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ABSTRACT 

Single-cell omics assays have become essential tools for identifying and characterizing 

cell types and states of complex tissues. While each single-modality assay reveals 

distinctive features about the sequenced cells, true multi-omics assays are still in early 

stage of development. This notion signifies the importance of computationally 

integrating single-cell omics data that are conducted on various samples across various 

modalities. In addition, the advent of multiplexed molecular imaging assays has given 

rise to a need for computational methods for integrative analysis of single-cell imaging 

and omics data. Here, we present GLUER (inteGrative anaLysis of mUlti-omics at 

single-cEll Resolution), a flexible tool for integration of single-cell multi-omics data and 
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imaging data. Using multiple true multi-omics data sets as the ground truth, we 

demonstrate that GLUER achieved significant improvement over existing methods in 

terms of the accuracy of matching cells across different data modalities resulting in 

ameliorating downstream analyses such as clustering and trajectory inference. We 

further demonstrate the broad utility of GLUER for integrating single-cell transcriptomics 

data with imaging-based spatial proteomics and transcriptomics data. Finally, we extend 

GLUER to leverage true cell-pair labels when available in true multi-omics data, and 

show that this approach improves co-embedding and clustering results. With the rapid 

accumulation of single-cell multi-omics and imaging data, integrated data holds the 

promise of furthering our understanding of the role of heterogeneity in development and 

disease.  

INTRODUCTION 

A number of single-cell omics assays have been developed for robust profiling of 

transcriptome, epigenome and 3-dimensional chromosomal organization. Similarly, 

multiplexed molecular imaging assays have been developed for simultaneous profiling 

of a large number of proteins 1, 2 and transcripts 3-5 at single-cell resolution. Collectively, 

these assays provide powerful means to characterize molecular heterogeneity. 

However, each omics and imaging assay has its own strengths and weaknesses, which 

results in a partial picture of the biological systems. For example, single-cell omics 

assays are unable to capture the spatial distribution of measured molecules. On the 

other hand, imaging assays such as CODEX (co-detection by indexing) 1 and MERFISH 

4 can capture spatial expression patterns of proteins and transcripts within the intricate 
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tissue architecture. However, their coverage is much lower than single-cell omics 

assays and therefore lack the power to resolve cell types/states 6. 

Recently, single-cell assays have been developed to jointly measure two or more 

of molecular modalities in the same cells. For example, sci-CAR 7and SNARE-Seq 8 

allow simultaneous profiling of open chromatin and gene expression. Methyl-HiC 9 and 

single-nucleus methyl-3C 10 have been developed to profile chromatin interaction and 

DNA methylation simultaneously. Although in theory dual-modality measure makes data 

integration easier, in practice, data integration remains a challenge due to differences in 

coverage and data modality-specific characteristics. 

Computational tools that can flexibly and robustly integrate individual single-cell 

data sets offer many exciting opportunities for discovery. To date, the most widely used 

data integration methods are Seurat (v3) 11 and LIGER 12. Seurat seeks to map data 

sets into a shared latent space using dimensions of maximum correlations and 

subsequently maximizes correlated latent factor space which is determined by 

maximize the correlations. By doing so, it may miss true biological variations across the 

data sets that may be important. LIGER uses nonnegative matrix factorization and 

computes the joint clustering using the loading matrices. However, it only considers cell 

pairs with the smallest distance across the data sets and thus ignore one-to-many and 

many-to-many pairs, which are biologically meaningful.   

Here, we describe GLUER (inteGrative anaLysis of mUlti-omics at single-cEll 

Resolution by deep neural network). A flexible method for integrating single-cell omics 

and molecular imaging data. It employs three computational techniques, joint 
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nonnegative matrix factorization, mutual nearest neighbor algorithm, and deep learning 

neural network. Joint nonnegative matrix factorization of the data sets maintains 

biological differences across the data sets while allowing identification of common 

factors shared across the data sets. Mutual nearest neighbor algorithm enables 

mapping of many-to-many relationships among cells across the data sets. Deep 

learning neural networks can capture nonlinear relationships between the data sets. In 

comparison, only linear functions were used in previous methods. Using multiple true 

multi-omics data sets as the ground truth, we show that GLUER achieved significant 

improvement in data integration accuracy. We implemented GLUER in Python and also 

provided a graphical user interface (GUI) for users to explore the integration results.  

RESULTS 

Overview of the GLUER algorithm 

GLUER combines joint nonnegative matrix factorization (NMF), mutual nearest neighbor 

algorithm, and deep neural network to integrate data of different modalities (Figure 1). 

The purpose of joint NMF is to identify shared components across data sets of different 

modalities. The result of this step are dimension-reduced matrices (factor loading 

matrices) for each data modality. The factor loading matrix from one data modality is 

defined as the reference matrix and the rest as the query matrices. These matrices are 

used to calculate the cell distance and subsequently determine putative cell pairs 

between the reference data set and the query data sets. Under the guidance of the 

putative cell pairs, a deep neural network is used to learn map functions between factor 

loading matrices of query data sets to the reference factor loading matrix. Using the 
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learnt functions, co-embedded data is then computed by combining the reference factor 

loading matrix and query factor loading matrices. GLUER is freely available as a Python 

package at https://github.com/tanlabcode/GLUER. 

Performance evaluation using transcriptomics and chromatin accessibility dual-

omics data on mixtures of cell lines 

We first evaluated the performance of GLUER using true single-cell dual-omics data 

where the ground truth of cell pairing is known. These data sets were generated using 

state-of-the-art assays that simultaneously profile mRNA expression and chromatin 

accessibility, including sci-CAR 7, SNARE-Seq 8, and scCAT-seq 13. sci-CAR and 

SNARE-Seq process thousands to millions of cells together by using droplet platforms 

or combinatorial DNA barcoding strategies with high scalability and cost effectiveness. 

scCAT-seq processes hundreds of single cells in individual wells of microwell plates. 

