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Abstract: 

 

Background: Recent advances in tissue clearing techniques, combined with high-speed image 

acquisition through light sheet microscopy, enable rapid three-dimensional (3D) imaging of 

biological specimens, such as whole mouse brains, in a matter of hours. Quantitative analysis of 

such 3D images can help us understand how changes in brain structure lead to differences in 

behavior or cognition, but distinguishing features of interest, such as nuclei, from background can 

be challenging. Recent deep learning-based nuclear segmentation algorithms show great 

promise for automated segmentation, but require large numbers of manually and accurately 

labeled nuclei as training data.  

 

Results: We present Segmentor, an open-source tool for reliable, efficient, and user-friendly 

manual annotation and refinement of objects (e.g., nuclei) within 3D light sheet microscopy 

images. Segmentor employs a hybrid 2D-3D approach for visualizing and segmenting objects 

and contains features for automatic region splitting, designed specifically for streamlining the 

process of 3D segmentation of nuclei. We show that editing simultaneously in 2D and 3D using 

Segmentor significantly decreases time spent on manual annotations without affecting accuracy. 
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Conclusions: Segmentor is a tool for increased efficiency of manual annotation and refinement of 

3D objects that can be used to train deep learning segmentation algorithms, and is available at 

https://www.nucleininja.org/ and https://github.com/RENCI/Segmentor. 

 

Keywords: tissue clearing, light sheet microscopy, deep learning, image segmentation, manual 

annotation 

 

Background 

The structure of the brain provides the machinery that enables behavior and cognition. The human 

brain is extremely complex, comprising ~170 billion cells, of which ~86 billion are neurons [1]. The 

mouse brain, a common model system used to study brain-behavior relationships, is much 

smaller yet still has ~109 million cells, ~70 million of which are neurons [1]. By mapping the 

location of these many brain cells, classifying them into types based on the expression of marker 

genes, and determining how cell type proportions and locations are altered by mutations or 

environmental factors, we can understand how changes in brain structure lead to changes in 

behavior and/or cognition. 

In order to map cell types within intact brains, a number of tissue clearing techniques for making 

the brain transparent were recently introduced [2, 3]. Combined with high-speed image acquisition 

through light sheet microscopy, the full 3D extent of adult mouse brain specimens can be imaged 

at micron resolution in a matter of hours [4–7].  

Currently, these large-scale microscopy images are often used for qualitative visualization rather 

than quantitative evaluation of brain structure, thus potentially overlooking key spatial information 

that may influence structure-function relationships for behavior and cognition. In order to quantify 
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objects within annotated regions of the images, we need to distinguish morphological objects of 

interest (e.g., nuclei) from background [8]. Existing programs that perform object segmentation in 

cleared samples from tissue (for example, ClearMap [9], CUBIC [10]) or organoids [11] work well 

for cases with unambiguous morphological characteristics. However, for cases in which 

morphological objects are densely packed, nuclei segmentation results are less accurate using 

current computational tools, which obfuscates brain structure quantifications and comparisons. 

Recent deep learning-based nuclear segmentation algorithms such as multi-level convolutional 

neural networks show great promise for more accurately identifying each individual nucleus [12–

15]. When colocalized with immunolabeling, nuclear segmentation additionally enables counting 

individual cell types. Present learning-based methods require two sets of manually labeled ‘gold 

standards’: (1) a large number of training objects to learn the morphometrical appearance of 

nuclei in the context of various backgrounds, and (2) independent benchmark datasets for 

evaluating the accuracy of automated segmentation results.  

