

A Novel Swine Model of the Acute Respiratory Distress Syndrome Using Clinically-Relevant Injury Exposures

Running Title: Novel Preclinical Swine Model of ARDS

Mohamad Hakam Tiba^{1,2}, Brendan M. McCracken^{1,2}, Danielle C. Leander^{1,2}, Carmen I. Colmenero^{1,2}, Jean A. Nemzek^{2,3}, Michael W. Sjoding^{2,4,5,6}, Kristine E. Konopka^{2,7}, Thomas L. Flott^{2,8}, J. Scott VanEpps^{1,2,9,10}, Rodney Daniels^{2,9,11}, Kevin R. Ward^{1,2,9}, Kathleen A. Stringer^{2,4,8}, Robert P. Dickson^{2,4,12}

¹ Department of Emergency Medicine, University of Michigan. Ann Arbor, Michigan, United States of America

² Michigan Center for Integrative Research in Critical Care, University of Michigan. Ann Arbor, Michigan, United States of America

³ Unit of Laboratory Animal Medicine, University of Michigan. Ann Arbor, Michigan, United States of America

⁴ Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan. Ann Arbor, Michigan, United States of America

⁵ Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, Michigan, United States of America

⁶ Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America

⁷ Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America

⁸ Department of Clinical Pharmacy, College of Pharmacy, University of Michigan. Ann Arbor, Michigan, United States of America

⁹ Department of Biomedical Engineering, University of Michigan. Ann Arbor, Michigan, United States of America

¹⁰ Biointerfaces Institute, University of Michigan. Ann Arbor, Michigan, United States of America

¹¹ Department of Pediatrics, Pediatric Critical Care Medicine, University of Michigan. Ann Arbor, Michigan, United States of America

¹² Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States.

Corresponding Author

Mohamad H. Tiba, MD, MS

Phone: 734-764-6702

Fax: 734-763-9389

E-Mail: tibam@med.umich.edu

Author's Contributions

Conceptualization: MHT, BMM, RPD, MWS, JAN, RCD, JSV, KAS, KRW. **Data Curation:** MHT, BMM, RPD, JAN, DCL, TLF, RCD, JSV, KAS. **Formal Analysis:** MHT, BMM, DCL, KEK, MWS, TLF, KAS. **Experiments Design and Performance:** MHT, BMM, RPD, MWS,

JAN, CIC, DCL, TLF, RCD, KEK, JSV, KAS. **Experiments Performance:** MHT, BMM, RPD, JAN, KEK, CIC. **Supervision:** MHT, BMM, RPD, JAN, JSV, KAS. **Writing - Original Draft Preparation:** MHT, BMM. **Writing - Review & Editing:** MHT, BMM, RPD, MWS, JAN, CIC, DCL, TLF, RCD, KEK, JSV, KAS, KRW.

Funding Statement: Financial Disclosure Statement:

The work reported in this manuscript and the effort of KAS, RPD, MHT, BMM, TLF and CIC was supported in part by a Michigan Institute for Clinical and Health Research (MICHR) Accelerating Synergy Award. MICHR is supported by a National Institutes of Health (NIH) Clinical and Translational Science Award (UL1TR002240). In addition, the work and KAS's effort was supported, in part, by grants from the National Institute of General Medical Sciences (NIGMS; R01GM111400 and R35GM136312); JSV's effort was supported, in part, by a grant from the National Institute of Allergy and Infectious Diseases (NIAID; K08AI128006); JAN's effort was supported, in part, by a grant from the NIGMS (R01GM112799) and NHLBI (R01HL136141). MWS's effort was supported, in part, by a grant from the NHLBI (K01 HL136687), National Library of Medicine (R01LM013325) and Department of Defense (DOD W81XWH2010496). RPD's effort was also supported by National Heart, Lung, and Blood Institute (NHLBI; R01HL144599, K23HL13064). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIGMS, NIAID, NHLBI or the NIH. The authors declare no conflict of interest.

1 Abstract

2 To date, existing animal models of the acute respiratory distress syndrome (ARDS) have failed
3 to translate preclinical discoveries into effective pharmacotherapy or diagnostic biomarkers. To
4 address this translational gap, we developed a high-fidelity swine model of ARDS utilizing
5 clinically-relevant lung injury exposures. Fourteen male swine were anesthetized, mechanically
6 ventilated, and surgically instrumented for hemodynamic monitoring, blood, and tissue sampling.
7 Animals were allocated to one of three groups: 1) *Indirect lung injury only*: animals were
8 inoculated by direct injection of *E. coli* into the kidney parenchyma, provoking systemic
9 inflammation and distributive shock physiology; 2) *Direct lung injury only*: animals received
10 volutrauma, hyperoxia, and bronchoscope-delivered gastric particles; 3) *Combined indirect and*
11 *direct lung injury*: animals were administered both above-described indirect and direct lung
12 injury exposures. Animals were monitored for up to 12 hours, with serial collection of
13 physiologic data, blood samples, and radiographic imaging. Lung tissue was acquired post-
14 mortem for pathological examination. In contrast to *indirect lung injury only* and *direct lung*
15 *injury only* groups, animals in the *combined indirect and direct lung injury* group exhibited all of
16 the physiological, radiographic, and histopathologic hallmarks of human ARDS: impaired gas
17 exchange (mean $\text{PaO}_2/\text{FiO}_2$ ratio 124.8 ± 63.8), diffuse bilateral opacities on chest radiographs,
18 and extensive pathologic evidence of diffuse alveolar damage. Our novel porcine model of
19 ARDS, built on clinically-relevant lung injury exposures, faithfully recapitulates the physiologic,
20 radiographic, and histopathologic features of human ARDS, and fills a crucial gap in the
21 translational study of human lung injury.

22

23 **Keywords:** Acute Respiratory Distress Syndrome; acute lung injury, porcine models; diffuse
24 alveolar damage; critical care, direct lung injury, indirect lung injury, sepsis, septic shock.

25 **Introduction**

26 The acute respiratory distress syndrome (ARDS) is a life-threatening lung condition that affects
27 more than 200,000 people in the United States each year with a mortality rate of approximately
28 40%(1, 2). As a clinically-defined syndrome, ARDS has undergone only modest refinement in its
29 definition since its first report in 1967(3-5). Despite a half century of experimental and clinical
30 study, the diagnosis of ARDS remains entirely clinical (with no molecular biomarkers), and its
31 management remains entirely supportive (with no targeted therapies).

