

1 **Tethered NOS-3, a nematode Nanos RNA-binding protein, enhances reporter expression**
2 **and mRNA stability**

3
4 Jonathan Doenier^{1,§}, Tina R Lynch^{1,§}, Judith Kimble^{1,*} and Scott T Aoki^{1,2,*}

5
6 ¹ Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA

7 ² Current address: Department of Biochemistry and Molecular Biology, Indiana University School
8 of Medicine, Indianapolis, IN, USA

9 [§] Equal contribution

10
11 * For correspondence:

12 Judith Kimble
13 Department of Biochemistry
14 University of Wisconsin-Madison
15 433 Babcock Drive
16 Madison, WI 53706-1544
17 Tel 608-262-6188
18 Fax 608-265-5820
19 jekimble@wisc.edu

20
21 Scott T. Aoki
22 635 Barnhill Dr.
23 Medical Sciences Building MS4071F
24 Dept. of Biochemistry and Molecular Biology
25 Indiana University School of Medicine
26 Indianapolis, IN 46202
27 Tel 317-278-3464
28 staoki@iu.edu

29
30 Keywords: RNA, NOS-3, *C. elegans*, germline

31
32 Abbreviations: RNA, ribonucleic acid; UTR, untranslated region; GFP, green fluorescent protein;
33 CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats; RNAi, ribonucleic acid
34 interference; smFISH, single molecule Fluorescence In Situ Hybridization

35
36 Running title: Tethered NOS-3 enhances protein expression

38 **Abstract (230 words, 250 words max)**

39 Robust methods are critical for testing the *in vivo* regulatory mechanism of RNA binding proteins.
40 Here we report improvement of a protein-mRNA tethering assay to probe the function of an RNA
41 binding protein in its natural context within the *C. elegans* adult germline. The assay relies on a
42 dual reporter expressing two mRNAs from a single promoter and resolved by trans-splicing. The
43 *gfp* reporter 3'UTR harbors functional binding elements for λ N22 peptide, while the *mCherry*
44 reporter 3'UTR carries mutated nonfunctional elements. This strategy enables internally
45 controlled quantitation of reporter protein by immunofluorescence and mRNA by smFISH. To test
46 the new system, we analyzed a *C. elegans* Nanos protein, NOS-3, which serves as a post-
47 transcriptional regulator of germ cell fate. Unexpectedly, tethered NOS-3 enhanced reporter
48 expression. We confirmed this enhancement activity with a second reporter engineered at an
49 endogenous germline gene. NOS-3 enhancement of reporter expression was associated with its
50 N-terminal intrinsically disordered region, not its C-terminal zinc fingers. RNA quantitation
51 revealed that tethered NOS-3 enhances stability of the reporter mRNA. We suggest that this direct
52 NOS-3 enhancement activity may explain a paradox: classically Nanos proteins are expected to
53 repress RNA, but *nos-3* had been found to promote *gld-1* expression, an effect that could be
54 direct. Regardless, the new dual reporter dramatically improves *in situ* quantitation of reporter
55 expression after RBP tethering to determine its molecular mechanism in a multicellular tissue.
56

57 **Introduction**

58 Protein-mRNA tethering is a well-established method to investigate the direct regulatory effects
59 of RNA binding proteins (RBPs). These assays rely on two components: an RBP tagged with a
60 λ N22 peptide or MS2 coat protein domain and a reporter mRNA harboring binding sites for λ N22
61 or MS2 in its 3'UTR (Baron-Benhamou et al. 2004; Coller and Wickens 2007). The RBP is thus
62 tethered to reporter mRNA with high affinity and specificity, and its regulatory effect inferred from
63 changes in expression or stability of the reporter RNA compared to a control. Tethering assays
64 have proven tremendously useful. They have revealed that some RBPs downregulate mRNA
65 expression by promoting RNA turnover (e.g. (Bhandari et al. 2014; Raisch et al. 2016)) or
66 repressing translation (e.g. (Pillai et al. 2004), while others upregulate mRNA expression by
67 stabilizing RNA (e.g. (Coller et al. 1998; Gray et al. 2000)) or enhancing translation (e.g. (De
68 Gregorio et al. 1999)). Tethering assays are thus an exceptional tool to dissect the molecular
69 functions of RBPs.

70 The regulatory effect of a tethered RBP is deduced from measurements of both the reporter RNA's
71 stability and translation. When assays are done in cultured cells or yeast, bulk detection methods
72 are sufficient, but when conducted in a multicellular tissue or organism, cell-specific methods
73 become essential. Here we report the development of a new tethering assay for use in the *C.*
74 *elegans* germline, a richly patterned tissue in which mRNAs are dynamically regulated as cells
75 develop from dividing stem cells to differentiating gametes (Hubbard and Schedl 2019). This
76 assay takes advantage of a dual reporter that includes an internal control for better quantitation,
77 a PEST domain to restrict reporter protein half-life, and high affinity epitope tags for each reporter
78 protein. We test our assay with NOS-3, an RBP belonging to the conserved Nanos family
79 (Kraemer et al. 1999; Subramaniam and Seydoux 1999). Nanos RBPs regulate germline
80 development from nematodes to humans (Tsuda et al. 2003; Suzuki et al. 2012; Kusz-Zamelczyk
81 et al. 2013). Tethering assays of human and *Drosophila* Nanos orthologs, performed in HEK293
82 or S2 cells respectively, demonstrate that both are repressors of reporter expression and
83 identified a Not1-interacting domain responsible for that repression (Bhandari et al. 2014; Raisch
84 et al. 2016). We selected NOS-3 to test our new assay, and expected it would repress reporter
85 expression. However, we found instead that tethered nematode NOS-3 enhances reporter
86 expression, a surprising result that implies that NOS-3 may promote expression of its target
87 mRNAs in the *C. elegans* germline.

88

89 Results and Discussion

90 We set out to improve the tethering assay in the *C. elegans* germline. Our starting point was a
91 λ N22-boxB tethering system previously used in this tissue (Wedeles et al. 2013; Aoki et al. 2018;
92 Aoki et al. 2019). The earlier system tagged the RBP of interest with λ N22 peptide, henceforth
93 λ N, and recruited RBP:: λ N to germline-expressed, reporter mRNA via boxB RNA hairpins in its 3'
94 UTR (Aoki et al. 2018; Aoki et al. 2019) (**Figure 1A**). λ N binds to boxB hairpins with high affinity
95 and specificity (Baron-Benhamou et al. 2004). The GFP-tagged, histone H2B reporter protein
96 localizes to the nucleus of the expressing cell for straightforward visualization. While functional,
97 the previous system lacked internal controls to compare expression between animals. Histone
98 reporters can also persist and mark cells or their daughters, expanding perceived protein
99 expression boundaries (Merritt et al. 2008). Thus, more accurate measurement of reporter
100 expression required additional revisions to the assay.

101 The improved reporter incorporates three new components into the previous system, all with the
102 goal of enhancing quantitation of expression in specific cell types (**Figure 1B** and **Figure S1A**).
103 First, we generated a reporter operon that introduces a second mRNA reporter as an internal
104 control, as conceived by others (Merritt et al. 2008). A single nascent transcript generates two
105 reporter mRNAs by trans-splicing: one encodes GFP-H2B and can bind RBP:: λ N via boxB RNA
106 hairpins in its 3' UTR; the second encodes mCherry-H2B and cannot bind RBP:: λ N because
107 mutated boxB RNA hairpins in its 3' UTR abrogate λ N binding (Chattopadhyay et al. 1995).
108 Second, we added a PEST domain to the C-terminus of both reporter proteins to shorten half-life
109 of the fusion protein and restrict it to cells expressing reporter RNA (Frands et al. 2005; Farley and
110 Ryder 2012; Kaymak et al. 2016). Third, we inserted high affinity epitope tags with commercially
111 available antibodies: OLLAS into GFP::H2B::PEST, and V5 into mCherry::H2B::PEST. A
112 construct encoding the dual reporter was integrated into the *C. elegans* genome as a Mos single
113 copy insertion (MoSSCI, see Methods). The *C. elegans* germline is patterned along its U-shaped
114 distal-proximal axis with germline stem cells (GSCs) at the distal end, progressive differentiation
115 of their daughters more proximally, and differentiated gametes at the proximal end (Hubbard and
116 Schedl 2019) (**Figure 1C**). Immunostaining against OLLAS and V5 tags revealed that both GFP
117 and mCherry histone H2B reporter proteins expressed and co-localized with DNA in germ cell
118 nuclei (**Figure 1D**). This dual reporter thus allows for precise quantitation of expression from both
119 tethered and untethered mRNA in individual cells within the *C. elegans* germline (**Figure 1B**).

120 We tested the dual reporter with NOS-3, an mRNA binding protein and germ cell fate regulator.
121 NOS-3 regulates two fate choices that occur along the germline axis, the sperm/oocyte and
122 mitosis/meiosis decisions (Kraemer et al. 1999; Eckmann et al. 2004; Hansen et al. 2004).
123 However, genetic analyses of how NOS-3 functions in those two decisions poses a paradox.
124 NOS-3 decreases expression of FEM-3 (Arur et al. 2011), a positive regulator of the sperm fate,
125 but increases expression of GLD-1 (Hansen et al. 2004; Brenner and Schedl 2016), a positive
126 regulator of meiotic entry. However, these genetic results do not address whether NOS-3
127 regulation is direct or indirect. If NOS-3 were primarily a repressor, like other members of the
128 Nanos family (see Introduction), its enhancement of GLD-1 expression might be indirect, perhaps
129 by repressing a *gld-1* mRNA repressor.

