously	active	cluster)	and	plotted	their	standardized	activity	across	
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cell	 types	 and	 developmental	 stages	 in	 a	 heat	map.	We	 chose	 random	 selection	 over	 prioritizing	 highly	
variable	features	to	better	represent	the	true	proportions	of	CREs	in	each	cluster.		
	
To	 generate	 custom	 tracks	 of	 cell	 type-	 and	 time-specific	 CRE	 activity	 for	 the	 UCSC	 genome	 browser	
(http://genome.ucsc.edu/s/ioansarr/Mouse%20cerebellum%20snATAC-seq%20cCREs),	 we	 used	 the	 same	
pseudobulks	generated	for	the	clustering	analysis.	We	selected	active	CREs	per	cell	type	and	developmental	
stage	 as	 those	with	 CPM	 ≥	 5	 and	 exported	 them	 in	 bed	 format.	 Bed	 files	 per	 cell	 type	 and	 stage	were	
subsequently	uploaded	to	the	UCSC	browser.	
	
Periods	of	greater	change	in	chromatin	accessibility	
To	identify	periods	of	greater	regulatory	change	we	aggregated	the	accessibility	profiles	of	all	cells	per	cell	
type,	developmental	 stage	and	 individual	 (biological	 replicate).	We	only	 consider	 the	most	abundant	 cell	
types	 in	 our	 dataset	 (Astroglia,	 GABA	 DN,	 Glut.	 DN,	 PC,	 INs,	 GC)	 and	 samples	 with	 at	 least	 1	 million	
fragments	 per	 replicate	 and	 cell	 type,	 which	 we	 determined	 as	 the	 minimum	 number	 of	 fragments	 to	
detect	any	differentially	accessible	regions	(Fig.	S4B).	Only	autosomal	CREs	were	included	for	this	analysis	
as	 our	 biological	 replicates	 are	 from	 different	 sexes.	 For	 each	 cell	 type,	 we	 used	 DESeq2	 (1.26)	 (99)	 to	
identify	 differentially	 accessible	 CREs	 across	 adjacent	 developmental	 stages	 requiring	 a	 Benjamini-
Hochberg	 adjusted	 P-value	 <	 0.05	 and	 an	 absolute	 log2	 fold	 change	 >=	 0.5.	 The	 overlap	 between	
differentially	 accessible	 CREs	 over	 multiple	 stages	 and	 cell	 types	 was	 visualized	 using	 the	 R	 packages	
VennDiagramm	(100)	and	UpSetR	(101).		
	
To	assess	the	effect	of	library	size	on	our	ability	to	identify	differentially	accessible	regions,	we	performed	a	
downsampling	analysis	in	the	comparison	of	GCs	between	P14	and	P63.	Although	4	million	fragments	were	
sufficient	to	achieve	high	correlation	(Spearman’s	rho	>	0.95)	with	the	ground	truth	(full	pseudobulk),	the	
number	of	 identified	differentially	accessible	CREs	 increased	with	larger	 library	sizes	(Fig.	S4B).	To	control	
for	 differences	 in	 library	 size	 between	 cell	 types	 and	 developmental	 stages,	 we	 performed	 the	 same	
analysis	described	above	(Fig.	3B),	downsampling	all	pseudobulk	libraries	to	4	million	fragments,	excluding	
samples	 that	 had	 fewer	 fragments.	 Although	 the	 number	 of	 detected	 differentially	 accessible	 CREs	
decreased,	greater	regulatory	change	was	detected	in	the	same	developmental	windows	(Fig.	S4C).	
	
Low	 cell	 numbers	 decrease	 the	 power	 to	 detect	 differentially	 accessible	 regions	 (as	 a	 metric	 of	
dissimilarity),	 but	 increase	 dissimilarity	 estimated	 by	 correlations	 due	 to	 the	 introduction	 of	 stochastic	
noise	(Fig.	S4B).	We	thus	decided	to	use	correlations	across	adjacent	stages	as	an	orthogonal	approach	to	
validate	the	periods	of	greater	regulatory	change.	We	aggregated	CRE	accessibility	profiles	across	cells	from	
the	 same	 cell	 type	 and	 developmental	 stage	 and	 estimated	 log10-transformed	 CPM	 values.	 For	 each	 cell	
type	 we	 calculated	 Pearson’s	 correlations	 across	 adjacent	 stages	 for	 the	 developmental	 windows	
considered	in	Fig.	3A.	We	chose	Pearson’s	over	ranked-based	correlations	to	allow	for	a	larger	contribution	
of	radical	changes	in	CRE	accessibility	towards	the	dissimilarity	estimate.	
	
For	the	quantification	of	cellular	composition	changes,	we	estimated	the	fraction	of	cells	belonging	to	each	
cell	 type	per	sample	 (developmental	 stage	and	biological	 replicate).	To	compare	 the	cellular	composition	
across	samples,	we	calculated	absolute	changes	in	the	fraction	of	each	cell	type	and	then	computed	their	
sum.	Thus	for	each	pairwise	comparison	we	estimated	a	score	ranging	from	0	(identical	composition)	to	2	
(completely	 different	 cell	 types	 in	 the	 two	 samples).	 To	 assess	 the	 significance	 of	 temporal	 differences	
while	 accounting	 for	 biological	 and	 technical	 confounders,	 such	 as	 differences	 across	 individuals,	 tissue	
dissection,	 nuclei	 preparation	 and	 in	 silico	 filtering,	 we	 compared	 differences	 in	 cell	 type	 proportions	
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between	 samples	 from	 adjacent	 developmental	 stages	 and	 biological	 replicates	 from	 the	 same	
developmental	stage	using	a	t-test	(Fig.	3E).		
	