32

33 A major barrier to advances in our diagnosis and management of ARDS has been reliance on
34 inadequate preclinical animal models to study the syndrome(6). The vast majority of
35 experimental research on ARDS has been performed using small animal (i.e., rodent) models(7).
36 This reliance on rodent modeling of ARDS has not been due to their fidelity to human disease,
37 but rather due to ease of handling, cost, accessible reagents, and availability of purebred and
38 genetically engineered strains. Anatomically, murine lungs have a distinct lobar structure with
39 far fewer branching airways than humans, extensive bronchial-associated lymphoid tissue, and a
40 near-absence of submucosal glands(7). Mice also profoundly differ from humans in their innate
41 and adaptive immune response to injury, including fewer circulating neutrophils, absence of
42 defensins, and a distinct chemokine repertoire(8). Notably, murine lungs almost never form
43 hyaline membranes, a histopathological hallmark of diffuse alveolar damage (the
44 histopathological hallmark of human ARDS)(9). For these reasons, the 2011 American Thoracic
45 Society workshop report on experimental acute lung injury conceded “the responses of animal
46 [murine] and human lungs to an injurious stimulus cannot be expected to be identical or perhaps
47 even similar.”(7) Additionally, rodent models almost all preclude the study of co-interventions

48 and organ support (e.g. vasopressors or mechanical ventilation), serial sampling across anatomic
49 compartments, or radiographic study. For these reasons, the NHLBI has identified the need for
50 large-animal models of ARDS as a research priority(10).

51

52 In contrast to rodent models, swine models of ARDS represent a promising alternative. The
53 swine lung exhibits lobar, interlobular, and airway anatomy similar to that of humans(11), and
54 immune gene expression of swine is far more similar to that of humans(12-17). The metabolite
55 composition of swine lung tissue is far more representative of human lungs than is that of rodent
56 species(15). Several swine models of ARDS exist, yet these rely on clinically unrepresentative
57 single exposures (e.g. oleic acid infusion(18, 19), surfactant washout(20)). To our knowledge, no
58 existing swine model recapitulates the core features of human ARDS using clinically-relevant
59 exposures.

60

61 To address these gaps, we sought to establish a preclinical model of ARDS using clinically-
62 relevant exposures that 1) faithfully recapitulates the physiologic, radiographic, and
63 histopathologic features of human ARDS, 2) allows for longitudinal study of pathogenesis,
64 underlying mechanisms, and treatment strategies, and 3) permits study of co-interventions and
65 organ support (e.g. vasopressors and mechanical ventilation). Motivated by clinical(21) and
66 experimental(22) observations that both epithelial *and* endothelial injury are necessary to
67 provoke the full pathophysiologic and clinical manifestations of ARDS, we hypothesized that a
68 combination of indirect lung injury (sepsis(23)) and direct lung injury (concurrent administration
69 of volutrauma, hyperoxia, and instillation of gastric particles into the airways) would be required

70 to induce all of the clinical and biological hallmarks of human ARDS. Selective data from the
71 *indirect lung injury only* (sepsis) group has previously been published(23).

72 **Methods**

73 This study adhered to the principles stated in the *Guide for the Care and Use of Laboratory*
74 *Animals* (24), and was approved by the Institutional Animal Care and Use Committee (IACUC).
75 Animals were acquired through an IACUC-approved vendor and acclimated for 5-10 days before
76 experimentation.

77

78 **Anesthesia and Surgical Instrumentation**

79 Fourteen male Yorkshire-mix swine, approximately 14-16 weeks of age, were fasted overnight
80 with *ad libitum* access to water. Anesthesia was induced using an intramuscular injection of
81 ketamine/xylazine combination (22mg/kg & 2mg/kg) followed by 1.5-2.5 % isoflurane
82 administered through a facemask. Animals were intubated using a 7.5 mm cuffed endotracheal
83 tube and mechanically ventilated to maintain end-tidal CO₂ (PetCO₂) at 35-45 mmHg. Heart rate
84 (HR), electrocardiograph (ECG), PetCO₂ and pulse oximeter oxygen saturation (SpO₂) were
85 monitored using a veterinary monitor (Surgivet advisor, Smiths Medical, St. Paul, MN). Body
86 temperature was maintained between 37-38.5°C using a feedback-controlled warming blanket
87 (Cincinnati SubZero, Blanketrol II, Cincinnati, OH).

88

89 Under aseptic conditions, the right carotid artery, the right external and internal jugular veins
90 were cannulated to provide continuous monitoring of mean arterial blood pressure (MAP),
91 pulmonary artery pressure (PAP), heart rate, core temperature, arterial and mixed venous blood
92 sampling as well as for intravenous anesthetic administration. A midline laparotomy was
93 performed to access the bladder, the left kidney, isolate the ureter, and for placement of an
94 indwelling Foley catheter for urine draining. At the end of surgical instrumentation, inhalant

95 anesthesia was transitioned to total intravenous anesthesia by continuous infusions of midazolam
96 (5-20 mcg/kg/min), fentanyl (0.03-4.0 mcg/kg/min), and propofol (10-100 mcg/kg/min) for the
97 remainder of the experiment. Baseline hemodynamic metrics and blood samples for hematology,
98 serum chemistry, and arterial and venous lactate, glucose, electrolytes, oximetry and blood
99 gasses were obtained (**Table 1**). Ventral-dorsal thoracic radiographic images were obtained using
100 a veterinary portable X-ray (minxray hf100+, minxray, Northbrook, IL). A 5 mL inoculum (*E.*
101 *coli* culture or saline sham) was administered into the left kidney parenchyma over 15 minutes
102 (0.33mL/min) and post-injection procedures were done as previously described(23). Completion
103 of the renal inoculation was considered Time 0 (T_0). The abdominal wall and skin were closed in
104 layers. The ureter was occluded for a duration of 1 hour and then unoccluded. Intravenous
105 crystalloids were administered starting at T_2 (7.5-10 ml/kg/hr) and continued for the duration of
106 experimentation.

107
108 To ensure humane experimentation, our protocol included pre-specified criteria for experiment
109 termination: 1) persistent low mean arterial pressure (<40 mmHg) for more than 2 hours, 2)
110 persistent low PetCO₂ (<25 mmHg) for more than 2 hours, 3) critical low mean arterial pressure
111 (<25 mmHg) combined with critical low PetCO₂ (<20mmHg), 4) critical low PaO₂ (<55 mmHg)
112 for more than 1 hour, 5) ventricular fibrillation/tachycardia, and 6) malignant hyperthermia due
113 to inhalant anesthetics.

114

115 **Experimental Groups and Exposures**

116 Animals were designated into one of three experimental groups as follows:

117

118 **Group 1 – Indirect lung injury only:** As recently described(23), a total volume of 5 ml containing
119 an average culture count of 2.5×10^{11} CFUs of live *E. coli* was administered into the kidney's
120 parenchyma. No antibiotics were administered. Tidal volume (V_t) was set between 7-8 ml/kg
121 using 21% fractional inspired O₂ (FiO₂) and 5 cmH₂O of positive end-expiratory pressure
122 (PEEP). As previously reported(23), this exposure provokes systemic inflammation and
123 distributive shock physiology characteristic of sepsis.