130 To ask how NOS-3 regulates expression when tethered, we inserted a 3xFLAG epitope tag with
131 or without λ N into the endogenous *nos-3* gene, using CRISPR/Cas9 gene editing (**Figure S1B**).
132 Both NOS-3::FLAG and NOS-3:: λ N::FLAG proteins were expressed in the germline cytoplasm
133 (**Figure 1D, first column**), as reported previously for endogenous NOS-3 (Kraemer et al. 1999).
134 Moreover, the λ N::FLAG-tagged NOS-3 behaved like wild-type NOS-3 in a genetic assay (**Figure**
135 **S1C**), validating its use to test NOS-3 function. We proceeded to ask how tethered NOS-3 affects
136 reporter expression. Expression of GFP and mCherry reporters was assayed by immunostaining

137 against their OLLAS and V5 tags, respectively. When OLLAS staining was optimized for GFP
138 reporter expression in the strain carrying NOS-3::λN::FLAG, the expression was only faintly
139 detectable in germlines with the dual reporter only or the reporter plus NOS-3::FLAG (**Figure 1D, second column**). However, when optimized for expression in the strains carrying the dual
140 reporter only or the reporter plus NOS-3::FLAG, expression was easily observed in those
141 germlines but saturated with NOS-3::λN::FLAG (**Figure 1D, third column**). Thus, addition of the
142 λN tag to NOS-3 dramatically increased GFP reporter expression (**Figure 1D, second and third**
143 **columns, and Figure S1D**). By contrast, expression of the mCherry internal control reporter
144 protein was observed at comparable levels in all germlines carrying the dual reporter (**Figure 1D, fourth column, and Figure S1E**). We used this mCherry control to normalize for variable reporter
145 protein expression across worms (**Figure 1B**). Ratios of GFP to mCherry reporter expression
146 were quantified as a function of germline position (**Figure 1E**; see **Figures S1D-E** for graphs of
147 the two reporter proteins on their own). In NOS-3::FLAG germlines, the ratio was modest, but in
148 NOS-3::λN::FLAG germlines, the ratio increased significantly throughout the distal germline arm.
149 Immunoblots of the reporter proteins confirmed enhancement of GFP reporter expression
150 specifically (**Figure 1F**). We conclude that NOS-3 can enhance reporter expression when
151 tethered.
152

153 The NOS-3 enhancement of reporter expression was unexpected because other Nanos homologs
154 repress expression when tethered (Bhandari et al. 2014; Raisch et al. 2016). To further test the
155 effect of tethered NOS-3, we engineered an endogenous germline gene to function as a tethering
156 reporter. Three boxB hairpins were inserted into the 3'UTR region of the *pgl-1* gene, which
157 encodes a SNAP-tagged PGL-1 (**Figure 2A**). The SNAP tag permits straightforward visualization
158 of PGL-1 protein in P granules without affecting its function (Aoki et al. 2019). As with the dual
159 reporter, NOS-3::λN::FLAG dramatically increased PGL-1::SNAP abundance when compared to
160 NOS-3::FLAG (**Figure 2B, C**). We conclude that tethered NOS-3 enhances expression of two
161 distinct reporter mRNAs.
162

163 To probe the region or regions within NOS-3 responsible for enhancing expression, we generated
164 a battery of NOS-3::λN::FLAG variants by CRISPR/Cas9 gene editing of the endogenous locus.
165 Full length NOS-3 protein consists of a large N-terminal region predicted to be intrinsically
166 disordered (analyzed by IUPred2A (Erdos and Dosztanyi 2020)), and a Nanos-like zinc finger
167 near the C-terminus (Kraemer et al. 1999; Subramaniam and Seydoux 1999) (**Figure 3A, top**).
168 Variants were made with in-frame deletions or a premature stop codon (**Figure 3A, bottom**). All
169 protein variants described were expressed, albeit at differing expression levels (**Figure 3B, first**
170 **column; 3C, bottom panel**). Reporter expression was examined in all variants by imaging
171 (**Figure 3B**) and calculating ratios of GFP to mCherry reporter protein abundance in germlines
172 (**Figure 3D, Figure S2**), as well as by immunoblot (**Figure 3C**). All variants enhanced GFP
173 reporter expression relative to the internal control to some extent (**Figure 3D, Table S1, Figure**
174 **S2**). Of note, the enhancement does not require the C-terminal Zinc finger but instead relies on
175 the intrinsically disordered region constituting the large N-terminus (**Figure 3D**). Intriguingly, this
176 region also includes the FBF-1 interaction domain (Kraemer et al. 1999) and ERK/MAP Kinase
177 (MPK) docking site (Arur et al. 2011). Regardless, our results suggest that enhancement activity
178 may be distributed across NOS-3 protein.

179 To investigate how tethered NOS-3 enhances expression of the *gfp* reporter RNA, we assessed
180 the abundance of the two dual reporter mRNAs in germlines harboring NOS-3::λN::FLAG or
181 controls. The *gfp* and *mCherry* reporter mRNAs were visualized using distinct smFISH probe sets,
182 which permitted simultaneous imaging of both reporter mRNAs in the same animal (**Figure 4A**;
183 see Methods). We predicted that tethered NOS-3 affects either stability or translation of the *gfp*
184 reporter mRNA. If tethered NOS-3 stabilizes its target RNA, the *gfp* mRNA levels should be higher
185 in animals carrying NOS-3 tagged with λN than those without (**Figure 4B, top**). If tethered NOS-

186 3 solely promotes translation, the *gfp* mRNA levels should be similar with or without λ N (**Figure 4B, bottom**). *mCherry* mRNA levels serve as a normalizing control for transcription.

187

188 smFISH detected *gfp* and *mCherry* mRNAs in all germlines carrying the dual reporter (**Fig 4G,H; 4K,L; 4O,P**), but not in wild-type germlines without the reporter (**Fig 4C-D**). mRNA signals
189 appeared as cytoplasmic spots, as established in other studies (Raj et al. 2008; Lee et al. 2017).
190 The *gfp* mRNAs were more abundant than *mCherry* mRNAs (**Figure 4G,H**), which could result
191 from differences in probe binding efficiency or differential mRNA processing. Fluorescence of the
192 GFP protein was higher in reporter expressing germlines with NOS-3 tagged with λ N (**Figure 4M**
193 versus **Figure 4Q**), consistent with immunostaining of its epitope tag. The number of *gfp* mRNAs
194 was normalized to *mCherry* mRNA counts in the same germlines, and *gfp:mCherry* mRNA
195 abundance ratios were compared between strains (**Figure 4S**). This analysis revealed that the
196 normalized *gfp* mRNA levels were significantly different between tethered and untethered NOS-
197 3 (**Figure 4S**). As expected, all germlines carrying the dual reporter had more detectable reporter
198 mRNA signal than the wild-type control. More importantly, the *gfp:mCherry* mRNA ratios were
199 similar for NOS-3::FLAG and wild-type NOS-3, but increased for tethered NOS-3:: λ N::FLAG
200 (**Figure 4S**). This result fits the prediction that NOS-3 enhances *gfp* expression by increasing
201 mRNA stability, though we cannot exclude an additional effect on enhancing translation.

202

203 The enhancement activity of tethered NOS-3 was surprising given that its homologs act as
204 repressors when tethered (Bhandari et al. 2014; Raisch et al. 2016). Yet the NOS-3 enhancement
205 activity may help explain a puzzling genetic result. Removal of NOS-3 increases FEM-3 protein
206 abundance (Arur et al. 2011), consistent with repressive activity, but its removal also lowers GLD-
207 1 protein abundance (Hansen et al. 2004; Brenner and Schedl 2016). One explanation for the
208 GLD-1 decrease, based on dogma that Nanos proteins are repressors, is that NOS-3 represses
209 a *gld-1* repressor and the GLD-1 change is indirect. However, here we find that tethered NOS-3
210 directly enhances expression of two distinct mRNAs, the *gfp* mRNA of the dual reporter and the
211 endogenous *pgl-1* mRNA that we engineered for tethering. We therefore suggest that NOS-3
212 likely promotes GLD-1 expression directly (**Figure 4T**). NOS-3 enhancement may work in parallel
213 with the GLD-2 poly(A) polymerase, which also increases expression of *gld-1* mRNA through
214 elongation of its polyA tail (Suh et al. 2006; Suh et al. 2009). We emphasize that a NOS-3
215 repressive activity remains possible. MPK phosphorylation may have modulated a switch between
216 NOS-3 acting as a repressor and activator (Arur et al. 2011). However, that MPK phosphorylation
217 is spatially restricted to one region of the germline, whereas NOS-3 enhancement activity is not
218 similarly restricted. Clearly, further investigation of NOS-3 enhancement activity is warranted as
219 is investigation of classical Nanos orthologs in their natural context.

220

221 The enhancement activity of tethered NOS-3 also expands the genetic toolkit for analyzing protein
222 function. Methods to decrease protein abundance are readily available with classical genetics,
223 RNAi and gene editing, but methods to increase protein abundance have been less robust, though
224 examples exist. Expression of specific genes can be increased by modifying CRISPR/Cas9
225 (Konermann et al. 2015) or tethering proteins associated with translation, like polyA binding
226 protein (PABP) (Coller et al. 1998), eIF4E (De Gregorio et al. 2001) or eIF4G (De Gregorio et al.
227 1999). We can now add NOS-3 tethering as a method to increase gene expression, at least in
228 the *C. elegans* germline. More broadly, pairing the dual reporter tethering assay with smFISH
229 allows direct investigation of mechanistic functions of RNA binding proteins in complex
230 multicellular tissues. By analyzing the ratios of tethered versus untethered transcripts, one can
231 assess mechanisms of mRNA turnover and translational modulation. This mechanistic dissection
232 performed within the natural context of a multicellular organism allows regulatory mechanisms to
233 be analyzed in different tissues and cells and at different stages of development. The dual reporter
tethering-smFISH pairing is adaptable to other organisms with single gene editing and shows

234 promise to elucidate the post-transcriptional regulatory mechanisms of a wide variety of mRNA
235 binding proteins.

236 **Acknowledgements**

237 We thank L. Lavis for supplying the SNAP JF 549 ligand, C. Lee for smFISH advice, L.
238 Vanderploeg for help with figure revisions, and members of the Kimble and Wickens Labs for
239 helpful discussions. JD and TRL conceived and performed the experiments and helped write the
240 paper; JK and STA conceived the experiments and wrote the paper. TRL was supported by the
241 NSF; this material is based upon work supported by the National Science Foundation Graduate
242 Research Fellowship under Grant No. DGE-1747503. Any opinions, findings, and conclusions or
243 recommendations expressed in this material are those of the authors and do not reflect the views
244 of the National Science Foundation. JK was an Investigator of the Howard Hughes Medical
245 Institute and is now supported by NIH R01 GM134119. STA was supported by NIH K99
246 HD081208.

247

248 **Methods**

249 **Worm maintenance and strains:**

250 Strains were maintained at 20° or 25°C, as described (Brenner 1974). **Table S2** lists strains
251 analyzed, which are available upon request.

252 **CRISPR-Cas9 Gene Editing**

253 CRISPR-Cas9 genome editing was used to modify endogenous *nos-3* and *pgl-1* gene loci,
254 following an established protocol (Paix et al. 2015). Briefly, worms were injected with a
255 ribonucleoprotein complex consisting of recombinant Cas-9 protein, tracrRNA, gene-specific
256 crRNAs, and a single stranded DNA repair template. The injection mix included a crRNA and
257 repair template designed to induce a dominant loss of function mutation in *unc-58* as a marker for
258 successful editing (Arribere et al. 2014). Unc progeny from injected animals were singled and
259 PCR screened for edits at the intended locus. Animals homozygous for edits were isolated and
260 proper editing confirmed by Sanger sequencing; confirmed homozygotes were outcrossed with
261 N2 a minimum of two times before analysis. **Table S3** lists guide RNAs and repair DNA oligos.

