

1 **Structural insight into *Pichia pastoris* fatty acid synthase**

2
3 Joseph S. Snowden, Jehad Alzahrani, Lee Sherry, Martin Stacey, David J. Rowlands,
4 Neil A. Ranson* & Nicola J. Stonehouse**

5
6 Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular
7 Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.

8
9 *Corresponding authors: n.a.ranson@leeds.ac.uk, n.j.stonehouse@leeds.ac.uk

10
11 [†] Lead contact

12
13 **Summary**

14 Type I fatty acid synthases (FASs) are critical metabolic enzymes which are common
15 targets for bioengineering in the production of biofuels and other products.
16 Serendipitously, we identified FAS as a contaminant in a cryoEM dataset of virus-like
17 particles (VLPs) purified from *P. pastoris*, an important model organism and common
18 expression system used in protein production. From these data, we determined the
19 structure of *P. pastoris* FAS to 3.1 Å resolution. While the overall organisation of the
20 complex was typical of type I FASs, we identified several differences in both structural
21 and enzymatic domains through comparison with the prototypical yeast FAS from *S.*
22 *cerevisiae*. Using focussed classification, we were also able to resolve and model the
23 mobile acyl-carrier protein (ACP) domain, which is key for function. Ultimately, the
24 structure reported here will be a useful resource for further efforts to engineer yeast
25 FAS for synthesis of alternate products.

26
27 **Keywords:** CryoEM - cryo-electron microscopy, FAS – fatty acid synthase, VLP –
28 virus-like particle

29

30 **Introduction**

31 Fatty acid synthases (FASs) are critical metabolic enzymes for the endogenous
32 biosynthesis of fatty acids in a diverse range of organisms. Through iterative cycles of
33 chain elongation, FASs catalyse the synthesis of long-chain fatty acids that can
34 produce raw materials for membrane bilayer synthesis, lipid anchors of peripheral
35 membrane proteins, metabolic energy stores, or precursors for various fatty acid-
36 derived signalling compounds¹. In addition to their key physiological importance,
37 microbial FAS systems are also a common target of metabolic engineering
38 approaches, usually with the aim of generating short chain fatty acids for an expanded
39 repertoire of fatty acid-derived chemicals, including chemicals with key industrial
40 significance such as α -olefins²⁻⁵. A comprehensive structural and functional
41 understanding of a diverse range of FAS systems is therefore paramount to the
42 success of such complex rational engineering approaches.

43

44 Unlike the dissociated systems of individual enzymes that make up type II FAS
45 systems in plants and bacteria⁶, Type I FAS systems in fungi and animals are large
46 complexes that integrate the key enzymes required for fatty acid biosynthesis^{7,8}. In
47 particular, yeast type I FASs are 2.6 MDa hetero-dodecameric complexes with an $\alpha_6\beta_6$
48 configuration, which form a cage-like structure comprising two dome-shaped reaction
49 chambers on either side of a central platform⁹⁻¹³. Along with structural support regions,
50 enzymatic domains form the walls of the reaction chambers, with most active sites
51 facing the chamber interior. The mobile acyl-carrier protein (ACP) domain tethers the
52 growing fatty acid chain and carries it between active sites, so each can act on this in
53 turn^{13,14}. The phosphopantetheine transferase (PPT) domain, which catalyses the
54 attachment of a phosphopantetheinyl group to the active site serine residue of the
55 ACP (necessary for ACP activity), is also an integral part of yeast FAS complexes,
56 and is located on the exterior of the cage^{12,15}.

57

58 A deep body of work underlies our current structural understanding of yeast FAS,
59 although FAS structure determination to date has been challenging. A cryoEM study
60 of *S. cerevisiae* FAS revealed a number of differences with X-ray crystal structures of
61 fungal FASs, suggesting that crystal contacts had altered the conformation of FAS
62 from its unconstrained structure in solution¹³. A more recent attempt to determine the

63 solution structure of *S. cerevisiae* FAS at a resolution sufficient for molecular modelling
64 was hindered by partial denaturation induced by interactions with the air-water
65 interface, an effect that was ameliorated by coating grids with hydrophilized graphene,
66 ultimately leading to a 3.1-Å resolution structure when sample preparation was
67 optimised^{16,17}.

68

69 While our understanding of yeast FAS structure is growing, our library of structures
70 remains incomplete. The vast majority of published solution structures of FAS are from
71 *S. cerevisiae*^{13,16–19}. To date, no structures are available for *Pichia pastoris* FAS from
72 either cryoEM or X-ray crystallography. *P. pastoris* (*Komagataella* spp.) is a
73 methylotrophic yeast which is used extensively for recombinant protein production²⁰.
74 In recent years, it has also been the target of metabolic engineering approaches²¹. *P.*
75 *pastoris* has a major advantage over other yeast strains like *S. cerevisiae*, as it
76 produces relatively little ethanol, making the maintenance of productive, high-cell
77 density fermenter cultures more tractable²². It has also been suggested that *P. pastoris*
78 cells, in contrast to cells of the plant *Arabidopsis* sp., are highly tolerant of free fatty
79 acids²³.

80

81 Here, we report the 3.1-Å resolution solution structure of *P. pastoris* FAS, determined
82 by cryoEM. We initially identified FAS as a contaminant in a *P. pastoris*-derived virus-
83 like particle (VLP) preparation being used for structural studies, and processed these
84 data to yield detailed structural information on FAS, including density for the mobile
85 ACP domain. Comparison of our atomic model with that of *S. cerevisiae* revealed
86 interesting structural differences throughout the complex within both structural and
87 enzymatic domains. This included movement of the malonyl/palmitoyl transferase
88 domain at the level of domain packing, and alternative rotamers in the catalytic centres
89 of the acyl transferase and enoylreductase domains.

