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Abstract

Work in computational psychiatry suggests that mood disorders may stem from aberrant
reinforcement learning processes. Specifically, it is proposed that depressed individuals believe
that negative events are more informative than positive events, resulting in faster learning from
negative outcomes (Pulcu & Browning, 2019). In this proof-of-concept study, we investigated
whether learning rates for affective outcomes are malleable using transcranial direct current
stimulation (tDCS). Healthy adults completed an established reinforcement learning task
(Pulcu & Browning, 2017) in which the information content of reward and loss outcomes was
manipulated by varying the volatility of stimulus-outcome associations. Learning rates on the
tasks were quantified using computational models. Stimulation over dorsolateral prefrontal
cortex (DLPFC) but not motor cortex (M1) specifically increased learning rates for reward
outcomes. The effects of prefrontal tDCS were cognitive state-dependent: online stimulation
increased learning rates for wins; offline stimulation decreased both win and loss learning rates.
A replication study confirmed the key finding that online tDCS to DLPFC specifically
increased learning rates for rewards relative to losses. Taken together, these findings
demonstrate the potential of tDCS for modulating computational parameters of reinforcement

learning relevant to mood disorders.

Significance statement

Disproportionate learning from negative relative to positive outcomes has been implicated in
the development and maintenance of depression. The present work demonstrates that
transcranial direct current stimulation (tDCS) to dorsolateral prefrontal cortex can specifically
increase learning from positive events in healthy adults. Our results provide preliminary
evidence that non-invasive brain stimulation can be used to shape reinforcement learning,
indicating a potential novel cognitive neurostimulation intervention strategy for affective

disorders.
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Introduction

The ability to learn from our experiences is central to adaptive decision making. Computational
accounts of reinforcement learning posit that optimal learners should determine which events
are most informative and weight these accordingly when making choices (MacKay, 2003;
Behrens et al., 2007; Nassar et al., 2012; Browning et al., 2015). The information content of an
event depends in part on the volatility of the association being learned. When action-outcome
contingencies change frequently, each new observation is relatively informative about the
current state of the association. Predictions should therefore be updated more rapidly for
volatile than stable associations (Pulcu & Browning, 2019). In keeping with this theory, healthy
adults flexibly adapt their learning rates to match the volatility of the environment (Behrens et
al., 2007; Nassar et al., 2012; Browning et al., 2015). Moreover, humans can maintain separate
estimates for the information content of positive and negative events (Pulcu & Browning,
2017).

An emerging line of computational research suggests that aberrant tracking of these statistical
properties could form a core mechanism underpinning affective disorders (Browning et al.,
2015; Pulcu & Browning, 2019). Building on preclinical work, it is proposed that depression
may stem from a tendency to overestimate the information content of negative relative to
positive events (Pulcu & Browning, 2019). This could in turn lead to a negative cognitive bias,
which has been causally linked to depression (Mathews & MacLeod, 2005; Eshel & Roiser,
2010). Behaviourally, distorted estimates of information content may reduce an individual’s
ability to select actions associated with beneficial outcomes, thereby creating progressively
poorer environments. As an illustrative example, a belief that negative events are highly
informative may cause an individual to pay more attention to criticism than praise at work. As
well as impairing mood and self-confidence, this belief is likely to increase the influence of
negative feedback on a person’s decision to pursue or give up on a potentially fruitful project.
From this perspective, rebalancing learning from rewarding versus aversive outcomes could be
a promising novel approach to ameliorating negative cognitive biases that causally maintain

symptoms of depression.

Depression is consistently linked with hypoactivity of the left dorsolateral prefrontal cortex
(DLPFC) and concurrent hyperactivity of the right DLPFC (Grimm et al., 2008; Koenigs &
Grafman, 2009; Disner et al., 2011). DLPFC also forms part of distributed reward learning
circuitry (Haber & Knutson, 2010; Lee et al., 2012) with recent reports pointing to a role in

tracking the volatility of reward outcomes (Massi et al., 2018; Farahashi et al., 2019). Hence,
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modulating activity in DLPFC could influence both the neural and cognitive mechanisms
underlying depression. Previously, clinical trials have demonstrated that transcranial direct
current stimulation (tDCS) over bilateral DLPFC induces positive but small effects on
depressive symptoms (Brunoni et al., 2016; Shiozawa et al., 2014). In these trials,
neurostimulation is typically administered while the patient is at rest. However, tDCS applied
during learning has been shown to strengthen memory for what is being learned - thought to
be caused by stabilization of synapses undergoing activity-dependent long-term potentiation
(Reis et al., 2009; Fritsch et al., 2010; O’Shea et al., 2017). Hence, the functional impact (and
therapeutic potential) of tDCS could be enhanced by stimulating while simultaneously

engaging and reshaping learning processes that underpin negative affective biases.

