

Ecology drives the evolution of diverse siderophore-production strategies in the

2 opportunistic human pathogen *Pseudomonas aeruginosa*

4 Alexandre R.T. Figueiredo^{1,2,3}, Andreas Wagner^{2,4,5} & Rolf Kümmeli^{1,3}

1- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland

**6 2- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057
Zurich, Switzerland**

8 3- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland

4- Swiss Institute of Bioinformatics, Lausanne, Switzerland

10 5- The Santa Fe Institute, Santa Fe, New Mexico, United States of America

Abstract

12 Bacteria often cooperate by secreting molecules that can be shared as public goods between
13 cells. Because the production of public goods is subject to cheating by mutants that exploit
14 the good without contributing to it, there has been great interest in elucidating the
15 evolutionary forces that maintain cooperation. However, little is known on how bacterial
16 cooperation evolves under conditions where cheating is unlikely of importance. Here we use
17 experimental evolution to follow changes in the production of a model public good, the iron-
18 scavenging siderophore pyoverdine, of the bacterium *Pseudomonas aeruginosa*. After 1200
19 generations of evolution in nine different environments, we observed that cheaters only
20 reached high frequency in liquid medium with low iron availability. Conversely, when adding
21 iron to reduce the cost of producing pyoverdine, we observed selection for pyoverdine hyper-
22 producers. Similarly, hyper-producers also spread in populations evolved in highly viscous
23 media, where relatedness between interacting individuals is higher. Whole-genome
24 sequencing of evolved clones revealed that hyper-production is associated with
25 mutations/deletions in genes encoding quorum-sensing communication systems, while
26 cheater clones had mutations in the iron-starvation sigma factor or in pyoverdine biosynthesis
27 genes. Our findings demonstrate that bacterial social traits can evolve rapidly in divergent
28 directions, with particularly strong selection for increased levels of cooperation occurring in
29 environments where individual dispersal is reduced, as predicted by social evolution theory.
30 Moreover, we establish a regulatory link between pyoverdine production and quorum-
31 sensing, showing that increased cooperation at one trait (pyoverdine) can be associated with
32 the loss (quorum-sensing) of another social trait.

33 **Keywords:** bacterial cooperation, cheating, pyoverdine, experimental evolution, genomics,
34 quorum sensing, environmental viscosity, iron availability

Introduction

36 Long gone are the times when microbes were seen as solitary life forms. Over the last three
decades, a wealth of research has uncovered that microbial communities are shaped by
38 complex networks of competitive and cooperative interactions (West et al. 2007; Little et al.
2008; Mitri & Foster, 2013; Ghoul & Mitri, 2016; Granato, et al. 2019; Figueiredo & Kramer,
40 2020). Competitive interactions may involve the secretion of toxins against competitors,
hunting or competitive exclusion (Hibbing et al. 2010; Pérez et al. 2016; Granato et al. 2019).
42 Examples of cooperative behaviours include mutualistic cross-feeding, communication via
signalling molecules, and sharing the benefits of secreted molecules such as proteases,
44 siderophores and biofilm components (Wilder et al. 2011; D’Souza et al. 2018; Dragoš et al.
2018; Kramer et al. 2020; Robinson et al. 2020). Microbial cooperation often underlies
46 important biological processes, including the establishment of infections (Ackermann et al.
2008; Granato et al. 2018), nutrient fixation in the rhizosphere (Denison et al. 2003) and
48 mutualistic interactions with hosts (Verma and Miyashiro 2013).

50 Microbial cooperation has attracted the attention of evolutionary biologists not only
because of its variety in form and function, but also because it incurs a cost for the actor while
52 benefiting other individuals (West et al. 2007). Cooperation could thus select for “cheating”
variants that do not cooperate themselves, but benefit from cooperative acts performed by
others (Ghoul et al. 2014). How then can cooperative traits be maintained on evolutionary
54 timescales? This question has spurred an enormous body of research focussing on how
microbes cope with the threat of cheating (Travisano & Velicer, 2004; Strassmann & Queller,
56 2011; Özkaya et al. 2017; Wechsler et al. 2019; Smith & Schuster, 2019). While interesting in
its own right, the focus on cheating might have diverted attention from other factors that
58 could also influence the evolution of cooperative traits (see Zhang & Rainey, 2013 for a critic).

For example, we currently know little about environments that select for increased
60 cooperation. Additionally, it is currently unclear whether cooperative traits can be lost for
reasons other than cheating, for example in environments where cooperation is less beneficial
62 or not needed at all (Velicer et al. 1998; Zhang & Rainey, 2013).

Here, we tackle these questions by focussing on the evolution of pyoverdine
64 production in the bacterium *Pseudomonas aeruginosa*, one of the most widely studied social
traits in microbes (Griffin et al. 2004; Buckling et al. 2007; Dumas & Kümmeli, 2012; Harrison,
66 2013; Ross-Gillespie et al. 2015; Harrison et al. 2017; O'Brien et al. 2017). Pyoverdine is a
siderophore that chelates environmental or host-bound ferric iron, and is secreted upon
68 sensing iron scarcity. Iron-loaded pyoverdine is imported by bacteria via a specific receptor.
Import is followed by iron reduction, release from the siderophore, and subsequent recycling
70 of pyoverdine (Kramer et al. 2020; Schalk et al. 2020). Pyoverdine production is a cooperative
trait, because the molecules are costly for the individual cell to produce, but once loaded with
72 iron they become available to other cells in the local neighbourhood (Buckling et al. 2007;
Harrison, 2013).

74 It is well established that pyoverdine, as a so-called “public good”, can select for
cheating in severely iron-limited and well-mixed environments, where cheats can freely access
76 secreted pyoverdines (Griffin et al. 2004; Kümmeli et al. 2015). It is less clear, however, how
pyoverdine production would evolve in other environments where, for example, iron is less
78 stringently limited and/or where environmental viscosity would limit cell mixing and thus
cheating. Several scenarios can be envisaged. First, in iron-rich environments pyoverdine
80 production might be selectively lost because it is not required (Zhang & Rainey 2013). Second,
in viscous environments increased levels of pyoverdine production could be favoured because
82 viscosity reduces cell dispersal and siderophore diffusion (Kümmeli et al. 2009; Julou et al.

2013), which ensures that pyoverdine-mediated social interactions occur more often between

84 genetically related individuals. Such interactions are expected to favour cooperation (Dobay
et al. 2014). Third, iron availability and environmental viscosity might interact and jointly
86 affect the cost and benefit of pyoverdine production, and thereby select for an altered
production level that matches the optimal cost-to-benefit ratio of the environment that
88 bacteria evolved in. Finally, the social trait might diversify without the production levels being
affected. Indeed, a great diversity of pyoverdine variants exists among *Pseudomonas* strains
90 (Butaite et al. 2017), but each strain produces only one type of pyoverdine, together with its
cognate receptor. Mathematical models suggest that evolutionary changes in pyoverdine and
92 receptor structure could help individuals to escape cheating (Lee et al. 2012) or to gain an
edge over competitors in the race for iron, even under iron rich conditions (Niehus et al. 2017).

94 To test for these alternative evolutionary outcomes, we experimentally evolved
replicated populations, of the laboratory strain *P. aeruginosa* PAO1, for 200 days
96 (approximately 1200 generations) in nine different environments. We manipulated
environmental conditions along two gradients, iron availability and media viscosity, with each
98 gradient entailing three levels in a 3x3 full-factorial design. After experimental evolution, we
quantified changes in pyoverdine production and investigated the extent to which pyoverdine
100 remained shareable among cells. We then assessed how phenotypic changes affect the fitness
of evolved populations and clones. Finally, we sequenced the genomes of 119 evolved clones
102 to map evolved phenotypes to genotypic changes.

104

106

Material and Methods

108 Strains and culturing conditions

We used the *P. aeruginosa* wildtype strain PAO1 (ATCC15692) and a fluorescent variant (PAO1-*gfp*), directly derived from the wildtype strain. PAO1-*gfp* constitutively expresses GFP (green fluorescent protein), due to a single copy insertion of *gfp* in the bacterium's chromosome (*attTn7::ptac-gfp*). We further used the pyoverdine negative mutant PAO1 Δ *pvdD* (henceforth named pyoverdine-null) and the pyoverdine-pyocheulin double-negative mutant PAO1 Δ *pvdD* Δ *pchEF* (henceforth named siderophore-null) as controls. The siderophore-null mutant was used because pyochelin, a secondary siderophore of *P. aeruginosa*, can partly compensate for the lack of pyoverdine (Ross-Gillespie et al. 2015).

We grew overnight pre-cultures in 8 mL Lysogeny Broth (LB - 2% m/v) and incubated at 37°C, 210 rpm, for 16-18 hours. We performed all experiments in liquid CAA medium (5 g/L casamino acids, 1.18 g/L K₂HPO₄.3H₂O, 0.25 g/L MgSO₄.7H₂O, 25 mM HEPES buffer), to which we added 400 μ M of the iron chelator 2,2'-Bipyridyl to bind the residual iron present in the medium. For the experimental evolution and follow-up experiments, we manipulated iron availability of the CAA medium by adding no FeCl₃, 2 μ M FeCl₃ or 20 μ M of FeCl₃ to achieve conditions of low, intermediate and high iron availability, respectively. We further manipulated the viscosity of the CAA medium by adding either no, 0.1% or 0.2% (m/V) agar. Increased environmental viscosity reduces the mobility of bacteria and the diffusion of secreted compounds (Kümmerli et al. 2009). In other words, it is an experimental way to enhance spatial structure as it reduces the range across which social interactions can take place and thus increases relatedness between interacting individuals. All media components were purchased from Sigma-Aldrich (Buchs SG, Switzerland). We conducted all experiments in 96-well plates, in 200 μ L of media, at 37°C and 170 rpm shaking conditions.

Experimental evolution

132 We experimentally evolved strains PAO1 and PAO1-*gfp* in nine different environments, in a
133 3x3 full factorial design, combining the iron concentrations with the three environmental
134 viscosities. Prior to experimental evolution, we grew overnight pre-cultures of PAO1 and
135 PAO1-*gfp*. From these overnight cultures, we prepared glycerol stocks (750 μ L culture in 750
136 μ L glycerol (85% V/V)), stored at -80°C, to be used later as references for the ancestral strain
states. We washed the remaining part of the pre-cultures in 0.85% NaCl and adjusted them to
137 $OD_{600} = 10^{-2}$ in NaCl (0.85% m/V), from which we inoculated 2 μ L of culture into 198 μ L of
medium, so that experimental populations started at $OD_{600} = 10^{-4}$ (*circa* 20000 cells/well). We
138 evolved 24 replicates in each of our nine environments (12 populations each for PAO1 and
139 PAO1-*gfp*, respectively), resulting in a total of 216 independently evolving populations. We
140 inoculated the 24 replicated populations in different wells on the same 96-well plate. To
141 reduce the risk of cross-contamination, we kept all wells adjacent to an evolving population
142 blank. Additionally, we inoculated PAO1 and PAO1-*gfp* strains in a checkerboard pattern, so
143 that the closest vertical and horizontal neighbors could be distinguished based on the GFP
144 marker. We let each bacterial culture grow for 48 hours and then transferred a sample to fresh
145 medium. We repeated this procedure for 100 consecutive growth rounds, corresponding to
146 approximately 1200 bacterial generations. At the end of each round, we used a multimode
147 plate reader (Infinite M-200, Tecan, Switzerland) to measure: (i) culture growth at OD_{600} , (ii)
148 pyoverdine fluorescence (excitation|emission = 400|460 nm) and, (iii) *gfp* fluorescence
149 (excitation|emission = 488|520 nm). Subsequently, we diluted 2 μ L of each population in 198
150 μ L NaCl (0.85% m/V), and then transferred 2 μ L of this diluted culture to 198 μ L of fresh
151 medium to begin the next round of growth, resulting in a 1:10000 dilution rate. After every
152

154 other round, we mixed 50 µL of each population with 50 µL glycerol (85% V/V) for long-term
storage at -80 °C.