124

125 **Group 2- Direct lung injury only:** 1) **Volutrauma:** Tidal volume was set between 12-15 ml/kg
126 during instrumentation and continued for the duration of the experiment. PEEP was set at 0
127 cmH₂O. 2) **Hyperoxia:** FiO₂ was set to 100% during instrumentation and continued for the
128 duration of the experiment. 3) **Instillation of gastric particles into the lungs:** Prior to experiments,
129 a uniform stock of gastric contents from healthy donor pigs was homogenized in sterile saline,
130 strained, filtered, and autoclaved. A sufficient volume was made for the planned experiments and
131 was stored (-20°C) until use. At the time of experimentation, the gastric particles were
132 resuspended in saline (40 mg/mL) with a pH of 1 as previously described(25, 26). Six aliquots (8
133 mL each), were bronchoscopically-instilled to lobar bronchi 15 minutes following the sham renal
134 inoculation. 4) **Sham renal inoculation:** A 5 mL aliquot of Phosphate Buffered Saline (PBS) was
135 administered into the kidney parenchyma as described above.

136

137 **Group 3 – Combined indirect and direct lung injury:** Both direct and indirect insults were used in
138 this group in the order of 1-2) volutrauma and hyperoxia, 3) *E. coli* renal inoculation, and 4)
139 bronchoscopic instillation of acidified gastric particles.

140

141 **Monitoring and data collection**

142 Animals were monitored for at least 12 hours after renal inoculation. Sequential hemodynamic
143 measurements including MAP, PAP, HR, and temperature were monitored and recorded
144 continuously (MP160, Biopac Inc. Goleta, CA). Ventilation parameters including peak airway
145 pressure (AP_{peak}), respiratory rate, FiO₂, and PetCO₂ were recorded every hour along with
146 arterial and mixed venous blood samples. Additional blood and chest radiographs were
147 obtained every 4-6 hours. At the conclusion of the experiment, animals were euthanized while
148 under general anesthesia using intravenous potassium chloride (1-2 meq/mL). Organ tissue
149 samples were acquired for histological assessment by an expert Pathologist. The chest
150 radiographs were scored by a blinded Pulmonary & Critical Care-trained physician (MWS), who
151 rated each chest radiograph on a scale of 1-10 to quantify the extent of lung injury (1 = no
152 abnormalities, 10 = severe, diffuse lung injury.

153

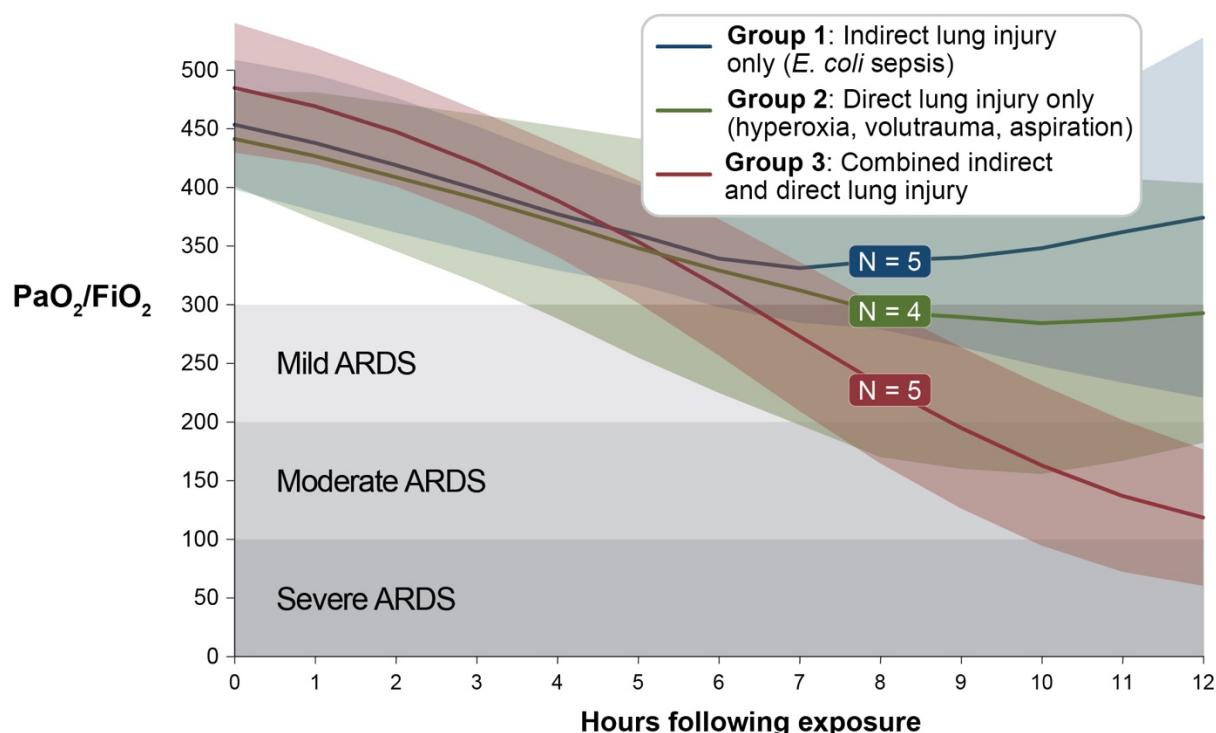
154 **Prespecified criteria for successful model development**

155 Prior to initial experimentation, the study team agreed to prespecified criteria by which the
156 model would be considered a successful model of human ARDS: 1) recapitulation of the
157 physiologic and histopathologic features of human ARDS: impaired oxygenation (PaO₂/FiO₂ <
158 300) and pathologic evidence of diffuse alveolar damage; 2) a time-efficient model in which
159 ARDS is achieved within 24 hours of initial exposure.

160

161 **Statistical analyses**

162 Descriptive data are presented as means and standard deviation (SD). Analysis of variance with
163 repeated measures (RM-ANOVA) or mixed-effects analysis (in case of missing data) were used
164 for longitudinal analysis including a post-hoc Tukey correction for multiple comparisons.
165 primary analysis was conducted at the 12 hour mark. For animals who reached the pre-specified
166 stopping criteria and were euthanized prior to 12 hours, their last recorded value was used. All
167 data and figures were analyzed and created using Matlab R2017a (The MathWorks, Inc., Natick,
168 MA), SAS 9.4 (version 9.4, Cary, NC), and PRISM 8 (GraphPad Software, San Diego, CA).