90

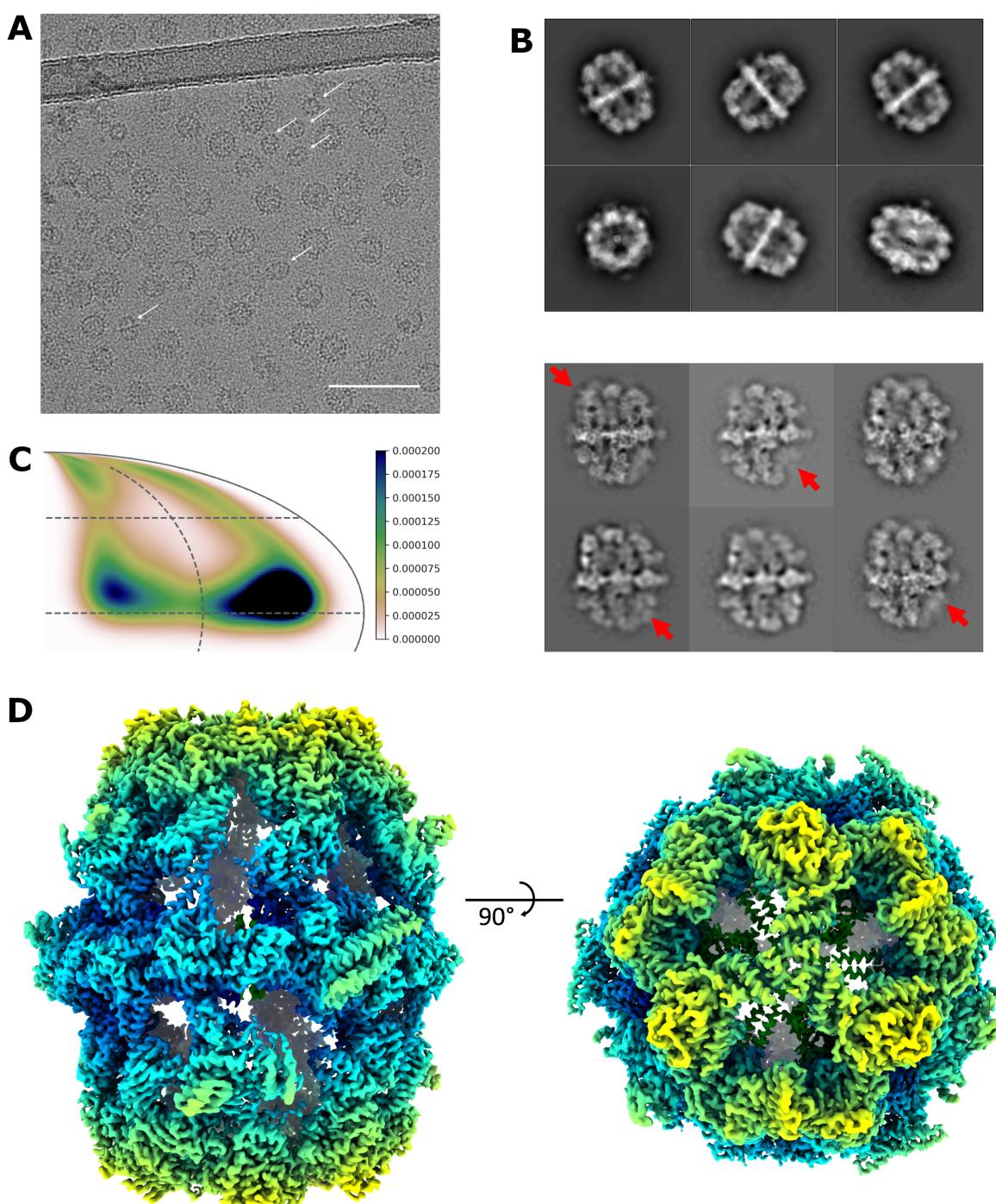
91 **Results**

92

93 **CryoEM structure determination of *Pichia pastoris* fatty acid synthase**

94 Virus-like particles (VLPs) composed of hepatitis B virus tandem core proteins²⁴ with
95 a SUMO-binding affimer inserted into the major immunodominant region (MIR)²⁵ were
96 expressed in transformed *P. pastoris* cells for structural and vaccine studies (construct

97 available upon request). Expression was induced with methanol and the VLPs purified
98 from the yeast lysate by sucrose gradient centrifugation. Image analysis of cryoEM
99 data revealed, in addition to the VLPs, non-VLP-like particles which were recognised
100 as yeast FAS complexes due to their characteristic morphology – two hollow chambers
101 on either side of a central platform. Further inspection of individual micrographs
102 revealed that FAS particles were well-separated from VLPs, indicating that FAS was
103 not co-purified as a result of an association with the VLPs (Fig 1A).