156

Cross contamination tests

158 We tested for potential cross-contamination events during the experiment in three ways.
First, we used the constitutively expressed GFP marker to identify (i) populations that were
160 initially untagged but started displaying GFP fluorescence beyond background-levels, and (ii)
initially GFP-tagged populations that lost this trait. Second, we used a BD LSR II Fortessa flow
162 cytometer (at the Flow Cytometry Facility, University of Zurich) to identify contaminated
populations consisting of a mix of *gfp*-tagged and untagged cells. Third, we plated each
164 population, appropriately diluted, onto LB agar plates, and screened colonies with a
fluorescence imaging device (Lumenera Infinity 3 camera connected to a dark chamber) to
166 identify *gfp*-tagged cells in untagged populations and vice-versa. We then integrated
information from the three tests and excluded populations that showed signs of
168 contamination and excluded 45 out of the 216 populations. An additional two populations
were lost because they went extinct during the experiment. The maximum number of
170 excluded populations for a given medium was eight (low iron / low viscosity). To maintain a
balanced design, we randomly excluded populations from every environment with fewer than
172 eight contaminated or extinct populations to ensure an equal number of 16 independently
evolved populations per environment (i.e. a total of 144 populations) for further analysis
174 (Table S1).

176 *Pyoverdine production assay*

To quantify pyoverdine production changes during experimental evolution, we isolated and

178 screened a total of 2880 evolved clones (i.e., 20 per population) for their pyoverdine
179 production profiles. We first inoculated aliquots (from freezer stocks) of all 144 evolved
180 populations from the last round of experimental evolution in 200 μ L of LB in 96-well plates.
181 We also inoculated the ancestral wild type strains and the pyoverdine-null mutant as controls.
182 We grew all cultures for 16-18h, at 37°C and 170 rpm. Subsequently, we serially diluted each
183 culture in 0.85% NaCl, to 10^{-6} and 10^{-7} , and spread 50 μ L of these diluted cultures onto iron-
184 supplemented LB-Agar plates (2% m/V LB, 1.2% m/V Agar, 20 μ M FeCl₃). We incubated plates
185 for 16-18 hours at 37°C. Subsequently, we picked 20 random colonies from each evolved
186 population and transferred them on 96-well plates to 200 μ L of the medium in which the
187 selected clones had evolved. We further picked four colonies for each of the two ancestors
188 (PAO1 and PAO1-*gfp*), and the pyoverdine-null mutant strains per 96-well plate. We incubated
189 the resulting plates at 37°C and 170 rpm for 48 hours, and subsequently measured OD₆₀₀ and
190 pyoverdine fluorescence, using the plate reader as described above. We then quantified the
191 evolved pyoverdine level of each clone relative to its ancestor (in % of ancestral production)
192 and allocated evolved clones to four categories. These categories comprise: (i) non-producers,
193 producing less than 10% of the ancestral level; (ii) reduced producers, producing between 10%
194 and 70%; (iii) regular producers, producing between 70 % and 130 %; and (iv) hyper-producers,
195 producing more than 130% (Dumas and Kümmeli 2012). Following our measurements, we
196 preserved evolved clones individually by mixing 50 μ L of a culture containing cells from the
197 clone with 50 μ L 85% glycerol for storage at -80°C.

198

Pyoverdine growth stimulation assay

200 One evolutionary response to the emergence of cheaters or other competing lineages could
201 involve changes to the peptide backbone of pyoverdines, together with mutations in

202 receptors, such that the altered pyoverdines would become more exclusively available for
members of the respective producer lineage and less exploitable by cheaters or competitors
204 (Lee et al. 2012; Inglis et al. 2016) To explore this possibility, we used the siderophore-null
mutant as a bio-sensor (Jiricny et al. 2010), and examined how well this mutant can use the
206 pyoverdines secreted by evolved producers. Specifically, we fed the pyoverdine-containing
supernatants of evolved regular producer and hyper-producer clones to the ancestral
208 pyoverdine-null mutant and measured its growth in low iron - low viscosity condition. For this
assay, we used six evolved clones from each of the 16 populations per medium (i.e. 864 clones
210 in total). Whenever clones within a population produced similar amounts of pyoverdine, we
chose six random clones. In contrast, whenever clones from the same population produced
212 different amounts of pyoverdine (i.e. regular and hyper-producers), we chose at least one
clone per pyoverdine production phenotype and drew the remaining clones at random.

214 To generate pyoverdine-enriched supernatants, we individually grew the selected 864
evolved clones in 200 μ L of the low iron – low viscosity condition in 96-well plates, and
216 incubated the plates for 24 hours at 37°C and 170 rpm. Following incubation, we first
measured the OD₆₀₀ and pyoverdine fluorescence of all cultures, and then separated the
218 supernatant from the bacterial cells by centrifugation at 2250 rpm for 10 minutes. We filter-
sterilized the supernatants by transferring them to 96-well 1 mL filter-plates (VWR
220 International, Switzerland), followed by centrifugation at 1200 rpm for 15 minutes. We then
performed a supernatant cross-feeding assay to quantify to extent to which each supernatant
222 stimulates the growth of the ancestral pyoverdine-null mutant. Specifically, we added 20 μ L
of each supernatant, in triplicate, to individual wells of a 96-well plate containing 178 μ L of
224 the low iron – low viscosity medium. To this mixture, we added 2 μ L of the siderophore-null
mutant from an overnight LB culture, washed and re-suspended in 0.85% NaCl, and diluted to

226 a starting density of $OD_{600} = 10^{-3}$. We incubated plates at 37°C and 170 rpm, and measured the
227 growth (OD_{600}) of the siderophore-null mutant after 24 hours. As positive and negative
228 controls, we also fed the siderophore-null mutant with either supernatants of the ancestral
229 strain or with its own supernatant. For each evolved pyoverdine producer, we calculated the
230 cross-feeding effect as the growth (final OD_{600}) of the pyoverdine-null mutant in the evolved
231 supernatant divided by its growth in the ancestral supernatant. Values above and below one
232 indicate increased and decreased growth stimulation, respectively.

234 *Sequencing of evolved clones*

235 We sequenced the genomes of 129 evolved clones to identify the genetic changes that
236 occurred during experimental evolution. For each of our nine growth conditions, we chose
237 clones from 8 out of the 16 independently evolving populations. From each population, we
238 picked 1-3 clones so that we sequenced 14 to 15 clones per condition. We chose these clones
239 according to their evolved pyoverdine production levels, and according to how well they
240 stimulated the ancestral pyoverdine-null mutant. Specifically, we first chose evolved
241 pyoverdine producers with the two highest and two lowest growth stimulatory effects on the
242 ancestral pyoverdine-null mutant (4 clones per medium = 36 clones). Second, we selected
243 additional clones based on their evolved pyoverdine production phenotypes and growth
244 profiles. For each population in which evolved pyoverdine phenotypes were uniform across
245 all 20 isolated clones, we only picked a single clone for sequencing. Conversely, when
246 pyoverdine production phenotypes varied within a population, we chose two to three clones
247 covering the observed phenotypic range (i.e. from non- to hyper-producers). Additionally, we
248 also sequenced one clone from each of the two ancestral strains (PAO1 and PAO1-*gfp*) as

references, against which we mapped the evolved clones to identify genetic changes that
250 occurred during experimental evolution.

Prior to DNA extraction, we grew all selected clones in 1.5 mL LB, in 24-well plates, at
252 37°C (170 rpm) for 16-18 hours. We extracted genomic DNA from 400 µL of these cultures
with the Maxwell® RSC Cultured Cells DNA Kits using a Maxwell® RSC Instrument (Promega,
254 Switzerland), at the Functional Genomics Centre Zurich (FGCZ). We followed the
manufacturer's instructions, including the addition of 10 µL RNase A solution to each
256 overnight culture, to remove co-purified RNA molecules. We quantified the extracted DNA
concentration with the Quantifluor dsDNA sample kit (Promega, Switzerland) and diluted to
258 14-32 ng/µL, when necessary. We sent 60 µL of each DNA sample to the Oxford Genomics
Centre (Oxford, United Kingdom) for library preparation and whole-genome sequencing on
260 the Illumina NovaSeq6000 platform (paired-end, 150 base-pair reads). We had to exclude 10
clones from further analysis, because we i) detected DNA cross-contaminations of samples (4
262 clones); ii) did not manage to extract enough genomic DNA (1 clone); or iii) did not obtain
sufficient read numbers (5 clones), which brought the final tally to 119 evolved genomes.

264

Genomic analysis of evolved clones

266 We assessed the quality of the raw reads with “fastqc” (Andrews 2010) and “multiqc” (Ewels
et al. 2016). We then aligned the reads to the *P. aeruginosa* PAO1 reference genome using
268 the “bwa-mem” algorithm with default settings (Li 2013), followed by variant-calling with
“bcftools” (Li et al. 2009): “mpileup” and “call”. We then quality-filtered the detected variants:
270 we excluded SNPs and indels under 50 “QUAL”, as well as indels with IDV < 10. Subsequently,
we excluded variants detected in the genomes of evolved clones that were also present in the
272 ancestral clones with “bcftools isec”. We then annotated the final list of variants with “snpEff”

(Cingolani et al. 2012). We detected deletions and duplications using CLC Genomic Workbench

274 (version 11.0.1, <https://digitalinsights.qiagen.com>). After creating a Mapping Graph Track, we
276 identified graph threshold areas (window size = 5) using an upper coverage threshold of 0.5
for deletions and a lower coverage threshold of 500 for duplications. We subsequently visually
278 confirmed these results with the Integrated Genomics Viewer (Robinson et al. 2011). We
identified 314 loci that independently mutated in two or more populations and classified them
according to their biological function using PseudoCAP (Winsor et al. 2005) and the primary
280 literature.

282 *Statistical Analysis*

We performed all statistical analyses with R version 3.6.3. (R Core Team 2020). If not indicated
284 otherwise, we used general linear models for data analysis. Prior to analysis, we used (i) the
Shapiro-Wilk test and QQ-plots to check whether the model residuals were normally
286 distributed; and (ii) the Levene test to test for homogeneity of variances. If these assumptions
were not met, we log-transformed the affected response variables.

