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Abstract

Pediatric brain imaging holds significant promise for understanding neurodevelopment.
However, the requirement to remain still inside a noisy, enclosed scanner remains a challenge.
Verbal or visual descriptions of the process, and/or practice in MRI simulators are the norm in
preparing children. Yet, the factors predictive of successfully obtaining neuroimaging data
remain unclear. We examined data from 250 children (6-12 years, 197 males) with autism and/or
attention-deficit/hyperactivity disorder. Children completed systematic MRI simulator training
aimed to habituate to the scanner environment and minimize head motion. An MRI session
comprised multiple structural, resting-state, task and diffusion scans. Of the 201 children passing
simulator training and attempting scanning, nearly all (94%) successfully completed the first
structural scan in the sequence, and 88% also completed the following resting state fMRI scan.
The number of successful scans decreased as the sequence progressed. Multivariate analyses
revealed that age was the strongest predictor of successful scans in the session, with younger
children having lower success rates. After age, sensorimotor atypicalities contributed most to
prediction. Results provide insights on factors to consider in designing pediatric brain imaging

protocols.
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1. Introduction

Pediatric brain imaging has made significant advances in non-invasively capturing in vivo the
brain organization in typical and atypical youth using MRI (Oldehinkel et al. 2013; Craddock et
al. 2013; Di Martino et al. 2014). Although promising, progress remains challenged by artifacts,
most notably, head motion. Indeed even submillimeter head motion has been shown to introduce
false findings that can affect between-group analyses and replicability (Yuan et al. 2009; Power
et al. 2012; Satterthwaite et al. 2013; Yan et al. 2013; Yendiki et al. 2014; Zuo et al. 2014;
Alexander et al. 2017; Oldham et al. 2020). Such artifacts are particularly notable for children
with neurodevelopmental conditions, such as autism spectrum disorder (ASD) or attention-
deficit/hyperactivity disorder (ADHD) (Yerys et al. 2009). As a result, continued progress
depends on the need to collect high quality imaging data, which can only be obtained when

children keep their heads virtually motionless when being scanned.

Multiple methods for addressing motion artifacts post-scan exist, but they inevitably limit both
data and sample size, and thus degrees of freedom (Yan et al. 2013; Bright, Tench, and Murphy
2017; Ciric et al. 2017; Satterthwaite et al. 2019; Eklund et al. 2020). As a result, the prevailing
wisdom remains - the best way to handle motion is to prevent it (Ai et al. 2020). In this regard,
efforts to minimize motion during MRI scanning such as passive movie viewing (Vanderwal et
al. 2015), real-time motion monitoring and/or feedback (Dosenbach et al. 2017; Greene et al.
2018; Krause et al. 2019), prospective motion correction (Ai et al. 2020), and head stabilizers
(Power et al. 2019) have been reported to be effective. However, they may not all apply across

the broad range of MRI modalities and specialized sequences, the list of which continues to
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emerge (e.g., fMRI, diffusion MRI, MR spectroscopy, quantitative T1-weighted/T2 mapping,
arterial spin labeling). Solutions that can impact the broad range of brain imaging modalities are
needed, as studies increasingly seek to obtain multiple structural and functional metrics to
support biomarker discovery and/or delineate pathophysiological mechanisms. Similarly, in
clinical settings, multimodal imaging is commonly used to increase diagnostic precision and
guide treatment such as pre-surgical MRI for epilepsy or tumor removals (Jung and Lee 2010).
Additionally, the tolerability and utility of emerging motion prevention approaches during scan
sessions for more challenging populations, such as those with neurodevelopmental conditions,

have yet to be comprehensively established.

To bypass these challenges, preparing children before scanning remains a critical requisite for
pediatric brain imaging. Numerous studies have shown that preparation improves compliance
and reduces anxiety related to the unfamiliar MRI scan environment (Gabrielsen et al. 2018;
Ashmore et al. 2019). Preparation protocols have included showing child friendly books or
videos (Barnea-Goraly et al. 2014), playing with MRI toys (Cavarocchi et al. 2019), immersion
in virtual reality (Ashmore et al. 2019; Garcia-Palacios et al. 2007), or practicing in an MRI
simulator ort “mock scanner”. MRI simulators are widely used and, unlike most other
preparation methods, also allow direct training for motion control. As summarized in Table 1, to
date, 12 studies using MRI scan simulator training have reported their utility in obtaining good
quality data in one or two MRI brain scans collecting different MRI modalities in one session
(Rosenberg et al. 1997; Epstein et al. 2007; De Bie et al. 2010; Barnea-Goraly et al. 2014; Theys,

Wouters, and Ghesquiére 2014; Nordahl et al. 2016; Gabrielsen et al. 2018; Thieba et al. 2018;
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Sandbank and Cascio 2019; Horien et al. 2020; Pua et al. 2020; Yamada et al. 2020). However,
the factors predicting successful completion of multiple scans in a MRI session remain largely
unknown. Understanding the specific role of predictive features can guide the development of
child-specific protocols for MRI data collection as well as MRI simulation training. This will be

particularly relevant for children with neurodevelopmental conditions.

Most studies using MRI simulator training have not characterized their samples in regard to
behavioral, clinical or cognitive features. Of three notable exceptions (Nordahl et al. 2016;
Thieba et al. 2018; Sandbank and Cascio 2019), only one examined the relation between
children’s characteristics and MRI success (Thieba et al. 2018). Specifically, in 20 typically
developing preschoolers children completing three structural MRI scans Thieba and colleagues
found that children with higher language and cognitive skills were more likely to have successful
scans following training (Thieba et al. 2018). Whether these findings extend to a wider age range
and to children with neurodevelopmental conditions remains unexamined. Further, while 62% of
the neuroimaging studies reviewed in Table 1 focused on either ASD or ADHD and/or other
neurodevelopmental conditions, none has examined children with ASD and with ADHD, despite
accumulating evidence of their frequent co-occurrence (Reiersen and Todd 2008; Simonoff et al.
2008; Rommelse et al. 2010; Grzadzinski et al. 2011; Leitner 2014; Kern et al. 2015; Joshi et al.

