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Abstract 

Work in computational psychiatry suggests that mood disorders may stem from aberrant 

reinforcement learning processes. Specifically, it is proposed that depressed individuals believe 

that negative events are more informative than positive events, resulting in faster learning from 

negative outcomes (Pulcu & Browning, 2019). In this proof-of-concept study, we investigated 

whether learning rates for affective outcomes are malleable using transcranial direct current 

stimulation (tDCS). Healthy adults completed an established reinforcement learning task 

(Pulcu & Browning, 2017) in which the information content of reward and loss outcomes was 

manipulated by varying the volatility of stimulus-outcome associations. Learning rates on the 

tasks were quantified using computational models. Stimulation over dorsolateral prefrontal 

cortex (DLPFC) but not motor cortex (M1) specifically increased learning rates for reward 

outcomes. The effects of prefrontal tDCS were cognitive state-dependent: online stimulation 

increased learning rates for wins; offline stimulation decreased both win and loss learning rates. 

A replication study confirmed the key finding that online tDCS to DLPFC specifically 

increased learning rates for rewards relative to losses. Taken together, these findings 

demonstrate the potential of tDCS for modulating computational parameters of reinforcement 

learning relevant to mood disorders. 

Significance statement   

Disproportionate learning from negative relative to positive outcomes has been implicated in 

the development and maintenance of depression. The present work demonstrates that 

transcranial direct current stimulation (tDCS) to dorsolateral prefrontal cortex can specifically 

increase learning from positive events in healthy adults. Our results provide preliminary 

evidence that non-invasive brain stimulation can be used to shape reinforcement learning, 

indicating a potential novel cognitive neurostimulation intervention strategy for affective 

disorders.  
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Introduction  

The ability to learn from our experiences is central to adaptive decision making. Computational 

accounts of reinforcement learning posit that optimal learners should determine which events 

are most informative and weight these accordingly when making choices (MacKay, 2003; 

Behrens et al., 2007; Nassar et al., 2012; Browning et al., 2015). The information content of an 

event depends in part on the volatility of the association being learned. When action-outcome 

contingencies change frequently, each new observation is relatively informative about the 

current state of the association. Predictions should therefore be updated more rapidly for 

volatile than stable associations (Pulcu & Browning, 2019). In keeping with this theory, healthy 

adults flexibly adapt their learning rates to match the volatility of the environment (Behrens et 

al., 2007; Nassar et al., 2012; Browning et al., 2015). Moreover, humans can maintain separate 

estimates for the information content of positive and negative events (Pulcu & Browning, 

2017). 

An emerging line of computational research suggests that aberrant tracking of these statistical 

properties could form a core mechanism underpinning affective disorders (Browning et al., 

2015; Pulcu & Browning, 2019). Building on preclinical work, it is proposed that depression 

may stem from a tendency to overestimate the information content of negative relative to 

positive events (Pulcu & Browning, 2019). This could in turn lead to a negative cognitive bias, 

which has been causally linked to depression (Mathews & MacLeod, 2005; Eshel & Roiser, 

2010). Behaviourally, distorted estimates of information content may reduce an individual’s 

ability to select actions associated with beneficial outcomes, thereby creating progressively 

poorer environments. As an illustrative example, a belief that negative events are highly 

informative may cause an individual to pay more attention to criticism than praise at work. As 

well as impairing mood and self-confidence, this belief is likely to increase the influence of 

negative feedback on a person’s decision to pursue or give up on a potentially fruitful project. 

From this perspective, rebalancing learning from rewarding versus aversive outcomes could be 

a promising novel approach to ameliorating negative cognitive biases that causally maintain 

symptoms of depression.  

Depression is consistently linked with hypoactivity of the left dorsolateral prefrontal cortex 

(DLPFC) and concurrent hyperactivity of the right DLPFC (Grimm et al., 2008; Koenigs & 

Grafman, 2009; Disner et al., 2011). DLPFC also forms part of distributed reward learning 

circuitry (Haber & Knutson, 2010; Lee et al., 2012) with recent reports pointing to a role in 

tracking the volatility of reward outcomes (Massi et al., 2018; Farahashi et al., 2019). Hence, 
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modulating activity in DLPFC could influence both the neural and cognitive mechanisms 

underlying depression. Previously, clinical trials have demonstrated that transcranial direct 

current stimulation (tDCS) over bilateral DLPFC induces positive but small effects on 

depressive symptoms (Brunoni et al., 2016; Shiozawa et al., 2014). In these trials, 

neurostimulation is typically administered while the patient is at rest. However, tDCS applied 

during learning has been shown to strengthen memory for what is being learned - thought to 

be caused by stabilization of synapses undergoing activity-dependent long-term potentiation 

(Reis et al., 2009; Fritsch et al., 2010; O’Shea et al., 2017). Hence, the functional impact (and 

therapeutic potential) of tDCS could be enhanced by stimulating while simultaneously 

engaging and reshaping learning processes that underpin negative affective biases.  

Here we performed a proof-of-concept test of this hypothesis via a series of experiments in 

healthy adults. We predicted that tDCS over DLPFC would increase reward learning rates 

compared with sham tDCS. We further predicted that this effect would be cognitive-state 

specific, induced by tDCS during learning but not by tDCS applied before learning. Finally, 

we hypothesized that tDCS effects would be anatomically specific, with stimulation to 

prefrontal but not motor cortex (M1) selectively increasing reward learning rates. To measure 

reward and loss learning rates we used an established reinforcement learning paradigm in 

which volatility of stimulus-outcome associations is varied across blocks (Browning et al., 

2015; Pulcu & Browning, 2017; Pulcu et al., 2019). This task enabled us to test for potential 

valence- and volatility-specific effects of stimulation. We applied tDCS bilaterally over 

DLPFC with a single dose of the stimulation montage and protocol commonly used in 

depression treatment trials.  