Three data sets on mixtures of human cell lines were used (Supplementary Table 1). 

Data Set 1 was generated using the SNARE-Seq assay 8 and a mixture of four human 

cell lines, BJ, H1, K562, and GM12878. Data Set 2 was generated using the scCAT-seq 

assay 13 and a mixture of 5 human cell lines, including K562, HeLa-S3, HCT116, cells of 

patient-derived xenograft (PDX) samples of a moderately differentiated squamous cell 

carcinoma patient (PDX1) and a large-cell lung carcinoma patient (PDX2). Data Set 3 

was generated using the sci-CAR assay 7 and human lung adenocarcinoma-derived 

A549 cells after 0,1, and 3 hours of treatment of 100nM dexamethasone (DEX).   

We compared three integration methods, Seurat, LIGER, and GLUER using 

these three data sets, ensuring that each method was blinded to the true cell-pair 
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labels. Thus, this analysis simulated a situation in which single-cell RNA-Seq and 

ATAC-Seq assays were performed independently on separate batches of cells. We 

inspected the Uniform Manifold Approximation and Projection (UMAP) plots of the 

integration results (co-embedded data) and evaluated the results quantitatively using 

the integration accuracy metric (see Online Methods for details). Since human cell lines 

were used for generating the ground truth data sets, the true biological identity of the 

cells is known. Hence, a proper integration should result in retaining the known 

biological clusters after integrating the data sets. 

Figure 2 shows the integration results of Data Set 1 by Seurat, LIGER, and 

GLUER. A good integration method should generate well-mixed cells identified with 

different data modalities. Visual inspection of the UMAP plots revealed that the degree 

of mixing of transcriptome and chromatin accessibility data was the highest in the 

GLUER result and lowest in the LIGER result (Figure 2a-c). The same trend was also 

observed in Data Sets 2 and 3 (Supplementary Figures 1a-c, 2a-c). By design, the cell 

line mixture data provides the ground truth for the number of cell clusters we should 

expect in the integrated data. For Data Set 1, LIGER result produced 10 cell clusters, 

which is not consistent with the fact that only four cell lines were used for generating the 

SNARE-Seq data set 5 (Figure 2b). Similar result was also observed with Data Set 2 

where LIGER result yielded more than 5 cell clusters which was the number of cell lines 

used to generated the scCAT-Seq data set 3 (Supplementary Figure 1b). Seurat result 

yielded the correct number of clusters (four) on Data Set 1 although separation between 

two of the clusters was less clear (Figure 2d). Only GLUER result yielded four cell 

clusters that were well separated and represented the four cell lines in the mixture 
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sample (Figure 2f). For Data Set 3, only GLUER result can separate DEX untreated and 

treated A549 cells (Supplementary Figure 2d-f). Finally, the expression patterns of 

known marker genes for the cell lines confirm their identities (Figure 2i, Supplementary 

Figure 1h).  

To quantitatively evaluate the performance of the methods, we devised a metric 

called integration accuracy that is the percentile of the true cell pairs among the 

predicted neighbors of a cell. It is calculated based on the dimension-reduced matrices 

of the co-embedded data (see Online Methods for details). This metric ranges from 0 to 

1 and is high when the true cell pairs across the data sets share a high percentage of 

the same neighbors. Our analysis indicates that GLUER had significantly higher 

integration accuracy compared to Seurat and LIGER for all three data sets (p < 0.05, 

paired Student’s t-test; Figure 2g, Supplementary Figures 1g, 2g).  

Performance evaluation using transcriptomics and chromatin accessibility dual-

omics data on primary tissues 

To further evaluate the performance of GLUER on data of complex tissues, we used 

three true dual-omics data sets of primary tissue samples generated using SNARE-Seq 

and sci-CAR assays (Supplementary Table 1). Data Sets 1 and 2 8 were generated 

using SNARE-Seq and neonatal mouse cerebral cortex and adult mouse cerebral 

cortex samples, respectively. Data Set 3 7 was generated using sci-CAR and mouse 

kidney sample.  

Figure 3 shows integration results of Data Set 1 by Seurat, LIGER, and GLUER. 

Visual inspection of the UMAP plots revealed that the degree of mixing of transcriptome 
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and chromatin accessibility data was the highest in the GLUER result and lowest in the 

Seurat result (Figure 3a-c). The same trend was also observed in Data Sets 2 and 3 

(Supplementary Figures 3a-c, 4a-c). Clustering analysis using the Leiden method 14 

revealed more cell clusters in GLUER result versus results of the other two methods, 

which is consistent with fact of large numbers of cell types in these tissues (Figure 3e, 

Supplementary Figures 3e and 4e). For instance, in Data Set 1, integrated data by 

GLUER revealed 14 cell clusters, representing excitatory neurons in Layer 2/3 (EL-2/3-

Rasgrf2), Layer 3/4 (Ex-L3/4-Rorb), Layer 4/5 (Ex-L4/5-Il1rapl2 and Ex-L4/5-Epha4), 

Layer 5 (Ex-L5-Klhl29 and Ex-L5-Parm1), Layer 5/6 (Ex-L5/6-Tshz2 and Ex-L5/6-Sulf1), 

and Layer 6 (Ex-L6-Foxp2), inhibitory neurons (In-Npy, In-Sst, and In-Pvalb), claustrum, 

and astrocytes/oligodendrocytes (Ast/Oli) (Figure 3e). Interestingly, the different types of 

excitatory neurons were closer to each other in the UMAP, reminiscent of their adjacent 

physical locations in the mouse cerebral cortex. The identification of each cell cluster 

was determined based on gene expression and gene activity profiles of known cell-type 

markers, which was calculated using the co-embedded transcriptome and chromatin 

accessibility data. The marker gene expression and activity profiles clearly demonstrate 

cell type specificity (Figure 3f and 3g). More cell clusters were also identified in Data 

Sets 2 (adult mouse cerebral cortex, Supplementary Figure 3e-g) and 3 (mouse kidney, 

Supplementary Figure 4e-g) integrated by GLUER. 