2017).

With these considerations in mind, here we report our effort to assess the role of a range of

symptom domains in predicting completion of multimodal imaging data in N=250 verbally
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fluent school-age children with ASD and/or ADHD. Besides child characteristics, we also
examined the contribution of MRI simulator training performance. MRI simulator training
protocols have varied in terms of equipment, duration, frequency of the training sessions, as well
as specific objectives. Specifically, while all studies aimed to acclimate children to the MRI
environment by using in-house or commercial MRI simulators, some explicitly included training
to decrease in-scanner motion (Nordahl et al. 2016; Sandbank and Cascio 2019; Horien et al.
2020). Such motion training has been accomplished using verbal or visual feedback following
qualitative direct observation or based on quantitative data from motion sensors. To date, only
three studies used motion sensors to train either typically developing or children with ASD,
albeit in small samples (n=2-19) (Nordahl et al. 2016; Sandbank and Cascio 2019; Horien et al.
2020). Thus, along with the child’s clinical characteristics, the present study assessed to what
degree motion during the simulator training would contribute in predicting successful MRI data

collection.
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Sample Simulation training MRI protocol and outcomes
Author, Y i Age DX 1Q H:a 4 Duration | Repeated | Completion MRI " MRI QC MRI success
uthor, Year| n% | MzSD)E (M£SD)& "::a::(n (min) visits (%) SESSION| - Juantitative) rate
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3 11.242.5 . Y X N Informal: i Y informal vs.
2020 TD (32) Informal: Informal: o fMRI (60") o
113213 15 100% 32% formal
group

Table 1. Overview of MRI simulator training studies in children. @ Number of children
attempting MRI simulator training protocol. ® n=6 pairs of monozygotic twins concordant (3
pairs) or discordant (3 pairs) for ASD. [ Included a sample of 21 children (n=14 with a formal
MRI simulator training, 7 without) and another sample of 16 children (all undergoing a formal
training and used as a replication sample). ¢ Included congenital genetic syndromes, ADHD,
ASD, mild intellectual disability with unknown etiology, other behavioral and developmental
disorders. ¢ Used the Developmental NEuroPSY chological Assessment (NEPSY) (Korkman et
al. 2007) and the Bayley Scales of Infant Development instead of standard 1Q scores (Lennon et
al. 2008). [J Resting-state fMRI (R-fMRI) was also acquired as time permitted but not analyzed.
¢Range is provided for studies not reporting mean (M) and standard deviation (SD) and M and
SD cannot be derived. Abbreviations: ADHD, attention deficit hyperactivity disorder; ASD,
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autism spectrum disorder; DD, developmental disability, DX, diagnosis; IQ, intelligence
quotient, n, number of subjects; N, no; TD, typically developing; Y, yes.

2. Methods

2.1 Participants

We examined data from 250 children aged 5.5 to 11.9 years participating in an ongoing study
(NIH ROIMH105506) of the neurobiological underpinnings of autistic traits in ADHD and/or
ASD. Sample recruitment and characterization are detailed in the Supplementary Methods and in
(Guttentag et al. 2021). During the course of the study, the enrollment and behavioral assessment
site was transferred from the NYU Child Study Center, NYU Grossman School of Medicine, to
the Child Mind Institute (CMI) when the principal investigator (ADM) moved to a new position.
As detailed below, no demographic, nor clinical differences were noted across sites
(Supplementary Table 1); nevertheless potential batch effects were addressed using the Bayesian
method combating batch effects, ComBat (Johnson, Li, and Rabinovic 2006; Fortin et al. 2017).
The study protocol was approved by the institutional review boards of NYU Grossman School of
Medicine, and Advarra, Inc at CMI. Written parent informed consent and verbal assent were
obtained for all participants and written assent was also collected for children older than seven

years. All data were collected prior to the COVID-19 pandemic.

2.2 MRI simulator training protocol

The MRI simulator training session aimed to familiarize participants with the MRI scanning
environment and protocol while training them to minimize head motion in the MRI simulator
environment. To this end, we used an MRI simulator, a Siemens-32-channel mock head coil with

mirror to see a screen on the back of the bore used to project the visual stimuli, a head motion
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tracking system, and the corresponding software package, all acquired from Psychology
Software Tools Inc. (Sharpsburg, PA). The head motion tracking system relied on sensor
hardware based on the Ascension Technology Corporation (now part of Northern Digital Inc.,
Waterloo, ON) Flock of Birds real time motion tracking system. Its accuracy is specified as
1.8mm root-mean-square (RMS) and 0.5° RMS; we confirmed spatial resolution was
approximately 0.77 mm and 0.2° at a sampling rate of approximately 9 Hz. Similar MRI

simulator equipment from the same vendor was used at both enrolling sites.