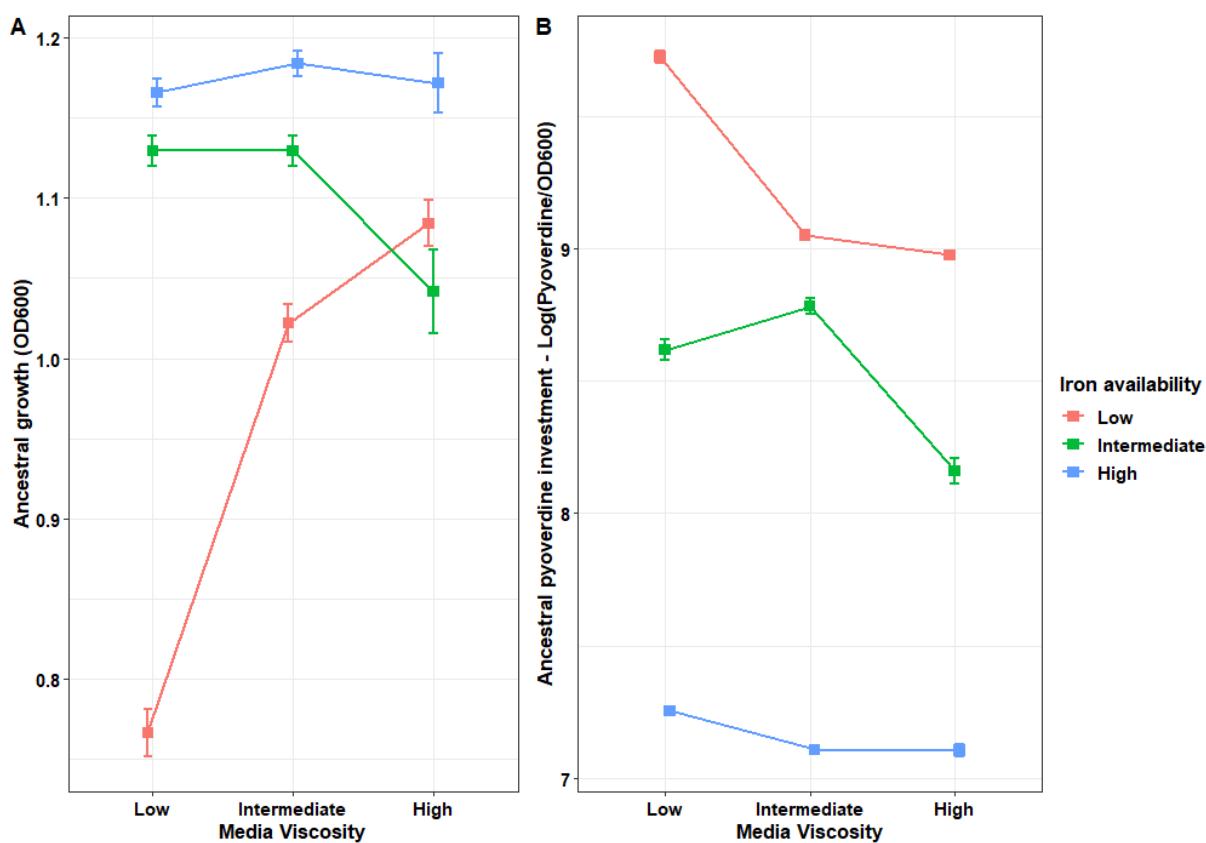
288 We first tested whether media conditions affected end-point growth (OD₆₀₀ after 48
hours) and pyoverdine production of the ancestral strain. In our linear models, we fitted either
290 of these two population-level metrics as dependent variables, and iron availability and media
viscosity as response variables. We quantified pyoverdine investment as “PVD per capita”, i.e.
292 the pyoverdine fluorescence normalized by OD₆₀₀, and logarithmically transformed these
values.

294 To determine whether pyoverdine investment changed between the first and the last
round of experimental evolution, we calculated the fold change in pyoverdine investment for
296 each population at round 100 relative to round 1, and performed one-tailed t-tests to evaluate

whether the observed values differ from the null expectation (i.e. fold-change = 1). We used
298 the same procedure to assess how the supernatant of evolved clones changed the growth of
the ancestral non-producer relative to the supernatant of the ancestral producer. We used
300 the FDR p-value adjustment method to account for multiple testing (Benjamini & Hochberg,
1995).

302 To test whether evolved populations harbour different coexisting pyoverdine
phenotypes, and whether the heterogeneity in phenotypes differs across environments, we:
304 (i) quantified the coefficient of variation for each population (standard deviation/mean across
20 clones) and (ii) then fitted this metric as a dependent variable, together with media
306 viscosity and iron availability as response variables to a linear model. We logarithmically
transformed coefficients of variation for statistical analysis and used Tukey's *post hoc* tests to
308 examine pair-wise differences between factor levels.

To test whether the frequency of evolved pyoverdine non-producers and over-
310 producers differ across the nine experimental media, we used Fisher's exact test, with FDR p-
value corrections for multiple testing. We used the same statistical test to evaluate whether
312 hypermutator and non-hypermutators clones differ in the number of mutations in pyoverdine
biosynthesis versus regulatory genes.


314 To test whether clones from the four pyoverdine production categories differ in their
growth, we quantified the OD₆₀₀ of the evolved clones after 48 hours and scaled all values
316 relative to the ancestral producer. We then fitted this metric as a response variable in linear
mixed models (lme4 package: Bates et al. 2015), and used category as a response variable,
318 and population of origin as a random factor. Finally, to assess whether mutations in functional
categories are associated with changes in pyoverdine production and growth, we fitted linear
320 models where we used pyoverdine production relative to the ancestor as the response

variable, and absence/presence of mutations in the respective category as the explanatory
322 variable. Since mutations in the pyoverdine locus had a significant effect on pyoverdine
production, we always implemented the absence/presence of mutations in this locus as an
324 additional explanatory variable in our models.

326 **Results**

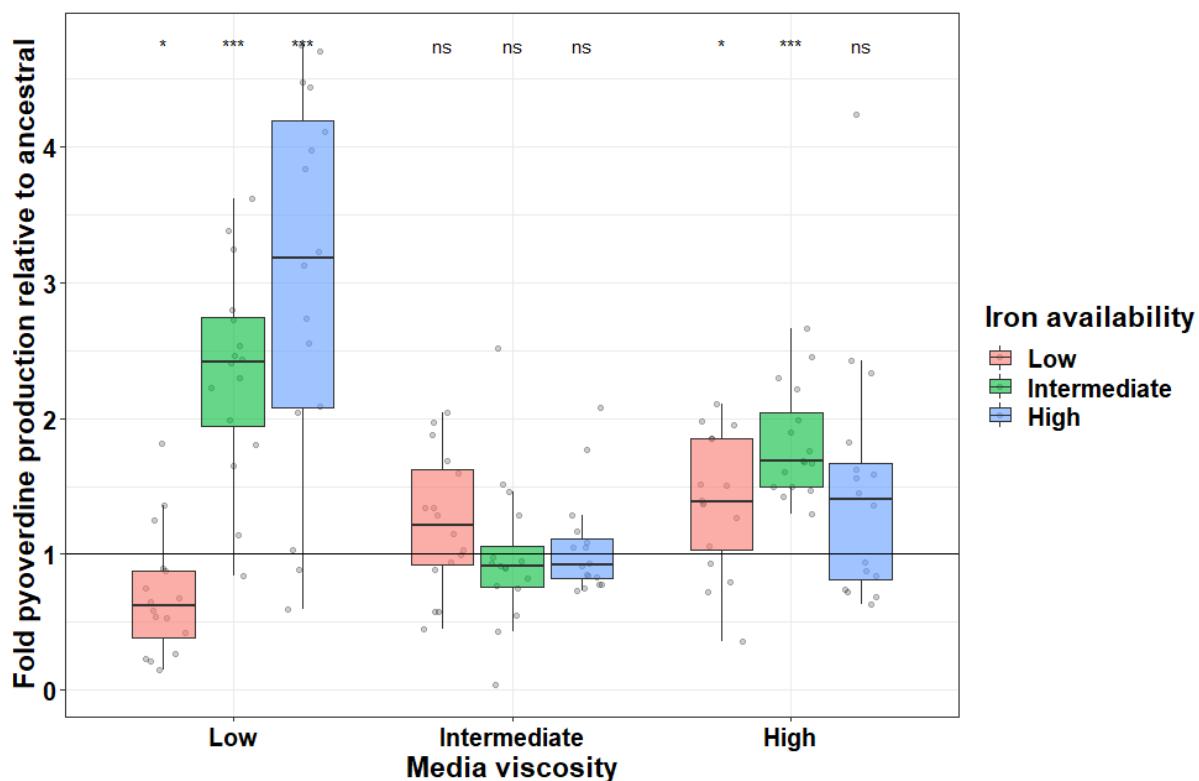
*Interaction between iron availability and environmental viscosity determine pyoverdine
328 production and growth in ancestral P. aeruginosa*

We first evaluated how iron availability and media viscosity affect the growth and pyoverdine
330 production of the ancestral *P. aeruginosa* prior to evolution (Figure 1). This analysis provides
important information on the extent to which phenotypes differ across environments and
332 thus the potential for selection to act differentially upon them. We found that ancestral *P.*
aeruginosa growth was influenced by a significant interaction between iron availability and
334 media viscosity (ANOVA: $F_{4,135} = 55.43$; $p < 0.0001$, Fig. 1A, Table S2). While growth decreased
with more stringent levels of iron limitation, increased media viscosity dampened this effect.
336 Pyoverdine production was also influenced by a significant interaction between iron
availability and media viscosity (ANOVA: $F_{4,135} = 237.67$; $p < 0.0001$, Fig. 1B, Table S2). While
338 pyoverdine production gradually decreased from low to high iron availability, the decrease
was again less pronounced in more viscous environments. These findings show that *P.*
340 *aeruginosa* adjusts its pyoverdine production profile both in response to iron availability and
to environmental viscosity, and we might thus expect selection pressures on this trait to vary
342 across environments.

344

Figure 1. Iron availability and media viscosity interact and jointly influence growth and pyoverdine production of the *P. aeruginosa* PAO1 ancestral strain. (A) Strain growth (OD at 600 nm) in the nine different environments, which vary in medium viscosity (amount of agar added: low = 0.0%; intermediate = 0.1%, high = 0.2%) and iron availability (low = 0 μ M, red line; intermediate = 2 μ M, green line; high = 20 μ M, blue line). (B) Pyoverdine investment, shown as log-transformed pyoverdine fluorescence values normalized by OD, in all nine experimental conditions. Each square represents the mean of 16 independent populations, whereas the bars represent the standard error of the mean.

352


Environment-dependent selection for decreased and increased pyoverdine production

354 To test whether different environments select for different pyoverdine production levels, we quantified the pyoverdine investment of evolved populations relative to the ancestor after 356 approximately 1200 generations of experimental evolution. We observed that pyoverdine production levels significantly changed in five out of the nine environments (Figure 2A). 358 Consistent with previous studies, we found that populations evolved reduced pyoverdine

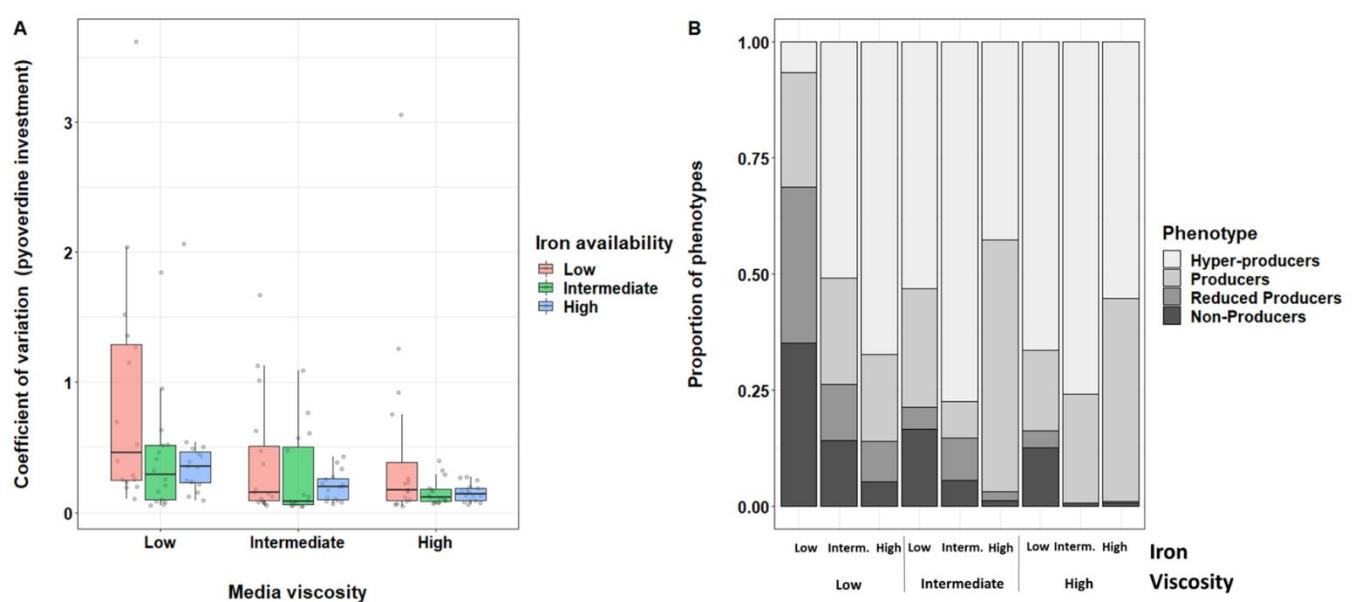
production levels under the low iron – low viscosity condition ($t_{15} = -2.617$, $p_{adj} = 0.035$).