262 **MosSCI insertion of the dual reporter gene**

263 The dual reporter construct included a *mex-5* promoter (Merritt et al. 2008), a region encoding
264 eGFP::Histone H2B tagged with a mouse ornithine decarboxylase (MODC) PEST domain (Li et
265 al. 1998) and a 1xOLLAS epitope tag (Park et al. 2008), a *tbb-2* 3'UTR harboring a 3x boxB (Wang
266 et al. 2011), a *gpd-2/gpd-3* transsplice site (Huang et al. 2001), an mCherry::Histone H2B fusion
267 tagged with MODC PEST and 1xV5 epitope tag (Hanke et al. 1992), a *tbb-2* 3'UTR harboring a
268 mutated 3x boxB sequence, and a *tbb-1* intergenic region (**Figure S1A**). This construct was
269 inserted into the *C. elegans* genome as a Mos1-mediated single copy transgene insertion
270 (MosSCI) (Nance and Frokjaer-Jensen 2019). To this end, plasmids encoding the Mos1
271 transposon, injection markers, and dual reporter were injected into the gonad of EG8081 worms
272 (Frokjaer-Jensen et al. 2008) containing the targeted oxTi177 site on chromosome IV. Progeny
273 of injected animals were screened for integration of the dual reporter and loss of
274 extrachromosomal arrays with injection marker. The inserted construct was verified by Sanger
275 sequencing. Animals with the insertion were outcrossed two times and propagated as
276 homozygotes at 25°C, to enhance reporter expression.

277 **Gonad immunostaining, imaging and fluorescence quantitation**

278 Germline staining was performed following standard protocols (Crittenden et al. 2017). For
279 immunostaining, gonads were extruded and fixed. In **Figures 1, 3, and 4**, and **Figure S1 and S2**,
280 gonads were fixed with 1% paraformaldehyde in 100 mM K₂HPO₄ for 20 minutes and
281 permeabilized with ice-cold methanol for 10 minutes. For **Figure 2**, gonads were fixed with 3%
282 paraformaldehyde in 100 mM K₂HPO₄ for 10 minutes and permeabilized with 0.2% Triton-X.
283 Fixed, permeabilized gonads were subsequently incubated with primary antibodies overnight at
284 4°C [rat anti-OLLAS (1:1000, L2 clone, Novus Biologicals, Centennial, CO, #NBP1-96713), rabbit
285 anti-V5 (1:1000, Novus Biologicals, Centennial, CO, #NB600-381), mouse anti-FLAG (1:1000,
286 M2 clone, Sigma, St. Louis, MO, #F3165)]. They were then incubated with secondary antibodies
287 for 1 hour at room temperature [donkey Alexa 488 anti-rat (1:1000, Invitrogen, Carlsbad, CA,
288 #A21208), goat Alexa 555 anti-rabbit (1:1000, Invitrogen, Carlsbad, CA, #A21429); or donkey
289 Alexa 647 anti-mouse (1:1000, Invitrogen, Carlsbad, CA, #A31571)]. DAPI (0.5 ng/μl) was also
290 included in the secondary antibody incubation to visualize DNA. For PGL-1::SNAP protein
291 imaging, gonads were incubated with 30 nM SNAP JF 549 ligand (Grimm et al. 2015) for one
292 hour at room temperature, as previously performed (Aoki et al. 2019). Samples were mounted on
293 glass slides with Vectashield (Vector Laboratories; Burlingame, CA)]. All staining experiments
294 were performed a minimum of two times and yielded comparable results.

295 Images were captured on a Leica TCS SP8 scanning laser confocal microscope running LAS X
296 software (version 3.5.2.18963; Leica Microsystems CMS GmbH., Buffalo Grove, IL) with a 40x
297 oil-immersion objective and 1-1.2x zoom. Image slices (1.5 μ m) were taken in sequence.
298 Brightness and contrast were adjusted linearly and identically across all samples in FIJI/ImageJ
299 (Schindelin et al. 2012). To quantify fluorescent signal, image stacks were z-projected by average
300 intensity in ImageJ. Gaussian-blurred, DAPI fluorescence was used to set a threshold and mask
301 the germlines and multiplied through the GFP and mCherry channels. Intensity of the antibody
302 fluorescent signal was measured and averaged in 1 μ m bins from the distal end of the gonad
303 along the distal-proximal axis. For the box plot graphs, germlines were quantitated at the distal
304 end (5-105 μ m), the region where the detected reporter protein signal was strongest (**Figure S2**).
305 Samples from at least two independent replicates were analyzed together after normalizing to a
306 common control sample. All analysis was done using FIJI and automated using Python. Student
307 t-tests were performed in Prism9 (version 9.0.0).

308 Immunoblots

309 For immunoblots, young adults (18-20 hours past mid-L4 at 25°C) were boiled in 5x SDS
310 sample buffer (250 μ M Tris pH 6.8, 25 μ M EDTA, 25% glycerol (V/V), 5% SDS, 70 mM 2-
311 mercaptoethanol) for 5 minutes, analyzed by SDS-PAGE using a 10% stacking gel, transferred
312 to a polyvinylidene difluoride (PVDF) membrane, and blocked with 5% powdered milk + PBS-T
313 (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄, 0.1% Tween-20). Blots were
314 incubated in 5% powdered milk + PBS-T with primary antibodies [rat anti-OLLAS (1:1000, L2
315 clone, Novus Biologicals, Centennial, CO, #NBP1-96713), mouse anti-V5 (1:3000, Bio-Rad,
316 Hercules, CA #MCA1360), mouse anti-FLAG (1:1000, M2 clone, Sigma, St. Louis, MO, #F3165),
317 rabbit anti-SNAP (1:1000, polyclonal, New England Biolabs, Ipswich, MA, P9310S), or mouse
318 anti-tubulin (1:40,000, Sigma, St. Louis, MO, #T5168)] overnight at 4°C. After washing with PBS-
319 T, blots were incubated with Horseradish peroxidase (HRP)-conjugated antibodies [donkey anti-
320 mouse (H+L) (1:10,000, Jackson ImmunoResearch, West Grove, PA), goat anti-rat (H+L)
321 (1:10,000, Jackson ImmunoResearch, West Grove, PA), or goat anti-rabbit (H+L) (1:10,000,
322 Jackson ImmunoResearch, West Grove, PA)] in 5% powdered milk + PBS-T, washed with PBS-
323 T, and developed with a combination of SuperSignalTM West Pico Sensitivity substrate (Thermo
324 Scientific, Waltham, MA, #34080) and SuperSignalTM West Femto Sensitivity substrate (Thermo
325 Scientific, Waltham, MA, #34095). Blots were imaged on Carestream Kodak BioMax light film
326 (Sigma-Aldrich, St. Louis, MO, #1788207). The film was developed using a Konica Minolta SRX-
327 101A film processor. Immunoblots were stripped and reprobed with western blot stripping buffer
328 (Thermo Scientific (Pierce), Waltham, MA, #21059).

329 Genetic assay for NOS-3 biological function

330 *nos-3* and *gld-2* single null mutants enter meiosis normally, but *gld-2(ø);nos-3(ø)* double
331 mutants produce a synthetic germline tumor (Eckmann et al. 2004; Hansen et al. 2004). To test
332 the function of λ N-tagged NOS-3, we DAPI-stained worms of three genotypes: (1) *gld-2(q497);*
333 *nos-3(q902)*, (2) *gld-2(q497)*, and (3) *gld-2(q497); nos-3(q650)*, and scored by compound
334 microscopy for presence of germline tumors (**Figure S1C**). For staining, worms were fixed with
335 1% paraformaldehyde in 100 mM K₂HPO₄ and stained with DAPI (0.5 ng/ μ l).

336 RNA staining, imaging, and quantitation

337 smFISH probe sets were designed
338 (<https://www.biosearchtech.com/support/education/stellaris-rna-fish>) and synthesized
339 commercially with conjugated fluorophores by Stellaris/Biosearch Technologies (Novato, CA)
340 (**Table S4**). The probe set directed against *gfp* exons contained 38 unique oligonucleotides
341 labeled with CAL Fluor Red 610. The probe set against *mCherry* exons contained 39 unique
342 oligonucleotides labeled with Quasar 570. A 250 μ M stock concentration of each probe set was

343 made by dissolving lyophilized probes in RNase-free TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH
344 8.0). A final concentration of 0.05 μ M was used for hybridization of both probe sets.

345 Samples were prepared, stained, and imaged for smFISH as described (Lee et al. 2016).
346 Briefly, animals were grown at 25°C for 18-20 hours past the mid-L4 stage, and their gonads
347 extruded in PBS-T + 0.25 mM levamisole. Samples were then fixed in 3.7% formaldehyde (Fisher
348 Scientific, Waltham, MA, F79-500) for 13-15 minutes and permeabilized in RNase-free PBS
349 (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄) + 0.1% Triton-X for 10-12
350 minutes. Samples were incubated at room temperature in PBS-T for 30-45 minutes, equilibrated
351 in smFISH wash buffer [2x SSC (Thermo Fisher Scientific, Waltham, MA, AM9763), 10%
352 Formamide, DEPC water, 0.1% Tween-20] for 15-20 minutes, and incubated in hybridization
353 buffer plus *gfp* and *mCherry* smFISH exon probes (0.05 μ M) at 37°C for 46-48 hours. Samples
354 were then washed with smFISH wash buffer and DAPI (1 μ g/ μ l) at 37°C for 40-50 minutes. Finally,
355 samples were resuspended in 18 μ l Prolong Glass mounting medium (Life Technologies
356 Corporation, Carlsbad, CA), mounted on glass slides, and cured in the dark for at least 24 hours
357 before imaging.

358 Germlines were imaged on a Leica TCS SP8 laser scanning confocal microscope equipped
359 with a Leica HC PL APO CS2 63x/1.40 NA oil immersion objective, sensitive detectors (HyDs),
360 standard Photomultipliers (PMTs), and LAS software (version 3.5.2.18963; Leica Microsystems
361 CMS GmbH., Buffalo Grove, IL). Since the molecular effects of NOS-3 tethering were observed
362 broadly in the germline, gonads were imaged in the mid-pachytene region (**Figure 4A**). The zoom
363 factor was set to 3.0 (300% zoom), the pinhole to 95.5 μ m, the window to 1024x512 pixels, and
364 gonads were imaged at full depth with a z-step size of 0.3 μ m. Images were taken using
365 bidirectional scan at 8,000 Hz. Channels were imaged sequentially between stacks. The *mCherry*
366 mRNA probed with Quasar 570 was excited with 561 nm wavelength (3.5%, HeNe) and signal
367 collected on a HyD detector from 564-588 nm with gain set to 80. Line scans were averaged 16
368 times, and frames were accumulated 4 times. The GFP mRNA probed with Cal Fluor 610 was
369 excited with 594 nm wavelength (3.5%, HeNe) and signal was collected on a HyD detector from
370 600-680 nm with gain set to 80. Line scans were averaged 32 times, and frames were
371 accumulated twice. The native fluorescence of fixed GFP was excited with 488 nm wavelength
372 (0.75%, Argon (25%)) and signal collected on a HyD detector from 495-555 nm with gain set to
373 80. Line scans were averaged 16 times, and frames were accumulated twice. Nuclear signal from
374 DAPI was excited at 405 nm (1.0%, UV) and signal was collected on a PMT detector from 412-
375 508 nm with gain set to 500-575 and an offset of -2.0%. Lines were averaged 6 times, and frames
376 accumulated twice. Representative images were created using ImageJ. Partial maximum
377 intensity projections were created and brightness adjusted in ImageJ. All images were treated
378 identically.