Methods and Materials  

Participants  

Eighty healthy native English-speaking adults (45 female, mean age = 24.71, SD ± 5.08) were 

recruited from the community via local advertisements for four independent studies. Exclusion 

criteria were left-handedness, a history of psychiatric disorders, neurological illness, use of 

psychoactive medication, personal or family history of epileptic fits or seizures, and any other 

contraindications to tDCS. The experimental protocol was approved by the University of 

Oxford Central University Ethics Committee (RE48995/RE002) and all participants gave 

written informed consent prior to the study. Demographic details of the participants are 

provided in Table 1.  
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Table 1. Mean (SD) baseline characteristics by tDCS group  

 Study 1 
Online DLPFC 
(n = 20) 

Study 2 
Offline DLPFC 
(n = 20) 

Study 3 
M1 
(n = 20) 

Study 4 
Replication 
(n = 20) 

Sociodemographic 
data 

    

   Female (%) 9 (45.0) 15 (75.0) 14 (70.0) 7 (35.0) 
   Age, years 25.0 (4.3) 25.2 (5.8) 24.6 (6.4) 24.2 (3.6) 
Clinical measures     

   STAI-Trait 37.5 (8.9) 38.4 (7.9) 32.6 (8.7) 35.6 (5.9) 
   BDI 5.1 (5.2) 5.6 (8.0) 3.1 (3.4) 4.0 (3.8) 

BDI = Beck Depression Inventory-II, score range = 0-63. STAI-Trait = State-Trait Anxiety Inventory, trait 
form, score range = 20-80.  
 

Study overview and experimental design  

Participants took part in one of four stimulation studies, each consisting of two tDCS and 

reward learning sessions. All participants underwent both active and sham tDCS sessions in a 

cross-over, double-blind design. Stimulation order was counterbalanced in all groups and 

sessions were scheduled at least one week apart to minimise carryover effects of repeated 

learning and/or tDCS. In Study 1, tDCS was applied to DLPFC during task performance to test 

for the predicted increase in reward learning. In Study 2, tDCS was applied to DLPFC prior to 

task performance to determine the cognitive state dependence of the DLPFC stimulation effect. 

In Study 3, online tDCS was delivered over primary motor cortex (M1) to assess the anatomical 

specificity of the stimulation effects. Study 4 aimed to replicate the findings of Study 1 to 

evaluate the consistency of behavioural changes induced by online prefrontal tDCS.  

Questionnaires  

Symptoms of depression and anxiety (see Table 1) were assessed at baseline with the Beck 

Depression Inventory-II (BDI) (Beck et al., 1996) and the Trait subscale of the State-Trait 

Anxiety Inventory (STAI-Trait) (Spielberger et al., 1983). Higher scores on these tasks indicate 

greater symptoms of depression and anxiety, respectively. For the BDI, cut-off scores 

suggested by Beck and colleagues (1996) are 0-13 for no or minimal depression, 14-19 for mild 

depression, 20-80 for moderate depression, and 29-63 for severe depression. The STAI-Trait 

was not designed for clinical diagnosis, and therefore has no formal cut-off points. To monitor 

potential changes in acute mood and anxiety across the tDCS sessions, participants completed 

the Positive and Negative Affect Scales (PANAS) (Watson et al., 1988) and the State-Trait 

Anxiety Inventory (STAI-State) (Spielberger et al., 1983) immediately before and after 
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completion of the cognitive task (see Information Bias Learning Task (IBLT) below). All 

scores and analyses of the PANAS and STAI-State are reported in the Extended Data.  

Information Bias Learning Task (IBLT)  

The Information Bias Learning Task (IBLT) is a computerised reinforcement learning 

paradigm which has been described in detail previously (Browning et al., 2015; Pulcu & 

Browning, 2017; Pulcu et al., 2019). The IBLT was presented on a laptop computer using 

Presentation® software (Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). 

On every trial, a fixation cross in the centre of the screen was flanked by two abstract shapes 

(letters selected from the Agathodaimon font). Participants were asked to choose the shape they 

believed would result in the best outcome via a button press, after which a win (+10p) and a 

loss (-10p) outcome appeared in randomised order above or below the shapes. Participants’ 

accumulated total winnings were displayed under the fixation cross and updated at the 

beginning of the subsequent trial. The win and loss outcomes were independent, such that a 

specific shape could be associated with one, both, or neither of the outcomes. Participants 

therefore had to form separate predictions for the likelihood of the win and the loss appearing 

over a specific shape, and select the optimal choice based on those estimates.   

Participants completed six task blocks of 80 trials each, with a fixed 30-second rest period 

between blocks. The same two shapes were used within a task block, and different shapes were 

used across task blocks. The volatility of shape-outcome contingencies was varied across task 

blocks to manipulate the relative information content of the win and loss outcomes (see Figure 

1). During volatile (i.e., informative) task periods, the association of an outcome with shape 

‘A’ reversed between 20% and 80% every 14 to 30 trials. During stable (i.e., uninformative) 

task periods, the association of an outcome with shape ‘A’ remained constant at 50%. The 

probability of an outcome appearing over shape ‘B’ is calculated as 1 – shape ‘A’. In blocks 1 

and 6, both the win and loss outcome associations were volatile. The aim of these ‘Both-

volatile’ blocks was to measure the extent to which participants preferentially learned from 

equally informative positive and negative outcomes. In blocks 2-5, one outcome was volatile 

whereas the other remained stable. These blocks, in which only win or only loss outcomes were 

highly volatile, will be referred to as ‘Win-volatile’ and ‘Loss-volatile’ blocks, respectively. 