360 Because iron limitation is most stringent and pyoverdine most needed in this environment
(Fig. 1), the evolution towards lower pyoverdine production levels is compatible with the arise
362 and spread of cheating mutants. In stark contrast, populations that evolved in low viscosity
environments but with intermediate and high iron availabilities significantly increased
364 pyoverdine production levels compared to the ancestral wildtype (intermediate iron – low
viscosity: $t_{15} = 7.134$, $p_{adj} < 0.0001$; high iron – low viscosity: $t_{15} = 5.830$, $p_{adj} < 0.0001$).

366 Selection for altered pyoverdine production seemed to be lowest in media with
intermediate viscosity, where the population-level pyoverdine production levels did not
368 change during experimental evolution regardless of iron concentration (intermediate viscosity
with low iron: $t_{15} = 1.865$, $p_{adj} = 0.105$; intermediate iron: $t_{15} = -0.134$, $p_{adj} = 0.895$; high iron:
370 $t_{15} = 0.584$, $p_{adj} = 0.639$). Conversely, in populations evolved in high viscosity media, we
observed an increase in pyoverdine production levels in most populations. This increase was
372 significant for two out of the three iron conditions (high viscosity - with low iron: $t_{15} = 2.985$,
 $p_{adj} = 0.021$; with intermediate iron: $t_{15} = 8.186$, $p_{adj} < 0.0001$; with high iron: $t_{15} = 2.112$, $p_{adj} =$
374 0.078). Taken together, our results do not support the hypothesis that pyoverdine production
is selected against in iron-rich environments because of potential disuse. Instead, we found
376 support for the hypothesis that high environmental viscosity can favour increased levels of
cooperation and that pyoverdine production levels diverge across environments, possibly to
378 match environment-specific requirements for this siderophore.

Figure 2. Evolution causes a media-dependent divergence in pyoverdine production. Population-

380 level pyoverdine production after 100 rounds of experimental evolution, relative to the ancestral
phenotype (black horizontal line) in nine different environments. The environments varied in their
382 viscosity (amount of agar added: low = 0.0%; intermediate = 0.1%, high = 0.2%) and iron availability
(low = 0 μ M, red; intermediate = 2 μ M, green; high = 20 μ M, blue). We measured pyoverdine
384 production via its natural fluorescence, scaled to the optical density of the population (OD at 600 nm
after 48 hours). Box plots show the median and the 1st and 3rd quartile across the 16 independently
386 evolved populations (depicted by the individual dots). Whiskers represent the 1.5 interquartile range.
Asterisks signify FDR-corrected p-values for one-sample t-tests: * < 0.05, *** p < 0.0001, ns = not
388 significant.


390 *Iron availability and viscosity both influence heterogeneity in pyoverdine production among
clones from the same population*

392 In a next step, we studied evolved populations individually and asked whether clones with
distinct pyoverdine phenotypes co-exist within populations. We predict highest population

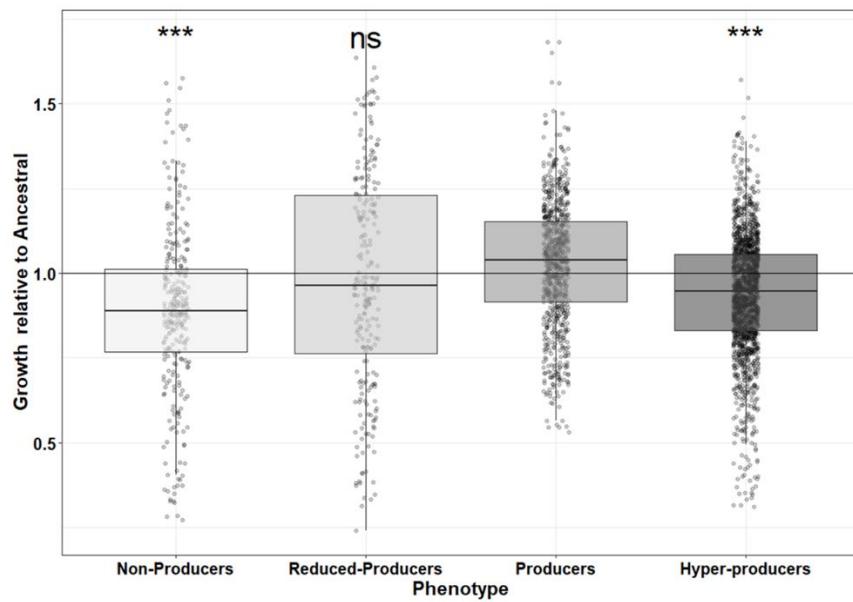
394 diversity in environments where different social strategies are likely to compete, e.g. under
395 low iron – low viscosity, where cheats and pyoverdine producers could closely interact.
396 Conversely, we expect lower levels of diversity among clones in environments that are
397 generally favourable for cooperation (e.g. under high viscosity). Indeed, we observed that the
398 level of within-population heterogeneity in pyoverdine production varied both between
399 environments and between replicates of the same condition (Fig. S1). In line with our
400 hypothesis, we found that the coefficient of variation, which quantifies phenotypic
401 heterogeneity among clones within a population, significantly increased with more stringent
402 iron limitation (ANOVA: $F_{2,139} = 4.85$; $p = 0.009$; Tukey post-hoc tests: low vs intermediate $t = -$
403 2.993 , $p = 0.009$; low vs high (marginally significant) $t = -2.243$, $p = 0.067$) and lower
404 environmental viscosity (ANOVA: $F_{2,139} = 11.34$; $p < 0.0001$; Tukey post-hoc tests: low vs
405 intermediate $t = -3.823$, $p < 0.001$; low vs high $t = -4.37$, $p < 0.001$) (Fig. 3A, Table S3).

406 We then examined whether the different environments affect the prevalence of clones
407 with distinct pyoverdine production levels. Consequently, we allocated each isolated clone
408 into one of four discrete pyoverdine production categories, covering the range from non-
409 producers to hyper-producers (Fig 3B). We found that the frequency of clones in the four
410 categories varied significantly between any two environments (global Fisher's exact test: $p <$
411 0.0005 ; FDR-corrected pairwise Fisher's exact tests maximum: $p < 0.0079$). Most importantly,
412 the frequency of non-producers decreased in environments with increased iron availability
413 and media viscosity, whereas the prevalence of regular and hyper-producers increased in
414 more viscous environments under all iron availabilities (Fig. 3B). This analysis thus reinforces
the view that there is a shift from selection for cheating to selection for increased cooperation

416 when moving from low iron – low viscosity to higher iron – higher viscosity conditions.

418 **Figure 3 – Clones with divergent pyoverdine production profiles co-exist in populations evolved**
419 **under low iron or viscosity conditions, whereas populations evolved under higher iron and high**
420 **viscosity consist almost exclusively of producers and hyper-producers.** (A) Coefficient of variation
421 (standard deviation/mean) for pyoverdine production phenotypes across clones from the same
422 population. We measured pyoverdine production via its natural fluorescence and scaled to the optical
423 density (OD at 600 nm) of the population. Box plots show the median and the 1st and 3rd quartile across
424 the 16 independently evolved populations (depicted by the individual dots). (B) Distribution of discrete
425 pyoverdine production phenotypes for all nine environments after 100 rounds of experimental
426 evolution. We allocated clones to phenotype categories according to their pyoverdine production
427 levels scaled relative to the ancestor (100%). [1] Non-producers: less than 10%; [2] reduced-producers:
428 10%-70%; [3] producers: 70 %-130%; [4] hyper-producers: more than 130% of ancestral production.
429 Fisher's exact test reveals significant differences in category frequencies between any two
430 environments.

432 *Pyoverdine under- and hyper-production comes at a fitness cost*


433 The high frequency of pyoverdine none- and hyper-producers suggests that this trait was
434 under selection during experimental evolution. Here, we explore whether changes in
435 pyoverdine phenotypes have fitness consequences for evolved clones. If non-producers
436 evolved because of cheating, then their fitness should decrease when growing in

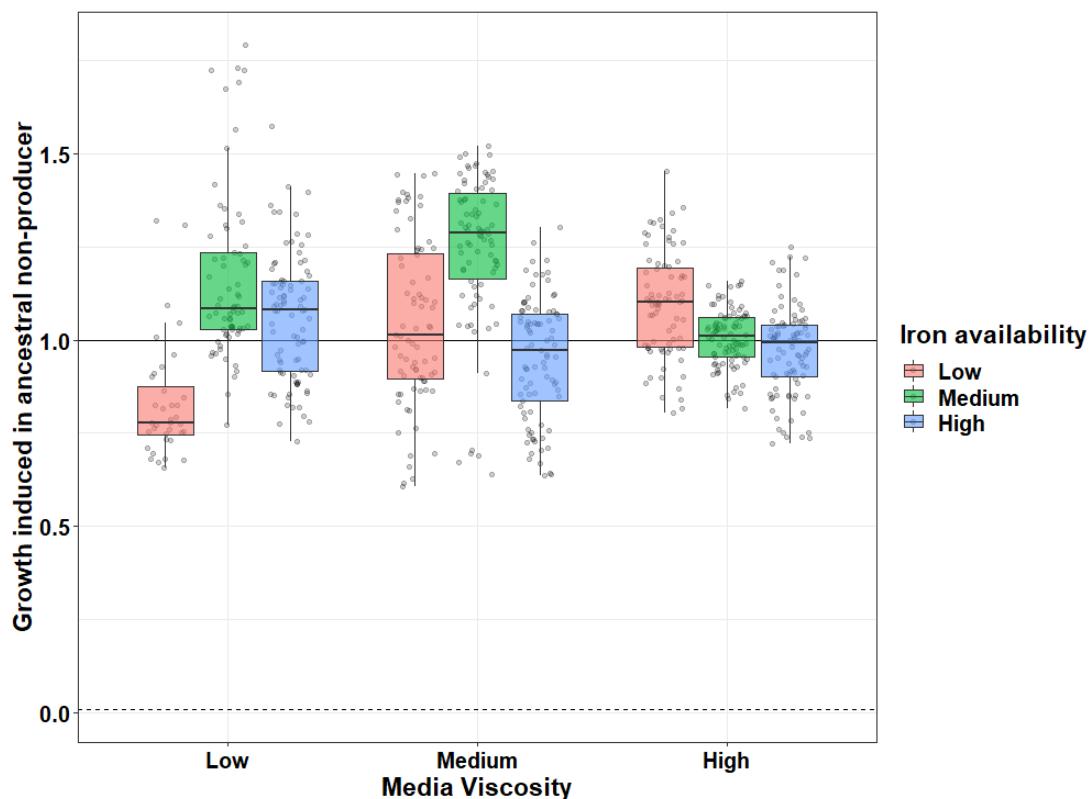
monoculture. Conversely, if over-producers evolved because higher levels of cooperation are
438 beneficial then their fitness should exceed the fitness of regular producers. Indeed, we
observed significant growth differences between evolved clones from the four pyoverdine
440 production categories (linear mixed model: $t_{373} = 51.91$, $p < 0.0001$, Fig. 4). As predicted by
the cheating hypothesis, non-producers grew significantly more poorly than regular
442 pyoverdine producers (Tukey post-hoc test: $z = 4.024$; $p < 0.001$). However, regular pyoverdine
producers also grew significantly better than hyper-producers ($z = -9.45$, $p < 0.001$), thus
444 refuting our hypothesis that over-production is associated with an overall growth advantage.

