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Abstract

To investigate the mechanisms and active components governing the anticancer activity of
rhubarb.The TCMSP database was screened to identify the active components of rhubarb and
Swiss target predictions were generated to predict their cellular targets. TTD and OMIM databases
were used to predict tumor-related target genes. "Cytoscape" was used to construct drug targets.
PPI network analysis, GO enrichment analysis and KEGG pathway analysis of the key targets
were investigated using String and David databases. A total of 33 components and 116
corresponding targets were screened. Amongst them, the key active compounds in rhubarb
included emodin, aloe emodin, B-sitosterol, emodin methyl ether and rhein, which were predicted
to target TP53, AKT1, STAT3, PIK3CA, HRAS, and VEGFA. GO analysis revealed that the
cellular targets clustered into 159 biological processes, including those involved in cellular
composition (n=24) and molecular functions (n=42, P<0.01). KEGG pathway analysis revealed 85
(P <0.01) pathways related to cancer. The active compounds in rhubarb target TP53, AKT1 and
PIK3CA. Rhubarb therefore regulates cancer development through an array of biological

pathways.

Introduction

Cancer is a systemic disease that remains a major threat to human life[1]. The incidence of cancer
continues to rise annually across the globe, with up to 23.91% of malignant tumors now thought to
lead to cancer-related death[2]. The current front-line treatments for cancer include radiotherapy,

surgery and chemotherapy[3]. Despite advances, many anti-cancers drugs lack efficacy and cause

2


https://doi.org/10.1101/2021.01.28.428583
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.428583; this version posted January 28, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

serious adverse reactions[4]. Traditional Chinese medicine has emerged as an alternative
anti-cancer strategy due to its ability to prevent tumor cell DNA synthesis, promote apoptosis,
induce tumor cell differentiation, inhibit tumor cell proliferation and metastasis, and inhibit

angiogenesis[5-6].

Rhubarb originates from the dry root and rhizome of Rheum tanguticum Maxim. Ex BALF.
Rheum officinale Baill or Rheum palmatum L.In TCM, rhubarb has been shown to promote
detoxification, blood homeostasis, reduce diarrhea and prevent solid tumor growth in the
abdomen. For example "Shennong materia medica classic" recorded that: "rhubarb tastes bitter,
has a cold nature, and can be used to maintain blood homeostasis, and prevent addiction and
accumulation"[7-8]. The main chemical constituents of rhubarb include anthracene derivatives,
stilbenes, and tannins[9]. Amongst these components, emodin promotes hepatoma cell apoptosis
and suppresses cell growth[10], whilst Aloe emodin (AE) inhibits the proliferation of an array of
tumor cells[11]. Despite this knowledge, the molecular mechanisms governing the anticancer

activity of rhubarb remain largely undefined.

Network pharmacology uses a systems biology approach to analyze specific signal nodes
within a biological system to identify the cellular targets of drug therapy [12-13]. In this study, the
key targets of rhubarb were investigated via a PPI network and "rhubarb drug component target"
network model. Identified targets were analyzed using GO and KEGG databases to systematically

define the material basis for the anti-cancer activity of rhubarb.

Materials and methods

Screening of the active components of rhubarb

The TCMSP database was used to investigate the relationship between Chinese herbal medicine,
the targets of its components, and disease processes. Each component was evaluated for human
absorption, distribution, metabolism and excretion. To avoid omission of the reported chemical
components of rhubarb, oral bioavailability of the drug components were set to (OB =20%), and
drug similarities were set to (DL =0.1) [14-15]. The chemical structure of rhubarb was retrieved

using the PubChem platform[16].Swiss target predictions were used to identify cellular
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targets[17].

Assessment of disease targets

TTD and OMIM databases were searched for "cancer" and "neoplast” to identify the genes related
to tumor development[18-19]. Retrieved data were merged, duplicates were removed, and the
intersection of the chemical targets was obtained using the Funrich platform[20]. Venn diagrams

were constructed to reveal the key anticancer targets of rthubarb.

