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Abstract

Genome-wide profiling of transcription factor binding and chromatin states is a widely-
used approach for mechanistic understanding of gene regulation. Recent technology
development has enabled such profiling at single-cell resolution. However, an end-to-end
computational pipeline for analyzing such data is still lacking. To fill this gap, we have
developed a flexible pipeline for analysis and visualization of single-cell CUT&RUN and
CUT&Tag data, which provides functions for sequence alignment, quality control,
dimensionality reduction, cell clustering, data aggregation, and visualization. Furthermore,
it is also seamlessly integrated with the functions in original CUT&RUNTools for
population-level analyses. As such, this provides a valuable toolbox for the community.
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Introduction

Genome-wide analysis of transcription factor binding sites and chromatin states is
essential for understanding cell-type specific transcriptional regulatory mechanisms. For
over a decade, ChlP-seq has served as the main workhorse [1,2], but recently, a new
generation of technologies has emerged with enhanced sensitivity and efficiency [3-8].
As a result, it has become possible to profile genome-wide occupancy analysis in a limited
number of or even single cells. In the meantime, existing software packages do not have

the capacity to analyze such data. New tools are needed to fill this important gap.

Among these technologies, CUT&RUN [3] and CUT&Tag [4] are the most popular. In
previous work, we developed CUT&RUNTools for analyzing CUT&RUN data, providing
an end-to-end CUT&RUN data analysis pipeline that includes sequence alignment and
pre-processing, peak calling, cut matrix estimation, motif and footprinting analyses, and
additional analyses [9]. Here we have further extended this software by implementing a
flexible pipeline for single-cell data quality assessment, analysis and visualization, thus
enabling users to rapidly utilize new technologies to systematically dissect the
heterogeneity of the epigenomic landscape and gene regulatory networks among
individual cells. In addition, we have also implemented a number of new features,
including data normalization, peak calling, and downstream functional analysis that
improve the performance for bulk data analysis. Together, this new tool is referred to as
CUT&RUNTools 2.0, and is publicly available at https://github.com/fl-yu/CUT-RUNTools-
2.0.

Results

Overview of CUT&RUNTools 2.0

CUT&RUNTools 2.0 provides a new module to facilitate the analysis and visualization of
single-cell resolution data. The module implements a flexible, end-to-end pipeline that
takes raw data as input, followed by a number of steps including data preprocessing and
quality assessment, feature extraction, dimensionality reduction, cell clustering, data
aggregation, and visualization. An overview of the single-cell pipeline is shown in Fig. 1.
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First, the input FASTQ files are processed by read trimming, mapping, and filtering. All
the paired FASTQ files for individual cells are trimmed using a two-step strategy to
improve the quality of the reads consistent with bulk data processing [9]. Then the
trimmed reads are aligned to human/mouse reference genome using software Bowtie2
[10]. For each cell, only high mapping quality (MAPQ score > 30), uniquely aligned and
properly mapped reads are retained for further analysis. CUT&RUNTools 2.0 uses GNU
parallel technique [11] to improve computational efficiency in the main steps of data

processing including reads trimming, mapping and filtering.

CUT&RUNTools 2.0 reports a set of common quality control (QC) metrics as a summary
report and diagnostic plots, which can be conveniently used for the data quality evaluation.
In addition, single-cell level QC measures are saved and can be used to filter out low
quality cells based on user-customized criteria. Furthermore, a signal-to-noise ratio metric
is calculated based on the fraction of reads that fall into informative regions. To this end,
all data of individual cells are pooled together into a single file followed by peak calling.
The proportion of reads that fall into the detected peaks is defined as the signal-to-noise

ratio in each cell.

Due to the sparsity of single-cell data, sequence reads falling into a set of pre-selected
features are aggregated. CUT&RUNTools 2.0 provides three options for feature selection:
peaks from cell aggregation, genome-wide bins, and user-defined functional elements. In
each case, a feature-by-cell matrix is derived by counting the sequence reads that fall
into a pre-identified feature across individual single cells in parallel. Furthermore, the
count matrix is binarized to reduce noise associated with low-number counts. To
efficiently reveal the latency variation across different cells, CUT&RUNTools 2.0
implements the term frequency-inverse document frequency (TF-IDF) transformation

method to the binarized feature-by-cell matrix [12,13].