The Win- and Loss-volatile blocks enabled us to simultaneously test for potential specific 

effects of tDCS on learning for outcomes of different valences (positive vs. negative) and levels 

of information content (informative vs. uninformative). Win- and Loss-volatile blocks were 
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alternated, with order of presentation (i.e., Win-volatile or Loss-volatile block first) being 

counterbalanced across participants in each group (see Figure 2.A). 

In all tDCS studies, block 1 was completed prior to stimulation to provide a baseline measure 

of learning rates for win and loss outcomes. As win and loss outcomes were equally informative 

in this block, the learning rates provide an indication of potential learning bias prior to 

stimulation. In the online tDCS studies (Study 1, 3, and 4), stimulation was applied during 

IBLT blocks 2 and 3, with blocks 4-6 carried out after tDCS (see Figure 2.A). Blocks 4 and 5 

served to test for potential sustained effects post-stimulation. Block 6 (‘Both-volatile’) was 

used to measure potential changes in learning bias by the end of the task compared with at 

baseline in Block 1. In the offline tDCS study (Study 2), tDCS was applied first, while 

participants sat at rest, followed by task blocks 2-6 (see Figure 2.B). The goal of the study was 

to test if prefrontal stimulation during the task specifically increased learning from positive 

outcomes. This would manifest as a selective increase in learning rates for wins.  

 

Figure 1. (A) Schematic representation of a trial on the Information Bias Learning Task (IBLT; Pulcu & 

Browning, 2017). After showing the fixation cross and total amount of money won, two abstract 

shapes are presented on either side of the cross. Once the participant has chosen one of the shapes 
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via a button press, a black frame appears around that shape and a win and loss outcome appear 

successively in randomised order. A win outcome leads to an increase of 10p, whereas a loss outcome 

represents a decrease of 10p from the total amount of money won. The total amount of money is 

updated at the start of the next trial. The aim of the task is to maximise earnings by learning the 

probabilities of the win and the loss appearing over the respective shapes. (B) The four possible 

outcomes on a task trial. The win and the loss outcomes are independently associated with one of the 

shapes, allowing for a shape to be associated with one, both, or neither of the outcomes at a given 

time. (C) Volatility of the win (green) and loss (red) outcomes across blocks of the Information Bias 

Learning Task (IBLT). Volatility for the two outcomes is manipulated independently across task blocks, 

either switching between 20% and 80% choice-outcome associations or remaining stable at 50% 

choice-outcome associations. If both wins and losses are volatile, participants should rapidly update 

their predictions for both types of outcomes (i.e., have a high learning rate). In the ‘Win-volatile’ blocks 

participants should adopt a high learning rate for wins and a low learning rate for losses, whereas the 

opposite approach should be taken in the ‘Loss-volatile’ blocks.  

 

Figure 2. (A) Structure and timeline of the online tDCS paradigm (Study 1, 3, and 4). Participants 

complete six blocks of the IBLT. The task starts and ends with a ‘Both-volatile’ block in which win and 

loss outcomes are equally informative. The participants are then presented with two ‘Win-volatile’ 
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and two ‘Loss-volatile’ blocks, with block type order counterbalanced across participants. tDCS was 

applied during Blocks 2-3 of the IBLT.  (B) Study 2 structure and timeline, in which DLPFC tDCS was 

applied offline prior to Blocks 2-6 of the Information Bias Learning Task (IBLT). (C) Simulation of the 

electric field induced in the brain by the bilateral prefrontal tDCS montage, with the anodal electrode 

(yellow) over the left DLPFC (F3) and the cathode (blue) over the right DLPFC (F4). (D) Simulation of 

the electric field induced in the brain by the bilateral motor cortex tDCS montage, with the anodal 

electrode (yellow) over left M1 and the cathode (blue) over right M1.  

tDCS protocol and current distribution  

Stimulation was delivered using a battery-powered device (Eldith DC-Stimulator-Plus, 

Neuroconn, Germany). Two rubber electrodes (5 x 5 cm) were placed in saline-soaked sponges 

and attached to the scalp using rubber bands. For prefrontal stimulation the anodal electrode 

was placed over the left DLPFC while the cathodal electrode was placed over the right DLPFC 

(F3 and F4, respectively, according to the 10/20 system of electrode placement). For bilateral 

stimulation of M1, the anode was centred over the hand area of left primary motor cortex, 5 

cm lateral to the vertex, and the cathode over the homologous region of the right hemisphere. 

In the active tDCS conditions, stimulation was delivered at 2 mA for 20 minutes, with 10s 

ramping-up and ramping-down. In the sham tDCS conditions, participants received 30s of 

direct current followed by impedance control with a small current pulse being produced every 

550 ms (110 μA over 15 ms), resulting in an instantaneous current of no more than 2 μA. 

Double-blinding was implemented through the use of a study mode on the tDCS device. 

SimNIBS (Thielscher et al., 2015) and Gmsh software (Geuzaine & Remacle, 2009) were used 

to visualize the spatial distribution of the electrical field induced in the brain by the DLPFC 

and M1 tDCS electrode montages (see Figure 2 C. and 2.D).  