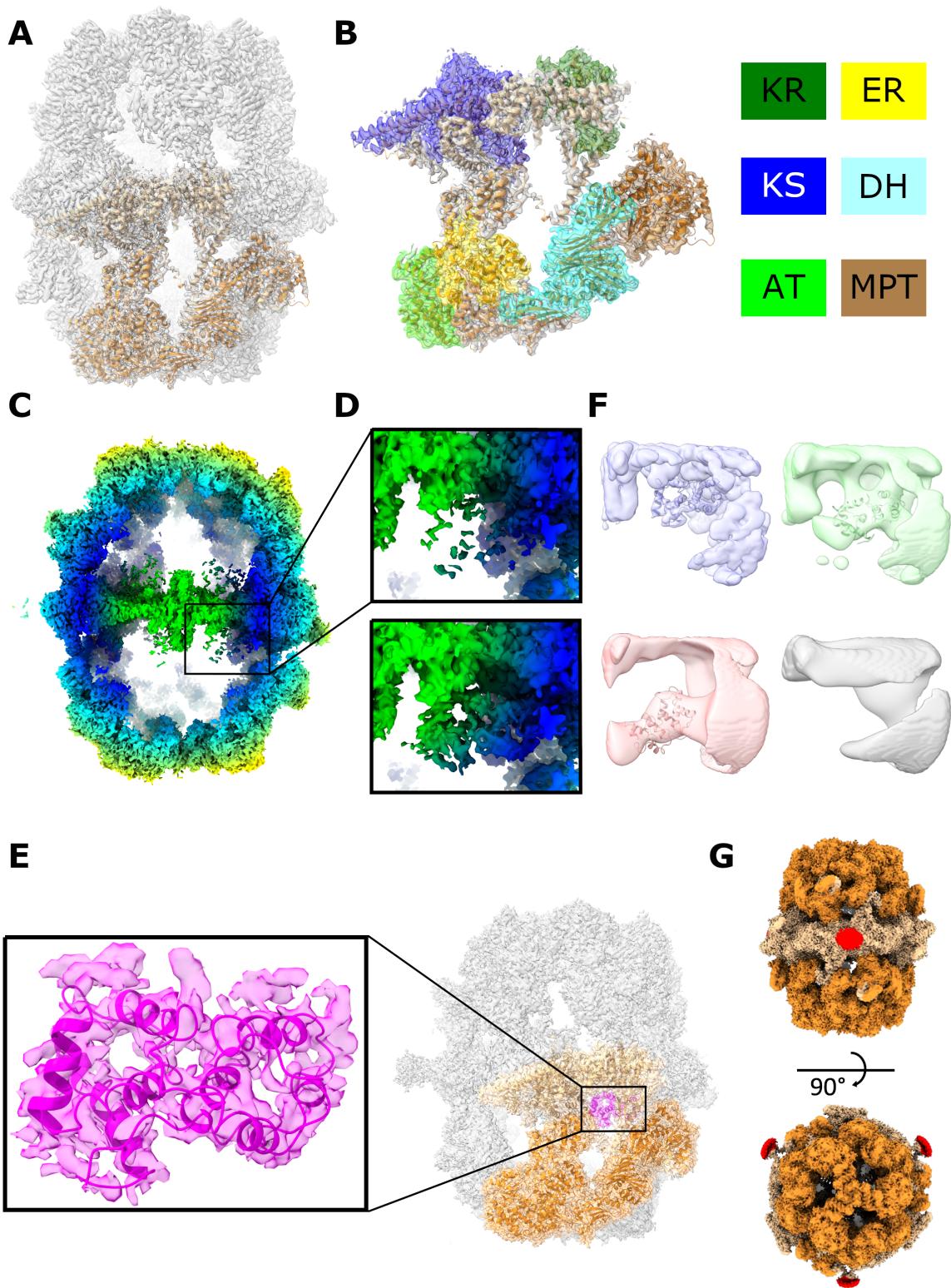

104

105 In contrast to a recent study that reported significant air-water interface-induced
106 denaturation of FAS particles by cryoEM (which could be solved with deposition of
107 hydrophilized graphene on the grid surface)¹⁶, we saw no signs of denaturation in our
108 data set, judged by 2D class averages (Fig 1B). While some particles were discarded
109 after the initial 2D classification, ~67% of these were actually VLPs or areas of carbon
110 film that were inadvertently selected during autopicking, and the remaining discarded
111 classes mainly comprised apparently intact FAS particles over thick carbon. It is
112 therefore difficult to estimate how many particles were excluded because of damage
113 that was not visible in class averages. There was evidence of some preferential
114 orientation effects (perhaps induced by adsorption to the carbon film), but this was not
115 a significant problem, as a reasonable coverage of potential orientations within the
116 asymmetric unit of the D3 symmetric structure (i.e., a single α and β subunit) was
117 achieved (Fig 1C).

118

119 Classes corresponding to FAS were taken forward and processed separately, yielding
120 a 3.1 Å reconstruction from ~37,000 particles, with parts of the central platform
121 resolved to ~2.7 Å (Fig 1D, Supplementary Fig S1). In comparison, ~28,000 particles
122 of *S. cerevisiae* FAS were used to generate a 4.0-Å resolution structure¹⁶. More
123 recently, ~15,000 particles of *S. cerevisiae* FAS led to a 3.1-Å resolution map,
124 although in this case the FAS was incubated with NADPH and malonyl-CoA before
125 vitrification in order to drive synthesis of fatty acids to completion, increasing particle
126 homogeneity¹⁷.

127


128 **Figure 1. Determination of *P. pastoris* FAS structure by cryoEM. (A)** Raw
129 *micrograph showing VLPs with contaminating FAS particles. FAS particles are*
130 *indicated by white arrows. Scale bar shows 100 nm. (B)* The most populated classes
131 *from 2D classification of *P. pastoris* FAS (after excluding 'junk' classes of FAS over*
132 *thick carbon support) (upper) compared with 2D class averages of *S. cerevisiae* FAS*
133 *showing partial denaturation (indicated by red arrows) from D'Imprima et al. (2019)¹⁶*

134 (licensed under [CC BY 4.0](#)) (lower). **(C)** Orientation distribution map of particles
135 contributing to the final reconstruction of the FAS asymmetric unit. The map shows
136 the probability that any particle was assigned the orientation indicated, according to
137 the scale shown. **(D)** CryoEM density map of *P. pastoris* FAS, coloured radially.
138

139 **The 3.1-Å resolution solution structure of *P. pastoris* FAS**

140 The overall structure of the *P. pastoris* FAS reported here was typical of a yeast FAS.
141 Density was present for most domains of the α - and β -subunits, including acyl
142 transferase (AT), ketoacyl reductase (KR), ketoacyl synthase (KS), enoylreductase
143 (ER), dehydratase (DH) and malonyl/palmitoyl transferase (MPT) domains (Fig 2A,B).
144 ACP density was weak (only becoming fully apparent when inspecting the map at a
145 threshold of approx. 1 σ) and poorly resolved, as was also the case for previous EM
146 density maps of *S. cerevisiae* FAS (e.g., EMD-10420, EMD-0178). However, the
147 approximate position of the ACP could be identified within the reaction chamber. There
148 was no density apparent for the PPT region, as discussed further below.
149

150 The map was sufficiently resolved to allow us to build an atomic model of *P. pastoris*
151 FAS. An initial homology model for the asymmetric unit was generated using SWISS-
152 MODEL²⁶ and rigid-body fitted into the density map. The fit of model to density was
153 visually inspected and corrected, before the model was symmetrised and refined to
154 improve its fit to the density and geometry. The α subunit is mostly resolved, though
155 several segments of the peptide sequence (including the ACP and PPT domains) are
156 missing (residues 96-322, 535-598 and 1752-1879). The β subunit is practically
157 complete, lacking only a small number of residues at the N- and C-termini (residues
158 1-9 and 2064-2069). We also observed density for a ligand bound within the active
159 site of the ER domain (for reference, see Fig 3G), presumably a molecule of FMN.
160

161

162 **Figure 2. The molecular structure of *P. pastoris* FAS.** (A) Atomic coordinates for
163 the asymmetric unit of *P. pastoris* FAS, comprising α (light orange) and β (dark orange)
164 subunits, with the density map overlaid. (B) Enlarged view of the asymmetric unit,
165 highlighting different enzymatic domains according to the colour scheme indicated.

166 Grey-coloured regions are non-enzymatic, structural domains. Domain boundaries
167 were assigned based on equivalent domain boundaries from *S. cerevisiae* FAS. KR –
168 ketoacyl reductase, KS – ketoacyl synthase, AT – acetyl transferase, ER –
169 enoylreductase, DH – dehydratase, MPT – malonyl/palmitoyl transferase. **(C)** Clipped
170 view of the sharpened FAS density map, coloured according to radius. The box
171 highlights the region of the reaction chamber selected for the first focussed 3D
172 classification. **(D)** Enlarged image of the region depicted by the box in (C) (upper)
173 compared with the sharpened, asymmetric reconstruction of FAS derived from an ACP
174 density-containing class from the first focussed 3D classification (lower). All classes
175 from the first focussed classification are given in Supplementary Fig S2A. **(E)** Atomic
176 coordinates for the ACP domain of FAS fitted into ACP density from the map shown
177 in (D, bottom). ACP is also shown in the context of the full FAS complex. **(F)**
178 Representative classes from the second focussed 3D classification (with expanded
179 masked region) of the complex interior. Atomic coordinates for ACP are shown fitted
180 into the three classes containing putative ACP density to give an indication of size.
181 One class shows no putative density for ACP (lower right). All maps are shown at the
182 same contour level. All classes from the second focussed classification are given in
183 Supplementary Fig S2B. **(G)** Density map of FAS shown at a low contour level (i.e.,
184 including weak density), coloured according to subunit (α - light orange, β - dark
185 orange). Unexplained density, not accounted for by FAS subunits α or β , is highlighted
186 in red.