Using the integration accuracy metric, we quantified the performance and found 

that GLUER has the highest accuracy in all three data sets (p < 0.05, paired Student’s t-

test; Figure 3d and Supplementary Figures 3d and 4d). 
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In summary, using both cell line mixture and primary tissue data where the 

ground truth of cell-pairs is known, we demonstrate that GLUER achieved significant 

improvement in integrating single-cell transcriptomic and chromatin accessibility data.  

Use case 1: Integrating spatial proteomics data with scRNA-Seq data  

Co-detection by indexing (CODEX), a multiplexed cytometric imaging method, can 

simultaneously profile the expression levels of several dozens of proteins in a tissue 

section with single-cell resolution 6. However, the ability of the method to resolve cell 

types/states is limited due to the small number of features (proteins) in a typical data 

set. On the other hand, scRNA-Seq assays can profile the expression levels of 

thousands of genes in each cell, which enables much finer classification of cell types 

and states. To demonstrate the utility of GLUER for integrating spatial proteomics data 

and single-cell omics data, we applied it to a matched data set of murine spleen cells 

that consists of 7,097 cells profiled by scRNA-Seq 15 and 9,186 cells profiled by CODEX 

6 (Supplementary Table 1). A 30-antibody panel was used in the CODEX experiment to 

identify splenic-resident cell types. 

Inspecting the UMAP plots of the original scRNA-Seq data and CODEX data, 

multiple cell clusters are readily evident in the scRNA-Seq data whereas cluster 

structure is not clear in the CODEX data (Figure 4a). After data integration and 

clustering of the co-embedded data using the Leiden method, cluster structures in the 

UMAP plots are more evident in the Seurat and GLUER results than that of the LIGER 

result (Figure 4a). 17, 20, and 18 clusters were identified based on the integrated 

results by Seurat, LIGER and GLUER respectively (Figure 4b). Using known cell-type 
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marker genes, we annotated the clusters based on GLUER integration result (Figure 4c 

and Supplementary Figure 5). GLUER identified NK cells, red pulp macrophages, 

neutrophils, monocytes, pDCs, plasma cells, erythrocytes/erythroblasts, B cells, and T 

cells (Figure 4c). Integrated result by GLUER can effectively separate distinct cell types, 

for instance NK cells and red pulp macrophages. The latter are distinct from monocytes 

and monocyte-derived macrophages. Natural cytotoxicity triggering receptor (Ncr1) 16 

and vascular cell adhesion molecule 1 (Vcam1) 17 are specific markers for these two cell 

types, respectively. In the original data, Vcam1 transcript expression was restricted to a 

cluster of cells in the scRNA-Seq UMAP but VCAM1 protein expression was more 

scattered in the CODEX UMAP. In the integrated data, both transcript and protein 

expression were mostly restricted in one cluster in the GLUER result (cluster 12) 

compared to more scattered expression in Seurat (centered around clusters 6 and 12) 

and LIGER (centered around clusters 1 and 18) results (Figure 4d and 4f). Similar to 

Vcam1/VCAM1, Ncr1/NCR1 expression was restricted to a cluster of cells in the 

scRNA-Seq UMAP but more scattered in the CODEX UMAP. In the integrated data, 

both transcript and protein expression were mostly restricted in one cluster in the 

GLUER result (cluster 16) compared to Seurat (centered around clusters 6 and 12) and 

LIGER (centered around clusters 1 and 17) results (Figure 4e and 4g). In summary, we 

show that by integrating with scRNA-Seq data, cell types that are hard to distinguish in 

the original CODEX data can be readily identified. Using the co-embedded data, spatial 

distribution of additional genes that are not covered in the CODEX panel can then be 

studied.  

Use case 2: Integrating spatial transcriptomics data and scRNA-Seq data 
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Highly multiplexed single-molecule fluorescence in situ hybridization (smFISH) assays 

such as sequential fluorescence in situ hybridization (SeqFISH+) 3 and multiplexed 

error-robust fluorescence in situ hybridization (MERFISH) 4 enable spatial profiling of 

hundreds to thousands of transcripts at single-cell resolution. Here we demonstrate the 

utility of GLUER for integrating scRNA-Seq data with SeqFISH+ data. We used 

matched data sets on mouse visual cortex and olfactory bulb 3, 18, respectively 

(Supplementary Table 1). The scRNA-Seq data set consists of 1344 and 17709 cells for 

the two tissue types and the SeqFISH+ data set consists of 523 and 2050 cells for the 

two tissue types. Similar to CODEX data, due to the smaller number of features in the 

SeqFISH+ data, UMAP plot of the original data does not reveal clear clusters (Figure 

5c,d and 5g,h). After applying GLUER, UMAP plots show that cells identified by both 

assays are well mixed. Clustering of the co-embedded data revealed 5 major clusters 

representing oligodendrocytes, endothelial cells, astrocytes, GABAergic neurons, and 

glutamatergic neurons (Figure 5a and 5b). In general, the same cell types labeled by 

both data modalities clustered together. For instance, oligodendrocytes, endothelial 

cells, and astrocytes from SeqFISH+ data and scRNA-Seq data clustered together. L5a, 

