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Abstract  
 

Information about a person’s available energy resources is integrated in daily 
behavioral choices that weigh motor costs against expected rewards. It has been 
posited that humans have an innate attraction towards effort minimization and that 
executive control is required to overcome this prepotent disposition. With sedentary 
behaviors increasing at the cost of millions of dollars spent in health care and 
productivity losses due to physical inactivity-related deaths, understanding the 
predictors of sedentary behaviors will improve future intervention development and 
precision medicine approaches. In 64 healthy older adults participating in a 6-month 
aerobic exercise intervention, we use neuroimaging (resting state functional 
connectivity), baseline measures of executive function and accelerometer measures of 
time spent sedentary to predict future changes in objectively measured time spent 
sedentary in daily life. Using cross-validation and bootstrap resampling, our results 
demonstrate that functional connectivity between 1) the anterior cingulate cortex and 
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the supplementary motor area and 2) the right anterior insula and the left 
temporoparietal/temporooccipital junction, predict changes in time spent sedentary, 
whereas baseline cognitive, behavioral and demographic measures do not. Previous 
research has shown activation in and between the anterior cingulate and supplementary 
motor area as well as in the right anterior insula during effort avoidance and tasks that 
integrate motor costs and reward benefits in effort-based decision making. Our results 
add important knowledge toward understanding mechanistic associations underlying 
complex sedentary behaviors.  
 
Introduction  
 

In 2007 it was estimated that ~5.3 million global deaths from non-communicable 
diseases could have been prevented if people engaged in physical activity instead of 
being physically inactive (Lee et al., 2012). Compounding this further, global statistics 
show the prevalence of physical inactivity is increasing (Du et al., 2019; Guthold et al., 
2018). Over a third of the US population (34.8%) lead sedentary lifestyles (Du et al., 
2019; Guthold et al., 2018; Kohl et al., 2012) and the economic burden caused by 
physical inactivity is estimated to cost private and public health-care systems $53.8 
billion per year (Ding et al., 2016, 2017).  

To combat the negative consequences of sedentary behaviors, particularly in 
older adults, the field has studied extensively the beneficial effects of exercise 
interventions (Gomes-Osman et al., 2018). The most well studied exercise interventions 
are walking interventions, which are both economical and easily accessible, particularly 
for older adults. These studies have led to numerous discoveries on the beneficial 
effects of increased walking on cognitive function, particularly, processing speed, 
memory and executive function (Erickson et al., 2019). Walking interventions also have 
been shown to increase hippocampal volume (Erickson et al., 2011) and the plasticity of 
functional brain networks (Voss et al., 2010). These results are particularly important 
given these same outcomes are also associated with age-related decline (Buckner, 
2004; Luca et al., 2003; Ng et al., 2016; Nobis et al., 2019). However, sedentary 
behaviors are not simply the inverse of physical activity (Spence et al., 2017; van der 
Ploeg & Hillsdon, 2017). For example, a person who spends all day sitting at a desk at 
work but engages in 30 minutes of moderate-to-vigorous physical activity would both be 
sedentary and engaging in physical activity per World Health Organization guidelines 
(WHO, 2018). Not all walking interventional studies capture objective measures of 
sedentary behavior outside of the intervention, yet this information would provide a 
platform for the study of the determinants of sedentary behaviors within the 
interventional context. This is particularly important given the determinants of sedentary 
behaviors are distinct from those of physical activity engagement (Spence et al., 2017). 
To demonstrate the importance of capturing objective measures of sedentary behavior 
outside of the intervention, our group has previously shown correlations between 
objective measures of sedentary behavior and cognition (Burzynska et al., 2020) but 
more importantly, individual differences in time spent sedentary, regardless of 
intervention group assignment (Ehlers et al., 2016). Therefore, if one can predict 
individual differences in future sedentary behaviors early, precision medicine 
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approaches can adapt or prescribe alternative approaches that would reduce the costs 
of ineffective interventions.  