Gold standard datasets are derived from manual labels by trained and reliable raters. Manual 

labeling is both time-consuming and difficult because of ambiguities in nuclear boundaries and 

the difficulty of labeling 3D structures on a 2D screen. A few tools have been developed for manual 

labeling of objects in 2D [16] and 3D [17–20] images, including labeling in virtual reality 

environments [21]. Existing annotation software often implement automatic contour completion 

using deformable model techniques such as active contour [22]. This feature is useful when nuclei 

are spatially separate from each other, but is less powerful for annotating densely-packed nuclei, 

where the boundary between multiple nuclei has lower contrast. Additionally, existing tools are 

not optimized for editing large images with high visual complexity where densely packed nuclei 

within a 3D scene can obscure the region being edited, and, at present, do not provide methods 

for semi-automated correction of common automated segmentation errors (e.g., incorrectly 

merged or split nuclear boundaries) that lower throughput of manual refinement.  
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Here, we present Segmentor, an open-source tool for reliable, efficient, and user-friendly manual 

annotation and refinement of objects (e.g., nuclei) within 3D light sheet microscopy images. This 

tool enables automated pre-segmentation of nuclei, refinement of objects in 2D and 3D, 

visualization of each individual nucleus in a dense field, and semi-automated splitting and merging 

operations, among many other features. This tool has been used by 10 individuals to achieve 

reliable segmentation and labeling of thousands of nuclei. We show that editing simultaneously 

in both 2D and 3D significantly decreases labeling time, without impacting accuracy. Software 

releases of this tool and example images are available at https://www.nucleininja.org/, and source 

code and documentation are available at https://github.com/RENCI/Segmentor. We expect that 

increasing the number of manually labeled nuclei in 3D microscopy images through this user-

efficient tool will help implement fully automated nuclear recognition by incorporating deep 

learning. 

 

Implementation 

Software: The Segmentor tool was developed in C++ using open-source cross-platform libraries, 

including VTK [23] and Qt [24]. 3D image volumes and segmentation data can be loaded in TIFF, 

NIfTI, or VTI format. In order to increase efficiency, the tool is primarily designed for manually 

refining existing annotations rather than beginning annotations completely anew. The user can 

load initial segmentation data generated by a tool external to Segmentor (e.g., NuMorph [12], 

CUBIC [10], or ClearMap [9]), or generate an initial global intensity threshold-based segmentation 

[25] from within Segmentor. The interface consists of panels with 2D (right panel) and 3D (left 

panel) views and a region table (Figure 1). The 2D view consists of a single slice through the 

volume, and enables the user to see both the voxel intensities, and 2D visualizations of the 

segmented regions. The 3D view enables the user to see 3D surfaces of the segmented regions, 

and inspect them for non-uniform morphology that is difficult to visualize using only the 2D view. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.428119doi: bioRxiv preprint 

https://www.nucleininja.org/
https://github.com/RENCI/Segmentor
https://paperpile.com/c/epJPwE/Fo0y
https://paperpile.com/c/epJPwE/7bTj
https://paperpile.com/c/epJPwE/aaAn
https://paperpile.com/c/epJPwE/E3egd
https://paperpile.com/c/epJPwE/f8JQ
https://paperpile.com/c/epJPwE/kDKJ
https://doi.org/10.1101/2021.01.25.428119
http://creativecommons.org/licenses/by/4.0/


The 3D and 2D views are synchronized, such that navigating (i.e., rotating, translating, or 

zooming) in one view also updates the other view. The hybrid 2D/3D visualization and editing 

capabilities are important as each view is useful for different aspects of the annotation procedure, 

e.g., the 2D view is useful for manually selecting voxels based on image intensity, whereas the 

3D view is useful for identifying incorrectly segmented regions of densely packed nuclei.  

Visualization features: The 2D view provides outline and filled representations of the segmented 

regions, and window/level controls for the voxel intensities. The 3D view has controls for smooth 

shading and surface smoothing. The user can also toggle a representation of the current 2D slice 

plane in the 3D view. Edits made in either view are immediately updated in the other view. To 

reduce visual clutter in the 3D view, various modes are available to filter the currently visible 

regions to: 1) current slice plane, 2) the currently selected region and close neighbors, and 3) the 

currently selected region only.  

Editing features: Various editing features are provided. Most operations can be applied in either 

the 2D or 3D view, although certain features are only applied in the 2D X-Y plane due to the 

improved resolution in that plane for most microscopy volumes. Standard editing features include 

voxel-level painting and erasing of the currently selected region. The user can select a brush 

radius, applied in the X-Y plane, for these edits.  