Computational modelling  

In line with previous studies utilising the IBLT (Pulcu et al., 2019) we analysed choice 

behaviour with a model in which a Rescorla-Wagner learning rule (Rescorla & Wagner, 1972) 

was coupled to a softmax function. The model calculates the probability estimates for the win 

(rwin) and loss (rloss) outcomes being associated with shape ‘A’ on the next trial (i+1): 

𝑟𝑤𝑖𝑛(𝑖+1) = 𝑟𝑤𝑖𝑛(𝑖) +  𝛼w𝑖𝑛 ∗  𝜀𝑤𝑖𝑛(𝑖)               (1) 

𝑟𝑙𝑜𝑠𝑠(𝑖+1) = 𝑟𝑙𝑜𝑠𝑠(𝑖) +  𝛼𝑙𝑜𝑠𝑠 ∗  𝜀𝑙𝑜𝑠𝑠(𝑖) 

in which awin and aloss representing the learning rates (value between 0 and 1), and win(i) and 

loss(i)  represent the prediction error for the win and loss outcomes on the ith trial, respectively. 
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rwin and rloss were initialised at 0.5 at the start of each block. Estimated outcome probabilities 

were then transformed into a single choice probability: 

𝑃(𝑐ℎ𝑜𝑖𝑐𝑒=𝐴(𝑖)) =  
1

1+exp
(−𝛽∗(𝑟𝑤𝑖𝑛(𝑖)+𝑡−𝑟𝑙𝑜𝑠𝑠(𝑖)))      (2) 

Here, P(choice=A(i)) is the probability of choosing shape ‘A’ in trial i.   represents the inverse 

decision temperature, or the degree to which the expected values are used to determine choice 

for a particular shape. Finally, t reflects a potential bias towards one of the options over the 

other. Learning rates and -values were estimated separately for each task block and 

participant. This was achieved by calculating the full joint posterior probability of the 

parameters given participants’ choices, deriving the expected value of each parameter from 

their marginalised probability distributions. The first 10 trials of each block were omitted when 

fitting the model parameters to participants’ choices, as initial learning rates without prior 

knowledge were expected to differ from informed learning rates in later trials of the task. The 

choice of this model was based on a formal comparison using Bayesian information criterion 

(BIC) values for five competitor models (see Extended Data). Models were implemented using 

MATLAB version R2018a (The MathWorks, Inc., Natick, MA). 

Non-computational choice behaviour  

To test for behavioural effects of tDCS without reliance on the specific assumptions of the 

model described above, we also conducted non-computational analyses of choice behaviour on 

the IBLT. In these analyses we focused specifically on choices following trials where one shape 

was associated with both a win and a loss outcome. On such trials there is no change in earnings 

because the win and loss cancel each other out. Hence, the shape selected on the next trial 

provides a measure of the relative influence of positive versus negative outcomes on 

participants’ subsequent choice behaviour. If the positive outcome more strongly influences a 

participant’s choices, they would be expected to stay with the shape currently associated with 

both outcomes and choose it again on the next trial. By contrast, if the negative outcome is 

more influential, the participant would be expected to switch on the next trial and instead 

choose the other shape that was not associated with both outcomes. The proportion of trials in 

which the participants chose the win- over the loss-driven option was calculated for each block. 

Trials in which the win and loss outcome were associated with different shapes were excluded 

from the non-model-based analyses, as in these trials both outcomes promote the same choice 

(i.e. selecting the shape associated with the win outcome).  
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Statistical analyses  

All analyses were completed in R software (Version 3.6.0). Learning rates and inverse 

temperature values derived from the computational model, non-computational choice 

behaviour, and total winnings (in £) were entered into repeated-measures ANOVAs with the 

‘ezANOVA’ function from the ‘ez’ R package. The first set of analyses assessed effects of 

online prefrontal tDCS on reward learning (Study 1). Next, we carried out control comparisons 

to confirm whether tDCS outcomes were timing- and site-specific. Here, Cognitive State 

(online vs. offline, i.e. Study 1 vs. Study 2) or tDCS Target (DLPFC vs. M1, i.e. Study 1 vs. 

Study 3) was included as a between-subjects variable. Finally, data from Study 4 (replication 

study) were analysed in a separate ANOVA to establish whether effects of online prefrontal 

stimulation were robust.  

As in previous work (Pulcu et al., 2019), outcome measures from the Win- and Loss-volatile  

blocks of the IBLT were the primary focus of analysis. The main outcome of interest was 

participants’ learning behaviour in the Win- and Loss-volatile blocks, which were tested for  

outcome- and volatility-dependent effects of stimulation. The independent variables were 

tDCS, Outcome, Time (during/post-tDCS = blocks 2-3/4-5), and Volatility (Win-volatile/Loss-

volatile blocks). The dependent variable was learning rate.  

Both-volatile blocks were analysed to test for potential changes in learning from the baseline 

pre-tDCS Block (1) to the final block post-tDCS/task (6). The independent variables were 

tDCS (active/sham), Outcome (win/loss), and Time (block 1/block 6). Baseline learning rates 

for wins and losses from Block 1 of the first of the two test sessions were included as a 

covariate, to account for individual differences in baseline learning rate biases.  

Inverse temperature values, non-model-based choice behaviour, and total winnings were also 

investigated with repeated-measures ANOVAs, with the independent variables of tDCS, Time, 

and Volatility. Stimulation order (sham or active tDCS first) was included as a between-

subjects variable in all analyses. The effect sizes for all ANOVAs are reported as generalised 

eta squared values (η2
G). Significant interactions were followed up with post hoc paired t-tests. 

Learning rates were transformed onto the infinite real line using an inverse logistic transform, 

and inverse temperature values were normalised with a log transformation consistent with 

previous studies (Pulcu & Browning, 2017; Pulcu et al., 2019). Figures and reported values 

represent raw parameter values to facilitate interpretation of the results.  
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Data availability statement  

Raw data, analysis scripts, and task materials can be accessed on Open Science Framework: 

https://osf.io/av9pf/, DOI: 10.17605/OSF.IO/AV9PF.  