To reduce dimension, the resulting feature-by-cell matrix is processed by singular value
decomposition, which generates a Latent Semantic Indexing (LSI) score matrix [12]. Then
principal component analyses (PCA), t-distributed Stochastic Neighbor Embedding (-
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SNE) [14], and/or Uniform Manifold Approximation and Projection (UMAP) [15] are used
to further reduce dimensionality. Clustering analysis is achieved by applying the graph-
based Leiden algorithm [16]. The cells from the same cluster are merged into a pseudo-
bulk profile and the corresponding genome track files for both individual cells and the
pooled signal are automatically generated per cell population. These pseudo-bulk
samples are compared by analysis of distinct peaks, motif discovery, footprints (for
transcription factors), or functional enrichment. The main processing steps in the data
processing and feature-by-cell matrix construction can be performed in parallel to make
full use of the available computational resources and reduce runtime. For each run, only
a configuration file specifying the options and parameters needs to be provided for the
analysis. Users can either run the entire workflow or select a specific step by customizing
the configuration file.

Analysis of a single-cell CUT&Tag dataset

To demonstrate its utility, we applied the CUT&RUNTools 2.0 pipeline to re-analyze a
publicly available single-cell CUT&Tag dataset [4]. In this study, the investigators profiled
genome-wide occupancy of H3K27me3, a repressive histone mark, in individual cells
from two distinct cell lines: H1 (human embryonic stem cells) and K562 (a human
erythroleukemia cell line).

A summary report regarding a set of QC metrics and the corresponding diagnostic plots
for the experiment were produced (Fig. 2). Overall, a total of 1,373 cells were detected
and approximately 0.14 million reads per cell were sequenced. For most cells, more than
99% of the reads were successfully mapped to the reference sequence indicating a high
degree of purification. We also found that a vast majority of cells having a high proportion
(median percentage, 99.5%) of nuclear reads (reads not aligned to mitochondrial DNA)
in each single cell library. Less than 1% of duplicated reads were found for the majority
of cells, suggesting the libraries of individual cells were sequenced near saturation. The
fragment size was calculated as the length between the cut point of the Tn5 enzyme and
the average size is 230.3 bp, which is expected for typical histone modification and longer
than typical transcription factor binding profiles (~120 bp) [4,9,17]. The fragment size
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distribution of all the reads from individual cells exhibits a clear nucleosomal binding
pattern. These quality metrics were reported as a summary table (Fig. 2a) as well as a
number of diagnostic plots (Fig. 2b and c). The high quality of the data is reflected by a
number of factors including high alignment ratio, the ideal proportion of properly mapped
reads, high-quality mapping reads and nuclear reads, and a high level of library

complexity.

Next, we aggregated sequence reads from individual cells into a pooled sample, and then
applied MACS2 [18] to detect peaks. In order to preserve the structure of the data, we
used a permissive cutoff of g-value < 0.01, which detects a total of 379,566 peaks. We
assessed the signal-to-noise ratio in individual cells based on the fraction of reads that
fall into the detected peaks. Overall, the signal-to-noise ratio ranges from 28% to 68%,
with a median level of 45%. Of the 1,373 cells, three did not pass the QC criteria because
they were associated with either a low signal-to-noise ratio (< 30%) or a small number of
qualified fragments (< 10,000), therefore these three cells were excluded from further

analysis (Fig. 2d).

For the remaining 1,370 cells, we created a binarized feature-by-cell matrix indicating the
presence or absence of a peak of any individual cell. We also removed features that were
either ubiquitous (detected in > 80% cells) or rare (detected in < 0.1% cells) therefore
unlikely to be informative. After dimensionality reduction and clustering, two distinct cell
populations were identified (Fig. 3a), which matched nearly perfectly to the true cell-type
labels (Fig. 3b): nearly all the cells in cluster 1 were K562 cells, whereas all the cells in
cluster 2 were H1 cells, indicating the biological information was preserved by our single-
cell CUT&Tag analysis pipeline.

To compare the genome-wide H3K27me3 profiles for different cell clusters, the reads
obtained from all the cells in each cluster were aggregated to create a pseudo-bulk
sample. We further downloaded and processed the cell-type matched bulk data and found
the pseudo-bulk samples are highly correlated with the corresponding bulk data (Fig. 3c).
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Together, these results suggest our single single-cell analysis is able to extract useful
information and accurately reveal the cellular heterogeneity.