379 Confocal smFISH images were analyzed by Imarisx64 (Imaris, version 9.3.1) and
380 ImarisFileConverterx64 (Imaris, version 9.2.1) on a Dell Precision 5820 with a 64-bit Windows 10
381 Education operating system, an Intel(R) Xeon(R) W-1245 CPU @3.70GHz processor, and 128
382 GB of RAM. To count the number of signals detecting GFP and *mCherry* mRNAs in each image,
383 "Spots" were identified by the software Creation Wizard for the *gfp* and *mCherry* mRNA image
384 channels. The same framework was used for all Spots algorithms, though the filter thresholds
385 differed between *gfp* and *mCherry* mRNA, and also from replicate set to replicate set. The general
386 Spots Creation algorithm is as follows: Enable Region Of Interest = false; Enable Tracking = false;
387 Source Channel Index = 1; Estimated XY Diameter = 0.250 μ m; Estimated Z Diameter = 0.600
388 μ m; Background Subtraction = true. The different thresholds for the [Classify Spots] "Quality"
389 filters are as follows: *gfp* experiments 1 and 2: 4.1530; *mCherry* experiment 1: 12.922; *mCherry*
390 experiment 2: 8.1280. The different thresholds for the [Classify Spots] "Intensity Mean" are as
391 follows: *gfp* experiments 1 and 2: between 16.342 and 62.617; *mCherry* experiment 1: between

392 41.252 and 87.664; *mCherry* experiment 2: between 26.791 and 114.70. Manual thresholds were
393 determined by eye. Identical *gfp* or *mCherry* mRNA thresholds were applied to all *gfp* or *mCherry*
394 images within the same experimental replicate. Student t-tests were performed in Prism9 (version
395 9.0.0). Data from two independent experiments was combined before statistical tests were run.

396 **Figure Captions**

397 **Figure 1.** Tethered NOS-3 increases GFP reporter expression. **(A)** Previous tethering assay used
398 in the *C. elegans* germline (Aoki et al. 2018; Aoki et al. 2019). GFP reporter mRNA is under control
399 of a germline-expressed, *mex-5* promoter and has three boxB stem loops in its 3'UTR. The RNA-
400 binding protein (RBP) is tagged with λ N. **(B)** Dual reporter tethering assay (this work). The nascent
401 transcript driven by *mex-5* promoter is resolved by trans-splicing into two mRNAs that encode
402 distinct reporters. The *gfp* reporter RNA has three functional boxB stem loops in its 3'UTR; the
403 *mCherry* reporter 3'UTR has three mutated boxB stem loops that do not bind λ N and therefore
404 provides an internal control. **(C)** Schematic of *C. elegans* germline. Germline stem cells (GSCs)
405 reside in the progenitor zone (yellow); GSC daughters enter and progress through meiotic
406 prophase (green) and finally differentiate into oocytes (pink); red box, mid-pachytene region
407 imaged in **Figure 1D**; bracket, region quantitated in several figures begins at distal end and goes
408 310 μ m, stopping near proximal end of the pachytene region. **(D)** Confocal images (max
409 projection) of germlines stained to detect NOS-3::FLAG and NOS-3:: λ N::FLAG (α FLAG, column
410 1); GFP::H2B::OLLAS::PEST (α OLLAS, columns 2 and 3); V5 antibodies to detect
411 mCherry::H2B::V5::PEST (α V5, column 4) and DNA (DAPI, column 5). Images in each column
412 were visualized at the same level in Image J; the column 2 OLLAS level was optimized for reporter
413 expression with NOS-3:: λ N::FLAG, while the column 3 level was optimized for expression with
414 the dual reporter only and NOS-3::FLAG. Wild-type has no tagged proteins and serves as a
415 negative control. Note that images for wild-type, reporter only, NOS-3::FLAG and NOS-
416 3:: λ N::FLAG are replicated in **Figure 3B**. **(E)** In situ quantitation of GFP (α OLLAS) normalized to
417 mCherry (α V5) reporter proteins, as a function of germline position. Lines show averages and
418 shading shows one standard deviation (see Methods). Wild-type serves as a negative control.
419 Wild-type (n=54), NOS-3::FLAG (n=34), NOS-3:: λ N::FLAG (n=52) worms analyzed. Same curves
420 and values are included in **Figure 3D**, **Figure S1D-E** and **Figure S2**. **(F)** Immunoblot to assay
421 GFP (α OLLAS) and mCherry (α V5) reporter protein expression. Actin serves as a loading control,
422 and wild type worms as the negative control (last lane).

423 **Figure 2.** Tethered NOS-3 increases expression of *pgl-1* endogenous gene. **(A)** Tethering assay
424 using SNAP-tagged *pgl-1* gene as the reporter. Endogenous *pgl-1* includes a SNAP tag to
425 visualize its protein product and 3x boxB hairpins to recruit NOS-3:: λ N::FLAG to its 3'UTR. **(B)**
426 Tethered NOS-3 increases expression of PGL-1 protein in the worm germline. Confocal images
427 (max projection) of adult gonads stained for PGL-1::SNAP (SNAP ligand), NOS-3 (α FLAG), and
428 DNA (DAPI). Wild-type worms serve as a negative control. **(C)** Immunoblot to assay PGL-1
429 (α SNAP) and NOS-3 (α FLAG) protein expression. Actin serves as the loading control, and wild-
430 type worms as a negative control (first lane).

431 **Figure 3.** Analysis of tethered NOS-3 deletion mutants for enhancement of reporter expression.
432 **(A)** *nos-3* locus and variants used to map enhancement activity. Variants include four in-frame
433 deletions and a premature STOP codon that removes amino acids C-terminal to the tag insert.
434 Variant protein sizes (kilodaltons, kDa) shown at right. Coding regions, grey; untranslated regions,
435 light grey; λ N::FLAG insert, purple. Intrinsically disordered regions were predicted by IUPred2A
436 (Erdos and Dosztanyi 2020). **(B)** Confocal images (max projection) of adult germlines.
437 Conventions as detailed in **Figure 1D**. See **Figure 1B** for germline image location. Note that
438 images for wild-type, reporter only, NOS-3::FLAG and NOS-3:: λ N::FLAG are replicated from
439 **Figure 1D**. **(C)** Immunoblot to assay expression of reporter proteins (above) and NOS-3 variant
440 proteins (below). Conventions as in **Figure 1F**. SDS-PAGE sizes (kDa) shown to right for the
441 NOS-3 immunoblot. **(D)** Relative abundance of GFP and mCherry reporter proteins. Ratio of
442 signals from GFP (α OLLAS) and mCherry (α V5) reporter proteins, averaged across distal 100 μ m
443 of germline and normalized to wild-type negative control. Wild-type (n=54), NOS-3::FLAG (n=34),

444 NOS-3::λN::FLAG (n=52), Δ183-821 (n=37), Δ431-821 (n=36), Δ674-821 (n=42), Δ2-186
445 (n=31), 822 STOP (n=37) worms analyzed. Curves and values of wild-type, NOS-3::FLAG and
446 NOS-3::λN::FLAG are same as reported in **Figure 1E** and **Figure S2**. ***, p-value <0.0001. n.s.,
447 not significant (p-value=0.5735). All p-values for comparisons between strains can be found in
448 **Table S1**.

449 **Figure 4.** Tethered NOS-3 enhances stability of *gfp* reporter mRNAs. **(A)** Experimental design.
450 Reporter mRNAs from dual reporter visualized in dissected gonads (top) with differentially labeled
451 smFISH probes to *gfp* and *mCherry* (*mCh*) mRNAs (bottom). **(B)** Tethered NOS-3 might increase
452 reporter expression by affecting either stability or translation of the reporter RNA. These two
453 mechanisms have distinct predictions for effects on reporter mRNA abundance. More or less RNA
454 abundance is depicted in the figure as larger or smaller letters, respectively, in animals
455 possessing tethered NOS-3::λN::FLAG (left column) or untethered NOS-3::FLAG (right column).
456 **(C-R)** Representative images of smFISH in wild-type, reporter only, NOS-3::FLAG and NOS-
457 3::λN::FLAG germlines. Images are average projections of 5 slices (0.3 μm) from confocal
458 microscopy. *gfp* mRNAs (*gfp* smFISH, green), *mCherry* mRNAs (*mCherry* smFISH, magenta),
459 GFP protein (fluorescence signal (488), yellow) or DNA (DAPI, light blue). **(S)** Ratios of
460 *gfp*:*mCherry* mRNAs from smFISH quantitation. ***, p-value<0.0001. n.s., not significant (p-
461 value=0.6352). All reporter strains were significantly different than wild-type (p-value<0.0001). **(T)**
462 Model that NOS-3 directly enhances expression of *gld-1* mRNA, perhaps together with the GLD-
463 2 poly(A) polymerase.

464 **Table S1. Statistics comparing fluorescent protein ratios in NOS-3 deletion mutants**

465 **Table S2: Strains examined in this study**

466 **Table S3: CRISPR RNAs and repair templates**

467 **Table S4: smFISH probes**

468 **Figure S1.** Supplemental data showing that tethered NOS-3 enhances reporter expression. **(A)**
469 Schematic of the bicistronic GFP and mCherry dual reporter. An adult pan-germline promoter
470 (*mex-5*) drives expression of one nascent transcript that resolves with trans-splicing to generate
471 two mRNAs: one encoding GFP::OLLAS::histone H2B::PEST domain::3x boxB::*tbb-2* 3'UTR and
472 the other encoding mCherry (*mCh*)::V5::histone H2B::PEST domain::mutant 3x boxB::*tbb-2*
473 3'UTR. The two transcripts are separated by a *gpd-2* trans-splice site. *gfp* and *mCherry* contain
474 introns (not depicted) and that smFISH probes targeted the *gfp* or *mCherry* coding regions only.
475 Improvements from the previous GFP tethering reporter (Aoki et al. 2018) are noted. **(B)** *nos-3*
476 locus, showing extent of the *q650* deletion and location of inserts of either FLAG or λN::FLAG.
477 Coding regions in dark gray; untranslated regions in light grey. **(C)** Test of tagged NOS-3
478 functionality in germline development. No single mutants lacking either *nos-3* or *gld-2* alone have
479 a germline tumor (Kadyk and Kimble 1998; Kraemer et al. 1999), but a *nos-3*; *gld-2* double mutant
480 has a germline tumor (Eckmann et al. 2004; Hansen et al. 2004). The *nos-3(q902)* allele, where
481 NOS-3 is tagged with λN::FLAG, behaves like wild-type *nos-3* when *gld-2* is lacking. n, number
482 animals scored. **(D-E)** Quantitation of (D) GFP (αOLLAS) and (E) mCherry (αV5) reporter
483 proteins, as a function of germline position in region bracketed in **Figure 1C**. Lines show averages
484 and shading shows one standard deviation (see Methods). Wild-type serves as a negative control.
485 Number animals scored: wild-type (n=54), NOS-3::FLAG (n=34), NOS-3::λN::FLAG (n=52). The
486 same measurements are used to generate graphs in **Figures 1E**, **3D**, and **Figure S2**.

