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Abstract 

Spatial barcoding technologies have the potential to reveal histological details of transcriptomic profiles; 

however, they are currently limited by their low resolution. Here we report Seq-Scope, a spatial 

barcoding technology with a resolution almost comparable to an optical microscope. Seq-Scope is based 

on a solid-phase amplification of randomly barcoded single-molecule oligonucleotides using an Illumina 

sequencing-by-synthesis platform. The resulting clusters annotated with spatial coordinates are 

processed to expose RNA-capture moiety. These RNA-capturing barcoded clusters define the pixels of 

Seq-Scope that are approximately 0.5-1 μm apart from each other. From tissue sections, Seq-Scope 

visualizes spatial transcriptome heterogeneity at multiple histological scales, including tissue zonation 

according to the portal-central (liver), crypt-surface (colon) and inflammation-fibrosis (injured liver) axes, 

cellular components including single cell types and subtypes, and subcellular architectures of nucleus, 

cytoplasm and mitochondria. Seq-scope is quick, straightforward and easy-to-implement, and makes 

spatial single cell analysis accessible to a wide group of biomedical researchers.  
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Introduction 

The development of the light and electron microscopes profoundly contributed to the development of 

histology, the branch of biology which studies the microscopic anatomy of tissues (Mazzarini et al., 

2020). Modern protein and mRNA detection techniques, such as immunohistochemistry and RNA in situ 

hybridization, further allowed for detecting the expression of specific biomolecules in histological slides 

(Callea et al., 1992). These technological advances tremendously strengthened our understanding of 

various physiological and pathophysiological processes and enabled the development of molecular 

diagnostic methods for various diseases. 

Standard immunohistochemistry and RNA in situ hybridization can examine only one or a handful of 

target molecular species at a time; therefore, the amount of information obtained from a single 

experimental session is limited. To overcome this, emerging Spatial Transcriptomics (ST) techniques aim 

to examine all genes expressed from the genome from a single histological slide (Asp et al., 2020; 

Crosetto et al., 2015; Liao et al., 2020). There are three major methodologies of experimentally 

implementing ST. First, the sequential in situ hybridization method, often combined with combinatorial 

multiplexing, can increase the number of RNA species that can be detected from a single histological 

section. Second, in situ sequencing can identify RNA sequences from a tissue through fluorescence-

based direct sequencing. Finally, the spatial barcoding method reveals both the RNA sequence and their 

spatial locations by capturing tissue RNA using a spatially-barcoded oligonucleotide array. 

Among these three major methodologies, the spatial barcoding method is the most straightforward, 

comprehensive, widely-used and commercially available method easily accessible to many laboratories 

(Asp et al., 2020; Crosetto et al., 2015; Liao et al., 2020). Spatial barcoding is currently achieved by the 

microspotting of nucleotides (Salmen et al., 2018; Stahl et al., 2016), an array of split-pool-barcoded 

beads (Rodriques et al., 2019; Stickels et al., 2020; Vickovic et al., 2019), or a fabricated microfluidic 

channel (Liu et al., 2020). These methods, however, have an intrinsic limitation due to their low-

resolution specifications. For instance, VISIUM from 10X Genomics, so far the only commercially 

available ST solution, has a center-to-center resolution of 100 μm (Bergenstrahle et al., 2020), which is 

worse than that of a naked eye (~40 μm). More recent technologies, such as Slide-Seq, HDST and DBiT-

Seq, improved the resolution (Rodriques et al., 2019; Stickels et al., 2020; Vickovic et al., 2019); however, 

their resolution is still far inferior to optical microscope (0.5-1 μm). Consequently, detailed spatial 

organization of transcripts can only be inferred from pre-existing knowledge (Asp et al., 2019; Baccin et 

al., 2020; Bergenstråhle et al., 2020). Accordingly, none of the current spatial barcoding technologies 

have been able to reveal the microscopic details of the spatial transcriptome. 

Here, we describe a technology for achieving sub-micrometer resolution spatial barcoding, designated 

as Sequence-Scope (Seq-Scope). Unlike former methods that use deterministic barcoding (Liu et al., 

2020; Salmen et al., 2018; Stahl et al., 2016) or split-pool bead techniques (Rodriques et al., 2019; 

Stickels et al., 2020; Vickovic et al., 2019), our technique is based on the solid-phase amplification of a 

random barcode molecule, which can be conveniently achieved by the Illumina sequencing-by-synthesis 

(SBS) platform (Bentley et al., 2008). We show that this technology enables the generation of up to 1.5 

million different spatially defined barcodes in a 1 mm2 area, which is substantially higher than any 

currently existing technologies by several orders of magnitude (e.g., ~10,000 fold over VISIUM 

(Bergenstrahle et al., 2020), ~600 fold over DBiT-seq (Liu et al., 2020), ~120 fold over Slide-Seq 

(Rodriques et al., 2019; Stickels et al., 2020) and ~15 fold over HDST (Vickovic et al., 2019)). Seq-Scope 
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has a center-to-center resolution of 0.5-1 μm, far superior to previous technologies and comparable to 

an optical microscope. Using Seq-Scope, we obtained transcriptome images that clearly visualize 

microscopic cellular and subcellular structures of gastrointestinal tissues, such as the liver and colon, 

which were impossible to obtain through formerly existing methods. 
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Results 

Seq-Scope Technology Overview 

The Seq-Scope experiments are divided into two rounds of sequencing steps: 1st-Seq and 2nd-Seq (Fig. 1). 

1st-Seq generates a physical array of spatially-barcoded RNA-capture molecules and a spatial map of 

barcodes where each barcoded sequence is associated with a spatial coordinate in the physical array. 

2nd-Seq captures mRNAs released from the tissue placed on the physical array from the 1st-Seq, and 

sequences the captured molecules containing both cDNA and spatial barcode information. 

1st-Seq of Seq-Scope starts with the solid-phase amplification of a single-stranded synthetic 

oligonucleotide library using an Illumina SBS platform (MiSeq in the current study; Fig. 1A). The 

oligonucleotide “seed" molecule contains the PCR/read adapter sequences, the restriction enzyme-

cleavable RNA-capture domain (oligo-dT), and most importantly, the high-definition map coordinate 

identifier (HDMI), a spatial barcode composed of a 20-32 random nucleotide sequence. The “seed” 

oligonucleotide library is amplified on a lawn surface coated with PCR adapters (Fig. 1B), generating a 

number of clusters, each of which are derived from a single “seed” molecule. Each cluster has thousands 

of oligonucleotides that are identical clones of the initial oligonucleotide “seed” (Bentley et al., 2008) 

(Fig. 1B). The HDMI sequence and spatial coordinate of each cluster are determined through a typical 

SBS procedure using the MiSeq Control Software (MCS) equipped with Real-Time Analysis (RTA) (Fig. 1C 

and S1A) (Ravi et al., 2018). After SBS, oligonucleotides in each cluster are processed to expose the 

nucleotide-capture domain (Fig. 1D and S1A), producing an HDMI-encoded RNA-capturing array (HDMI-

array; Fig. 1E), the physical array produced by 1st-Seq of Seq-Scope. 

2nd-Seq of Seq-Scope begins with overlaying the tissue section slice onto the HDMI-array (Fig. 1E). The 

mRNAs from the tissue are used as a template to generate cDNA footprints on the HDMI-barcoded RNA 

capture molecule (Fig. 1F and S1B). Then the secondary strand is synthesized on the cDNA footprint 

using an adapter-tagged random primer (Fig. 1G and S1B). Since each cDNA footprint is paired with a 

single random primer after washing, the random priming sequence is used as a unique molecular 

identifier (UMI; Fig. S1B). The secondary strand, which is a chimeric molecule of HDMI and cDNA 

sequences, is then collected and prepared as a library through PCR (Fig. 1H and S1B). The paired-end 

sequencing of this library reveals the cDNA footprint sequence, as well as its corresponding HDMI 

sequence (Fig. 1I and S1B). 

For each HDMI sequence, 1st-Seq provides spatial coordinate information while 2nd-Seq provides 

captured cDNA information. Correspondingly, the spatial digital gene expression (DGE) matrix is 

constructed by combining the 1st-Seq and 2nd-Seq data (Fig. S1C-S1E). The spatial DGE matrix is used for 

various analyses, including gene expression visualization and clustering assays (Fig. S1C-S1E). 

HDMI-Array Captures Spatial RNA Footprint of Tissues  

Through a series of titration experiments (Fig. S2A and S2B), we produced the HDMI-array with a 

sequenced cluster density of up to 1.5 million clusters per mm2 (Fig. 2A, S2A and S2B). The distance 

between the centers of nearby clusters was estimated to be between 0.5-1 µm (Fig. 2A and S2A). Seq-

Scope generates up to 150 HDMIs in a 100 µm2 area; this resolution should be sufficient to perform 

single cell and subcellular analysis of spatial transcriptome (Fig. 1J).  
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The RNA-capturing capability of the HDMI-array was first evaluated by performing a Cy3-dUTP-mediated 

cDNA labeling assay using a fragmented frozen liver section. The HDMI-array successfully captured 

tissue transcriptome and generated a spatial cDNA footprint that preserved the gross shape of the 

overlying tissue (Fig. 2B). Interestingly, the Cy3-dUTP labeling assay also revealed microscopic details of 

cDNA footprints that resemble a single cell morphology (Fig. 2B, insets), which has a fluorescence 

texture that is similar to those produced by the underlying clusters (Fig. 2A and S2A). 

Then we performed the full Seq-Scope procedure (1st-Seq and 2nd-Seq; Fig. 1) on two representative 

gastrointestinal tissues, liver and colon. In each 1st-Seq experiment, the HDMI-array was produced in 1 

mm-wide circular areas of the MiSeq flow cell, also known as “tiles” (Bentley et al., 2008; Ravi et al., 

2018) (tile ID: 2101 to 2119; Fig. S2C). Liver and colon tissue sections were overlaid onto the HDMI 

arrays, examined by H&E staining, and subjected to 2nd-Seq. Analysis of the 1st-Seq and 2nd-Seq data (Fig. 

S1C) demonstrated that the RNA footprints were discovered mostly from tissue-overlaid regions (Fig. 2C, 

S2D and S2E), confirming that Seq-Scope can indeed capture and analyze the spatial transcriptome from 

the tissues. 

Seq-Scope Captures Transcriptome Information with High Efficiency 

Although each HDMI-barcoded cluster covers an extremely tiny area (less than 1 μm2), many HDMI 

clusters were able to identify 10-100 unique transcripts from the overlying tissue section (Fig. S2F and 

S2G). To compare the data output of Seq-Scope with other existing ST technologies, we quantified the 

number of gene features and unique transcripts in 10 µm-sided square grids (Fig. S2H and S2I). Since the 

tissue-overlaid grids distinctively displayed a higher number of gene features and unique transcript 

counts (Fig. 2D, S2H and S2I), setting a simple gene feature cutoff was sufficient to isolate tissue-overlaid 

grids (Fig. 2E, S2J-S2M). The average number of unique transcripts per grid varied substantially from tile 

to tile (Fig. S2N and S2O), but the tiles located at the center of the MiSeq flow cell revealed up to 1,000-

1,200 average unique transcripts per 100 μm2 grid area (Fig. 2E). Considering that the current data are 

estimated to represent only ~70% (liver) and ~42% (colon) of the total library complexity (Fig. S2P), the 

maximum possible Seq-Scope output could be estimated to be over 2,000 UMI per 100 μm2. The 

number of genes discovered from each Seq-Scope session is 25,180 (liver) and 24,927 (colon). All these 

output measures are superior or comparable to most existing spatial barcoding technologies, as 

discussed in more detail in the Discussion. Therefore, Seq-Scope provides an outstanding mRNA capture 

output, in addition to providing an unmatched spatial resolution output. 

Seq-Scope Reveals Nuclear-Cytoplasmic Transcriptome Architecture from Tissue Sections 

mRNA is transcribed and poly-A modified in the nucleus. Before it can be transported to the cytoplasm, 

it is spliced, and intronic sequences are removed. Therefore, the nuclear area has a higher concentration 

of unspliced mRNA sequences, while the cytoplasmic area has a higher concentration of spliced mRNA 

sequences (Fig. 3A). Several RNAs in mouse liver, such as Malat1, Neat1 and Mlxipl, exhibit nuclear 

localization with strong attenuation in cytoplasmic transport (Fig. 3A) (Bahar Halpern et al., 2015). On 

the other hand, mitochondria in the cytoplasm has a unique transcriptome structure with mitochondria-

encoded RNAs (mt-RNA; Fig. 3A). 

