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Abstract 

Pediatric brain imaging holds significant promise for understanding neurodevelopment. 

However, the requirement to remain still inside a noisy, enclosed scanner remains a challenge. 

Verbal or visual descriptions of the process, and/or practice in MRI simulators are the norm in 

preparing children. Yet, the factors predictive of successfully obtaining neuroimaging data 

remain unclear. We examined data from 250 children (6-12 years, 197 males) with autism and/or 

attention-deficit/hyperactivity disorder. Children completed systematic MRI simulator training 

aimed to habituate to the scanner environment and minimize head motion. An MRI session 

comprised multiple structural, resting-state, task and diffusion scans. Of the 201 children passing 

simulator training and attempting scanning, nearly all (94%) successfully completed the first 

structural scan in the sequence, and 88% also completed the following resting state fMRI scan. 

The number of successful scans decreased as the sequence progressed. Multivariate analyses 

revealed that age was the strongest predictor of successful scans in the session, with younger 

children having lower success rates. After age, sensorimotor atypicalities contributed most to 

prediction. Results provide insights on factors to consider in designing pediatric brain imaging 

protocols.  
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1. Introduction  

Pediatric brain imaging has made significant advances in non-invasively capturing ​in vivo ​the 

brain organization in typical and atypical youth using MRI ​(Oldehinkel et al. 2013; Craddock et 

al. 2013; Di Martino et al. 2014)​. Although promising, progress remains challenged by artifacts, 

most notably, head motion. Indeed even submillimeter head motion has been shown to introduce 

false findings that can affect between-group analyses and replicability ​(Yuan et al. 2009; Power 

et al. 2012; Satterthwaite et al. 2013; Yan et al. 2013; Yendiki et al. 2014; Zuo et al. 2014; 

Alexander et al. 2017; Oldham et al. 2020)​. Such artifacts are particularly notable for children 

with neurodevelopmental conditions, such as autism spectrum disorder (ASD) or attention- 

deficit/hyperactivity disorder (ADHD) ​(Yerys et al. 2009)​. As a result, continued progress 

depends on the need to collect high quality imaging data, which can only be obtained when 

children keep their heads virtually motionless when being scanned.  

 

Multiple methods for addressing motion artifacts post-scan exist, but they inevitably limit both 

data and sample size, and thus degrees of freedom ​(Yan et al. 2013; Bright, Tench, and Murphy 

2017; Ciric et al. 2017; Satterthwaite et al. 2019; Eklund et al. 2020)​. As a result, the prevailing 

wisdom remains - the best way to handle motion is to prevent it ​(Ai et al. 2020)​. In this regard, 

efforts to minimize motion during MRI scanning such as passive movie viewing ​(Vanderwal et 

al. 2015)​, real-time motion monitoring and/or feedback ​(Dosenbach et al. 2017; Greene et al. 

2018; Krause et al. 2019)​, prospective motion correction ​(Ai et al. 2020)​, and head stabilizers 

(Power et al. 2019)​ have been reported to be effective. However, they may not all apply across 

the broad range of MRI modalities and specialized sequences, the list of which continues to 
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emerge (e.g., fMRI, diffusion MRI, MR spectroscopy, quantitative T1-weighted/T2 mapping, 

arterial spin labeling). Solutions that can impact the broad range of brain imaging modalities are 

needed, as studies increasingly seek to obtain multiple structural and functional metrics to 

support biomarker discovery and/or delineate pathophysiological mechanisms. Similarly, in 

clinical settings, multimodal imaging is commonly used to increase diagnostic precision and 

guide treatment such as pre-surgical MRI for epilepsy or tumor removals ​(Jung and Lee 2010)​. 

Additionally, the tolerability and utility of emerging motion prevention approaches during scan 

sessions for more challenging populations, such as those with neurodevelopmental conditions, 

have yet to be comprehensively established.  

 

To bypass these challenges, preparing children before scanning remains a critical requisite for 

pediatric brain imaging. Numerous studies have shown that preparation improves compliance 

and reduces anxiety related to the unfamiliar MRI scan environment ​(Gabrielsen et al. 2018; 

Ashmore et al. 2019)​. Preparation protocols have included showing child friendly books or 

videos ​(Barnea-Goraly et al. 2014) ​, playing with MRI toys ​(Cavarocchi et al. 2019)​, immersion 

in virtual reality ​(Ashmore et al. 2019; Garcia-Palacios et al. 2007)​, or practicing in an MRI 

simulator ort “mock scanner”. MRI simulators are widely used and, unlike most other 

preparation methods, also allow direct training for motion control. As summarized in Table 1, to 

date, 12 studies using MRI scan simulator training have reported their utility in obtaining good 

quality data in one or two MRI brain scans collecting different MRI modalities in one session 

(Rosenberg et al. 1997; Epstein et al. 2007; De Bie et al. 2010; Barnea-Goraly et al. 2014; Theys, 

Wouters, and Ghesquière 2014; Nordahl et al. 2016; Gabrielsen et al. 2018; Thieba et al. 2018; 
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Sandbank and Cascio 2019; Horien et al. 2020; Pua et al. 2020; Yamada et al. 2020)​. However, 

the factors predicting successful completion of multiple scans in a MRI session remain largely 

unknown. Understanding the specific role of predictive features can guide the development of 

child-specific protocols for MRI data collection as well as MRI simulation training. This will be 

particularly relevant for children with neurodevelopmental conditions. 

 

Most studies using MRI simulator training have not characterized their samples in regard to 

behavioral, clinical or cognitive features. Of three notable exceptions ​(Nordahl et al. 2016; 

Thieba et al. 2018; Sandbank and Cascio 2019)​, only one examined the relation between 

children’s characteristics and MRI success ​(Thieba et al. 2018)​. Specifically, in 20 typically 

developing preschoolers children completing three structural MRI scans Thieba and colleagues 

found that children with higher language and cognitive skills were more likely to have successful 

scans following training ​(Thieba et al. 2018)​. Whether these findings extend to a wider age range 

and to children with neurodevelopmental conditions remains unexamined. Further, while 62% of 

the neuroimaging studies reviewed in Table 1 focused on either ASD or ADHD and/or other 

neurodevelopmental conditions, none has examined children with ASD and with ADHD, despite 

accumulating evidence of their frequent co-occurrence ​(Reiersen and Todd 2008; Simonoff et al. 