L5b, L2/3, L6a, L4_Ctxn3/Scnn1a neurons from SeqFISH+ data and glutamatergic 

neurons from scRNA-Seq data clustered together. Pvalb, L6b, Sst, Lgtp/Smad3 

neurons from SeqFISH+ data and GABAergic neurons from scRNA-Seq clustered 

together. Using a second data set on mouse olfactory bulb 3, 19, we show that GLUER 

yielded similar result (Figure 5e-h). Again, UMAP plot of the original SeqFISH+ data did 

not reveal clear clusters in the SeqFISH+ data (Figure 5h). After data integration, many 

cell types labeled by both modalities were clustered together, such as astrocytes, 
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microglia cells and macrophages, and endothelial cells. In summary, our result 

demonstrates that GLUER is able to accurately integrate multiplexed RNA FISH data 

with scRNA-Seq data.  

Use case 3: Improving integration of true transcriptomics and epigenomics dual-

omics data 

True dual/multi-omics protocols have started to emerge recently. Although the different 

modalities are measured in the same cells, integration of such data remains a challenge 

due to differences in coverage and data modality-specific characteristics. For instance, 

transcriptomic data in dual scRNA-Seq and scATAC-Seq data typically reveals more 

granular structure in the data, as demonstrated using a SNARE-Seq data set on adult 

mouse cerebral cortex (Figure 6a, 6b) (Supplementary Table 1). Here, we illustrate the 

ability of GLUER to improve integration of true dual/multi-omics data. One of the key 

steps of GLUER is inference of cell pairs among different data modalities using mutual 

nearest neighbor algorithm (Figure 1b). With true dual/multi-omics data, instead of 

inferring cell pairs using the mutual nearest neighbor algorithm, GLUER can take 

advantage of the true cell-pair information to perform joint dimensionality reduction and 

co-embedding. After integration of the mouse cerebral cortex SNARE-Seq data set, 

cells labeled by the two data modalities were well mixed (Figure 6c).  Clustering 

analysis of the integrated data uncovered 15 clusters (Figure 6e) that can be annotated 

to known cerebral cortex cell types based on known marker genes. Importantly, based 

on the co-embedded data, expression profiles of marker genes across cell types are 

consistent with gene activity profiles across cell types (Figure 6f and 6g), confirming the 

high degree of mixing of cells identified by these two data modalities in the UMAP plot. 
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Compared to Seurat and LIGER, the integration accuracy of GLUER is significantly 

higher (p < 0.05, paired Student’s t-test; Figure 6d). 

DISCUSSION 

An accurate definition of cell type/state and underlying gene regulatory mechanisms 

requires integration of multiple measurement modalities at the single cell resolution. 

GLUER was designed as a general framework for single-cell data integration. 

Integration can be performed for multiple single-modality omics data sets, single-

modality omics data and multiplexed molecular imaging data, and different 

measurement modalities of true multi-omics data. Each of the three major steps of 

GLUER addresses a specific challenge in data integration. The joint nonnegative matrix 

factorization addresses the high dimensionality of single-cell omics data. The mutual 

nearest neighbor algorithm can capture many-versus-many relationships among cells 

and thus further reduce the search space for cells of matched data modalities. The deep 

neural network can capture non-linear functional relationships between different data 

modalities. The combination of these three critical steps enables robust integration of 

high-dimensional and multi-modality data. Using diverse single-cell data sets generated 

with different protocols and tissue types, we demonstrated that GLUER achieved 

significantly higher integration accuracy over existing methods. 

The GLUER software offers additional technical benefits. First, the software is 

high scalable due to its implementation of parallel computing using CPUs and GPUs. It 

takes <5 minutes to integrate ~10,000 cells with multi-omics data. Second, GLUER is 

built on the AnnData object which supports preprocessing and plotting functions in 
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SCANPY 20. Third, the graphical user interface (GUI) allows interactive exploration of 

the integration results.  

Here, in order to conduct joint NMF of transcriptomic/proteomic data and 

epigenomic data, we summarized the epigenomic data (chromatin accessibility data in 

this case) as a gene activity matrix. For each gene, its activity score is the sum of reads 

in its promoter region and gene body regions. Novel approaches for computing gene 

activity matrices that take into account additional information located in distal regulatory 

regions in the genome may help to improve integration accuracy. Compared to 

chromatin accessibility, the relationship between DNA methylation and gene expression 

is more complicated. More sophisticated functions other than summation are needed to 

accurately and comprehensively capture the relationship of DNA methylation and gene 

expression to construct a gene activity matrix.  

In summary, GLUER is a much-needed tool for integrating single-cell data across 

measurement modalities and/or samples. With the rapid accumulation of single-cell 

multi-omics and imaging data, integrated data holds the promise of furthering our 

understanding of the role of heterogeneity in development and disease.  

ONLINE METHODS 

Overview of GLUER 

GLUER integrates single-cell omics and molecular imaging data using three major 

computational techniques: joint nonnegative matrix factorization, mutual nearest 

neighbors, and convolutional deep neural network. Specifically, it consists of the 
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following steps (Figure 1):  (a) normalize data for each data modality; (b) perform joint 

nonnegative matrix factorization of the different data sets and identify cell pairs using 

the mutual nearest neighbor algorithm; (c) learn a nonlinear mapping function between 

the factor loadings of a pair of data modalities using convolutional deep neural network; 

(d) generate a co-embedding matrix and jointly visualize the cells using UMAP or t-SNE 

with the option of performing imputation on the co-embedded data.   