To examine the subcellular-level spatial transcriptome through Seq-Scope, we plotted all spliced and 

unspliced transcripts discovered from Seq-Scope in a two-dimensional histological coordinate plane. 

Intriguingly, unspliced transcripts showed an interesting pattern as their expression was restricted in 
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tiny circles with a diameter of approximately 10 μm, which is about the size of hepatocellular nuclei 

(Baratta et al., 2009) (Fig. 3B and S3A). More interestingly, spliced mRNAs were less frequently 

discovered in the unspliced area, while nuclear-localized RNAs, including Malat1, Neat1 and Mlxipl 

(Bahar Halpern et al., 2015), were more frequently found in the unspliced area (Fig. 3B). On the other 

hand, mt-RNAs were more frequently found in the spliced cytoplasmic area (Fig. 3C and S3B). As a result, 

quantification of single cell images revealed strong positive correlations between unspliced and nuclear-

localized mRNAs and between spliced and mitochondrial mRNAs, while displaying strongly negative 

correlations between the opposite groups (Fig. 3D and S3C). 

These results suggest that the relative proportion of spliced and unspliced transcripts can be useful 

metrics to determine the nuclear-cytoplasmic structure from the Seq-scope dataset. To further test the 

robustness of these observations, we randomly divided all genes into three independent subsets, 

calculated expressions of spliced and unspliced mRNAs from each gene subset, and analyzed each 

dataset through the same plotting method. All three datasets similarly visualized a nuclear-cytoplasmic 

structure with a strong statistical correlation (Fig. 3E and S3D). Therefore, as predicted (Fig. 1J), Seq-

Scope can visualize the nuclear-cytoplasmic transcriptome structure from the tissue sections. 

Seq-Scope Reveals Spatial Transcriptomic Details of Metabolic Liver Zonation 

To systematically characterize the heterogeneity of the liver cell transcriptome, we analyzed the square-

gridded Seq-Scope dataset (Fig. S2K and S2N) with the standard scRNA-seq analysis pipeline (Stuart et al., 

2019). Multi-dimensional clustering analysis identified many interesting and biologically-relevant cell 

types (Fig. S4A) with a long list of cluster-specific marker genes (Fig. S4B-S4D and Table S1).  

Hepatocytes, the parenchymal cell type of liver, are exposed to varying gradients of oxygen and 

nutrients according to their histological locations, leading to metabolic zonation whereby cells express 

different genes to perform their zone-specific metabolic functions (Zone 1-3 or Z1-3; Fig. 4A) (Ben-

Moshe and Itzkovitz, 2019). Zone 1 marks periportal hepatocytes close to the hepatic portal vein and 

artery, while zone 3 marks pericentral hepatocytes close to the central vein (Fig. 4A). Zone 2 are 

intermediate hepatocytes located between zones 1 and 3 (Fig. 4A). 

Multi-dimensional clustering analysis identified zonated hepatocytes as the major clusters found from 

the Seq-Scope dataset (Fig. 4B and S4A). Spatial plotting of the cluster identity clearly visualized zones 1-

3 in the two-dimensional grid space (Fig. 4C). To fully utilize the submicrometer resolution performance 

of Seq-Scope, we directly plotted zone-specific molecular markers into the histological coordinate plane. 

Direct plotting analysis revealed a spectrum of genes showing various zonation patterns, which cannot 

be explained by the three simple layers (Fig. 4D). For instance, the immediate pericentral hepatocytes 

specifically expressed extreme zone 3 markers such as Glul and Oat (Fig. 4D, reds). Cyp2a5, Mup9 and 

Mup17 were also narrowly expressed in hepatocytes surrounding the central vein; however, Mup9 and 

Mup17 displayed lower expression in the immediate pericentral hepatocytes, forming a small donut-like 

staining pattern (Fig. 4D, oranges). In contrast, general pericentral markers, such as Cyp2c29 and Cyp2e1, 

were broadly expressed across all pericentral hepatocytes (Fig. 4D, yellows). Several genes, such as 

Mup11 and Hamp, were not expressed in extreme zone 1 and zone 3 layers but showed higher 

expression in the intermediary layers (Fig. 4D, greens). Likewise, different periportal markers, such as 

Ass1, Serpina1e, Cyp2f2, Alb and Mup20, exhibited various levels of zone 1-specific expression patterns 

(Fig. 4D, blues and purples). Many of these observations are supported by previous scRNA-seq, RNA in 
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situ hybridization (Aizarani et al., 2019; Halpern et al., 2017) and immunostaining results (Park et al., 

2020). 

Interestingly, most of these zone 1- or zone 3-specific markers were cytosolically located, as they did not 

overlap with the unspliced transcript-enriched area (Fig. 4E). This finding is consistent with the notion 

that zone-specific proteins are actively translated in the cytosol to perform zonated metabolic functions 

(Aizarani et al., 2019; Ben-Moshe and Itzkovitz, 2019; Halpern et al., 2017; Park et al., 2020). In contrast 

to zone 1 and zone 3 hepatocytes that exhibit clear transcriptome features, zone 2 hepatocytes, which 

do not exhibit obvious periportal or pericentral transcriptome characteristics, were subclustered based 

on their subcellular transcriptome heterogeneity. Correspondingly, Zone 2 hepatocytes were found in 

clusters enriched with nuclear transcripts (Malat1, Neat1 and Mlxipl; cluster 9 in Fig. S4A), mitochondrial 

transcripts (mtRNA; cluster 1 in Fig. S4A) and long non-coding RNAs (lncRNA; cluster 3 in Fig. S4A) with 

heterogeneous spatial gene expression patterns (Fig. S4E). 

Seq-scope Detects Non-Parenchymal Cell Transcriptome from Liver Section. 

Although hepatocytes are the major cellular component in the liver, several non-parenchymal cells, such 

as macrophages (Macro), hepatic stellate cells (HSC), endothelial cells (ENDO), cholangiocytes (Chol), as 

well as red blood cells (RBC), can be found in a small portion of the histological area (Fig. 4F) (Ben-

Moshe and Itzkovitz, 2019). Multi-dimensional clustering analysis of the gridded Seq-Scope data 

identified clusters that correspond to these non-parenchymal cell types (Fig. 4G), based on expression of 

macrophage markers (Clec4f, Cd74, Cd5l, MHC-II and complement components), HSC markers (Dcn and 

Ecm1; (Xiong et al., 2019)), sinusoidal endothelial markers (Aqp1, Dnase1l3, Kdr, Oit3 and Stab2; (de 

Haan et al., 2020)), cholangiocyte/oval cell markers (Gstp1 and Gstp2; (Tee et al., 1996)) and RBC 

markers (hemoglobins) (Fig 4H, S4B and S4D). Although most of the histological space was occupied by 

the hepatocellular area, the small, fragmented spaces scattered throughout the section represented the 

non-parenchymal cell area (Fig. 4I). Spatial plotting onto the histological coordinate plane indeed 

demonstrated that hepatocyte marker Alb expression is sharply diminished where macrophage, HSC and 

endothelial cell markers are abundantly expressed (Fig. 4J), consistent with the knowledge that 

hepatocyte markers are scarcely expressed in non-parenchymal cells (Werner et al., 2015). 

Seq-scope Identifies Hepatocyte Subpopulations undergoing Tissue Injury Response. 

Clustering also identified minor hepatocyte subpopulations (Fig. 4K) expressing hepatocyte injury 

response genes (Saa1-3 and Cxcl9; Fig. 4L) (Sack, 2020; Saiman and Friedman, 2012), a subset of major 

urinary proteins (Mup10, Mup14 and Mup7), a translation elongation factor (Eef1a1) that was formerly 

associated with hepatocarcinogenesis (Abbas et al., 2015), and a subset of ribosomal proteins (Rpl15, 

Rpl35 and their matching pseudogenes) (Fig. 4H). These clusters were spatially scattered throughout the 

liver sections (Fig. 4M and S4F), although the cluster expressing injury response markers (Fig. 4L) was 

restricted to a localized area (dotted red circles in Fig. 4M and 4N). In the spatial plotting analysis, 

expression of the liver injury markers substantially overlapped with Alb (Fig. 4O), confirming that they 

are hepatocyte subpopulations with an altered transcriptome.  

Processing the normal liver Seq-Scope data through smaller grids, including 7 μm (Fig. S4G-S4L) and 5 

μm (Fig. S4M-S4R) square grids, also robustly identified hepatocyte zonation, parenchymal/non-

parenchymal cells and hepatocyte subpopulations, confirming that our observations described here are 

significant and reproducible. 
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Seq-Scope Reveals Transcriptomic Details of Histopathology Associated with Liver Injury. 

The data presented above confirm that Seq-Scope can reveal the transcriptome heterogeneity and 

spatial complexity of the normal liver at various scales. But could Seq-Scope also reveal the pathological 

details of transcriptome dysregulation in diseased liver? To address this, we utilized our recently 

developed mouse model of early-onset liver failure that was provoked by excessive mTORC1 signaling 

(Cho et al., 2019). This model (Tsc1
Δhep

/Depdc5
Δhep mice or TD mice) is characterized by a widespread 

hepatocellular oxidative stress, leading to localized liver damage, inflammation and fibrotic responses 

(Cho et al., 2019). 

We first examined the cellular components of the TD liver through clustering analysis of the grid pixel 

dataset. Most cell types identified from the normal liver, such as zone 1/2/3 hepatocytes, macrophages, 

HSCs, endothelial cells, and RBC, were also discovered from the TD liver (Fig. S5A-S5C; Table S1). As 

observed from the normal liver dataset, some zone 2 hepatocyte clusters represented nuclear and 

mitochondrial areas (Fig. S5A), and nuclear, cytoplasmic and mitochondrial structures were clearly 

visualized through unspliced, spliced and mitochondria-encoded transcripts, respectively (Fig. S5D). 

Former bulk RNA-seq results showed that the TD liver upregulates oxidative stress signaling pathways. 

Consistent with this, Seq-Scope identified that the TD liver expresses elevated levels of several 

antioxidant genes such as Gpx3 and Sepp1. Interestingly, induction of these genes was very strong in 

zone 1 hepatocytes, while the upregulation was not pronounced in zone 3 hepatocytes (Fig. S5E). 

Therefore, the oxidative stress response of the TD liver is zone-specific. 

We focused on the cell types involved in the liver injury response, such as macrophages and HSCs, as 

well as hepatocytes expressing injury response markers (Fig. 5A). Notably, hepatocytes exhibiting tissue 

injury responses (Hep_injured) were much more prevalent in the TD liver, and a novel type of injured 

hepatocyte subpopulation expressing genes encoding clusterin, MMP-7 and osteopontin proteins 

(Hep_novel) was observed (Fig.5A and S5F; Table S1). These altered hepatocytes, as well as 

macrophages and HSCs, were located in an area where gross liver injury and inflammatory features 

were observed from the H&E histology analysis (Fig. 5B and 5C, dotted rectangles). At the site of the 

liver injury, the dead cell area (yellow stars in Fig. 5C and 5D, where RNA footprint or cytoplasmic eosin 

staining was not discovered) was surrounded by a layer of inflamed macrophages and then by a layer of 

hepatocyte subpopulations that consisted of Hep_injured and Hep_novel (Fig. 5B-5D). HSCs also 

infiltrated into the macrophage layers (Fig. 5E). As expected, expression of Alb, the hepatocyte marker, 

was found in the area occupied by Hep_injured and Hep_novel populations but not by macrophage or 

HSC populations (Fig. 5D and 5E). 

In the TD liver dataset, the number of macrophage populations was increased, and the two subgroups of 

macrophages, dendritic cell-like (DC-like) and Kupffer cell-like (KC-like) populations, were identified. DC-

like cells expressed dendritic cell markers such as Cd74 and MHC-II component genes, while KC-like cells 

expressed Kupffer cell-specific markers such as Clec4f (Fig. S5F; Table S1). Most macrophages expressed 

either DC-like or KC-like markers at the liver injury site, while a smaller number of cells expressed both 

markers (yellow arrows in Fig. 5F). Similarly, the HSC population was also increased and differentiated 

into normal HSC (HSC-N) and activated HSC (HSC-A) subpopulations (Fig. 5G); HSC-A exhibited fibroblast-

like characteristics such as high collagen expression (Fig. 5G). Interestingly, DC-like macrophages and 

HSC-A were frequently found in the area where Hep_novel cells were discovered (Fig. 5D, 5F, 5H and 5I), 

suggesting that these cell types are specifically involved in fibrotic responses to liver injury. 
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Although gene expression markers for DC-like macrophages, HSC-A, Hep_injured and Hep_novel 

populations showed prominent localization pattern around the injury site (Fig. S5G-S5J), markers for KC-

like macrophages and HSC-N populations were more equitably distributed throughout the TD liver 

section (Fig. S5K and S5L), suggesting that KC-like and HSC-N populations play a more homeostatic role 

over the inflammatory role. 