Determinants of sedentary behaviors are likely numerous. Automatic processes, 
attitudes and habits have been suggested to regulate daily sedentary behavior (Conroy 
et al., 2013). Association between self-efficacy and sedentary behavior has been shown 
in meta-analyses (Szczuka et al., 2020) and in younger adults, interventions targeting 
perceptions of competence and capability (self-efficacy) have been shown to reduce 
time spent sedentary (Falk et al., 2015). From a cognitive perspective, to successfully 
overcome short-term costs in favor of longer-term benefits (like reducing sedentary 
behaviors), executive control functions, such as inhibitory control, flexibility and goal-
orientated decision making are required (Cheval et al., 2020).  

Extending this further, behavioral choices involving the assessment of motor 
costs are ever present in day-to-day life and involve the integration of information about 
available energy resources to weigh physical and motor costs against expected rewards 
(Klein-Flügge et al., 2016). A theory of energetic cost minimization postulates that we 
have an innate attraction towards effort minimization whilst maximizing reward (Cheval 
et al., 2017, 2018; Klein-Flügge et al., 2016; Prévost et al., 2010). This theory is 
reflected in evolutionary, developmental and situational scenarios, where for example, 
humans have developed body shapes and neural circuitry refined for energy 
optimization (Sockol et al., 2007), and during development, energy efficient movements 
are consolidated through motor practice (Ivanenko et al., 2007), which are constantly 
adapted in real time to minimize energy costs, such as gait refinements during walking 
(Selinger et al., 2015). Neural circuitry underlying the valuation of potential behaviors 
related to physical effort costs have consistently implicated both the anterior cingulate 
cortex (ACC) and the anterior insula (AI) in these behaviors (Klein-Flügge et al., 2016; 
Porter et al., 2020; Prévost et al., 2010). For example, in rodents, local field potentials in 
and coherence between the ACC and the AI correlate with relative performance on a 
physical effort-based task (Porter et al., 2020). In humans, neuroimaging studies have 
demonstrated that the ACC is a critical region for decision-making of choices involving 
motor-costs (Klein-Flügge et al., 2016) and further, that activity in the ACC and the AI 
represent the devaluation of rewards associated with physical effort (Prévost et al., 
2010). Of note, the regions of the ‘ACC’ in these studies would be classified as the mid 
cingulate (MCC) per sub-region classifications by Vogt (Vogt, 2009).  

Discovery of neural predictors of future sedentary behaviors may provide both 
strong predictive strength as well as mechanistic information relevant for intervention 
development. The utility and efficacy of functional connectivity to predict future 
behavioral outcomes has been demonstrated in previous research. For example, 
Saghayi and colleagues predicted adherence to mental training programs using FC 
(Saghayi et al., 2020) and Whitfield-Gabrieli and colleagues predicted treatment 
response in social anxiety disorder with FC, better than clinical measures alone 
(Whitfield-Gabrieli et al., 2016).  

The aims of this present study therefore were to evaluate if baseline measures of 
FC, executive functions and time spent sedentary could predict future change in 
objectively measured sedentary behavior, over the course of a 6-month walking 
intervention in healthy older adults. We hypothesized that FC of regions implicated in 
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both effort-based decision making and inhibitory control (ACC, AI) would be predictive 
of changes in time spent sedentary, above and beyond behavioral measures.  
 