To aid visualization, we created genomic tracks files of not only the pooled signals, but
also binding profiles at the single-cell resolution for different cell clusters (Fig. 3d). This
visualization clearly shows the differences between the H1 and K562 cells. Of note,
H3K27me3 occupies across the entire HOXB cluster in H1 cells, but only partially
occupies a broad domain around the HOXB13 locus in K562 cells (Fig. 3d). By comparing
with ENCODE RNAseq data, we found this change of H3K27me3 profiles is consistent
with transcriptional activity differences between these two cell types, where HOXB1-9
genes are expressed in K562 cells but the entire HOXB cluster genes are repressed in
H1 cells (Fig. 3d).

The pseudo-bulk data were used to further characterize and compare the H3K27me3
landscape between different cell subpopulations. We first identified 75,812 peaks in
cluster 1 (corresponding to K562 cells) and 25,064 peaks in cluster 2 (corresponding to
H1 cells) by using a stringent cutoff of g-value < 0.01 and fold change > 5 (Fig. 4a). We
found only a small proportion of peaks (1,525) overlapping between these two clusters.
More peaks were associated with non-coding regions comparing to coding regions in both
cell clusters (Fig. 4b). Of note, a much larger proportion of peaks of cluster 2 (17%) were
proximal to transcriptional start sites (TSSs) compared to cluster 1 (5%), suggesting that
more embryonic associated genes may be more directly regulated by repressive
H3K27me3 domain. We identified potential regulators closely related to the repression of
cell-type-specific genes and cis-elements, such as the tumor suppressor Transcription
Factor AP-2 Beta (TFAP2B) and Early B cell factor 1 (EBF1) in cell cluster 1 [19,20] (Fig.
4c) and the development associated TF Early growth response protein 2 (EGR2) in cell
cluster 2 [21,22] (Fig. 4d). Gene Ontology analysis showed that many different cell and
system development associated functions including embryo development, system
development, cell differentiation, and multi-cellular organism development were markedly

enriched in cluster 2, which also supports that the establishment and removal of
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H3K27me3 at specific genes in the embryonic stem cells is critically important for normal
development.

Discussion

We have extended CUT&RUNTools in response to the recent development of single-cell
technologies and demonstrated that this new single-cell module is useful for extracting
biological insights. While we have only focused on single-cell CUT&Tag here, our
pipeline can be adapted to various emerging promising technologies that could profile
transcription factor and chromatin regulators at the single-cell resolution [5-8,23]. As
more data with a large sample size become available, we plan to incorporate further

adaptations to this approach in the future.

In addition, CUT&RUNTools 2.0 also contains a number of updates in bulk-level analyses,
such as spike-in sequence alignment and data normalization (see the website for details).
The main strength of CUT&RUNTROools 2.0 is that it seamlessly integrates single-cell and
bulk-level analyses in one package, providing the convenience to study a number of
datasets in a standardized manner. As single-cell multi-modal data become increasingly
available, CUT&RUNTools 2.0 provides as a convenient toolkit facilitating integration
which in turn will provide a better understanding of epigenomic heterogeneity and
regulatory logic in both healthy and diseased tissues.

Methods
Adaptor trimming and reads mapping

For each cell, the adaptor sequence and primer oligo sequence from the 3’ ends
of reads is trimmed off using a two-step trimming strategy consistent with bulk data
processing. All the reads are aligned to the corresponding reference genome hg38 using
Bowtie2 software [10] with the default parameter. The SAMtools [24] is used to sort and
index the resulting BAM files.

Quality control metrics
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CUT&RUNTools 2.0 provides a set of quality assessment metrics for the overall
experiment as well as each barcode cells. The metrics include overall alignment ratio, the
number of total reads, properly paired reads, duplicated reads, high-quality reads (MAPQ
score >30), and nuclear reads, fragment size, signal-to-noise ratio (the fraction of reads
in peaks). The Picard (https://broadinstitute.github.io/picard) MarkDuplicates function is
used to locate and tag duplicate reads. The unmapped, low quality (MAPQ score <30),
unproperly paired and duplicated fragments are discarded, and the remaining data are
defined as the qualified fragments. Then, the filtered and sorted BAM file for each cell are
generated for further analysis. The fraction of reads in peaks are calculated using
BEDTools genomecov function [25].

For each run, a summary report is generated by using a custom script, which contains a
summarization of the mapping statistics of the overall experiment. Additionally, several
diagnostic plots are also produced for intuitive illustration of the quality control metrics
across all the cells. We provide two parameters, num_reads_threshold (number of unique
mapped reads, 10,000 as default) and percentage_rip (fraction of reads in peaks, 30%
as default) as filters to remove low quality cells. Finally, two files, statistics QCpassed.txt
and statistics_QCfailed.txt, are generated to record the identity of the filtered cells along
with their associated statistics.