Cell	type	differentiation	
For	each	of	the	three	major	cerebellar	neuron	types	(GCs,	PCs	and	INs),	we	identified	cells	assigned	to	that	
cell	type	and	reanalyzed	them	separately.	We	only	considered	developmental	stages	with	at	least	100	cells	
assigned	to	the	specified	cell	type.	We	applied	the	IDF	transformation	to	robust	CREs	accessible	in	at	least	
1%	of	the	cells	and	embedded	the	data	into	20	components	using	SVD.	In	agreement	with	previous	studies	
(38),	the	first	SVD	component	showed	very	high	correlation	with	the	sequencing	depth	of	each	cell	and	was	
therefore	excluded	from	downstream	analyses.	We	chose	a	single-step	 IDF-SVD	analysis	over	an	 iterative	
LSI	(see	“Dimensionality	reduction	and	clustering”),	because	the	latter,	although	useful	for	the	identification	
of	 distinct	 cell	 types	 in	 the	 full	 dataset,	 exaggerates	 differences	 between	 cells	 by	 prioritizing	 CREs	 with	
variable	 accessibility	 across	 clusters	 (the	 borders	 of	 which	 are	 arbitrary	 in	 developmental	 or	 spatial	
gradients).	 We	 also	 observed	 that	 performing	 the	 IDF	 transformation	 without	 scaling	 by	 each	 cell’s	
sequencing	depth	(TF)	and	omitting	the	1st	SVD	outperformed	the	standard	TF-IDF	in	capturing	continuous	
differentiation	signals	(inferred	based	on	the	activity	of	known	marker	genes).		
	
As	we	observed	developmental	signal	that	was	orthogonal	to	differentiation	(e.g.,	pre-	and	postnatal	GCPs	
and	 GC	 neuroblasts),	 these	 components	 were	 further	 corrected	 using	 Harmony	 (1.0),	 a	 single-cell	
integration	 algorithm	 that	 relies	 on	 soft-clustering,	 thus	 allowing	 for	 smooth	 transitions	 between	 cell	
states,	such	as	those	observed	during	cell	differentiation	(82)	(Fig.	S7A-C).	To	allow	for	differentiation	states	
unique	to	individual	developmental	stages	(e.g.,	PC	neuroblasts	in	E12)	we	set	the	ridge	regression	penalty	
parameter	to	a	relatively	large	value	(lambda=5).	The	obtained	Harmony-corrected	dimensions	were	then	
used	as	input	for	clustering	and	UMAP	projection.	
	
We	 used	 diffusion-based	 pseudotime	 (64),	 as	 implemented	 in	 scanpy	 (1.4.5)	 (102)	 to	 approximate	
differentiation	 and	 maturation	 processes.	 After	 transferring	 the	 data	 to	 a	 scanpy	 object,	 we	 used	 the	
Harmony-corrected	 components	 to	 construct	 a	 graph	based	on	 the	 20	 nearest	 neighbors	 of	 each	 cell.	 A	
diffusion	map	was	 computed	 based	 on	 the	 neighborhood	 graph	 and	was	 used	 as	 input	 for	 pseudotime	
estimated	with	zero	branchings.	The	root	of	 the	pseudotime	was	specified	as	a	 random	cell	belonging	to	
the	earliest	timepoint	and	from	a	cluster	characterized	by	the	expression	of	precursor	marker	genes	for	the	
respective	cell	type	(e.g.,	Atoh1	 in	GCs,	Ptf1a	 in	INs).	Specifically	for	the	INs,	where	multiple	subtypes	are	
specified	 at	 different	 developmental	 stages	 (Fig.	 S7D),	 we	 observed	 that	 pseudotime	 values	 above	 0.6	
captured	 subtype	 rather	 than	 differentiation	 signal.	 Since	 the	 aim	 of	 this	 analysis	 was	 to	 describe	
differentiation	paths	common	to	all	 IN	subtypes,	we	capped	pseudotime	values	to	0.6,	and	then	rescaled	
them	from	0	to	1	(Fig.	S7D).	
	