Methods 
 
Participants and study design  
 

 Participants in this study participated in a 6-month randomized controlled 
exercise trial (clinical study identifier: NCT01472744). The study procedures were 
approved by the University of Illinois Institutional Review Board and written informed 
consent was obtained from all participants prior to any research activities. Healthy but 
low active older adults were recruited in Champaign County. Two hundred and forty-
seven (169 women) met inclusion criteria for the initial clinical trial, agreed to enroll in 
the study, and underwent a series of demographic, health, physical activity, 
neuroimaging and cognitive tests at baseline. Participants in the initial trail were 
randomized to one of four intervention groups. Of these 247, 72 of these participants 
were randomized to either the walking intervention group or the walking plus a dietary 
supplement intervention group (the walking intervention was identical in both groups). 
For the purpose of this analysis, we chose to analyze these subjects. After excluding six 
participants for not adhering to more than 50% of the intervention and two participants 
for high motion artefact in the MRI scan (see below for criteria), 64 participants were 
ultimately included in this study. We chose to analyze only those in these two 
intervention groups for two reasons; 1) walking is the most well studied and easily 
implementable exercise intervention in the literature and 2) a previous analysis with 
these data showed that there existed intervention-mediated differences in physical 
activity/inactivity patterns across groups throughout the 6 month  (Ehlers et al., 2016), 
meaning that participants may have had different reasons/mechanisms behind changes 
in time spent sedentary. For more details on this clinical trial, its primary outcomes and 
neuroimaging data, please refer to earlier work (Baniqued et al., 2018; Burzynska et al., 
2020; Ehlers et al., 2016; Voss et al., 2019). Our current analysis asks a novel question 
of this dataset that has not been previously assessed. Initially, to enroll in the study, 
participants must have met the following criteria: were between the ages of 60 and 80 
years old, free from psychiatric and neurological illness and had no history of stroke, 
transient ischemic attack, or head trauma, scored  < 23 on the Mini-Mental State Exam, 
< 21 on a Telephone Interview of Cognitive Status questionnaire and < 10 on the 
Geriatric Depression Scale, at least 75% right-handed based on the Edinburgh 
Handedness Questionnaire (a criterion related to functional magnetic resonance 
imaging (MRI) analyses), demonstrated normal or corrected-to-normal vision of at least 
20/40 and no color blindness, screened for safe participation in an MRI environment 
(e.g., no metallic implants that could interfere with the magnetic field or cause injury and 
no claustrophobia) and reported to have participated in no more than two bouts of 
moderate exercise per week within the past 6 months (with the goal of recruiting low 
active older adults). Table 1 contains complete characterization of the study 
participants. 
 
Accelerometry  
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Time spent sedentary was measured using an ActiGraph accelerometer device 

(Model GT1M or GT3X; ActiGraph, Pensacola, FL) for one week at baseline and one 
week post-intervention. Participants were instructed to wear the accelerometer on the 
nondominant hip during waking hours for seven consecutive days. A valid measurement 
day consisted of at least 10 hours of valid wear time, with a valid hour defined as no 
more than 60 consecutive minutes of zero counts with 1-min sampling epochs. 
Downloaded data (activity counts), represented raw accelerations summed over a given 
epoch length (60s), which varied based on frequency and intensity of the recorded 
acceleration (Fanning et al., 2017). Data were processed using cut points designed 
specifically for older adults (Copeland & Esliger, 2009) such that 50 or fewer counts per 
minute corresponded with sedentary behavior. (Other cut points included 51–1,040 
counts per minute as light physical activity, and 1,041 counts or greater as moderate to 
vigorous physical activity. Our outcome measure (change in time spent sedentary) was 
calculated as post-test minus pre-test for the average number of counts defined as 
sedentary behavior.  
 
Executive function composite score and Task switching task 
 

As part of the initial clinical trial, participants completed a battery of cognitive 
tests from The Virginia Cognitive Aging Project (Salthouse & Ferrer-Caja, 2003). A 
detailed description of each task can be found in a previous open access publication 
(Baniqued et al., 2018). Of particular interest to the current study, a task-switching test 
was performed. Successful task switching performance requires a number of executive 
control functions, such as working memory (holding rule sets in memory), flexibility 
(respond flexibly to rule changes) and inhibitory control (inhibition of previously 
appropriate operations and responses (Allport et al., 1999; Rogers & Monsell, 1995)). 
The task consisted of a number of trials where participants were shown a number 
between 1 and 9 (except 5) against a colored background. On a pink background, 
participants were instructed to determine whether the number was odd or even and on a 
blue background, they were to determine if the number was higher or lower than 5. To 
best capture flexibility and inhibitory processes, we analyzed performance on the mixed 
task block (64 practice trials followed by 160 trials) and extracted average accuracy (% 
of correct responses) and average reaction time from the mixed switch blocks. That is, 
the accuracy and reaction time from just the blocks where the trails were switched. In 
addition, to gain a more global measure of executive function we created a composite 
score (sum of the standardized z-scores) from six executive function tasks (that group 
together through principal component analysis at the larger study level (Baniqued et al., 
2018), which measure multiple forms of abstract, inductive and visuo-spatial reasoning 
(Shipley abstraction, form boards, letter sets, matrix reasoning, paper folding and spatial 
relations). ~30% of participants were missing tasks switching data and 1 participant was 
missing data for the executive function composite score. Accordingly, we implemented 
data imputation methods using the “mice” package in R using multiple imputed chained 
equations and the predictive mean matching method (Buuren & Groothuis-Oudshoorn, 
2011) (supplementary material section 1), where imputed data replaced missing data for 
these subjects.  
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Magnetic resonance imaging: preprocessing  
 