Parallel processing

Comparing to bulk data, a single-cell CUT&RUN / CUT&Tag experiment usually
contains a large number of cells, but the reads in each cell are less abundant. The data
processing time roughly scales linearly with the cell number, therefore it may take a long
time if the number of cells is large. To overcome this challenge, we have adopted the
GNU parallel technique [11] in the main steps of data processing, which results in

dramatic reduction of runtime.

Peak calling
For the pseudo-bulk data aggregated from cells from the entire datasets or a
specific cell cluster, CUT&RUNTools 2.0 enables peak calling by using different methods.


https://doi.org/10.1101/2021.01.26.428013
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428013; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

By default, we use the MACS 2 narrow peak mode for peak calling [18], which has good
performance for TFs [26]. In addition, we also implement two alternative strategies: the
MACS 2 broad peak mode, and the SEACR algorithm [27]. The users can easily make

selection by modifying the parameters of peak_caller and peak_thresholds.

Construction of feature-by-cell matrix

CUT&RUNToolIs 2.0 provides three options to build the feature-by-cell matrix,
which can be customized by setting matrix_type as peak-by-cell, bin-by-cell, or
customFeature-by-cell. peak-by-cell refers to using peaks detected from the pooled
sample as the feature set, which is selected in the present study. bin-by-cell refers to
segmenting the genome into equal-size bins (5 kb by default). Using the customfeature-
by-cell option, users can also upload their own features of interest, such as a list of
enhancer regions (input needs to be in the standard BED format).

Once the feature file is designated, CUT&RUNTools 2.0 automatically excludes features
overlapping with ENCODE blacklist regions [28] or uninterested chromosomes. For
CUT&RUN experiments, an additional filtering step is carried out by removing the regions
overlapping with TA repeats regions because these regions usually occur as containment
abnormally enriched reads [17]. The users can simply set the experiment_type parameter
as CUT&RUN to turn on this feature. With the preparation of feature files,
CUT&RUNTools calculates the read coverage profiles for all the qualified cells, and the
resulting feature-by-cell count matrix is generated and saved.

Count matrix processing

Owing to the sparsity of count matrix of single-cell epigenomic data,
CUT&RUNTools 2.0 converts the feature-by-cell matrix into the sparse Matrix format to
allows more efficiency of memory usage and computation by using the ‘Matrix’ package
in R [29]. The sparse matrix is binarized and an additional filter is used to remove features
that are present only in few cells (the maximum of 0.1% of the cells) or in the vast majority
of cells (80% of the cells) to efficiently capture the informative signals.
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Dimensionality reduction, cell clustering and visualization

Dimensionality reduction is performed using the Latent Semantic Indexing (LSI)
method, a technique commonly used for document indexing process in natural language
processing [30]. The binarized sparse matrix is first converted into a frequency-inverse
document frequency (TF-IDF) matrix by weighting the matrix against the total number of
terms (i.e. features) for each document (i.e. cell) with the following formula:

Wi,jzlfi,jXIOg(l-"%)

where Vii is the weight for the feature I incell J, i indicates the term frequency, the

df.

number of feature ¢ in cell J, /i is the document frequency of term ¢, cell number of

cells where the feature I appears, N is the total number of cells in the experiment.

The singular value decomposition (SVD) is applied on the TF-IDF matrix X to generate

an LSI score matrix with a lower k dimensional space as follows:

X=Umk Zk’k Vlk

This is the decomposition of X where U and V are orthogonal matrices and 2 is a

diagonal matrix. ” represents the number of rows and 7 represents the number of
columns for X, U=t t] and i with length ™, which is called the left singular vector.

V=[,.%] and % with length " , which is called the right singular vector.

Zkk =diag(0oy... 0Oy) 0, z0,>..2

and =% are singular values of X.

Based on the resulting LS| matrix, the graph-based Leiden algorithm is used as the
unsupervised clustering method which is implemented with the leidenalg and igraph
library [16,31]. Using the top 30 principal components (different numbers can be tuned by
changing parameter cluster_pc), we build a shared neighbor network (SNN) graph by
considering each cell as a node and further finding its k-nearest neighbors according to
the Euclidian distance. Another parameter of cluster_resolution is also provided, which is
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important to control the number of resulting clusters, where the larger of this parameter
usually lead to the larger number of resulting cell clusters. The predicted cell type labels
are then generated. CUT&RUNTools 2.0 visualizes the results by employing three
commonly used methods for dimensionality reduction including PCA, UMAP and t-SNE.
The corresponding plots of the first two dimensions are generated and saved, respectively.