Here we performed a proof-of-concept test of this hypothesis via a series of experiments in
healthy adults. We predicted that tDCS over DLPFC would increase reward learning rates
compared with sham tDCS. We further predicted that this effect would be cognitive-state
specific, induced by tDCS during learning but not by tDCS applied before learning. Finally,
we hypothesized that tDCS effects would be anatomically specific, with stimulation to
prefrontal but not motor cortex (M1) selectively increasing reward learning rates. To measure
reward and loss learning rates we used an established reinforcement learning paradigm in
which volatility of stimulus-outcome associations is varied across blocks (Browning et al.,
2015; Pulcu & Browning, 2017; Pulcu et al., 2019). This task enabled us to test for potential
valence- and volatility-specific effects of stimulation. We applied tDCS bilaterally over
DLPFC with a single dose of the stimulation montage and protocol commonly used in

depression treatment trials.

Methods and Materials

Participants

Eighty healthy native English-speaking adults (45 female, mean age = 24.71, SD + 5.08) were
recruited from the community via local advertisements for four independent studies. Exclusion
criteria were left-handedness, a history of psychiatric disorders, neurological illness, use of
psychoactive medication, personal or family history of epileptic fits or seizures, and any other
contraindications to tDCS. The experimental protocol was approved by the University of
Oxford Central University Ethics Committee (RE48995/RE002) and all participants gave
written informed consent prior to the study. Demographic details of the participants are

provided in Table 1.
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Table 1. Mean (SD) baseline characteristics by tDCS group

Study 1 Study 2 Study 3 Study 4
Online DLPFC Offline DLPFC M1 Replication
(n=20) (n=20) (n=20) (n=20)
Sociodemographic
data
Female (%) 9 (45.0) 15 (75.0) 14 (70.0) 7 (35.0)
Age, years 25.0 (4.3) 25.2 (5.8) 24.6 (6.4) 24.2 (3.6)
Clinical measures
STAI-Trait 37.5(8.9) 38.4(7.9) 32.6(8.7) 35.6 (5.9)
BDI 5.1(5.2) 5.6 (8.0) 3.1(3.4) 4.0(3.8)

BDI = Beck Depression Inventory-Il, score range = 0-63. STAI-Trait = State-Trait Anxiety Inventory, trait
form, score range = 20-80.

Study overview and experimental design

Participants took part in one of four stimulation studies, each consisting of two tDCS and
reward learning sessions. All participants underwent both active and sham tDCS sessions in a
cross-over, double-blind design. Stimulation order was counterbalanced in all groups and
sessions were scheduled at least one week apart to minimise carryover effects of repeated
learning and/or tDCS. In Study 1, tDCS was applied to DLPFC during task performance to test
for the predicted increase in reward learning. In Study 2, tDCS was applied to DLPFC prior to
task performance to determine the cognitive state dependence of the DLPFC stimulation effect.
In Study 3, online tDCS was delivered over primary motor cortex (M1) to assess the anatomical
specificity of the stimulation effects. Study 4 aimed to replicate the findings of Study 1 to

evaluate the consistency of behavioural changes induced by online prefrontal tDCS.

Questionnaires

Symptoms of depression and anxiety (see Table 1) were assessed at baseline with the Beck
Depression Inventory-11 (BDI) (Beck et al., 1996) and the Trait subscale of the State-Trait
Anxiety Inventory (STAI-Trait) (Spielberger et al., 1983). Higher scores on these tasks indicate
greater symptoms of depression and anxiety, respectively. For the BDI, cut-off scores
suggested by Beck and colleagues (1996) are 0-13 for no or minimal depression, 14-19 for mild
depression, 20-80 for moderate depression, and 29-63 for severe depression. The STAI-Trait
was not designed for clinical diagnosis, and therefore has no formal cut-off points. To monitor
potential changes in acute mood and anxiety across the tDCS sessions, participants completed
the Positive and Negative Affect Scales (PANAS) (Watson et al., 1988) and the State-Trait
Anxiety Inventory (STAI-State) (Spielberger et al., 1983) immediately before and after
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completion of the cognitive task (see Information Bias Learning Task (IBLT) below). All

scores and analyses of the PANAS and STAI-State are reported in the Extended Data.