Seq-Scope Visualizes Histological Layers of Colon Tissue 

The colon is another gastrointestinal organ with complex tissue layers, histological zonation structure, 

and diverse cellular components (Levine and Haggitt, 1989). Using the colon, we examined whether Seq-

Scope can examine spatial transcriptome in a non-hepatic tissue. 

The colonic wall can be histologically divided into the colonic mucosa and the external muscle layers 

(Farkas et al., 2015). The colonic mucosa consists of the epithelial layer, lamina propria and muscularis 

mucosae (M. mucosae), a very thin layer of smooth muscle that separates mucosa from underlying 

submucosa and smooth muscle layers (Fig. 6A). The epithelial layer is further divided into crypt-base, 

transitional and surface layers (Fig. 6A) (Farkas et al., 2015). Multi-dimensional clustering analysis of the 

gridded Seq-Scope dataset of the colon slice (Fig. S6A, S6B and Table S2) revealed these layers as the 

major clusters of the colonic transcriptome (Fig. 6B): epithelial layers of crypt base, transitional and 

surface cells, as well as lamina propria and smooth muscle layers, were identified from the grids. The 

spatial plotting assays visualized histological layers on the gridded plane (Fig. 6C and S6C) or histological 

coordinate plane (Fig. 7A and S7A). Although M. mucosae was not identifiable from the gridded dataset 

(Fig. 6C and S6C), direct plotting onto the histological coordinate plane enabled its visualization (white 

arrows in Fig. 7A), indicating that Seq-Scope can detect all the major histological layers of the colon 

tissue. 

Seq-Scope Identifies Individual Cellular Components from Colonic Epithelia 

We took a closer look into the colonic epithelial cell types (Fig. 6D). Cells in the crypt base were divided 

into three subgroups: Stem/dividing cells, deep crypt secretory cells (DCSC) and Paneth-like cells (Fig. 6E 

and 6F). The stem/dividing cells expressed higher levels of ribosomal proteins while lacking markers 

expressed in the other epithelial cell types (Fig. 6G; Table S2); these results are consistent with former 

scRNA-seq (Haber et al., 2017) and laser-capture microdissection (Moor et al., 2018) studies of intestinal 

single cell diversity. In contrast, DCSCs (Altmann, 1983; Sasaki et al., 2016), also known as colonic crypt 

base secretory cells (Rothenberg et al., 2012), pregoblet cells (Park et al., 2009) or crypt-located goblet 

cells (Parikh et al., 2019), expressed high levels of secretory cell markers, such as Agr2, Muc2, Spink4 and 

Oit1 (Fig. 6G; Table S2). Interestingly, a cell type with high expression of the mucosal pentraxin precursor 

(Mptx1), a recently identified marker of the Paneth cell in the small intestine (Haber et al., 2017), was 

discovered from the Seq-Scope results. Although the Paneth cell is largely absent from the colon and 

Paneth cell function is partially mediated by DCSCs (Rothenberg et al., 2012; Sasaki et al., 2016), this 

result suggests that the colon may possess a cell type whose transcriptome and function is more similar 

to the Paneth cell (Paneth-like cell). The expression of DCSC and Paneth-like cell markers showed non-

overlapping patterns of expression in the histological coordinate plane (Fig. 7B, S7B and S7C) and the 

UMAP manifold (Fig. S6D), suggesting that they are independent cell populations. 

Seq-Scope also identified distinct cell types in the differentiated epithelial cell layer at the surface of the 

colonic mucosa (Fig. 6D-6F). The top layer of epithelial cells expressed an established marker for surface 
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colonocytes, such as Aqp8 (Fischer et al., 2001), Car4 (Borenshtein et al., 2009), Saa1 (Eckhardt et al., 

2010) and Lypd8 (Okumura et al., 2016) (Fig. 6G; Table S2), consistent with the former RNA in situ results 

(Borenshtein et al., 2009; Eckhardt et al., 2010; Fischer et al., 2001; Okumura et al., 2016). Some of the 

surface epithelial cells also expressed goblet cell-specific markers, such as Zg16, Clca3, Fcgbp, Tff3 and 

Spink3 (Haber et al., 2017; Pelaseyed et al., 2014) (Fig. 6G; Table S2). However, the distinction between 

the surface colonocytes and goblet cells was not so clear in the dataset processed with 10 μm square 

grids, because some colonocyte markers such as Lypd8 were abundantly found in the goblet grids (Fig. 

S6E). The colonocyte-goblet distinction became clearer when we used smaller grids, such as 7 μm 

square grids (Fig. S6F-S6I) and 5 μm square grids (Fig. S6J-S6M). Furthermore, when we directly plotted 

colonocyte and goblet cell markers onto the histological coordinate plane, the boundary between these 

two cell types was clearly visualized (Fig. 7C, S7D and S7E). These results indicate that acquiring high 

resolution is critical for precisely comprehending a single cell transcriptome from the ST dataset. In 

addition, Seq-Scope also identified hormone-secreting enteroendocrine cells (EEC; Fig. 6E) and identified 

their locations in the histological space (Fig. 6F, 7B and S7F). 

Cell proliferative activities in the colon are higher in the crypt, where stem/dividing cells are located 

(Levine and Haggitt, 1989). Consistent with the notion, genes specifically expressed in proliferative cell 

cycle phases, such as S and G2/M phases (Nestorowa et al., 2016), were elevated in the crypt base area 

but relatively downregulated in the surface colonocyte area (Fig. 7D). 

Seq-Scope Identifies Colonic Cell Types in Subepithelial layers 

Below the epithelial layer, there are connective tissue layers, including the lamina propria and 

submucosa, as well as external muscle layers. These layers also contain a diverse range of non-epithelial 

cell types (Fig. 6H). Seq-Scope also determined many additional cell types (Fig. 6I) and their spatial 

locations (Fig. 6J) in these layers. In addition to the smooth muscle cells described above, Seq-Scope 

identified fibroblasts (Fig. 7E and S7G) and enteric neurons (Fig. 7E and S7H). Seq-Scope also identified 

hematopoietically derived cells, such as myeloid cells (macrophages; Fig. S7I) and lymphoid cells (B-cells 

with different isotypes; Fig. S7J), which are located in the lamina propria (Fig. 6C, 6H, 6J and 7F). These 

different hematopoietic cell types are often in very close proximity (Fig. 7F, within µm distance), likely 

due to their functional interactions (Spencer and Sollid, 2016). However, since these cells expressed 

their unique cell type markers (Fig. 6K), Seq-Scope recognized them distinctively.  
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Discussion 

The data presented here demonstrate that Seq-Scope can visualize histological organization of the 

transcriptome architecture at multiple scales, including the tissue zonation level, cellular component 

level and even subcellular level. Equipped with an ultra-high-resolution output and an outstanding 

transcriptome capture output, Seq-Scope drew a clear boundary between different tissue zones, cell 

types and subcellular components. Previously existing technologies could not provide this level of clarity 

due to their low-resolution output and/or inefficiency in transcriptome capture. 

Prior to Seq-Scope, HDST, which has a single barcode area of 9.3 µm2 (Vickovic et al., 2019), had been 

the technology that provided the highest resolution spatial transcriptomics (Asp et al., 2020; Liao et al., 

2020; Zhou et al., 2020). However, HDST is seriously limited by its low transcriptome capture rate; a 

single barcoded area can catch only around 7 unique transcripts, even though the library was fully 

examined at around 90% saturation (Vickovic et al., 2019). In comparison, a single barcoded area of Seq-

Scope, which is below 0.9 µm2 (less than 1/10 of HDST), can capture more unique transcripts at just 

around 70% (liver) and 42% (colon) saturation of library examination, leading to over 80 unique 

transcripts per 9.3 µm2 area. Therefore, Seq-Scope can produce 10 times more transcriptome output, in 

addition to providing 10 times more spatial resolution. 

Compared to HDST, 10X VISIUM, currently the only commercialized ST solution, can provide much 

deeper information per barcode. Published data indicate that a single VISIUM barcode can identify 

approximately 5,000 (Liu et al., 2020) or 28,000 (Stickels et al., 2020) unique transcripts on average, 

depending on the tissue type. However, the barcode area of VISIUM is huge; it is a 55 µm-sided regular 

hexagon, occupying approximately 7800 µm2 of the histological area. Based on the current Seq-Scope 

output, it was estimated that approximately 78,000 transcripts could be identified in a single barcoded 

area of VISIUM. It is very difficult to perform a direct comparison because gastrointestinal tissues, 

examined in the current study, were not evaluated by these former technologies. Nevertheless, the big 

difference in the transcriptome output indicates that Seq-Scope has an outstanding transcriptome 

capture efficiency.  

Current Seq-Scope colon data produced approximately 1,000 unique transcripts per 100 µm2 in the 

center-located tiles (tile ID: 2110-2114). Based on the current library sequencing saturation rate, we 

prospect that we may be able to obtain up to 2,000 unique transcripts per 100 µm2 area. This output is 

comparable to the most recent high-output ST technologies with 10 µm resolution, such as Slide-seqV2 

(~550 per 100 µm2) (Stickels et al., 2020) and DBiT-seq (1,320-4,900 per 100 µm2) (Liu et al., 2020). 

Therefore, in addition to providing an unprecedented submicrometer resolution, Seq-Scope can reveal 

high-quality transcriptome information. Based on the high-resolution high-output performance, Seq-

Scope was sufficient to perform single cell and subcellular studies of spatial transcriptome and reveal 

many biologically-interesting ST features from liver and colon slides. 

While the current manuscript is in preparation, another technology, Stereo-Seq, claimed a nominal 

transcriptome resolution of 0.5-0.7 µm (Chen et al., 2021), which is similar to Seq-Scope. However, 

unlike Seq-Scope, Stereo-Seq suffered a low transcriptome capture efficiency, which is ~170 unique 

transcripts per 100 µm2 (less than 20% of current Seq-Scope output). Due to the low efficiency, most of 

the transcriptome studies in the Stereo-Seq work (Chen et al., 2021) were performed in 36 µm-sided 

square grids, which can contain more than 10 different single cells. Therefore, although Stereo-Seq was 

able to identify gross anatomical structures of embryonic organs and adult brain compartments (Chen et 
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al., 2021), it did not reveal microscopic details such as single cell- or subcellular-level transcriptome 

information. 

Several factors could have contributed to Seq-Scope’s high transcriptome capture efficiency. First, the 

dense and tight arrangement of barcoded clusters in Seq-Scope could have increased the transcriptome 

capture rate because they almost eliminated “blind spot” areas, which are substantial in the other ST 

methods using printed spots, beads or nanoballs. Second, unlike the bead-based ST methods, which 

produce a bumpy array surface, Seq-Scope produces a flat array surface, enabling direct interaction 

between the capture probe and tissue sample. Third, solid-phase amplification, limited by molecular 

crowding (Mercier and Slater, 2005), might have provided the two-dimensional concentration of RNA-

capture probes ideal for the molecular interaction with tissue-derived RNA. Finally, biochemical 

strategies specific to our protocol, such as the secondary strand synthesis, retrieval, and amplification 

methods, could have increased the yield of transcriptome recovery. 

Another benefit of Seq-Scope is its scalability and adaptability. Currently, we used the MiSeq platform 

for the HDMI-array generation; however, virtually any sequencing platforms using spatially localized 

amplification, such as Illumina platforms including GAIIx, HiSeq, NextSeq and NovaSeq, could be used for 

generation of the HDMI-array. The established technologies for DNA sequencing could be easily 

repurposed to provide high-resolution spatial barcoding. For instance, although MiSeq has fragmented 

imaging areas, each of which is limited to a 1 mm diameter circle, HiSeq2500 (Rapid-Run) and NovaSeq 

can provide approximately 90 mm2 and 800 mm2 of uninterrupted imaging area, respectively, which can 

offer a larger field of view. Newer sequencing methods are based on a patterned flow cell technology 

(Singer et al., 2019), which could provide a more defined spatial information for the HDMI-encoded 

clusters. However, it is also possible that patterned nanowells may limit the effective RNA capture area, 

leading to a lower RNA capture efficiency. 