Participants underwent an MRI scanning session in a 3 Tesla Siemens TIM Trio 
system with a 12-channel head coil. High-resolution structural MRI scans were acquired 
using 3D MPRAGE T1-wighted sequences (TR = 1900 ms; TE = 2.32 ms; TI: 900 ms; 
flip angle = 9°; matrix = 256 × 256; FOV = 230 mm; 192 slices; resolution = 0.9 × 0.9 × 
0.9 mm; GRAPPA acceleration factor 2). One run of T2*-weighted resting state 
echoplanar imaging (EPI) data was obtained with the following parameters: (6min, 
TR=2s, TE=25ms, flipangle=80°, 3.4 × 3.4 mm2 in-plane resolution, 35 4 mm-thick 
slices acquired in ascending order, Grappa acceleration factor = 2, 64 × 64 matrix).  

Preprocessing of the functional resting state data was performed using the 
CONN-toolbox v.19c (Whitfield-Gabrieli & Nieto-Castanon, 2012), relying upon SPM 
v.12 (Wellcome Department of Imaging Neuroscience, UCL, London, UK) in MATLAB 
R2019a (The MathWorks Inc, Natick, MA, USA). The latest default preprocessing 
pipeline implemented in Conn was performed which consists of the following steps: 
functional realignment and unwarping, slice timing correction, outlier identification, 
segmentation (into grey matter, white matter and cerebrospinal fluid) and normalization 
into standard Montreal Neurologic Institute (MNI) space resampled to 2mm isotropic 
voxels for functional data and 1mm for anatomical data, using 4th order spline 
interpolation. Functional scans were spatially smoothed using a 6mm FWHM Gaussian 
kernel. During the outlier detection step, acquisitions with framewise displacement 
above 0.9mm or global BOLD signal changes above 5 standard deviations were flagged 
as outliers using the Artefact Detection Tools (www.nitrc.org/projects/artifact_detect). 
Two participants were removed from the final analyses for having >40 scan volumes 
flagged. This cut off was determined based on preserving at least 5 minutes of scanning 
time (Van Dijk et al., 2009). Additionally, mean motion (framewise displacement) was 
used as a covariate of no interest in all second level analyses. This was done to be over 
conservative given previous studies have shown high degree of motion-behavior 
correlations (Siegel et al., 2017), despite the fact that no motion parameter was 
significantly correlated with sedentary time in our data (p > 0.05). Denoising of the 
functional data was performed using a principal component analysis-based correction 
method, CompCor (Behzadi et al., 2007). Linear regression was used to remove the 
effects of these artifacts on the BOLD time series for each voxel and each subject 
taking into account noise components from cerebral white matter and cerebrospinal 
fluid, estimated subject-motion parameters (3 rotation and 3 translation parameters and 
6 other parameters representing their first order time derivatives), scrubbing and 
constant and first-order linear session effects. Temporal band-pass filtering (0.008-
0.09Hz) was applied to remove physiological, subject-motion and outlier-related 
artefacts. Quality assurance plots of the preprocessing steps are illustrated in 
supplementary material (figures S2 to S5).  
 