187

188 In an attempt to improve the quality of the cryoEM density corresponding to the ACP
189 domain, we performed focussed 3D classification within the reaction chamber of the
190 complex (Fig 2C). While classification with a regularisation parameter ('T' number) of
191 20 did not reveal any meaningful classes, using a higher value of 40 (i.e., putting a
192 higher relative weighting on the experimental data than on the prior/reference) yielded
193 a class containing relatively well resolved ACP density (Supplementary Fig S2A).
194 Particles from this class were taken forward for asymmetric reconstruction, yielding a
195 complete FAS map of 3.1-Å resolution (Fig 2D). In the latter map, the additional density
196 is consistent with the ACP domain of the α subunit of FAS, given the fit-to-density of
197 an ACP domain homology model. This additional density was largely missing in the
198 original map. Ultimately, the new density was of sufficient quality to build an atomic

199 model of the ACP domain (Fig 2E). Interestingly, ACP domain residue S178 (which
200 tethers the growing fatty acid chain) is located ~18 Å away from the KS active site,
201 which is in agreement with the length of the PPT arm (18 Å)²⁷. Some classes contained
202 additional low-resolution density at the edge of the masked region used for focussed
203 classification (Supplementary Fig S2A). To examine whether this corresponded to
204 ACP domains positioned differently within the complex interior that were not fully
205 contained within the masked region, focussed classification was repeated with an
206 expanded mask (Supplementary Fig S2B). In addition to a class containing well-
207 resolved ACP density, multiple classes containing low-resolution ACP-sized density in
208 different positions were observed (Fig 2F). However, these classes comprised
209 relatively few subparticles and asymmetric reconstruction only resulted in poor
210 resolution (~8 Å).

211

212 Focussed classification was also performed in an attempt to resolve the PPT domain.
213 While a low-resolution class was identified as containing PPT density (Supplementary
214 Fig S3), further reconstruction did not yield density sufficient for model building.

215

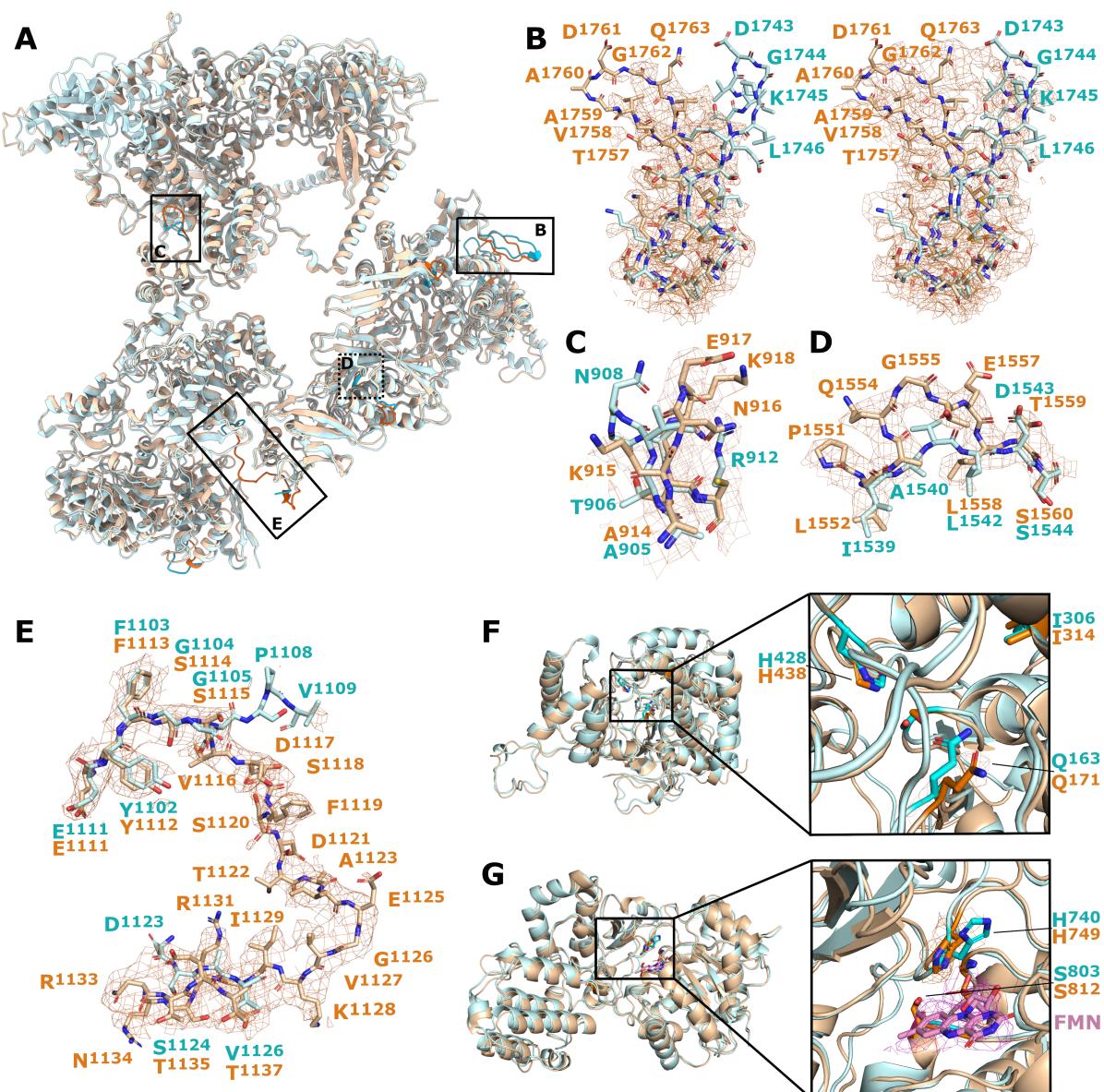
216 Interestingly, we observed additional density on the exterior of the FAS complex, not
217 accounted for by the atomic model (Fig 2G). This density is weaker than for the rest
218 of the complex and is not well resolved, indicating that the component is flexible and/or
219 that there is not full occupancy. The additional, external density appears to extend
220 outwards from V534 (α subunit). While residues 535-598 are not resolved, the density
221 remains localised close to V534 and does not provide a logical connecting trace to
222 A599. The extra density was also present in a 4.3-Å resolution reconstruction
223 determined from the same data but without the imposition of symmetry, suggesting
224 that this is not simply an artefact of symmetry averaging. However, given the poor
225 resolution of this region of the map, we were unable to determine its identity.

226

227 **Distinct structural features of *P. pastoris* FAS**

228 To identify unique structural features of *P. pastoris* FAS, we carried out a comparative
229 structural analysis. While PDBeFold²⁸ suggested that the closest structural matches
230 to *P. pastoris* FAS were cryoEM structures of *C. albicans* FAS (PDB 6U5W, PDB
231 6U5V)¹⁸, we chose to compare our structure with *S. cerevisiae* FAS, a better

232 characterised FAS with greater relevance to metabolic engineering attempts. At the
233 peptide sequence level, *P. pastoris* FAS α and β subunits show 69% and 63% identity
234 with their equivalents in *S. cerevisiae*. We compared our structure with a recently
235 published 3.1- \AA resolution structure of FAS from *S. cerevisiae* (PDB 6TA1)¹⁷. After
236 aligning the two structures, a root mean-square deviation (RMSD) value between
237 equivalent $\text{C}\alpha$ atom pairs was calculated as 7.1 \AA , indicating a notable level of
238 difference between the two models (Fig 3A). However, aligning the models by
239 individual subunits gave RMSD values of 1.7 \AA (α - α), and 2.2 \AA (β - β), suggesting that
240 this may be partially attributable to differences in the spatial relationship between the
241 α and β subunits in each model. Visual inspection confirmed that several domains
242 appeared shifted, particularly the MPT domain.