To	 identify	dynamic	features,	pseudotime	values	were	divided	into	50	bins	based	on	their	ranks	and	cells	
belonging	 to	 the	 same	 bin	 were	 grouped	 together.	 The	 CRE	 accessibility,	 gene	 activity	 and	 chromVar-
derived	 motif	 deviations	 profiles	 were	 aggregated	 across	 cells	 within	 each	 pseudotime	 bin.	 Dynamic	
features	across	pseudotime	were	identified	based	on	mutual	information	between	the	feature	(scaled	CRE	
accessibility,	 gene	 activity,	 chromVar	 deviation	 score)	 and	 the	 mean	 pseudotime	 of	 each	 bin	 using	 the	
function	cminjk.pw()	 from	 the	R	package	mpmi	 (103).	Cutoffs	 for	mututal	 information	 index	 (MMI)	were	
determined	based	on	empirical	null	distributions	obtained	by	shuffling	the	pseudotime	values	across	bins	
(controlling	for	an	FDR	<	1%).	Furthermore,	as	the	MMI	distribution	was	often	bimodal,	we	used	a	Gaussian	
mixture	model,	 as	 implemented	 in	 the	 R	 package	mclust	 (5.4.5)	 (104)	 to	 split	 the	 distribution	 into	 two	
groups.	 Features	 belonging	 to	 the	 group	 with	 the	 highest	 MMI	 and	 passing	 the	 1%	 FDR	 cutoff	 were	
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identified	 as	 significantly	 dynamic.	 Significantly	 dynamic	 CREs	 were	 Z-score	 standardized	 and	 clustered	
based	on	their	pseudotemporal	profiles	using	a	fuzzy	c-means	clustering	algorithm	for	time	series	from	the	
R	package	Mfuzz	 (2.46.0)	 (105).	The	optimal	number	of	clusters	was	determined	by	generating	an	elbow	
plot	 for	 the	minimum	distance	between	cluster	 centroids,	as	well	 as	by	monitoring	 the	 trajectory	profile	
and	 gene	 ontology	 enrichment	 of	 each	 cluster	 (reducing	 the	 number	 of	 clusters	 when	multiple	 clusters	
shared	similar	trajectories	and	gene	ontology	enrichment).		
	
For	 the	 integrative	 analysis	 of	 neuronal	 differentiation	 we	 determined	 overlaps	 between	 dynamic	 CREs	
across	 neuron	 types	 and	 visualized	 them	 with	 a	 chord	 diagram	 from	 the	 R	 package	 circlize	 (106).	 The	
significance	of	 the	overlap	between	 clusters	 from	different	 cell	 types	was	 assessed	with	hypergeometric	
tests.	For	the	PCA	analysis,	we	generated	pseudobulks	per	cell	type	and	pseudotime	bin,	applied	a	variance	
stabilizing	 transformation	 as	 implemented	 in	 the	 package	 DESeq2	 (1.26)	 (99)	 and	 performed	 PCA	 as	
implemented	in	the	package	FactoMineR	(107).	
	
Transcriptional	regulators	of	cell	type	differentiation	
The	aggregated	accessibility	of	CREs	containing	a	given	TF	motif	can	be	used	to	infer	the	activity	of	the	TF	in	
a	given	cell	type	and	state.	Compared	with	assessing	the	activity	of	the	TF	using	gene	expression	data	(RNA-
seq),	this	metric	allows	the	detection	of	changes	in	activity	driven	by	posttranslational	modifications,	such	
as	 phosphorylation	 or	 interactions	 with	 co-factors.	 However,	 TFs	 that	 belong	 to	 the	 same	 family	 often	
recognize	 very	 similar	 motifs,	 hindering	 the	 precise	 identification	 of	 the	 specific	 TF	 that	 is	 driving	 the	
observed	change	in	chromatin	accessibility.	To	overcome	this	limitation	we	used	an	integrative	approach	to	
identify	TFs	with	dynamic	motif	accessibility	and	gene	activity	(as	a	proxy	for	gene	expression)	across	cell	
type	differentiation.	We	identified	significantly	dynamic	motifs	and	gene	activity	scores	based	on	the	MMI	
estimated	 from	 the	50	pseudotime	bins	 (see	 “Cell	 type	differentiation”).	We	 further	estimated	Pearson’s	
correlations	between	motif	activity	and	gene	scores	across	pseudotime	(using	the	average	values	in	the	50	
bins).	We	then	identified	candidates	for	the	regulation	of	cell	type	differentiation	as	TFs	that	1)	reached	a	
minimum	gene	activity	score	of	1	in	at	least	one	pseudotime	bin,	2)	showed	dynamic	chromVar	deviation	
score	and	3)	gene	score,	and	4)	 showed	an	absolute	correlation	coefficient	of	 r	 >	0.6	between	 the	motif	
accessibility	and	gene	activity.	TFs	were	then	classified	as	putative	activators	or	 repressors	depending	on	
the	sign	of	the	correlation	coefficient	between	gene	activity	and	motif	accessibility	akin	to	similar	analyses	
by	others	(67).	Information	on	TF	families	was	obtained	from	cisBP	(Build	2.0)	(89).	
	
Analysis	of	cerebellar	progenitors	
The	embedding	presented	 in	 Fig.	 4	was	generated	as	described	 in	 the	 section	“Cell	 type	differentiation”.	
The	identification	of	progenitor	types	was	performed	using	the	iterative	clustering	procedure	in	the	entire	
dataset	as	discussed	 in	“Iterative	 clustering	and	 cell	 type	annotation”.	Marker	genes	per	progenitor	 type	
and	developmental	stage	were	identified	using	the	function	getMarkerFeatures()	from	ArchR,	filtering	for	
FDR	<	0.01	and	log2	fold-change	>	1.	For	plotting,	marker	genes	were	prioritized	based	on	the	product	of	
their	log2	fold-change	estimate	and	the	–log10	P-value	of	the	test.	
	