Information Bias Learning Task (IBLT)

The Information Bias Learning Task (IBLT) is a computerised reinforcement learning
paradigm which has been described in detail previously (Browning et al., 2015; Pulcu &
Browning, 2017; Pulcu et al., 2019). The IBLT was presented on a laptop computer using
Presentation® software (Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com).
On every trial, a fixation cross in the centre of the screen was flanked by two abstract shapes
(letters selected from the Agathodaimon font). Participants were asked to choose the shape they
believed would result in the best outcome via a button press, after which a win (+10p) and a
loss (-10p) outcome appeared in randomised order above or below the shapes. Participants’
accumulated total winnings were displayed under the fixation cross and updated at the
beginning of the subsequent trial. The win and loss outcomes were independent, such that a
specific shape could be associated with one, both, or neither of the outcomes. Participants
therefore had to form separate predictions for the likelihood of the win and the loss appearing

over a specific shape, and select the optimal choice based on those estimates.

Participants completed six task blocks of 80 trials each, with a fixed 30-second rest period
between blocks. The same two shapes were used within a task block, and different shapes were
used across task blocks. The volatility of shape-outcome contingencies was varied across task
blocks to manipulate the relative information content of the win and loss outcomes (see Figure
1). During volatile (i.e., informative) task periods, the association of an outcome with shape
‘A’ reversed between 20% and 80% every 14 to 30 trials. During stable (i.e., uninformative)
task periods, the association of an outcome with shape ‘A’ remained constant at 50%. The
probability of an outcome appearing over shape ‘B’ is calculated as 1 — shape ‘A’. In blocks 1
and 6, both the win and loss outcome associations were volatile. The aim of these ‘Both-
volatile’ blocks was to measure the extent to which participants preferentially learned from
equally informative positive and negative outcomes. In blocks 2-5, one outcome was volatile
whereas the other remained stable. These blocks, in which only win or only loss outcomes were
highly volatile, will be referred to as ‘Win-volatile’ and ‘Loss-volatile’ blocks, respectively.
The Win- and Loss-volatile blocks enabled us to simultaneously test for potential specific
effects of tDCS on learning for outcomes of different valences (positive vs. negative) and levels

of information content (informative vs. uninformative). Win- and Loss-volatile blocks were
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alternated, with order of presentation (i.e., Win-volatile or Loss-volatile block first) being

counterbalanced across participants in each group (see Figure 2.A).

In all tDCS studies, block 1 was completed prior to stimulation to provide a baseline measure
of learning rates for win and loss outcomes. As win and loss outcomes were equally informative
in this block, the learning rates provide an indication of potential learning bias prior to
stimulation. In the online tDCS studies (Study 1, 3, and 4), stimulation was applied during
IBLT blocks 2 and 3, with blocks 4-6 carried out after tDCS (see Figure 2.A). Blocks 4 and 5
served to test for potential sustained effects post-stimulation. Block 6 (‘Both-volatile’) was
used to measure potential changes in learning bias by the end of the task compared with at
baseline in Block 1. In the offline tDCS study (Study 2), tDCS was applied first, while
participants sat at rest, followed by task blocks 2-6 (see Figure 2.B). The goal of the study was
to test if prefrontal stimulation during the task specifically increased learning from positive

outcomes. This would manifest as a selective increase in learning rates for wins.
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Figure 1. (A) Schematic representation of a trial on the Information Bias Learning Task (IBLT; Pulcu &
Browning, 2017). After showing the fixation cross and total amount of money won, two abstract