Construction of the drug-disease database

Cytoscape3.6.1 was used to define the active components and anticancer targets of rhubarb. Nodes

in the network represent rhubarb components, active ingredients and key target genes.

Construction of the protein-protein interaction network

The String database was used to analyze the key cellular targets of rhubarb. Cytoscape3.6.1 was

used to construct the PPI network. Node colors represent the importance of each target.

Bioinformatics

The David database was used for GO and KEGG pathway analysis (P < 0.01) . GO analysis
included three modules: biological processes, molecular functions and cell composition as key

targets for rhubarb. Prism software and Omicshare software were used for data analysis.

Results

Chemical components of rhubarb

A total of 92 chemical components of rhubarb were obtained. According to the set conditions
(OB>20% and DL>0.1), 33 active substances were identified and numbered, including

anthraquinone, flavonoids and tannins(Table 1).

Tablel The detailed information about candidate compounds of Rheum
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NO Mol ID Molecule Name OB(%) DL
1 MOL002230 (+)-Catechin-pentaacetate 27.58 0.77
2 MOL002235 EUPATIN 50.8 0.41
3 MOL002239 S-acetyl-7-hydroxy-2-methyl-chromone 30.25 0.1
4 5-Carboxy-7-hydroxy-2-methyl-benzopyran-gamm

MOL002240 344 0.11
a-one
5 MOL002243 Anthraglycoside B 27.06 0.8
6 MOL002244 Chrysophanol glucoside 20.06 0.76
7 MOLO003353 Emodin anthrone 24.72 0.21
8 MOL002248 Gallic acid-4-O-(6'-O-galloyl)-glucoside 27.06 0.67
9 MOL002251 Mutatochrome 48.64 0.61
10 MOL002258 Physcion-9-O-beta-D-glucopyranoside qt 20.3 0.3
11 MOL002259 Physciondiglucoside 41.65 0.63
12 MOL002260 Procyanidin B-5,3'-O-gallate 31.99 0.32
13 5-[(Z)-2-(3-hydroxy-4-methoxy-phenyl)vinyl]resor
MOL002262 76.25 0.15
cinol
14 MOL002268 Rhein 47.07 0.28
15 MOL002270 Rheinoside A_qt 26.28 0.75
16 (9S)-9-[(9R)-2-carboxy-4,5-dihydroxy-10-0x0-9H-
MOL002274 anthracen-9-yl]-4,5-dihydroxy-10-oxo-9H-anthrac 27.75 0.57

ene-2-carboxylic acid

17 MOL002276 Sennoside E_qt 50.69 0.61
18 MOL002280 Torachrysone-8-O-beta-D-(6'-oxayl)-glucoside 43.02 0.74
19 MOL002281 Toralactone 46.46 0.24
20 MOL002284 PIT 72.29 0.13
21 MOL002288 Emodin-1-O-beta-D-glucopyranoside 4481 0.8
22 MOL002293 Sennoside D_qt 61.06 0.61
23 MOL002294 Strumaroside 20.78 0.67
24 MOL002296 Daucosterol 20.18 0.69


https://doi.org/10.1101/2021.01.28.428583
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.428583; this version posted January 28, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

25 MOL002297 Daucosterol_qt 35.89 0.7
26 MOL002298 Aloeemodin 20.65 0.24
27 MOL002303 palmidin A 32.45 0.65
28 MOLO000358 beta-sitosterol 36.91 0.75
29 MOL000471 aloe-emodin 83.38 0.24
30 MOL000472 Emodin 24.4 0.24
31 MOL000476 Physcion 22.29 0.27
32 MOLO000554 gallic acid-3-O-(6'-O-galloyl)-glucoside 30.25 0.67
33 MOL000096 (-)-catechin 49.68 0.24

Screening of cellular targets

The target genes of the 33 active substances were screened in the Swiss Target Prediction
database, revealing 398 genes using Homo sapiens as the search term. A total of 1018 tumor
targets were then screened using the TTD and OMIM platform. Target genes were matched using
the Funrich platform and Venn maps were constructed. These analyses 116 genes that were related
to the targets of cancer treatment, including Aurka (Aurora kinase A-Interacting protein) (m230),
HDAC6 (histone deacetylase 6) (m231), and VEGFR1 (vascular endothelial growth factor

receptor 1(232)(Fig 1).