2008; Rommelse et al. 2010; Grzadzinski et al. 2011; Leitner 2014; Kern et al. 2015; Joshi et al. 

2017) ​.  

 

With these considerations in mind, here we report our effort to assess the role of a range of 

symptom domains in predicting completion of multimodal imaging data in N=250 verbally 
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fluent school-age children with ASD and/or ADHD. Besides child characteristics, we also 

examined the contribution of MRI simulator training performance. MRI simulator training 

protocols have varied in terms of equipment, duration, frequency of the training sessions, as well 

as specific objectives. Specifically, while all studies aimed to acclimate children to the MRI 

environment by using in-house or commercial MRI simulators, some explicitly included training 

to decrease in-scanner motion ​(Nordahl et al. 2016; Sandbank and Cascio 2019; Horien et al. 

2020) ​. Such motion training has been accomplished using verbal or visual feedback following 

qualitative direct observation or based on quantitative data from motion sensors. To date, only 

three studies used motion sensors to train either typically developing or children with ASD, 

albeit in small samples (n=2-19) ​(Nordahl et al. 2016; Sandbank and Cascio 2019; Horien et al. 

2020) ​. Thus, along with the child’s clinical characteristics, the present study assessed to what 

degree motion during the simulator training would contribute in predicting successful MRI data 

collection.  
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Table 1. ​Overview of MRI simulator training studies in children. ᵃ Number of children 
attempting MRI simulator training protocol. ᵇ n=6 pairs of monozygotic twins concordant (3 
pairs) or discordant (3 pairs) for ASD. � Included a sample of 21 children (n=14 with a formal 
MRI simulator training, 7 without) and another sample of 16 children (all undergoing a formal 
training and used as a replication sample). ᵈ Included congenital genetic syndromes, ADHD, 
ASD, mild intellectual disability with unknown etiology, other behavioral and developmental 
disorders. ᵉ Used the Developmental NEuroPSYchological Assessment (NEPSY) ​(Korkman et 
al. 2007)​ and the Bayley Scales of Infant Development instead of standard IQ scores ​(Lennon et 
al. 2008)​. � Resting-state fMRI (R-fMRI) was also acquired as time permitted but not analyzed. 
g​Range is provided for studies not reporting mean (M) and standard deviation (SD) and M and 
SD cannot be derived. Abbreviations: ADHD, attention deficit hyperactivity disorder; ASD, 
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autism spectrum disorder; DD, developmental disability, DX, diagnosis; IQ, intelligence 
quotient, ​n ​, number of subjects; N, no; TD, typically developing; Y, yes. 
 
 
2. Methods 
2.1 Participants 

We examined data from 250 children aged 5.5 to 11.9 years participating in an ongoing study 

(NIH R01MH105506) of the neurobiological underpinnings of autistic traits in ADHD and/or 

ASD. Sample recruitment and characterization are detailed in the Supplementary Methods and in 

(Guttentag et al. 2021)​. During the course of the study, the enrollment and behavioral assessment 

site was transferred from the NYU Child Study Center, NYU Grossman School of Medicine, to 

the Child Mind Institute (CMI) when the principal investigator (ADM) moved to a new position. 

As detailed below, no demographic, nor clinical differences were noted across sites 

(Supplementary Table 1); nevertheless potential batch effects were addressed using the Bayesian 

method ​combating batch effects, ComBat ​(Johnson, Li, and Rabinovic 2006; Fortin et al. 2017)​. 

The study protocol was approved by the institutional review boards of NYU Grossman School of 

Medicine, and Advarra, Inc at CMI. Written parent informed consent and verbal assent were 

obtained for all participants and written assent was also collected for children older than seven 

years. All data were collected prior to the COVID-19 pandemic. 

 

2.2 MRI simulator training protocol 

The MRI simulator training session aimed to familiarize participants with the MRI scanning 

environment and protocol while training them to minimize head motion in the MRI simulator 

environment. To this end, we used an MRI simulator, a Siemens-32-channel mock head coil with 

mirror to see a screen on the back of the bore used to project the visual stimuli, a head motion 

8 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.28.428697doi: bioRxiv preprint 

https://paperpile.com/c/9FTgdy/cZKM
https://paperpile.com/c/9FTgdy/pDTn+E59k
https://doi.org/10.1101/2021.01.28.428697
http://creativecommons.org/licenses/by-nd/4.0/


 

tracking system, and the corresponding software package, all acquired from Psychology 

Software Tools Inc. (Sharpsburg, PA). The head motion tracking system relied on sensor 

hardware based on the Ascension Technology Corporation (now part of Northern Digital Inc., 

Waterloo, ON) Flock of Birds real time motion tracking system. Its accuracy is specified as 

1.8mm root-mean-square (RMS) and 0.5° RMS; we confirmed spatial resolution was 

approximately 0.77 mm and 0.2° at a sampling rate of approximately 9 Hz. Similar MRI 

simulator equipment from the same vendor was used at both enrolling sites. 

 

For all participants, a MRI simulator training session occurred at the first in-person diagnostic 

visit. The training consisted of five increasingly demanding steps during which children were 

asked to keep their head still. As illustrated in Figure 1, the training protocol began with a review 

of two social stories with text and pictures ​(Gray 2000) ​. The first one described the MRI scan 

environment and requirements; the second one described the MRI simulator training. This first 

step was followed by the child laying on the bed of the MRI simulator while listening to 30 

seconds of scanner gradient noises corresponding to the multimodal MRI sequences used in the 

real MRI session. This allowed the child to begin acclimation to the mock scan environment and 

scanner noise. Then, participants wore the motion sensor with a band on their forehead, while the 

mock Siemens 32 channel head coil and mirror were positioned. Afterwards, when the child 

agreed to do so, the table was slowly moved inside the simulator bore. Once inside the MRI 

simulator, children practiced controlling head motion for increasing durations of time using 

different audio visual stimuli and feedback. Each step was increasingly similar to a real MRI 

session by either increasing the time children were asked to stay still (from 2 to 6 minutes), 
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and/or by removing the target visual feedback used in response to forehead movements greater 

than 1.5mm, the minimum motion detectable by the sensor. During the first and least demanding 

step, children completed a target game for two minutes. During that game they were asked to 

keep a white dot, representing the position of their forehead, in the center of a target projected on 

the screen. During the last two and most realistic steps, children watched a black screen with a 

centered white cross, reproducing the stimulus used for the R-fMRI scan in the real MRI session. 