shapes are presented on either side of the cross. Once the participant has chosen one of the shapes
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via a button press, a black frame appears around that shape and a win and loss outcome appear
successively in randomised order. A win outcome leads to an increase of 10p, whereas a loss outcome
represents a decrease of 10p from the total amount of money won. The total amount of money is
updated at the start of the next trial. The aim of the task is to maximise earnings by learning the
probabilities of the win and the loss appearing over the respective shapes. (B) The four possible
outcomes on a task trial. The win and the loss outcomes are independently associated with one of the
shapes, allowing for a shape to be associated with one, both, or neither of the outcomes at a given
time. (C) Volatility of the win (green) and loss (red) outcomes across blocks of the Information Bias
Learning Task (IBLT). Volatility for the two outcomes is manipulated independently across task blocks,
either switching between 20% and 80% choice-outcome associations or remaining stable at 50%
choice-outcome associations. If both wins and losses are volatile, participants should rapidly update
their predictions for both types of outcomes (i.e., have a high learning rate). In the ‘Win-volatile’ blocks
participants should adopt a high learning rate for wins and a low learning rate for losses, whereas the

opposite approach should be taken in the ‘Loss-volatile’ blocks.

A 20 min
| Online tDCS
Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
Both-volatile ’ Win-volatile Loss-volatile Win-volatile Loss-volatile Both-volatile l
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> Total time (min)
0 40
B
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Figure 2. (A) Structure and timeline of the online tDCS paradigm (Study 1, 3, and 4). Participants
complete six blocks of the IBLT. The task starts and ends with a ‘Both-volatile’ block in which win and

loss outcomes are equally informative. The participants are then presented with two ‘Win-volatile’
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and two ‘Loss-volatile’ blocks, with block type order counterbalanced across participants. tDCS was
applied during Blocks 2-3 of the IBLT. (B) Study 2 structure and timeline, in which DLPFC tDCS was
applied offline prior to Blocks 2-6 of the Information Bias Learning Task (IBLT). (C) Simulation of the
electric field induced in the brain by the bilateral prefrontal tDCS montage, with the anodal electrode
(yellow) over the left DLPFC (F3) and the cathode (blue) over the right DLPFC (F4). (D) Simulation of
the electric field induced in the brain by the bilateral motor cortex tDCS montage, with the anodal

electrode (yellow) over left M1 and the cathode (blue) over right M1.

tDCS protocol and current distribution

Stimulation was delivered using a battery-powered device (Eldith DC-Stimulator-Plus,
Neuroconn, Germany). Two rubber electrodes (5 x 5 cm) were placed in saline-soaked sponges
and attached to the scalp using rubber bands. For prefrontal stimulation the anodal electrode
was placed over the left DLPFC while the cathodal electrode was placed over the right DLPFC
(F3 and F4, respectively, according to the 10/20 system of electrode placement). For bilateral
stimulation of M1, the anode was centred over the hand area of left primary motor cortex, 5
cm lateral to the vertex, and the cathode over the homologous region of the right hemisphere.
In the active tDCS conditions, stimulation was delivered at 2 mA for 20 minutes, with 10s
ramping-up and ramping-down. In the sham tDCS conditions, participants received 30s of
direct current followed by impedance control with a small current pulse being produced every
550 ms (110 pA over 15 ms), resulting in an instantaneous current of no more than 2 pA.
Double-blinding was implemented through the use of a study mode on the tDCS device.
SimNIBS (Thielscher et al., 2015) and Gmsh software (Geuzaine & Remacle, 2009) were used
to visualize the spatial distribution of the electrical field induced in the brain by the DLPFC
and M1 tDCS electrode montages (see Figure 2 C. and 2.D).

Computational modelling

In line with previous studies utilising the IBLT (Pulcu et al., 2019) we analysed choice
behaviour with a model in which a Rescorla-Wagner learning rule (Rescorla & Wagner, 1972)
was coupled to a softmax function. The model calculates the probability estimates for the win

(rwin) and loss (rloss) outcomes being associated with shape ‘A’ on the next trial (i+1):
TWIN(j4q) = TWING) + QWIN * €y 1)
rloss(y1) = rlossgy + aloss x €455(;)

in which awin and aloss representing the learning rates (value between 0 and 1), and &wingyand

Soss(i) represent the prediction error for the win and loss outcomes on the i trial, respectively.
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rwin and rloss were initialised at 0.5 at the start of each block. Estimated outcome probabilities

were then transformed into a single choice probability:

1
(—B*(rwin(i)+t—rloss(i))) (2)