In terms of the cost, the current MiSeq-based HDMI-array can be generated at approximately $150 per 

mm2. The cost could be reduced further down to $11 per mm2 in HiSeq2500 or $2.6 per mm2 in NovaSeq, 

based on the current cost of sequencing. 30- and 40-nucleotide random seed sequence could provide a 

1 quintillion and 1 septillion barcode diversities, respectively, which should be enough for spatially 

barcoding the wide imaging area surfaces. In terms of turnaround time, the HDMI-array generation 

takes less than a day after 1st-Seq, and library preparation could be completed within two days (three 

days in total except the sequencing). The procedure is straightforward and not laborious or technically 

demanding; correspondingly, a single researcher can simultaneously handle multiple samples. Therefore, 

Seq-Scope can make ultra-high-resolution ST accessible for any type and scale of basic science and 

clinical work. 

Convenience in the data analysis pipeline is another strength of Seq-Scope. Most of the Seq-Scope 

analyses were seamlessly performed with widely-used standard software tools, such as Illumina 

MCS/RTA (Ravi et al., 2018), STARsolo (Dobin et al., 2013) and Seurat (Butler et al., 2018). High-

resolution gene expression images produced by Seq-Scope could be handled like fluorescence 

microscope images, as we have demonstrated in this paper to visualize nuclear-cytoplasmic structure, 

liver zonation, colonic wall layers and interactions between single cell types and subtypes. Being 

relatively effortless in analytic perspective will be a hugely attractive factor for many experimental 

biologists. 
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The liver and colon datasets described in this paper are the first two datasets produced using the Seq-

Scope technology. Having said that, there is a lot of room for further improvement. For instance, the 

MiSeq flow cell was not originally designed for ST (Ravi et al., 2018); therefore, exposing the cluster 

surface was physically challenging. Correspondingly, the cluster surface (HDMI-array) was substantially 

damaged during the initial flow cell disassembly, leading to many scratch-associated data losses in the 

liver dataset. When generating the colon dataset, we minimized the scratch-associated data losses by 

protecting the HDMI-array with a hydrogel filling method. In the future, designing a detachable flow cell 

for 1st-Seq could make this process even more straightforward. 

The current HDMI-array is not encoded by the UMI sequence; therefore, we alternatively used random 

priming positions during the secondary strand synthesis as the alternative UMI. This strategy worked 

well for the transcriptome study. However, for detecting non-mRNA sequences, such as short micro RNA 

or antibody-attached oligonucleotides (Stoeckius et al., 2017), UMI-encoded HDMI-array could be more 

useful in the future. UMI-encoded HDMI-array could also enable tagmentation of the mRNA library, 

which could increase the diversity of the transcriptome read sequences (Hughes et al., 2020; Stickels et 

al., 2020). UMI encoding of the HDMI-array could be achieved by various methods, including 

oligonucleotide ligation (Vickovic et al., 2019) or template-based extension (Fig. S1F). We experimented 

on generating the UMI-encoded HDMI-array by template-based extension and found that both UMIs, 

produced by either random priming or array encoding, perform well in collapsing the PCR-multiplicated 

read sequences (Fig. S1G). In the future, the UMI-encoded HDMI-array could help apply Seq-Scope to 

multi-omics applications. 

Finally, the data analysis pipeline could be further improved to fully utilize the high-resolution high-

output characteristics of Seq-Scope. In the current study, a simple 10 µm square-gridding scheme was 

used to analyze our dataset through the standard cell type mapping (scRNA-seq) pipeline. Because the 

grid was smaller than the hepatocytes (25-30 µm in diameter) or colonocytes (10-15 µm in diameter), 

this analysis worked well and successfully identified most of the cell types present in the liver and colon. 

However, 10 µm square gridding is arbitrary, and a single grid could contain multiple cell types. Indeed, 

the hepatocyte markers, such as Alb, were found to be expressed in all grids examined in the dataset, 

although non-parenchymal cells are not supposed to express the hepatocyte-specific gene (Werner et al., 

2015). The colon dataset also indicated that 10 µm square gridding was insufficient to separate 

Colonocyte and Goblet populations, which are located very close to each other in the histological space. 

This problem was ameliorated when we used smaller gridding or direct plotting onto the histology 

coordinate plane. However, smaller gridding also has a weakness because it can divide a single cell 

transcriptome into multiple grids, reducing transcriptome information available for each grid. An 

algorithm to detect the cell boundaries and precisely isolate single cell transcriptome could improve the 

Seq-Scope data analysis. Labeling cell boundaries through oligonucleotide-attached molecular probes, 

such as cell surface-targeting antibodies, could make this process more efficient and precise. 

After further improvement in computational methods for single cell analysis, Seq-Scope has the 

potential to improve and complement current scRNA-seq approaches. scRNA-seq for solid tissues 

requires extensive tissue dissociation and single cell sorting procedures. These procedures create a very 

harsh condition for each cell type, which may alter the transcriptome with stress-associated responses. 

Furthermore, labile cell populations will be lost during tissue dissociation, and as a result, certain cell 

populations may be either over- or under-represented in the final dataset. Furthermore, there are many 

cell types, such as elongated myofibers and neurons, lipid-laden mature adipocytes, and cells tightly 
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joined by the extracellular matrix and tight junctions, which are not amendable for conventional scRNA-

seq analysis. By capturing the transcriptome directly from a frozen tissue slice, Seq-Scope can capture 

single cell transcriptome signatures from such difficult types of cells. Indeed, the Seq-Scope liver dataset 

revealed a couple of novel hepatocyte subpopulations undergoing tissue injury response, which were 

not formerly detected through scRNA-seq of normal and diseased liver tissues (Aizarani et al., 2019; 

Halpern et al., 2017; Park et al., 2020). This exemplifies the utility of Seq-Scope in identifying novel cell 

types from a solid tissue that were previously undetectable from traditional scRNA-seq; therefore, Seq-

Scope also has the potential to complement and improve existing scRNA-seq technologies. 

In sum, here we report on Seq-Scope technology, which enables transcriptome imaging at a microscopic 

resolution. A single run of Seq-Scope could produce microscopic gene expression imaging data for more 

than 20,000 genes. The vast amount of information produced by Seq-Scope would accelerate scientific 

discoveries and might lead to a new paradigm in molecular diagnosis.  
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Experimental Procedures 

 

PART I. Experimental Implementation of Seq-Scope 

Generation of Seed HDMI-oligo Library 

Seq-Scope is initiated with the generation of a HDMI-oligo seed library (Fig. 1A and S1A). In the current 

report, we used two versions of the library – HDMI-DraI and HDMI32-DraI, whose sequences are 

provided below. The libraries have the same backbone structure with different lengths of HDMI 

sequences. HDMI is a sequence of random nucleotides designed to avoid the DraI digestion sites using 

Cutfree software (Storm and Jensen, 2018). HDMI32-DraI is an improved version of HDMI-DraI; however, 

for the liver and colon studies, HDMI-DraI was used. HDMI-DraI was generated by IDT as Ultramer 

oligonucleotides, while HDMI32-DraI was generated by Eurofins as Extremer oligonucleotides. 

Backbone: (P5 sequence) (TR1: TruSeq Read 1) (HDMI) (HR1: HDMI Read 1) (Oligo-dT) (DraI) (DraI-

adapter) (P7 sequence) 

HDMI-DraI: CAAGCAGAAGACGGCATACGAGAT TCTTTCCCTACACGACGCTCTTCCGATCT 

NNVNNVNNVNNVNNVNNNNN TCTTGTGACTACAGCACCCTCGACTCTCGC TTTTTTTTTTTTTTTTTTTTTTTTTTT 

TTTAAA GACTTTCACCAGTCCATGAT GTGTAGATCTCGGTGGTCGCCGTATCATT 

HDMI32-DraI: CAAGCAGAAGACGGCATACGAGAT TCTTTCCCTACACGACGCTCTTCCGATCT 

NNVNBVNNVNNVNNVNNVNNVNNVNNVNNNNN TCTTGTGACTACAGCACCCTCGACTCTCGC 

TTTTTTTTTTTTTTTTTTTTTTTTTTT TTTAAA GACTTTCACCAGTCCATGAT 

GTGTAGATCTCGGTGGTCGCCGTATCATT 

HDMI-oligo Cluster Generation and Sequencing through MiSeq (1
st
-Seq) 

HDMI-DraI or HDMI32-DraI was used as the ssDNA library and was sequenced in MiSeq using Read1-DraI 

as the custom Read1 primer. The Read1-DraI sequence is provided below. 

Read1-DraI: ATCATGGACTGGTGAAAGTC TTTAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA 

GCGAGAGTCGAGGGTGCTGTAGTCACAAGA 

Read1-DraI has a complementary sequence covering HR1, Oligo-dT, DraI and DraI-adapter sequences of 

HDMI-DraI and HDMI32-DraI ssDNA libraries. 

Initially, the libraries were sequenced using the MiSeq v2 nano platform to titrate the ssDNA library 

concentration to generate the largest possible number of confidently-sequenced HDMI clusters (Fig. S2A 

and S2B). After several rounds of optimization, HDMI-DraI was loaded at 100pM while HDMI32-DraI was 

loaded at 60-80pM. For actual implementation of Seq-Scope, the MiSeq v3 regular platform was used. 

MiSeq was performed in manual mode: 25bp single end reading (for HDMI-DraI) or 37bp single end 

reading (for HDMI32-DraI). The MiSeq runs were completed right after the first read without 

denaturation or re-synthesis steps. The flow cell was retrieved right after the completion of the single 

end reading steps. The MiSeq result was provided as a FASTQ file that has the HDMI sequence followed 

by the 5-base adapter sequence in TR1. The adapter sequence concordance was over 96% for all MiSeq 

results used in Seq-Scope. Thumbnail images of clusters, visualized using Illumina Sequencing Analysis 

Viewer, were used to inspect the cluster morphology and density (Fig. 2A, S2A and S2B). 
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The HDMI sequences contain 20-32 random nucleotides, which can produce 260 billion (20-mer in 

HDMI-DraI) or 1 quintillion (32-mer in HDMI32-DraI) different sequences. Due to this extreme diversity, 

the duplication rate of the HDMI sequence was extremely low (less than 0.1% of total HDMI sequencing 

results), even though the MiSeq identified more than 30 million HDMI clusters. 

MiSeq has 38 rectangular imaging areas, which are called “tiles”. 19 tiles are on the top of the flow cell, 

while the other 19 tiles are on the bottom of the flow cell (Fig. S2C; tiles 2101-2119). For each 

sequencing output, the tile number and XY coordinates of the cluster from which the sequence 

originates can be found in the FASTQ output file of MiSeq. Only the bottom tiles were used for Seq-

Scope analysis because the top tiles were destroyed during the flow cell disassembly. 

Processing MiSeq Flow Cell into the HDMI-array 

After 1st-Seq, the MiSeq flow cell was further processed to convert HDMI-containing clusters to HDMI-

array (Fig. 1D). The flow cell retrieved from the MiSeq run was washed with nuclease-free water 3 times. 

Then, the flow cell was treated with DraI enzyme cocktail (1U DraI enzyme (#R0129, NEB) in 1X CutSmart 

buffer) in 37 oC overnight to completely cut out the P5 sequence and expose oligo-dT. The flow cell was 

then loaded with exonuclease I cocktail (1U Exo I enzyme (#M2903, NEB) in 1X Exo I buffer) in 37 oC for 

45 min to eliminate P5 primer lawn and other non-specific ssDNA. P7-bound HDMI-DraI oligonucleotides 

make a duplex with Read1-DraI, so they were protected from Exo I digestion. Then, the flow cell was 

washed with water 3 times, 0.1N NaOH 3 times (each with 5 min incubation at room temperature, to 

denature and eliminate the Read1-DraI primer), 0.1M Tris (pH7.5, to neutralize the flow cell channel) 3 

times (each with brief wash), and then water 3 times (each with a brief wash).  

HDMI-array Disassembly 

Then, the flow cell was disassembled so that the HDMI-array was exposed to the outside and could be 

attached to tissue sections. To protect the HDMI-array, agarose hydrogel (BP160, Fisher) was used to fill 

the flow cell channel before disassembly (for the colon dataset). 1.5% agarose suspension was prepared 

in water and incubated at 95 oC for 1 min. The resulting 1.5% melted agarose solution was loaded into 

the flow cell and chilled to solidify the gel. Using the Tungsten Carbide Tip Scriber (IMT-8806, IMT), the 

top glass layer was destroyed to expose the bottom layer for tissue attachment. Agarose hydrogel filling 

was removed by extensive washing with warm distilled water. The top-exposed flow cell, HDMI-array, 

was then ready for tissue attachment. 