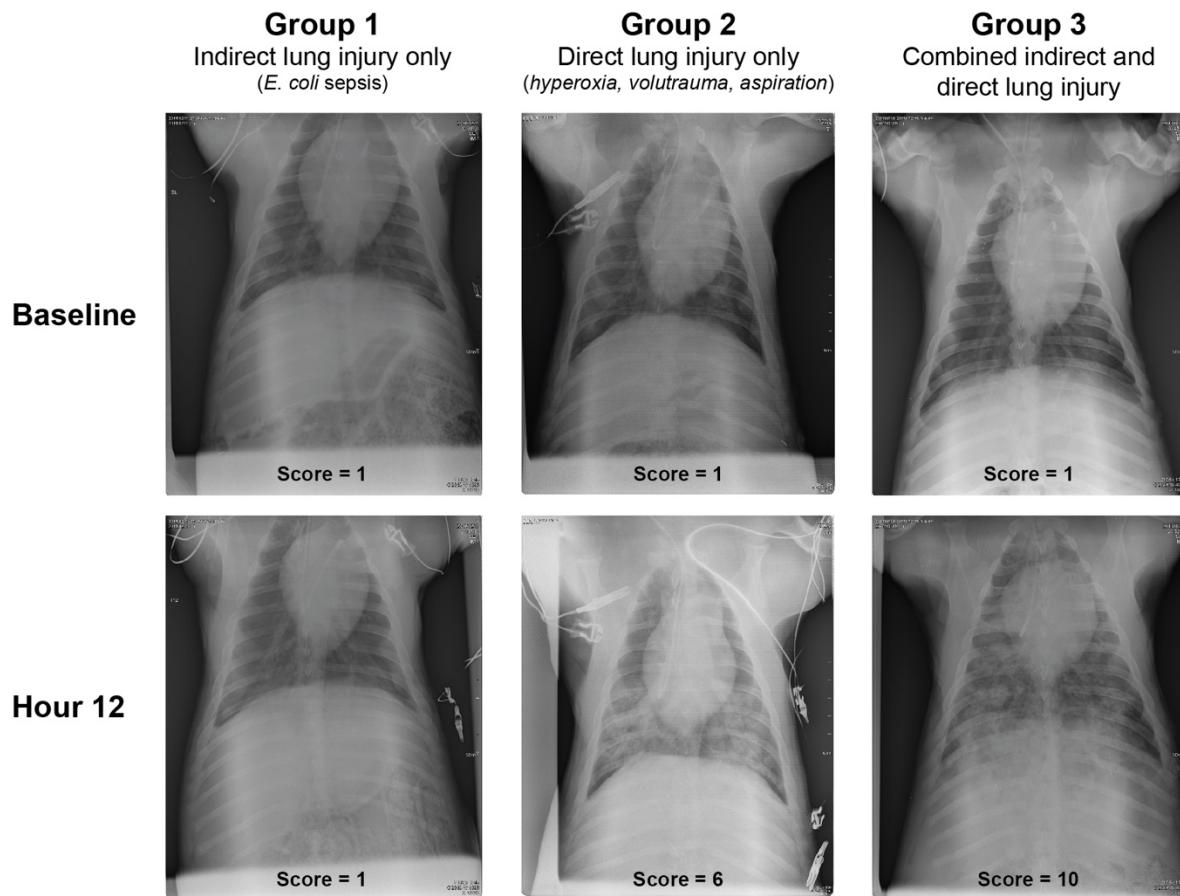

169 **Results**

170 Baseline characteristics of animals in all experimental groups are presented in **Table 1**. Of the 14
171 animals, 11 survived to 12 hours for all measurements while 3 met prespecified criteria prior to
172 12 hours. Two of these were in the *indirect lung injury* group (9 and 11 hours of measurement)
173 and one was in the *combined lung injury* group (11 hours of measurements).

174

175 **Oxygenation**

176 We first compared oxygenation over time across the experimental groups as assessed by
177 $\text{PaO}_2/\text{FiO}_2$ ratio (5, 7). As shown in **Figure 1**, experimental groups had similar baseline
178 oxygenation. However, over time, Groups 1 (*indirect lung injury only*) and 2 (*direct lung injury
179 only*) exhibited mild impairment in oxygenation, with mean $\text{PaO}_2/\text{FiO}_2$ plateauing at or above the

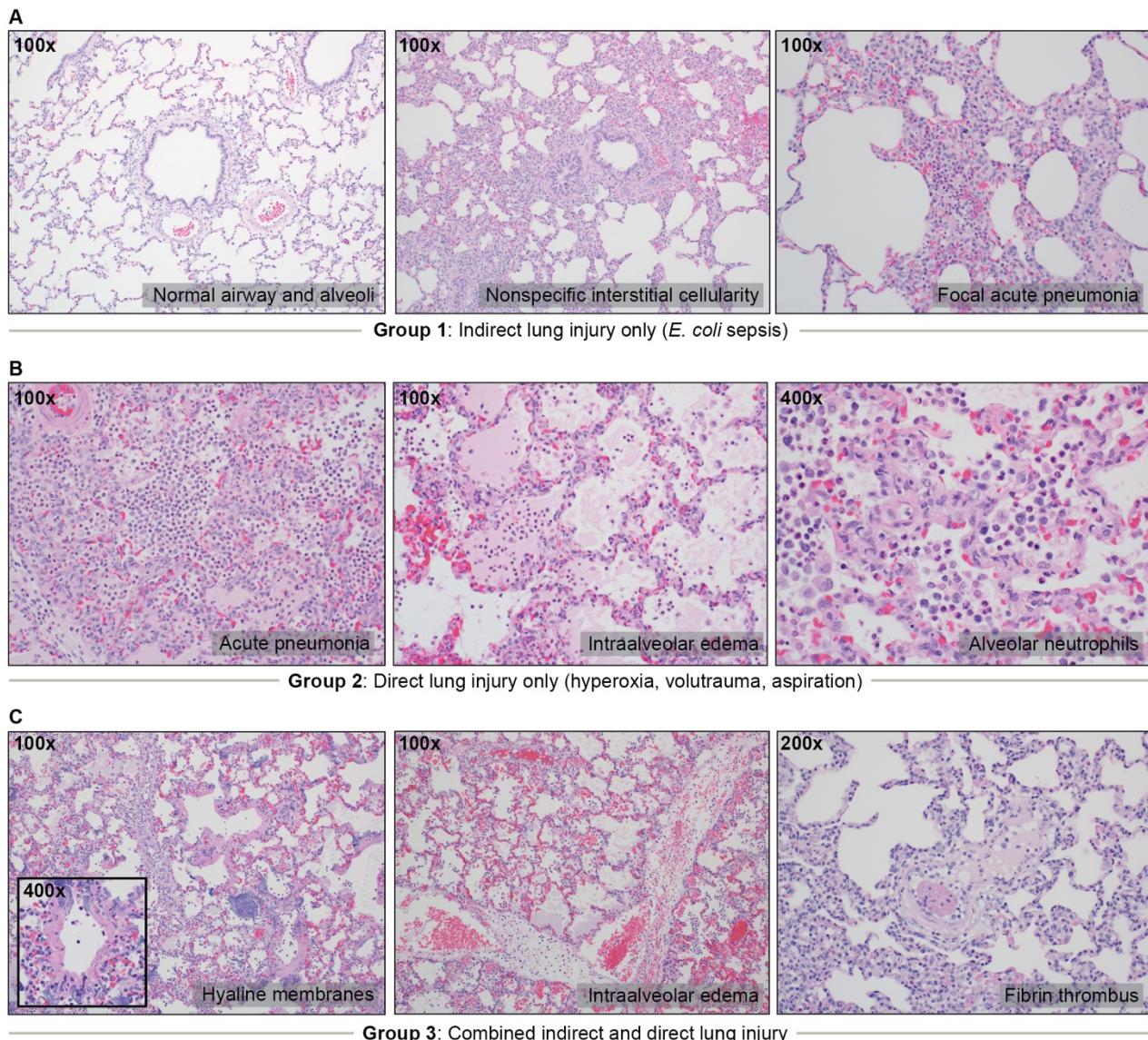

Figure 1. Comparison of oxygenation across experimental groups. Healthy Yorkshire-mix swine, 14-16 weeks of age, were exposed to 1) *indirect lung injury* (*E. coli* sepsis), 2) *direct lung injury* (hyperoxia, volutrauma, and aspiration of gastric particles), and 3) *combined direct and indirect lung injury* (all above exposures). Lines and variance represent means and standard deviation, both with Lowess smoothing.