P (choice=a(i)) = P
Here, Pchoice=A()) is the probability of choosing shape ‘A’ in trial i. /S represents the inverse
decision temperature, or the degree to which the expected values are used to determine choice
for a particular shape. Finally, t reflects a potential bias towards one of the options over the
other. Learning rates and f-values were estimated separately for each task block and
participant. This was achieved by calculating the full joint posterior probability of the
parameters given participants’ choices, deriving the expected value of each parameter from
their marginalised probability distributions. The first 10 trials of each block were omitted when
fitting the model parameters to participants’ choices, as initial learning rates without prior
knowledge were expected to differ from informed learning rates in later trials of the task. The
choice of this model was based on a formal comparison using Bayesian information criterion
(BIC) values for five competitor models (see Extended Data). Models were implemented using
MATLAB version R2018a (The MathWorks, Inc., Natick, MA).

Non-computational choice behaviour

To test for behavioural effects of tDCS without reliance on the specific assumptions of the
model described above, we also conducted non-computational analyses of choice behaviour on
the IBLT. In these analyses we focused specifically on choices following trials where one shape
was associated with both a win and a loss outcome. On such trials there is no change in earnings
because the win and loss cancel each other out. Hence, the shape selected on the next trial
provides a measure of the relative influence of positive versus negative outcomes on
participants’ subsequent choice behaviour. If the positive outcome more strongly influences a
participant’s choices, they would be expected to stay with the shape currently associated with
both outcomes and choose it again on the next trial. By contrast, if the negative outcome is
more influential, the participant would be expected to switch on the next trial and instead
choose the other shape that was not associated with both outcomes. The proportion of trials in
which the participants chose the win- over the loss-driven option was calculated for each block.
Trials in which the win and loss outcome were associated with different shapes were excluded
from the non-model-based analyses, as in these trials both outcomes promote the same choice

(i.e. selecting the shape associated with the win outcome).
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Statistical analyses

All analyses were completed in R software (Version 3.6.0). Learning rates and inverse
temperature values derived from the computational model, non-computational choice
behaviour, and total winnings (in £) were entered into repeated-measures ANOVAs with the
‘ezANOVA’ function from the ‘ez’ R package. The first set of analyses assessed effects of
online prefrontal tDCS on reward learning (Study 1). Next, we carried out control comparisons
to confirm whether tDCS outcomes were timing- and site-specific. Here, Cognitive State
(online vs. offline, i.e. Study 1 vs. Study 2) or tDCS Target (DLPFC vs. M1, i.e. Study 1 vs.
Study 3) was included as a between-subjects variable. Finally, data from Study 4 (replication
study) were analysed in a separate ANOVA to establish whether effects of online prefrontal

stimulation were robust.

As in previous work (Pulcu et al., 2019), outcome measures from the Win- and Loss-volatile
blocks of the IBLT were the primary focus of analysis. The main outcome of interest was
participants’ learning behaviour in the Win- and Loss-volatile blocks, which were tested for
outcome- and volatility-dependent effects of stimulation. The independent variables were
tDCS, Outcome, Time (during/post-tDCS = blocks 2-3/4-5), and Volatility (Win-volatile/Loss-

volatile blocks). The dependent variable was learning rate.

Both-volatile blocks were analysed to test for potential changes in learning from the baseline
pre-tDCS Block (1) to the final block post-tDCS/task (6). The independent variables were
tDCS (active/sham), Outcome (win/loss), and Time (block 1/block 6). Baseline learning rates
for wins and losses from Block 1 of the first of the two test sessions were included as a

covariate, to account for individual differences in baseline learning rate biases.

Inverse temperature values, non-model-based choice behaviour, and total winnings were also
investigated with repeated-measures ANOV As, with the independent variables of tDCS, Time,
and Volatility. Stimulation order (sham or active tDCS first) was included as a between-
subjects variable in all analyses. The effect sizes for all ANOVAs are reported as generalised
eta squared values (1%c). Significant interactions were followed up with post hoc paired t-tests.
Learning rates were transformed onto the infinite real line using an inverse logistic transform,
and inverse temperature values were normalised with a log transformation consistent with
previous studies (Pulcu & Browning, 2017; Pulcu et al., 2019). Figures and reported values

represent raw parameter values to facilitate interpretation of the results.
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Data availability statement
Raw data, analysis scripts, and task materials can be accessed on Open Science Framework:
https://osf.io/av9pf/, DOI: 10.17605/0OSF.10/AV9PF.