487 **Figure S2.** Supplemental data showing effects of tethered NOS-3 variants on reporter protein
488 expression. Quantitation of GFP (αOLLAS) normalized to mCherry (αV5) reporter proteins, as a
489 function of germline position in region bracketed in **Figure 1C**. Lines represent averages and
490 shading shows one standard deviation (see Methods). Wild-type serves as a negative control.

491 Quantitation begins at the distal end and goes for 310 μ m, stopping near the proximal end of the
492 pachytene region. N2 wild-type serves as a negative control. Each graph reports the ratio of
493 GFP:mCherry protein expression (OLLAS:V5 signal) in **(A)** Wild-type (n=54), NOS-3::FLAG
494 (n=34), or NOS-3:: λ N::FLAG (n=52) expressing germlines, along with germlines expressing **(B)**
495 NOS-3(Δ 679-821):: λ N::FLAG (n=42), **(C)** NOS-3(Δ 431-821):: λ N::FLAG (n=36), **(D)** NOS-3(Δ 183-
496 821):: λ N::FLAG (n=37), **(E)** NOS-3(Δ 2-186):: λ N::FLAG (n=31), and **(F)** NOS-3(822
497 STOP):: λ N::FLAG (n=37). Same curves and values are included in **Figures 1E, 3D and Figure**
498 **S1D,E.**

499

500 **References:**

501 Aoki ST, Lynch TR, Crittenden SL, Bingman CA, Wickens M, Kimble J. 2019. *C. elegans* germ granules
502 require both assembly and localized regulators for mRNA repression. *BioRxiv*.

503 Aoki ST, Porter DF, Prasad A, Wickens M, Bingman CA, Kimble J. 2018. An RNA-Binding Multimer
504 Species Nematode Sperm Fate. *Cell Rep* **23**: 3769-3775.

505 Arribere JA, Bell RT, Fu BX, Artiles KL, Hartman PS, Fire AZ. 2014. Efficient marker-free recovery of custom
506 genetic modifications with CRISPR/Cas9 in *Caenorhabditis elegans*. *Genetics* **198**: 837-846.

507 Arur S, Ohmachi M, Berkseth M, Nayak S, Hansen D, Zarkower D, Schedl T. 2011. MPK-1 ERK controls
508 membrane organization in *C. elegans* oogenesis via a sex-determination module. *Dev Cell* **20**: 677-
509 688.

510 Baron-Benhamou J, Gehring NH, Kulozik AE, Hentze MW. 2004. Using the lambdaN peptide to tether
511 proteins to RNAs. *Methods Mol Biol* **257**: 135-154.

512 Bhandari D, Raisch T, Weichenrieder O, Jonas S, Izaurralde E. 2014. Structural basis for the Nanos-
513 mediated recruitment of the CCR4-NOT complex and translational repression. *Genes Dev* **28**: 888-
514 901.

515 Brenner JL, Schedl T. 2016. Germline Stem Cell Differentiation Entails Regional Control of Cell Fate
516 Regulator GLD-1 in *Caenorhabditis elegans*. *Genetics* **202**: 1085-1103.

517 Brenner S. 1974. The genetics of *Caenorhabditis elegans*. *Genetics* **77**: 71-94.

518 Chattopadhyay S, Garcia-Mena J, DeVito J, Wolska K, Das A. 1995. Bipartite function of a small RNA
519 hairpin in transcription antitermination in bacteriophage lambda. *Proc Natl Acad Sci U S A* **92**: 4061-
520 4065.

521 Coller J, Wickens M. 2007. Tethered function assays: an adaptable approach to study RNA regulatory
522 proteins. *Methods Enzymol* **429**: 299-321.

523 Coller JM, Gray NK, Wickens MP. 1998. mRNA stabilization by poly(A) binding protein is independent of
524 poly(A) and requires translation. *Genes Dev* **12**: 3226-3235.

525 De Gregorio E, Baron J, Preiss T, Hentze MW. 2001. Tethered-function analysis reveals that eIF4E can
526 recruit ribosomes independent of its binding to the cap structure. *RNA* **7**: 106-113.

527 De Gregorio E, Preiss T, Hentze MW. 1999. Translation driven by an eIF4G core domain in vivo. *EMBO J*
528 **18**: 4865-4874.

529 Eckmann CR, Crittenden SL, Suh N, Kimble J. 2004. GLD-3 and control of the mitosis/meiosis decision in
530 the germline of *Caenorhabditis elegans*. *Genetics* **168**: 147-160.

531 Erdos G, Dosztanyi Z. 2020. Analyzing Protein Disorder with IUPred2A. *Curr Protoc Bioinformatics* **70**: e99.

532 Farley BM, Ryder SP. 2012. POS-1 and GLD-1 repress glp-1 translation through a conserved binding-site
533 cluster. *Mol Biol Cell* **23**: 4473-4483.

534 Frand AR, Russel S, Ruvkun G. 2005. Functional genomic analysis of *C. elegans* molting. *PLoS Biol* **3**:
535 e312.

536 Frokjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, Grunnet M, Jorgensen
537 EM. 2008. Single-copy insertion of transgenes in *Caenorhabditis elegans*. *Nat Genet* **40**: 1375-
538 1383.

539 Gray NK, Coller JM, Dickson KS, Wickens M. 2000. Multiple portions of poly(A)-binding protein stimulate
540 translation in vivo. *EMBO J* **19**: 4723-4733.

541 Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, Revyakin A, Patel R, Macklin JJ, Normanno D,
542 Singer RH et al. 2015. A general method to improve fluorophores for live-cell and single-molecule
543 microscopy. *Nat Methods* **12**: 244-250, 243 p following 250.

544 Hanke T, Szawlowski P, Randall RE. 1992. Construction of solid matrix-antibody-antigen complexes
545 containing simian immunodeficiency virus p27 using tag-specific monoclonal antibody and tag-
546 linked antigen. *J Gen Virol* **73** (Pt 3): 653-660.

547 Hansen D, Wilson-Berry L, Dang T, Schedl T. 2004. Control of the proliferation versus meiotic development
548 decision in the *C. elegans* germline through regulation of GLD-1 protein accumulation.
549 *Development* **131**: 93-104.

550 Huang T, Kuersten S, Deshpande AM, Spieth J, MacMorris M, Blumenthal T. 2001. Intercistronic region
551 required for polycistronic pre-mRNA processing in *Caenorhabditis elegans*. *Mol Cell Biol* **21**: 1111-
552 1120.

553 Hubbard EJA, Schedl T. 2019. Biology of the *Caenorhabditis elegans* Germline Stem Cell System. *Genetics*
554 **213**: 1145-1188.

555 Kadyk LC, Kimble J. 1998. Genetic regulation of entry into meiosis in *Caenorhabditis elegans*. *Development* 125: 1803-1813.

556

557 Kaymak E, Farley BM, Hay SA, Li C, Ho S, Hartman DJ, Ryder SP. 2016. Efficient generation of transgenic reporter strains and analysis of expression patterns in *Caenorhabditis elegans* using library MosSCI. *Dev Dyn* 245: 925-936.

558

559

560 Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. *Nature* 517: 583-588.

561

562

563 Kraemer B, Crittenden S, Gallegos M, Moulder G, Barstead R, Kimble J, Wickens M. 1999. NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in *Caenorhabditis elegans*. *Curr Biol* 9: 1009-1018.

564

565

566 Kusz-Zamelczyk K, Sajek M, Spik A, Glazar R, Jedrzejczak P, Latos-Bielenska A, Kotecki M, Pawelczyk L, Jaruzelska J. 2013. Mutations of NANOS1, a human homologue of the *Drosophila* morphogen, are associated with a lack of germ cells in testes or severe oligo-astheno-teratozoospermia. *J Med Genet* 50: 187-193.

567

568

569

570 Lee C, Seidel H, Lynch T, Sorensen E, Crittenden S, Kimble J. 2017. Single-molecule RNA Fluorescence in situ Hybridization (smFISH) in *Caenorhabditis elegans*. *Bio-Protocol* 7.

571

572 Lee C, Sorensen EB, Lynch TR, Kimble J. 2016. *C. elegans* GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool. *Elife* 5.

573

574 Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC, Kain SR. 1998. Generation of destabilized green fluorescent protein as a transcription reporter. *J Biol Chem* 273: 34970-34975.

575

576 Merritt C, Rasoloson D, Ko D, Seydoux G. 2008. 3' UTRs are the primary regulators of gene expression in the *C. elegans* germline. *Curr Biol* 18: 1476-1482.

577

578 Nance J, Frokjaer-Jensen C. 2019. The *Caenorhabditis elegans* Transgenic Toolbox. *Genetics* 212: 959-990.

579

580 Paix A, Folkmann A, Rasoloson D, Seydoux G. 2015. High Efficiency, Homology-Directed Genome Editing in *Caenorhabditis elegans* Using CRISPR-Cas9 Ribonucleoprotein Complexes. *Genetics* 201: 47-54.

581

582

583 Park SH, Cheong C, Idoyaga J, Kim JY, Choi JH, Do Y, Lee H, Jo JH, Oh YS, Im W et al. 2008. Generation and application of new rat monoclonal antibodies against synthetic FLAG and OLLAS tags for improved immunodetection. *J Immunol Methods* 331: 27-38.

584

585

586 Pillai RS, Artus CG, Filipowicz W. 2004. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. *RNA* 10: 1518-1525.

587

588 Raisch T, Bhandari D, Sabath K, Helms S, Valkov E, Weichenrieder O, Izaurrealde E. 2016. Distinct modes of recruitment of the CCR4-NOT complex by *Drosophila* and vertebrate Nanos. *EMBO J* 35: 974-990.

589

590

591 Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. 2008. Imaging individual mRNA molecules using multiple singly labeled probes. *Nat Methods* 5: 877-879.

592

593 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al. 2012. Fiji: an open-source platform for biological-image analysis. *Nat Methods* 9: 676-682.

594

595

596 Subramaniam K, Seydoux G. 1999. nos-1 and nos-2, two genes related to *Drosophila* nanos, regulate primordial germ cell development and survival in *Caenorhabditis elegans*. *Development* 126: 4861-4871.

597

598

599 Suh N, Crittenden SL, Goldstrohm A, Hook B, Thompson B, Wickens M, Kimble J. 2009. FBF and its dual control of gld-1 expression in the *Caenorhabditis elegans* germline. *Genetics* 181: 1249-1260.

