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Abstract:

Background: Recent advances in tissue clearing techniques, combined with high-speed image
acquisition through light sheet microscopy, enable rapid three-dimensional (3D) imaging of
biological specimens, such as whole mouse brains, in a matter of hours. Quantitative analysis of
such 3D images can help us understand how changes in brain structure lead to differences in
behavior or cognition, but distinguishing features of interest, such as nuclei, from background can
be challenging. Recent deep learning-based nuclear segmentation algorithms show great
promise for automated segmentation, but require large numbers of manually and accurately

labeled nuclei as training data.

Results: We present Segmentor, an open-source tool for reliable, efficient, and user-friendly
manual annotation and refinement of objects (e.g., nuclei) within 3D light sheet microscopy
images. Segmentor employs a hybrid 2D-3D approach for visualizing and segmenting objects
and contains features for automatic region splitting, designed specifically for streamlining the
process of 3D segmentation of nuclei. We show that editing simultaneously in 2D and 3D using

Segmentor significantly decreases time spent on manual annotations without affecting accuracy.
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Conclusions: Segmentor is a tool for increased efficiency of manual annotation and refinement of
3D objects that can be used to train deep learning segmentation algorithms, and is available at

https://www.nucleininja.org/ and https://github.com/RENCI/Segmentor.

Keywords: tissue clearing, light sheet microscopy, deep learning, image segmentation, manual

annotation

Background

The structure of the brain provides the machinery that enables behavior and cognition. The human
brain is extremely complex, comprising ~170 billion cells, of which ~86 billion are neurons [1]. The
mouse brain, a common model system used to study brain-behavior relationships, is much
smaller yet still has ~109 million cells, ~70 million of which are neurons [1]. By mapping the
location of these many brain cells, classifying them into types based on the expression of marker
genes, and determining how cell type proportions and locations are altered by mutations or
environmental factors, we can understand how changes in brain structure lead to changes in

behavior and/or cognition.

In order to map cell types within intact brains, a number of tissue clearing techniques for making
the brain transparent were recently introduced [2, 3]. Combined with high-speed image acquisition
through light sheet microscopy, the full 3D extent of adult mouse brain specimens can be imaged

at micron resolution in a matter of hours [4-7].

Currently, these large-scale microscopy images are often used for qualitative visualization rather
than quantitative evaluation of brain structure, thus potentially overlooking key spatial information

that may influence structure-function relationships for behavior and cognition. In order to quantify
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objects within annotated regions of the images, we need to distinguish morphological objects of
interest (e.g., nuclei) from background [8]. Existing programs that perform object segmentation in
cleared samples from tissue (for example, ClearMap [9], CUBIC [10]) or organoids [11] work well
for cases with unambiguous morphological characteristics. However, for cases in which
morphological objects are densely packed, nuclei segmentation results are less accurate using
current computational tools, which obfuscates brain structure quantifications and comparisons.
Recent deep learning-based nuclear segmentation algorithms such as multi-level convolutional
neural networks show great promise for more accurately identifying each individual nucleus [12—
15]. When colocalized with immunolabeling, nuclear segmentation additionally enables counting
individual cell types. Present learning-based methods require two sets of manually labeled ‘gold
standards’: (1) a large number of training objects to learn the morphometrical appearance of
nuclei in the context of various backgrounds, and (2) independent benchmark datasets for

evaluating the accuracy of automated segmentation results.

Gold standard datasets are derived from manual labels by trained and reliable raters. Manual
labeling is both time-consuming and difficult because of ambiguities in nuclear boundaries and
the difficulty of labeling 3D structures on a 2D screen. A few tools have been developed for manual
labeling of objects in 2D [16] and 3D [17-20] images, including labeling in virtual reality
environments [21]. Existing annotation software often implement automatic contour completion
using deformable model techniques such as active contour [22]. This feature is useful when nuclei
are spatially separate from each other, but is less powerful for annotating densely-packed nuclei,
where the boundary between multiple nuclei has lower contrast. Additionally, existing tools are
not optimized for editing large images with high visual complexity where densely packed nuclei
within a 3D scene can obscure the region being edited, and, at present, do not provide methods
for semi-automated correction of common automated segmentation errors (e.g., incorrectly

merged or split nuclear boundaries) that lower throughput of manual refinement.
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Here, we present Segmentor, an open-source tool for reliable, efficient, and user-friendly manual
annotation and refinement of objects (e.g., nuclei) within 3D light sheet microscopy images. This
tool enables automated pre-segmentation of nuclei, refinement of objects in 2D and 3D,
visualization of each individual nucleus in a dense field, and semi-automated splitting and merging
operations, among many other features. This tool has been used by 10 individuals to achieve
reliable segmentation and labeling of thousands of nuclei. We show that editing simultaneously
in both 2D and 3D significantly decreases labeling time, without impacting accuracy. Software

releases of this tool and example images are available at https://www.nucleininja.org/, and source

code and documentation are available at https://github.com/RENCI/Segmentor. We expect that

increasing the number of manually labeled nuclei in 3D microscopy images through this user-
efficient tool will help implement fully automated nuclear recognition by incorporating deep

learning.