PPI network

The PPI network included 103 nodes, including 1 medicinal material node, 17 compound nodes
and 85 target nodes. The top five compounds were emodin anthrone, eupatin, physcion, catechin
pentaacetate and palmidin with occurrences of 25, 29, 21, 16 and 36, respectively. Analysis the
perspective of targets revealed Topl, Adora3, Met, Adora2b and EGFR as the top 5 targets, with

degree values of 7, 7, 6, 6 and 6(Fig 2).

Network modules
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Key genes were imported in the String database for analysis. The network results showed revealed
101 nodes (action targets), with an average connectivity value of 10.752. The color of each node
represents the importance of the target. The top 10 target genes were TP53, AKT1, STAT3,
PIK3CA, HRAS, VEGFA, SRC, hsp90aal, EGFR, pik3cb, with degree values of 46, 40, 39, 37,

36, 33, 33, 32, 29 and 22, respectively(Fig 3).

Go and KEGG pathway analysis of the target genes

Go analysis showed that the target genes were enriched in 159 biological processes (BP) including
the positive regulation of cell migration, protein phosphorylation and cell proliferation(Fig 4); 24
were enriched in cell composition (CC), including the plasma membrane, cytosol, nucleoplasm
(Fig 5); and 42 were enriched in molecular functions (MF)(Fig 6); including ATP binding, protein
binding, and enzyme binding. KEGG pathway analysis showed that the target genes were enriched
in 89 cancer-related pathways, including Pathways in cancer, endometrial cancer, Small cell lung
cancer, Non-small cell lung cancer, pancreatic cancer, Colorectal cancer, Bladder cancer, Prostate

cancer, and Thyroid cancer(Fig 7).

Discussion

In this study, we show that anthraquinones, stilbenes and tannins form the active anticancer
components of rhubarb. Emodin can suppress the growth of pancreatic cancer cells and reduce the
expression of macrophage migration inhibitory factor, thereby promoting tumor cell apoptosis.
Aloe emodin can inhibit the growth of mouse cervical cancer Ul4 cell transplantation
tumors[21-22], inhibit the proliferation of CNE2 cells, and suppress the growth of the human
malignant melanoma cell line A375[23]. PB-sitosterol can inhibit the proliferation and
differentiation of H22 transplanted tumors[24-25]. Eodin methyl inhibits the growth of colorectal
and pancreatic cancer cells[26]. Emodin methyl ether can reduce the survival rates of pancreatic
and breast cancer cells by suppressing the expression of cyclin D1, cyclin A, CDK4, CDK2 and
c-myc[27] .Rhein also prevents breast cancer development[28]. Analysis of the datasets revealed
Topl, adora3, met, adora2b and EGFR as the five key targets of rhubarb. Met regulates the

proliferation, survival, angiogenesis, invasion and metastasis of a variety of tumors. Abnormal
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Met expression promotes drug resistance and treatment failure[29]. EGFR activation regulates
MAPK and PI3K/Akt signaling, promoting cell proliferation and differentiation. The mutation and
abnormal expression of EGFR is related to the progression of non-small cell lung cancer
(NSCLC), head and neck tumors, and genitourinary cancer[30]. These results suggest that rhubarb

exerts its anti-tumor effects through multiple-components and cellular targets.