We	aggregated	chromatin	accessibility	across	cells	from	the	same	progenitor	type	and	developmental	stage	
and	scaled	to	a	total	of	106	fragments	per	group.	Only	pseudobulks	with	at	least	100	cells	and	robust	CREs	
that	 reached	 at	 least	 5	 CPM	 in	 at	 least	 one	 pseudobulk	 (122,572	 putative	 CREs)	 were	 considered	 for	
subsequent	 analyses.	 For	 the	 clustering	 across	 progenitor	 types	 and	 stages,	 we	 calculated	 Spearman’s	
correlation	coefficients	across	 samples	and	performed	hierarchical	 clustering	using	ward.D2	and	pairwise	
complete	observations.	To	assess	the	robustness	of	the	clustering	we	used	bootstrapping	as	implemented	
in	the	package	pvclust	(108)	with	1,000	repetitions.	To	identify	major	patterns	of	CRE	activity	in	progenitor	
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cells	we	 scaled	 the	 122,572	putative	 CREs	 by	 their	maximum	activity	 across	 the	 progenitor	 samples	 and	
then	used	the	clustering	approach	described	in	“CRE	activity	across	cell	types	and	developmental	stages”.	
For	 this	 analysis	 we	 generated	 30	 clusters	 with	 k-means	 clustering,	 which	 we	 then	 collapsed	 to	 a	 final	
number	of	12	clusters	based	on	hierarchical	clustering	of	their	cluster	means.	
	
For	 the	 analysis	 focusing	 on	 the	 relationship	 between	 anterior	 VZ	 and	 bipotent	 progenitors,	 we	 first	
extracted	 progenitors	 from	 the	 developmental	 stages	 E13-E15	 and	 used	 ArchR’s	 getMarkerFeatures()	 to	
identify	CREs	that	are	specific	to	each	germinal	zone,	filtering	for	FDR	<	0.01	and	log2	fold-change	>	1.	These	
led	 to	 the	 identification	of	1,753	CREs,	 238	of	which	were	 specific	 to	 the	bipotent	progenitors.	We	 then	
estimated	 the	 fraction	 of	 fragments	 per	 cell	 that	 overlap	 those	 CREs	 and	 compared	 early	 (E10-E12)	
progenitor	 populations	 of	 different	 germinal	 zones.	 As	 a	 complementary	 analysis,	 we	 computed	
Spearman’s	correlations	between	bipotent	progenitors	 from	E13	and	E15,	and	early	 (E10-E12)	progenitor	
populations	based	on	their	entire	chromatin	accessibility	profiles	(in	the	122,572	putative	CREs	considered	
for	this	analysis).	
	
CRE	evolutionary	dynamics	
To	 compare	 CRE	 evolutionary	 dynamics	 across	 cell	 types	 and	 developmental	 stages,	 we	 calculated	
summary	statistics	per	cell	based	on	all	active	CREs.	As	described	above	(see	“Peak	annotation”),	for	each	
CRE	we	inferred	its	minimum	age,	estimated	the	average	sequence	constraint	in	its	most	conserved	100	bp	
region,	and	calculated	the	fraction	of	the	CRE	covered	by	genomic	repeats.	For	each	cell,	we	calculated	the	
mean	values	for	these	estimates	across	all	distal	(intergenic	and	intronic)	CREs	that	were	accessible	in	that	
cell.	 We	 focused	 these	 analyses	 on	 distal	 elements,	 to	 avoid	 biases	 from	 overlaps	 with	 protein-coding	
sequences,	 which	 overall	 show	 very	 high	 sequence	 conservation,	 often	 independently	 of	 regulatory	
constraint.	Due	to	the	sparsity	of	snATAC-seq	data,	these	estimates	vary	across	single	cells,	even	within	the	
same	cell	 type	and	state.	To	estimate	summary	statistics	 for	groups	of	cells	 (e.g.,	as	shown	 in	Fig.	5),	we	
estimated	 95%	 confidence	 intervals	 using	 the	 function	 CI()	 from	 the	 R	 package	 Rmisc	 (109)	 and	 only	
considered	estimates	based	on	at	least	50	cells.	
	
For	the	contributions	of	different	age	groups	and	of	TE	classes	to	the	regulatory	landscape	of	different	cell	
types	we	estimated	 the	 fraction	of	 fragments	 in	CREs	 in	each	class	 (inferred	age	or	overlapping	TE	class)	
over	 the	 total	number	of	 fragments	 in	CREs	per	cell.	The	absolute	value	of	 this	estimate	depends	on	the	
overall	 abundance	of	 such	elements	 in	 the	mouse	 genome	 (e.g.,	 fraction	of	 fragments	 in	B1	elements	 is	
much	higher	than	ERVs),	but	we	observed	additional	variation	between	cell	 types	and	stages	(Fig.	5F	and	
S6H).	 For	 the	 comparison	between	CREs	associated	with	TFs	 versus	other	genes,	we	considered	protein-
coding	genes	with	dynamic	expression	in	the	developing	cerebellum	(30).	Mouse	TFs	were	obtained	from	
AnimalTFDB	v3	(110).	The	significance	of	these	comparisons	between	groups	was	assessed	with	two-sided	
Mann-Whitney	U	tests.	
	
Temporal	differences	in	GC	differentiation	
The	additive	contribution	of	differentiation	(inferred	by	pseudotime)	and	developmental	stage	towards	the	
regulatory	landscape	of	GCs	was	assessed	using	a	linear	model	with	both	pseudotime	and	developmental	
stage	as	predictors	of	average	CRE	constraint	per	cell	 (as	described	 in	“CRE	evolutionary	dynamics”).	The	
significance	 of	 each	 predictor	 term	 was	 estimated	 using	 ANOVA	 tests	 between	 the	 full	 model	 and	 an	
alternative	model	that	only	included	the	other	term.	
	