180 definitional threshold of 300. In contrast, Group 3 (*combined indirect and direct lung injury*)
181 exhibited a progressive decline in $\text{PaO}_2/\text{FiO}_2$ ratio from 494.1(67.46) at baseline to 124.8(63.80)
182 at hour 12 ($P=0.0012$). While within-group variation was observed, all animals in Group 3
183 (*combined indirect and direct lung injury*) reached the definitional $\text{PaO}_2/\text{FiO}_2$ ratio threshold of
184 ≤ 300 by hour 12. We thus concluded that the *combined indirect and direct lung injury*
185 exposures provoke a level of impaired oxygenation that is consistent with human ARDS(5).

186

187 **Chest imaging**

188 We next compared serial chest radiographs from the animals in each experimental group (**Figure**
189 **2**). We specifically assessed for the presence of bilateral opacities, another definitional feature of
190 ARDS(5). Chest radiographs were scored by a Pulmonary & Critical Care-trained physician,
191 blinded to experimental group and timepoint, using a scale of 1-10 (1 = no abnormalities, 10 =
192 severe diffuse bilateral opacities). Chest radiographs were obtained on a single animal in Group
193 1 (*indirect lung injury only*); these images were scored as normal (score = 1) both at baseline at
194 hour 12. In contrast, both Group 2 (*direct lung injury only*) and 3 (*combined direct and indirect*
195 *lung injury*) animals exhibited significant increases in chest radiograph abnormalities. In both
196 groups, all baseline radiographs were scored as normal with a range of 1-2. In Group 2 (*direct*
197 *lung injury only*), the chest radiograph score increased to a mean of 6 (SD 2.1) (range 3-9, 95%
198 CI: 2.1, 9.9). Group 3 (*combined indirect and direct lung injury*) increased to a mean of 7.4 (SD
199 4.3 (range 5-10, 95% CI: 4.3, 10.5). As a test of internal validity, we compared the severity of
200 impaired oxygen ($\text{PaO}_2/\text{FiO}_2$ ratio) and severity of injury on chest radiographs (chest radiograph
201 severity score). Mixed effects regression confirmed that an increased chest radiograph severity
202 score was significantly associated with decreased $\text{PaO}_2/\text{FiO}_2$ ratio when adjusted for


Figure 2. Representative chest radiographs across experimental groups. Ventral-dorsal chest radiographs were obtained at baseline and every 4 hours following exposure for the duration of the experiment. Images were scored by a Pulmonary & Critical Care Medicine physician (blinded to experimental group and timepoint) using a scale from 1 (normal) to 10 (severe, diffuse bilateral opacities).

203 experimental group and time point ($P=0.008$). These data demonstrate that the *combined indirect*
204 and *direct lung injury* exposures result in the development of diffuse bilateral pulmonary
205 infiltrates that are consistent with the human ARDS definition(5).

206

207 **Histopathology**

208 The histopathology of post-mortem lung tissue from the three experimental groups was assessed
209 by an expert thoracic pathologist (**Figure 3**). None of the specimens from Group 1 (*indirect lung*
210 *injury only*, $n = 4$) or Group 2 (*direct lung injury*, $n = 4$) exhibited the core features of DAD,
211 including hyaline membrane formation (the histopathological hallmark of DAD). In contrast, in

Figure 3. Representative histopathology across experimental groups. Post-mortem lung tissue was examined by an expert thoracic pathologist using a semi-quantitative instrument for identifying key features of Diffuse Alveolar Damage (DAD). (A) Of the four animals examined in Group 1 (indirect lung injury only), three were graded as *normal*. Abnormal findings included mildly increased interstitial cellularity and focal acute pneumonia in a single animal. No animals in Group 1 exhibited features of DAD. (B) Of the four animals examined in Group 2 (direct lung injury only), all four exhibited features of acute bronchopneumonia with intra-alveolar edema. No animals in Group 2 exhibited features of DAD. (C) Of the five animals examined in Group 3 (combined indirect and direct lung injury), 4/5 were classified as *definite DAD*. Prominent findings in Group 3 included hyaline membranes (4/5), intraalveolar edema (3/5), fibrin thrombi (5/5), and acute bronchopneumonia (5/5).

212 Group 3 (*combined indirect and direct lung injury*, n = 5), lung tissue from four of five animals
213 met criteria for *definite DAD* based on the presence of hyaline membranes and other key features
214 (e.g. intra-alveolar edema, fibrin thrombi). Within Group 1 (*indirect lung injury only*), three of
215 four examined lungs were histologically graded as *normal*, with a single animal exhibiting
216 increased interstitial cellularity and focal acute pneumonia. Within Group 2, four of four

217 examined lungs were characterized by acute bronchopneumonia with intra-alveolar edema. As
218 such, the *combined indirect and direct lung injury* exposures resulted in DAD, whereas the
219 individual *indirect lung injury* and *direct lung injury* exposures did not.

220

221 **Physiologic, Inflammatory, and Extrapulmonary Organ Function Measurements**

222 Additional data regarding physiologic, immunologic, and extrapulmonary organ function
223 measurements are included in the **Online Supplement**. At hour 12, peak airway pressures were
224 increased in Group 2 (*direct lung injury only*) and Group 3 (*combined indirect and direct lung*
225 *injury*) relative to Group 1 (*indirect lung injury only*) (**Supplemental Figure 1**). Arterial carbon
226 dioxide (PaCO₂) was greater in Group 3 (*combined indirect and direct lung injury*) than in
227 Group 1 (*indirect lung injury only*). Experimental groups did not differ at hour 12 in their white
228 blood cell count or relative neutrophilia (**Supplemental Figure 2**). Groups 1 (*indirect lung*
229 *injury only*) and 3 (*combined indirect and direct lung injury*) both exhibited biochemical
230 evidence of acute kidney injury (**Supplemental Figure 2**).