Results  

Online prefrontal tDCS increases reward learning rates  

Computational parameters  

We predicted that online stimulation of DLPFC would selectively enhance reward learning. In 

line with this hypothesis, we observed a valence-specific effect of prefrontal tDCS in Win- and 

Loss-volatile blocks (tDCS x Outcome interaction: F(1,18) = 4.89, p = 0.040; η2
G = 0.006) 

(Figure 3.A). Active tDCS caused higher learning rates for win (t(19) = 2.11, p = 0.048) but not 

loss outcomes (t(19) = 0.35, p = 0.728). This effect did not change over time (tDCS x Outcome 

x Time interaction: F(1,18) = 0.56, p = 0.464), indicating that the increase in reward learning 

rates was maintained for at least 15 minutes after tDCS (see Extended Data for visualization of 

learning rates over time). Stimulation effects varied by volatility of the outcomes (tDCS x 

Volatility interaction: F(1,18) = 8.09, p = 0.011, η2
G = 0.014), such that tDCS increased learning 

rates in Loss-volatile (t(19) = 2.47, p = 0.023) but not Win-volatile blocks (t(19) = -0.12, p = 

0.905). As shown in Figure 4, this effect appears to be most pronounced for win outcomes. 

Prefrontal stimulation specifically altered learning rates, without changing the randomness of 

participants’ choices (no effect of tDCS on inverse temperature parameters; all p >0.05). For 

the Both-volatile blocks (Block 1 vs 6), there were no differences in learning rates or inverse 

temperature values between the active vs sham tDCS sessions (all p > 0.05). 

Non-computational choice behaviour and total winnings  

For win-driven choices, there was an interaction of tDCS and volatility (F(1,18) = 7.90, p = 

0.016, η2
G = 0.029). Active stimulation increased the number of win-driven choices in Loss-

volatile blocks (t(19) = 3.33, p = 0.004), but had no effect in Win-volatile blocks (t(19) = -0.71, p 

= 0.489). Thus, in line with the computational modelling results, tDCS to DLPFC increased 

learning from reward outcomes, with effects particularly prominent when win outcomes were 

less informative than loss outcomes (i.e. in the Loss-volatile blocks). For total winnings, we 

found a main effect of tDCS (F(1,18) = 5.91, p = 0.026, η2
G = 0.023). Overall, participants won 

less money with active than sham stimulation. This decrease in total winnings is consistent 

with participants’ increasing reliance on uninformative rewards. In the Both-volatile blocks, 

there were no effects of tDCS (all p >0.05).  
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Figure 3. Valence-specific tDCS effects in Win- and Loss-volatile blocks. (A) Prefrontal stimulation 

during task performance selectively increased learning rates for win outcomes (*p <0.05). (B) Effects 

of prefrontal tDCS were cognitive-state specific, with stimulation applied before task performance 

decreasing both win and loss learning rates (*p <0.05). (C) tDCS effects on reward learning were 

anatomically specific, with no effects of stimulation over motor cortex. Violin-plots show the 

distribution of learning rates by outcome (wins = blue, losses = grey). Summary statistics are provided 

in boxplots, with the black horizontal line indicating the median and whiskers representing the 25th 

and 75th percentiles of values.  Dots represent participants’ individual data points averaged across task 

blocks.  
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Figure 4. Volatility-dependent effects of online prefrontal tDCS. (A) tDCS increased learning rates in 

Loss-volatile blocks (*p <0.05). (B) There was no change in learning rates in Win-volatile blocks with 

prefrontal tDCS. Violin-plots show the distribution of learning rates by outcome type (wins = red, 

losses = grey). Summary statistics are provided in boxplots, with the black horizontal line indicating 

the median and whiskers representing the 25th and 75th percentiles of values. Dots represent 

participants’ individual data points averaged across task blocks.  

Opposing effects of online and offline stimulation  

To test for cognitive state specificity, in Study 2 we applied tDCS offline prior to task 

performance while participants simply rested and compared the effects of online versus offline 

stimulation. Crucially, online and offline tDCS had diverging effects on win and loss learning 

rates (Cognitive State x tDCS x Outcome interaction: F(1,36) = 5.10, p = 0.030, η2
G = 0.003). In 

contrast with the specific increase in reward learning with online tDCS, offline tDCS induced 

a reduction of both win and loss learning rates (t(19) = -2.18, p = 0.042) (Figure 3.B). Contrary 

to online stimulation, offline tDCS did not affect any of the non-computational outcomes (all 

p >0.05). As predicted, the specific effects of prefrontal tDCS on reward learning were induced 

only by online stimulation.  

Anatomical specificity of tDCS effects  

To determine the anatomical specificity of tDCS effects, we compared learning rates with 

online DLPFC versus M1 stimulation. Importantly, stimulation effects differed by outcome for 

the two tDCS targets in Win- and Loss-volatile blocks (tDCS Target x tDCS condition x 

Outcome interaction: F(1,36) = 4.29, p = 0.045, η2
G = 0.005) (Figure 3.C). Whereas prefrontal 

stimulation specifically increased overall win learning rates, tDCS over motor cortex had no 

overall effect on learning rates for either wins (t(19) = 0.22, p = 0.828) or losses (t(19) = 1.47, p 

= 0.159). Thus, the valence-specific increase in reward learning observed with prefrontal 
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stimulation was anatomically specific. In addition, tDCS effects varied depending on the 

volatility of the outcomes (tDCS target x tDCS condition x Volatility interaction: F(1,36) = 

13.58, p <0.001, η2
G = 0.012). Whereas prefrontal tDCS increased learning rates in the Loss-

volatile blocks, M1 stimulation increased learning rates in the Win-volatile blocks (t(19) = 2.40, 

p = 0.027). As expected, tDCS over M1 did not alter any of the non-computational outcomes 

(all p >0.05).  