Implementation

Software: The Segmentor tool was developed in C++ using open-source cross-platform libraries,
including VTK [23] and Qt [24]. 3D image volumes and segmentation data can be loaded in TIFF,
NIfTI, or VTI format. In order to increase efficiency, the tool is primarily designed for manually
refining existing annotations rather than beginning annotations completely anew. The user can
load initial segmentation data generated by a tool external to Segmentor (e.g., NuMorph [12],
CUBIC [10], or ClearMap [9]), or generate an initial global intensity threshold-based segmentation
[25] from within Segmentor. The interface consists of panels with 2D (right panel) and 3D (left
panel) views and a region table (Figure 1). The 2D view consists of a single slice through the
volume, and enables the user to see both the voxel intensities, and 2D visualizations of the
segmented regions. The 3D view enables the user to see 3D surfaces of the segmented regions,

and inspect them for non-uniform morphology that is difficult to visualize using only the 2D view.
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The 3D and 2D views are synchronized, such that navigating (i.e., rotating, translating, or
zooming) in one view also updates the other view. The hybrid 2D/3D visualization and editing
capabilities are important as each view is useful for different aspects of the annotation procedure,
e.g., the 2D view is useful for manually selecting voxels based on image intensity, whereas the

3D view is useful for identifying incorrectly segmented regions of densely packed nuclei.

Visualization features: The 2D view provides outline and filled representations of the segmented
regions, and window/level controls for the voxel intensities. The 3D view has controls for smooth
shading and surface smoothing. The user can also toggle a representation of the current 2D slice
plane in the 3D view. Edits made in either view are immediately updated in the other view. To
reduce visual clutter in the 3D view, various modes are available to filter the currently visible
regions to: 1) current slice plane, 2) the currently selected region and close neighbors, and 3) the

currently selected region only.

Editing features: Various editing features are provided. Most operations can be applied in either
the 2D or 3D view, although certain features are only applied in the 2D X-Y plane due to the
improved resolution in that plane for most microscopy volumes. Standard editing features include
voxel-level painting and erasing of the currently selected region. The user can select a brush

radius, applied in the X-Y plane, for these edits.

In addition to these standard editing features, more advanced features are also provided. The
user can apply a constrained region growing or shrinking operation in the X-Y plane by selecting
a voxel outside (growing) or inside (shrinking) the current region. For region growing, all voxels
with an intensity equal to or higher than the selected voxel that are reachable from the current
region, and no farther than the selected voxel, are added to the region. This is similar to a dilation
of the current region, but only including voxels with intensities greater than or equal to the current
region. Region shrinking works similarly, but removes voxels with intensities less than or equal to

the selected voxel.
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Common segmentation problems from automatic methods include divided nuclei, where more
than one region is present within a single nucleus, and joined regions, where multiple nuclei are
incorrectly included as the same region. Semi-automated methods are provided for correcting
these issues. To fix divided nuclei, the user can select any region to merge with the current region
by reassigning the voxel labels. Splitting joined regions is more challenging (Figure 2). We
employ an intensity threshold method: using the 2D and 3D view the user determines how many
nuclei are in the current region that should be separated. After specifying this number, a fully-
automated approach is applied. An increasing intensity threshold is repeatedly applied to the
voxels in the region. As the intensity increases, the region is typically broken up into smaller
regions. The threshold resulting in the specified number of regions (via connected component
analysis) with the largest volume for the smallest of the three regions (making the method less
sensitive to noise) is used to define seed regions (intensities are typically higher toward the center
of the nuclei). Each seed region is then successively grown similarly to the region growing method
described above, by stepping the region growing intensity down from the seed region threshold,
constraining the growing to a 1-voxel radius at each step, and to the original region voxels. After

splitting, the user can perform any necessary adjustments using the other editing features.

Region table: To help the user manage the complexity of segmenting many nuclei in a given
volume (e.g. ~460 nuclei are found within an image volume of 152.5 ym x 152.5 ym x 248 pym of
the cortex), a region table provides information on each segmentation region, including label color,
size (in voxels), modified status (whether the label has been modified since the last save), and
done status (whether the user considers segmentation complete for that region). The user can
sort by label, size, or status, and select any region to zoom in on that region in the 2D and 3D
views. The user can mark any region as done to keep track of their progress. Such regions will
be greyed out in the other views. Modified and done statuses are stored in a separate JSON

metadata file stored with the segmentation data.
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Typical workflow: All users undergo an initial training period in which they receive the same
standardized training image containing 39 nuclei. Each user then generates an initial automated
segmentation, which s/he manually edits. Labeling reliability is then iteratively assessed by
comparing segmentations to those of an experienced rater (CMM) until a Dice score [26] of = 0.85
is achieved and label counts are within £ 1 nucleus of the ‘gold standard’ training segmentation

(i.e., 39 £ 1 nuclei).