231

232 **Discussion**

233 We here report a novel swine model of ARDS that faithfully recapitulates the features of human
234 disease using common, clinically relevant injury exposures. Our model meets our prespecified
235 criteria for successful model development for human ARDS: 1) it recapitulates the physiologic
236 and histopathologic features of human disease (impaired oxygenation and diffuse alveolar
237 damage) and 2) it does so in a time-efficient manner in which ARDS is achieved within 24 hours
238 of exposure. Our novel model offers advantages over both small animal (rodent) models as well
239 as existing swine models that rely on clinically unrepresentative single-hit exposures (e.g. oleic

240 acid infusion(18, 19), surfactant washout(20)). Additionally, in alignment with NHLBI clinical
241 research priorities, our novel preclinical model 1) uses a biologically-relevant infectious
242 exposure (inoculation of viable *E. coli*)(23), 2) allows for the study of organ dysfunction and
243 organ support, and 3) permits cointerventions (e.g. intravenous fluids, vasopressors, and
244 antimicrobials). Our model thus fills an important gap in the preclinical study of ARDS, a
245 devastating and common condition for which we lack molecular diagnostics and therapeutics.

246

247 In addition to meeting our own prespecified criteria, our model meets other established criteria
248 for ARDS. Our model consistently provokes DAD (including hyaline membrane formation), the
249 histopathological hallmark of human ARDS. This pathological finding is highly specific, and
250 confirms that the model's hypoxemia and radiographic opacities are not attributable to
251 competing processes (e.g. shock, cardiogenic edema, or acute pneumonia). Our model also
252 satisfies the clinically-derived Berlin Criteria(5), which are typically considered inapplicable to
253 animal models given the impracticality of assessing arterial oxygenation and chest radiographs in
254 rodents(7). Finally, our model fulfills criteria established by a 2011 American Thoracic Society
255 workshop on experimental lung injury in animals(7), in that it induces 1) severe lung injury
256 within 24 hours of exposure, 2) histologic evidence of tissue injury (e.g. hyaline membranes), 3)
257 alteration of the alveolar capillary barrier (e.g. proteinaceous edema within the alveolar space),
258 4) alveolar inflammation (e.g. accumulation of alveolar neutrophils), and 5) physiologic
259 dysfunction (e.g. hypoxemia). In aggregate, our model thus robustly satisfies pathological,
260 clinical, and experimental criteria for ARDS.

261

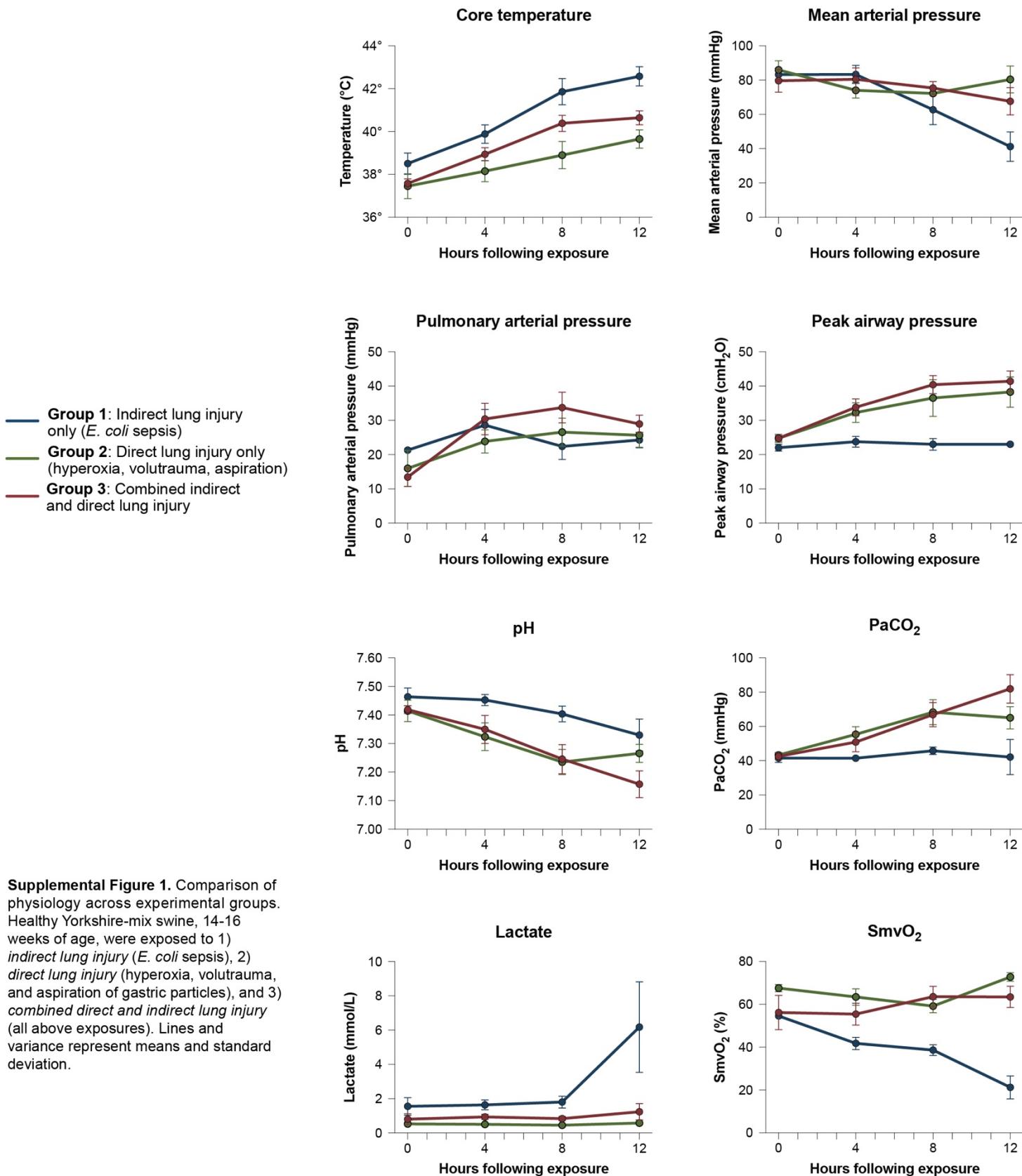
262 Importantly, these criteria for modeling ARDS were only met by our *combined* exposure group
263 (both *indirect lung injury* and *direct lung injury* exposures), and were not met by its individual
264 constituent exposures (*indirect lung injury only* or *direct lung injury only*). These findings are
265 congruent with recurring observations, both clinical(21) and experimental(22), that both
266 epithelial *and* endothelial injury are necessary to yield the full pathophysiologic and clinical
267 manifestations of ARDS. In the contemporary era, most patients with ARDS have risk factors
268 that represent both systemic (endothelial) pathology (e.g. sepsis or shock) as well as direct lung
269 injury (e.g. pneumonia or aspiration)(21). Even SARS-CoV-2, a pandemic respiratory virus that
270 causes ARDS in its most severe form, provokes both epithelial *and* endothelial lung injury as
271 assessed via post-mortem examination(27, 28). We believe this trend has important experimental
272 implications, as “single-hit exposures” (such as intratracheal endotoxin in mice) are unlikely to
273 fully recapitulate the complex pathophysiology of human ARDS. Strong consideration should be
274 given to leveraging combined exposures to improve the biological and clinical relevance of
275 experimental lung injury.