600

601 Suh N, Jedamzik B, Eckmann CR, Wickens M, Kimble J. 2006. The GLD-2 poly(A) polymerase activates gld-1 mRNA in the *Caenorhabditis elegans* germ line. *Proc Natl Acad Sci U S A* 103: 15108-15112.

602

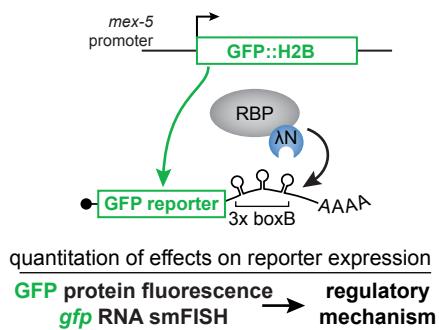
603 Suzuki A, Saba R, Miyoshi K, Morita Y, Saga Y. 2012. Interaction between NANOS2 and the CCR4-NOT deadenylation complex is essential for male germ cell development in mouse. *PLoS One* 7: e33558.

604

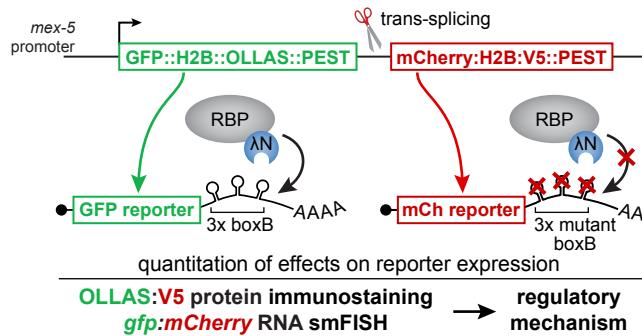
605

606 Tsuda M, Sasaoka Y, Kiso M, Abe K, Haraguchi S, Kobayashi S, Saga Y. 2003. Conserved role of nanos proteins in germ cell development. *Science* 301: 1239-1241.

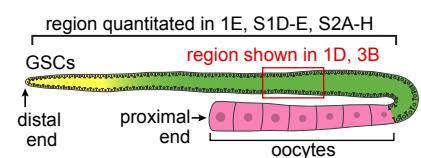
607

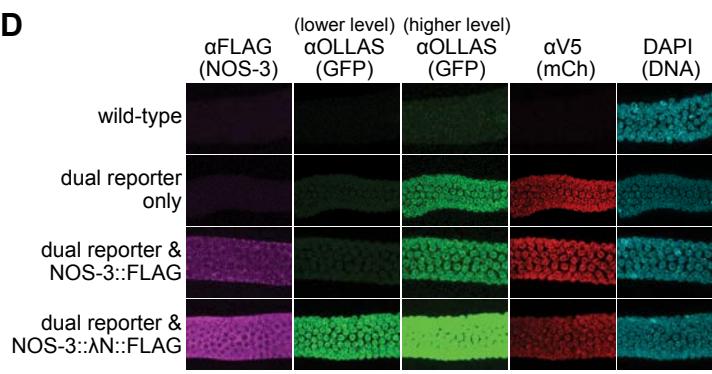

608 Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA et al. 2011. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. *Nature* 472: 120-124.

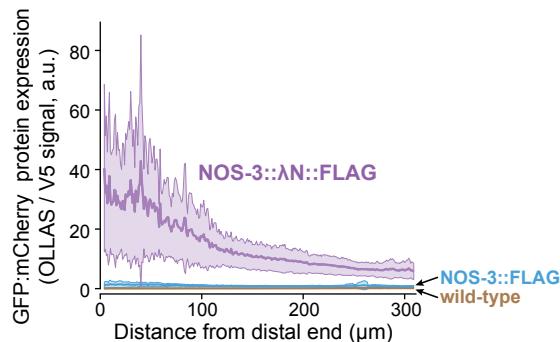
609


610

611 Wedeles CJ, Wu MZ, Claycomb JM. 2013. Protection of germline gene expression by the *C. elegans*
612 Argonaute CSR-1. *Dev Cell* **27**: 664-671.
613