Generation of genome browser tracks

The tracks of pseudo-bulk data are normalized by the counts per million method
and generated with bigwig format using the program bamCoverage in the deepTools
package [32] with 50 bp resolution. The peak files called from pseudo-bulk data are also
generated with BED format. For each single cell, the genome-wide read coverage is
calculated using BEDTools [25] in parallel with available computational cores. The
regions covered by any reads are extracted and a read coverage file is created with BED
format. For each cell cluster, the read coverage files of individual cells are combined into
a single track with gBED format for convenient visualization [33], with the cells sorted by
the number of covered regions in each cell. All the resulting track files could be directly
uploaded and visualized using browser apps such as the WashU Epigenome Browser
[34].

Downstream analysis function specific to cell populations

Analysis of peaks called from pseudo-bulk data of cell clusters is important to
uncover the cell-specific gene regulatory elements. The script peakOverlap is used to
summarize the peak overlap between different cell clusters, the number of common and
specific peaks will be identified and visualized as a Venn diagram. The script eleAnno is
used to annotate the distribution of peaks over different types of genomic features
including 5 UTR, promoter, exon, intron, 3’ UTR, intragenic and intergenic regions.
haystack_motifs is used for the motif enrichment analysis of peaks to identify cell-type-
specific cis-regulatory elements and associated transcription factors [35]. PeakFun is
used for Gene Ontology (GO) analysis of the top 1,000 interested peaks with the search
of genes associated with GO ‘biological process’ categories [36] (see the manual on the
website for details).
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Figure Legend

Figure 1. Overview of the workflow of CUT&RUNTools 2.0. The raw data of individual
cells are trimmed and then aligned to the reference genome. Peak calling is performed
for the aggregated data. A comprehensive QC report and several diagnostic plots are
generated to help to evaluate experiment quality and filter low-quality cells. Three options
of input features (peak-by-cell, bin-by-cell and customFeature-by-cell) are available for
feature-by-cell matrix construction. The feature-by-cell matrix will be binarized and
normalized, then the dimensionality reduction analysis is performed and the cell
annotation will be generated from the clustering analysis. The cells from the same cluster
are merged into a pseudo-bulk profile and the corresponding genome track files for both
individual cells and the pooled signal are automatically generated for data visualization.
The bulk-level analysis such as motif enrichment and Gene Ontology analysis provided
by the CUT&RUNTOooIs 2.0 could be used for functional annotation and interpretation of

the resulting cell types.

Figure 2. Quality evaluation of single-cell CUT&Tag data. (a) The overall statistics of
the experiment are shown in the summary report. (b) Violin plots for percentage statistics
of overall alignment, properly paired reads, duplication reads and nuclear reads. (c)
Distribution of fragment size of the qualified fragments for all the cells. (d) Scatter plot of
the fraction of unique fragments in peaks versus the total number of unique fragments for
each cell. The default thresholds for the two parameters were indicated as dash lines.

Figure 3. Analysis of single-cell CUT&Tag data identifies two cell clusters. (a) A plot
of two-dimensional projection of the single-cell CUT&Tag data using the t-SNE method.
(b) Confusion matrix of the ground truth cell labels and cell clusters predicted by
CUT&RUNTools 2.0. (c) The genome-wide bins with 1 kb resolution were generated and
the fragment within each bin was counted for the bulk and pseudo-bulk data of H1 and
K562, respectively. The pair-wise Pearson correlation coefficients were calculated and
shown in the heatmap. (d) The genome browser tracks for the HOXB gene locus. The
signals of bulk, pseudo-bulk, and single-cell CUT&Tag data along with the RNA-seq data
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for H1 (top panel) and K562 (bottom panel) cells are shown. For the bottom panel, each
row represents a single cell. The cells are ordered by total read counts.

Figure 4. Functional analysis of the pseudo-bulk data. (a) Venn diagram illustrates
the number of H3K27me3 modification peaks detected in the pseudo-bulk data
corresponding to the two cell populations. (b) The percentage distribution of top 5000
peaks overlapping with annotated genomic elements. (c-d) The top enriched TFs

associated with different genomic elements of cell cluster1 (c) and cell cluster 2 (d).
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