276
277 We acknowledge that our study has several limitations that should inform future investigations.
278 Firstly, this pilot study used only male animals to minimize one source of biologic heterogeneity.
279 Future studies will include both male and female animals to investigate the role of sex in the
280 susceptibility to ARDS(29). Secondly, we did not include a negative control arm (i.e., animals
281 that received either sham indirect and/or direct lung injury exposures). Despite this, our *indirect*
282 *lung injury only* experimental group exhibited near-normal lung histopathology, providing
283 reassurance that supportive care and instrumentation alone are not responsible for the ARDS
284 pathophysiology observed in our combined exposure group. Additionally, the availability of

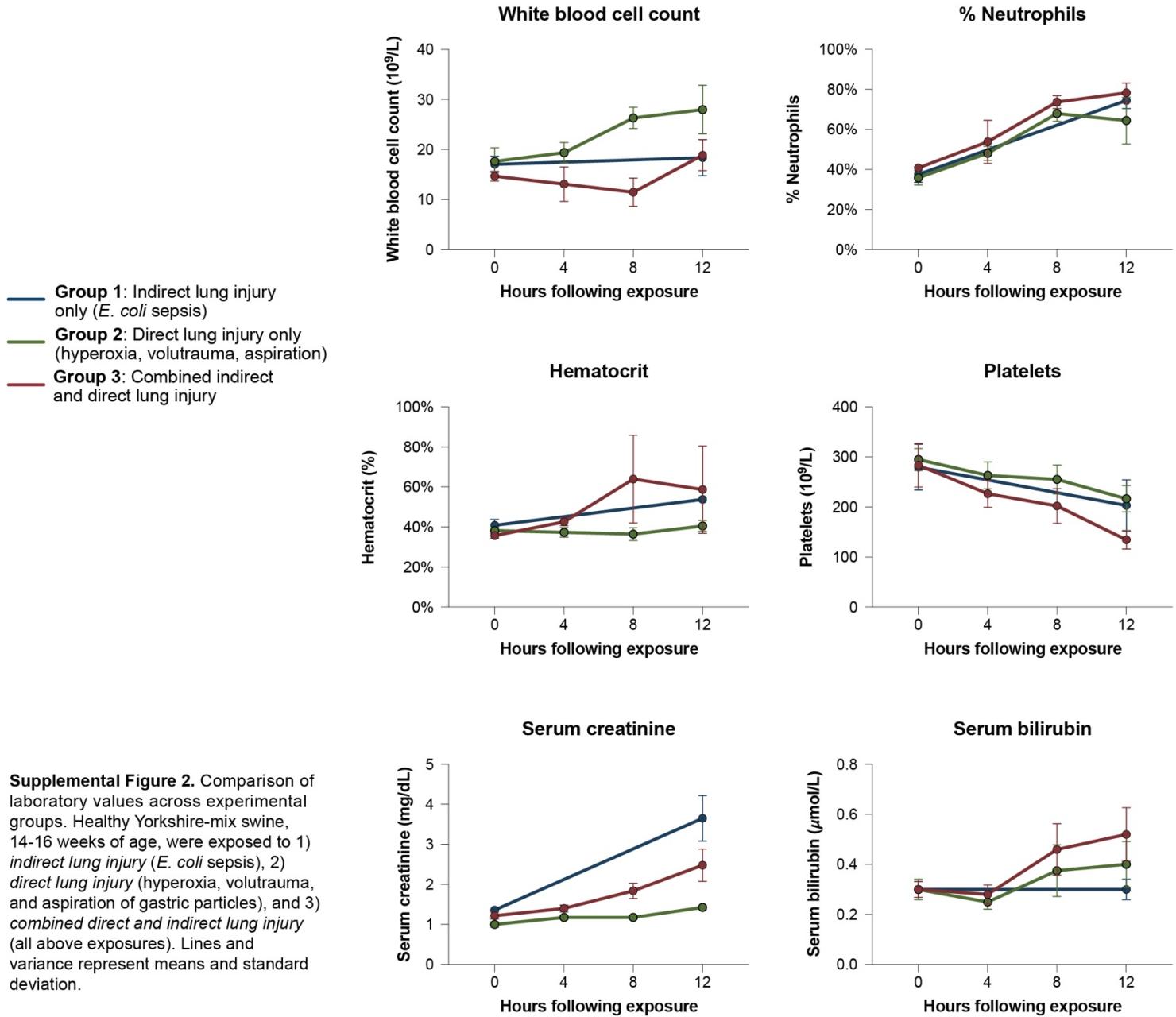
285 serial sampling afforded by large animal modeling permitted us to perform within-group
286 comparisons to baseline (pre-exposure) measurements for physiologic and radiographic features.
287 Finally, we did not design the model to test differences in survival, long-term management, or
288 sequelæ. In future studies, our model will serve as a foundation to test interventions such as
289 supportive care (e.g. ventilation strategies) or pharmacotherapy.

290

291 In conclusion, we report a novel high-fidelity swine model of ARDS provoked by common,
292 clinically-relevant injury exposures. As a controlled large animal model, it permits longitudinal
293 measurement of physiologic, radiographic, and biochemical features of disease, as well as
294 definitive histopathologic evaluation of lung tissue. This model fills an important pre-clinical gap
295 in the study of ARDS, and will facilitate translational inquiry into the pathogenesis and
296 management of this lethal and common lung condition.


297

298 **Acknowledgement**


299 The authors would like to thank Christopher Altheim, Christopher Fry and the staff of Michigan
300 Center for Integrative Research in Critical Care (MCIRCC) for their technical support.

Characteristic	Experimental Group		
	Group 1: <i>Indirect lung injury only</i>	Group 2: <i>Direct lung injury only</i>	Group 3: <i>Combined indirect and direct lung injury</i>
n	5	4	5
Weight (kg)	43(3.81)	44(2.06)	43(0.71)
Mean Arterial Pressure (mmHg)	85.5(9.31)	90.1(15.13)	93.0(7.19)
Pulmonary Artery Pressure (mmHg)	21.3(7.38)	13.5(6.23)	18.6(2.90)
Heart Rate (BPM)	74(5.8)	78(6.5)	70(9.3)
Temperature(°C)	37.8(0.80)	37.2(0.84)	37.4(0.61)
pH	7.474(0.022)	7.401(0.081)	7.442(0.093)
Lactate (mEq/L)	1.4(0.95)	0.5(0.05)	0.7(0.36)
SaO ₂ (%)	98.2(1.28)	100(0.00)	100(0.00)
SmvO ₂ (%)	58.8(1.92)*^	75.2(6.26)	78.8(4.62)
PaO ₂ /FiO ₂ Ratio	470(47.9)	454(28.8)	494(67.4)
PetCO ₂ (mmHg)	43.9(3.92)	39.9(2.15)	39.0(3.69)
PaCO ₂ (mmHg)	40.4(5.01)	46.3(6.76)	43.7(6.68)
White Blood Count (10 ⁹ /L)	17.06(3.62)	17.65(5.41)	14.67(2.16)
Monocytes (10 ⁹ /L)	0.16(0.104)	0.11(0.063)	0.09(0.039)
Lymphocytes (10 ⁹ /L)	10.41(2.420)	10.98(2.354)	8.57(1.210)
Neutrophils (10 ⁹ /L)	6.48(2.270)	6.56(3.363)	6.00(1.276)
Blood Urea Nitrogen (mg/dL)	7.4(3.43)	5.5(1.29)	7.6(2.40)
Creatinine (mg/dL)	1.3(0.11)*	1.0(0.14)	1.2(0.19)
Hematocrit (%)	40.6(6.55)	38.1(2.83)	35.6(3.07)
Platelet (10 ⁹ /L)	279(102.3)	294(44.0)	283(97.6)