For all participants, a MRI simulator training session occurred at the first in-person diagnostic
visit. The training consisted of five increasingly demanding steps during which children were
asked to keep their head still. As illustrated in Figure 1, the training protocol began with a review
of two social stories with text and pictures (Gray 2000). The first one described the MRI scan
environment and requirements; the second one described the MRI simulator training. This first
step was followed by the child laying on the bed of the MRI simulator while listening to 30
seconds of scanner gradient noises corresponding to the multimodal MRI sequences used in the
real MRI session. This allowed the child to begin acclimation to the mock scan environment and
scanner noise. Then, participants wore the motion sensor with a band on their forehead, while the
mock Siemens 32 channel head coil and mirror were positioned. Afterwards, when the child
agreed to do so, the table was slowly moved inside the simulator bore. Once inside the MRI
simulator, children practiced controlling head motion for increasing durations of time using
different audio visual stimuli and feedback. Each step was increasingly similar to a real MRI

session by either increasing the time children were asked to stay still (from 2 to 6 minutes),
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and/or by removing the target visual feedback used in response to forehead movements greater
than 1.5mm, the minimum motion detectable by the sensor. During the first and least demanding
step, children completed a target game for two minutes. During that game they were asked to
keep a white dot, representing the position of their forehead, in the center of a target projected on
the screen. During the last two and most realistic steps, children watched a black screen with a
centered white cross, reproducing the stimulus used for the R-fMRI scan in the real MRI session.
The child moved from one step to the next when limited or no motion events > 1.5 mm were
detected in a given task. Otherwise, each step was repeated until motion events > 1.5 mm ceased
or became minimal. Once each of the five steps was completed successfully, a piece of a virtual
puzzle projected in the screen was awarded. Upon completion of the whole virtual puzzle,
children chose a toy from a box of rewards. A complete training session lasted approximately
30-60 minutes, including breaks as needed. If the child was unable to complete the training
protocol in the first session, they were invited back until they successfully completed it. Only
children who successfully completed a full MRI simulator training protocol were invited to a real

MRI session.
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Figure 1. Overview of MRI simulation training protocol. First, the examiner and participant
reviewed two “social stories,” one about the upcoming MRI session, the other about the “mock
scan” training. Second, the child listened to 30-second-long multimodal MRI sounds outside the
MRI simulator. For the 2 and 4 minute steps, the child played the target game inside the
simulator during which children were instructed to keep a white dot (representing the position of
their forehead indexed by the motion tracker) in the green center of the target. Between the two
target game steps, a 2-min musical movie was played, stopping when head motion exceeded
1.5mm. Two 6-minutes blocks of R-fMRI simulations followed.

2.3 MRI protocol

All MRI images were collected at the NYU Center for Brain Imaging on a 3T Siemens Prisma
scanner with the Siemens 32-channel head coil (Siemens, Erlangen, Germany). The study
utilized a multimodal imaging protocol consisting of structural T1-weighted (T1w), T2 weighted
(T2w), functional (rest and task), and diffusion MRI scans (see Box 1 for definition of most used
MRI scanning terms in the manuscript). MRI scan parameters are detailed in Supplementary
Table 2. The MRI session followed the same order of scan administration always starting with a
T1-weighted scan, followed by a set of functional scans alternating rest and task scans, a T2w

and a DTI scan completed the session (Figure 2). Head motion during the structural and diffusion

scans was visually monitored through the operator window and via eye tracker camera

11
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positioned inside the MRI bore. During the functional scans, real time motion monitoring was
also used (see Supplementary Methods). Administering the next scans in the sequence depended
on completing the prior scan without notable motion; as such scans were repeated as needed.
Children unable to complete all or some of the MRI scans in the first session were invited back

for ‘make-up’ sessions, when possible. For consistency, the data analyzed here are based on the

first MRI session.
6:38 6:20 4:39 4:39 4:39 5:57 10:43

Figure 2. Scan sequence. Time is described in minutes:seconds. Moving to the next scan along
the fixed order was dependent on the completion of the prior, scans were repeated as needed. See
Supplementary Methods.

Terminology most used in the manuscript:

e MRI scan: a set of radiofrequency pulses and gradients resulting in a set of
images (e.g., a T1-weighted image, a 4D fMRI time series)

e MRI modality: a group of different specialized sequences that captures
different properties of the brain (e.g., diffusion weighted, functional,

structural)

e MRI session: a single visit to the MRI facility that can include one or more
MRI scans

e MRI scan sequence: the order in which scans are administered in a single
session

Box 1. Definitions for selected terms most used in this report.

12
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2.4 MRI data quality assurance

For data quality assurance (Q/A) of the T1-weighted and T2-weighted structural scans, images
were visually inspected for any motion artifacts or abnormalities, such as blurring, ghosting, or
Gibbs ringing artifacts and marked as passing Q/A by either one of two visual reviewers with
excellent inter-rater (see Supplementary Methods). Rest and task functional images were also
visually inspected for signal dropouts or artifacts and motion was indexed by median framewise
displacement (FD) (Jenkinson et al. 2002). Resting state fMRI scans with a median FD<0.2mm
were considered passing Q/A. For task fMRI scans, a cutoff of median FD<0.4mm was used,
given the relative robustness of task-related fMRI designs (Johnstone et al. 2006; Siegel et al.
2014). Diffusion-weighted images were preprocessed with the DTIPrep software package (Oguz
et al. 2014). As described in Supplementary Methods they were considered passing Q/A if more

than 50% of the gradients collected met our quality criteria.

2.5 MoTrak sensor data preprocessing

The recorded MoTrak sensor data were quantized to match the sensor’s measured resolution of
0.77 mm and 0.2°. Similarly, motion introduced when re-centering the sensor following subject
motion or positional drift was also removed. For each child, the mean FD was calculated from
the motion recorded during the final six minute MRI simulator session and used in statistical
modeling analyses. When comparing recorded motion from those who passed the MRI simulator
protocol versus those who failed, the last available motion recording was used. If a six minute

recording was not available, the longest data section available before that was used.
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2.6 Statistical analysis

Sample characterization. Groups (i.e., ASD vs. ADHD, passing vs. failing MRI simulator
training) were characterized and compared in regard to clinical symptom severity and
demographics using Mann-Whitney U (Mann and Whitney 1947) or chi-squared tests for
continuous and categorical variables, respectively. To correct for multiple comparisons, we used
the Benjamini-Hochberg false discovery rate correction (Benjamini and Hochberg 1995) with an

alpha of 0.05.