In addition to these standard editing features, more advanced features are also provided. The 

user can apply a constrained region growing or shrinking operation in the X-Y plane by selecting 

a voxel outside (growing) or inside (shrinking) the current region. For region growing, all voxels 

with an intensity equal to or higher than the selected voxel that are reachable from the current 

region, and no farther than the selected voxel, are added to the region. This is similar to a dilation 

of the current region, but only including voxels with intensities greater than or equal to the current 

region. Region shrinking works similarly, but removes voxels with intensities less than or equal to 

the selected voxel.  
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Common segmentation problems from automatic methods include divided nuclei, where more 

than one region is present within a single nucleus, and joined regions, where multiple nuclei are 

incorrectly included as the same region. Semi-automated methods are provided for correcting 

these issues. To fix divided nuclei, the user can select any region to merge with the current region 

by reassigning the voxel labels. Splitting joined regions is more challenging (Figure 2). We 

employ an intensity threshold method: using the 2D and 3D view the user determines how many 

nuclei are in the current region that should be separated. After specifying this number, a fully-

automated approach is applied. An increasing intensity threshold is repeatedly applied to the 

voxels in the region. As the intensity increases, the region is typically broken up into smaller 

regions. The threshold resulting in the specified number of regions (via connected component 

analysis) with the largest volume for the smallest of the three regions (making the method less 

sensitive to noise) is used to define seed regions (intensities are typically higher toward the center 

of the nuclei). Each seed region is then successively grown similarly to the region growing method 

described above, by stepping the region growing intensity down from the seed region threshold, 

constraining the growing to a 1-voxel radius at each step, and to the original region voxels. After 

splitting, the user can perform any necessary adjustments using the other editing features.  

Region table: To help the user manage the complexity of segmenting many nuclei in a given 

volume (e.g. ~460 nuclei are found within an image volume of 152.5 μm x 152.5 μm x 248 μm of 

the cortex), a region table provides information on each segmentation region, including label color, 

size (in voxels), modified status (whether the label has been modified since the last save), and 

done status (whether the user considers segmentation complete for that region). The user can 

sort by label, size, or status, and select any region to zoom in on that region in the 2D and 3D 

views. The user can mark any region as done to keep track of their progress. Such regions will 

be greyed out in the other views. Modified and done statuses are stored in a separate JSON 

metadata file stored with the segmentation data. 
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Typical workflow: All users undergo an initial training period in which they receive the same 

standardized training image containing 39 nuclei. Each user then generates an initial automated 

segmentation, which s/he manually edits. Labeling reliability is then iteratively assessed by 

comparing segmentations to those of an experienced rater (CMM) until a Dice score [26] of ≥ 0.85 

is achieved and label counts are within ± 1 nucleus of the ‘gold standard’ training segmentation 

(i.e., 39 ± 1 nuclei).  

Case study: To quantify efficiency and accuracy of manual labeling in 2D+3D as compared to 2D 

alone, two raters (CMM, NKP) manually refined a series of four images using either ‘2D only’ or 

‘2D+3D’ visualizations. Both raters used Segmentor v0.2.11 (Windows version) and achieved 

reliability on a separate standardized image prior to beginning the case study. One rater (NKP) 

was assigned these 4 images balanced with respect to the order of ‘2D only’ or ‘2D+3D’,  to 

minimize ordering bias. This rater alternated between ‘2D only’ and ‘2D+3D’ using a toggle-

enabled feature in Segmentor’s interface designed to hide the 3D visualization. In total, this rater 

completed 2 manual refinements on each of 4 images (i.e., labeling the same image twice per 

visualization modality). The other rater (CMM) edited each of the four images in ‘2D+3D’ only for 

accuracy assessment. Both tracers recorded the time to completion using the freely available 

Clockify application. Manually refined annotations were compared between raters for accuracy 

(Dice score, DSC) and differences in time and accuracy between ‘2D only’ and ‘2D+3D’ were 

evaluated using a paired t-test. 