We identified 116 cellular targets of rhubarb through mapping the targets of the active
ingredients with known tumorigenic host factors. Further analysis of the protein-protein
interaction networks of the target genes showed that TP53, AKT1, STAT3, PIK3CA, HRAS,
VEGFA, SRC, hsp90aal and EGFR play an important role in the network. Amongst the targets,
the most frequent mutations in human tumor tissue occurred in TP53. Wild type p33 is a sequence
specific transcription factor that is activated in response to DNA damage, carcinogenic signal
transduction, and nutrient depletion. Active p53 promotes cell senescence, cell death, aging, and
metabolic changes[31] .Mutations in p53 lead to a loss of tumor suppression, leading to oncogene
activity, cell proliferation, invasion, metastasis and chemotherapy resistance, most notably in
epithelial ovarian tumors[32] .Mutant p53 promotes the malignant progression of ovarian cancer
by regulating the expression of tumor promoting genes such as TMEFF1[33-34]. In recent years,
cell stimulating and regulatory factors have been shown to inhibit malignant progression by
inhibiting the MDM2-p53 feedback loop. The ribosomal proteins RPS- MDM?2 are a newly
discovered axis that influence p53 activity[35]. RPS inhibits the E3 ubiquitinase activity of
MDM2, thereby stabilizing p53[36] .To-date, 16 ribosomal proteins (RPS) have been shown to
interact with MDM?2 to activate p53. Amongst them, rplS and rpl11 are the most important sensors
and effectors of ribosome stimulation. The Rps-mdm2-p53 axis therefore effectively prevents

uncontrolled cell growth due to abnormal carcinogenic activity[37-38].

The human EGFR gene is located in the 7p12-14 region of the short arm of chromosome 7,
consisting of 28 exons. EGFR is a transmembrane protein composed of 1210 amino acids. The
extracellular domain mediates ligand-binding which activates the intracellular kinase
domain[39] .EGFR mutations are frequently observed in Asian women with adenocarcinoma who
lack a history of smoking[40-41]. The most common mutations are the deletion of exon 19 (del19)
and a point mutation within exon 21 (L858R) which accounts for ~90% of all
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polymorphisms[42].When EGFR binds to the epidermal growth factor (EGF), receptor
dimerization results in the activation of the tyrosine kinase domain[43], and phosphorylated
tyrosine residues recruit downstream adaptor proteins to activate specific signaling pathways,
including PI3K-Akt, Ras-Raf-MEPK-ERK, and STAT family members, resulting in cell growth
and differentiation. The inhibition of angiogenesis can suppress the growth, invasion, and
metastasis of lung cancer cells, particularly NSCLC[44]. An array of cancer cells overexpress
EGFR, highlighting its importance as an anticancer target. Advanced NSCLC patients with

EGFR/TP53 co-mutations also respond poorly to TKI therapy[45-47].

The PI3K/Akt axis regulates malignant proliferation, metastasis, angiogenesis and
chemoradiotherapy. This pathway represents one of the three major cell signaling axis that
regulate IL-6 and its biological functions. PI3K/Akt signaling prevents the initiation of
programmed cell death, promotes tumor cell invasion, and induces the production of HIF-1a and

VEGF, thereby promoting tumor angiogenesis[48-50].

HRAS is one of the three members of ras gene family[51]. The mutation and activation of
Ras weakens its ability to bind to guanosine diphosphate (GDP). Mutated Ras binds guanosine
triphosphate (GTP) and self-activates in the absence of external growth signals. GTPase activity
can reduce Ras activity by enhancing the dissociation of Ras and GTP. Continuous Ras activation
promotes PLC activity, leading to uncontrolled cell proliferation[52]. The carcinogenic effects of
HRAS manifest through protein modifications and enhanced expression[53-55]. The HRAS T81C
polymorphism does not alter the amino acid sequence of Ras, but induces its overexpression,

thereby influencing cancer susceptibility[56].