Predictive feature selection. We explored the importance of features predicting the ability to
successfully complete a MRI multiscan session among a range of child characteristics and
performance at the MRI simulator training. Training performance features included mean FD of
the final six-minute training step and the number of training sessions needed to pass the MRI
simulator training. Child characteristics included age, intelligence quotient (IQ), and severity
indexes of ASD and ADHD core symptoms, as well as associated psychopathology symptoms.
Given the frequent overlap and co-occurrence of psychiatric symptoms across ASD and ADHD
(Reiersen and Todd 2008; Simonoff et al. 2008; Rommelse et al. 2010; Grzadzinski et al. 2011;
Leitner 2014; Kern et al. 2015; Joshi et al. 2017), we leveraged a range of parent and clinician
based instruments providing continuous measures across groups (see list in Box 2 and
Supplementary Methods). To capture the distinct components involved in the symptom and
cognitive domains of interest, we selected subscale scores. For children for which one or two of
the instruments used to derive the features were missing (n=11 ASD, n=15 ADHD w/o ASD),

missing values were imputed. For imputation, we computed the mean value of the missing
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measure from available data in children matched by both age and diagnosis with those missing
the metric to impute. Children with missing data for more than two instruments were excluded

from these analyses (n=11).

Predicted MRI outcomes. Any given MRI scan completed and passing Q/A was considered
successful (passing). Scans not meeting Q/A criteria, incomplete or not attempted were
considered failing. Task fMRI scans that were not attempted because the child failed the task
practice before the session (n=23, see Supplementary Methods) were considered failing in this
context. A post hoc analysis showed that inclusion of data from these scans did not confound

results (data not shown).

Features examined:

e Age (years) e SEQ Hyposensitivity (raw score)

e Verbal IQ (standard scores) e SEQ Hypersensitivity (raw sore)

e Nonverbal IQ (standard scores) e RBS-R: Stereotypic (raw scores)

e ADOS-2 RRB (calibrated severity e RBS-R: Compulsive (raw scores)
scores; CSS) e RBS-R: Ritual (raw scores)

e ADOS-2 SA (CSS) e RBS-R: Sameness (raw scores)

e SWAN Inattention (average scores) e RBS-R: Restricted (raw scores)

e SWAN Hyperactivity (average e Number of MRI simulator sessions
score) e Amount of motion recorded during the

e CBCL Internalizing (T score) final 6-minute MRI simulator training

e (CBCL Externalizing (T score) session as meanFD (mm)

e SRS-2 Parent (T score)

o SEQ Seeking (raw score)

Box 2. Features examined to predict MRI scan outcomes. Abbreviations: ADHD,
attention-deficit/hyperactivity disorder; ADOS-2, Autism Diagnostic Observation Schedule -
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second edition; ASD, autism spectrum disorder; CSS, calibrated severity scores; CBCL, child
behavior checklist; RBS-R, Repetitive Behaviors Scale — Revised; RRB, restricted and repetitive
behaviors; SEQ, Sensory Experience Questionnaire; SRS-2, Social Responsiveness Scale-second
edition; SWAN, Strengths and Weaknesses of ADHD-symptoms and Normal-behaviors.
Random forest (RF) regression was used to assess which factors influenced the number of scans
a child successfully completed in a given MRI session. Predicted values ranged from zero (not
successfully completing T1w and subsequent scans) to six (successfully completing all scans),
with intermediate values representing completion of T1w plus each of the subsequent scans
along the sequence illustrated in Figure 2. For the purposes of these analyses, the two task-fMRI
scans shown in Figure 2 were combined such that six scans were assessed (whereby failing
reflected failing both scans). The inherent properties of RF, including flexibility regarding input
feature types, lack of overfitting, and associated feature importance methods made it an
appropriate choice for our question. For this report, we used the scikit-learn random forest
implementation (Pedregosa et al. 2011). The RF was trained with default parameters listed in this
manuscript’s GitHub repository along with the full code
(github.com/aksimhal/mri-simulator-analysis); the number of estimators was set to 300 to

increase the performance of the regressor. Results were obtained by training a RF with stratified

five-fold cross validation, repeated 100 times.

Feature importance was calculated using the permutation importance method (Breiman 2001).
Briefly, we recorded a baseline accuracy score for the trained regressor, permuted the values of
each feature, then passed all the test samples back through the RF and recomputed accuracy. The

importance of a given feature was indexed by the difference between the baseline and the new
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accuracy value (Breiman 2001); this is known as the ‘out of bag error’ (OOBE). A feature or a
set of features were selected as important when their OOBE had the largest gap from the

following feature’s OOBE in the model rank.

Naive Bayes classification

To assess what factors contributed to completing a minimal multiscan dataset, we examined the
children who completed our first T1w structural scan and following R-fMRI scan with data
passing Q/A. Because of the imbalanced nature of the dataset (88% of those who attempted both
scans, passed), we used the naive Bayes (NB) classification method, which takes into account
posterior probabilities. The NB classification implementation used was from scikit-learn
(Pedregosa et al. 2011). The NB model was trained using the 20 features listed in Box 2 to
predict whether or not the subject successfully completed both the T-w sequence and the R-fMRI
scan. Results were obtained via five-fold cross validation, repeated 1000 times. Feature
importances were calculated using the same permutation method adapted from (Breiman 2001)

as described above.

3. Results

3.1 Characteristics of the sample

We examined data from 250 children who attempted to complete at least one MRI simulator
training session. As shown in Supplementary Table 3, n=112 (46%) children had a primary
diagnosis of DSM-5 ASD (with or without ADHD comorbidity) and n=138 (55%) had a DSM-5

ADHD primary diagnosis, with or without any other comorbidity but no ASD - here referred as
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ADHD,, ,sp- Characteristics of the sample in regard to demographics and clinical presentations
are in Supplementary Table 1. Briefly, as expected, children with ASD showed significantly
more severe ratings of ASD symptoms relative to those with ADHD,, 5. On the other hand,
and likely due to the high comorbidity rates of ADHD in ASD (45%), ADHD symptom severity
parent ratings did not statistically differ between the two diagnostic groups. Although children
with ASD had higher severity ratings of associated psychopathology, as indexed by the parent
CBCL T scores, this difference did not reach statistical threshold. Notably, full scale and verbal
1Q were significantly lower in ASD, albeit both groups’ averages were in the typical intelligence

range.