Tissue Samples 

The liver and colon samples were from our recent studies (Cho et al., 2019; Ro et al., 2016). The livers 

were collected from 8 week-old control (Depdc5
F/F

/Tsc1
F/F, male) and TD (Alb-Cre/Depdc5

F/F
/Tsc1

F/F, 

female) mice (Cho et al., 2019). The colons are from 8-week-old C57BL/6 wild-type male mice (Ro et al., 

2016). 

Tissue Sectioning, Attachment and Fixation 

OCT-mounted fresh frozen tissue was sectioned in a cryostat (Leica CM3050S, -20 C) at a 5° cutting angle 

and 10 μm thickness. The tissues were maneuvered onto the HDMI-array from the cutting stage (Fig. 1E). 

The tissue-HDMI-array sandwich was moved to room temperature, and the tissues were fixed in 4% 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2021. ; https://doi.org/10.1101/2021.01.25.427807doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.427807
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

formaldehyde (100 μl, diluted from the EM-grade 16% paraformaldehyde (#15170, Electron Microscopy 

Sciences)) for 10 min. 

Tissue Imaging and mRNA release 

The tissues were incubated 2 min in 100 μl isopropanol, and then stained with 80 μl hematoxylin (S3309, 

Agilent) for 5 min. After washing with water, the tissues were treated with 80 μl bluing buffer (CS702, 

Agilent) for 2 min. After washing with water, the tissues were treated with buffered eosin (1:9 = eosin 

(HT110216, Sigma): 0.45M Tris-Acetic buffer (pH 6.0)). After washing with water, the tissues were dried 

and mounted in 85% glycerol. The tissues were then imaged under a light microscope (MT6300, Meiji 

Techno). To release RNAs from the fixed tissues, the tissues were treated with 0.2U/uL collagenase I 

(17018-029, Thermo Fisher) at 37 oC 20 min, and then with 1mg/mL pepsin (P7000, Sigma) in 0.1M HCl 

at 37 oC for 10 min, as previously described (Salmen et al., 2018). 

Reverse Transcription 

The tissue was washed with 40 μl 1X RT buffer containing 8 μl Maxima 5x RT Buffer (EP0751, 

Thermofisher), 1 μl RNase Inhibitor (30281, Lucigen) and 31 μl water. Subsequently, reverse 

transcription (Fig. 1F and S1B) was performed by incubating the tissue-attached HDMI-array in 40 μl RT 

reaction solution containing 8 μl Maxima 5x RT Buffer (EP0751, Thermofisher), 8 μl 20% Ficoll PM-400 

(F4375-10G, Sigma), 4 μl 10mM dNTPs (N0477L, NEB), 1 μl RNase Inhibitor (30281, Lucigen), 2 μl 

Maxima H- RTase (EP0751, Thermofisher), 4 μl Actinomycin D (500ng/μl, A1410, Sigma-Aldrich) and 13 

μl water. The RT reaction solution was incubated at 42 oC overnight.  

Tissue Digestion 

The next day, the RT solution was removed, and the tissue was submerged in the exonuclease I cocktail 

(1U Exo I enzyme (#M2903, NEB) in 1X Exo I buffer) and incubated at 37 oC for 45 min to eliminate DNA 

that did not hybridize with mRNA. Then the cocktail was removed and the tissues were submerged in 1x 

tissue digestion buffer (100 mM Tris pH 8.0, 100 mM NaCl, 2% SDS, 5 mM EDTA, 16 U/mL Proteinase K 

(P8107S, NEB). The tissues were incubated at 37 oC for 40 min.  

Secondary Strand Synthesis and Purification 

After the tissue digestion, the HDMI-array was washed with water 3 times, 0.1N NaOH 3 times (each 

with 5 min incubation at room temperature), 0.1M Tris (pH7.5) 3 times (each with a brief wash), and 

then water 3 times (each with a brief wash). This step eliminated all mRNA from the HDMI-array.  

After washing steps, The HDMI-array was treated with a secondary strand synthesis mix (18 μl water, 3 

μl NEBuffer-2, 3 μl 100 μM Truseq Read2-conjugated Random Primer with TCA GAC GTG TGC TCT TCC 

GAT CTN NNN NNN NN sequence (IDT), 3 μl 10 mM dNTP mix (N0477, NEB), and 3 μl Klenow Fragment 

(exonuclease-deficient; M0212, NEB). The HDMI-array was incubated at 37 oC for 2 hr in a humidity-

controlled chamber. 

After secondary strand synthesis (Fig. 1G), the HDMI-array was washed with water 3 times to remove all 

DNAs that were not bound to the HDMI-array, so that each HDMI molecule corresponded to each single 

copy of the secondary strand. Then the HDMI-array was treated with 30 μl 0.1 N NaOH to elute the 

secondary strand. The elution step was duplicated to collect 60 μl (in total) of the secondary strand 
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product. The 60 μl secondary strand product was neutralized by mixing with 30 μl 3 M potassium 

acetate, pH5.5.  

The volume of the neutralized secondary strand product was adjusted to 100 μl by adding ~10 μl water. 

The solution was then subjected to AMPure XP purification (A63881, Beckman Coulter) using a 1.8X 

bead/sample ratio, according to the manufacturer’s instruction. The final elution was performed using 

40 μl water. 

Library Construction and Sequencing (2
nd

-Seq) 

First-round library PCR was performed using Kapa HiFi Hotstart Readymix (KK2602, KAPA Biosystems) in 

a 100 μl reaction volume with 40 μl secondary strand product as the template and forward (TCT TTC CCT 

ACA CGA CGC*T*C) and reverse (TCA GAC GTG TGC TCT TCC*G*A) primers at 2 μM. PCR condition: 95 oC 

3 min, 13-15 cycles of (95 oC 30 sec, 60 oC 1 min, 72 oC 1 min), 72 oC 2 min and 4 oC infinite. PCR products 

were purified using AMPure XP in a 1.2X bead/sample ratio. 

Second-round library PCR (Fig. 1H) was performed using Kapa HiFi Hotstart Readymix (KK2602, KAPA 

Biosystems) in 100 μl reaction volume with 10 μl of 2 nM first-round PCR product as a template and 

forward (AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CT*T *C) and reverse 

(CAA GCA GAA GAC GGC ATA CGA GAT [8-mer index sequence] GTG ACT GGA GTT CAG ACG TGT GCT 

CTT CC*G *A) primers at 1 μM. PCR condition: 95 oC 3 min, 8-9 cycles of (95 oC 30 sec, 60 oC 30 sec, 72 oC 

30 sec), 72 oC 2 min and 4 oC infinite. PCR products were purified using agarose gel elution for all 

products between 400-850bp size, using the Zymoclean Gel DNA Recovery Kit (D4001, Zymo Research) 

according to the manufacturer’s recommendation. Then the elution products were further purified using 

AMPure XP in a 0.6X-0.7X bead/sample ratio. The pooled libraries were subjected to paired-end (100-

150bp) sequencing in the Illumina and BGI platforms at AdmeraHealth Inc., Psomagen Inc., and Beijing 

Genome Institute. The HDMI discovery plot assessments indicated that all sequencing platforms worked 

well for analyzing Seq-Scope data. 

cDNA Labeling Assay 

To label cDNAs on the HDMI-array, all the steps were identically performed as described above, except 

that, after mRNA release, the HDMI array was subjected to cDNA labeling assay (Salmen et al., 2018) 

instead of library generation procedures. After mRNA release, the tissue-attached HDMI array was 

incubated in 40uL fluorescent reverse transcription solution containing 13 μl water, 8 μl Maxima 5x RT 

Buffer (EP0751, Thermofisher), 8 μl 20% Ficoll PM-400 (F4375-10G, Sigma), 0.8 μl 100mM dATP (from 

0446S, NEB), 0.8 μl 100mM dTTP (from 0446S, NEB), 0.8 μl 100mM dGTP (from 0446S, NEB), 0.1 μl 

100mM dCTP (from 0446S, NEB), 1.5 μl 6.45mM Cy3-dCTP (B8159, APExBIO), 1 μl RNase Inhibitor (30281, 

Lucigen), 4 μl Actinomycin D (500ng/μl, A1410, Sigma-Aldrich) and 2 μl Maxima H- RTase (EP0751, 

Thermofisher). Reverse transcription was performed at 42oC overnight. 

Then, the cocktail was removed and the tissues were submerged in 1x tissue digestion buffer (100 mM 

Tris pH 8.0, 100 mM NaCl, 2% SDS, 5 mM EDTA, 16 U/mL Proteinase K (P8107S, NEB)). The tissues were 

incubated at 37 oC for 40 min. After washing the HDMI-array surface with water 3 times, it was mounted 

in 80% glycerol and then observed under a fluorescent microscope (Meiji). 

Generation and Testing of UMI-encoded HDMI-array 
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UMI-encoded HDMI array was generated using the HDMI-TruEcoRI library, which is similar to the other 

ssDNA libraries described above but it does not have an oligo-dT sequence (Fig. S1F). 

Backbone: (P5 sequence) (TR1: TruSeq Read 1) (HDMI) (HR1B: HDMI Read 1B) (EcoRI) (EcoRI adapter) 

(P7 sequence) 

HDMI-TruEcoRI: CAAGCAGAAGACGGCATACGAGAT TCTTTCCCTACACGACGCTCTTCCGATCT 

HNNBNBNBNBNBNBNBNNNN CCCGTTCGCAACATGTCTGGCGTCATA GAATTC CGCAGTCCAG 

GTGTAGATCTCGGTGGTCGCCGTATCATT 

For MiSeq running, Read1-EcoRI was used as the read 1 primer. 

Backbone: (EcoRI adapter) (EcoRI) (HR1B) 

Read1-EcoRI: CTGGACTGCG GAATTC TATGACGCCAGACATGTTGCGAACGGG 

The library was sequenced using MiSeq v2 nano platform at 100pM concentration and generated 1.4 

million sequenced HDMI clusters per mm2. MiSeq was performed in manual mode, 25bp single end 

reading, using the Read1-EcoRI as the custom Read 1 primer. The flow cell was retrieved right after the 

completion of the single end reading step. Then, the MiSeq flow cell was processed to attach UMI and 

oligo-dT sequences to the HDMI clusters. The flow cell was washed with water 3 times and then loaded 

with EcoRI-HF cocktail (1U EcoRI-HF (R3101, NEB) in 1X CutSmart NEB buffer) to cut out the P5 sequence. 

After 37 oC overnight incubation, the flow cell was washed with water 3 times, 0.1N NaOH 3 times (each 

with 5 min incubation at room temperature), 0.1M Tris (pH 7.5) 3 times, and then water 3 times. The 

flow cell was then loaded with 1X Phusion Hot Start II High-Fidelity Mastermix (F565S) containing 5 µM 

of UMI-oligo (sequence provided below). 

Backbone: (oligo-dA) (UMI) C (HR1B) 

UMI-Oligo: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA NNNNNNNN C 

TATGACGCCAGACATGTTGCGAACGGG 

The flow cell was then incubated at 95 oC for 5 min, 60 oC for 1 min and 72 oC for 5 min. Then, the flow 

cell was loaded with an exonuclease I cocktail (see above for composition) and incubated for 45 min at 

37 oC. The flow cell was then washed with water 3 times, 0.1N NaOH 3 times (each with 5 min 

incubation at room temperature), 0.1M Tris (pH 7.5) 3 times, and then water 3 times. This completes 

the generation of the UMI-encoded HDMI-array. 

Performance of the UMI-encoded HDMI-array was tested using 2 µg total RNA purified from mouse liver, 

using the same reverse transcription and library preparation method described above (but without the 

tissue slice). The library was sequenced in Illumina HiSeqX and HiSeq4000 platforms.  

 

PART II. Computational Analysis of Seq-Scope data. 

Input Data 

There are three experimental outputs from Seq-Scope, which will serve as input data for downstream 

computational analysis. (1) HDMI sequence, tile and spatial coordinate information from 1st-Seq, (2) 
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HDMI sequence, coupled with cDNA sequence from 2nd-Seq, and (3) Histological image obtained from 

H&E staining of the tissue slice. 