Case study: To quantify efficiency and accuracy of manual labeling in 2D+3D as compared to 2D
alone, two raters (CMM, NKP) manually refined a series of four images using either ‘2D only’ or
‘2D+3D’ visualizations. Both raters used Segmentor v0.2.11 (Windows version) and achieved
reliability on a separate standardized image prior to beginning the case study. One rater (NKP)
was assigned these 4 images balanced with respect to the order of ‘2D only’ or 2D+3D’, to
minimize ordering bias. This rater alternated between ‘2D only’ and ‘2D+3D’ using a toggle-
enabled feature in Segmentor’s interface designed to hide the 3D visualization. In total, this rater
completed 2 manual refinements on each of 4 images (i.e., labeling the same image twice per
visualization modality). The other rater (CMM) edited each of the four images in ‘2D+3D’ only for
accuracy assessment. Both tracers recorded the time to completion using the freely available
Clockify application. Manually refined annotations were compared between raters for accuracy
(Dice score, DSC) and differences in time and accuracy between 2D only’ and ‘2D+3D’ were

evaluated using a paired t-test.

Image acquisition: Images used as input to Segmentor were acquired from iDISCO+ [9] tissue
clearing of P15 C57BI/6J mice. Nuclei were labeled with TO-PRO-3 and imaged on a lightsheet
microscope (Ultramicroscope Il from LaVision Biotec) at a final resolution of 0.75 um x 0.75 pm x
2.50 um. Blocks from the cortex were used for labeling with Segmentor. Further details about

image acquisition can be found in [12].
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User survey: Segmentor usability feedback was collected from six participants in a 28-question
survey (24 Likert scale questions on a 7-point scale, in which ‘1’ means ‘not useful’ and ‘7’ means
‘extremely useful,’ followed by 4 open-ended questions). Qualtrics*™ was used to distribute the

survey and analyze participant results [see Survey Results].

Results

Ten users have used Segmentor for manual refinement of 3D microscopy volumes.
Segmentations from one expert user were defined as the gold standard and results from every
other user were compared to this segmentation via Dice score and nuclei counting to assess
reliability. After 5 iterations, a Dice score of =2 0.85 was achieved by each user (average final Dice

score=0.876).

To test whether simultaneous visualizations of 2D and 3D segmentations led to increased
efficiency or accuracy, we designed a case study in which one user labeled nuclei using either
the 2D view alone or both the 2D and 3D view in 4 images containing on average 39 nuclei. A
separate expert user annotated the same images with both the 2D and 3D view to serve as gold
standard for accuracy comparisons. The use of both 2D and 3D led to a 1.8-fold reduction in the
amount of time needed for segmentation (2D: 554 +/- 15 min; 2D+3D: 304 +/- 21 min; p=0.00027;
Figure 3). Using both the 2D and 3D view, manual annotation of the full 3D extent of a nucleus
takes approximately 8 minutes. However, we found that use of both 2D and 3D views was not
associated with differences in annotation accuracy relative to the gold standard rater (mean Dice
score for 2D: 0.82 +/- 0.024; mean Dice score for 2D+3D: 0.81 +/- 0.023; p=0.86; Figure 3).
These findings indicate that combined use of the 2D and 3D views increase speed for manual

refinements without sacrificing accuracy in segmentation.
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The user survey corroborated with case study results, as 2D and 3D views were both found to be
useful. Questions focused on the usefulness of editing segmentations in 2D and 3D received
respective means of 6.33 (Q1) and 6.83 (Q2) on a 7-point Likert scale, and questions focused on
the usefulness of 2D and 3D visualizations received respective means of 5.5 (Q3) and 7.0 (Q4).
The region splitting feature was also confirmed to be useful, with a mean of 6.67 (Q6), and
guestions addressing features related to the region table had an overall mean of 6.63 (Q11-14).
Visualizing non-axis-aligned slices in the 2D view supports synchronization of the 2D and 3D
views, but scores on the utility of this feature varied, with a mean value of 3.33 and a standard
deviation of 2.43 (Q10), perhaps due to artifacts caused by voxel anisotropy. Future work will
explore more flexible coupling of the 2D and 3D views to more effectively utilize the strengths of

each view.