3.2 MRI simulator training outcomes

The flowchart in Figure 3A shows the number of children going from attempting at least one
MRI simulator training session to the MRI scan appointment. As shown in the barchart in Figure
3B, 150 children (60%) successfully completed the training in one session. We invited the
remaining 100 children to return for further training, 88 children accepted the invitation. Of
them, 71 (80%) successfully completed the additional MRI simulator training, most on a second
session (see Figure 3B and Table 2) yielding a total of 221 children passing the simulator
training (Figure 3A). Among the 29 (12%) who failed to complete the MRI simulator training,
six declined to enter the MRI simulator; the others attempted one or multiple steps of the
training. All children successfully completing the MRI simulator training were invited to
participate in an MRI session and 201 children attempted it. The average time between the

successfully completed MRI simulator session and the actual MRI appointment was 15+13 days.
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Figure 3. Overview of MRI simulator training and MRI scan outcomes. 4) Flowchart of
participant outcomes. Of the 250 children enrolled in this study, 201 passing the MRI simulator
training attempted the MRI multiscan session. B) Stacked bars show the number of MRI
simulator training sessions needed for children passing the training protocol (blue) vs. those
failing it (orange) among the N=250. Most who passed the training (n=150) did so in one
session. Of the remaining, n=41 passed training after two training sessions, n=20 after three, n=8
after four, and n=2 after five sessions. Among those who failed the training protocol, n=15
children failed after one, n=7 after two, n=3 after three, n=3 after four, and n=1 after five
sessions. C). The stacked bars show the percentage of children who attempted each scan with
passing or failing Q/A (blue and orange, respectively), the gray stacks represented the percentage
of children who did not attempt a given scan along the session. As detailed in the Supplementary
Methods, for the task fMRI runs, 23 (11%) children were unable to complete the practice tasks
outside the scanner and thus were not administered the task fMRI. Information for seven children
regarding task practice was not available and they were counted among those not attempted.
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As detailed in Table 2, Mann-Whitney U comparisons of demographics, clinical characteristics
and MRI simulator training performances of those passing (n=221) and failing (n=29) the MRI
simulator training showed that those who passed were on average older, had a higher verbal and
non-verbal 1Q, and less severe autistic traits. Notably, ADHD symptom severity, indexed by
parent SWAN ratings, did not statistically differ among the two groups. A primary DSM-5

diagnosis of ADHD , ,, was the most frequent among children passing the MRI simulator

training.
Pass Simulator s FDR
. . . Fail Simulator
Variable Training . . _ df corrected
_ Training (n=29) U
(n=221) p
]\/I;a SD Mean SD

Age (years) 8.9 1.7 7.9 1.5 248 24115 0.022
1O standard score | 103 17 95 14 248 2367.5 0.021

Verbal 1Q standard
score 105 17 98 18 248 2329.0 0.021

Nonverbal 1Q standard
score 102 18 95 12 248 2396.5 0.023
ADOS-2 CSS Total | 4.7 23 0.6 2.8 248 2058.0 0.003
ADOS-2 CSS RRB | 4.7 3.1 6.1 3.0 248 2310.5 0.018
ADOS-2CSS SA | 5.2 2.6 6.9 2.2 248 1977.5 0.003
SWAN" Total 1.1 0.8 0.9 0.7 240 2335.0 0.160
SWAN Hyperactivity | 0.98 0.95 0.6 0.8 240 2149.5 0.061
SWAN Inattention | 1.1 0.95 1.1 0.8 240 2697.0 0.495
mED* (mm) 0.1 0.3 0.9 3.2 248 1263.0 9.46e-7
N, (%) N, (%) af X p
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Mock Scan Session 1 (150, 68) 1 (12, 41)
Connts (%, %) 2 (41,19) 2 (9, 31)
’ 3+(30, 13) 3+ (8, 28) 2 10.20 0.03
Male (173, 78) Male (26, 90)
0
Seex (#,%) Female (48,22) |  Female (3, 10) ! 1978 0184
Primars Dac ASD (92, 42), ASD (21, 72),
(#00 %) ADHD w/o | ADHD w/o ASD 1 6.681 0.021
>0 ASD (130, 58) 9, 28)
Inattentive (55,
ADLD . /,;)2) - gatten/tive (5,133),
Presentation yper/Imp (6, 4),) Hyper/Imp (1, 7), 3 2.939 0.495
# %) Combined (88, | Combined (9, 6),
’ 52), OS (0, 0)
0S (21, 12)

Table 2. MRI simulator training outcomes. Group comparisons via Mann-Whitney U and
Chi-square tests for continuous and categorical variables, respectively. All comparisons were
corrected for multiple comparisons via false discovery rate - Benjamini-Hochberg (FDR-BH). ?
12 children (8 passing and 4 failing the MRI simulator training) had missing SWAN parent
scores. Abbreviations: ADHD, attention-deficit/hyperactivity disorder; ADOS-2, Autism
Diagnostic Observation Schedule, second edition; ASD, autism spectrum disorder; CSS,
calibrated severity scores; df, degree of freedom; Dx, diagnosis; mFD, mean framewise
displacement (Jenkinson et al. 2002) data from the MRI simulator session; OS, otherwise
specified; RRB, restricted and repetitive behaviors; SA, social affect; SD, standard deviation;,
SWAN, Strengths and weaknesses of attention-deficit/hyperactivity symptoms and normal
behaviors (average scores).