The child moved from one step to the next when limited or no motion events > 1.5 mm were 

detected in a given task. Otherwise, each step was repeated until motion events > 1.5 mm ceased 

or became minimal. Once each of the five steps was completed successfully, a piece of a virtual 

puzzle projected in the screen was awarded. Upon completion of the whole virtual puzzle, 

children chose a toy from a box of rewards. A complete training session lasted approximately 

30-60 minutes, including breaks as needed. If the child was unable to complete the training 

protocol in the first session, they were invited back until they successfully completed it. Only 

children who successfully completed a full MRI simulator training protocol were invited to a real 

MRI session.  
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Figure 1. Overview of MRI simulation training protocol. ​First, the examiner and participant 
reviewed two “social stories,” one about the upcoming MRI session, the other about the “mock 
scan” training. Second, the child listened to 30-second-long multimodal MRI sounds outside the 
MRI simulator. For the 2 and 4 minute steps, the child played the target game inside the 
simulator during which children were instructed to keep a white dot (representing the position of 
their forehead indexed by the motion tracker) in the green center of the target. Between the two 
target game steps, a 2-min musical movie was played, stopping when head motion exceeded 
1.5mm. Two 6-minutes blocks of R-fMRI simulations followed. 
 

2.3 MRI protocol  

All MRI images were collected at the NYU Center for Brain Imaging on a 3T Siemens Prisma 

scanner with the Siemens 32-channel head coil (Siemens, Erlangen, Germany). The study 

utilized a multimodal imaging protocol consisting of structural T1-weighted (T1w), T2 weighted 

(T2w), functional (rest and task), and diffusion MRI scans (see Box 1 for definition of most used 

MRI scanning terms in the manuscript). MRI scan parameters are detailed in Supplementary 

Table 2. The MRI session followed the same order of scan administration always starting with a 

T1-weighted scan, followed by a set of functional scans alternating rest and task scans, a T2w 

and a DTI scan completed the session (Figure 2). Head motion during the structural and diffusion 

scans was visually monitored through the operator window and via eye tracker camera 
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positioned inside the MRI bore. During the functional scans, real time motion monitoring was 

also used (see Supplementary Methods). Administering the next scans in the sequence depended 

on completing the prior scan without notable motion; as such scans were repeated as needed. 

Children unable to complete all or some of the MRI scans in the first session were invited back 

for ‘make-up’ sessions, when possible. For consistency, the data analyzed here are based on the 

first MRI session. 

 

Figure 2. Scan sequence. ​Time is described in minutes:seconds. Moving to the next scan along 
the fixed order was dependent on the completion of the prior, scans were repeated as needed. See 
Supplementary Methods.  
 

 

Box 1.​ Definitions for selected terms most used in this report.  
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Terminology most used in the manuscript:  

● MRI scan​: a set of radiofrequency pulses and gradients resulting in a set of 
images (e.g., a T1-weighted image, a 4D fMRI time series) 

● MRI modality​: a group of different specialized sequences that captures 
different properties of the brain (e.g., diffusion weighted, functional, 
structural) 

● MRI session​: a single visit to the MRI facility that can include one or more 
MRI scans 

● MRI scan sequence​: the order in which scans are administered in a single 
session 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.28.428697doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428697
http://creativecommons.org/licenses/by-nd/4.0/


 

2.4 MRI data quality assurance 

For data quality assurance (Q/A) of the T1-weighted and T2-weighted structural scans, images 

were visually inspected for any motion artifacts or abnormalities, such as blurring, ghosting, or 

Gibbs ringing artifacts and marked as passing Q/A by either one of two visual reviewers with 

excellent inter-rater (see Supplementary Methods). Rest and task functional images were also 

visually inspected for signal dropouts or artifacts and motion was indexed by median framewise 

displacement (FD) ​(Jenkinson et al. 2002)​. Resting state fMRI scans with a median FD​≤​0.2mm 

were considered passing Q/A. For task fMRI scans, a cutoff of median FD​≤​0.4mm was used, 

given the relative robustness of task-related fMRI designs ​(Johnstone et al. 2006; Siegel et al. 

2014) ​. Diffusion-weighted images were preprocessed with the DTIPrep software package ​(Oguz 

et al. 2014) ​. As described in Supplementary Methods they were considered passing Q/A if more 

than 50% of the gradients collected met our quality criteria.  

 

2.5 MoTrak sensor data preprocessing  

The recorded MoTrak sensor data were quantized to match the sensor’s measured resolution of 

0.77 mm and 0.2°. Similarly, motion introduced when re-centering the sensor following subject 

motion or positional drift was also removed. For each child, the mean FD was calculated from 

the motion recorded during the final six minute MRI simulator session and used in statistical 

modeling analyses. When comparing recorded motion from those who passed the MRI simulator 

protocol versus those who failed, the last available motion recording was used. If a six minute 

recording was not available, the longest data section available before that was used. 
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2.6 Statistical analysis 

Sample characterization. ​ Groups (i.e., ASD vs. ADHD, passing vs. failing MRI simulator 

training) were characterized and compared in regard to clinical symptom severity and 

demographics using Mann-Whitney U ​(Mann and Whitney 1947)​ or chi-squared tests for 

continuous and categorical variables, respectively. To correct for multiple comparisons, we used 

the Benjamini-Hochberg false discovery rate correction ​(Benjamini and Hochberg 1995)​ with an 

alpha of 0.05.  