243

244 Closer examination revealed many differences in the path traced by the peptide
245 backbone. One instance of this is a loop in the MPT domain, which is shifted by 16 \AA
246 at its turning point (D1761) (Fig 3B). Interestingly, when displaying density at a low
247 threshold so that even weak density is visible (0.5 σ), we also saw density tracing the
248 alternative loop conformation seen in the *S. cerevisiae* yeast structure. Other loops
249 and linker regions throughout the β subunit also showed obvious differences in
250 conformation, including in the DH domain (F1283-V1289, E1505-I1511), MPT domain
251 (A1859-Y1870), and structural domains/linker regions (G75-N78, A914-G919) (Fig
252 3C). Furthermore, a small sequence insertion of three amino acids introduced a kink
253 into the outer strand of a β -sheet within the DH domain (A1553-L1558) (Fig 3D). Of
254 particular interest is a sequence of residues (F1113-T1135) linking the ER domain to
255 the DH-adjacent structural domain, which was mostly unmodeled in the *S. cerevisiae*
256 FAS structure (Fig 3E). For the structure reported here, this linker region was well-
257 resolved and differed significantly from the terminal parts of the linker that are resolved
258 in PDB 6TA1.

259

260 There are also subtle rotameric differences in some of the enzymatic domain active
261 sites. In particular, Q171 was shifted within the active site of the AT domain (Fig 3F).
262 H749 of the ER domain was also pointing in the opposite direction to the equivalent
263 histidine in *S. cerevisiae* FAS (Fig 3G).

264

265
266 **Figure 3. Unique structural features of *P. pastoris* FAS. (A)** Overlay of *P. pastoris*
267 FAS (orange) and *S. cerevisiae* FAS (PDB 6TA1, blue) from Joppe et al. (2020)¹⁷, with
268 differences highlighted by stronger colours. Enlarged images are indicated on the map
269 with boxes. **(B)** Loop region comprising residues 1753-1768, highlighting the different
270 positioning compared to the equivalent region from *S. cerevisiae* FAS. The *P. pastoris*
271 density map is overlaid at high contour level (left) and low contour level (right). **(C-E)**
272 Other regions from different parts of the protein are highlighted and compared with
273 equivalent regions of *S. cerevisiae* FAS, including the loop comprising residues 914-
274 919 **(C)**, the beta strand comprising residues 1553-1558 **(D)** and the additional
275 resolved linking region comprising residues 1113-1135 **(E)**. **(F)** The AT domain, with
276 enlarged image highlighting different positioning of the active site residue Q171. **(G)**

277 *The ER domain, with enlarged image highlighting different positioning of the active
278 site residue H749. FMN and its corresponding density are shown in pink.*

279

280 **Discussion**

281 We serendipitously identified fatty acid synthase, which is constitutively expressed in
282 yeast²⁹, as a contaminant in a cryoEM data set of a hepatitis B core VLP preparation
283 purified from *P. pastoris*. Subsequent analysis of raw micrographs revealed that FAS
284 was readily separated from the VLPs. As such, we think it unlikely that FAS co-purified
285 as a result of a specific interaction with the VLPs. Rather, its presence in the VLP
286 preparation was probably as a result of its mass being sufficiently similar to co-purify
287 on sucrose density gradients (FAS 2.6 MDa; $T=3$ VLP 4.7 MDa; $T=4$ VLP 6.3 MDa).
288 By processing this ‘contaminant’ data and using focussed 3D classification
289 techniques, we were able to determine the structure of the *P. pastoris* FAS to 3.1 Å
290 resolution, and build an atomic model for the complex, including a model for the mobile
291 ACP domain.

292

293 Interestingly, we did not observe signs of partial denaturation of FAS in 2D class
294 averages, as was seen previously for a different yeast FAS structure¹⁶. It is possible
295 that the presence of VLPs in the sample affected the ice thickness or crowded the air-
296 water interface (which is known to induce denaturation¹⁶), reducing any interactions
297 between the interface and FAS. However, we suspect that the lack of partial
298 denaturation is more likely a result of the continuous thin carbon film used for making
299 these cryoEM grids, which may trap FAS particles away from the air-water interface.
300 While the presence of a thin carbon film adds a background that reduces the signal-
301 to-noise ratio of particles (and can therefore limit the resolution), we were able to
302 resolve our map to 3.1 Å, equivalent to that of the structure reported by Joppe *et al.*
303 (2020)¹⁷ and sufficient to build a molecular model for FAS. Therefore, using a
304 continuous thin carbon film may be a simple alternative to coating grids with
305 hydrophilized graphene, when the size of the target protein (and hence its signal
306 strength) is similar to FAS.

307

308 The overall structure was typical of a yeast FAS. As has previously been observed for
309 yeast FAS structures, the PPT domain was missing¹⁶ and the quality of the ACP
310 domain density was relatively poor. In this case, density corresponding to the ACP

311 domain was initially of insufficient quality for molecular modelling, but this was resolved
312 by focussed classification. Given the known mobile nature of the ACP domain¹³, this
313 was unsurprising. Focussed classification led to an improvement in the strength and
314 quality of the ACP density that was sufficient to allow atomic modelling, probably as
315 result of grouping together only subparticles with ACP domains in the same relative
316 position (adjacent to the KS domain, as has been observed in several other yeast FAS
317 structures^{17,27}) at the time of vitrification. Use of an expanded mask for focussed
318 classification revealed classes with putative ACP density in other positions within the
319 complex interior. These classes contained relatively few subparticles, suggesting that
320 the vast majority of ACP domains were adjacent to the KS domain, with the remainder
321 either missing or occupying other positions. The lack of PPT domain density is likely
322 to be a result of loss of this domain from most complexes during sample
323 purification/preparation, as has previously been noted^{16,17}. Since our initial aim was to
324 purify VLPs, not FAS, no special care was taken to ensure the complex was kept intact
325 (although the ER domain cofactor FMN was clearly present in the density map,
326 providing evidence that the complex was still likely to have been active). While
327 focussed classification was not sufficient to resolve the PPT domain, one class did
328 show weak density corresponding to the PPT domain, suggesting that it was retained
329 in at least some particles.

330

331 We identified a number of structural differences between the *P. pastoris* FAS structure
332 reported here and a recent 3.1-Å resolution structure from *S. cerevisiae* (PDB 6TA1)¹⁷,
333 another member of the yeast family *Saccharomycetaceae*. The MPT domain was
334 distinctly shifted relative to its position in *S. cerevisiae* FAS. This is of particular
335 importance, because this domain is the target of one approach to engineer FAS
336 complexes to produce short chain fatty acids⁴. Many intradomain differences affected
337 structural (non-enzymatic) components of the complex, including a loop within the
338 MPT domain from S1752 – K1768. This loop was particularly interesting, as very weak
339 density tracing the backbone of the alternative (*S. cerevisiae*) conformation also
340 became visible at low contour thresholds. This is indicative of a mixed population of
341 conformations in *P. pastoris* FAS, with most complexes sampling the conformation seen for *S.*
342 modelled, and a smaller subpopulation sampling the conformation seen for *S.*
343 *cerevisiae* FAS. This loop may plausibly be dynamic, an idea reinforced by the local

344 resolution of the loop being poorer than average, at around 3.7 – 4.1 Å resolution
345 (Supplementary Fig S1).