3.3 MRI scan outcomes

Of the 201 children who passed the MRI simulator training and agreed to attempt the MRI
multimodal session, nearly all (n=188, 94%) were able to successfully (i.e., data collection
passed Q/A) complete at least the first scan in the sequence (T1w). As shown in Figure 3C, the
percentage of children successfully completing additional scans decreased as the scan sequence
progressed. Figure 4 shows the motion indices across the fMRI data collected, as well as the

number of DTI gradients passing Q/A.
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Figure 4. MRI Q/A outcomes. 4) Histograms of the median frame wise displacement of the
subjects who attempted scans. The blue bars represent those who passed and the orange bars
represent those who failed. B) Each plot shows for each gradient direction (represented by a line
in 3D), the percentage of participants (represented by the color of the line) with data of sufficient
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quality as detailed in Supplementary Methods. The plot on the left illustrates the group failing,
the one on the right those passing DTI Q/A (n=30 and n=28, respectively).

3.4 Predictive features of multiple scans in a MRI session

A random forest (RF) regression was used to examine a combination of clinical, demographic,
and mock performance among the 20 features selected (Box 2) that best predicted participants’
degree of successful scan completion (number of completed scans passing). Predicted values
ranged from zero (failed T1w and subsequent scans) to six (passed all scans), with any
intermediate value representing completion of T1w plus each of the subsequent scans along the

sequence described in Figure 2 and in Supplementary Methods.

The mean average error of the trained RF model predicting the number of scans completed was
1.29 scans and the percentage variance explained by the RF model was 17.4%. As shown in
Figure 5A, age was the most important feature predicting the number of scans completed in a
session, as computed via the permutation importance method described above (i.e., the jump
from age to the next feature was 20%). As shown in Figure 5B, children 8.9 + 1.7 years and
older were more likely to successfully complete multiple scans in the MRI session. There was
approximately one year difference between those who completed at least the first three scans (M
+ SD, 9.3 + 2 years) versus those who completed the entire set of scans in the sequence (M = SD,
10.0 = 3 years). Figure 6 provides the success rate by age for the MRI scan expected along our
sequence. The percentage of children below age nine years passing at least the first two scans
(i.e., T1w and R-fMRI) was 78% vs. 92% of those aged nine years and older. The success rate of
those younger than nine years further decreased with more scans required in the sequence,

dropping to 3% for the whole set. A similar pattern was noted for those older than nine years, but
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with different magnitude (e.g, 20% completed the whole session; see Figure 6). Further,
secondary analyses adding diagnostic category labels (ASD and ADHD without ASD) in
addition to the other 20 features as predictors, yielded highly similar results with no noticeable

improvement in classifier performance (Supplementary Figure 1).

Additionally, following age, three features (VIQ, ADOS-2 RRB CSS, and SWAN inattention
scores) clustered together before the next OOBE jump, which was 0.02%. As such, we explored
the distributions of these variables between children failing and passing each MRI scan as a
function of the MRI scan sequence order. As shown in Supplementary Figure 2, children failing
scans on average had notably lower VIQ and more severe RRB ADOS-2 scores. SWAN
inattention scores on average were slightly higher (more severe) in children failing all scans
except T1lw and DTI. This pattern of results was consistent even after regressing out age (data
not shown). Given that the ADOS-2 RRB scores encompass both “lower- and higher-order”
RRB symptoms (Bishop et al. 2013), we explored the pattern of ADOS-2 module 3 items
tapping into ‘lower-order’ RRB (i.e., sensorimotor) separately from the item assessing
“higher-order” RRB (see Supplementary Methods). As shown in Supplementary Figure 3, while
the group passing did not differ in the “higher-order” RRB item score from those failing, notable

differences were evident for “lower-order” RRB, even after controlling for age.
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Figure 5. Overview of the random forest regression results. A) Permutation error (feature
importance) associated with each of the 20 features examined shown as mean OOBE and
standard error across RF-R iterations. B) Group mean and standard errors bars ages for those
who passed (blue) and those who failed (orange) along each of the scans in the MRI sequence.
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Figure 6. Histograms showing MRI outcome by age. Each histogram shows the percentage of
children in each age group who passed or failed Q/A for a given MRI scan in the sequence. The
order in which scans were conducted is shown in Figure 2.

3.5 Predictors of minimum set of multimodal scan success

To assess which factors influenced the ability to successfully complete a minimum set of
multimodal scans (here T1w and R-fMRI scan), a naive Bayes classifier assessed the 20 features
listed in Box 2 to predict the labels “pass” vs. “fail.” The resulting classifier had an average
accuracy of 74.6%, average recall of 86.3%, and average precision of 84.0%. The true positive
rate was 0.729, the true negative rate was 0.017, the false positive rate was 0.138, and the false
negative rate was 0.116. The RBS-R Stereotype subscale score was ranked as the most important
feature, albeit with an out-of-bag-error (OOBE) score of 0.19%, as shown in Figure 7A. The next
most important feature was the 6 minute meanFD measurement from the last MRI simulation
training step with an OOBE score of 0.17%, which was followed by VIQ (OOBE score of
0.14%). Remaining features in the rank had smaller OOBE (<0.10%) and thus were not
considered to be important. When we examined the average distribution of the RBS-R
Stereotype subscale, more severe scores characterized children failing (M+SD, 3.3 + 3.4) versus
those passing (M+SD, 2.6 + 2.7) the minimum set of scans (T1w + R-fMR1), as shown in Figure
7B. Notably, RBS-R subscale scores indexing “higher-order” RRB (Sameness, Restrictive,
Ritual, and Compulsive) were largely associated with negative permutation errors, implying that
they did not contribute to the successful completion of these scans. As shown in Supplementary
Figure 4, while lower VIQ also predicted passing the minimal set of scan success, here, lower
motion at the “mock scan” characterized children passing vs those failing the T1w + R-fMR1 set.