Normalization of data of different modalities 

For transcriptomic data, we used a cell-by-gene matrix of unique molecular identifier 

(UMI) counts as the input for each algorithm. For chromatin accessibility data, we 

generated a gene activity matrix by aggregating UMI counts in the 2.5 kb upstream 

region of transcription start site and the gene body of each gene. For other types of 

omics data, we could use the commonly used approaches to generate the gene activity 

matrix.  We employed the same standard pre-processing procedures to generate gene 

expression matrices and gene activity matrices from all data sets used in this paper. We 

applied a log-normalization of the gene expression matrices or gene activity matrices of 

all data sets using a size factor of 10,000 molecules for each cell. We removed low-

quality cells before normalization. For CODEX data, single-cell protein expression levels 

were calculated using the average intensity of the pixels constituting each single cell.  

We first removed cells smaller than 1,000 or larger than 25,000 voxels (the default 

settings of STvEA 15). Then we removed noise in the CODEX data by fitting a Gaussian 

mixture model to the expression levels of each protein 9 followed by normalizing the 

data by the total levels of protein markers in each cell. The output of the normalization 

step of GLUER are normalized gene expression, gene activity, and protein expression 
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matrices denoted as 𝑋0, 𝑋1, . . . , 	𝑋!, where 𝑋0 is the reference data set. For each 𝑋" 	(𝑖	 =

	0, . . . , 𝑁), rows are genes/proteins and columns are individual cells. All 𝑋" 	(𝑖	 =

	0,1, . . . , 𝑁) have the same features (gene/protein) and we use 𝑔 to denote the number 

of features and 𝑚0, 𝑚1, . . . , 𝑚! to denote the number of the cells in 𝑋" 	(𝑖	 =

	0,1, . . . , 𝑁)	respectively. 

Joint nonnegative matrix factorization of multiple datasets 

We use the following model to compute the joint non-negative matrix factorization 

(NMF) of the multiple data sets. Given normalized data matrices 𝑋" , 𝑖 = 0, … , 𝑁, we can  

compute the factor loadings matrices 𝐻0, 𝐻1, . . . , 𝐻! for each data set by minimizing the 

following cost function: 

𝐽(𝐺, 𝐻") = 	012𝑋" − 𝐺𝐻"#2$
% + 𝛼2𝐻"#𝐻" − 𝐼2$

%7
!

"&'

 

where 𝐺 ∈ 𝑅(
)×+ , 𝐻" ∈ 𝑅(

,!×+ (𝑘 is the number of factors in the joint NMF) and 𝐼 is the 

identity matrix. The first term in the sum represents approximation error and the second 

term the orthogonality of column vectors in 𝐻", where the trade-off is controlled by the 

hyperparameter 𝛼. The optimization problem is non-convex, which means no global 

optimal solution for the problem. However, it can be solved by the following iterative 

scheme to reach its local minimum. The algorithm starts by initializing the values in 𝐺 

and 𝐻" randomly and uniformly distributed on [0,1], and updating them with the following 

rules until convergence. 
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𝐺 = 𝐺 ∘ >
∑ 𝑋"𝐺""

∑ 𝑋"𝐺"#𝐺""
 

𝐻 = 𝐻 ∘ >
𝑋"#𝐺 + 𝛼𝐻"

𝐻"𝑊#𝑊 + 2𝛼𝐻"𝐻"#𝐻"
 

where ∘ represents the element-wise (Hadamard) product 21. The mathematical proof of 

the iterative procedure and its convergence to the stationary points have been shown in 

previous literature 21, 22. 

Identification of candidate cell pairs using mutual nearest neighbor algorithm  

We identify candidate cell pairs between the reference data (𝐻0) and query data 

(𝐻1, . . . . , 𝐻!) using the mutual nearest neighbor (MNN) algorithm where cell distance is 

determined by the cosine distance between 𝐻0 and 𝐻1, . . . . , 𝐻!. Given that scRNA-Seq 

data has highest coverage among the data modalities and the central role of 

transcription linking epigenomic and protein information, by default, scRNA-Seq is 

chosen as the reference data modality. The MNN algorithm was first introduced for 

removing batch effects and it is also implemented by Seurat 11, 23. Some cells may 

appear in a large number of cell pairs. These dominant cells are more likely to appear in 

the integrated data. Furthermore, we found that the number of dominant cells is highly 

context- and sample-dependent. Here we employ the following steps to reduce the bias 

due to the dominant cells while identifying cell pairs. We use introduce two tunable 

parameters for identifying dominant cells. First, we check if cells of a candidate cell pair 

are also mutual nearest neighbors in the high dimensional space whose distance is 
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calculated directly from the normalized data. The distance calculation can be tuned by 

using the joint_rank parameter, which is the number of shared factors in the joint non-

negative matrix factorization step. Second, for each cell, we keep its top K nearest 

neighbors in the pairs. Hence, the algorithm is seeking K mutual nearest neighbors.  

Finding nonlinear mappings among the factor loadings of different datasets using 

a deep neural network  

In order to project data from different biological assays onto a common feature space, 

we investigated functions 𝐹" , 𝑖 ∈ {1, . . . . 𝑁} to map the factor loadings 𝐻1, . . . . , 𝐻! onto the 

feature space of 𝐻0.  Previous methods such as Seurat uses a linear function. In 

contrast, we use a convolutional deep neural network to capture nonlinear relationships 

among the factor loading matrices of different modalities (𝐻" and 𝐻0) based on the 

identified cell pairs 𝑃".  𝑃" is a matrix consisting of two columns, the first column is the 

cell index in the reference data set and the second column is the cell index in the i-th 

data set. Each row of 𝑃" corresponds to one cell pair whose indices in the data sets 

constitutes the elements of 𝑃".  