Results

Online prefrontal tDCS increases reward learning rates

Computational parameters

We predicted that online stimulation of DLPFC would selectively enhance reward learning. In
line with this hypothesis, we observed a valence-specific effect of prefrontal tDCS in Win- and
Loss-volatile blocks (tDCS x Outcome interaction: F,18) = 4.89, p = 0.040; 5“6 = 0.006)
(Figure 3.A). Active tDCS caused higher learning rates for win (tag9) = 2.11, p = 0.048) but not
loss outcomes (t19) = 0.35, p = 0.728). This effect did not change over time (tDCS x Outcome
x Time interaction: F1,18) = 0.56, p = 0.464), indicating that the increase in reward learning
rates was maintained for at least 15 minutes after tDCS (see Extended Data for visualization of
learning rates over time). Stimulation effects varied by volatility of the outcomes (tDCS x
Volatility interaction: F,1s = 8.09, p = 0.011, #°c = 0.014), such that tDCS increased learning
rates in Loss-volatile (tqwo) = 2.47, p = 0.023) but not Win-volatile blocks (tue) = -0.12, p =
0.905). As shown in Figure 4, this effect appears to be most pronounced for win outcomes.
Prefrontal stimulation specifically altered learning rates, without changing the randomness of
participants’ choices (no effect of tDCS on inverse temperature parameters; all p >0.05). For
the Both-volatile blocks (Block 1 vs 6), there were no differences in learning rates or inverse

temperature values between the active vs sham tDCS sessions (all p > 0.05).

Non-computational choice behaviour and total winnings

For win-driven choices, there was an interaction of tDCS and volatility (F18) = 7.90, p =
0.016, 5% = 0.029). Active stimulation increased the number of win-driven choices in Loss-
volatile blocks (tae) = 3.33, p = 0.004), but had no effect in Win-volatile blocks (tag) =-0.71, p
= 0.489). Thus, in line with the computational modelling results, tDCS to DLPFC increased
learning from reward outcomes, with effects particularly prominent when win outcomes were
less informative than loss outcomes (i.e. in the Loss-volatile blocks). For total winnings, we
found a main effect of tDCS (F(118) = 5.91, p = 0.026, 5#°c = 0.023). Overall, participants won
less money with active than sham stimulation. This decrease in total winnings is consistent
with participants’ increasing reliance on uninformative rewards. In the Both-volatile blocks,

there were no effects of tDCS (all p >0.05).
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Figure 3. Valence-specific tDCS effects in Win- and Loss-volatile blocks. (A) Prefrontal stimulation

during task performance selectively increased learning rates for win outcomes (*p <0.05). (B) Effects

of prefrontal tDCS were cognitive-state specific, with stimulation applied before task performance

decreasing both win and loss learning rates (*p <0.05). (C) tDCS effects on reward learning were

anatomically specific, with no effects of stimulation over motor cortex. Violin-plots show the

distribution of learning rates by outcome (wins = blue, losses = grey). Summary statistics are provided

in boxplots, with the black horizontal line indicating the median and whiskers representing the 25

and 75" percentiles of values. Dots represent participants’ individual data points averaged across task

blocks.
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Figure 4. Volatility-dependent effects of online prefrontal tDCS. (A) tDCS increased learning rates in
Loss-volatile blocks (*p <0.05). (B) There was no change in learning rates in Win-volatile blocks with
prefrontal tDCS. Violin-plots show the distribution of learning rates by outcome type (wins = red,
losses = grey). Summary statistics are provided in boxplots, with the black horizontal line indicating
the median and whiskers representing the 25" and 75" percentiles of values. Dots represent

participants’ individual data points averaged across task blocks.