Secondary analyses adding diagnostic categories among the 20 continuous variables included as

27


https://doi.org/10.1101/2021.01.28.428697
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.428697; this version posted January 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

predictors in the naive Bayes classifier, yielded highly similar results to the primary analysis,

with no noticeable improvement in classifier performance (Supplementary Figure 5).
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Figure 7. Overview of naive Bayes-based results. A) The top panel shows the permutation error
(feature importance) associated with each variable examined. As mean and standard error across
the classifier iterations. B) The bottom panel shows the distribution of Repetitive Behaviors
Scale-Revised (RBS-R) Stereotype subscale raw scores as violin plots for those who passed
(blue) and those who failed (orange) to successfully complete the T1w+R-fMRI. Each dot on the
scatter plot indicates a child’s score. The violin plots model the distribution of the scores. The
boxplots show the quartile ranges of the data.
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4. Discussion

We examined factors contributing to the successful collection of multiple scans in a relatively
large sample of verbally-fluent school-age children with ASD and/or ADHD. Although a
substantial number (88%) of participants successfully completed at least the first two MRI scans
in the sequence (T1w + R-fMRI), the success rate decreased with the number of scans collected
in the MRI session. This was inversely related to child age, regardless of diagnosis. Beyond age,
sensorimotor atypicalities indexed by lower-order RRB ratings, verbal cognitive skills, and
pre-scan MRI simulator training performance predicted successful imaging, again, regardless of
diagnosis. Collectively, these findings can inform decision-making regarding scan protocols in

neurodevelopmental conditions, based on expectations regarding quality data yield.

4.1 Age impacts the number of scans completed

Our findings that age is the most important predictive feature of MRI scans success in a session
are consistent with prior studies in typically and atypically developing children (Yerys et al.
2009; Rajagopal et al. 2014), which related higher scan failure rates to younger ages. Those prior
studies examined the impact of age on one or up to three scans in an MRI session. Here, we
extended the scope by examining multiple structural and functional scans in a session. We found
that, across all children, the more scans required to be collected in the session, the higher the
number of scan failures. Notably, the failure rate was higher in children younger than nine years.
For example, the success rate gradually dropped from 95% for the first scan to 20% for the last
and seventh scan required in the sequence in those older than nine years. In contrast, the success

rate decreased from 78% for the first to 3% for the last scan in children younger than nine years.

30


https://paperpile.com/c/9FTgdy/lL6g+2qNA
https://paperpile.com/c/9FTgdy/lL6g+2qNA
https://doi.org/10.1101/2021.01.28.428697
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.428697; this version posted January 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

These results suggest that brain imaging research focusing on school-aged children with ASD
and/or ADHD needs to account for differential age-related attrition, particularly as the number of
scans intended for a session increases. This may require over-recruiting younger individuals to
adjust for greater attrition rate, and/or adjusting the age range targeted, or limiting the number of
MRI sequences obtained in a single session, or considering multiple MRI sessions in the design.
We do not point to a single solution as this may vary as a function of context, resources, and
goals in research or clinical settings where multiple scans and/or multimodal imaging are
increasingly required. An important implication of the present work for the clinical setting is its
demonstration of successful awake imaging for children with ASD and/ or ADHD aged nine and
over. Consistent with prior reports ((Rosenberg et al. 1997; Nordahl et al. 2008; Barnea-Goraly
et al. 2014) our findings support that investing in MRI simulator training may be an alternative to
using sedation for clinical imaging - even in children with neurodevelopmental conditions and

extends this notion to multiple scan sessions.

4.2 Sensorimotor atypicalities impact scan performance

Notably, while age strongly predicted the extent to which children completed multiple scans in
an MRI session, other clinical factors were most important for completing a minimal set of scans
(T1w + R-fMRI). These included the severity of restricted and repetitive behaviors (RRB)
indexed by parent ratings at RBS-R Stereotype subscale, which measure the severity of sensory
and motor RRB (Bodfish et al. 2000; Lam, Bodfish, and Piven 2008). RRB is an umbrella term
that refers to a range of symptoms that can be summarized as ‘higher-order’ behaviors, such as

insistence on sameness, and ‘lower-order’ behaviors, such as hyper- or hypo-sensitivity to
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sensory stimuli, as well as motor stereotypies (Bishop et al. 2013). Our RBS-R results revealing
a predictive role of the Stereotype scale but not for the other subscales, suggest that ‘lower-order’
RRB — i.e, sensorimotor atypicalities - have a greater role than ‘higher-order’ RRB.
Interestingly, after age, ‘lower-order’ RRB, indexed by clinician-based ADOS-2 item scores of
sensorimotor atypicalities, contributed to the top four features predicting the number of scans
completed in a session. The convergence across analyses onto ‘lower-order’ RRB symptoms,
further underscores the role of sensory and motor control processes across children. Although
RRBs are considered core ASD symptoms, they have been increasingly reported in a subsample
of children with ADHD (Martin et al. 2014). This evidence, combined with our findings that
MRI completion was not particularly driven by primary diagnosis, underscores the

transdiagnostic impact of sensorimotor symptoms in MRI outcome prediction.

Given that the RRB ratings found to be predictive included both sensory and motor control
atypicalities, their relative contribution remains somewhat unclear. On one hand, it is plausible
that the sensory experience of being in the MRI scanner (sounds, touch, and visual stimuli)
impact children with greater sensory atypicalities, even after comprehensive MRI simulation
training. If so, studies examining the role of specific sensory modalities may be relevant to
design habituation techniques for school-age children with ASD and/or ADHD. On the other
hand, the observation that parent ratings focusing on sensory processes alone (i.e., SEQ) were
not predictive features, suggests that the combination of both atypical motor and sensory

processes may be more relevant. With this in mind, and given the transdiagnostic nature of our
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findings, other measures of sensorimotor atypicalities may be explored in future studies of

neurodevelopmental conditions.