 

Replication of online tDCS effects  

In Study 4, we carried out a replication of Study 1 to determine whether online prefrontal tDCS 

consistently increases reward learning rates. We did not find the expected outcome valence- or 

volatility-specific effects of tDCS observed in Study 1 (tDCS x Outcome interaction: F(1,18) = 

1.30, p = 0.269; tDCS x Volatility interaction: F(1,18) = 0.01, p = 0.930). There was also no 

significant interaction of tDCS condition with volatility in the non-computational analyses 

(F(1,18) = 0433, p = 0.519). However, planned comparisons demonstrated that active tDCS 

caused higher learning rates for win than loss outcomes in the Win- and Loss-volatile blocks 

(t(79) = 2.18, p = 0.032) (Figure 5). This suggests that active prefrontal stimulation was 

associated with increased learning from positive outcomes compared to sham tDCS, although 

the effect was weaker in the replication dataset than in the original Study 1.  

 

Figure 5. Replication study (Study 4). (A) Increased reward learning rates with online prefrontal tDCS 

were not significant in a repeated-measures ANOVA (tDCS x Outcome interaction: p = 0.269). (B) 

Planned comparisons revealed that tDCS caused higher learning rates for wins than losses (p <0.05).   

Discussion  

This study tested the malleability of reward learning with transcranial direct current stimulation 

in healthy adults. Online prefrontal tDCS selectively increased reward learning rates, with 
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behavioural changes outlasting stimulation for at least 15 minutes. A replication of this study 

demonstrated a weaker but similar effect of prefrontal tDCS on reward learning rates. As 

predicted, tDCS effects were cognitive-state dependent, with offline stimulation resulting in 

decreased learning rates for both wins and losses. In addition, tDCS outcomes were 

anatomically specific, with no effects of motor cortex stimulation. Taken together, these 

findings demonstrate the potential of online prefrontal tDCS for shifting the balance of learning 

from positive and negative outcomes. 

Valence-specific tDCS effects   

Our finding of a selective increase in learning from positive outcomes is consistent with several 

prior stimulation studies targeting left DLPFC, which have reported particular improvements 

in cognitive control for positive stimuli (Vanderhasselt et al., 2013) and recognition of positive 

emotions (Nitsche et al., 2012). According to the asymmetry hypothesis of valence, responses 

to positive and negative stimuli are lateralised to left and right DLPFC, respectively (Davidson, 

1992; Herrington et al., 2005; Herrington et al., 2010; Wyczesany et al., 2018). Anodal 

stimulation of left DLPFC (and concurrent cathodal stimulation of right DLPFC) may therefore 

predominantly enhance processing of positive information.  

It is worth noting that electric field simulations suggested that our tDCS montage may also 

reach medial regions of prefrontal cortex. Previous studies have linked the medial prefrontal 

cortex (mPFC) with various aspects of reward learning, including action-outcome predictions 

(Alexander & Brown, 2011), social prediction errors (Behrens et al., 2008), and belief updating 

(Kuzmanovic et al., 2018). Changes in learning rates with tDCS could thus be mediated by 

neural activations in the mPFC. Concurrent tDCS-fMRI studies will be essential to establish 

the neural mechanisms underpinning the effects of prefrontal stimulation on reward learning. 

Alternatively, selective changes in reward learning rates could stem from pre-existing patterns 

of neural activation and behaviour. Healthy adults tend to have an ‘optimism bias’ (Sharot, 

2011) and are more likely to attend to positive compared with negative or neural stimuli (Kress 

et al., 2016). It is therefore possible that a prior tendency towards learning from positive 

outcomes was amplified with stimulation in healthy volunteers. A critical next step will be to 

explore tDCS effects in participants presenting with a range of baseline learning rates.  

Learning from uninformative outcomes  

A key feature of the Information Bias Learning Task is that it can measure participants’ 

responses to informative (i.e., volatile) and uninformative (i.e., stable) outcomes. Here, online 
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prefrontal tDCS specifically enhanced learning rates when reward outcomes were 

uninformative. One explanation for this volatility-dependent effect of tDCS may be that there 

was greater scope for enhancing learning from these outcomes, as learning rates for informative 

wins were relatively high at baseline. In a replication study, however, we found no evidence 

for a volatility-dependent effect of tDCS on learning rates. Further work is therefore needed to 

determine the potential influence of volatility manipulations on tDCS outcomes.  

Interestingly, DLPFC stimulation was associated with a reduction in participants’ total 

winnings. We hypothesize that this is related to the increased reliance on win outcomes 

independent of their true information content. It has previously been demonstrated that healthy 

adults are highly adept at modulating learning rates according to outcome volatility (Behrens 

et al., 2007; Nassar et al., 2012; Browning et al., 2015). Thus, if learning rates are (near-

)optimal under normal conditions, stimulation-induced changes in either direction could cause 

poorer choices and thereby reduce winnings in this population. In individuals presenting with 

aberrant learning rates, on the other hand, prefrontal tDCS effects could potentially be 

harnessed to re-balance processing of positive and negative information.  

Limitations and future directions  

This proof-of-concept study provides promising evidence for the use of prefrontal tDCS in 

ameliorating learning biases associated with mood disorders. However, there are several 

limitations which should be addressed in future studies. First, the replication study testing 

online prefrontal tDCS effects provided only a partial replication of the original findings. 