Let us denote the nonlinear relationship as a function 𝐹" that maps from 𝑅+ to  

𝑅+, where 𝑘 is the number of the factors in the joint NMF. The input layer of our neural 

network has a dimension equal to the number of factors 𝑘. The dimensions of seven 

internal layers are 200, 100, 50, 25, 50, 100, and 200 respectively. These seven layers 

are designed to learn and encode features that are shared across factors. Since in most 

data sets, the number of common factors after joint NMF is fewer than 200, we set the 

largest number of neurons to 200. All layers are fully connected with a rectified linear 
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unit (ReLU) activation function, while the last layer is a fully connected layer for output 

24. We found in practice that results were robust with respect to the chosen number of 

layers and numbers of neurons in each layer (Supplementary Figure 6). Throughout this 

study the same network architecture was utilized to analyze all data sets. The objective 

function of our neural network is 

𝑎𝑟𝑔𝑚𝑖𝑛$!||𝑌" − 𝐹"(𝑆")||$
2  

where 𝑌" 	∈ 𝑅(
-!×+ and 𝑆" ∈ 𝑅(

-!×+ are obtained from 𝐻' and 𝐻" using the cell pair 

information reflected in 𝑃". 𝑌" is formed by the order of the index in the first column of 𝑃" 

from the original loading matrix 𝐻'. 𝑆" is formed by the order of the index in the second 

column of 𝑃" from the original loading matrix 𝐻". The loss function is a Frobenius norm 

function. The objective function is optimized stochastically using Adaptive Moment 

Estimation with the learning rate set to 10e–5 for 500 epochs (cross-validation) 24. 

Co-embedding and downstream analyses  

We apply UMAP or t-SNE to obtain the co-embedding plots with the inputs of combining 

𝑯𝟎, 𝑭𝟏(𝑯𝟏),	𝑭𝟐(𝑯𝟐),	…, 𝑭𝑵(𝑯𝑵)25, 26. Naturally, we could use the distance 𝑫𝒊	(𝒊	 =

	𝟎, 𝟏, . . . , 𝑵) between cells from all data sets to impute the data, which is calculated as 

𝑫𝒊𝑿𝒊	(𝒊	 = 	𝟏, 𝟐, . . . , 𝑵). These imputed data sets could be used to perform downstream 

analyses such as joint trajectory inference and finding the regulatory relationship 

between the cis-regulatory DNA sequences and gene promoters. 
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Integration accuracy 

Taking advantage of data sets that jointly profile RNA and chromatin accessibility in the 

same cells7, 8, 13, we devise a distance metric to quantify the integration accuracy of the 

algorithms. First, we compute the co-embedded data 𝐶345678 , 𝐶9")46 , 𝐶:;546 using each 

method. We use the first 50 principal components from principal component analysis in 

Seurat and the factor loading matrices in LIGER and GLUER. Next, we construct 

pairwise Euclidean distance matrices among all cells ,𝐸345678 , 𝐸9")46 , 𝐸:;546 based on co-

embedded data, 𝐶345678 , 𝐶9")46 , 𝐶:;546. For each cell a, we calculate the integrating 

accuracy, 1− 𝐼𝐷(𝑎, 𝑎′), as the percentile of its true paired cell in its neighborhood 

defined using the co-embedded data, that is, 𝐼𝐷(𝑎, 𝑎′) 	= 	%(𝑎′, 𝐸"(𝑎)), where 

%(𝑎′, 𝐸"(𝑎)))	is the percentile ranking of a’ in the neighborhood of cell 𝑎. 𝐸"(𝑎)	is the 

ranked distance vector of cell 𝑎 to the rest of cells in the combined reference and query 

data sets. The greater the integrating accuracy, the better the integration result.  

DATA AND SOFTWARE AVAILABILITY 

GLUER is freely available as a Python package: https://github.com/tanlabcode/GLUER.  

Sources of public data sets used in this paper are summarized in Supplementary Table 

1.  
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FIGURES AND FIGURE LEGENDS 

 
Figure 1. Schematic overview of the GLUER algorithm. (a) Representation of single-cell 
omics and imaging data sets, one of them is the reference modality and the rest are the 
query modalities. The omics and imaging data sets are processed to generate either 
gene/protein expression (transcriptomic and imaging data) or gene activity (epigenomic 
data) data matrices. (b) Joint nonnegative matrix factorization to project the normalized 
data of all modalities into a subspace defined by shared structure across the data sets. 
Candidate cell pairs between the reference and the query data sets are identified using 
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the mutual nearest neighbor algorithm. (c) Deep neural network is employed to 
determine the nonlinear mapping functions 𝐹1, 𝐹2, … , 𝐹! from the query data to the 
reference data based on the cell pairs identified in the previous step. (d) The co-
embedded data matrix is computed using the nonlinear mapping functions. (e) 
Downstream analyses using the co-embedded data, including dimensionality reduction, 
imputation, cell type identification, and inference of transcriptional regulatory network.  
 