Seed-based correlations  
 

The average time series in two regions of interest (ROI), the ACC and the right 
anterior insula (AI) were extracted. We defined our seeds using the 100-parcel 
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functional atlas by Schaefer 2018. Because the functional parcels of the ACC and the 
rAI in this parcellation extend outside of the anatomical boundaries of interest we limited 
our seed ROIs to just the functional parcel constrained by the anatomical boundaries of 
the ACC and the rAI set by the Harvard-Oxford anatomical atlas. This was done by 
binarizing the parcels from each atlas and using ‘fslmaths’ functions (Functional 
Magnetic Resonance Imaging of the Brain's Software Library, 
http://www.fmrib.ox.ac.uk/fsl) to multiply the two parcels together (see figure 1A and 2A 
for an illustration of the seed ROIs). Then, Pearson’s correlation coefficients were 
computed between the average time series in each ROI and the time series of all other 
voxels in the brain and converted to normally distributed z-scores using Fisher 
transformation prior to performing the second-level general linear model. Individual 
change in sedentary time was entered as a covariate of interest in the second-level 
analysis, controlling for nuisance variables, age, gender, baseline sedentary time and 
mean framewise displacement, in separate general linear models for each ROI. Results 
in this second level analyses were estimated using a primary voxel threshold of p<0.001 
and with family-wise error (FWE) correction threshold of p<0.05 at the cluster-level. 

 
Statistical analyses 
 

 To assess whether baseline behavioral, cognitive or demographic 
measures predicted change in time spent sedentary we ran independent linear 
regression models using leave-one-out cross validation (LOOCV). adjusted R2 values 
are presented which represent the squared correlation between the observed outcome 
and the predicted values by the model. Model assumptions for linear regression were 
checked using Q-Q and fitted vs. residual plots in R and the normality of the residuals 
was formally checked using Shapiro-Wilk tests of normality. The significant influence of 
outliers was checked using Cooke’s distance with a cut off of 0.5 (no significant outliers 
removed- see supplementary section 3).  

To improve generalizability of the FC results and to minimize potential biases in 
the voxel selection in our models, significant clusters from functional connectivity seed-
to-voxel analyses were re-evaluated using LOOCV. That is, each second level contrast 
(effect of change in sedentary time, with covariates of no interest (age, gender, baseline 
sedentary time, mean motion)) was re-ran iteratively leaving one subject out each time. 
Each iteration then predicted the left-out subjects’ connectivity values with each cluster, 
resulting in cross-validated connectivity values for each subject. A similar approach was 
applied in a previous published study (Whitfield-Gabrieli et al., 2016). For each 
significant cluster we present cross-validated adjusted R2 values which represent the 
squared correlation between the observed outcome and the predicted values by the 
model.  

To assess whether each significant cluster was providing unique explanatory 
information, we ran a generalized linear model with 500 bootstrapped resamples with 
cross-validated connectivity values from each of the seed-to-cluster pairs and baseline 
behavioral and demographic variables. Bootstrap resampling takes random samples 
from the dataset and provides a distribution of model performance scores (an indication 
of the variance in the model performance). We chose bootstrapping over other cross 
validation techniques to reduce overfitting such as k-fold because small sample sizes 
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may result in over-estimation of how the model will generalize given each fold may not 
be entirely representative of the population being tested. We present the mean adjusted 
R2 (which here represents the proportion of variance in the outcome explained by the 
model predictors) as model performance as well as the distribution of performance 
across each bootstrap iteration. A depiction of the statistical methodology is outlined in 
figure 1.  

Further, in a complimentary analysis, we dichotomized the participants into either 
an active (N=25) or sedentary (N=39) group based on whether they decreased ∆<0 or 
increased ∆>0 their time spent sedentary. We then used logistic regression (with all FC 
and behavioral/demographic variables) with LOOCV (N-1 participants fit to iteratively 
predict the out-of-sample participants category) to build cross-validated classifications 
and estimated accuracy, sensitivity and specificity metrics. LOOCV of SBC clusters was 
performed in MATLAB using the “spm_crossvalidation” code and all other statistics 
performed in RStudio Version 3.6.3 (R Foundation for Statistical Computing, Vienna, 
Austria) using “tidyverse” (Wickham, 2019), “Caret” (Kuhn, 2020) and base R packages.  