To	 detect	 CREs	 with	 radical	 temporal	 differences	 across	 matched	 stages	 of	 GC	 differentiation,	 we	 first	
divided	 cells	 into	 five	major	 bins	 based	 on	 their	 pseudotime	 values.	 Biologically	meaningful	 pseudotime	
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cutoffs	were	 identified	 on	 the	 basis	 of	 the	 distribution	 of	 pseudotime	 values	 (Fig.	 7B)	 and	based	on	 the	
inflexion	 points	 of	 the	 clusters	 of	 CREs	 that	 are	 dynamic	 during	 GC	 differentiation	 (Fig.	 6F).	 We	
approximately	matched	pseudotime	bins	into	differentiation	states	by	identifying	marker	genes	(FDR	<	0.01	
and	log2	fold-change	>	1)	and	exploring	their	expression	in	the	Allen	Developing	Mouse	Brain	Atlas	resource	
(58).	We	then	examined	the	distribution	of	pseudotime	values	for	each	developmental	stage	and	bin.	We	
only	identified	differentially	accessible	CREs	across	adjacent	developmental	stages	in	the	same	pseudotime	
bin	when	there	was	no	significant	difference	in	the	pseudotime	value	distributions	(Fig.	S6K)	and	when	all	
samples	(pseudotime	bin,	developmental	stage	and	biological	replicate)	had	at	least	50	cells.	For	example,	
we	 performed	 no	 comparisons	 in	 pseudotime	 bin	 4,	 as	 this	 stage	was	 highly	 dynamic	 and	we	 observed	
significant	differences	in	the	pseudotime	values	across	developmental	stages,	which	confounded	temporal	
and	differentiation	signals.	For	comparisons	that	met	these	criteria,	we	used	DESeq2	(1.26)	(99)	to	identify	
differentially	 accessible	 CREs	 across	 adjacent	 developmental	 stages	 requiring	 a	 Benjamini-Hochberg	
adjusted	P-value	<	0.05	and	an	absolute	log2	fold	change	>=	0.5.	
	
For	temporal	differences	in	the	prenatal	GCPs	we	extracted	cells	from	stages	E13-P0	that	belonged	to	the	
same	 cluster	 (cluster	 4),	 prior	 to	 any	 Harmony-correction	 across	 developmental	 stages	 or	 pseudotime	
inference	(Fig.	7C	and	S7A	left).	Thus,	in	this	analysis	we	considered	cells	that	overall	look	the	most	similar	
to	each	other	based	on	their	 raw	chromatin	accessibility	profiles.	We	generated	pseudobulks	per	sample	
(developmental	 stage	 and	 biological	 replicate),	 considered	 CREs	 with	 at	 least	 10	 counts	 in	 at	 least	 two	
samples	and	applied	the	variance	stabilizing	transformation	as	implemented	in	DESeq2	(1.26)	(99).	We	then	
detected	temporally	dynamic	CREs	using	masigPro	(1.58.0)	with	a	second	degree	polynomial	and	requiring	
a	 Benjamini-Hochberg	 adjusted	P-value	 <	 0.05	 and	 a	 goodness	 of	 fit	 value	 R2>	 0.7	 (111).	 For	 temporally	
dynamic	CREs,	we	estimated	the	mean	accessibility	across	replicates,	performed	a	Z-score	standardization	
across	developmental	stages	and	applied	soft	clustering	with	k=2	using	Mfuzz	(2.46.0)	(105).	We	examined	
the	activity	of	each	cluster	 in	the	rest	of	the	dataset	by	estimating	the	fraction	of	CPM	in	these	CREs	per	
cell.	To	assess	the	impact	of	these	temporal	differences	on	gene	expression,	we	considered	the	genes	that	
were	closest	to	these	CREs,	excluding	genes	that	were	associated	with	CREs	from	both	clusters.	We	then	
examined	 the	 expression	 of	 these	 genes	 in	 a	 scRNA-seq	 atlas	 of	 mouse	 cerebellum	 development	 (12)	
focusing	on	 the	 cells	 annotated	as	 “Embyronic	and	postnatal	GCPs-1”.	We	used	proximity	 instead	of	our	
correlation-based	 gene	 assignment	 approach	 to	 avoid	 the	 circularity	 of	 examining	 the	 concordance	
between	gene	expression	and	 chromatin	 accessibility	 after	 requiring	 them	 to	be	 correlated	 (indeed	 they	
both	show	the	same	temporal	pattern	in	agreement	with	our	proximity	analysis;	data	not	shown).	
	