One shortcoming of the above analysis is that it combines clones across all
446 environments, which does not allow us to test whether pyoverdine hyper-production is
associated with fitness benefits only in some environments. To address this issue, we repeated
448 our analysis for the nine environments separately. While we still observed that hyper-
producers generally grew less well than regular producers (Fig. S2; Table S4), we also found
450 that their growth decline was most pronounced in the low iron – low viscosity condition. In
contrast, growth differences between producer and hyper-producer clones became negligible
452 in environments with increased iron or increased viscosity, suggesting that pyoverdine hyper-
production might be equally successful as regular production in these environments.
454 Moreover, it is possible that hyper-producers show increased growth rates or shorter lag-
phases, fitness components we could not measure with our end-point assay.

456

458

460 **Figure 4 – Evolution of non- and hyper-pyoverdine production is associated with growth declines.**


(A) Growth of evolved clones allocated to four different pyoverdine production categories, scaled
462 relative to the ancestor (100%): None-producers: less than 10%; [2] reduced-producers: 10%-70%; [3]
regular producers: 70 %-130%; [4] hyper-producers: more than 130% of ancestral production.
464 Significance levels (** p < 0.0001, ns = non-significant) refer to pair-wise comparisons between
producers and the other three phenotype categories. Horizontal black line at y = 1 indicates the
466 ancestral phenotype.

468 *Environment-dependent change in the extent to which non-producers are stimulated in their
growth by pyoverdines from evolved producers*

470 Since the above analyses showed that most pyoverdine non-producers may have evolved as
cheaters, we here explore whether pyoverdine producers and hyper-producers responded to
472 the presence of non-producers by reducing the exploitability of their pyoverdine. To test this
hypothesis, we harvested pyoverdine-containing supernatants from ancestral and evolved
474 (hyper-)producers, and fed these supernatants to an engineered siderophore-null mutant. If
(hyper-)producers evolved mechanisms to reduce the exploitability of their pyoverdine, we

476 expect their supernatants (containing pyoverdine) to have a reduced stimulatory effect on the
growth of the siderophore-null mutant.

478 We found that the supernatants of all evolved (hyper-)producing clones still stimulated
the growth of the ancestral non-producer (Fig. 5). However, the growth stimulation
480 experienced by the siderophore-null mutant depended on a significant interaction between
the viscosity and iron availability of the environments in which the (hyper-)producers evolved
482 in (LMER: $\chi^2_4 = 26.35$, $p < 0.0001$, Fig. 5, Table S5). Compatible with our hypothesis, we
observed that the relative growth stimulation of the siderophore-null mutant was significantly
484 reduced when subjected to supernatants from producers evolved in the low iron – low
viscosity environment ($t_{35} = -6.40$, $p < 0.0001$), exactly the environment in which non-
486 producers were most prevalent (Fig. 3C). In all other environments, the supernatant-induced
growth stimulation of the siderophore-null mutant was either unchanged or even higher
488 compared to the supernatant of the ancestral pyoverdine producer (Fig. 5). Increased growth
stimulation can be explained by the fact that hyper-producers evolved in many treatments,
490 such that the pyoverdine content in the supernatant was an important additional predictor of
the observed growth stimulation patterns (LMER: $\chi^2_1 = 278.31$, $p < 0.0001$, Table S5). Taken
492 together, these results suggest that only pyoverdine (hyper-)producing clones evolved under
low iron – low viscosity might have adapted to non-producers and reduced the exploitability
494 of their pyoverdine.

496

Figure 5. Interaction between iron availability and environmental viscosity drives the extent to which
498 pyoverdines from evolved producers stimulate the growth of the ancestral non-producer. Each
500 individual circle shows the average effect (three replicates) of supernatant collected from an evolved
502 pyoverdine (hyper-)producers on the growth of an engineered siderophore-null mutant. All growth
504 values are scaled relative to the growth stimulation this mutant experienced in the supernatant of the
ancestral wildtype (solid horizontal line). The dashed line represents the growth of the siderophore-
null mutant when fed with its own supernatant. Box plots show the median and the 1st and 3rd quartile,
whereas whiskers represent the 1.5 interquartile range.

506 *Genomic features of evolved clones*

To map the evolved phenotypes to genetic changes, we sequenced the genomes of 119
508 evolved clones from 68 independent populations to an average sequencing depth of 230x (min
= 177x, max = 334x), and compared them to their respective ancestors (PAO1 and PAO1-*gfp*).
510 We found a total of 3472 mutations (SNPs, duplications and deletions), distributed over 1897
loci (coding and intergenic regions). Individual clones had between 2 and 191 mutations

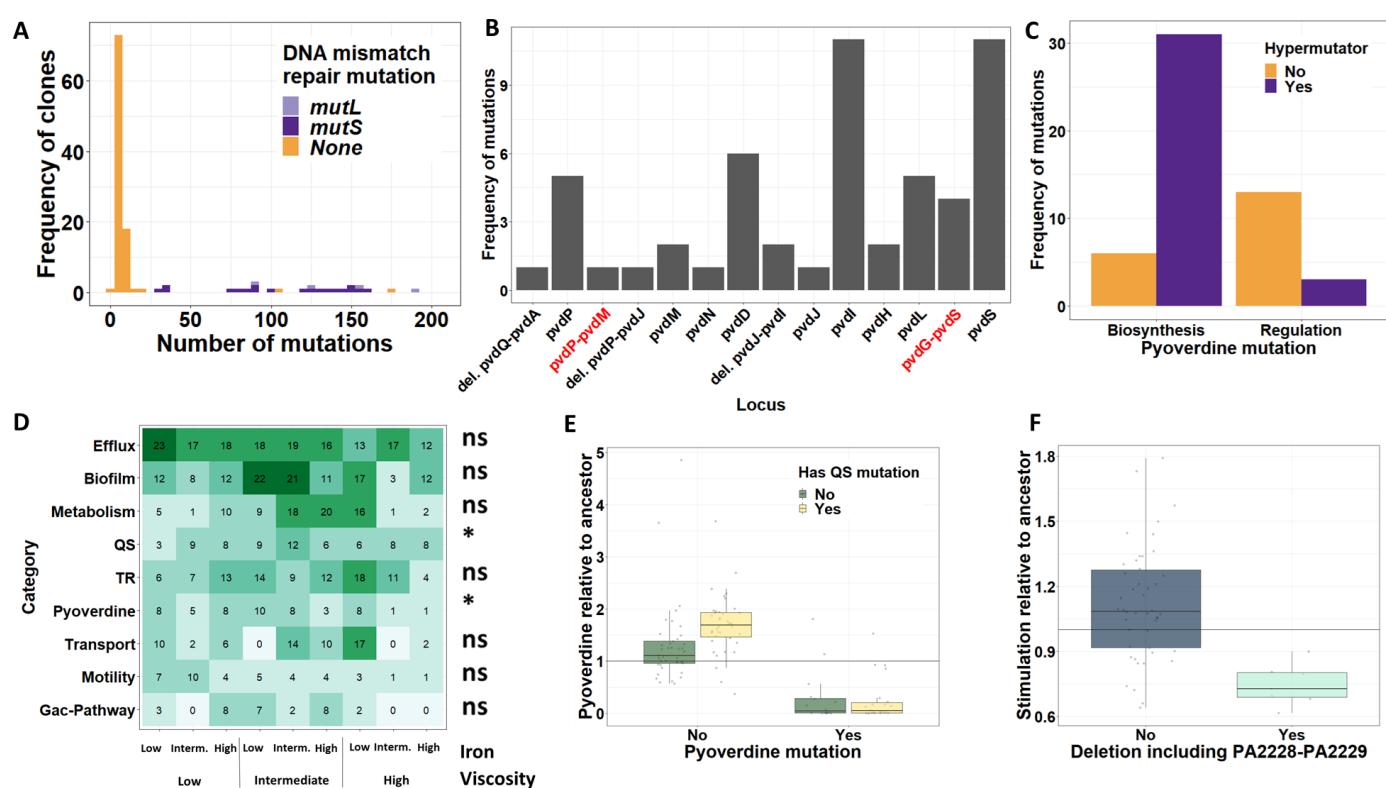
512 (median = 7, Fig. 6A). The distribution of mutations per clone followed a bimodal pattern: most
513 clones (78.99%) had few mutations (< 20), while a minority of clones (21.01%) had many
514 mutations. This discrepancy in mutations per clone can be explained by the occurrence of non-
515 synonymous mutations in the coding regions of the *mutS* and *mutL* genes in almost all clones
516 (92%, 23 out of 25) possessing more than 20 mutations (Fig. 6A). These genes code for parts
517 of the DNA mismatch repair system of *P. aeruginosa*, and mutations in their coding regions
518 result in substantially elevated mutation rates (Oliver et al. 2002; Wiegand et al. 2008). We
519 henceforth call clones harboring such mutations hyper-mutators.

520

Mutations in the pyoverdine locus are associated with reduced pyoverdine production

521 We then focused on non-synonymous mutations in the pyoverdine locus, i.e., in the regulatory
522 and biosynthetic genes for pyoverdine production, together with their intergenic regions. We
523 asked whether mutations in these genes affect the pyoverdine production of evolved clones.
524 A total of 38 clones had mutations in the pyoverdine locus, and these mutants produced
525 significantly less pyoverdine (mean: $0.27 \pm \text{SE: } 0.07$) than clones without such mutations
526 (mean: $1.50 \pm \text{SE: } 0.08$) (ANOVA: $F_{1,117} = 88.86$; $p < 0.0001$, Fig. S3). Only one clone produced
527 no pyoverdine without having a mutation in the pyoverdine locus. We could attribute its
528 phenotype to a non-synonymous mutation in *tatC*. Mutations in this gene are known to impair
529 pyoverdine maturation (Lee et al. 2016; Voulhoux et al. 2006), and we thus included this
530 mutant in the class of pyoverdine mutants.

531 Almost all genes of the pyoverdine locus harbored mutations (Fig. 6B). The most
532 frequent mutations occurred in or upstream of *pvdS*, the sigma factor that positively regulates
533 the expression of pyoverdine, and in *pvdI*, the largest gene in the cluster, encoding a non-
534 ribosomal peptide synthetase (Fig. 6B). While *pvdS* mutations have frequently surfaced in


536 previous more short-term evolution experiments (Granato et al. 2018; Kümmerli et al. 2015),
538 mutations in pyoverdine biosynthesis genes are much less common (O'Brien et al. 2019). We
540 suspected that this difference is linked to the evolution of hypermutators in our experiment.
Indeed, hypermutators incurred significantly fewer mutations in regulatory genes, but more
542 mutations in pyoverdine biosynthesis genes compared to non-hypermutators (Fisher's Exact
544 Test: $p < 0.0001$, Fig. 6C). For all those populations where we sequenced more than one clone,
546 we examined the order in which mutations appeared (Fig. S4). We found that mutations in
the pyoverdine locus arose after *mutS/mutL* mutations in eight populations, but never the
548 other way round. In six populations, we were not able to resolve the order in which mutations
occurred. Taken together, we observed a high prevalence of mutations in the pyoverdine
550 locus, a shift in the mutational landscape between non- and hypermutators, and most
552 mutations to be associated with decreased pyoverdine production.