Specifically, there was no change in win-driven choice behaviour or total winnings. These 

differences may be explained as a relatively weaker effect of tDCS in the replication study, as 

non-model-based outcomes are less sensitive than the computational parameters. Additional 

independent replications would be useful to confirm the tDCS effects observed here. In 

addition, all tDCS effects were assessed in healthy adults with low scores on measures of 

depression or anxiety. Accumulating evidence shows that participants’ cognitive functioning, 

baseline electrophysiological state, and variation in recruitment of brain regions during task 

performance affect the outcomes of tDCS (Horvath et al., 2014; Li et al., 2015; Dubreuil-Vall 

et al., 2019). Compared to healthy adults, individuals with depression tend to be less sensitive 

to rewards (Eshel & Roiser, 2010) and present with hypoactivity of left DLPFC (Grimm et al., 

2008; Disner et al., 2011). It can therefore not be ruled out that these neural and cognitive 

patterns would lead to different effects of prefrontal tDCS on learning performance. A logical 

next step within this line of research will be to determine whether the present findings can be 
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extended to clinical groups. Finally, we did not examine transference of tDCS effects to 

different tasks or clinically meaningful outcomes. Further work is needed to address the 

potential generalisation of changes in reinforcement learning observed here.  

Conclusion  

Using a computational approach, we demonstrated that reward learning rates can be modified 

in isolation with tDCS to bilateral DLPFC. tDCS effects were state-dependent, such that 

learning rates were increased with online but decreased with offline tDCS. These results 

provide preliminary evidence that online prefrontal tDCS can alter cognitive mechanisms 

critically associated with affective disorders. In the future, we aim to investigate whether this 

tDCS effect can be harnessed to shape learning processes and ameliorate clinical symptoms in 

individuals with depression.  

Acknowledgements 

MJO was funded by a scholarship from the Medical Research Council. JO’S is a Sir Henry 

Dale Fellow funded by the Royal Society and the Wellcome Trust (HQR01720). The Wellcome 

Centre for Integrative Neuroimaging is supported by core funding from the Wellcome Trust 

(203139/Z/16/Z). VS was funded by a Medical Research Council studentship 

(MR/N013468/1). MB is supported by a Clinician Scientist Fellowship from the MRC 

(MR/N008103/1) and by the NIHR Oxford Health Biomedical Research Centre. M.J. 

Overman, V. Sarrazin and J. O’Shea declare that they have no conflict of interest. MB has 

received travel expenses from Lundbeck for attending conferences and acted as a consultant 

for Jansen Research and CHDR. 

For the purpose of open access, the author has applied a CC BY public copyright license to any 

Author Accepted Manuscript version arising from this submission.  

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.27.428488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428488
http://creativecommons.org/licenses/by-nc-nd/4.0/


References  

Alexander, W.H., & Brown, J.W. (2011). Medial frontal cortex as an action-outcome predictor. 

Nature Neuroscience, 14, 1338-1344. 

Beck, A. T., Steer, R. A., & Brown, G. (1996). Manual for the Beck Depression Inventory-II. 

San Antonio, TX: Psychological Corporation. 

Behrens, T.E.J., Hunt, L.T., Woolrich, M.W., & Rushworth, M.F.S. (2008). Associative 

learning of social value. Nature, 456, 245-249. 

Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. (2007). Learning the 

value of information in an uncertain world. Nature Neuroscience, 10(9), 1214-1221.  

Browning, M., Behrens, T. E., Jocham, G., O'Reilly, J. X., & Bishop, S. J. (2015). Anxious 

individuals have difficulty learning the causal statistics of aversive environments. 

Nature Neuroscience, 18(4), 590-596.  

Brunoni, A.R., Moffa, A.H., Fregni, F., Palm, U., Padberg, F., Blumberger, D.M., … & Loo, 

C.K. (2016). Transcranial direct current stimulation for acute major depressive 

episodes: meta-analysis of individual patient data. The British Journal of Psychiatry, 

208(6), 522-531. 

Davidson, R. J. (1992). Anterior cerebral asymmetry and the nature of emotion. Brain and 

Cognition, 20, 125-151.  

Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of 

the cognitive model of depression. Nature Reviews Neuroscience, 12(8), 467-477.  

Dubreuil-Vall, L., Chau, P., Ruffini, G., Widge, A. S., & Camprodon, J. A. (2019). tDCS to 

the left DLPFC modulates cognitive and physiological correlates of executive function 

in a state-dependent manner. Brain Stimulation, 12, 1456-1463.  

Eshel, N., & Roiser, J. P. (2010). Reward and punishment processing in depression. Biological 

Psychiatry, 68(2), 118-124.  

Farashahi, S., Donahue, C. H., Hayden, B. Y., Lee, D., & Soltani, A. (2019). Flexible 

combination of reward information across primates. Nature Human Behaviour, 3, 

1215-1224.  

Fritsch, B., Reis, J., Martinowich, K., Schambra, H.M., Ji, Y., Cohen, L.G., & Lu, B. (2010). 

Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential 

implications for motor learning. Neuron, 66(2), 198-204. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.27.428488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428488
http://creativecommons.org/licenses/by-nc-nd/4.0/


Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: a three-dimensional finite element mesh 

generator with built-in pre- and post-processing facilities. International Journal for 

Numerical Methods in Engineering, 79(11), 1309-1331.  

Grimm, S., Beck, J., Schuepbach, D., Hell, D., Boesiger, P., Bermpohl, F., . . . Northoff, G. 

(2008). Imbalance between left and right dorsolateral prefrontal cortex in major 

depression is linked to negative emotional judgment: an fMRI study in severe major 

depressive disorder. Biological Psychiatry, 63(4), 369-376.  

Haber, S. N., & Knutson, B. (2010). The reward circuit: linking primate anatomy and human 

imaging. Neuropsychopharmacology, 35, 4-26.  