General	statistics	and	visualization	
All	 statistical	 analyses	 were	 performed	 in	 R	 (3.6.3)	 (112)	 using	 the	 packages	 tidyverse	 (1.3.0)	 (113),	
data.table	 (1.12.8)	 (114),	Matrix	 (1.2.18)	 (115),	 SummarizedExperiment	 (1.16.1)	 (116),	 irlba	 (2.3.3)	 (117)	
and	 cluster	 (2.1.0)	 (118).	 Heatmaps	 were	 drawn	 using	 the	 packages	 ComplexHeatmap	 (2.2.0)	 (119)	 and	
pheatmap	(1.0.12)	(120).	Additionally,	we	used	the	R	packages	shiny	(1.4.0.2)	(121),	shinyjs	(1.1)	(122),	Gviz	
(1.30.3)	 (123)	 and	 GenomicInteractions	 (1.20.3)	 (124)	 to	 build	 the	 app	 that	 facilitates	 the	 interactive	
exploration	of	our	data.	
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Supplementary	figures	(S1-S7)	

	
Fig.	S1.	Quality	control	and	processing	of	snATAC-seq	data	
(A)	Fragment	size	distribution	of	the	snATAC-seq	libraries.	
(B)	TSS	enrichment	scores	of	the	snATAC-seq	libraries.	
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(C)	2D-density	plot	showing	the	number	of	fragments	and	doublet	enrichment	score	per	cell	after	1st	pass	
removal	of	putative	doublets.	Cells	in	red-shaded	areas	were	removed	in	the	2nd	round	of	doublet	filtering.	
(D)	Fraction	of	cells	marked	as	doublets	in	the	2nd	filtering	round	per	cluster.	Clusters	with	more	than	30%	
of	 doublets	 (horizontal	 line)	 were	 examined	 further	 for	 marker	 genes.	 Clusters	 marked	 in	 violet	 were	
removed	completely.	For	all	other	clusters	(gray)	only	putative	doublets	were	removed.	
(E)	Rank-based	(Spearman’s	rho)	correlation	coefficient	of	autosomal	CRE	accessibility	across	samples.	
(F)	UMAP	projection	of	91,922	high	quality	cells	colored	by	cluster	assignment.	Clusters	that	could	not	be	
resolved	were	combined	in	three	groups	(labeled	as	Group	1-3).	Some	annotated	clusters	(i.e.,	clusters	29,	
31	and	33)	were	included	in	these	groups	to	aid	the	split	and	annotation	of	the	mixed	clusters.	The	colored	
rectangles	indicate	which	clusters	were	used	for	subclustering	within	each	group.	
(G,	H,	I)	UMAP	projections	of	subclustering	analyses	for	astroglia	(Group	1;	G),	early-born	neurons	(Group	
2;	H)	and	GABAergic	neurons	at	E13	(Group	3;	I).	Cell	type	abbreviations	as	in	text;	diff.,	differentiating;	pr.,	
progenitor.	
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Fig.	S2.	Cell	type	annotation	and	integration	with	scRNA-seq	
(A)	Activity	scores	of	top	4	marker	genes	per	cell	type	or	state	(Z-score,	capped	to	0-2).	Marker	genes	were	
identified	using	Wilcoxon	 tests,	as	 implemented	 in	ArchR,	and	 ranked	based	on	 the	product	of	 their	 log2	
fold-change	estimate	and	the	–log10	P-value	of	the	test.	
(B)	UMAP	projections	and	cell	subtype/state	annotations	per	developmental	stage.	
(C)	Jaccard	similarity	index	between	cell	type	labels	from	this	study	(columns)	and	transferred	annotations	
after	direct	integration	with	scRNA-seq	data	(rows).	Only	labels	with	a	similarity	index	of	at	least	0.15	with	
at	least	one	other	group	are	shown.	The	red	rectangles	mark	unexpected	matches	(see	Methods	and	E,	F).	
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(D)	 Per	 gene	 correlation	 (Pearson’s	 r)	 of	 mean	 gene	 score	 and	 imputed	 expression	 across	 snATAC-seq	
clusters	for	highly	variable	genes	in	the	scRNA-seq	data.	The	vertical	line	indicates	the	median	correlation	
coefficient	across	developmental	stages.	
(E)	UMAP	projection	of	4,809	cells	 from	P0	cerebellum	profiled	with	scRNA-seq	(12)	 (left).	Cells	originally	
annotated	 as	 UBCs	 are	marked	 in	 purple	 and	 further	 examined	 for	 the	 expression	 of	 UBC	 (red)	 and	GC	
(blue)	specific	markers	(right).		
(F)	UMAP	projection	of	6,068	cells	from	E14	cerebellum	profiled	with	scRNA-seq	(12)	(left).	Cells	originally	
annotated	 as	 excitatory	 cerebellar	 nuclei	 neurons	 are	 marked	 in	 purple	 and	 further	 examined	 for	 the	
expression	of	Meis2	 (blue;	marker	 of	Glut.	DN),	Gad2	 (yellow;	marker	 of	GABAergic	 neurons)	 and	Sox14	
(red;	marker	of	GABA	DN)	(right).		
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Fig.	S3.	CRE	identification,	annotation	and	characterization	
(A)	Schematic	representation	of	the	procedure	followed	for	the	 identification,	 filtering	and	assignment	of	
CREs	to	their	putative	target	genes	and	broader	CRE	units.	
(B)	Putative	CREs	 ranked	based	on	 their	maximum	activity	 across	 clusters	 (fraction	of	 active	 cells	 in	 that	
cluster).	Robust	CREs	were	identified	as	active	in	at	least	5%	of	the	cells	of	at	least	one	cluster.	
(C,	D)	Fraction	of	chromHMM	predicted	strong	enhancers	 (C)	and	heterochromatin	 (D)	across	a	 series	of	
tissues	and	developmental	stages	(50)	overlapping	robust	CREs	from	this	study.	
(E)	 Fraction	 of	 experimentally	 validated	 enhancers	 in	 mouse	 embryonic	 tissues	 (49)	 overlapping	 robust	
CREs	from	this	study.	Tissues	are	ordered	by	decreasing	fraction.	
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(F)	Fraction	of	counts	 for	cells	 from	different	adult	mouse	organs	(38)	 in	regions	overlapping	robust	CREs	
from	this	study.	Tissues	are	ordered	by	decreasing	median	fraction.	
(G)	Biological	process	enrichment	 for	genes	associated	with	5	or	more	non-redundant	distal	CREs.	The	x-
axis	indicates	the	number	of	genes	associated	with	each	term,	the	size	and	color	of	the	dots	the	effect	and	
significance	of	the	enrichment	based	on	a	hypergeometric	test.		