548

Mutations in quorum-sensing systems are associated with pyoverdine hyper-production

550 Next, we investigated possible links between mutational patterns and pyoverdine hyper-
552 production. For this purpose, we classified mutations into functional categories. Fig. 6D shows
554 the nine most frequent categories (in which we detected at least 25 independent mutations
per category), and the prevalence of mutations in them across our nine environments. One of
556 these categories ("pyoverdine") includes mutations in the pyoverdine locus itself, which we
have shown to be associated with under-production. We thus asked whether mutations in any
558 of the other eight categories are associated with pyoverdine hyper-production, while
statistically controlling for the presence of mutations in the pyoverdine locus. We found that
560 mutations in quorum-sensing (QS) genes were significantly associated with increased
562 pyoverdine production in clones with no mutations in the pyoverdine locus (ANOVA: $F_{1:115} =$

560 8.211, $p_{adj} = 0.039$) (Fig. 6E; Table S6). Mutations occurred in all three known *P. aeruginosa* QS
systems (Las, Rhl, and PQS) and included non-synonymous SNPs, small indels, and large
562 duplications and deletions (Table S7). In addition, the mutational patterns of Fig. 6D also
suggest that some mutations are associated with adaptation to the growth medium. The most
564 obvious candidates are mutations in efflux pump related genes, particularly those responsible
for the regulation of the mexAB-oprM pump (Table S8), which occurred in 108 out of the 119
566 clones. Their high prevalence could result from the use of bipyridyl, a compound that not only
chelates iron outside the cell, but has also toxic effects when entering cells. Efflux pump up-
568 regulation has been reported to improve growth in the presence of bipyridyl (Liu et al. 2010).

570

Figure 6 – Whole-genome sequencing reveals that mutations in the pyoverdine locus and quorum sensing genes are respectively responsible for pyoverdine under- and hyper-production. (A)
 Distribution of the number of mutations per clone. All but two clones with more than 20 mutations have mutations in the DNA mismatch repair machinery and are therefore considered hypermutators.

(B) Distribution of mutations in genes (black labels) and intergenic regions (red labels) of the
576 pyoverdine locus across clones. Genes are ordered according to the physical map of the locus. (C) Non-
hypermutator clones have more mutations in pyoverdine regulatory genes, whereas mutations in
578 pyoverdine biosynthesis genes are over-represented among hypermutator clones. (D) Heatmap of the
580 most common mutational targets sorted by functional categories, across our nine different
environments. TR – Transcriptional regulation, QS – Quorum sensing. Labels to the right of the
582 heatmap indicate whether mutations in the respective category had a significant (*, $p < 0.05$) or non-
significant (ns, $p > 0.05$) effect on evolved pyoverdine production level. (E) Box plots showing the
584 evolved level of pyoverdine production for clones with mutations in the pyoverdine locus, in QS genes,
586 in both types of genes, or in none of these genes. (F) Box plots showing the evolved level of growth
stimulation of the ancestral non-producer, for clones that have or do not have a deletion that includes
588 the upstream region and/or part of the *qsrO-vqsM-PA2228* operon. Box plots in (E) and (F) depict the
median, the 1st and 3rd quartile and the 1.5 interquartile range (whiskers). The horizontal black lines at
 $y = 1$ indicate the ancestral phenotypes.

590 *Deletions in the *qsrO-vqsM-PA2228* operon and its upstream region are associated with a
592 reduction in pyoverdine-mediated growth stimulation*

594 Finally, we investigated whether the reduction in pyoverdine-mediated growth stimulation
596 observed for some evolved producer clones (Fig. 5) is associated with specific genetic changes.
598 We followed a similar strategy as above (Fig. 6D), testing whether mutations in genes from
specific functional categories are associated with a reduction in pyoverdine-mediated growth
stimulation. This approach yielded no significant association for any category (Table S9). We
therefore explored whether mutations in specific loci were associated with changes in this
phenotype. We found a single hit: supernatants from clones with a large deletion (130 bp to
21 kb) comprising the *qsrO-vqsM-PA2228* operon and its upstream region (7 cases) stimulated
600 the growth of the ancestral non-producer significantly less than clones without such deletions
(Fig 6F, ANOVA: $F_{1:51} = 13.979$, $p_{adj} = 0.007$, Table S10).

602

604

Discussion

606 Because bacterial social traits, such as biofilm formation, quorum-sensing (QS)
communication, and the secretion of beneficial compounds affect virulence, eco-system
608 functioning and microbiome assembly, enormous interest has focused on them (Magnúsdóttir
et al. 2015; Davis & Isberg, 2019; Ebrahimi et al. 2019). Particular attention has been paid to
610 cheating (Strassmann & Queller, 2011; Harrison et al. 2017; Tarnita, 2017) – the loss of
cooperation through mutants that exploit the cooperative efforts of others – whereas the
612 evolution of cooperative traits in environments that do not necessarily favour cheating remain
poorly examined (but see Velicer et al. 1998). Here we explored how different environments
614 shape the evolutionary trajectory of a model bacterial cooperative trait, the production of the
iron-scavenging siderophore pyoverdine by the opportunistic pathogen *P. aeruginosa*. We
616 experimentally evolved this species for approximately 1200 generations in nine different
environments, varying in their degree of iron availability and environmental viscosity. We
618 found that selection for reduced pyoverdine production due to cheating occurred only in one
of the nine environments (low iron – low viscosity), where relatedness among individuals is
620 low and the benefit of exploitation is high. In stark contrast, pyoverdine production either did
not change or even increased over time in four environments each (Fig. 2). Selection for
622 increased pyoverdine production occurred predominantly in environments with either high
iron availability, where the social trait is expressed at a relatively low level and thus not so
624 costly, or with high viscosity, where interacting individuals are more closely related. Whole-
genome sequencing revealed that point mutations in genes of the pyoverdine locus,
626 particularly the iron-starvation sigma factor *pvdS* are significantly associated with decreased

pyoverdine production. Conversely, SNPs and large scale deletions in QS genes are associated
628 with pyoverdine hyper-production. Together, our results suggest that bacterial social traits
can undergo rapid evolutionary change and allow bacteria to adapt to the prevailing
630 environmental and social conditions.

The evolution of pyoverdine non-producers or reduced-producers only consistently
632 occurred in one specific environment (low iron, low viscosity). Because pyoverdine is most
needed under low iron availability, our findings indicate that non-and low-producers have a
634 selective advantage due to cheating (Fig. 2, Fig. S1). This pattern is consistent with previous
studies, where non-producers spread because they used pyoverdine produced by others. In
636 doing so, they did not contribute to the production of this public good themselves, which gave
them a metabolic advantage (Ghoul et al. 2014; Kümmeli et al. 2015; Harrison et al. 2017).
638 The mutational patterns discovered are also consistent with previous work showing that
pyoverdine non- or reduced-production predominantly arose by mutations in *pvdS* and its
640 promotor region in non-hypermutator clones (Kümmeli et al. 2015; Granato & Kümmeli,
2017; O'Brien et al. 2019; Tostado-Islas et al. 2020). The sigma factor *pvdS* regulates the
642 expression of the entire pyoverdine biosynthesis machinery (Cunliffe et al. 1995; Ringel &
Brüser, 2018). Mutations in it are thus often associated with (i) reduced production of this
644 public good, and (ii) major cost saving when the entire pyoverdine locus is shut down. In
contrast to non-hypermutators, we found that mutations in pyoverdine biosynthesis genes
646 were overrepresented in hypermutators. We hypothesize that mutations in these genes that
reduce pyoverdine production costs are rare, and thus only surface in clones with elevated
648 mutation rates.

In our long term evolution experiment, the occurrence and spread of non-producers
650 never lead to a “tragedy of the commons”, i.e. the fixation of cheaters and the concomitant

collapse of populations. Such a scenario has been proposed for several microbial social traits
652 (Rankin et al. 2007; Kümmerli et al. 2015; Schuster et al. 2017). One possible explanation for
its absence is that most cheater clones still produced some pyoverdine, allowing them to grow
654 even in the absence of regular pyoverdine producers (Fig. 4) (Jiricny et al. 2010). Moreover,
pyoverdine secretion is not the only strategy to scavenge iron. Previous studies showed that
656 pyoverdine non-producers can switch to alternatives, such as the production of the secondary
siderophore pyochelin (Ross-Gillespie et al. 2015), and the ferric-iron reducing agent
658 pyocyanin (O'Brien et al. 2017). Pyoverdine production can further be subject to negative-
frequency dependent selection, thus permitting cheaters and cooperators to co-exist (Ross-
660 Gillespie et al. 2007).

Besides these established mechanisms, our data also suggest that pyoverdine
662 producers can directly adapt to the presence of cheats by reducing the benefits of (or access
to) their pyoverdines (Fig. 5). We observed this phenomenon predominantly in evolved
664 producers from the low iron / low viscosity environment, where non-producer prevalence was
highest and thus producer counter-adaptation most expected. While we are unable to identify
666 the exact molecular mechanism behind the reduced pyoverdine-mediated growth benefits for
non-producers, we found one mutational target, the *qsrO-vqsM-PA2228* operon and its
668 upstream region, whose deletion is associated with this effect (Fig. 6F). The exact function of
this operon is unknown, but deletions in it can lead to a complete shutdown of all three QS
670 systems of *P. aeruginosa* (Köhler et al., 2014; Liang et al. 2014). Given that *vqsM* is a putative
transcriptional regulator (Huang et al. 2019), we believe that the change in pyoverdine
672 benefits is not a direct consequence of QS silencing, but rather a pleiotropic effect of a yet to
be described regulatory link of this operon to siderophores. In any case, our findings show
674 that adaptations to cheating are possible but did not involve the proposed modification of

pyoverdine structure and its specific receptor (Smith et al. 2005; Lee et al. 2012; Inglis et al. 676 2016; Niehus et al. 2017; Stilwell et al. 2018). This hypothesis has been put forth multiple times, based on the observation that many pyoverdine variants exist in nature. We argue that 678 there were ample opportunities for pyoverdine structural changes to occur in our long-term experiment, but we observed none. This suggests that pyoverdine diversification might not be 680 driven by cheating, but other selection pressures, such as escaping phages or toxins that use the pyoverdine receptor as an entry point (Smith et al. 2005).

682 Another main finding of our experiment is the evolution of pyoverdine hyper-production in multiple environments, highlighting that not only cheating but also increased 684 cooperation can be favoured. Specifically, pyoverdine production increased in high viscosity environments. High viscosity hampers individual dispersal, which increases the probability 686 that social interactions occur between related individuals, which is favourable for cooperation (Hamilton 1964; Queller 1994; El Mouden and Gardner 2008; Dobay et al. 2014). While 688 previous work showed that high relatedness can maintain cooperation in short-term experiments (Griffin et al. 2004; Gilbert et al. 2007; Kümmerli et al. 2009; Bastiaans et al. 690 2016), we here show that it can favour increased levels of cooperation during a long-term experiment. We further observed that hyper-producers emerged and spread in low viscosity 692 environments with intermediate and high levels of iron. This was rather unexpected, because relatedness is low in these environments, and cooperation should thus be more vulnerable to 694 cheating. However, although non-producers indeed surfaced in these environments, they never reached high frequencies (Fig. 3B). We speculate that increased pyoverdine production 696 could be sustainable in these environments, because the cost-to-benefit ratio of this trait is altered. Cost might be relatively low because the pyoverdine production level is still 698 considerably lower compared to what strains produce in the low iron / low viscosity

environment. Benefits might be relatively high because pyoverdine is still required to
700 scavenge iron bound to the bipyridyl chelator.