Discussion

A user-friendly tool for manual delineation of nuclei in 3D image volumes will greatly accelerate
training of automated recognition algorithms necessary to quantify nuclei in tissue cleared images
of the brain. Here, we present Segmentor as a tool to make manual 3D segmentations easier and
more efficient. Segmentor has been tested and iteratively updated based on the feedback of 10
users. Segmentor provides new features that allow the user to parse relevant information and
navigate in dense images, automatically split or merge nuclei, keep track of progress during
segmentation, and efficiently use both 2D and 3D visual information. While we have demonstrated
use-cases for nuclear segmentation, Segmentor also can be used to annotate any other features

found in 3D microscopy images.

Here, we focus on identifying the borders of the 3D extent of the nucleus rather than using a
marker to label one voxel within the nucleus. Though counting applications only require one voxel

(or crosshair) within a nucleus to be labeled, labeling the boundaries of nuclei enables
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measurements of nuclear shape, facilitates more accurate colocalizations with markers across
channels, and allows for evaluation of precision and recall by determining whether an automated
segmentation lies within the boundaries of the manually defined nucleus. We also believe that the
added information of the nuclear boundaries will provide more useful heuristics to deep learning
approaches about contextual features that distinguish the nucleus from background and possibly

other (touching) nuclei [14].

How many manually annotated nuclei are sufficient for training a successful image segmentation
tool using deep learning methods? In recent work [14], 80,692 manually labeled nuclei (from 1,102
images) were used to train a highly accurate 2D segmentation method [27]. Learning 3D nuclei
segmentation is more challenging than its 2D counterpart, so it is necessary to develop more
complex neural networks (with more parameters), which require larger numbers of training
samples for fine tuning the network parameters. Each 3D nucleus is composed of ~5 slices of 2D
segmentations at the image resolution used here. Thus, our goal is to acquire ~20,000 high-
guality manual 3D nuclei annotations using our Segmentor software (comprising ~100,000 2D
masks), which will be used to train, validate, and test our neural network in a 10-fold cross

validation manner.

We show a case study that visualization in both 2D and 3D views increases efficiency without
impacting accuracy, while significantly reducing tracing time. Because a large number of training
samples are needed to train a deep learning-based segmentation model, suggested improvement
of manual labeling efficiency will greatly contribute to the performance of automated segmentation

software.

Finally, the current approach involves the segmentation of a full 3D image containing 40-400 cells,
which still can take 5 to 50 hours of manual effort per user. We expect that as automated pre-
segmentations are improved through additional manual training, time for manual refinement will

decrease because less manual refinements will be required. Additionally, we expect that by
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chunking these segmentation tasks into smaller units of single cells or clumps of cells, more users
can participate in segmentation simultaneously with less overall time commitment. This would

allow annotations at a massive scale, through a larger scale citizen science approach.

Conclusions

Segmentor is a freely available software package that increases efficiency of manual refinement
in 3D microscopy images. We expect that use of this software will greatly increase the number of
training samples and thereby result in higher accuracy of learning-based automated segmentation

algorithms, enabling the efficient quantification of brain structural differences at cellular resolution.

Availability and requirements
Project name: Segmentor

Project home page: https://www.nucleininja.org/

Operating systems: Windows, Mac
Programming language: C++
License: MIT

Any restrictions to use by non-academics: No restrictions

List of abbreviations

2D: two-dimensional; 3D: three-dimensional; DSC: Dice score; ym: micrometers; P15: postnatal

day 15; VTK: Visualization Toolkit
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Figure 1: Demonstration of Segmentor software for nuclear refinement. (a) Raw microscopy
volumes of the brain are loaded into the software. (b) Segmentor provides an initial segmentation
of nuclei within the image (alternatively, pre-segmentations from other programs can be loaded).
(c) The segmented images are manually refined within Segmentor using (1) the 3D visualization
of segmented nuclei and (2) the 2D slices. (3) The region table enables the user to track progress

during segmentation. (d) Finally, the manually refined image that can be used as gold standard
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input to deep learning programs is shown (grey regions indicate those the user has marked as

completed). Image made in part using BioRender.

Figure 2. Examples of automated nuclear splitting within Segmentor. (a) An incorrectly joined

region is shown (top), which after visual inspection is determined to represent two nuclei. After
the user specifies that there are two nuclei in the joined region, the automated splitting function
result is shown (bottom). (b) Similar to (a), but three nuclei are incorrectly joined (top) and the

automated result is shown (bottom).
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a) Accuracy in 2D vs 2D+3D b) Time in 2D vs 2D+3D
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Figure 3: Case study to determine accuracy and efficiency of manual refinement when visualizing
2D and 3D nuclei. (a) Dice score measuring accuracy relative to an expert rater for either the
labels only from the 2D segmentations or from 2D + 3D segmentations. (b) Time comparison

between 2D vs 2D+3D.
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