(H,	I)	Fraction	of	genomic	classes	(H)	and	distal	CREs	overlapping	at	least	one	CTCF	motif	(I)	across	clusters	
of	CREs,	indexed	and	ordered	as	in	Fig.	2D.	
(J,	 K)	 Enrichment	 of	 biological	 processes	 of	 adjacent	 genes	 (J)	 and	 TF	motifs	 (K)	 across	 clusters	 of	 CREs,	
indexed	as	in	Fig.	2D	(BH	adjusted	P	<	0.05;	hypergeometric	test).	
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Fig.	S4.	Identifying	and	characterizing	periods	of	greater	regulatory	change	
(A)	 Intersections	 across	 differentially	 accessible	 CREs	 from	 different	 cell	 types	 and	 developmental	
comparisons	 (left).	 Connected	 dots	 mark	 overlapping	 sets.	 The	 10	 largest	 sets	 (left)	 and	 25	 largest	
intersections	(top)	are	shown.	
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(B)	Downsampling	analysis	of	GCs	in	P14-P63.	Spearman’s	rho	correlation	with	the	full	pseudobulk	(mean	
value	across	 the	 four	 samples)	 (top)	 and	number	of	differentially	 accessible	CREs	detected	between	P14	
and	P63	(bottom).	The	vertical	 line	 indicates	the	number	of	 fragments	used	for	 the	analysis	presented	 in	
(C).	
(C)	Number	of	differentially	accessible	CREs	across	adjacent	developmental	stages	after	downsampling	to	
the	same	number	of	fragments	(4,000,000).	Samples	with	fewer	than	4,000,000	fragments	were	excluded.	
(D)	Pearson’s	correlation	coefficients	of	CRE	accessibility	profiles	from	different	cell	types	across	adjacent	
developmental	stages.	
(E,	F)	Enrichment	of	TF	motifs	(E)	and	biological	processes	of	adjacent	genes	(F)	for	differentially	accessible	
CREs,	from	Fig.	3A	(BH	adjusted	P	<	0.05;	hypergeometric	test).	The	cell	type,	developmental	stage	and	sign	
of	change	are	shown	above	the	heatmaps.	
(G,	H)	Genomic	class	(G)	and	distance	to	closest	TSS	(H)	for	CREs	identified	as	differentially	accessible	using	
data	from	all	cell	types,	as	shown	in	Fig.	3C.	
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Fig.	S5.	The	regulatory	landscape	of	progenitor	cells	in	the	developing	cerebellum	
(A)	Activity	scores	of	 the	 top	4	marker	genes	per	astroglia	 type	or	state	 (Z-score,	capped	to	0-2).	Marker	
genes	were	identified	using	Wilcoxon	tests	as	 implemented	in	ArchR	and	ranked	based	on	the	product	of	
their	log2	fold-change	estimate	and	the	–log10	P-value	of	the	test.	
(B)	 Estimated	 localization	 of	 astroglia	 types	 in	 the	 developing	mouse	 cerebellum	 (right)	 based	 on	 in	 situ	
hybridization	 data	 (58)	 of	 selected	 marker	 genes	 (left).	 Sagittal	 sections	 counterstained	 with	 HP	 Yellow	
(E11-P4)	or	Nissl	(P56)	are	shown.	Scale	bars:	200	μm.	
(C)	 Relative	 abundance	 of	 astroglia	 types	 (bottom)	 and	 overall	 fraction	 in	 the	 cerebellum	 (top)	 across	
developmental	stages.	
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(D)	Gene	activity	 scores	 for	marker	genes	 that	are	 shared	between	anterior	VZ	and	bipotent	progenitors	
(Counts	per	104	fragments,	capped	at	10th	and	99th	quantiles	and	log10	transformed).	
(E)	 Spearman’s	 correlation	 coefficients	 based	 on	 global	 CRE	 activity	 between	 early	 (E10-E12)	 progenitor	
types	and	bipotent	progenitors	from	E13	(orange)	and	E15	(purple).	
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Fig.	S6.	Evolutionary	dynamics	of	CREs	
(A)	 Species	 used	 in	 the	 syntenic	 alignments	 to	 infer	 the	 minimum	 age	 of	 CREs	 based	 on	 the	 date	 of	
divergence	between	mouse	and	the	most	distant	species	in	which	an	alignment	was	detected.	
(B)	Number	of	species	in	which	a	syntenic	alignment	was	detected	for	CREs	of	different	inferred	ages.	
(C)	Sequence	constraint	for	CREs	of	different	ages.	
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(D)	Number	of	CREs	across	genomic	classes	and	age	groups.	Colors	indicate	broader	age	groups	as	used	in	
Fig.	5E.	
(E)	Relative	representation	of	genomic	classes	across	CRE	age	groups.	
(F,)	Sequence	constraint	for	CREs	of	different	genomic	classes.	
(G)	 Average	 sequence	 constraint	 across	 eutherian	 (commonly	 referred	 to	 as	 placental)	mammals	 for	 all	
distal	CREs	(left),	and	subsets	that	originated	312	(middle)	and	160	(right)	million	years	ago	(Mya),	active	
across	 cell	 types	 and	 developmental	 stages.	 Vertical	 bars	 illustrate	 95%	 confidence	 intervals	 of	 the	
estimates.	Pearson’s	r	correlation	coefficients	between	the	estimates	and	development	are	shown	(median	
across	cell	types;	P<0.01**,	P<0.001***).	
(H)	Fraction	of	fragments	in	distal	CREs	overlapping	transposable	elements	of	different	classes	in	cerebellar	
cell	types	at	E13.	
(I,	 J)	Average	sequence	constraint	of	distal	CREs	across	eutherian	mammals	 (J)	and	pseudotime	value	 (K)	
along	 GC	 differentiation.	 Cells	 are	 separated	 by	 developmental	 stage	 and	 grouped	 in	 20	 pseudotime	
intervals	with	a	step	of	0.05.	Vertical	bars	illustrate	95%	confidence	intervals	of	the	estimates.	
(K)	Distribution	of	pseudotime	values	across	developmental	 stages	and	broad	pseudotime	bins	 (from	Fig.	
7B).	 Horizontal	 bars	 indicate	 the	 developmental	 stages	 that	 were	 used	 for	 temporal	 comparisons	 in	
matched	differentiation	states.	
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Fig.	S7.	Chromatin	accessibility	during	neuron	differentiation	
(A,	 B,	 C)	 UMAP	 projections	 of	 35,153	 GCs	 (A),	 13,214	 PCs	 (B)	 and	 5,113	 INs	 (C)	 before	 (top)	 and	 after	
(bottom)	Harmony-alignment	across	developmental	stages.	Cells	are	colored	by	developmental	stage.	