 

Predictive feature selection.​ We explored the importance of features predicting the ability to 

successfully complete a MRI multiscan session among a range of child characteristics and 

performance at the MRI simulator training. Training performance features included mean FD of 

the final six-minute training step and the number of training sessions needed to pass the MRI 

simulator training. Child characteristics included age, intelligence quotient (IQ), and severity 

indexes of ASD and ADHD core symptoms, as well as associated psychopathology symptoms. 

Given the frequent overlap and co-occurrence of psychiatric symptoms across ASD and ADHD 

(Reiersen and Todd 2008; Simonoff et al. 2008; Rommelse et al. 2010; Grzadzinski et al. 2011; 

Leitner 2014; Kern et al. 2015; Joshi et al. 2017)​, ​we leveraged a range of parent and clinician 

based instruments providing continuous measures across groups (see list in Box 2 and 

Supplementary Methods). To capture the distinct components involved in the symptom and 

cognitive domains of interest, we selected subscale scores. For children for which one or two of 

the instruments used to derive the features were missing (n=11 ASD, n=15 ADHD w/o ASD), 

missing values were imputed. For imputation, we computed the mean value of the missing 
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measure from available data in children matched by both age and diagnosis with those missing 

the metric to impute. Children with missing data for more than two instruments were excluded 

from these analyses (n=11).  

 

Predicted MRI outcomes​. Any given MRI scan completed and passing Q/A was considered 

successful (passing). Scans not meeting Q/A criteria, incomplete or not attempted were 

considered failing. Task fMRI scans that were not attempted because the child failed the task 

practice before the session (n=23, see Supplementary Methods) were considered failing in this 

context. A post hoc analysis showed that inclusion of data from these scans did not confound 

results (data not shown).  

 

 

 

Box 2.​ Features examined to predict MRI scan outcomes. Abbreviations: ADHD, 
attention-deficit/hyperactivity disorder; ADOS-2, Autism Diagnostic Observation Schedule - 

15 

Features examined:  

● Age (years) 
● Verbal IQ (standard scores) 
● Nonverbal IQ (standard scores) 
● ADOS-2 RRB (calibrated severity 

scores; CSS) 
● ADOS-2 SA (CSS) 
● SWAN Inattention (average scores) 
● SWAN Hyperactivity (average 

score) 
● CBCL Internalizing (T score) 
● CBCL Externalizing (T score) 
● SRS-2 Parent (T score) 
● SEQ Seeking (raw score) 

 

● SEQ Hyposensitivity (raw score) 
● SEQ Hypersensitivity (raw sore) 
● RBS-R: Stereotypic (raw scores) 
● RBS-R: Compulsive (raw scores) 
● RBS-R: Ritual (raw scores) 
● RBS-R: Sameness (raw scores) 
● RBS-R: Restricted (raw scores) 
● Number of MRI simulator sessions 
● Amount of motion recorded during the 

final 6-minute MRI simulator training 
session as meanFD (mm) 
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second edition; ASD, autism spectrum disorder; CSS, calibrated severity scores; CBCL, child 
behavior checklist; RBS-R, Repetitive Behaviors Scale – Revised; RRB, restricted and repetitive 
behaviors; SEQ, Sensory Experience Questionnaire; SRS-2, Social Responsiveness Scale-second 
edition; SWAN, Strengths and Weaknesses of ADHD-symptoms and Normal-behaviors. 
  

Random forest (RF) regression ​was used to assess which factors influenced the number of scans 

a child successfully completed in a given MRI session. Predicted values ranged from zero (not 

successfully completing T1w and subsequent scans) to six (successfully completing all scans), 

with intermediate values representing completion of T1w plus each of the subsequent scans 

along the sequence illustrated in Figure 2. For the purposes of these analyses, the two task-fMRI 

scans shown in Figure 2 were combined such that six scans were assessed (whereby failing 

reflected failing both scans). The inherent properties of RF, including flexibility regarding input 

feature types, lack of overfitting, and associated feature importance methods made it an 

appropriate choice for our question. For this report, we used the scikit-learn random forest 

implementation ​(Pedregosa et al. 2011)​. The RF was trained with default parameters listed in this 

manuscript’s GitHub repository along with the full code 

(github.com/aksimhal/mri-simulator-analysis); the number of estimators was set to 300 to 

increase the performance of the regressor. Results were obtained by training a RF with stratified 

five-fold cross validation, repeated 100 times.  

 

Feature importance was calculated using the permutation importance method ​(Breiman 2001)​. 

Briefly, we recorded a baseline accuracy score for the trained regressor, permuted the values of 

each feature, then passed all the test samples back through the RF and recomputed accuracy. The 

importance of a given feature was indexed by the difference between the baseline and the new 
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accuracy value ​(Breiman 2001)​; this is known as the ‘out of bag error’ (OOBE). A feature or a 

set of features were selected as important when their OOBE had the largest gap from the 

following feature’s OOBE in the model rank.  

 

Naive Bayes classification  

To assess what factors contributed to completing a minimal multiscan dataset, we examined the 

children who completed our first T1w structural scan and following R-fMRI scan with data 

passing Q/A. Because of the imbalanced nature of the dataset (88% of those who attempted both 

scans, passed), we used the naive Bayes (NB) classification method, which takes into account 

posterior probabilities. The NB classification implementation used was from scikit-learn 

(Pedregosa et al. 2011)​. The NB model was trained using the 20 features listed in Box 2 to 

predict whether or not the subject successfully completed both the T-w sequence and the R-fMRI 

scan. Results were obtained via five-fold cross validation, repeated 1000 times. Feature 

importances were calculated using the same permutation method adapted from ​(Breiman 2001) 

as described above. 

 

3. Results 

3.1 Characteristics of the sample 

We examined data from 250 children who attempted to complete at least one MRI simulator 

training session. As shown in Supplementary Table 3, n=112 (46%) children had a primary 

diagnosis of DSM-5 ASD (with or without ADHD comorbidity) and n=138 (55%) had a DSM-5 

ADHD primary diagnosis, with or without any other comorbidity but no ASD - here referred as 
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ADHD​w/oASD​. Characteristics of the sample in regard to demographics and clinical presentations 

are in Supplementary Table 1. Briefly, as expected, children with ASD showed significantly 

more severe ratings of ASD symptoms relative to those with ADHD​w/oASD​. On the other hand, 

and likely due to the high comorbidity rates of ADHD in ASD (45%), ADHD symptom severity 

parent ratings did not statistically differ between the two diagnostic groups. Although children 

with ASD had higher severity ratings of associated psychopathology, as indexed by the parent 

CBCL T scores, this difference did not reach statistical threshold. Notably, full scale and verbal 

IQ were significantly lower in ASD, albeit both groups’ averages were in the typical intelligence 

range.  