Image acquisition: Images used as input to Segmentor were acquired from iDISCO+ [9] tissue 

clearing of P15 C57Bl/6J mice. Nuclei were labeled with TO-PRO-3 and imaged on a lightsheet 

microscope (Ultramicroscope II from LaVision Biotec) at a final resolution of 0.75 μm x 0.75 μm x 

2.50 μm. Blocks from the cortex were used for labeling with Segmentor. Further details about 

image acquisition can be found in [12]. 
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User survey: Segmentor usability feedback was collected from six participants in a 28-question 

survey (24 Likert scale questions on a 7-point scale, in which ‘1’ means ‘not useful’ and ‘7’ means 

‘extremely useful,’ followed by 4 open-ended questions). QualtricsXM was used to distribute the 

survey and analyze participant results [see Survey Results]. 

 

Results 

Ten users have used Segmentor for manual refinement of 3D microscopy volumes. 

Segmentations from one expert user were defined as the gold standard and results from every 

other user were compared to this segmentation via Dice score and nuclei counting to assess 

reliability. After 5 iterations, a Dice score of ≥ 0.85 was achieved by each user (average final Dice 

score=0.876). 

To test whether simultaneous visualizations of 2D and 3D segmentations led to increased 

efficiency or accuracy, we designed a case study in which one user labeled nuclei using either 

the 2D view alone or both the 2D and 3D view in 4 images containing on average 39 nuclei. A 

separate expert user annotated the same images with both the 2D and 3D view to serve as gold 

standard for accuracy comparisons. The use of both 2D and 3D led to a 1.8-fold reduction in the 

amount of time needed for segmentation (2D: 554 +/- 15 min; 2D+3D: 304 +/- 21 min; p=0.00027; 

Figure 3). Using both the 2D and 3D view, manual annotation of the full 3D extent of a nucleus 

takes approximately 8 minutes. However, we found that use of both 2D and 3D views was not 

associated with differences in annotation accuracy relative to the gold standard rater (mean Dice 

score for 2D: 0.82 +/- 0.024; mean Dice score for 2D+3D: 0.81 +/- 0.023; p=0.86; Figure 3). 

These findings indicate that combined use of the 2D and 3D views increase speed for manual 

refinements without sacrificing accuracy in segmentation.  
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The user survey corroborated with case study results, as 2D and 3D views were both found to be 

useful. Questions focused on the usefulness of editing segmentations in 2D and 3D received 

respective means of 6.33 (Q1) and 6.83 (Q2) on a 7-point Likert scale, and questions focused on 

the usefulness of 2D and 3D visualizations received respective means of 5.5 (Q3) and 7.0 (Q4). 

The region splitting feature was also confirmed to be useful, with a mean of 6.67 (Q6), and 

questions addressing features related to the region table had an overall mean of 6.63 (Q11-14). 

Visualizing non-axis-aligned slices in the 2D view supports synchronization of the 2D and 3D 

views, but scores on the utility of this feature varied, with a mean value of 3.33 and a standard 

deviation of 2.43 (Q10), perhaps due to artifacts caused by voxel anisotropy. Future work will 

explore more flexible coupling of the 2D and 3D views to more effectively utilize the strengths of 

each view. 

 

Discussion 

A user-friendly tool for manual delineation of nuclei in 3D image volumes will greatly accelerate 

training of automated recognition algorithms necessary to quantify nuclei in tissue cleared images 

of the brain. Here, we present Segmentor as a tool to make manual 3D segmentations easier and 

more efficient. Segmentor has been tested and iteratively updated based on the feedback of 10 

users. Segmentor provides new features that allow the user to parse relevant information and 

navigate in dense images, automatically split or merge nuclei, keep track of progress during 

segmentation, and efficiently use both 2D and 3D visual information. While we have demonstrated 

use-cases for nuclear segmentation, Segmentor also can be used to annotate any other features 

found in 3D microscopy images.  