 
Figure 2. Performance evaluation using data on a mixture of 1047 human BJ, H1, K562 
and GM12878 cells profiled using SNARE-Seq. (a-c) UMAP plots of integrated 
datasets, color-coded by data modality. (d-f) UMAP plots of integrated datasets, color-
coded by cell line. (g) Integration accuracy of the three methods.  P-values were 
computed using paired Student’s t-test with Bonferroni correction. (i) Distributions of 
gene expressing levels in the original scRNA-Seq data and data computed by the 
integration methods. Y-axis, normalized gene expression level. EPCAM, COL1A2, 
PRAME, and HLA-DPA1 are the marker genes for BJ, H1, K562, and GM12878 cell 
lines, respectively. 
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Figure 3.  Performance evaluation using data on adult mouse cerebral cortex. 7,892 
cells were profiled using SNARE-Seq. (a-c) UMAP plots of integrated datasets, color 
coded by data modality. (d) Integration accuracy of the three methods. P-values were 
computed using paired Student’s t-test with Bonferroni correction. (e) UMAP plot of 
integrated data by GLUER with cell type annotation. Ex-L2/3, excitatory neurons in 
Layer 2/3, the same for the rest of excitatory neuron abbreviation; In, inhibitory neurons; 
Ast, astrocytes; Oli: Oligodendrocytes. (f) Marker gene expression profiles of the cell 
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types identified in panel e. (g) Marker gene activity profiles of the cell types identified in 
panel e. Y-axis, cell types, X-axis, marker genes. Color of the dots represents 
normalized gene expression (for RNA-Seq) or gene activity (for ATAC-Seq). Size of the 
dots represents the percentage of cells with nonzero expression or activity of the gene. 
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Figure 4. Integration of scRNA-Seq and single-cell spatial proteomics data. The dataset 
consists of scRNA-Seq and CODEX data on mouse spleen. (a) UMAP plots of the 
integrated data and original data. First row, UMAPs based on the scRNA-Seq part of 
the co-embedded data; Second row, UMAPs based on the CODEX part of the co-
embedded data; Third row, UMAPs based co-embedded scRNA-Seq and CODEX data. 
(b) Cell clusters identified using integrated data by Seurat, LIGER, and GLUER. 
Clustering was performed using the Leiden method. (c) Cell type annotation based on 
data integrated using GLUER. (d-e) UMAP of marker gene/protein expression for red 
pulp macrophages and NK cells. Vcam1, marker gene for red pulp macrophages; 
NKp46, marker gene for NK cells. (f-g) Violin plots of Vcam1 and NKp46 expression 
levels across cell clusters. Y-axis, normalized expression levels of genes/proteins.  
 

Figure 5. Integration of scRNA-Seq and single-cell spatial transcriptomics data. (a-d) 
UMAP plots of mouse visual cortex data. (a) Integrated data annotated by data 
modalities, SeqFISH+ and scRNA-Seq. (b) Integrated data annotated by cell types. Cell 
type annotation is from original publications. Cell types from scRNA-Seq and SeqFISH+ 
data are labeled with “ns” and “s”, respectively. Astro, astrocytes; Endo, endothelial 
cells;  Gaba, GABAergic neurons; Lgtp/Smad3, Interneurons highly expressing 
Lgtp/Smad3; Pvalb, Interneuron highly expressing Pvalb; Sst, Interneurons highly 
expressing Sst; Vip, Interneuron highly expressing Vip; Ndnf, Interneurons highly 
expressing Ndnf; Glut, glutamatergic neurons; L2/3, excitatory neurons in Layer 2/3;  
L4_Ctxn3/Scnn1a, excitatory neurons in Layer 4 highly expressing Ctxn3/Scnn1a; L5a, 
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excitatory neurons in Layer 5a; L5b, excitatory neurons in Layer 5b; L6a, excitatory 
neurons in Layer 6a; L6b, excitatory neurons in Layer 6b; OPC, oligodendrocyte 
precursor cells; Oligo, oligodendrocytes; Micro, microglia cells; (c) scRNA-Seq data 
alone (d) SeqFISH+ data alone. (e-h) UMAP plots of mouse olfactory bulb data. (e) 
Integrated data annotated by data modalities. (f) Integrated data annotated by cell 
types. (g) scRNA-Seq data alone. (h) SeqFISH+ data alone. Astro, astrocytes; Endo, 
endothelial cells; Micro, microglia cells; Neur, neurons; Myol, myelinating-
oligodendrocytes; Mesen, mesenchymal cells; Mura, mural cells; Mono, monocytes; 
Macro, macrophages; Rbcs, red blood cells; Opc, oligodendrocyte progenitor cells; Oec, 
olfactory ensheathing cells; Pia, pial cells; 
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Figure 6. GLUER improves integration of true single-cell dual-omics data. The data set 
consists of 7,892 cells from adult mouse cerebral cortex profiled using SNARE-Seq. (a-
c) UMAP plots of original data and integrated data by GLUER. (d) Integration accuracy 
of the three methods. P-values were computed using paired Student’s t-test with 
Bonferroni correction. (e) UMAP plot of integrated data by GLUER with cell type 
annotation. Ast, astrocytes; Oli, oligodendrocytes; Ex-L2/3-Rasgrf2, excitatory neuron 
highly expressing Rasgrf2; In-Npy, inhibitory neuron highly expressing Npy. The same 
nomenclature applies to other excitatory and inhibitory neuron subtypes. (f) Marker 
gene expression profiles of the cell types identified in panel e. (g) Marker gene activity 
profiles of the cell types identified in panel e. Y-axis, cell types, X-axis, marker genes.  
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SUPPLEMENTARY MATERIALS 

Supplemental Table 1. Public single-cell sequencing and imaging data sets that 
were used in this study. 