346

347 We also identified differences in the active sites of two enzymatic domains. In the AT
348 domain, Q171 forms part of a tight hydrogen bond network around the active serine
349 (S282) and its backbone amide also contributes to an oxyanion hole, which plays a
350 role in promoting the transfer of malonyl to the thiol group of the ACP^{6,12}. While the
351 alternative rotamer observed here is unlikely to affect the oxyanion hole, the structure
352 suggests a subtle alteration in the arrangement/spacing of the hydrogen bond network
353 at the catalytic centre of the AT domain. Aside from Q171, the catalytic histidine of the
354 ER domain (H749) was seen to be in a ‘flipped’ conformation relative to its equivalent
355 in *S. cerevisiae* FAS^{12,17}. Interestingly, the conformation reported here is much closer
356 to that seen in a crystal structure of *S. pneumoniae* FabK in its active state (PDB 2Z6I),
357 a homologous enzyme that forms part of its type II FAS system³⁰. Whether these
358 changes to active site residues have functional significance is unclear. However, it
359 should be noted that the *S. cerevisiae* FAS was incubated with NADPH and malonyl-
360 CoA prior to vitrification in order to drive FA synthesis to completion¹⁷. The *P. pastoris*
361 FAS reported here received no such treatment and as such, reaction status was likely
362 less uniform and potentially incomplete.

363

364 In conclusion, despite non-optimised sample preparation and using just ~37,000
365 particles, we were able to determine the structure of *P. pastoris* FAS to 3.1-Å
366 resolution and identify structural differences with a related yeast FAS. As well as
367 highlighting the importance of considering ‘contaminant data’ in cryoEM data sets, the
368 structure reported here could prove a useful resource for future efforts to engineer
369 yeast FAS.

370

371 **Methods**

372 **Cells**

373 FAS was purified from PichiaPink™ yeast strain one (Invitrogen, USA), which was
374 grown according to the manufacturer’s instructions.

375

376 **Yeast transformation and induction**

377 While the focus of this work was FAS, which is constitutively expressed in yeast²⁹, our
378 initial aim was to use yeast to express and purify VLPs composed of hepatitis B virus
379 tandem core proteins²⁴ with a SUMO-binding affimer²⁵ inserted into the major
380 immunodominant region (MIR) (construct available upon request) for structural
381 characterisation. As such, VLP expression was induced in the transformed yeast prior
382 to purification, as described previously³¹. Briefly, glycerol stocks known to exhibit good
383 levels of expression were cultured in yeast extract-peptone-dextrose (YPD),
384 supplemented with 50 µg/mL ampicillin, at 28°C, 250 rpm for 48 h. 2 ml of the high-
385 density starter culture was then transferred to 200 mL YPD and incubated for another
386 24 h under the same conditions. To induce expression of VLPs, cells were pelleted
387 (1500 × g, 20 min) and resuspended in 200 mL yeast extract-peptone-methanol (YPM;
388 0.5% [v/v] methanol) for a further 48-hour incubation, with methanol added to a final
389 concentration of 0.5% (v/v) 24 h post-induction. Cells were subsequently collected by
390 pelleting at 2000 × g (20 min), resuspended in 30 mL breaking buffer (50 mM sodium
391 phosphate, 1 mM phenylmethylsulfonyl fluoride [PMSF], 1 mM EDTA, 5% glycerol, pH
392 7.4) and stored at -20°C prior to purification.

393

394 **Co-purification of FAS with VLPs**

395 Though our aim was to purify VLPs (as described previously³¹) for structural
396 characterisation, FAS co-purified with the particles. Frozen *P. pastoris* stocks that had
397 been induced to express VLPs were thawed and incubated with 0.1% (v/v) Triton-
398 X100 for 30 min. Cells were lysed using a CF-1 cell disruptor at ~275 MPa and cooled
399 to 4°C, before the lysate was centrifuged first at 4000 rpm (30 min, 4°C), then at 10,000
400 × g (30 min, 4°C) to remove insoluble material. The supernatant was supplemented
401 with 2 mM MgCl and treated with HS-nuclease (2BScientific) for 1.5 h at room
402 temperature, then mixed with saturated ammonium sulphate solution (40% [v/v]) and
403 incubated overnight at 4°C for precipitation. Precipitated protein was recovered by
404 pelleting at 4000 rpm (30 min, 4°C) and solubilised by resuspending in PBS
405 (supplemented with 0.1% [v/v] Triton-X100). After further centrifugation at 4000 rpm
406 (30 min, 4°C), then 10,000 × g (30 min, 4°C) to remove any remaining insoluble
407 material, the supernatant was pelleted through a 30% sucrose cushion (w/v) at
408 151,000 × g (3.5 h, 4°C, SW-32 Ti). The pellet was resuspended in PBS

409 (supplemented with 1% [v/v] NP-40 and 0.5% [w/v] sodium deoxycholate), then
410 clarified at 10,000 $\times g$ (10 min, 4°C) before loading onto a 15-45% (w/v) sucrose
411 gradient for ultracentrifugation at 151,000 $\times g$ (3 h, 4°C). 2 ml fractions were collected
412 and those containing VLPs were identified by western blot. A centrifugal filter (100K,
413 5 mL, Pall Life Sciences) was used according to the manufacturer's instructions to
414 remove sucrose and concentrate the peak fraction to 0.5 mL.

415

416 **Electron microscopy**

417 CryoEM grids were prepared by applying 3 μ L of a VLP preparation with contaminating
418 FAS complex in PBS to lacey carbon 400-mesh copper grids coated with a <3-nm
419 continuous carbon film (Agar Scientific, Stansted, UK), after glow-discharging the grids
420 in air (10 mA, 30 seconds) using a PELCO easiGlow™ Glow Discharge System (Ted
421 Pella). Following application of sample, grids were incubated at 8°C, 80% relative
422 humidity for 30 seconds, then blotted to remove excess liquid and vitrified in liquid
423 nitrogen-cooled liquid ethane using a LEICA EM GP plunge freezing device (Leica
424 Microsystems, Wetzlar, Germany). Blotting time parameters were varied to increase
425 the likelihood of recovering a grid with optimal ice thickness. Following plunge freezing,
426 grids were stored in liquid nitrogen. Grids were imaged using an FEI Titan Krios
427 transmission electron microscope (ABSL, University of Leeds, Leeds, UK) operating
428 at 300 kV. A magnification of 75,000 \times was used for a calibrated object sampling of
429 1.065 Å/pixel. Detailed information on data collection parameters is provided in Table
430 S1.