A Traditional tethering assay


B Tethering assay with dual reporter


C Adult germline

D

E

F

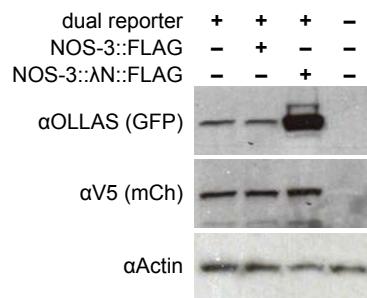


Figure 2
Doenier et al

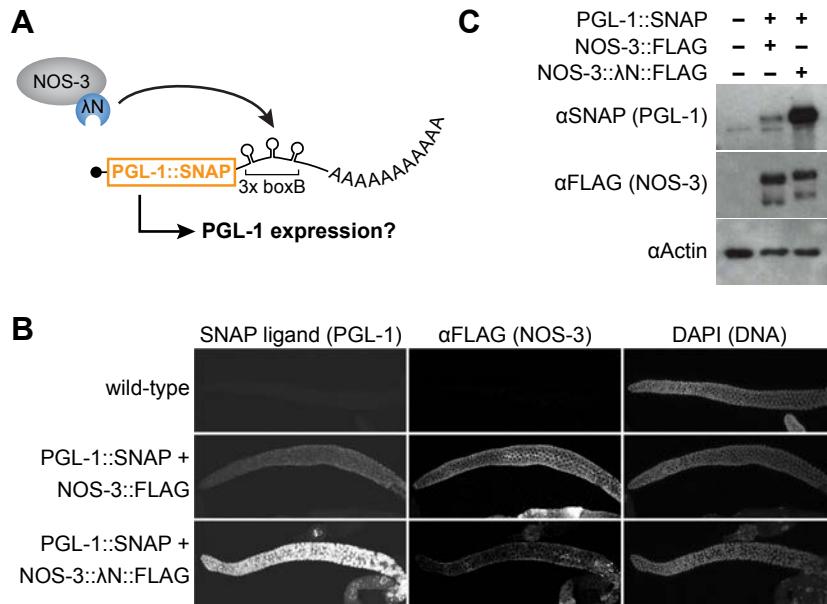
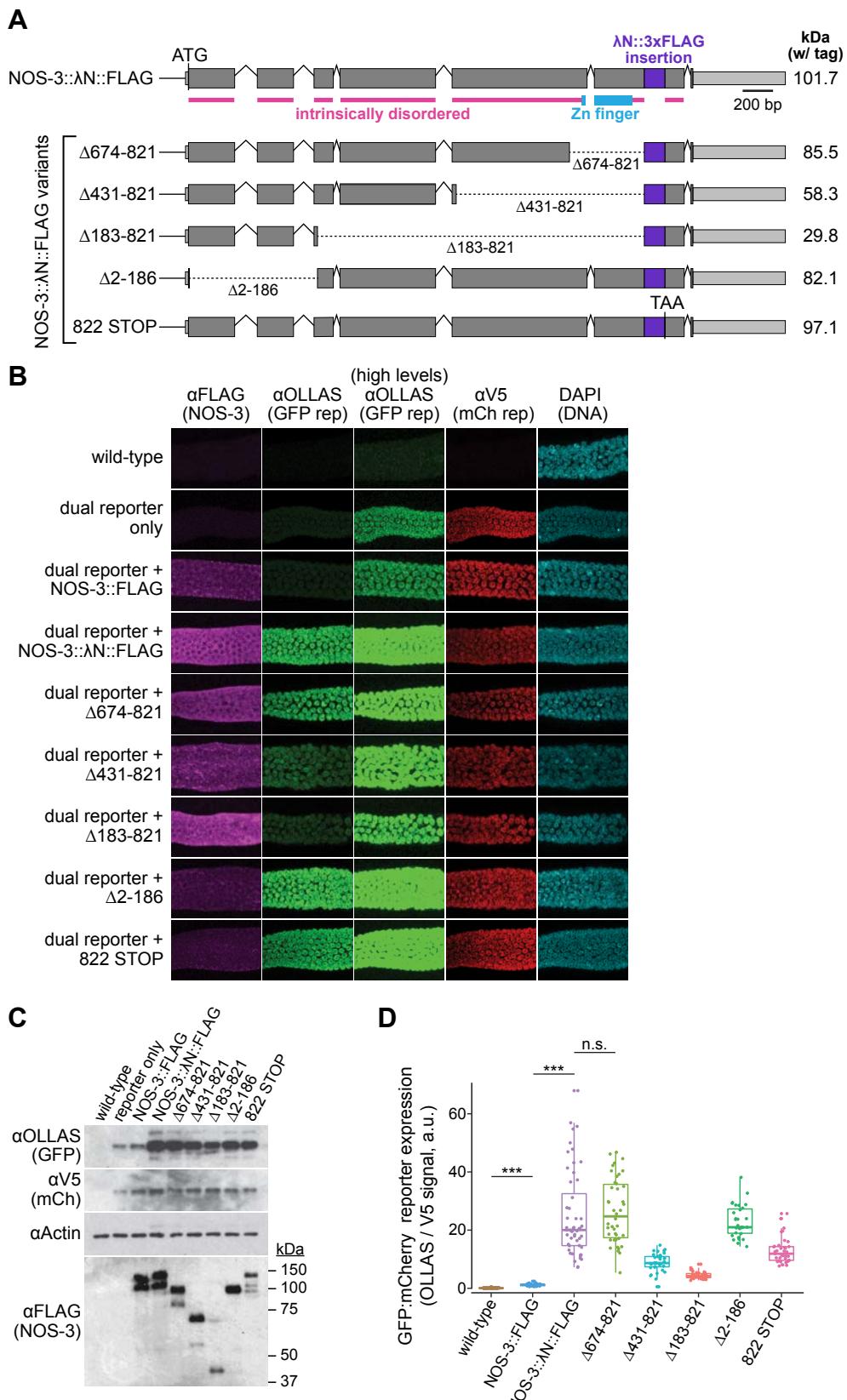
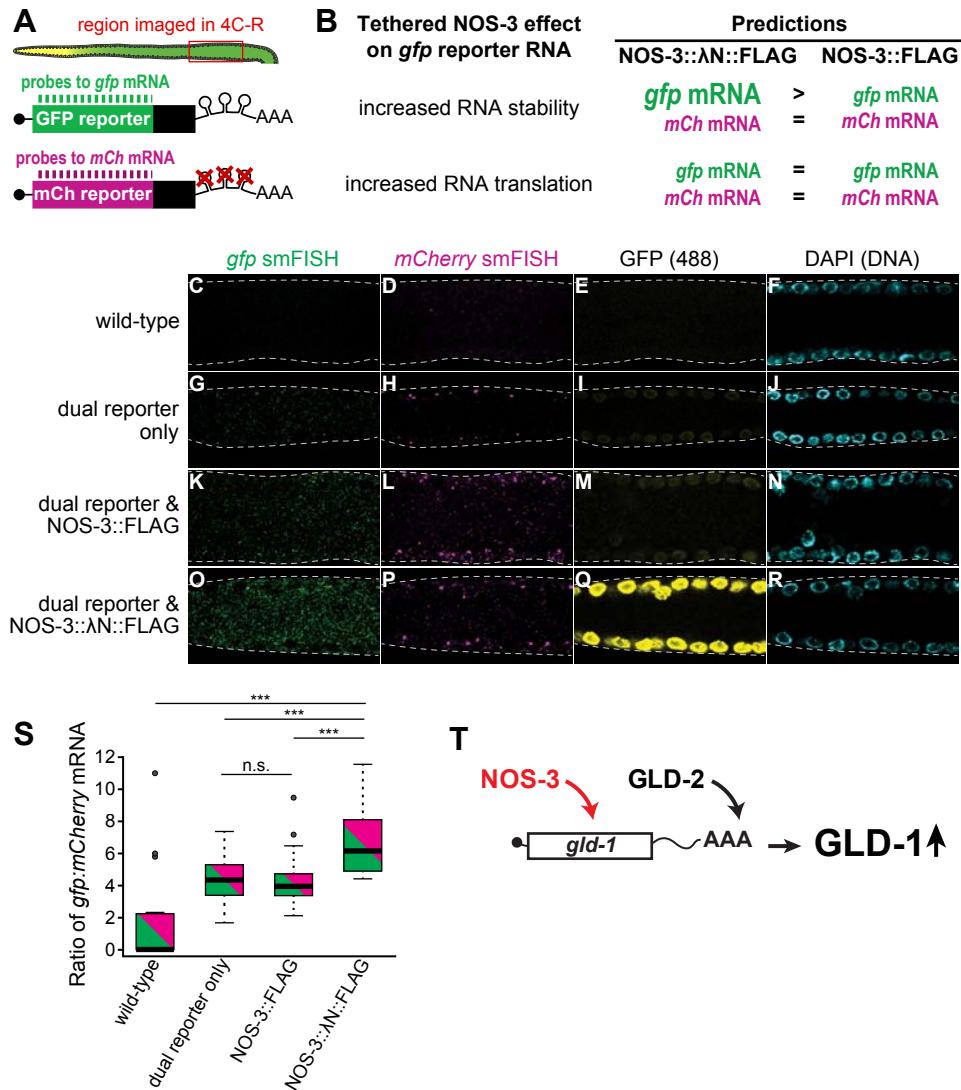
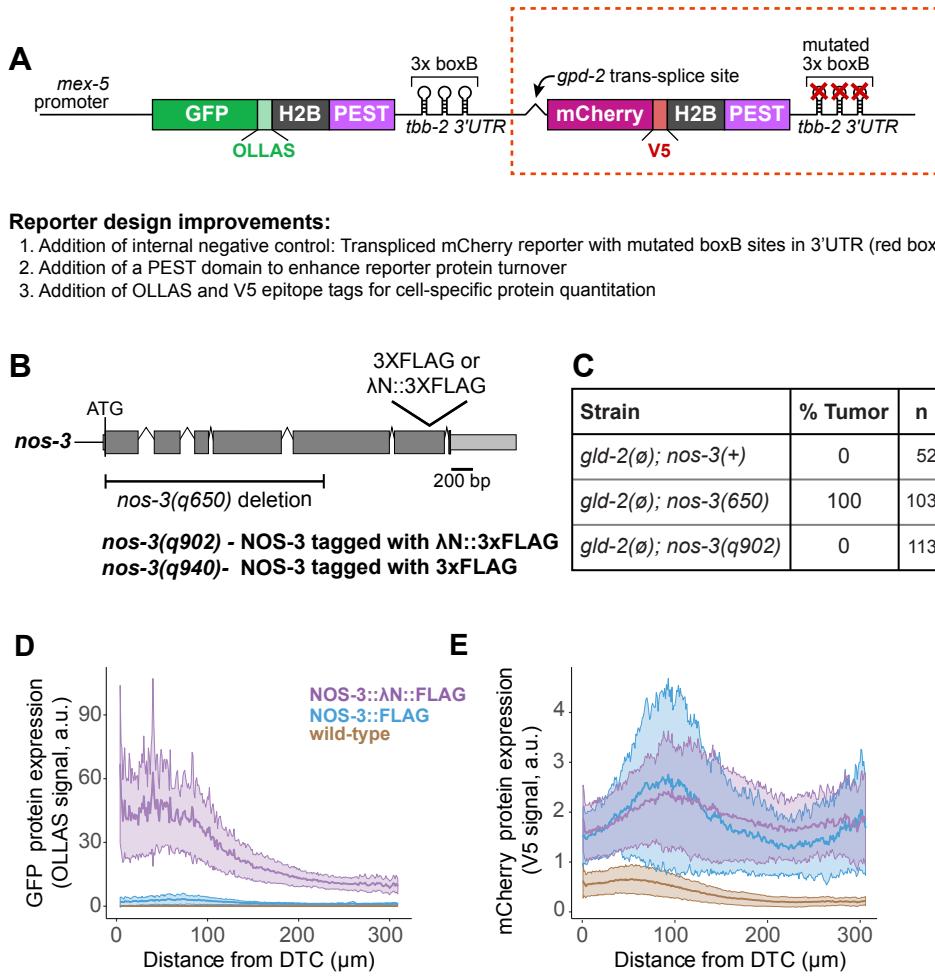
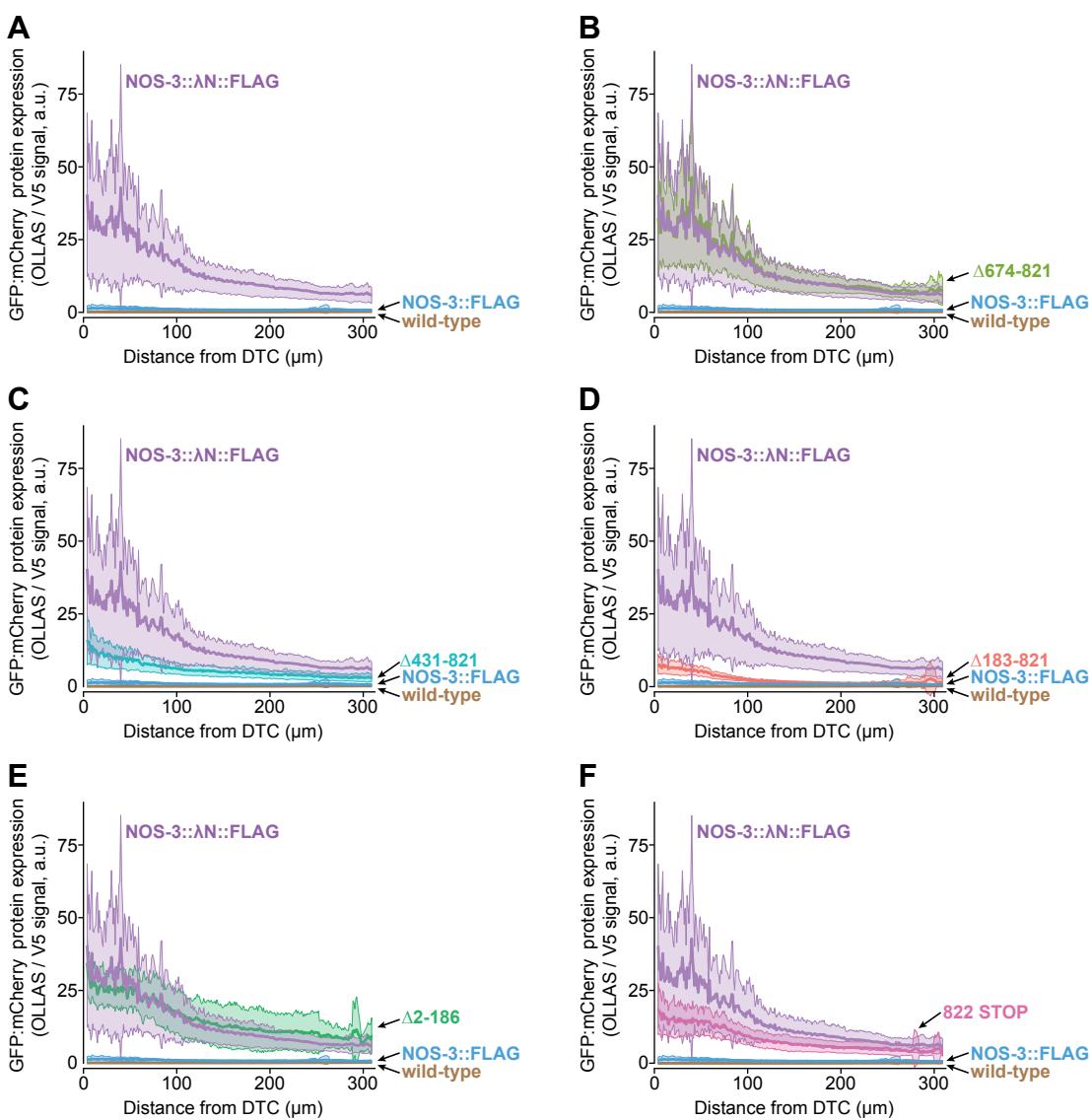






Figure 3
Doenier et al

Table S1. Statistics comparing fluorescent protein ratios in NOS-3 deletion mutants

strain	v. strain	p-value
N2 wild-type	NOS-3:FLAG; dual reporter	<0.0001
"	NOS-3:FLAG:λN; dual reporter	<0.0001
"	NOS-3(Δ183-821):FLAG:λN; dual reporter	<0.0001
"	NOS-3(Δ431-821):FLAG:λN; dual reporter	<0.0001
"	NOS-3(Δ674-821):FLAG:λN; dual reporter	<0.0001
"	NOS-3(Δ2-186):FLAG:λN; dual reporter	<0.0001
"	NOS-3 (822 STOP):FLAG:λN; dual reporter	<0.0001
NOS-3:FLAG; dual reporter	NOS-3:FLAG:λN; dual reporter	<0.0001
"	NOS-3(Δ183-821):FLAG:λN; dual reporter	<0.0001
"	NOS-3(Δ431-821):FLAG:λN; dual reporter	<0.0001
"	NOS-3(Δ674-821):FLAG:λN; dual reporter	<0.0001
"	NOS-3(Δ2-186):FLAG:λN; dual reporter	<0.0001
"	NOS-3 (822 STOP):FLAG:λN; dual reporter	<0.0001
NOS-3:FLAG:λN; dual reporter	NOS-3(Δ183-821):FLAG:λN; dual reporter	<0.0001
"	NOS-3(Δ431-821):FLAG:λN; dual reporter	<0.0001
"	NOS-3(Δ674-821):FLAG:λN; dual reporter	0.5735
"	NOS-3(Δ2-186):FLAG:λN; dual reporter	0.4646
"	NOS-3 (822 STOP):FLAG:λN; dual reporter	<0.0001
NOS-3(Δ183-821):FLAG:λN; dual reporter	NOS-3(Δ431-821):FLAG:λN; dual reporter	<0.0001
"	NOS-3(Δ674-821):FLAG:λN; dual reporter	<0.0001
"	NOS-3(Δ2-186):FLAG:λN; dual reporter	<0.0001
"	NOS-3 (822 STOP):FLAG:λN; dual reporter	<0.0001
NOS-3(Δ431-821):FLAG:λN; dual reporter	NOS-3(Δ674-821):FLAG:λN; dual reporter	<0.0001
"	NOS-3(Δ2-186):FLAG:λN; dual reporter	<0.0001
"	NOS-3 (822 STOP):FLAG:λN; dual reporter	<0.0001
NOS-3(Δ674-821):FLAG:λN; dual reporter	NOS-3(Δ2-186):FLAG:λN; dual reporter	0.1011
"	NOS-3 (822 STOP):FLAG:λN; dual reporter	<0.0001
NOS-3(Δ2-186):FLAG:λN; dual reporter	NOS-3 (822 STOP):FLAG:λN; dual reporter	<0.0001