 
 

 
Figure 1. An illustration of the statistical methodology implemented. Seed-based correlations were re-
evaluated using LOOCV to provide the prediction performance (R2 which represents the squared 
correlation between the predicted and observed values). Cross-validated FC values were then entered 
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into a multimodal linear regression model with bootstrap resampling to assess the unique contributions of 
each predictor to the outcome.  
 
Results 
 

Sixty-four low-active healthy older adults (aged 60 to 77 years with a mean of 65 
years, 46 females and 18 males) were included in this study. The distribution of the 
change in time spent sedentary (Figure 2) revealed a spread of change where a similar 
numerical proportion of participants increased time spent sedentary as decreased time 
spent sedentary.  
 

 
Figure 2. A histogram of participant changes in sedentary time over the 6-month walking intervention.  
 
Behavioral models 
 

Linear models with leave-one-out cross validation were performed for each 
baseline behavioral variable and showed that neither baseline measures of time spent 
sedentary (β = -0.039, SE = .086, p = .66, R2 = -.012), task switching accuracy (β = -
5083, SE = 55.19, p = 92, R2 = -.016), reaction time (β = 0.049, SE = .041, p = .23, R2 = 
.007), nor a composite measure of executive function (β = -1.42, SE = 1.86, p = .45, R2 

= -.006), alone were predictive of changes in time spent sedentary.  
 
Seed-based correlation 
 

The ACC seed revealed a significant positive cluster (voxel p<0.001 and FWE 
cluster-level p<0.05 correction) spanning the motor and the supplementary motor areas 
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(peak MNI: -24 -20 +52, size = 425 voxels) associated with change in sedentary time 
(T(58) = 3.47, pfwe = <0.001), that is, higher connectivity between the ACC and M1/SMA 
was associated with an increase in time spent sedentary (Figure 3C). Model 
performance using LOOCV resulted in an R2 of .34. Functional connectivity between the 
rAI and a significant (voxel p<0.001 and FWE cluster-level p<0.05 correction) cluster in 
the left temporoparietal/temporooccipital region (areas spanning the middle temporal 
gyrus, angular gyrus and lateral occipital cortex (peak MNI: -50 -56 +12, size = 194 
voxels)) was also associated with change in sedentary time (T(58) = 3.47, pfwe = 
<0.001) (Figure 4C). Model performance using LOOCV resulted in an R2 of .30.  
 
 

 
Figure 3. A. Illustrates the ACC seed region. B. Group-level connectivity with the ACC seed ROI showing 
functional connectivity with regions of the salience network (bilateral inferior frontal gyrus). C. Significant 
cluster in the left supplementary motor area and the motor area associated with change in time spent 
sedentary controlling for age, gender, baseline time spent sedentary and mean motion. D. Scatter plot of 
the cross-validated connectivity values (Z) and change in time spent sedentary. 
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Figure 4. A. Illustrates the rAI seed region. B. Group-level connectivity with the rAI seed ROI 
demonstrating our seed functionally connected to the salience network (bilateral insula, temporoparietal 
junction, inferior frontal operculum, anterior cingulate cortex), and was anticorrelated with the default 
mode network (inferior parietal lobule, precuneus, superior frontal gyrus). C. Significant cluster in the right 
temporoparietal/temporooccipital region associated with change in time spent sedentary controlling for 
age, gender, baseline time spent sedentary and mean motion. D. Scatter plot of the cross-validated 
connectivity values (Z) and change in time spent sedentary. 
 
Multimodal modal  
 

To assess whether each significant cluster was providing unique explanatory 
information we ran a multiple linear regression model with bootstrap resampling (500 
bootstrapped resamples) including cross-validated FC between each seed-cluster pair 
and baseline variables (baseline time spent sedentary, task switching performance and 
composite executive function and age and gender). The mean performance of model 
explained 41% of the variance in the outcome and both FC seed-cluster pairs (ACC: p = 
<.0001, rAI: p = <.0001) age (p = .0182) and task switching reaction time (p = .0139) 
were significant predictors of change in time spent sedentary (full model results are 
found in supplementary material). We present a histogram of prediction performance of 
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the model as the variability in the model performance across 500 bootstrap resamples 
(Figure 5).  
 