 

3.2 MRI simulator training outcomes 

The flowchart in Figure 3A shows the number of children going from attempting at least one 

MRI simulator training session to the MRI scan appointment. As shown in the barchart in Figure 

3B, 150 children (60%) successfully completed the training in one session. We invited the 

remaining 100 children to return for further training, 88 children accepted the invitation. Of 

them, 71 (80%) successfully completed the additional MRI simulator training, most on a second 

session (see Figure 3B and Table 2) yielding a total of 221 children passing the simulator 

training (Figure 3A). Among the 29 (12%) who failed to complete the MRI simulator training, 

six declined to enter the MRI simulator; the others attempted one or multiple steps of the 

training. All children successfully completing the MRI simulator training were invited to 

participate in an MRI session and 201 children attempted it. The average time between the 

successfully completed MRI simulator session and the actual MRI appointment was 15±13 days.  
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Figure 3.​ ​Overview of MRI simulator training and MRI scan outcomes. ​A) ​Flowchart of 
participant outcomes. Of the 250 children enrolled in this study, 201 passing the MRI simulator 
training attempted the MRI multiscan session. ​B) ​Stacked bars show the number of MRI 
simulator training sessions needed for children passing the training protocol (blue) vs. those 
failing it (orange) among the N=250. Most who passed the training (n=150) did so in one 
session. Of the remaining, n=41 passed training after two training sessions, n=20 after three, n=8 
after four, and n=2 after five sessions. Among those who failed the training protocol, n=15 
children failed after one, n=7 after two, n=3 after three, n=3 after four, and n=1 after five 
sessions. ​C). ​The stacked bars show the percentage of children who attempted each scan with 
passing or failing Q/A (blue and orange, respectively), the gray stacks represented the percentage 
of children who did not attempt a given scan along the session. As detailed in the Supplementary 
Methods, for the task fMRI runs, 23 (11%) children were unable to complete the practice tasks 
outside the scanner and thus were not administered the task fMRI. Information for seven children 
regarding task practice was not available and they were counted among those not attempted.  
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As detailed in Table 2, Mann-Whitney U comparisons of demographics, clinical characteristics 

and MRI simulator training performances of those passing (n=221) and failing (n=29) the MRI 

simulator training showed that those who passed were on average older, had a higher verbal and 

non-verbal IQ, and less severe autistic traits. Notably, ADHD symptom severity, indexed by 

parent SWAN ratings, did not statistically differ among the two groups. A primary DSM-5 

diagnosis of ADHD​w/oASD​ was the most frequent among children passing the MRI simulator 

training.  
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Variable 
Pass Simulator 

Training 
(n=221) 

Fail Simulator 
Training (n=29)  df   

U 

FDR 
corrected  

p 

   Mea
n  SD  Mean  SD       

Age (years)  8.9  1.7  7.9  1.5  248  2411.5  0.022 

IQ standard score   103  17  95  14  248  2367.5  0.021 

Verbal IQ standard 
score   105  17  98  18  248  2329.0  0.021 

Nonverbal IQ standard 
score   102  18  95  12  248  2396.5  0.023 

ADOS-2 CSS Total   4.7  2.3  6.6  2.8  248  2058.0  0.003 

ADOS-2 CSS RRB   4.7  3.1  6.1  3.0  248  2310.5  0.018 

ADOS-2 CSS SA   5.2  2.6  6.9  2.2  248  1977.5  0.003 

SWAN​a​ Total   1.1  0.8  0.9  0.7  240  2335.0  0.160 

SWAN Hyperactivity  0.98  0.95  0.6  0.8  240  2149.5  0.061 

SWAN Inattention   1.1  0.95  1.1  0.8  240  2697.0  0.495 

mFD* (mm)  0.1  0.3  0.9  3.2  248  1263.0  9.46e-7 

  N, (%)  N, (%)  df  χ​2  p 
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Table 2. MRI simulator training outcomes. ​Group comparisons via Mann-Whitney U and 
Chi-square tests for continuous and categorical variables, respectively. All comparisons were 
corrected for multiple comparisons via false discovery rate - Benjamini-Hochberg (FDR-BH).​ ​a 
12 children (8 passing and 4 failing the MRI simulator training) had missing SWAN parent 
scores. Abbreviations: ADHD, attention-deficit/hyperactivity disorder; ADOS-2, Autism 
Diagnostic Observation Schedule, second edition; ASD, autism spectrum disorder; CSS, 
calibrated severity scores; df, degree of freedom; Dx, diagnosis; mFD, mean framewise 
displacement ​(Jenkinson et al. 2002)​ data from the MRI simulator session; OS, otherwise 
specified; RRB, restricted and repetitive behaviors; SA, social affect; SD, standard deviation;, 
SWAN, Strengths and weaknesses of attention-deficit/hyperactivity symptoms and normal 
behaviors (average scores). 
 
3.3 MRI scan outcomes  

Of the 201 children who passed the MRI simulator training and agreed to attempt the MRI 

multimodal session, nearly all (n=188, 94%) were able to successfully (i.e., data collection 

passed Q/A) complete at least the first scan in the sequence (T1w). As shown in Figure 3C, the 

percentage of children successfully completing additional scans decreased as the scan sequence 

progressed. Figure 4 shows the motion indices across the fMRI data collected, as well as the 

number of DTI gradients passing Q/A.  