We found that mutations in QS regulatory genes (*lasR*, *rhlR* and *pqsR*) and full deletions
702 of the Las-regulon were associated with an increase in pyoverdine production, suggesting a
(direct or indirect) link between pyoverdine and QS regulons. We propose two non-mutually
704 exclusive reasons to explain why these mutations were favoured in our experiment. First,
mutations in QS loci may be advantageous *per se*, and pyoverdine hyper-production may
706 simply be a by-product of these mutations. In our growth medium, QS-controlled traits such
as proteases, biosurfactants, and phenazine toxins are not needed, such that abolishing
708 quorum sensing could save substantial metabolic costs (Özkaya et al. 2018). In support of this
by-product hypothesis, we found that QS-mutants occurred in all environments (Fig. 6D),
710 suggesting that it is generally favourable to lose QS. Second, mutations in QS genes may be
advantageous because they cause pyoverdine hyper-production. Our results also support this
712 hypothesis, because pyoverdine hyper-producers did not spread in the low iron / low viscosity
environment, where cheaters dominated. Instead, they reached high frequencies in high
714 viscosity environments, where cooperation is predicted to be favourable. Thus, mutations in
the QS-regulon may accomplish two goals at one blow: the silencing of a superfluous regulon,
716 and the possibility to increase pyoverdine cooperation.

The evolutionary trajectories and associated genetic changes we describe are
718 remarkably similar to patterns of *P. aeruginosa* evolution during chronic infections in human
patients (Marvig et al. 2015; Winstanley et al. 2016). For example, longitudinal studies on
720 cystic fibrosis patients suffering from *P. aeruginosa* lung infections revealed that social traits,
particularly quorum sensing and pyoverdine production, are under selection (Jiricny et al.
722 2014; Andersen et al. 2015). Especially the widespread accumulation of quorum-sensing

mutants that we observed in the laboratory has parallels in human lungs (Wilder et al. 2009;
724 Bjarnsholt et al. 2010) and in animal infections models (Granato et al. 2018). Moreover,
hypermutators and isolates that over-express efflux pumps are also commonly observed in
726 clinical isolates (Sobel et al. 2005; Mena et al. 2008; Rees et al. 2019), where they seem to
contribute to antibiotic resistance. Consistently, we found hypermutators in almost all our
728 experimental treatments, and the widespread arising and spreading of efflux pump mutants,
probably in response to bipyridyl toxicity. Taken together, these parallels suggest that *in vitro*
730 studies, despite their obvious limitations, may help understand evolutionary trajectories taken
by pathogens.

732 In conclusion, we found that *P. aeruginosa* can quickly evolve alternative social
phenotypes to match prevailing abiotic (iron availability) and biotic (relatedness) conditions.
734 Cheating, which was the focus of many previous studies, seems to be only favored under very
specific conditions, and thus plays a relatively minor role in the environments studied here
736 and perhaps also in many other environments. Instead, our data suggest that *P. aeruginosa*
adapts its pyoverdine production profile to match environmental requirements, often by up-
738 regulating pyoverdine production, but never by losing the trait altogether. We further show
that social traits should not be studied in isolation, as they are connected through an intricate
740 regulatory network (Balasubramanian et al. 2013). Selection for changes in one trait, such as
the loss of quorum sensing, affect other traits, such as increased pyoverdine production. An
742 integrative approach that considers the multifaceted social profiles of bacteria is needed to
fully understand the evolution of sociality in these microbes.

744

746

Acknowledgments

748 The authors would like to thank Carla Bello-Cabrera and Michael Baumgartner for
749 bioinformatics assistance, and Jos Kramer for statistical advice.

750

Funding

752 This work was funded by the University Research Priority Program (URPP) “Evolution in
753 Action” of the University of Zurich. AW acknowledges funding from the European Research
754 Council under Grant Agreement No. 739874, and by Swiss National Science Foundation grant
755 31003A_172887. RK is supported by the European Research Council under Grant Agreement

756 No. 681295.

758 References

Ackermann M, Stecher B, Freed NE, Songhet P, Hardt WD, Doebeli M. 2008. Self-destructive
760 cooperation mediated by phenotypic noise. *Nature* 454:987–990.

Andersen SB, Ghoul M, Marvig RL, Lee Z Bin, Molin S, Johansen HK, Griffin AS. 2018.
762 Privatisation rescues function following loss of cooperation. *Elife* 7:1–27.

Andersen SB, Marvig RL, Molin S, Johansen HK, Griffin AS. 2015. Long-term social dynamics
764 drive loss of function in pathogenic bacteria. *Proc. Natl. Acad. Sci. U. S. A.* 112:10756–
765 10761.

766 Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. Available
767 online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>

768 Balasubramanian D, Schneper L, Kumari H, Mathee K. 2013. A dynamic and intricate
769 regulatory network determines *Pseudomonas aeruginosa* virulence. *Nucleic Acids Res.*
770 41:1–20.

Bastiaans E, Debets AJM, Aanen DK. 2016. Experimental evolution reveals that high
772 relatedness protects multicellular cooperation from cheaters. *Nat. Commun.* 7:1–10.

Bates D, Mächler M, Bolker BM, Walker SC. 2015. Fitting linear mixed-effects models using
774 *lme4*. *J. Stat. Softw.* 67.

Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate : A Practical and
776 Powerful Approach to Multiple Testing. *J. R. Stat. Soc. Ser. B* 57:289–300.

Bjarnsholt T, Jensen PØ, Jakobsen TH, Phipps R, Nielsen AK, Rybtke MT, Tolker-Nielsen T,
778 Givskov M, Høiby N, Ciofu O. 2010. Quorum sensing and virulence of *Pseudomonas*
aeruginosa during lung infection of cystic fibrosis patients. *PLoS One* 5:1–10.

Buckling A, Harrison F, Vos M, Brockhurst MA, Gardner A, West SA, Griffin A. 2007.
780 Siderophore-mediated cooperation and virulence in *Pseudomonas aeruginosa*. *FEMS
782 Microbiol. Ecol.* 62:135–141.

Butaite E, Baumgartner M, Wyder S, Kümmerli R. 2017. Siderophore cheating and cheating
784 resistance shape competition for iron in soil and freshwater *Pseudomonas*
communities. *Nat. Commun.* 8:414.

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A
786 program for annotating and predicting the effects of single nucleotide polymorphisms,
788 *SnpEff*. *Fly (Austin)*. 6:80–92.

Cunliffe HE, Merriman TR, Lamont IL. 1995. Cloning and characterization of *pvdS*, a gene
790 required for pyoverdine synthesis in *Pseudomonas aeruginosa*: *PvdS* is probably an
alternative sigma factor. *J. Bacteriol.* 177:2744–2750.

D'Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. 2018. Ecology and evolution
792 of metabolic cross-feeding interactions in bacteria. *Nat. Prod. Rep.* 35:455–488.

Davis KM, Isberg RR. 2019. One for All, but Not All for One: Social Behavior during Bacterial
794

Diseases. *Trends Microbiol.* 27:64–74.

796 Denison RF, Bledsoe C, Kahn M, O’Gara F, Simms EL, Thomashow LS. 2003. Cooperation in
the rhizosphere and the “free rider” problem. *Ecology* 84:838–845.

798 Dobay A, Bagheri HC, Messina A, Kümmeli R, Rankin DJ. 2014. Interaction effects of cell
diffusion, cell density and public goods properties on the evolution of cooperation in
800 digital microbes. *J. Evol. Biol.* 27:1869–1877.

Dragoš A, Kiesewalter H, Martin M, Hsu CY, Hartmann R, Wechsler T, Eriksen C, Brix S,
802 Drescher K, Stanley-Wall N, et al. 2018. Division of Labor during Biofilm Matrix
Production. *Curr. Biol.* 28:1903-1913.e5.

804 Dumas Z, Kümmeli R. 2012. Cost of cooperation rules selection for cheats in bacterial
metapopulations. *J. Evol. Biol.* 25:473–484.

806 Ebrahimi A, Schwartzman J, Cordero OX. 2019. Cooperation and spatial self-organization
determine rate and efficiency of particulate organic matter degradation in marine
808 bacteria. *Proc. Natl. Acad. Sci. U. S. A.* 116:23309–23316.

810 Ewels P, Magnusson M, Lundin S, Käller M. 2016. MultiQC: Summarize analysis results for
multiple tools and samples in a single report. *Bioinformatics* 32:3047–3048.

812 Figueiredo ART, Kramer J. 2020. Cooperation and Conflict Within the Microbiota and Their
Effects On Animal Hosts. *Front. Ecol. Evol.* 8.

814 Ghoul M, Griffin AS, West SA. 2014. Toward an evolutionary definition of cheating. *Evolution*
(N. Y). 68:318–331.

816 Ghoul M, Mitri S. 2016. The Ecology and Evolution of Microbial Competition. *Trends*
Microbiol. 24:833–845.

818 Ghoul M, West SA, Diggle SP, Griffin AS. 2014. An experimental test of whether cheating is
context dependent. *J. Evol. Biol.* 27:551–556.

Gilbert OM, Foster KR, Mehdiabadi NJ, Strassmann JE, Queller DC. 2007. High relatedness
820 maintains multicellular cooperation in a social amoeba by controlling cheater mutants.
Proc. Natl. Acad. Sci. U. S. A. 104:8913–8917.

822 Granato ET, Kümmerli R. 2017. The path to re-evolve cooperation is constrained in
Pseudomonas aeruginosa. *BMC Evol. Biol.* 17, 214.

824 Granato ET, Meiller-Legrand TA, Foster KR. 2019. The Evolution and Ecology of Bacterial
Warfare. *Curr. Biol.* 29:R521–R537.

826 Granato ET, Ziegenhain C, Marvig RL, Kümmerli R. 2018. Low spatial structure and selection
against secreted virulence factors attenuates pathogenicity in Pseudomonas
828 aeruginosa. *ISME J.* 12:2907–2918.

Griffin AS, West SA, Buckling A. 2004. Cooperation and competition in pathogenic bacteria.
830 *Nature* 430:1024–1027.

Hamilton WD. 1964. The genetical evolution of social behaviour. I. *J. Theor. Biol.* 7:1–16.

832 Harrison F. 2013. Dynamic social behaviour in a bacterium : Pseudomonas aeruginosa
partially compensates for siderophore loss to cheats. *J. Evol. Biol.* 26:1370–1378.

834 Harrison F, Mcnally A, Silva AC, Heeb S, Diggle SP. 2017. Optimised chronic infection models
demonstrate that siderophore ‘cheating’ in Pseudomonas aeruginosa is context
836 specific. *Nat. Publ. Gr.* 11:2492–2509.

Hibbing ME, Fuqua C, Parsek MR, Peterson SB. 2010. Bacterial competition: Surviving and
838 thriving in the microbial jungle. *Nat. Rev. Microbiol.* 8:15–25.

Huang H, Shao X, Xie Y, Wang T, Zhang Y, Wang X, Deng X. 2019. An integrated genomic
840 regulatory network of virulence-related transcriptional factors in Pseudomonas
aeruginosa. *Nat. Commun.* 10:1–13.

842 Inglis RF, Biernaskie JM, Gardner A, Kümmerli R. 2016. Presence of a loner strain maintains

cooperation and diversity in well-mixed bacterial communities. *Proc. R. Soc. B Biol. Sci.*

844 283.

Jiricny N, Diggle SP, West SA, Evans BA, Ballantyne G, Ross-Gillespie A, Griffin AS. 2010.

846 Fitness correlates with the extent of cheating in a bacterium. *J. Evol. Biol.* 23:738–747.

Jiricny N, Molin S, Foster K, Diggle SP, Scanlan PD, Ghoul M, Johansen HK, Santorelli LA,

848 Popat R, West SA, et al. 2014. Loss of social behaviours in populations of *Pseudomonas*
aeruginosa infecting lungs of patients with cystic fibrosis. *PLoS One* 9.