Experimental 
Assays 

Data  
Modalities 

Tissue  
Types  

References (PMID & 
accession #/downloading 

link) 

SNARE-Seq ● Transcriptome 
● Chromatin 

accessibility 

Mixture of BJ, 
GM12878, H1 and 
K562 cells 

PMID:31611697; 
GSE126074 

SNARE-Seq ● Transcriptome 
● Chromatin 

accessibility 

Neonatal mouse 
cerebral cortex PMID:31611697; 

GSE126074 

SNARE-Seq ● Transcriptome 
● Chromatin 

accessibility 

Adult mouse cerebral 
cortex PMID:31611697; 

GSE126074 

scCAT-Seq ● Transcriptome 
● Chromatin 

accessibility 

Mixture of HeLa-S3, 

HCT116, K562, 

PDX1, PDX2 cells 

PMID:30692544; 
SRP167062 

sci-CAR ● Transcriptome 
● Chromatin 

accessibility 

Mixture of DEX-

treated A549 time 

course 

PMID:30166440; 
GSE117089 

sci-CAR ● Transcriptome 
● Chromatin 

accessibility 

Mouse kidney PMID:30166440; 
GSE117089 

CITE-Seq ● Transcriptome 
● Proteome 

Mouse spleen Govek, Kiya W., et al, 
BioRxiv, 2019 
(https://www.dropbox.com/s
/910hhahxsbd9ofs/gene_m
atrix_all_new.csv?dl=1) 

CODEX ● Spatial 
proteome 

Mouse spleen Goltsev Y et al, Cell, 2018 
(https://data.mendeley.com/
datasets/zjnpwh8m5b/1) 

SMARTer ● Transcriptome Mouse visual cortex PMID:26727548; 
GSE71585 

SeqFISH+ ● Spatial Mouse visual cortex PMID:30911168; 
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Transcriptome (https://github.com/CaiGrou
p/seqFISH-PLUS) 

Droplet-based ● Transcriptome Mouse olfactory bulb PMID:30517858; 
GSE121891 

SeqFISH+ ● Spatial 
Transcriptome 

Mouse olfactory bulb PMID:30911168; 
(https://github.com/CaiGrou
p/seqFISH-PLUS) 

 

SUPPLEMENTARY FIGURE LEGEND 

 
Supplementary Figure 1. Performance evaluation using data on a mixture of cell types 
profiled using the scat-Seq assay. The mixture consists of HeLa-S3 cells, HCT116 cells, 
K562 cells, cells derived from a moderately differentiated squamous cell carcinoma 
patient (PDX1), and cells derived from a large-cell lung carcinoma patient (PDX2). (a-c) 
UMAP plots of integrated data and colored-coded by data modality. (d-f) UMAP plots of 
integrated data and color-coded by cell type. (g) Integration accuracy of the three 
methods. P-values were computed using paired Student’s t-test with Bonferroni 
correction. (h) Distributions of gene expression levels in the original scRNA-Seq data 
and data computed by the integration methods. Y-axis, normalized gene expression 
level. ESRP1, NPR3, SAMSN1, KRT16, LMO7 are marker genes for HCT116, HeLa-
S3, K562, PDX2, PDX1 cells, respectively.  
 

Supplementary Figure 2. Performance evaluation using data on DEX-treated A549 
cells profiled using the sci-CAR assay. Cells were treated at three time points, 0, 1 and 
3 hours before profiling. (a-c) UMAP plots of integrated data and color-coded by data 
modality. (d-f) UMAP plots of integrated data and color-coded by experimental 
condition. (g) Integration accuracy of the three methods. P-values were computed using 
paired Student’s t-test with Bonferroni correction. 
 

Supplementary Figure 3. Performance evaluation using data on neonatal mouse 
cerebral cortex. 5,081 cells were profiled using the SNARE-Seq assay. (a-c) UMAP 
plots of integrated data and color-coded by data modality. (d) Integration accuracy of 
the three methods. P-values were computed using paired Student’s t-test with 
Bonferroni correction. (e) Cell type annotation using GLUER integration result. (f) 
Marker gene expression profiles of cell types identified in panel e. (g) Marker gene 
activity profiles of cell types identified in panel e. Y-axis, cell types, x-axis, marker 
genes. Shade of the dots is proportional to normalized gene expression (for RNA-Seq 
data) or gene activity (for ATAC-Seq data). Size of the dots represents the percentage 
of cells with nonzero expression or activity of the gene. 
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Supplementary Figure 4. Performance evaluation using data on 5,916 mouse kidney 
cells profiled using the sci-CAR assay. (a-c) UMAP plots of integrated data and color-
coded by data modality. (d) Integration accuracy of the three methods. P-values were 
computed using paired Student’s t-test with Bonferroni correction. (e) Cell type 
annotation using GLUER integration result. (f) Marker gene expression profiles of cell 
types identified in panel e. (g) Marker gene activity profiles of cell types identified in 
panel e. Y-axis, cell types, x-axis, marker genes. Shade of the dots is proportional to 
normalized gene expression (for RNA-Seq data) or gene activity (for ATAC-Seq data). 
Size of the dots represents the percentage of cells with nonzero expression or activity of 
the gene. 
 

Supplementary Figure 5. Gene/protein expression profiles of cells in mouse spleen. 
(a) the gene expression (b) the protein expression. Y-axis, cell type. X-axis, 
gene/protein. The color is the normalized expression levels of genes computed by max-
min method. The size of the dot is the percentage of cells with high expression levels of 
the gene. 
 
Supplementary Figure 6. Performance robustness against the number of neurons in 
each layer of the deep neural network. X-axis, layers of the neural network; Y-axis, 
coefficient of variance of integration accuracy. We calculated the integration accuracy 
using varying numbers of neurons in each layer, including 40, 40, 20, 10, 20, 40, and 40 
different numbers of neurons for layers 1 to 7, respectively.  
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