21 

Mock Scan Session 
Counts (#, %) 

1 (150, 68) 
2 (41, 19) 
3+(30, 13) 

1 (12, 41) 
2 (9, 31) 

3+ (8, 28)  2  10.20  0.03 

Sex (# ,%)  Male (173, 78)  
Female (48, 22) 

Male (26, 90) 
 Female (3, 10)   1  1.978  0.184 

Primary Dx  
 (# ,%) 

ASD (92, 42), 
ADHD w/o 

ASD (130, 58)  

ASD (21, 72), 
ADHD w/o ASD 

(9, 28)  
1  6.681  0.021 

ADHD  
Presentation  

(# ,%) 

Inattentive (55, 
32) 

Hyper/Imp (6, 4), 
Combined (88, 

52),  
OS (21, 12) 

Inattentive (5, 33), 
Hyper/Imp (1, 7), 
Combined (9, 6),  

OS (0, 0) 

3  2.939  0.495 
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Figure 4. MRI Q/A outcomes. ​A)​ Histograms of the median frame wise displacement of the 
subjects who attempted scans. The blue bars represent those who passed and the orange bars 
represent those who failed. ​B)​ ​Each plot shows for each gradient direction (represented by a line 
in 3D), the percentage of participants (represented by the color of the line) with data of sufficient 
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quality as detailed in Supplementary Methods. The plot on the left illustrates the group failing, 
the one on the right those passing DTI Q/A (n=30 and n=28, respectively). 
 
 
3.4 Predictive features of multiple scans in a MRI session  
A random forest (RF) regression was used to examine a combination of clinical, demographic, 

and mock performance among the 20 features selected (Box 2) that best predicted participants’ 

degree of successful scan completion (number of completed scans passing). Predicted values 

ranged from zero (failed T1w and subsequent scans) to six (passed all scans), with any 

intermediate value representing completion of T1w plus each of the subsequent scans along the 

sequence described in Figure 2 and in Supplementary Methods.  

 

The mean average error of the trained RF model predicting the number of scans completed was 

1.29 scans and the percentage variance explained by the RF model was 17.4%. As shown in 

Figure 5A, age was the most important feature predicting the number of scans completed in a 

session, as computed via the permutation importance method described above (i.e., the jump 

from age to the next feature was 20%). As shown in Figure 5B, children 8.9 ± 1.7 years and 

older were more likely to successfully complete multiple scans in the MRI session. There was 

approximately one year difference between those who completed at least the first three scans (M 

± SD, 9.3 ± 2 years) versus those who completed the entire set of scans in the sequence (M ± SD, 

10.0 ± 3 years). Figure 6 provides the success rate by age for the MRI scan expected along our 

sequence. The percentage of children below age nine years passing at least the first two scans 

(i.e., T1w and R-fMRI) was 78% vs. 92% of those aged nine years and older. The success rate of 

those younger than nine years further decreased with more scans required in the sequence, 

dropping to 3% for the whole set. A similar pattern was noted for those older than nine years, but 
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with different magnitude (e.g, 20% completed the whole session; see Figure 6). Further, 

secondary analyses adding diagnostic category labels (ASD and ADHD without ASD) in 

addition to the other 20 features as predictors, yielded highly similar results with no noticeable 

improvement in classifier performance (Supplementary Figure 1).  

 

Additionally, following age, three features (VIQ, ADOS-2 RRB CSS, and SWAN inattention 

scores) clustered together before the next OOBE jump, which was 0.02%. As such, we explored 

the distributions of these variables between children failing and passing each MRI scan as a 

function of the MRI scan sequence order. As shown in Supplementary Figure 2, children failing 

scans on average had notably lower VIQ and more severe RRB ADOS-2 scores. SWAN 

inattention scores on average were slightly higher (more severe) in children failing all scans 

except T1w and DTI. This pattern of results was consistent even after regressing out age (data 

not shown). Given that the ADOS-2 RRB scores encompass both “lower- and higher-order” 

RRB symptoms ​(Bishop et al. 2013) ​, we explored the pattern of ADOS-2 module 3 items 

tapping into ‘lower-order’ RRB (i.e., sensorimotor) separately from the item assessing 

“higher-order” RRB (see Supplementary Methods). As shown in Supplementary Figure 3, while 

the group passing did not differ in the “higher-order” RRB item score from those failing, notable 

differences were evident for “lower-order” RRB, even after controlling for age.  

 

 

.  

24 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.28.428697doi: bioRxiv preprint 

https://paperpile.com/c/9FTgdy/VBCw
https://doi.org/10.1101/2021.01.28.428697
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Figure 5.​ ​Overview of the random forest regression results.​ A) Permutation error (feature 
importance) associated with each of the 20 features examined shown as mean OOBE and 
standard error across RF-R iterations. B) Group mean and standard errors bars ages for those 
who passed (blue) and those who failed (orange) along each of the scans in the MRI sequence.  
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Figure 6. Histograms showing MRI outcome by age. ​Each histogram shows the percentage of 
children in each age group who passed or failed Q/A for a given MRI scan in the sequence. The 
order in which scans were conducted is shown in Figure 2.  
 

3.5 Predictors of minimum set of multimodal scan success  

To assess which factors influenced the ability to successfully complete a minimum set of 

multimodal scans (here T1w and R-fMRI scan), a naive Bayes classifier assessed the 20 features 

listed in Box 2 to predict the labels “pass” vs. “fail.” The resulting classifier had an average 

accuracy of 74.6%, average recall of 86.3%, and average precision of 84.0%. The true positive 

rate was 0.729, the true negative rate was 0.017, the false positive rate was 0.138, and the false 

negative rate was 0.116. The RBS-R Stereotype subscale score was ranked as the most important 

feature, albeit with an out-of-bag-error (OOBE) score of 0.19%, as shown in Figure 7A. The next 

most important feature was the 6 minute meanFD measurement from the last MRI simulation 

training step with an OOBE score of 0.17%, which was followed by VIQ (OOBE score of 

0.14%). Remaining features in the rank had smaller OOBE (<0.10%) and thus were not 

considered to be important. When we examined the average distribution of the RBS-R 

Stereotype subscale, more severe scores characterized children failing (M±SD, 3.3 ± 3.4) versus 

those passing (M±SD, 2.6 ± 2.7) the minimum set of scans (T1w + R-fMR1), as shown in Figure 

7B. Notably, RBS-R subscale scores indexing “higher-order” RRB (Sameness, Restrictive, 

Ritual, and Compulsive) were largely associated with negative permutation errors, implying that 

they did not contribute to the successful completion of these scans. As shown in Supplementary 

Figure 4, while lower VIQ also predicted passing the minimal set of scan success, here, lower 

motion at the “mock scan” characterized children passing vs those failing the T1w + R-fMR1 set. 