Tissue Boundary Estimation 

To estimate the tissue boundary, the HiSeq data were joined into MiSeq data according to their HDMI 

sequence. As a result, for each of the HiSeq data whose HDMI was found from MiSeq, the tile number 

and XY coordinates were assigned. Finally, using a custom python code, an HDMI discovery plot was 

generated to visualize the density of HiSeq HDMI in a given XY space of each tile (Fig. S1C). The density 

plots were manually assigned to the corresponding H&E images (Fig. 2C, S2D and S2E). 

Read Alignment and Generation of Digital Gene Expression Matrix 

Read alignment was performed using STAR/STARsolo 2.7.5c (Dobin et al., 2013), from which the digital 

gene expression (DGE) matrix was generated. From MiSeq data, HDMI sequences of clusters located on 

the bottom tile were extracted and used as a “whitelist” for the cell (HDMI) barcode after reverse 

complement conversion. The first 20 (HDMI-DraI version) or 30 (HDMI32-DraI) basepairs of HiSeq data 

Read 1 were considered as the cell (HDMI) barcode.  

Due to the extensive washing steps after secondary strand synthesis, it was expected that each single 

molecule of HDMI-cDNA hybrid would lead to one secondary strand in the library. Therefore, the first 9-

mer of Read 2 sequence, which is derived from the Randomer sequence, could serve as a proxy of the 

unique molecular identifier (UMI). Therefore, the first 9 basepairs of HiSeq Read 2 data were copied to 

Read 1 and used as the unique molecular identifier (UMI). Read 2 was trimmed at the 3’end to remove 

polyA tails of length 10 or greater and was then aligned to the mouse genome (mm10) using the 

Genefull option with no length threshold and no cell filtering (Fig. S1D). For the genes whose expression 

couldn’t be monitored by the Genefull option, the Gene option was used to generate the gene 

expression discovery plots. 

For saturation analysis, multiple read alignments were performed using various subsets of the 2nd-Seq 

results. The alignment output values were plotted in a graph (Fig. S2P) to generate a saturation curve in 

Graphpad Prism 8 (Graphpad Software, Inc.). Hyperbolic regression was used to estimate the total 

unique transcript number in the liver (59,799,349 to 63,511,208; 95% confidence interval) and colon 

(107,954,654 to 123,477,902; 95% confidence interval) Seq-Scope libraries. 

Analysis of Spliced and Unspliced Gene Expression 

To obtain separate read counts for spliced and unspliced transcripts, we used the Velocyto (La Manno et 

al., 2018) option in the STARsolo software (Fig. S1E). All spliced or unspliced mRNA reads were plotted 

onto the histological coordinate plane to identify nuclear-cytoplasmic structure (see below in 

“Visualization of Spatial Gene Expression). To test the reproducibility of the image analysis, all genes 

were randomly divided into three groups, and spliced and unspliced read counts were obtained 

independently. Images were compared with each other to calculate Pearson’s correlation coefficients in 

NIH ImageJ using Just Another Colocalization Plugin (JACoP) (Bolte and Cordelieres, 2006). Abundances 

of nuclear-specific (Malat1, Neat1 and Mlxipl) and mitochondrial-encoded (all genes whose name start 

with “mt-“) transcripts were also analyzed using the same method. The correlation coefficients were 

assembled and presented in a heat map produced by Graphpad Prism 8 (Graphpad Software Inc.). 
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Data Binning and Clustering Analysis 

Data binning was performed by dividing the imaging space into 100 μm2 (10 μm-sided) square grids and 

collapsing all HDMI-UMI information into one barcode per grid. Alternatively, data binning was also 

performed using 49 μm2 (7 μm-sided) square grids or 25 μm2 (5 μm-sided) square grids. The binned DGE 

matrix was analyzed in the Seurat v4 package (Butler et al., 2018). Feature number threshold was 

applied to remove the grids that corresponded to the area that was not overlaid by the tissue or was 

extensively damaged through scratches. Data were normalized using regularized negative binomial 

regression implemented in Seurat’s SCTransform function. Clustering was performed using the shared 

nearest neighbor modularity optimization implemented in Seurat’s FindClusters function, using 

resolutions between 0.6 and 1.2. Clusters with apparently mixed cell types (cluster 8 in Fig. S5A, cluster 

6 and 8 in Fig. S6B) were subjected to an additional round of clustering. UMAP (Becht et al., 2019) 

manifold, also built in the Seurat package, was used to assess clustering performance. Top 50 markers 

from each cluster, identified through the FindAllMarkers function, were used to identify cell types that 

existed within the grid area. Then the clusters were visualized in the UMAP manifold or the histological 

space using DimPlot and SpatialDimPlot functions, respectively. Raw and normalized transcript 

abundance in each tile, cluster and spatial grid was visualized through the VlnPlot, DotPlot, FeaturePlot 

and SpatialFeaturePlot functions built in the Seurat package.  

Visualization of Spatial Gene Expression 

Spatial gene expression was visualized using a custom python code. Raw digital expression data of the 

queried gene (or gene list) were plotted onto the coordinate plane according to their HDMI spatial index. 

Gene expression densities were plotted as a ~3 μm-radius circle at a transparency alpha level of 

between 0.005 and 0.25. In spatial gene expression images with the white background, the intensity of 

the colored spot indicates the abundance of transcripts around the spot location. Spatial gene 

expression images with the black background were created for genes or gene lists of high expression 

values to make it easy to adjust the linear range of gene expression density and to overlay gene 

expression densities of different queries with different pseudo-color encoding. The inverse image of the 

greyscale plot was pseudo-colored with red, blue or green, and the image contrast was linearly adjusted 

to highlight the biologically relevant spatial features. Finally, different pseudo-colored images were 

overlaid together to compare the gene expression patterns in the same histological coordinate plane. 

Cell cycle-specific genes, such as S phase- and G2/M phase-specific gene lists (Nestorowa et al., 2016), 

were retrieved from the Seurat package, and their mouse homologues were identified using the 

biomaRt package (Durinck et al., 2009). 

UMI Efficiency Test 

Efficiencies of UMI-encoding methods for collapsing duplicate read counts were evaluated using the 

data produced from the “Generation and Testing of UMI-encoded HDMI-array” section. UMI encoded by 

the HDMI-array (UMI_Array; 49th-57th positions of Read 1) and UMI encoded by the Random primed 

position (UMI_Randomer; 1st-9th positions of Read 2) were identified from the 2nd-Seq results. 

Uncollapsed read count, read count collapsed with UMI_Array, and read count collapsed with 

UMI_Randomer were calculated for all the HDMI sequences observed, and their relative abundances 

were presented in a line graph (Fig. S1G). The result indicates that both UMI_Array and UMI_Randomer 

are efficient in collapsing duplicate read counts of 2nd-Seq results. 
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Figure Legends 

 

Fig 1. Seq-Scope Overview 

(A) Schematic representation of the HDMI-oligo library structure. This library is used as an input of 1st-

Seq, described below in (B) and (C). P5/P7, PCR adapters; TR1, TruSeq Read 1; HDMI, high-definition 

map coordinate identifier; HR1, HDMI Read 1.  

(B) Solid-phase amplification of different HDMI-oligo molecules on the flow cell surface. During 1st-Seq, a 

single “seed” molecule from the HDMI-oligo library forms a cluster of oligonucleotides that contain 

unique HDMI sequences. 

(C and D) Illumina sequencing by synthesis (SBS) determines the HDMI sequence and XY coordinates of 

each cluster (C). Then, HDMI oligonucleotide clusters are modified to expose oligo-dT, the RNA-capture 

domain (D). 

(E-I) HDMI-array captures RNA released from the overlying frozen section (E). Then, cDNA footprint is 

generated by reverse transcription of mRNA hybridized with oligo-dT domain (F). After that, secondary 

strand is synthesized using random priming method on the HDMI-cDNA chimeric molecule (G). Finally, 

adapter PCR (H) generates the sequencing library for 2nd-Seq (I), where paired-end sequencing using TR1 

and TR2 reveals cDNA sequence and its matching HDMI barcode. TR2, TruSeq Read 2; UMI, unique 

molecule identifier. 

(J) HDMI-array contains up to 150 HDMI clusters in 100 μm2 area. Each cluster has over 1,000 RNA 

capture probes with unique HDMI sequences. 

 

Fig 2. Seq-Scope Captures and Analyzes Spatial cDNA Footprint from Tissue-Derived RNA. 

(A) Representative images of HDMI clusters in the HDMI-array, retrieved from the Illumina sequence 

analysis viewer. Upper panel visualizes “A” intensity at the 1st cycle of the 1st-Seq SBS, where 33% of 

HDMI clusters exhibit fluorescence. Lower panel visualizes “A” at the 33rd cycle, where 97% of HDMI 

clusters exhibit fluorescence. Yellow squares in the left panels are magnified in the right panels. 

(B) H&E staining and its corresponding Cy3-dUTP labeling fluorescence images from fragmented liver 

section. Gross tissue boundaries (dotted lines) are well preserved in the underlying cDNA footprint. Box 

insets in the right panel highlights single cell-like patterns in the cDNA footprint. 

(C) H&E staining and its corresponding HDMI discovery plot drawn from the analysis of 1st-Seq and 2nd-

Seq outputs. Brighter color in the HDMI discovery plot indicates that more HDMI was found from 2nd-

Seq in the corresponding pixel area. 

(D and E) After data binning with 10 µm-sided square grids, number of UMI counts (D, left; nCounts) and 

gene features (D, right; nFeatures) of liver (upper) and colon (lower) datasets were presented in spatial 

and violin plot, respectively. Setting a 350 (liver) or 500 (colon) cutoff was sufficient to isolate grids 

covered by the tissue area (E, left), each of which contains approximately 1,000 UMIs (E, right). 
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Fig 3. Seq-Scope Visualizes Subcellular Spatial Transcriptome. 

(A) Schematic diagram depicting the distribution of different RNA species in subcellular compartments. 

(B-D) Spatial plot of all unspliced and spliced transcripts, as well as RNA species that are known to 

localize to nucleus (Nuc-targeted; Malat1, Neat1 and Mlxipl) in liver (B). RNA species that are encoded 

by mitochondrial genome (Mt-encoded) were also analyzed (C). Pearson correlations (r) between these 

transcript intensities were presented as a heat map (D). 

(E) Spatial plot of unspliced and spliced transcripts in three independent subsets of genes (Gene Subset 

1-3). Pearson correlations (r) between these transcript intensities were presented as a heat map. S1-3, 

Spliced 1-3; U1-3, Unspliced 1-3. 

 

Fig 4. Seq-Scope Reveals Microscopic Details of Spatial Transcriptome in Normal Liver 

Spatial transcriptome of normal liver was analyzed using Seq-Scope (tile ID: 2102-2107).  

(A-C) Schematic diagram depicting metabolic zonation of normal liver (A). UMAP (B) and spatial plots (C) 

visualize clusters of 10 µm-sided square grid units representing zonated hepatocytes in the indicated 

color. 

(D) Spectrum of genes exhibiting different zone-specific expression patterns were examined by spatial 

plot analysis. Zone 3-specific genes are depicted in warm (red-orange-yellow) colors, while zone 1-

specific genes are depicted in cold (blue-purple) colors. 

(E) Zone 1-specific transcripts (green), zone 3-specific transcripts (red) and unspliced transcripts (blue, 

Nuclei) were visualized together in a histological coordinate plane. 

(F-J) Schematic diagram depicting cellular components of normal liver (F). UMAP (G) and spatial plots (I) 

visualizing clusters of 10 µm-sided square grid units representing indicated cell types. Cell type-specific 

transcript expression was analyzed using dot plot (H) and gene expression plot (J) analyses. 

(K-O) UMAP (K) and spatial plots (M) visualizing clusters of grid pixels representing indicated 

hepatocellular subpopulations. Marker genes for Hep_injury cluster, which represent transcriptome 

responses to hepatocellular injury (L), were examined through spatial gene expression plotting (N and O). 

 

Fig 5. Seq-Scope Examines Liver Histopathology at Microscopic and Transcriptomic Scales 

Liver from a Tsc1
Δhep

/Depdc5
Δhep (TD) mouse, which suffers liver injury and inflammation (Cho et al., 

2019), was examined through Seq-Scope (tile ID: 2116-2119).  

(A-C and G) UMAP (A) and spatial plots (B) visualize clusters of 10 µm-sided square grid units 

representing injury-responsive cell populations. (C) H&E images correspond to the boxed regions in (B). 