431

432 **Image processing**

433 The RELION 3.0 pipeline³² was used for image processing. Raw micrographs were
434 first motion corrected using MotionCor2³³, then CTF parameters were estimated using
435 Gctf³⁴. Particles were selected from a subset of micrographs by manual picking and
436 were then differentiated by 2D classification. High quality 2D classes were used as
437 templates for autopicking the complete data set. A low picking threshold was specified
438 to autopicking to minimize the number of 'missed' VLPs. Picked particles were 2 \times
439 down-sampled, then subject to 2D classification (with CTFs ignored until the first
440 peak), leading to the identification of FAS-containing classes. 2D classes containing
441 FAS were taken forward for initial model generation and used as templates for FAS-

442 specific autopicking. Autopicked FAS particles were extracted without down-sampling
443 and subjected to two rounds of 2D classification (first with CTFs ignored until the first
444 peak, then without). Particles in high quality classes were taken forward for 3D
445 refinement (with D3 symmetry applied) with subsequent masking and sharpening.
446 Following this, several cycles of CTF refinement (with per-particle astigmatism
447 correction and beamtilt estimation), Bayesian polishing and 3D refinement (with
448 masking and use of solvent-flattened FSCs) were performed to improve the resolution
449 of the map. After sharpening, the resolution of the final map was determined using the
450 ‘gold standard’ Fourier shell correlation criterion (FSC = 0.143) (Table S1, Figure S1).
451 RELION was used to estimate local resolution and generate a local resolution-filtered
452 map.

453

454 To resolve the flexible ACP, focussed 3D classification was performed as described
455 previously^{35–37}. Briefly, a cylindrical mask was generated in SPIDER³⁸ and resampled
456 onto the D3-symmetric density map of FAS, such that it was positioned over the weak
457 ACP density. The *relion_symmetry_expand* tool was used to assign 6 symmetrically
458 redundant orientations to each particle contributing to a symmetric reconstruction,
459 such that the ACP domain in each symmetry-related position would be included in the
460 classification. These symmetry-expanded particles were then subject to masked 3D
461 classification without re-alignment using a regularisation parameter (“T” number) of
462 40. Particles contributing to the ACP density-containing class were taken forward for
463 asymmetric reconstruction using the *relion_reconstruct* tool.

464

465 **Model building and refinement**

466 To generate a preliminary model for the asymmetric unit of FAS, the peptide
467 sequences of *P. pastoris* FAS α (NCBI: XP_002490414.1) and β (NCBI:
468 XP_002489642.1) subunits were used to generate a homology model using the
469 SWISS-MODEL web server²⁶. The homology model was rigid-body fitted into the
470 sharpened FAS density map using UCSF Chimera³⁹, then refined in Coot⁴⁰. The
471 refined model was symmetrised in UCSF Chimera, then subject to real space
472 refinement in Phenix⁴¹ to improve simultaneously the fit of the model to the density
473 map and model geometry. Several iterations between refinement in Coot and
474 refinement in Phenix were performed before validating the model with Molprobity⁴².

475

476 **Visualization and structure comparison**

477 Density map and atomic model visualization was performed and figures were
478 generated using UCSF Chimera³⁹ and UCSF Chimera X⁴³. Structural alignment and
479 RMSD calculations were performed using the ‘MatchMaker’ tool with default settings
480 in UCSF Chimera. PDBeFold (the protein structure comparison service at EBI
481 [<http://www.ebi.ac.uk/msd-srv/ssm>])²⁸ was used to probe structural similarity between
482 the FAS structure reported here and other molecular structures within the PDB.
483 Particle orientation distribution was visualized using an adapted version⁴⁴ of a script
484 from Naydenova & Russo (2017)⁴⁵.

485

486 **Quantification and statistical analysis**

487 Where appropriate, statistical details are given in the Method Details section. Table
488 S1 contains quantitative parameters related to data collection and image processing.
489 Table S2 contains validation statistics related to model building.

490

491 **Data Availability Statement**

492 The *P. pastoris* FAS cryoEM map was deposited in the Electron Microscopy Data Bank
493 (EMD-12138) along with the reconstructed ACP domain-containing map from
494 focussed classification (EMD-12139). The atomic coordinates for the FAS asymmetric
495 unit (PDB-7BC4) and the ACP domain (PDB-7BC5) were deposited in the Protein Data
496 Bank.

497

498 **References**

499

500 1. Tehlivets, O., Scheuringer, K. & Kohlwein, S. D. Fatty acid synthesis and elongation in
501 yeast. *Biochim. Biophys. Acta.* **1771**, 255–270 (2007).

502 2. Heil, C. S., Wehrheim, S. S., Paithankar, K. S. & Grininger, M. Fatty acid biosynthesis:
503 chain-length regulation and control. *ChemBioChem* **20**, 2298–2321 (2019).

504 3. Gajewski, J. *et al.* Engineering fatty acid synthases for directed polyketide production.
505 *Nat. Chem. Biol.* **13**, 363–365 (2017).

506 4. Gajewski, J., Pavlovic, R., Fischer, M., Boles, E. & Grininger, M. Engineering fungal
507 de novo fatty acid synthesis for short chain fatty acid production. *Nat. Commun.* **8**,
508 14650 (2017).

509 5. Beld, J., Lee, D. J. & Burkart, M. D. Fatty acid biosynthesis revisited: structure
510 elucidation and metabolic engineering. *Mol. BioSyst.* **11**, 38–59 (2015).

511 6. White, S. W., Zheng, J., Zhang, Y. M. & Rock, C. O. The structural biology of type II
512 fatty acid biosynthesis. *Annu. Rev. Biochem.* **74**, 791–831 (2005).

513 7. Maier, T., Leibundgut, M., Boehringer, D. & Ban, N. Structure and function of
514 eukaryotic fatty acid synthases. *Q. Rev. Biophys.* **43**, 373–422 (2010).

515 8. Schweizer, E. & Hofmann, J. Microbial type I fatty acid synthases (FAS): major
516 players in a network of cellular FAS systems. *Microbiol. Mol. Biol. Rev.* **68**, 501–517
517 (2004).

518 9. Stoops, J. K., Kolodziej, S. J., Schroeter, J. P., Bretaudiere, J. P. & Wakil, S. J.
519 Structure-function relationships of the yeast fatty acid synthase: negative-stain, cryo-
520 electron microscopy, and image analysis studies of the end views of the structure.
521 *Proc. Natl. Acad. Sci. USA* **89**, 6585–6589 (1992).

522 10. Jenni, S., Leibundgut, M., Maier, T. & Ban, N. Architecture of a fungal fatty acid
523 synthase at 5 Å resolution. *Science* **311**, 1263–1267 (2006).

524 11. Jenni, S. *et al.* Structure of fungal fatty acid synthase and implications for iterative
525 substrate shuttling. *Science* **316**, 254–261 (2007).

526 12. Lomakin, I. B., Xiong, Y. & Steitz, T. A. The crystal structure of yeast fatty acid
527 synthase, a cellular machine with eight active sites working together. *Cell* **129**, 319–
528 332 (2007).

529 13. Gipson, P. *et al.* Direct structural insight into the substrate-shuttling mechanism of
530 yeast fatty acid synthase by electron cryomicroscopy. *Proc. Natl. Acad. Sci. USA* **107**,
531 9164–9169 (2010).

532 14. Crosby, J. & Crump, M. P. The structural role of the carrier protein - active controller
533 or passive carrier. *Nat. Prod. Rep.* **29**, 1111–1137 (2012).