Secondary analyses adding diagnostic categories among the 20 continuous variables included as 
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predictors in the naive Bayes classifier, yielded highly similar results to the primary analysis, 

with no noticeable improvement in classifier performance (Supplementary Figure 5).  
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Figure 7.​ Overview of naive Bayes-based results. A) The top panel shows the permutation error 
(feature importance) associated with each variable examined. As mean and standard error across 
the classifier iterations. B) The bottom panel shows the distribution of Repetitive Behaviors 
Scale-Revised (RBS-R) Stereotype subscale raw scores as violin plots for those who passed 
(blue) and those who failed (orange) to successfully complete the T1w+R-fMRI. Each dot on the 
scatter plot indicates a child’s score. The violin plots model the distribution of the scores. The 
boxplots show the quartile ranges of the data.   
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4. Discussion 

We examined factors contributing to the successful collection of multiple scans in a relatively 

large sample of verbally-fluent school-age children with ASD and/or ADHD. Although a 

substantial number (88%) of participants successfully completed at least the first two MRI scans 

in the sequence (T1w + R-fMRI), the success rate decreased with the number of scans collected 

in the MRI session. This was inversely related to child age, regardless of diagnosis. Beyond age, 

sensorimotor atypicalities indexed by lower-order RRB ratings, verbal cognitive skills, and 

pre-scan MRI simulator training performance predicted successful imaging, again, regardless of 

diagnosis. Collectively, these findings can inform decision-making regarding scan protocols in 

neurodevelopmental conditions, based on expectations regarding quality data yield. 

 

4.1 Age impacts the number of scans completed 

Our findings that age is the most important predictive feature of MRI scans success in a session 

are consistent with prior studies in typically and atypically developing children ​(Yerys et al. 

2009; Rajagopal et al. 2014)​, which related higher scan failure rates to younger ages. Those prior 

studies examined the impact of age on one or up to three scans in an MRI session. Here, we 

extended the scope by examining multiple structural and functional scans in a session. We found 

that, across all children, the more scans required to be collected in the session, the higher the 

number of scan failures. Notably, the failure rate was higher in children younger than nine years. 

For example, the success rate gradually dropped from 95% for the first scan to 20% for the last 

and seventh scan required in the sequence in those older than nine years. In contrast, the success 

rate decreased from 78% for the first to 3% for the last scan in children younger than nine years. 
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These results suggest that brain imaging research focusing on school-aged children with ASD 

and/or ADHD needs to account for differential age-related attrition, particularly as the number of 

scans intended for a session increases. This may require over-recruiting younger individuals to 

adjust for greater attrition rate, and/or adjusting the age range targeted, or limiting the number of 

MRI sequences obtained in a single session, or considering multiple MRI sessions in the design. 

We do not point to a single solution as this may vary as a function of context, resources, and 

goals in research or clinical settings where multiple scans and/or multimodal imaging are 

increasingly required. An important implication of the present work for the clinical setting is its 

demonstration of successful awake imaging for children with ASD and/ or ADHD aged nine and 

over. Consistent with prior reports (​(Rosenberg et al. 1997; Nordahl et al. 2008; Barnea-Goraly 

et al. 2014) ​ our findings support that investing in MRI simulator training may be an alternative to 

using sedation for clinical imaging - even in children with neurodevelopmental conditions and 

extends this notion to multiple scan sessions. 

 

4.2 Sensorimotor atypicalities impact scan performance  

Notably, while age strongly predicted the extent to which children completed multiple scans in 

an MRI session, other clinical factors were most important for completing a minimal set of scans 

(T1w + R-fMRI). These included the severity of restricted and repetitive behaviors (RRB) 

indexed by parent ratings at RBS-R Stereotype subscale, which measure the severity of sensory 

and motor RRB ​(Bodfish et al. 2000; Lam, Bodfish, and Piven 2008)​. RRB is an umbrella term 

that refers to a range of symptoms that can be summarized as ‘higher-order’ behaviors, such as 

insistence on sameness, and ‘lower-order’ behaviors, such as hyper- or hypo-sensitivity to 
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sensory stimuli, as well as motor stereotypies ​(Bishop et al. 2013)​. Our RBS-R results revealing 

a predictive role of the Stereotype scale but not for the other subscales, suggest that ‘lower-order’ 

RRB — i.e, sensorimotor atypicalities - have a greater role than ‘higher-order’ RRB. 

Interestingly, after age, ‘lower-order’ RRB, indexed by clinician-based ADOS-2 item scores of 

sensorimotor atypicalities, contributed to the top four features predicting the number of scans 

completed in a session. The convergence across analyses onto ‘lower-order’ RRB symptoms, 

further underscores the role of sensory and motor control processes across children. Although 

RRBs are considered core ASD symptoms, they have been increasingly reported in a subsample 

of children with ADHD ​(Martin et al. 2014) ​. This evidence, combined with our findings that 

MRI completion was not particularly driven by primary diagnosis, underscores the 

transdiagnostic impact of sensorimotor symptoms in MRI outcome prediction.  

 

Given that the RRB ratings found to be predictive included both sensory and motor control 

atypicalities, their relative contribution remains somewhat unclear. On one hand, it is plausible 

that the sensory experience of being in the MRI scanner (sounds, touch, and visual stimuli) 

impact children with greater sensory atypicalities, even after comprehensive MRI simulation 

training. If so, studies examining the role of specific sensory modalities may be relevant to 

design habituation techniques for school-age children with ASD and/or ADHD. On the other 

hand, the observation that parent ratings focusing on sensory processes alone (i.e., SEQ) were 

not predictive features, suggests that the combination of both atypical motor and sensory 

processes may be more relevant. With this in mind, and given the transdiagnostic nature of our 
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findings, other measures of sensorimotor atypicalities may be explored in future studies of 

neurodevelopmental conditions.  