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.29.428632doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.29.428632
http://creativecommons.org/licenses/by-nd/4.0/


	 47	

(D)	UMAP	projections	of	5,113	Harmony-aligned	INs	colored	by	cluster	(left),	and	pseudotime	(right)	before	
(top)	 and	 after	 (bottom)	 capping	 at	 0.6	 to	 eliminate	 differences	 between	 temporally	 specified	 subtypes	
(circled	in	the	left	plot).	
(E)	Gene	score	activity	(Z-score)	of	marker	genes	for	mature	IN	clusters	(as	in	D).	Subtype	annotation	and	
relative	contribution	of	developmental	stages	per	cluster	are	shown	above	the	heatmap.	
(F,	G,	H)	Heatmap	of	Z-score	scaled	motif	accessibility	for	TFs	with	dynamic	activity	across	GC	(F),	PC	(G)	and	
IN	(H)	differentiation.	Cells	are	grouped	in	50	bins	based	on	pseudotime	ranks.	The	contribution	of	different	
developmental	stages	and	the	mean	pseudotime	value	for	each	bin	are	shown	above	the	heatmap.	Motifs	
are	grouped	in	clusters	of	similar	activity.	Information	on	the	TF	family	and	Pearson’s	correlation	between	
motif	accessibility	and	gene	score	are	shown	(left).	TFs	with	positive	or	negative	correlations	are	classified	
as	putative	activators	(blue)	and	repressors	(red)	respectively.	
(I,	 J)	Heatmap	of	Z-score	 scaled	activity	of	dynamic	CREs	across	PC	 (I)	and	 IN	 (J)	differentiation.	Cells	are	
grouped	in	50	bins	based	on	pseudotime	ranks.	The	contribution	of	different	developmental	stages	and	the	
mean	pseudotime	value	for	each	bin	are	shown	above	the	heatmap.	Cluster	numbers	are	indicated	on	the	
left.	
(K,	L)	Upset	plots	of	 intersections	between	genes	 (K)	and	CREs	 (L)	with	dynamic	activity	 in	GC,	PC	and	 IN	
differentiation.	Connected	dots	mark	overlapping	sets.	
(M,	N)	Differences	 in	sequence	conservation	(top)	and	abundance	(bottom)	of	distal	CREs	with	 increasing	
pleiotropy	 (shading)	 active	 in	 different	 stages	 of	 PC	 (M)	 and	 IN	 (N)	 differentiation	 (indicated	 by	 cluster	
numbers	as	in	I-J	on	top).	
(O)	PCA	of	the	chromatin	accessibility	 landscape	during	GC	(green),	PC	(blue)	and	IN	(red)	differentiation.	
For	 each	 neuron	 type,	 cells	 are	 grouped	 in	 50	 bins	 based	 on	 pseudotime	 ranks.	 Point	 size	 increases	 as	
pseudotime	progresses.	
	
Supplementary	Table	legends	
Table	S1.	Information	on	sample	dissections,	library	preparation	and	statistics.	
Table	S2.	Clustering,	cell	type	annotation	and	summary	statistics	of	high	quality	cells.	
Table	S3.	TFs	associated	with	the	differentiation	of	major	cerebellar	neuron	types.	
Table	S4.	Biological	process	enrichments	for	CREs	with	differential	accessibility	across	developmental	stages	
in	matched	states	of	GC	differentiation.	
Table	S5.	Software	and	external	resources	used	in	this	study.	
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