Herrington, J. D., Heller, W., Mohanty, A., Engels, A. D., Banich, M., Webb, A. G., & Miller, 

G. A. (2010). Localization of asymmetric brain function in emotion and depression. 

Psychophysiology, 47, 442-454.  

Herrington, J. D., Mohanty, A., Koven, N. S., Fisher, J. E., Stewart, J. L., Banich, M. T., . . . 

Heller, W. (2005). Emotion-modulated performance activity in left dorsolateral 

prefrontal cortex. Emotion, 5(2), 200-207.  

Horvath, J. C., Carter, O., & Forte, J. D. (2014). Transcranial direct current stimulation: five 

important issues we aren't discussing (but probably should be). Frontiers in Systems 

Neuroscience, 8, 2.  

Koenigs, M., & Grafman, J. (2009). The functional neuroanatomy of depression: distinct roles 

for ventromedial and dorsolateral prefrontal cortex. Behavioural Brain Research, 201, 

239-243.  

Kress, K., Bristle, M., & Aue, T. (2018). Seeing through rose-colored glasses: how optimistic 

expectancies guide visual attention. PlOS One, 13, e0193311. 

Kuzmanovic, B., Rigoux, L., & Tittgemeyer, M. (2018). Influence of vmPFC on dmPFC 

predicts valence-guided belief formation. The Journal of Neuroscience, 38, 7996-8010. 

Lee, D., Seo, H., & Jung, M. W. (2012). Neural basis of reinforcement learning and decision 

making. Annual Review of Neuroscience, 35, 287-308.  

Li, L. M., Uehara, K., & Hanakawa, T. (2015). The contribution of interindividual factors to 

variability of response in transcranial direct current stimulation studies. Frontiers in 

Cellular Neuroscience, 9, 181.  

MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge, UK: 

Cambridge University Press. 

Massi, B., Donahue, C. H., & Lee, D. (2018). Volatility facilitates value updating in the 

prefrontal cortex. Neuron, 99, 598-608.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.27.428488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428488
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mathews, A., & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual 

Review of Clinical Psychology, 1(1), 167-195.  

Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., & Gold, J. I. (2012). 

Rational regulation of learning dynamics by pupil-linked arousal systems. Nature 

Neuroscience, 15(7), 1040-1046.  

Nitsche, M. A., Koschack, J., Pohlers, H., Hullemann, S., Paulus, W., & Happe, S. (2012). 

Effects of frontal transcranial direct current stimulation on emotional state and 

processing in healthy humans. Frontiers in Psychiatry, 3, 58.  

O'Shea, J., Revol, P., Cousijn, H., Near, J., Petitet, P., Jacquin-Courtois, S., … & Rossetti, Y. 

(2017). Induced sensorimotor cortex plasticity remediates chronic treatment-resistant 

visual neglect. Elife, 6, e26602. 

Pulcu, E., & Browning, M. (2017). Affective bias as a rational response to the statistics of 

rewards and punishments. eLife, 6, e27879.  

Pulcu, E., & Browning, M. (2019). The misestimation of uncertainty in affective disorders. 

Trends in Cognitive Sciences, 23(10), 865-875.  

Pulcu, E., Shkreli, L., Holst, C. G., Woud, M. L., Craske, M. G., Browning, M., & Reinecke, 

A. (2019). The effects of the angiotension II receptor antagonist losartan on appetitive 

versus aversive learning: a randomised controlled trial. Biological Psychiatry, 86(5), 

397-404.  

Reis, J., Schambra, H.M., Cohen, L.G., Buch, E.R., Fritsch, B., Zarahn, E., … & Krakauer, 

J.W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over 

multiple days through an effect on consolidation. Proceedings of the National Academy 

of Sciences, 106(5), 1590-1595. 

Rescorla, R., & Wagner, A. (1972). A theory of Pavlovian conditioning: variations in the 

effectiveness of reinforcement and nonreinforcement. Classical Conditioning II: 

Current Research and Theory, 21(6), 65-99.  

Sharot, T., Korn, C.W., & Dolan, R.J. (2011). How unrealistic optimism is maintained in the 

face of reality. Nature Neuroscience, 14, 1475-1479. 

Shiozawa, P., Fregni, F., Benseñor, I.M., Lotufo, P.A., Berlim, M.T., Daskalakis, J.Z., … & 

Brunoni, A.R (2014). Tranascranial direct current stimulation for major depression: an 

updated systematic review and meta-analysis. International Journal of 

Neuropsychopharmacology, 17, 1443-1452. 

Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). Manual 

for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.27.428488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428488
http://creativecommons.org/licenses/by-nc-nd/4.0/


Thielscher, A., Antunes, A., & Saturnino, G. B. (2015). Field modeling for transcranial 

magnetic stimulation: a useful tool to understand the physiological effects of TMS? 

Paper presented at the IEEE EMBS, Milano, Italy.  

Vanderhasselt, M.-A., De Raedt, R., Brunoni, A. R., Campanha, C., Baeken, C., Remue, J., & 

Boggio, P. S. (2013). tDCS over the left prefrontal cortex enhances cognitive control 

for positive affective stimuli. PLoS ONE, 8(5), e62219.  

Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures 

of positive and negative affect: the PANAS scales. Journal of Personality and Social 

Psychology, 54(6), 1063-1070.  

Wyczesany, M., Capotosto, P., Zappasodi, F., & Prete, G. (2018). Hemispheric asymmetries 

and emotions: evidence from effective connectivity. Neuropsychologia, 121(98-105).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.27.428488doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.27.428488
http://creativecommons.org/licenses/by-nc-nd/4.0/