 
 

 
Figure 5. Histogram density plot of the proportion of the explained variance (R2) in the outcome from 500 
bootstrap resamples of a multiple linear regression model containing cross-validated FC seed-cluster 
pairs, age, gender, baseline time spent sedentary, executive function and task switching performance as 
predictors.  
 
Logistic regression  
 

Logistic regression with LOOCV with FC between each seed-cluster pair and 
baseline variables (baseline time spent sedentary, task switching performance and 
composite executive function and age and gender) significantly (95% CI = 0.511,0.757) 
classified sedentary participants with 64% accuracy, 69% sensitivity and 59% 
specificity.  
 
Discussion  
 The aims of the current study were to assess whether baseline measures of 
executive function, time spent sedentary and functional connectivity of brain regions 
implicated in executive control and effort-based decision making could predict changes 
in time spent sedentary over the course of a 6-month walking intervention. Our results 
show that while neither baseline measures of executive function nor time spent 
sedentary could predict changes in time spent sedentary alone, functional connectivity 
between the ACC and the left SMA/M1 and the rAI and the left 
temporoparietal/temporooccipital junction were predictive of change in sedentary 
behavior. In a combined model, baseline reaction time on mixed switch blocks of the 
task switching paradigm (capturing aspects of inhibitory control and flexibility) was 
significantly associated with changes in time spent sedentary. Overall, we demonstrate 
the utility of FC to predict future sedentary behavior and gain mechanistic insight into 
the executive function mechanisms underpinning this behavior. The following 
paragraphs discuss our results in light of previous research on FC in the regions shown 
to be predictive of sedentary time, their relationship with functional networks and the 
behaviors associated with such networks. 
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 We chose our seed regions (ACC and the rAI) as they have been consistently 
implicated in effort-based decision making and the integration of motor costs with 
reward outcomes (Bernacer et al., 2019; Klein-Flügge et al., 2016; Porter et al., 2020; 
Prévost et al., 2010). Further, these same regions have been implicated in inhibitory 
control, which has been shown to be important to overcome the posited innate attraction 
towards effort minimization (Cheval et al., 2020). The function of the ACC and its 
behavioral role has been highly debated (i.e. does it motivate effortful behaviors? 
(Mueller et al., 2007; Mulert et al., 2005) or engage in decision-making and deployment 
of cognitive control? (Kerns et al., 2004)). In an attempt to unify these theories, 
Holyrood and Yeung (2012) proposed that the ACC supports the selection and 
maintenance of options and context-specific sequences of behavior directed towards 
particular goals. In line with this, it has been suggested that poorer monitoring of 
behavior by the ACC (reflected as increased activity in the ACC during error-related 
activity in a Go/NoGo task (Hester et al., 2004)) may increase the effort required to 
inhibit behaviors (Garavan et al., 2006). Highly relevant to our results, one previous 
study demonstrated that a network involving the ACC and the SMA is critically involved 
in effort-based decision-making and the integration of motor costs into reward 
evaluation (Klein-Flügge et al., 2016). More importantly, the same study found that 
activity in the SMA was stronger in participants who tried to more activity avoid higher 
efforts (Klein-Flügge et al., 2016). It is plausible therefore that those participants in our 
study who increased their time spent sedentary were engaging in effort avoidance 
and/or poor behavioral monitoring, which is reflected as an increase in FC between the 
ACC (involved in decision making where motor costs are evaluated) and the SMA (has 
higher activity during effort avoidance). Our ACC seed result also extended into the 
primary motor cortex (M1) as well (Figure 3C). While voluntary movements and 
internally-selected actions are more traditionally associated with the SMA (Eccles, 
1982) and ACC-to-SMA FC (Mueller et al., 2007), neural projections between the ACC 
and M1 are present in primates (Morecraft & Hoesen, 1992; Paus, 2001) and in fMRI 
studies, co-activation of the ACC and motor regions have been seen in working memory 
tasks (Lenartowicz & McIntosh, 2005). Activity in M1 has been found during mental 
effort and is likely involved in an attentional network linking behavioral responses to 
salient stimuli (Otto et al., 2018). Indeed, the left medial portions of the cluster mapped 
onto the ventral attention network (VAN), a network involved in both attention (Corbetta 
et al., 2008) and external awareness (Webb et al., 2016). Further, activity in the left 
motor cortex has been shown to increase as the subjective value of effortful rewards 
increases (Prévost et al., 2010).  