Yellow star in (C) marks the area of hepatocellular injury. (G) Normal (HSC-N) and activated (HSC-A) 

subclusters of HSC population were identified, and their marker genes are listed in a table. 
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(D-F, H and I) Marker genes for indicated cell types were plotted onto the histological coordinate plane 

with indicated colors. Boxed areas are magnified on right. Yellow stars in (D) indicate dead cell area 

where RNA footprint was scarcely discovered. Blue arrows in (D) indicate hepatocytes expressing 

Hep_novel markers. Purple arrows in (D) indicate hepatocytes expressing both Hep_injured and 

Hep_novel markers. In (D), Hep_novel and Hep_injured markers overlap with Alb, the hepatocyte 

marker, while macrophage markers do not overlap with Alb and other hepatocyte markers. White 

arrows in (E) indicate the position of cells expressing HSC markers but not hepatocyte marker Alb. 

Yellow arrows in (F) indicate macrophages expressing both KC-like and DC-like markers. 

 

Fig 6. Seq-Scope Identifies Various Cell Types from Colonic Wall Histology. 

Spatial transcriptome of colon was analyzed using Seq-Scope. Seq-Scope dataset processed with 10 µm-

sided square gridding was analyzed. 

(A-C) Seq-Scope reveals major histological layers through transcriptome clustering. (A) Schematic 

representation of colonic histology. Clusters corresponding to the indicated histological layers were 

visualized in UMAP manifold (B) and histological space (C). 

(D-G) Seq-Scope reveals epithelial cell diversity through transcriptome clustering. (D) Schematic 

representation of colonic epithelial cell types. Clusters corresponding to the indicated epithelial cell 

types were visualized in UMAP manifold (E) and histological space (F). Cluster-specific markers were 

examined in dot plot analysis (G). 

(H-K) Seq-Scope reveals non-epithelial cell diversity through transcriptome clustering. (H) Schematic 

representation of colonic non-epithelial cell types. Clusters corresponding to the indicated non-epithelial 

cell types were visualized in UMAP manifold (I) and histological space (J). Cluster-specific markers were 

examined in dot plot analysis (K). 

 

Fig 7. Seq-Scope Enables Microscopic Analysis of Colon Spatial Transcriptome. 

Colonic spatial transcriptome was analyzed using Seq-Scope. Original Seq-Scope dataset was analyzed by 

gene expression plotting on the histological coordinate plane, using cell type-specific marker genes. 

(A) Histological layers of smooth muscle, crypt base, transitional and surface epithelial cells were 

visualized through spatial gene expression plot. White arrows in (A) indicate the position of muscularis 

mucosae, the thin layer of smooth muscle separating mucosa and submucosa.  

(B and C) Different types of epithelial cells, including enteroendocrine cells (EEC), deep crypt secretory 

cells (DCSC), Paneth-like cells, Goblet cells and colonocytes were visualized through spatial plotting of 

cell type-specific marker genes.  

(D) Expression of S phase- and G2/M phase-specific marker genes were plotted onto the histological 

coordinate plane. Colonocyte and crypt base marker genes were also plotted to provide a background 

reference. 
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(E and F) Different types of non-epithelial cells were visualized through spatial plotting of cluster-specific 

marker genes. In (F), colonocyte and crypt base marker genes were also plotted to provide a background 

reference. 
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Supplemental Figure Legends 

 

Fig S1. Seq-Scope Workflow 

(A and B) Chemistry workflow for generating HDMI-array in 1st-Seq (A), and using the HDMI-array for 

constructing library for 2nd-Seq (B). The 2nd-Seq library is subjected to the standard next-generation 

sequencing workflow in Illumina and BGI platforms. See Experimental Procedures for details. 

(C-E) Bioinformatics workflow for estimating tissue boundaries (C), visualizing and analyzing spatial gene 

expression patterns (D), and determining nuclear and cytoplasmic areas (E). See Experimental 

Procedures for details. 

(F) Chemistry workflow for generating UMI-encoded HDMI-array in 1st-Seq. 

(G) Evaluation of UMI-encoding methods based on either random priming (UMI_Randomer) or array 

encoding (UMI_Array). The number of HDMI with multiple read counts was efficiently reduced by either 

UMI_Randomer- or UMI_Array-based collapsing methods. 

 

Fig S2. Seq-Scope Performance 

(A) Representative images of HDMI clusters in the HDMI-array, retrieved from the Illumina sequence 

analysis viewer (SAV). Each picture visualizes “A” intensity at the 21st cycle of the 1st-Seq SBS, where over 

97% of HDMI clusters exhibit fluorescence. 

(B) Titration of HDMI-oligo library loading concentration for obtaining maximum number of sequenced 

clusters. Total (red) and sequenced (blue) cluster numbers were presented for indicated 1st-Seq 

conditions. Data are presented as mean ± SEM. 

(C) Schematic diagram depicting tile arrangement in bottom surface of MiSeq v3 regular flow cell. 

(D and E) Schematic diagram visualizes the tiles which were attached to the indicated liver (D, top) or 

colon (E, top) tissues. On the bottom, H&E staining images (upper) and their corresponding HDMI 

discovery plots (lower) were presented. 

(F and G) Knee plots depicting the distribution of all HDMI discovered from 2nd-Seq and the number of 

unique transcripts (nUMI) discovered per each HDMI molecule. Outlier points (n≤10 each) with more 

than 100 nUMI were not plotted in the graph area. Both liver (F) and colon (G) datasets were analyzed.  

(H and I) Spatial density plots of the gridded dataset depicting the number of UMIs discovered from 

indicated 10 µm square grids. 

(J-O) Violin plots depicting the distribution of the number of gene feature (nFeature) across the 10 µm 

square grids (J and L). Setting a 250 (liver) or 480 (colon) cutoff for these tiles isolated grid units covered 

by the tissue area (K and M), each of which contains up to 1,200 UMIs (N and O). Both liver (J, K and N) 

and colon (L, M and O) datasets were analyzed. 

(P) Saturation analysis of liver (red) and colon (blue) Seq-Scope dataset. 
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Fig S3. Seq-Scope Visualizes Nuclear/Mitochondrial/Cytoplasmic Subcellular Architecture. 

This figure provides additional examples of Seq-Scope output that visualizes the 

nuclear/mitochondrial/cytoplasmic subcellular architecture 

(A) Spatial plot of all unspliced and spliced transcripts, as well as RNA species that are known to localize 

to nucleus in liver tissue (Nuc-targeted; Malat1, Neat1 and Mlxipl). 

(B) Spatial plot of all unspliced and spliced transcripts, as well as RNA species that are encoded by 

mitochondrial genome (Mt-encoded).  

(C) Pearson correlations (r) between the indicated transcript intensities in the single cell area were 

presented as a heat map. 

(D) Spatial plot of unspliced and spliced transcript in three independent subsets of genes (Gene Subset 

1-3). Pearson correlations (r) between these transcript intensities were presented as a heat map. S1-3, 

Spliced 1-3; U1-3, Unspliced 1-3. 

 

Fig S4. Seq-Scope Identifies Diverse Cell Types and Subtypes Present in Normal Liver. 

(A-D) From the normal liver dataset binned with 10 µm-sided square grids, a UMAP plot visualizing all 

clusters (A), UMAP plots visualizing expression of indicated genes across the grids (B), and dot plots 

visualizing cluster-specific expression of liver zonation (C) and cell type (D) markers are presented.  

(E and F) Spatial plot of indicated transcripts on histological coordinate plane. 

(G-J) Number of gene features (G, nFeatures) and UMI counts (H, nCounts; after nFeatures cutoff at 120) 

were calculated across the indicated tiles of liver Seq-Scope dataset, binned using 7 µm square grids. 

From this dataset, a UMAP plot visualizing all clusters (I), UMAP plots visualizing expression of indicated 

genes across the grids (J), a UMAP plot visualizing cell type-assigned clusters (K) and its associated 

spatial plots (L) are presented. Grid numbers, as well as mean and median UMI counts per grid unit, 

were provided (L). 

(M-R) Number of gene features (M, nFeatures) and UMI counts (N, nCounts; after nFeatures cutoff at 

100) were calculated across the indicated tiles of liver Seq-Scope dataset, binned using 5 µm square 

grids. From this dataset, a UMAP plot visualizing all clusters (O), UMAP plots visualizing expression of 

indicated genes across the grids (P), a UMAP plot visualizing cell type-assigned clusters (Q) and its 

associated spatial plots (R) are presented. Grid numbers, as well as mean and median UMI counts per 

grid unit, were provided (R). 

 

Fig S5. Seq-Scope Analysis of Liver Injury and Inflammation. 

(A-C) From the TD liver dataset binned with 10 µm-sided square grids, UMAP plots visualizing all clusters 

(A), zonated hepatocytes (B) and non-parenchymal cells (C) are presented. 
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(D) Spatial plots of unspliced, spliced and mitochondrial transcripts visualize subcellular structures. 

(E) Expression of oxidative stress-responsive genes, Gpx3 and Sepp1, was examined in normal and TD 

liver using spatial plotting. Hepatocyte zonation is plotted in the bottom panel as a reference. Gpx3 and 

Sepp1 were specifically induced in zone 1 hepatocytes of TD liver. 

(F) Dot plot depicting cluster-specific expression of cell type marker genes. 

(G-J) Spatial plots visualizing expression of marker genes for dendritic cell-like macrophages (G), 

activated HSCs (H), hepatocytes showing injury response (I), hepatocytes showing novel injury response 

(J), Kupffer cell-like macrophages (K) and normal HSCs (L). 

 

Fig S6. Seq-Scope Analysis of Colonic Spatial Transcriptome 

(A-E) From the colon dataset binned with 10 µm square grids, a UMAP plot visualizing all clusters (A and 

B), spatial plots visualizing major histological layers (C, top; see Fig. 6B for cluster assignment), epithelial 

cell diversity (C, middle; see Fig. 6E for cluster assignment), and non-epithelial cell diversity (C, bottom; 

see Fig. 6I for cluster assignment), gene expression plots visualizing expression of Mptx1 (D, upper; 

Paneth-like marker) and Mup2 (D, lower; DCSC marker) in the UMAP manifold, and a dot plot showing 

colonocyte and goblet cell marker expression across different epithelial cell clusters (E) are presented. 

Box in (E) indicates that some colonocyte-specific markers, such as Lypd8 and Prdx6, were found in 

Goblet cell grids, suggesting that colonocyte and goblet cell transcriptome is mixed in the Goblet grid 

pixel at this binning scheme. 

(F-I) Number of gene features (F, left; nFeatures) and UMI counts (F, right; nCounts after nFeatures 

cutoff at 300) were calculated across the indicated tiles of liver Seq-Scope dataset, binned using 7 µm 

square grids. From this dataset, a UMAP plot visualizing all clusters (G), UMAP plots (H, left) and spatial 

plots (H, right) visualizing major histological layers (H, top), epithelial cell diversity (H, middle) and non-

epithelial cell diversity (H, bottom), and a dot plot showing colonocyte and goblet cell marker expression 

across different epithelial cell clusters (I) are presented. Box in (I) indicates that 7 µm square-gridded 

dataset performs better at separating colonocyte and goblet cell transcriptome compared to the 10 µm 

square-gridded dataset (E). 

(J-M) Number of gene features (J, left; nFeatures) and UMI counts (J, right; nCounts after nFeatures 

cutoff at 150) were calculated across the indicated tiles of liver Seq-Scope dataset, binned using 5 µm 

square grids. From this dataset, a UMAP plot visualizing all clusters (K), UMAP plots (L, left) and spatial 

plots (L, right) visualizing major histological layers (L, top), epithelial cell diversity (L, middle) and non-

epithelial cell diversity (L, bottom), and a dot plot showing colonocyte and goblet cell marker expression 

across different epithelial cell clusters (M) are presented. Box in (M) indicates that 5 µm square-gridded 

dataset performs better at separating colonocyte and goblet cell transcriptome compared to the 10 µm 

(E) or 7 µm (I) square-gridded datasets. 

 

Fig S7. Seq-Scope Visualized Spatial Expression Patterns of Different Colonic Cell Type Markers. 
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(A-J) Marker genes for indicated cell types were plotted onto the histological coordinate plane with 

indicated colors. Top row of each panel represents combined plotting of all listed markers. Bottom rows 

represent gene expression plotting of individual cell type marker genes. For all spatial plots, width and 

height of the imaging areas are 800 µm and 1 mm, respectively. 
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Supplemental Table Legends 

 

Table S1. List of genes that show cluster-specific expression patterns in the Seq-Scope liver dataset 

binned with square grids. p_val, unadjusted P value; avg_logFC, log fold-change of the average 

expression between the cluster and the background; pct.1, the percentage of cells where the gene is 

detected in the cluster; pct.2, the percentage of cells where the gene is detected in the background; 

p_val_adj, bonferroni-corrected p-values; cluster, the original cluster identity assigned by FindCluster 

function; Cell_Type, cell type identity manually assigned to the cluster. 