Here, we focus on identifying the borders of the 3D extent of the nucleus rather than using a 

marker to label one voxel within the nucleus. Though counting applications only require one voxel 

(or crosshair) within a nucleus to be labeled, labeling the boundaries of nuclei enables 
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measurements of nuclear shape, facilitates more accurate colocalizations with markers across 

channels, and allows for evaluation of precision and recall by determining whether an automated 

segmentation lies within the boundaries of the manually defined nucleus. We also believe that the 

added information of the nuclear boundaries will provide more useful heuristics to deep learning 

approaches about contextual features that distinguish the nucleus from background and possibly 

other (touching) nuclei [14]. 

How many manually annotated nuclei are sufficient for training a successful image segmentation 

tool using deep learning methods? In recent work [14], 80,692 manually labeled nuclei (from 1,102 

images) were used to train a highly accurate 2D segmentation method [27]. Learning 3D nuclei 

segmentation is more challenging than its 2D counterpart, so it is necessary to develop more 

complex neural networks (with more parameters), which require larger numbers of training 

samples for fine tuning the network parameters. Each 3D nucleus is composed of ~5 slices of 2D 

segmentations at the image resolution used here. Thus, our goal is to acquire ~20,000 high-

quality manual 3D nuclei annotations using our Segmentor software (comprising ~100,000 2D 

masks), which will be used to train, validate, and test our neural network in a 10-fold cross 

validation manner. 

We show a case study that visualization in both 2D and 3D views increases efficiency without 

impacting accuracy, while significantly reducing tracing time. Because a large number of training 

samples are needed to train a deep learning-based segmentation model, suggested improvement 

of manual labeling efficiency will greatly contribute to the performance of automated segmentation 

software. 

Finally, the current approach involves the segmentation of a full 3D image containing 40-400 cells, 

which still can take 5 to 50 hours of manual effort per user. We expect that as automated pre-

segmentations are improved through additional manual training, time for manual refinement will 

decrease because less manual refinements will be required. Additionally, we expect that by 
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chunking these segmentation tasks into smaller units of single cells or clumps of cells, more users 

can participate in segmentation simultaneously with less overall time commitment. This would 

allow annotations at a massive scale, through a larger scale citizen science approach.  

 

Conclusions 

Segmentor is a freely available software package that increases efficiency of manual refinement 

in 3D microscopy images. We expect that use of this software will greatly increase the number of 

training samples and thereby result in higher accuracy of learning-based automated segmentation 

algorithms, enabling the efficient quantification of brain structural differences at cellular resolution. 

 

Availability and requirements 

Project name: Segmentor 

Project home page: https://www.nucleininja.org/ 

Operating systems: Windows, Mac 

Programming language: C++ 

License: MIT 

Any restrictions to use by non-academics: No restrictions 

 

List of abbreviations 

2D: two-dimensional; 3D: three-dimensional; DSC: Dice score; μm: micrometers; P15: postnatal 

day 15; VTK: Visualization Toolkit 
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Figures: 

 

Figure 1: Demonstration of Segmentor software for nuclear refinement. (a) Raw microscopy 

volumes of the brain are loaded into the software. (b) Segmentor provides an initial segmentation 

of nuclei within the image (alternatively, pre-segmentations from other programs can be loaded). 

(c) The segmented images are manually refined within Segmentor using (1) the 3D visualization 

of segmented nuclei and (2) the 2D slices. (3) The region table enables the user to track progress 

during segmentation. (d) Finally, the manually refined image that can be used as gold standard 
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input to deep learning programs is shown (grey regions indicate those the user has marked as 

completed). Image made in part using BioRender. 

 

 

Figure 2: Examples of automated nuclear splitting within Segmentor. (a) An incorrectly joined 

region is shown (top), which after visual inspection is determined to represent two nuclei. After 

the user specifies that there are two nuclei in the joined region, the automated splitting function 

result is shown (bottom). (b) Similar to (a), but three nuclei are incorrectly joined (top) and the 

automated result is shown (bottom). 
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Figure 3: Case study to determine accuracy and efficiency of manual refinement when visualizing 

2D and 3D nuclei. (a) Dice score measuring accuracy relative to an expert rater for either the 

labels only from the 2D segmentations or from 2D + 3D segmentations. (b) Time comparison 

between 2D vs 2D+3D.  
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