 

Looking forward, an increased focus on neurological soft signs (NSS) may provide additional 

insight on the predictive role of sensorimotor processes. NSS encompass clinically detectable 

poor motor coordination, sensory perceptual difficulties, and involuntary movements. An 

emerging literature underscores the role of neurological soft signs as markers of brain immaturity 

across multiple psychopathologies ​(Martins et al. 2008)​. Indeed, NSS are frequent in both 

children with ASD, those with ADHD, and other neurodevelopmental conditions ​(Patankar et al. 

2012; Manouilenko et al. 2013)​. Our study did not include a measure of NSS, e.g., Physical And 

Neurological Examination of Soft Signs ​(Camp et al. 1977)​ and to date, the relation between 

such a measure and RRB metrics is unknown. Thus, future research examining their unique or 

relative contribution predicting MRI success is needed.  

 

4.3 Predictive value of motion during MRI simulator training for scan​ ​success 

Interindividual variability in meanFD of motion tracking during the last 6 minute step of our 

MRI simulator training protocol contributed to the prediction of success rate for the minimum 

first set of multimodal scans (T1w + R-fMRI). This finding underscores the utility of motion 

tracking during MRI simulator training. We note that the motion sensor hardware available in 

our study was not designed to capture subtle motion, thus future studies may benefit from 

improved sensor hardware. Beyond its utility in providing real-time objective feedback 

associated with a motion event, results from motion tracking may guide decisions on further 
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training prior to a MRI scan visit. Although the number of MRI simulator training sessions did 

not robustly predict MRI scan success, we note that by giving children the option to undergo 

additional MRI simulator training, we were able to increase the yield of children successfully 

completing training from 60% in one session to 88% with multiple training sessions. We note 

that a recent study from a small sample of children with ASD showed a greater rate of MRI 

success in children completing a more systematic training versus those completing a less 

structured one ​(Horien et al. 2020)​. Together with our results these observations suggest that 

greater exposure and habituation is helpful and that this should be accounted for when designing 

neuroimaging studies of neurodevelopmental conditions.  

 

4.4 Limitations and considerations for future studies  

The results of this study need to be interpreted in light of several limitations. First, we did not 

include a training comparison condition-group to directly assess the efficacy of the MRI 

simulator protocol. Given the large literature supporting the role of MRI simulator training for 

MRI completion across ages ​(Greene et al. 2018; Barnea-Goraly et al. 2014; Nordahl et al. 2016; 

De Bie et al. 2010; Cox et al. 2017; Carter et al. 2010)​, this was not considered practical, nor 

cost-effective for our larger ongoing neuroimaging study. Second, we did not examine factors 

more directly related to the MRI session that may have played a potential role in MRI collection 

success in our protocol (e.g., number of scans repeated, feedback provided). This was motivated 

by the explicit goal to identify factors that may guide decisions before scheduling a scan session. 

A range of approaches aimed to improve data collection during scans continue to emerge 

(Vanderwal et al. 2015; Dosenbach et al. 2017; Ai et al. 2020; Power et al. 2019)​. Each has 
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strengths and weaknesses and no one is applicable to a range of different scans and populations 

to date, unlike MRI simulator training. For example, FIRMM has been shown to be useful for 

functional MRI data collection ​(Dosenbach et al. 2017)​ however, its efficacy with structural and 

diffusion MRI data is yet to be established. Scans including prospective motion correction have 

been shown promising for structural scans (e.g., T1-weighted) ​(Ai et al. 2020)​. CaseForge has 

been shown to be effective at reducing head motion in small samples of children and two adults 

completing R-fMRI ​(Power et al. 2019; Lynch et al. 2021)​, but not in another sample of adults 

completing task-fMRI ​(Jolly, Sadhukha, and Chang 2020, 2021)​. The role of CaseForge in 

limiting motion for longer multimodal scan sessions including different structural scans is also 

unknown. Passive movie viewing is largely used for structural MRI data collection and is 

increasingly becoming another promising method for functional scan success in challenging 

populations ​(Vanderwal et al. 2015; Eickhoff, Milham, and Vanderwal 2020) ​. Third, because our 

MRI sequence order was quasi-fixed, we could not assess whether a specific MRI modality 

along the sequence may be associated with greater success rate. Thus, it remains unclear if the 

lowest success rate for DTI scans was solely the result of being the last scan in our session or 

other factors associated with this sequence (louder noise, higher table motion, longest duration) 

are involved. Similarly, our third set of scans included two short task fMRI blocks involving a 

relatively simple two-choice matching task selected from the HCP sequence ​(Hariri et al. 2002; 

Barch et al. 2013)​. For these task-fMRI scans, the rate of success among children below nine 

years of age was lower than chance (50%) suggesting that including task-fMRI in a multiscan 

neuroimaging session may not be feasible for younger children with ASD and/or ADHD. Fourth, 

in the statistical analysis, the imbalance of children who passed and failed at each step of the 
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sequence may have limited the predictive power of the models. We mitigated these effects by 

using five-fold cross validation when evaluating performance and by running the model multiple 

times to determine aggregate performance. Finally, as the present study focused on verbally 

fluent children with ASD and/or ADHD with intelligence ranging from borderline to high, future 

studies should assess the unique challenges presented by younger non-verbal or 

minimally-verbal children in both the MRI simulation training and MRI scan. This is particularly 

notable, given that verbal IQ was among the top predictive factors across analyses after age and 

sensorimotor atypicalities. Further, unique challenges also arise in multimodal imaging of 

infants, toddlers and preschoolers younger than five. Promising approaches with natural sleep 

scans or awake scanning ​(Ellis et al. 2020)​ are emerging.  

 

4.5 Conclusions 

In summary, this report provides a first comprehensive assessment of factors predicting success 

rate in multimodal imaging in verbally fluent school-age children with ASD and/or ADHD 

following a systematic MRI simulator training. The methods described and the demonstration of 

the role of age and other clinical features may provide useful insights in designing MRI pediatric 

protocols in school-age children with ASD and/or ADHD. 
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