Opposing effects of online and offline stimulation

To test for cognitive state specificity, in Study 2 we applied tDCS offline prior to task
performance while participants simply rested and compared the effects of online versus offline
stimulation. Crucially, online and offline tDCS had diverging effects on win and loss learning
rates (Cognitive State x tDCS x Outcome interaction: F.36 = 5.10, p = 0.030, % = 0.003). In
contrast with the specific increase in reward learning with online tDCS, offline tDCS induced
a reduction of both win and loss learning rates (tug) = -2.18, p = 0.042) (Figure 3.B). Contrary
to online stimulation, offline tDCS did not affect any of the non-computational outcomes (all
p >0.05). As predicted, the specific effects of prefrontal tDCS on reward learning were induced

only by online stimulation.

Anatomical specificity of tDCS effects

To determine the anatomical specificity of tDCS effects, we compared learning rates with
online DLPFC versus M1 stimulation. Importantly, stimulation effects differed by outcome for
the two tDCS targets in Win- and Loss-volatile blocks (tDCS Target x tDCS condition X
Outcome interaction: F 3s) = 4.29, p = 0.045, 5% = 0.005) (Figure 3.C). Whereas prefrontal
stimulation specifically increased overall win learning rates, tDCS over motor cortex had no
overall effect on learning rates for either wins (tqo) = 0.22, p = 0.828) or losses (tu9) = 1.47, p

= 0.159). Thus, the valence-specific increase in reward learning observed with prefrontal
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stimulation was anatomically specific. In addition, tDCS effects varied depending on the
volatility of the outcomes (tDCS target x tDCS condition x Volatility interaction: F,36) =
13.58, p <0.001, 5% = 0.012). Whereas prefrontal tDCS increased learning rates in the Loss-
volatile blocks, M1 stimulation increased learning rates in the Win-volatile blocks (t.9) = 2.40,
p = 0.027). As expected, tDCS over M1 did not alter any of the non-computational outcomes
(all p >0.05).

Replication of online tDCS effects

In Study 4, we carried out a replication of Study 1 to determine whether online prefrontal tDCS
consistently increases reward learning rates. We did not find the expected outcome valence- or
volatility-specific effects of tDCS observed in Study 1 (tDCS x Outcome interaction: Fi,1g) =
1.30, p = 0.269; tDCS x Volatility interaction: F18) = 0.01, p = 0.930). There was also no
significant interaction of tDCS condition with volatility in the non-computational analyses
(F,18 = 0433, p = 0.519). However, planned comparisons demonstrated that active tDCS
caused higher learning rates for win than loss outcomes in the Win- and Loss-volatile blocks
(tze) = 2.18, p = 0.032) (Figure 5). This suggests that active prefrontal stimulation was
associated with increased learning from positive outcomes compared to sham tDCS, although

the effect was weaker in the replication dataset than in the original Study 1.

Partial replication of online prefrontal t{DCS effects
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Figure 5. Replication study (Study 4). (A) Increased reward learning rates with online prefrontal tDCS
were not significant in a repeated-measures ANOVA (tDCS x Outcome interaction: p = 0.269). (B)

Planned comparisons revealed that tDCS caused higher learning rates for wins than losses (p <0.05).

Discussion
This study tested the malleability of reward learning with transcranial direct current stimulation

in healthy adults. Online prefrontal tDCS selectively increased reward learning rates, with
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behavioural changes outlasting stimulation for at least 15 minutes. A replication of this study
demonstrated a weaker but similar effect of prefrontal tDCS on reward learning rates. As
predicted, tDCS effects were cognitive-state dependent, with offline stimulation resulting in
decreased learning rates for both wins and losses. In addition, tDCS outcomes were
anatomically specific, with no effects of motor cortex stimulation. Taken together, these
findings demonstrate the potential of online prefrontal tDCS for shifting the balance of learning

from positive and negative outcomes.

Valence-specific tDCS effects

Our finding of a selective increase in learning from positive outcomes is consistent with several
prior stimulation studies targeting left DLPFC, which have reported particular improvements
in cognitive control for positive stimuli (Vanderhasselt et al., 2013) and recognition of positive
emotions (Nitsche et al., 2012). According to the asymmetry hypothesis of valence, responses
to positive and negative stimuli are lateralised to left and right DLPFC, respectively (Davidson,
1992; Herrington et al., 2005; Herrington et al., 2010; Wyczesany et al., 2018). Anodal
stimulation of left DLPFC (and concurrent cathodal stimulation of right DLPFC) may therefore

predominantly enhance processing of positive information.