(Tab 1: Normal 10 um) List of cluster-specific markers in the Seq-Scope normal liver dataset binned with 

10 µm square grids. For UMAP visualization, please see Fig. S4A. 

(Tab 2: Normal 7 um) List of cluster-specific markers in the Seq-Scope normal liver dataset binned with 7 

µm square grids. For UMAP visualization, please see Fig. S4I. 

(Tab 3: Normal 5 um) List of cluster-specific markers in the Seq-Scope normal liver dataset binned with 5 

µm square grids. For UMAP visualization, please see Fig. S4O. 

(Tab 4: TD 10 um) List of cluster-specific markers in the Seq-Scope Tsc1
Δhep

/Depdc5
Δhep (TD) liver dataset 

binned with 10 µm square grids. For UMAP visualization, please see Fig. S5A 

 

Table S2. List of genes that show cluster-specific expression patterns in the Seq-Scope colon dataset 

binned with square grids. p_val, unadjusted P value; avg_logFC, log fold-change of the average 

expression between the cluster and the background; pct.1, the percentage of cells where the gene is 

detected in the cluster; pct.2, the percentage of cells where the gene is detected in the background; 

p_val_adj, bonferroni-corrected p-values; Layer, histological layer assigned to the cluster; Cell_Type, cell 

type identity manually assigned to the cluster. 

(Tab 1: 10 um Original) List of cluster-specific markers in the Seq-Scope colon dataset binned with 10 µm 

square grids. For UMAP visualization, please see Fig. 6A and S6A.  

(Tab 2: 10 um Epithelial) List of cluster-specific markers in the 10 µm square-gridded colon dataset with 

a refined epithelial cell type assignment (Fig. 6E). 

(Tab 3: 10 um Non-epithelial) List of cluster-specific markers in the 10 µm square-gridded colon dataset 

with a refined non-epithelial cell type assignment (Fig. 6I). 

(Tab 4: 7 um Original) List of cluster-specific markers in the Seq-Scope colon dataset binned with 7 µm 

square grids. For UMAP visualization, please see Fig. S6G. 

(Tab 5: 5 um Original) List of cluster-specific markers in the Seq-Scope colon dataset binned with 5 µm 

square grids. For UMAP visualization, please see Fig. S6K. 

 

Table S3. List of cell type markers that were used to generate spatial plots. Marker gene list used in each 

figure is summarized in each tab of the excel file. 
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Figure 2. Cho, Xi et al.
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Figure 4. Cho, Xi et al.
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Figure 6. Cho, Xi et al.
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Figure S1. Cho, Xi et al.

A 5’-CAAGCAGAAGACGGCATACGAGAT TCTTTCCCTACACGACGCTCTTCCGATCT NNVNNVNNVNNVNNVNNNNN TCTTGTGACTACAGCACCCTCGACTCTCGC TTTTTTTTTTTTTTTTTTTTTTTTTTT TTTAAA GACTTTCACCAGTCCATGAT GTGTAGATCTCGGTGGTCGCCGTATCATT-3’

P7 sequence TruSeq Read 1                 HDMI Filler 1                 Oligo-dT DraI Filler 2          P5 sequence

• Initial HDMI-oligo (HDMI-DraI) “seed” Library

P7 sequence TruSeq Read 1                 HDMI Filler 1                       Oligo-dT DraI Filler 2            P5 sequence

CAAGCAGAAGACGGCATACGAGAT TCTTTCCCTACACGACGCTCTTCCGATCT NNVNNVNNVNNVNNVNNNNN TCTTGTGACTACAGCACCCTCGACTCTCGC TTTTTTTTTTTTTTTTTTTTTTTTTTT TTTAAA GACTTTCACCAGTCCATGAT GTGTAGATCTCGGTGGTCGCCGTATCATT-3’

     AGAACACTGATGTCGTGGGAGCTGAGAGCG AAAAAAAAAAAAAAAAAAAAAAAAAAA AAATTT CTGAAAGTGGTCAGGTACTA-5’

Read1-DraI

• DraI Cut
P7 sequence TruSeq Read 1                 HDMI Filler 1                       Oligo-dT DraI Filler 2            P5 sequence

CAAGCAGAAGACGGCATACGAGAT TCTTTCCCTACACGACGCTCTTCCGATCT NNVNNVNNVNNVNNVNNNNN TCTTGTGACTACAGCACCCTCGACTCTCGC TTTTTTTTTTTTTTTTTTTTTTTTTTT TTTAAA GACTTTCACCAGTCCATGAT GTGTAGATCTCGGTGGTCGCCGTATCATT-3’

3’-CTAGA NNBNNBNNBNNBNNBNNNNN AGAACACTGATGTCGTGGGAGCTGAGAGCG AAAAAAAAAAAAAAAAAAAAAAAAAAA AAATTT CTGAAAGTGGTCAGGTACTA-5’

Read1-DraI

• Sequencing by Synthesis in MiSeq Instrument (SBS, single-end)

B

P7 sequence TruSeq Read 1                 HDMI Filler 1                Oligo-dT

CAAGCAGAAGACGGCATACGAGAT TCTTTCCCTACACGACGCTCTTCCGATCT NNVNNVNNVNNVNNVNNNNN TCTTGTGACTACAGCACCCTCGACTCTCGC TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3’

• NaOH Wash & Completion of HDMI-array

P7 sequence TruSeq Read 1                 HDMI Filler 1               Oligo-dT

CAAGCAGAAGACGGCATACGAGAT TCTTTCCCTACACGACGCTCTTCCGATCT NNVNNVNNVNNVNNVNNNNN TCTTGTGACTACAGCACCCTCGACTCTCGC TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX-5’ cDNA

                                                        NNNNNNNNN

UMI

• NaOH Wash & Secondary Strand Synthesis

P7 sequence TruSeq Read 1                 HDMI Filler 1              Oligo-dT

CAAGCAGAAGACGGCATACGAGAT TCTTTCCCTACACGACGCTCTTCCGATCT NNVNNVNNVNNVNNVNNNNN TCTTGTGACTACAGCACCCTCGACTCTCGC TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                       

3’-AAAAAAAAAAAAAA XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX-5’ mRNA from Tissue

• Hybridization & Reverse Transcription

TruSeq Read 1                 HDMI Filler 1               Oligo-dT cDNA                  UMI           TruSeq Read 2

5’-TCTTTCCCTACACGACGCTC                                                             

3’-AGAAAGGGATGTGCTGCGAGAAGGCTAGA NNBNNBNNBNNBNNBNNNNN AGAACACTGATGTCGTGGGAGCTGAGAGCG AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX NNNNNNNNN TCTAGCCTTCTCGTGTGCAGACT-5’

                                                             AGCCTTCTCGTGTGCAGACT-5’

5’-TCTTTCCCTACACGACGCTCTTCCGATCT NNVNNVNNVNNVNNVNNNNN TCTTGTGACTACAGCACCCTCGACTCTCGC TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX NNNNNNNNN AGATCGGAAGAGCACACGTCTGA-3’

3’-AGAAAGGGATGTGCTGCGAGAAGGCTAGA NNBNNBNNBNNBNNBNNNNN AGAACACTGATGTCGTGGGAGCTGAGAGCG AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX NNNNNNNNN TCTAGCCTTCTCGTGTGCAGACT-5’

• NaOH Elution & 1st Library PCR

• Purification & 2nd Library PCR

5’-AATGATACGGCGACCACCGAGATCTACAC TCTTTCCCTACACGACGCTC                                                                              
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Figure S3. Cho, Xi et al.
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Figure S7. Cho, Xi et al.
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Colon_DCSC/Pregoblet: tile2110 Colon_DCSC/Pregoblet: tile2111 Colon_DCSC/Pregoblet: tile2112 Colon_DCSC/Pregoblet: tile2113

Colon_Agr2: tile2110 Colon_Agr2: tile2111 Colon_Agr2: tile2112 Colon_Agr2: tile2113

Colon_Spink4: tile2110 Colon_Spink4: tile2111 Colon_Spink4: tile2112 Colon_Spink4: tile2113

Colon_Oit1: tile2110 Colon_Oit1: tile2111 Colon_Oit1: tile2112 Colon_Oit1: tile2113

Colon_Clca4: tile2110 Colon_Clca4: tile2111 Colon_Clca4: tile2112 Colon_Clca4: tile2113

Colon_Neuronal: tile2110 Colon_Neuronal: tile2111 Colon_Neuronal: tile2112 Colon_Neuronal: tile2113

Colon_Gal: tile2110 Colon_Gal: tile2111 Colon_Gal: tile2112 Colon_Gal: tile2113

Colon_Uchl1: tile2110 Colon_Uchl1: tile2111 Colon_Uchl1: tile2112 Colon_Uchl1: tile2113

Colon_Tac1: tile2110 Colon_Tac1: tile2111 Colon_Tac1: tile2112 Colon_Tac1: tile2113

Colon_Macrophage: tile2110 Colon_Macrophage: tile2111 Colon_Macrophage: tile2112 Colon_Macrophage: tile2113

Colon_Apoe: tile2110 Colon_Apoe: tile2111 Colon_Apoe: tile2112 Colon_Apoe: tile2113

Colon_Cd74: tile2110 Colon_Cd74: tile2111 Colon_Cd74: tile2112 Colon_Cd74: tile2113

Colon_H2-Ab1: tile2110 Colon_H2-Ab1: tile2111 Colon_H2-Ab1: tile2112 Colon_H2-Ab1: tile2113

Colon_Ccl8: tile2110 Colon_Ccl8: tile2111 Colon_Ccl8: tile2112 Colon_Ccl8: tile2113

Colon_H2-Aa: tile2110 Colon_H2-Aa: tile2111 Colon_H2-Aa: tile2112 Colon_H2-Aa: tile2113

Colon_Lyz2: tile2110 Colon_Lyz2: tile2111 Colon_Lyz2: tile2112 Colon_Lyz2: tile2113

Colon_Mptx1: tile2110 Colon_Mptx1: tile2111 Colon_Mptx1: tile2112 Colon_Mptx1: tile2113

Colon_Colonocyte Top: tile2110 Colon_Colonocyte Top: tile2111 Colon_Colonocyte Top: tile2112 Colon_Colonocyte Top: tile2113

Colon_Lypd8: tile2110 Colon_Lypd8: tile2111 Colon_Lypd8: tile2112 Colon_Lypd8: tile2113

Colon_Saa1: tile2110 Colon_Saa1: tile2111 Colon_Saa1: tile2112 Colon_Saa1: tile2113

Colon_Car4: tile2110 Colon_Car4: tile2111 Colon_Car4: tile2112 Colon_Car4: tile2113

Colon_Aqp8: tile2110 Colon_Aqp8: tile2111 Colon_Aqp8: tile2112 Colon_Aqp8: tile2113

Colon_Goblet: tile2110 Colon_Goblet: tile2111 Colon_Goblet: tile2112 Colon_Goblet: tile2113

Colon_Zg16: tile2110 Colon_Zg16: tile2111 Colon_Zg16: tile2112 Colon_Zg16: tile2113

Colon_Clca3: tile2110 Colon_Clca3: tile2111 Colon_Clca3: tile2112 Colon_Clca3: tile2113

Colon_Fcgbp: tile2110 Colon_Fcgbp: tile2111 Colon_Fcgbp: tile2112 Colon_Fcgbp: tile2113

Colon_Tff3: tile2110 Colon_Tff3: tile2111 Colon_Tff3: tile2112 Colon_Tff3: tile2113

Colon_EEC: tile2110 Colon_EEC: tile2111 Colon_EEC: tile2112 Colon_EEC: tile2113

Colon_Pyy: tile2110 Colon_Pyy: tile2111 Colon_Pyy: tile2112 Colon_Pyy: tile2113

Colon_Insl5: tile2110 Colon_Insl5: tile2111 Colon_Insl5: tile2112 Colon_Insl5: tile2113

Colon_Gcg: tile2110 Colon_Gcg: tile2111 Colon_Gcg: tile2112 Colon_Gcg: tile2113

Colon_Ppy: tile2110 Colon_Ppy: tile2111 Colon_Ppy: tile2112 Colon_Ppy: tile2113
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