534 15. Fichtlscherer, F., Wellein, C., Mittag, M. & Schweizer, E. A novel function of yeast
535 fatty acid synthase. Subunit α is capable of self-pantetheinylation. *Eur. J. Biochem.*
536 **267**, 2666–2671 (2000).

537 16. D'Imprima, E. *et al.* Protein denaturation at the air-water interface and how to prevent
538 it. *eLife* **8**, e42747 (2019).

539 17. Joppe, M. *et al.* The resolution revolution in cryoEM requires high-quality sample
540 preparation: a rapid pipeline to a high-resolution map of yeast fatty acid synthase.
541 *IUCrJ* **7**, 220–227 (2020).

542 18. Lou, J. W., Iyer, K. R., Hasan, S. M. N., Cowen, L. E. & Mazhab-Jafari, M. T. Electron
543 cryomicroscopy observation of acyl carrier protein translocation in type I fungal fatty
544 acid synthase. *Sci. Rep.* **9**, 12987 (2019).

545 19. Singh, K. *et al.* Discovery of a regulatory subunit of the yeast fatty acid synthase. *Cell*
546 **180**, 1130–1143.e20 (2020).

547 20. Ahmad, M., Hirz, M., Pichler, H. & Schwab, H. Protein expression in *Pichia pastoris*:
548 recent achievements and perspectives for heterologous protein production. *Appl.*

549 *Microbiol. Biotechnol.* **98**, 5301–5317 (2014).

550 21. Yang, Z. & Zhang, Z. Engineering strategies for enhanced production of protein and
551 bio-products in *Pichia pastoris*: A review. *Biotechnol. Adv.* **36**, 182–195 (2018).

552 22. Cereghino, J. L. & Cregg, J. M. Heterologous protein expression in the
553 methylotrophic yeast *Pichia pastoris*. *FEMS Microbiol. Rev.* **24**, 45–66 (2000).

554 23. Meesapyodsuk, D., Chen, Y., Ng, S. H., Chen, J. & Qiu, X. Metabolic engineering of
555 *Pichia pastoris* to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.
556 *J. Lipid Res.* **56**, 2102–2109 (2015).

557 24. Peyret, H. *et al.* Tandem Fusion of hepatitis B core antigen allows assembly of virus-
558 like particles in bacteria and plants with enhanced capacity to accommodate foreign
559 proteins. *PLoS One* **10**, e0120751 (2015).

560 25. Tiede, C. *et al.* Affimer proteins are versatile and renewable affinity reagents. *eLife* **6**,
561 e24903 (2017).

562 26. Waterhouse, A. *et al.* SWISS-MODEL: Homology modelling of protein structures and
563 complexes. *Nucleic Acids Res.* **46**, W296–W303 (2018).

564 27. Leibundgut, M., Jenni, S., Frick, C. & Ban, N. Structural basis for substrate delivery by
565 acyl carrier protein in the yeast fatty acid synthase. *Science* **316**, 288–290 (2007).

566 28. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast
567 protein structure alignment in three dimensions. *Acta Crystallogr. D Biol. Crystallogr.*
568 **60**, 2256–2268 (2004).

569 29. Schüller, H. J., Schütz, A., Knab, S., Hoffmann, B. & Schweizer, E. Importance of
570 general regulatory factors Rap1p, Abf1p and Reb1p for the activation of yeast fatty
571 acid synthase genes FAS1 and FAS2. *Eur. J. Biochem.* **225**, 213–222 (1994).

572 30. Saito, J. *et al.* Crystal structure of enoyl-acyl carrier protein reductase (FabK) from
573 *Streptococcus pneumoniae* reveals the binding mode of an inhibitor. *Protein Sci.* **17**,
574 691–699 (2008).

575 31. Sherry, L. *et al.* Comparative molecular biology approaches for the production of
576 poliovirus virus-like particles using *Pichia pastoris*. *mSphere* **5**, e00838-19 (2020).

577 32. Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure
578 determination in RELION-3. *eLife* **7**, e42166 (2018).

579 33. Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for
580 improved cryo-electron microscopy. *Nat. Methods* **14**, 331–332 (2017).

581 34. Zhang, K. Gctf: real-time CTF determination and correction. *J. Struct. Biol.* **193**, 1–12
582 (2016).

583 35. Scheres, S. H. W. Processing of structurally heterogeneous cryo-EM data in RELION.
584 *Methods Enzymol.* **579**, 125–157 (2016).

585 36. Conley, M. J. *et al.* Calicivirus VP2 forms a portal-like assembly following receptor
586 engagement. *Nature* **565**, 377–381 (2019).

587 37. Snowden, J. S. *et al.* Dynamics in the murine norovirus capsid revealed by high-
588 resolution cryo-EM. *PLoS Biol.* **18**, e3000649 (2020).

589 38. Frank, J. *et al.* SPIDER and WEB: processing and visualization of images in 3D
590 electron microscopy and related fields. *J. Struct. Biol.* **116**, 190–199 (1996).

591 39. Pettersen, E. F. *et al.* UCSF Chimera - a visualization system for exploratory research
592 and analysis. *J. Comput. Chem.* **25**, 1605–1612 (2004).

593 40. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of
594 Coot. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 486–501 (2010).

595 41. Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for
596 macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 213–221
597 (2010).

598 42. Chen, V. B. *et al.* MolProbity: all-atom structure validation for macromolecular
599 crystallography. *Acta Crystallogr. D. Biol. Crystallogr.* **66**, 12–21 (2010).

600 43. Goddard, T. D. *et al.* UCSF ChimeraX: meeting modern challenges in visualization
601 and analysis. *Protein Sci.* **27**, 14–25 (2018).

602 44. Klebl, D. P. *et al.* Need for speed: examining protein behavior during cryoEM grid
603 preparation at different timescales. *Structure* **28**, 1238–1248.e4 (2020).

604 45. Naydenova, K. & Russo, C. J. Measuring the effects of particle orientation to improve
605 the efficiency of electron cryomicroscopy. *Nat. Commun.* **8**, 629 (2017).

606
607 **Acknowledgments**

608 We are grateful to the Wellcome Trust for PhD Studentship support to JSS
609 (102174/B/13/Z) and to the Saudi Ministry of Education for studentship support to JA.
610 LS is funded by the WHO (2019/883397-O, “Generation of virus free polio vaccine –
611 phase IV”). Electron microscopy was performed in the Astbury Biostructure
612 Laboratory, which was funded by the University of Leeds and the Wellcome Trust
613 (108466/Z/15/Z). We also wish to thank David Klebl (University of Leeds) for
614 assistance with identifying FAS, and we are very grateful to Glyn Hemsworth
615 (University of Leeds) and Alison Baker (University of Leeds) for critical reading of the
616 manuscript.

617

618 **Author Contributions**

619 JA and LS maintained *P. pastoris*; JA purified FAS; JSS prepared samples for cryoEM,
620 carried out cryoEM data collection and performed image processing; JSS, JA, DJR,

621 NAR and NJS analysed data; JSS, NAR and NJS wrote the paper; LS, MS, DJR, NAR
622 and NJS provided supervision.

623

624 **Additional Information**

625 The authors declare no competing interests.

626