It is worth noting that electric field simulations suggested that our tDCS montage may also
reach medial regions of prefrontal cortex. Previous studies have linked the medial prefrontal
cortex (MPFC) with various aspects of reward learning, including action-outcome predictions
(Alexander & Brown, 2011), social prediction errors (Behrens et al., 2008), and belief updating
(Kuzmanovic et al., 2018). Changes in learning rates with tDCS could thus be mediated by
neural activations in the mPFC. Concurrent tDCS-fMRI studies will be essential to establish

the neural mechanisms underpinning the effects of prefrontal stimulation on reward learning.

Alternatively, selective changes in reward learning rates could stem from pre-existing patterns
of neural activation and behaviour. Healthy adults tend to have an ‘optimism bias’ (Sharot,
2011) and are more likely to attend to positive compared with negative or neural stimuli (Kress
et al., 2016). It is therefore possible that a prior tendency towards learning from positive
outcomes was amplified with stimulation in healthy volunteers. A critical next step will be to

explore tDCS effects in participants presenting with a range of baseline learning rates.

Learning from uninformative outcomes
A key feature of the Information Bias Learning Task is that it can measure participants’

responses to informative (i.e., volatile) and uninformative (i.e., stable) outcomes. Here, online
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prefrontal tDCS specifically enhanced learning rates when reward outcomes were
uninformative. One explanation for this volatility-dependent effect of tDCS may be that there
was greater scope for enhancing learning from these outcomes, as learning rates for informative
wins were relatively high at baseline. In a replication study, however, we found no evidence
for a volatility-dependent effect of tDCS on learning rates. Further work is therefore needed to

determine the potential influence of volatility manipulations on tDCS outcomes.

Interestingly, DLPFC stimulation was associated with a reduction in participants’ total
winnings. We hypothesize that this is related to the increased reliance on win outcomes
independent of their true information content. It has previously been demonstrated that healthy
adults are highly adept at modulating learning rates according to outcome volatility (Behrens
et al., 2007; Nassar et al., 2012; Browning et al., 2015). Thus, if learning rates are (near-
)optimal under normal conditions, stimulation-induced changes in either direction could cause
poorer choices and thereby reduce winnings in this population. In individuals presenting with
aberrant learning rates, on the other hand, prefrontal tDCS effects could potentially be

harnessed to re-balance processing of positive and negative information.

Limitations and future directions

This proof-of-concept study provides promising evidence for the use of prefrontal tDCS in
ameliorating learning biases associated with mood disorders. However, there are several
limitations which should be addressed in future studies. First, the replication study testing
online prefrontal tDCS effects provided only a partial replication of the original findings.
Specifically, there was no change in win-driven choice behaviour or total winnings. These
differences may be explained as a relatively weaker effect of tDCS in the replication study, as
non-model-based outcomes are less sensitive than the computational parameters. Additional
independent replications would be useful to confirm the tDCS effects observed here. In
addition, all tDCS effects were assessed in healthy adults with low scores on measures of
depression or anxiety. Accumulating evidence shows that participants’ cognitive functioning,
baseline electrophysiological state, and variation in recruitment of brain regions during task
performance affect the outcomes of tDCS (Horvath et al., 2014; Li et al., 2015; Dubreuil-Vall
et al., 2019). Compared to healthy adults, individuals with depression tend to be less sensitive
to rewards (Eshel & Roiser, 2010) and present with hypoactivity of left DLPFC (Grimm et al.,
2008; Disner et al., 2011). It can therefore not be ruled out that these neural and cognitive
patterns would lead to different effects of prefrontal tDCS on learning performance. A logical

next step within this line of research will be to determine whether the present findings can be
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extended to clinical groups. Finally, we did not examine transference of tDCS effects to
different tasks or clinically meaningful outcomes. Further work is needed to address the

potential generalisation of changes in reinforcement learning observed here.

Conclusion

Using a computational approach, we demonstrated that reward learning rates can be modified
in isolation with tDCS to bilateral DLPFC. tDCS effects were state-dependent, such that
learning rates were increased with online but decreased with offline tDCS. These results
provide preliminary evidence that online prefrontal tDCS can alter cognitive mechanisms
critically associated with affective disorders. In the future, we aim to investigate whether this
tDCS effect can be harnessed to shape learning processes and ameliorate clinical symptoms in

individuals with depression.
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