Tumor cells directly or indirectly recruit host cells and secrete a variety of angiogenesis
promoting factors, amongst which vascular endothelial growth factor (VEGF) is a key
mediator[57] .The relative molecular weight of VEGF is ~34-45KD with seven related gene
families described, including VEGFA, VEGFB, VEGFC, VEGFC, VEGVEE, VEGGF and
placental growth factor (PIGF). Amongst them, VEGFA is most abundant in tissues and cells and
plays an important role in angiogenesis. VEGFA (sometimes referred to as BEGF)[58], can bind
to the vascular endothelial cell receptor (VEGFR), to induce the proliferation, survival and
migration of endothelial cells, thereby mediating angiogenesis[59]. It has been reported that Berna

is closely related to the growth and metastasis of cancers[60].
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SRC is a ~60kD phosphorylated protein encoded by the proto-oncogene c-Src, which is the
first cancer protein with tyrosine protein kinase activity[61] .As a non-receptor tyrosine kinase,
SRC widely participates in tumorigenesis and development through the regulation of tumor cell
proliferation, differentiation, migration, invasion and angiogenesis[62] .Activated SRC stimulates
STAT3 through a JAK-independent pathway in hepatoma cells[63]. Activated SRC also enhances
the transcription of hepatocyte growth factor gene. SRC induces STAT3 phosphorylation to
enhance its affinity to DNA, synergistically enhancing the activity of the HCF promoter to
enhance HCF transcription[64-65]. Rhubarb inhibits STAT3 signaling both in vitro and in vivo,

inhibiting cancer cell proliferation, migration, invasion, and angiogenesis[66].

Heat shock protein 90 (Hsp90) is a highly conserved protein chaperone in eukaryotes[67-68].
A variety of Hsp90 subtypes exist, including Hsp90a and Hsp90p, endoplasmic reticulum GRP94
protein, and the mitochondrial protein TRAP1[69]. Hsp90ais encoded by the Asp90aal gene.
Human /Asp90aal is encoded by a complementary chain on chromosome 14q32.33. As a tumor
promoter, Hsp90 interacts with a variety of oncogenic proteins and participates in malignant
transformation and tumor development[70-71]. Up to 115 mutations in the open reading frame of
hsp90aal have been identified through next-generation-sequencing of tumor tissue and cell lines.
However, the effects of these mutations on the function of Asp90aal require clarification.
Homozygous deletions of the Asp90aal gene in tumor tissue lead to a lower occurrence of
malignancy. Clinical studies have shown the association of Asp90aal with a poor prognosis in 206
patients with gastric cancer[72]. Conversely, Hsp90aal deletions can be used as a biomarker for a
favorable prognosis in biopsy specimens of tumor tissue[73-74]. The biological functions of
Hsp90a and Hsp90B differ. Unlike Hsp90B, Hsp90a plays a role in wound repair and
inflammation in tumor cells, influencing their migratory and extravasation phenotypes[75]. Recent
studies on prostate cancer have shown that extracellular Hsp90o promotes chronic inflammation
in tumor associated fibroblasts. Changes in the extracellular environment of malignant tumors can
also promote the malignant progression of prostate cancer[76].Extracellular Hsp90a induces
inflammation through the activation of NF-kB and STAT3 transcription. NF-KB also induces the
expression of Hsp90a[77]. Exocrine Hsp90a stimulates fibroblasts to secrete intracellular Hsp90a
through an autocrine and paracrine feedback loop, leading to the generation of an inflammatory

storm around malignant tumor cells. These features may explain the correlation between Hsp90a
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expression and malignancy, which requires investigation in future studies[78].

We found that TP53, AKT1, STAT3, PIK3CA, HRAS, VEGFA, SRC, hsp90aal and EGFR
were related to the malignant behavior of tumor cells in both stressed and non-stressed states. We
systematically analyzed the antitumor effects of rhubarb, and identified key roles for emodin, aloe
emodin, B-sitosterol, and emodin methyl ether in NSCLC, prostate cancer, pancreatic cancer, and
endometrial cancer. We further identified TP53, AKT1, HRAS and EGFR as the cellular targets of
these rhubarb constituents. Some limitations should be noted including incomplete data collection.

These findings do however provide a basis for future studies on the anticancer activity of rhubarb.
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