850 Julou T, Mora T, Guillon L, Croquette V, Schalk IJ, Bensimon D, Desprat N. 2013. Cell-cell
contacts confine public goods diffusion inside *Pseudomonas aeruginosa* clonal
852 microcolonies. *Proc. Natl. Acad. Sci.* 110:12577–12582.

Köhler T, Ouertatani-Sakouhi H, Cosson P, Van Delden C. 2014. QsrO a novel regulator of
854 quorum-sensing and virulence in *Pseudomonas aeruginosa*. *PLoS One* 9.

Kramer J, Özkaya Ö, Kümmerli R. 2020. Bacterial siderophores in community and host
856 interactions. *Nat. Rev. Microbiol.* 18, 152–163

Kümmerli R, Griffin AS, West SA, Buckling A, Harrison F. 2009. Viscous medium promotes
858 cooperation in the pathogenic bacterium *Pseudomonas aeruginosa*. *Proc. R. Soc. B Biol.*
Sci. 276:3531–3538.

860 Kümmerli R, Santorelli LA, Granato ET, Dumas Z, Dobay A, Griffin Ashleigh S., West SA. 2015.

Co-evolutionary dynamics between public good producers and cheats in the bacterium
862 *Pseudomonas aeruginosa*. *J. Evol. Biol.* 28:2264–2274.

Lee W, van Baalen M, Jansen VAA. 2012. An evolutionary mechanism for diversity in
864 siderophore-producing bacteria. *Ecol. Lett.* 15:119–125.

Lee Y, Kim YJ, Lee JH, Yu HE, Lee K, Jin S, Ha UH. 2016. TatC-dependent translocation of
866 pyoverdine is responsible for the microbial growth suppression. *J. Microbiol.* 54:122–

130.

868 Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
00:1–3. unpublished *arXiv* : <http://arxiv.org/abs/1303.3997>

870 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.
2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25:2078–
872 2079.

Liang H, Deng X, Li X, Ye Y, Wu M. 2014. Molecular mechanisms of master regulator VqsM
874 mediating quorum-sensing and antibiotic resistance in *Pseudomonas aeruginosa*.
Nucleic Acids Res. 42:10307–10320.

876 Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J. 2008. Rules of engagement:
Interspecies interactions that regulate microbial communities. *Annu. Rev. Microbiol.*
878 62:375–401.

Liu Y, Yang L, Molin S. 2010. Synergistic activities of an efflux pump inhibitor and iron
880 chelators against *Pseudomonas aeruginosa* growth and biofilm formation. *Antimicrob.*
Agents Chemother. 54:3960–3963.

882 Magnúsdóttir S, Ravcheev D, De Crécy-Lagard V, Thiele I. 2015. Systematic genome
assessment of B-vitamin biosynthesis suggests cooperation among gut microbes. *Front.*
884 *Genet.* 6.

Marvig RL, Sommer LM, Molin S, Johansen HK. 2015. Convergent evolution and adaptation
886 of *Pseudomonas aeruginosa* within patients with cystic fibrosis. *Nat. Genet.* 47:57–64.

Mena A, Smith EE, Burns JL, Speert DP, Moskowitz SM, Perez JL, Oliver A. 2008. Genetic
888 adaptation of *Pseudomonas aeruginosa* to the airways of cystic fibrosis patients is
catalyzed by hypermutation. *J. Bacteriol.* 190:7910–7917.

890 Mitri S, Richard Foster K. 2013. The genotypic view of social interactions in microbial

communities. *Annu. Rev. Genet.* 47:247–273.

892 El Mouden C, Gardner A. 2008. Nice natives and mean migrants: The evolution of dispersal-dependent social behaviour in viscous populations. *J. Evol. Biol.* 21:1480–1491.

894 Niehus R, Picot A, Oliveira NM, Mitri S, Foster KR. 2017. The evolution of siderophore production as a competitive trait. *Evolution (N. Y.)*.

896 O'Brien S, Kümmerli R, Paterson S, Winstanley C, Brockhurst Michael A. 2019. Transposable temperate phages promote the evolution of divergent social strategies in *Pseudomonas aeruginosa* populations. *Proc. R. Soc. B-Biological Sci.* 286.

900 O'Brien S, Luján AM, Paterson S, Cant MA, Buckling A. 2017. Adaptation to public goods cheats in *Pseudomonas aeruginosa*. *Proc. R. Soc. B Biol. Sci.* 284.

902 Oliver A, Baquero F, Blázquez J. 2002. The mismatch repair system (mutS, mutL and uvrD genes) in *Pseudomonas aeruginosa*: Molecular characterization of naturally occurring mutants. *Mol. Microbiol.* 43:1641–1650.

904 Özkaya Ö, Balbontín R, Gordo I, Xavier KB. 2018. Cheating on Cheaters Stabilizes Cooperation in *Pseudomonas aeruginosa*. *Curr. Biol.* 28:2070-2080.e6.

906 Özkaya Ö, Xavier KB, Dionisio F, Balbontín R. 2017. Maintenance of microbial cooperation mediated by public goods in single- and multiple-trait scenarios. *J. Bacteriol.* 199:1–14.

908 Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J. 2016. Bacterial predation: 75 years and counting! *Environ. Microbiol.* 18:766–779.

910 Queller DC. 1994. Genetic relatedness in viscous populations. *Evol. Ecol.* 7653:70–73.

R Core Team. 2020. R: A language and environment for statistical computing. *R Found. Stat. Comput. Vienna, Austria.* <https://www.R-project.org/>.

912 Rankin DJ, Bargum K, Kokko H. 2007. The tragedy of the commons in evolutionary biology. *Trends Ecol. Evol.* 22:643–651.

Rees VE, Deveson Lucas DS, López-Causapé C, Huang Y, Kotsimbos T, Bulitta JB, Rees MC,

916 Barugahare A, Peleg AY, Nation RL, et al. 2019. Characterization of Hypermutator
Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis in Australia.

918 *Antimicrob. Agents Chemother.* 63:1–11.

Ringel MT, Brüser T. 2018. The biosynthesis of pyoverdines. *Microb. Cell* 5:424–437.

920 Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP.
2011. Integrative Genome Viewer. *Nat. Biotechnol.* 29:24–26.

922 Robinson T, Smith P, Alberts ER, Colussi-Pelaez M, Schuster M. 2020. Cooperation and
cheating through a secreted aminopeptidase in the *pseudomonas aeruginosa* RpoS
924 response. *MBio* 11.

Ross-Gillespie A, Dumas Z, Kümmerli R. 2015. Evolutionary dynamics of interlinked public
926 goods traits: An experimental study of siderophore production in *Pseudomonas*
aeruginosa. *J. Evol. Biol.* 28:29–39.

928 Ross-Gillespie A, Gardner A, West SA, Griffin AS. 2007. Frequency dependence and
cooperation: Theory and a test with bacteria. *Am. Nat.* 170:331–342.

930 Schalk IJ, Rigouin C, Godet J. 2020. An overview of siderophore biosynthesis among
fluorescent *Pseudomonads* and new insights into their complex cellular organization.
932 *Environ. Microbiol.* 22:1447–1466.

Schuster M, Foxall E, Finch D, Smith H, De Leenheer P. 2017. Tragedy of the commons in the
934 chemostat. *PLoS One* 12:1–13.

Smith EE, Sims EH, Spencer DH, Kaul R, Olson M V. 2005. Evidence for diversifying selection
936 at the pyoverdine locus of *Pseudomonas aeruginosa*. *J. Bacteriol.* 187:2138–2147.

Smith P, Schuster M. 2019. Public goods and cheating in microbes. *Curr. Biol.* 29:R442–R447.

938 Sobel ML, Hocquet D, Cao L, Plesiat P, Poole K. 2005. Mutations in PA3574 (nalD) lead to

increased MexAB-OprM expression and multidrug resistance in laboratory and clinical
940 isolates of *Pseudomonas aeruginosa*. *Antimicrob. Agents Chemother.* 49:1782–1786.

Stilwell P, Lowe C, Buckling A. 2018. The effect of cheats on siderophore diversity in
942 *Pseudomonas aeruginosa*. *J. Evol. Biol.* 31:1330–1339.

Strassmann JE, Queller DC. 2011. Evolution of cooperation and control of cheating in a social
944 microbe. *Proc. Natl. Acad. Sci.* 108:10855–10862.

Tarnita CE. 2017. The ecology and evolution of social behavior in microbes. *J. Exp. Biol.*
946 220:18–24.

Tostado-Islands O, Mendoza-Ortiz, Alberto Ramírez-García G, Cabrera-Takane ID, Loarca D,
948 Pérez-González C, Jasso-Chavez R, Jiménez-Cortés JG, Hoshiko Y, Maeda T, Cazares A, et
al. 2020. Iron limitation by transferrin promotes simultaneous cheating of pyoverdine
950 and exoprotease in *Pseudomonas aeruginosa*. unpublished *bioRxiv*.
<https://doi.org/10.1101/2020.06.21.163022>

952 Travisano M, Velicer GJ. 2004. Strategies of microbial cheater control. *Trends Microbiol.* 12:
72-78

954 Velicer GJ, Kroos L, Lenski RE. 1998. Loss of social behaviors by *Myxococcus xanthus* during
evolution in an unstructured habitat. *Proc. Natl. Acad. Sci. U. S. A.* 95:12376–12380.

956 Verma SC, Miyashiro T. 2013. Quorum sensing in the squid-Vibrio symbiosis. *Int. J. Mol. Sci.*
14:16386–16401.

958 Voulhoux R, Filloux A, Schalk IJ. 2006. Pyoverdine-mediated iron uptake in *Pseudomonas*
aeruginosa: The Tat system is required for PvdN but not for FpvA transport. *J. Bacteriol.*
960 188:3317–3323.

Wechsler T, Kümmerli R, Dobay A. 2019. Understanding policing as a mechanism of cheater
962 control in cooperating bacteria. *J. Evol. Biol.* 32:412–424.

West SA, Diggle SP, Buckling A, Gardner A, Griffin AS. 2007. The social lives of microbes. 964 *Annu. Rev. Ecol. Evol. Syst.* 38:53–77.

West SA, Griffin AS, Gardner A. 2007. Social semantics: Altruism, cooperation, mutualism, 966 strong reciprocity and group selection. *J. Evol. Biol.* 20:415–432.

Wiegand I, Marr AK, Breidenstein EBM, Schurek KN, Taylor P, Hancock REW. 2008. Mutator 968 Genes Giving Rise to Decreased Antibiotic Susceptibility in *Pseudomonas aeruginosa*. *Antimicrob. Agents Chemother.* 52:3810–3813.

970 Wilder CN, Allada G, Schuster M. 2009. Instantaneous within-patient diversity of *Pseudomonas aeruginosa* quorum-sensing populations from cystic fibrosis lung infections. *Infect. Immun.* 77:5631–5639.

Wilder CN, Diggle SP, Schuster M. 2011. Cooperation and cheating in *Pseudomonas* 974 aeruginosa: the roles of the las, rhl and pqs quorum-sensing systems. *ISME J.* 5:1332–1343.

976 Winsor GL, Lo R, Ho Sui SJ, Ung KSE, Huang S, Cheng D, Ching WKH, Hancock REW, Brinkman FSL. 2005. *Pseudomonas aeruginosa* Genome Database and PseudoCAP: Facilitating 978 community-based, continually updated, genome annotation. *Nucleic Acids Res.* 33:338–343.

980 Winstanley C, O'Brien S, Brockhurst MA. 2016. *Pseudomonas aeruginosa* Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. *Trends Microbiol.* [Internet] 24:327–337. Available from: 982 <http://dx.doi.org/10.1016/j.tim.2016.01.008>

984 Zhang X, Rainey PB. 2013. EXPLORING THE SOCIOBIOLOGY OF PYOVERDIN-PRODUCING PSEUDOMONAS. :3161–3174.

986