Higher FC between the rAI and a cluster overlapping the left temporoparietal and 
temporooccipital regions junction (regions covering the superior middle temporal gyrus 
and the inferior angular gyrus and lateral occipital gyrus) was also predictive of 
increases in time spent sedentary. The rAI has been proposed to provide an early 
cognitive control response (Ham et al., 2013) and when mapping this result to a large 
functional network parcellation (Yeo et al., 2011), both the rAI and portions of this 
cluster (those in the temporoparietal junction (TPJ)) map onto a broad, bilateral 
VAN/salience network. Indeed, group level connectivity of the rAI ROI (figure 3B) shows 
positive FC with salience/VAN regions and is anticorrelated with the default mod 
network (a hallmark sign of the VAN). The VAN is said to be involved in re-direction of 
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attention to behaviorally relevant stimuli (Corbetta et al., 2008; Corbetta & Shulman, 
2002) and is implicated in more external awareness than the synonymous salience 
network (Webb et al., 2016). Previous research using FC have shown the VAN to be 
predominantly (but not exclusively) lateralized to the right hemisphere (Fox et al., 2006), 
nevertheless, bilateral TPJ was confirmed to be part of a broad VAN in a very large 
(N=1000) study (Yeo et al., 2011). Additionally, the left TPJ’s inclusion in such a 
network seems to provide a distinct role beyond orientating attention to salient stimuli. 
For example, Webb and colleagues (Webb et al., 2016) suggested that the left TPJ had 
a critical role in visual external awareness. The authors suggest that awareness can be 
disassociated from attention, and that significantly more attention may be drawn to a 
stimulus when subjects are aware of it (Webb et al., 2016). Another study (Kucyi et al., 
2012) suggested that the left TPJ is functionally connected to other regions more 
associated with executive control and therefore may be more involved in the integration 
of contextual knowledge about salient stimuli. In accordance, the AI has been 
suggested to be involved in awareness (Craig, 2011). Further, the AI and the ACC are 
functionally connected at rest (Medford & Critchley, 2010; Taylor et al., 2009) and 
across multiple tasks, the AI and the ACC are almost always coactivated (Craig, 2009). 
Relevant to this study, the broad VAN network of brain regions that are implicated in our 
seed-based correlations have also been shown to change with advancing age 
(Deslauriers et al., 2017). Therefore, our results suggest that individual differences in 
the FC of this broad bilateral VAN, possibly engaging in external awareness, effort-
based decision making and effort avoidance, in aging is predictive of changes in time 
spent sedentary.  

Our results can only be interpreted in light of their limitations. The studies that 
have implicated the brain regions discussed have largely used task-based fMRI 
whereas we have relied upon intrinsic resting state FC. A future study to prospectively 
test the role of these brain regions in sedentary behaviors would provide stronger 
evidence of their mechanistic role. Additionally, participants included in this study were 
initially recruited as part of a randomized control trial of exercise for cognitive and brain 
health, whose inclusion criteria required them to be low active (spend < 3 days per week 
performing physical activity), creating a selection bias for this particular analysis. While 
this is a limitation, it is likely reflective of the national US population where over a 3rd 
(34.8%) lead sedentary lifestyles (Du et al., 2019). The sample size in our study is 
relatively small and given the difficulty in objectively measuring sedentary behavior and 
the cost of running randomized control trials of exercise, we do not have an 
independent dataset on which to examine the generalizability of these results.  

Here we show that individual differences in the baseline FC of multiple brain 
regions previously implicated in effort avoidance and effort-based decision making 
predict future change in sedentary time. By understanding the mechanistic correlates of 
future sedentary behaviors, one can intervene early before spending time and money 
on ineffective and oftentimes costly interventions. In parallel, steps towards 
individualized medicine approaches can leverage information about future predictions of 
behavior change.  
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