Table S2: Strains examined in this study

Strain	Genotype	Citation
N2	wild type, Bristol strain	(Brenner 1974)
JK3026	<i>gld-2(q497)/ hT2[qIs48](I;III)</i>	(Eckmann et al. 2004)
JK3294	<i>gld-2(q497)/ ccls4251 unc-15(e73) I; nos-3(q650)/ mln1[mls14 dpy-10(e128)] II nos-3(q940)[3xFLAG::nos-3] II; qSi380[Pmex-5::eGFP::his-58::MODC PEST::tbb-2 3'UTR 3xboxb::gpd-2::mCherry::his-58::MODC PEST::tbb-2 3'UTR mutant 3xboxb::tbb-1 intergenic] IV</i>	(Eckmann et al. 2004)
JK6139	<i>nos-3(q902)[nos-3::λN::3xFLAG] II; qSi380[Pmex-5::eGFP::his-58::MODC PEST::tbb-2 3'UTR 3xboxb::gpd-2::mCherry::his-58::MODC PEST::tbb-2 3'UTR mutant 3xboxb::tbb-1 intergenic] IV</i>	This Work
JK6140	<i>PEST::tbb-2 3'UTR 3xboxb::gpd-2::mCherry::his-58::MODC PEST::tbb-2 3'UTR mutant 3xboxb::tbb-1 intergenic] IV</i>	This Work
JK6145	<i>gld-2(q497)/ ccls4251 unc-15(e73) I; nos-3(q902)/ mln1[mls14 dpy-10(e128)] II qSi380[Pmex-5::eGFP::his-58::MODC PEST::tbb-2 3'UTR 3xboxb::gpd-2::mCherry::his-58::MODC PEST::tbb-2 3'UTR mutant 3xboxb::tbb-1 intergenic] IV</i>	This Work
JK6268	<i>nos-3(q1176)[nos-3 (822 STOP)::λN::3xFLAG] II; qSi380[Pmex-5::eGFP::his-58::MODC PEST::tbb-2 3'UTR 3xboxb::gpd-2::mCherry::his-58::MODC PEST::tbb-2 3'UTR mutant 3xboxb::tbb-1 intergenic] IV. *stop codon added after amino acid 822</i>	This Work
JK6378	<i>nos-3(q1173)[nos-3 (aa Δ674-821)::λN::3xFLAG] II; qSi380[Pmex-5::eGFP::his-58::MODC PEST::tbb-2 3'UTR 3xboxb::gpd-2::mCherry::his-58::MODC PEST::tbb-2 3'UTR mutant 3xboxb::tbb-1 intergenic] IV</i>	This Work
JK6438	<i>nos-3(q1174)[nos-3 (aa Δ431-821)::λN::3xFLAG] II; qSi380[Pmex-5::eGFP::his-58::MODC PEST::tbb-2 3'UTR 3xboxb::gpd-2::mCherry::his-58::MODC PEST::tbb-2 3'UTR mutant 3xboxb::tbb-1 intergenic] IV</i>	This Work
JK6439	<i>nos-3(q1175)[nos-3 (aa Δ183-821)::λN::3xFLAG] II; qSi380[Pmex-5::eGFP::his-58::MODC PEST::tbb-2 3'UTR 3xboxb::gpd-2::mCherry::his-58::MODC PEST::tbb-2 3'UTR mutant 3xboxb::tbb-1 intergenic] IV</i>	This Work
JK6440	<i>nos-3(q1177)[nos-3 (aa Δ2-186)::λN::3xFLAG] II; qSi380[Pmex-5::eGFP::his-58::MODC PEST::tbb-2 3'UTR 3xboxb::gpd-2::mCherry::his-58::MODC PEST::tbb-2 3'UTR mutant 3xboxb::tbb-1 intergenic] IV</i>	This Work
JK6442	<i>nos-3(q902)[nos-3::λN::3xFLAG] II; pgl-1(q980)[pgl-1::3xboxb] IV</i>	This Work
JK6443	<i>nos-3(q940)[nos-3::3xFLAG] II; pgl-1(q980)[pgl-1::3xboxb] IV</i>	This Work

Table S3: CRISPR RNAs and repair templates

Name	Gene Targeted	Sequence
crRNAs		
nos-3 crRNA 1	<i>nos-3</i>	AACTATAGCCATAGTTATGG
crRNA_JD1	<i>nos-3</i>	TATCAACAAATGAAAGCGG
crRNA_JD2	<i>nos-3</i>	CCATACGGAATGCCACAAGG
crRNA_JD3	<i>nos-3</i>	GACAAAAACTGAAATAAGCG
crRNA_JD4	<i>nos-3</i>	TATAGCCATTCTACGGCGG
crRNA_JD5	<i>nos-3</i>	AACGTTCACTGGTAATGTC
Repair Templates		
nos-3 lambda 3xFI repair	<i>nos-3</i>	GTCCACGATAGCTACCACTAGAATTCTTGTATCGTCATCCTTGTAAATCGATGTCATGATCTTAT AATCACCGTCATGGTCTTGTAGTCGGATCCTCCGGTGGCGGCCCTCCATTGGGCTTGCTTCTCG GCACGACGCTCACGACGACGGGTACGGCGTTCCCTCGCCgTAggaATGGCTATAGTTCTGAC CGTAT
nos-3 3xFI repair II	<i>nos-3</i>	GTCCACTGCCTCCACTTCCTCCAGACGATGTCACGATAGCTACCACTAGTAAATTCTTGTATCG TCATCCTTGTAAATCGATGTCATGATCTTATAATCACCGTCATGGCTTGTAGTCGCCgTAggaAT GGCTATAGTTCTGACCGTATCCTACCGCCACTGCGATTTCTGAATTGTGACGAGATTATGTG AC
prJD23	<i>nos-3</i>	CTCACGACGACGGGTACGGCGTTCCCTCCATTGTTGATACTGctaaaataaagaat
prJD24	<i>nos-3</i>	CTCACGACGACGGGTACGGCGTTCCCTCCATTGTTGATACTGctaaacat
prJD25	<i>nos-3</i>	CTCACGACGACGGGTACGGCGTTCCCTCCATTGTTGATACTGctaaatgt
prJD40	<i>nos-3</i>	TGTTGTCATCCCGTATCCACTTGGCGGCATtaccaagtgaacgttgactgtaaatgt
prJD44	<i>nos-3</i>	ACGACGGGTACGGCGTTCCCTCCGCTTCCATtaccaagtgaacgttgactgtaaatgt TCCACGATAGCTACCACTAGAATTACTGTCATCGTCATCCTTGTAAATCGATGTCATGATCTTAT
prJD45	<i>nos-3</i>	AATCACCGTCATGGTCTTGTAGTCGGATCCTCCGGTGGCGGCCCTCCATTGGGCTTGCTTCTCG GCACGACGCTCACGACGACGGGTACGGCGTTCCCTCGCCgTAggaATGGCTATAGTTCTGAC CGTAT
pgl-1 boxb repair	<i>pgl-1</i>	ggggcgtggggacgcggaggttctaaactcCAACTACTAAACTGATTCTGGGCCCTGAAGAAGGGCCCC TCGACTAAGTCCA ACTACTAAACTGGGCCCTGAAGAAGGGCCCATATAGGGCCCTGAAGAAGG GCCCTATCGAGGATATTATCTCGAcaactattgaatgttaattgttttaagtataactt

Table S4: smFISH probes

GFP (C610)	mCherry (Quasar 570)
aattgggacaactccagtga	tcttccttcacccttgagac
catcaccatctaattcaaca	ctcttaataattgcgtatgt
acagaaaatttgtccatt	tatgcacccgtaaacgcata
atcacccatccaccctccac	tgcccattgcacagatccctc
ggtaagttccgtatgtt	ttcacctcaattcaaact
ccagtagtgcataataattt	cctcatatggtcggccctct
tacccatggAACAGGtagtt	tttagtttgcgggtgtgt
ttagtatataatgtttaaa	tatataatgtttaaactta
aaatttaataatcagggtt	ttaaataatcagggttagtt
agtagtgcataAGTGGct	ccgccttagttacctgaaa
agcattgaacaccataacag	gtcccaggcgaatggtaatg
atatgatctgggtatctga	acatgaactgtggagagagg
cttggaaaaagtcatccgtt	ttaacataagcttacttcc
cataacccctccggcatggca	atctggatatctggcgat
aaaaatatagttcttcctg	ccgggaatgaaagttcaaa
cttgcgtttccgtcatctt	acgcgtttccactaaaacc
cgaactgtttaaacttacgt	tcctccgtcttcaaaattca
aatatgtatggtagtttagt	agtctgcgtcactgtaca
gacttcacgcacccgtaaaatt	cgaactgtttaaacttacct
caagggtatcaccccaaac	aatatgtatggtagtttagt
ccttttaactcgattctt	catctggaggctgaaaatt
tccatctttaaaaatcaa	ttgactttataaaaattc
ccaattttgttccaagaatg	ggggaaattcggtcccgaa
tttgttagttatagttgtt	ttctgcataacaggtccatc
tttgtccatgtatgtata	agctccatccatcatgtct
caactttgattccattttt	cagggtacattcttca
agtaaaatcatgtttaact	tctcccttaagagcaccgtc
atttaaatcagatttagtt	caatttaagacgtttaa
gtctaatttgaagttctga	catcgtaatgtccatcatc
aacgctccatctcaatgt	atcatgtttaaacttaccc
gttgataatggctgttagt	atcagattagtttagttgt
ccatcgccaaatggagtatt	ttgtcttcacctgaaaattt
ggttgtctggtaaaaggaca	actggttttggcttgc
aaggcagattgtggaca	attgtacgcctggcagct
tctttcggtggatcttc	tgatatccagttatattta
tcaagaaggaccatgtggc	gtgtaatccgttgtggga
aatcccacgcgtttacaa	tcttcataattgctcaacga
tatagttcatccatgccc	ctgtcgagtgccgcctca
	ttatacaattcatccatgccc