Looking forward, an increased focus on neurological soft signs (NSS) may provide additional
insight on the predictive role of sensorimotor processes. NSS encompass clinically detectable
poor motor coordination, sensory perceptual difficulties, and involuntary movements. An
emerging literature underscores the role of neurological soft signs as markers of brain immaturity
across multiple psychopathologies (Martins et al. 2008). Indeed, NSS are frequent in both
children with ASD, those with ADHD, and other neurodevelopmental conditions (Patankar et al.
2012; Manouilenko et al. 2013). Our study did not include a measure of NSS, e.g., Physical And
Neurological Examination of Soft Signs (Camp et al. 1977) and to date, the relation between
such a measure and RRB metrics is unknown. Thus, future research examining their unique or

relative contribution predicting MRI success is needed.

4.3 Predictive value of motion during MRI simulator training for scan success
Interindividual variability in meanFD of motion tracking during the last 6 minute step of our
MRI simulator training protocol contributed to the prediction of success rate for the minimum
first set of multimodal scans (T1w + R-fMRI). This finding underscores the utility of motion
tracking during MRI simulator training. We note that the motion sensor hardware available in
our study was not designed to capture subtle motion, thus future studies may benefit from
improved sensor hardware. Beyond its utility in providing real-time objective feedback

associated with a motion event, results from motion tracking may guide decisions on further
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training prior to a MRI scan visit. Although the number of MRI simulator training sessions did
not robustly predict MRI scan success, we note that by giving children the option to undergo
additional MRI simulator training, we were able to increase the yield of children successfully
completing training from 60% in one session to 88% with multiple training sessions. We note
that a recent study from a small sample of children with ASD showed a greater rate of MRI
success in children completing a more systematic training versus those completing a less
structured one (Horien et al. 2020). Together with our results these observations suggest that
greater exposure and habituation is helpful and that this should be accounted for when designing

neuroimaging studies of neurodevelopmental conditions.

4.4 Limitations and considerations for future studies

The results of this study need to be interpreted in light of several limitations. First, we did not
include a training comparison condition-group to directly assess the efficacy of the MRI
simulator protocol. Given the large literature supporting the role of MRI simulator training for
MRI completion across ages (Greene et al. 2018; Barnea-Goraly et al. 2014; Nordahl et al. 2016;
De Bie et al. 2010; Cox et al. 2017; Carter et al. 2010), this was not considered practical, nor
cost-effective for our larger ongoing neuroimaging study. Second, we did not examine factors
more directly related to the MRI session that may have played a potential role in MRI collection
success in our protocol (e.g., number of scans repeated, feedback provided). This was motivated
by the explicit goal to identify factors that may guide decisions before scheduling a scan session.
A range of approaches aimed to improve data collection during scans continue to emerge

(Vanderwal et al. 2015; Dosenbach et al. 2017; Ai et al. 2020; Power et al. 2019). Each has
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strengths and weaknesses and no one is applicable to a range of different scans and populations
to date, unlike MRI simulator training. For example, FIRMM has been shown to be useful for
functional MRI data collection (Dosenbach et al. 2017) however, its efficacy with structural and
diffusion MRI data is yet to be established. Scans including prospective motion correction have
been shown promising for structural scans (e.g., T1-weighted) (Ai et al. 2020). CaseForge has
been shown to be effective at reducing head motion in small samples of children and two adults
completing R-fMRI (Power et al. 2019; Lynch et al. 2021), but not in another sample of adults
completing task-fMRI (Jolly, Sadhukha, and Chang 2020, 2021). The role of CaseForge in
limiting motion for longer multimodal scan sessions including different structural scans is also
unknown. Passive movie viewing is largely used for structural MRI data collection and is
increasingly becoming another promising method for functional scan success in challenging
populations (Vanderwal et al. 2015; Eickhoff, Milham, and Vanderwal 2020). Third, because our
MRI sequence order was quasi-fixed, we could not assess whether a specific MRI modality
along the sequence may be associated with greater success rate. Thus, it remains unclear if the
lowest success rate for DTI scans was solely the result of being the last scan in our session or
other factors associated with this sequence (louder noise, higher table motion, longest duration)
are involved. Similarly, our third set of scans included two short task fMRI blocks involving a
relatively simple two-choice matching task selected from the HCP sequence (Hariri et al. 2002;
Barch et al. 2013). For these task-fMRI scans, the rate of success among children below nine
years of age was lower than chance (50%) suggesting that including task-fMRI in a multiscan
neuroimaging session may not be feasible for younger children with ASD and/or ADHD. Fourth,

in the statistical analysis, the imbalance of children who passed and failed at each step of the
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sequence may have limited the predictive power of the models. We mitigated these effects by
using five-fold cross validation when evaluating performance and by running the model multiple
times to determine aggregate performance. Finally, as the present study focused on verbally
fluent children with ASD and/or ADHD with intelligence ranging from borderline to high, future
studies should assess the unique challenges presented by younger non-verbal or
minimally-verbal children in both the MRI simulation training and MRI scan. This is particularly
notable, given that verbal 1Q was among the top predictive factors across analyses after age and
sensorimotor atypicalities. Further, unique challenges also arise in multimodal imaging of
infants, toddlers and preschoolers younger than five. Promising approaches with natural sleep

scans or awake scanning (Ellis et al. 2020) are emerging.

4.5 Conclusions

In summary, this report provides a first comprehensive assessment of factors predicting success
rate in multimodal imaging in verbally fluent school-age children with ASD and/or ADHD
following a systematic MRI simulator training. The methods described and the demonstration of
the role of age and other clinical features may provide useful insights in designing MRI pediatric

protocols in school-age children with ASD and/or ADHD.
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