Table 1. Baseline characteristics by group. Data are presented as mean (standard deviation). Statistical significance was set at $\alpha < 0.05$. * Denotes statistically significant difference between Group 1 and Group 2. ^ Denotes statistically significant difference between Group 1 and Group 3. PaO₂, Partial pressure of oxygen. FiO₂, Fraction of inspired oxygen. SmvO₂, Mixed venous oxygen saturation (%); PetCO₂, End-tidal CO₂ (mmHg). SaO₂, Arterial oxygen saturation. PaCO₂, Partial pressure of arterial CO₂.

Supplemental Figure 1. Comparison of physiology across experimental groups. Healthy Yorkshire-mix swine, 14-16 weeks of age, were exposed to 1) *indirect lung injury* (*E. coli* sepsis), 2) *direct lung injury* (hyperoxia, volutrauma, and aspiration of gastric particles), and 3) *combined direct and indirect lung injury* (all above exposures). Lines and variance represent means and standard deviation.

Supplemental Figure 2. Comparison of laboratory values across experimental groups. Healthy Yorkshire-mix swine, 14-16 weeks of age, were exposed to 1) indirect lung injury (*E. coli* sepsis), 2) direct lung injury (hyperoxia, volutrauma, and aspiration of gastric particles), and 3) combined direct and indirect lung injury (all above exposures). Lines and variance represent means and standard deviation.

References

1. Erickson SE, Martin GS, Davis JL, Matthay MA, Eisner MD, Network NNA. Recent trends in acute lung injury mortality: 1996-2005. *Crit Care Med* 2009; 37: 1574-1579.
2. Robles AJ, Kornblith LZ, Hendrickson CM, Howard BM, Conroy AS, Moazed F, Calfee CS, Cohen MJ, Callcut RA. Health care utilization and the cost of posttraumatic acute respiratory distress syndrome care. *J Trauma Acute Care Surg* 2018; 85: 148-154.
3. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. *Lancet* 1967; 2: 319-323.
4. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R. Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination. The Consensus Committee. *Intensive Care Med* 1994; 20: 225-232.
5. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. *JAMA* 2012; 307: 2526-2533.
6. Semler MW, Bernard GR, Aaron SD, Angus DC, Biros MH, Brower RG, Calfee CS, Colantuoni EA, Ferguson ND, Gong MN, Hopkins RO, Hough CL, Iwashyna TJ, Levy BD, Martin TR, Matthay MA, Mizgerd JP, Moss M, Needham DM, Self WH, Seymour CW, Stapleton RD, Thompson BT, Wunderink RG, Aggarwal NR, Reineck LA. Identifying Clinical Research Priorities in Adult Pulmonary and Critical Care: NHLBI Working Group Report. *Am J Respir Crit Care Med* 2020.
7. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM, Acute Lung Injury in Animals Study G. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. *Am J Respir Cell Mol Biol* 2011; 44: 725-738.
8. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. *J Immunol* 2004; 172: 2731-2738.
9. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. *Am J Respir Cell Mol Biol* 2011; 44: 725-738.
10. Semler MW, Bernard GR, Aaron SD, Angus DC, Biros MH, Brower RG, Calfee CS, Colantuoni EA, Ferguson ND, Gong MN, Hopkins RO, Hough CL, Iwashyna TJ, Levy BD, Martin TR, Matthay MA, Mizgerd JP, Moss M, Needham DM, Self WH, Seymour CW, Stapleton RD, Thompson BT, Wunderink RG, Aggarwal NR, Reineck LA. Identifying Clinical Research Priorities in Adult Pulmonary and Critical Care: NHLBI Working Group Report. *Am J Respir Crit Care Med* 2020; 202: 511-523.
11. Judge EP, Hughes JM, Egan JJ, Maguire M, Molloy EL, O'Dea S. Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine. *Am J Respir Cell Mol Biol* 2014; 51: 334-343.
12. Bailey M, Christoforidou Z, Lewis MC. The evolutionary basis for differences between the immune systems of man, mouse, pig and ruminants. *Vet Immunol Immunopathol* 2013; 152: 13-19.
13. Dawson HD, Loveland JE, Pascal G, Gilbert JG, Uenishi H, Mann KM, Sang Y, Zhang J, Carvalho-Silva D, Hunt T, Hardy M, Hu Z, Zhao SH, Anselmo A, Shinkai H, Chen C,

Badaoui B, Berman D, Amid C, Kay M, Lloyd D, Snow C, Morozumi T, Cheng RP, Bystrom M, Kapetanovic R, Schwartz JC, Kataria R, Astley M, Fritz E, Steward C, Thomas M, Wilming L, Toki D, Archibald AL, Bed'Hom B, Beraldi D, Huang TH, Ait-Ali T, Blecha F, Botti S, Freeman TC, Giuffra E, Hume DA, Lunney JK, Murtaugh MP, Reecy JM, Harrow JL, Rogel-Gaillard C, Tuggle CK. Structural and functional annotation of the porcine immunome. *BMC Genomics* 2013; 14: 332.

14. Dawson HD, Smith AD, Chen C, Urban JF, Jr. An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome. *Vet Microbiol* 2017; 202: 2-15.
15. Merrifield CA, Lewis M, Claus SP, Beckonert OP, Dumas ME, Duncker S, Kochhar S, Rezzi S, Lindon JC, Bailey M, Holmes E, Nicholson JK. A metabolic system-wide characterisation of the pig: a model for human physiology. *Mol Biosyst* 2011; 7: 2577-2588.
16. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. *Trends Microbiol* 2012; 20: 50-57.
17. Wernersson R, Schierup MH, Jorgensen FG, Gorodkin J, Panitz F, Staerfeldt HH, Christensen OF, Mailund T, Hornshoj H, Klein A, Wang J, Liu B, Hu S, Dong W, Li W, Wong GK, Yu J, Wang J, Bendixen C, Fredholm M, Brunak S, Yang H, Bolund L. Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. *BMC Genomics* 2005; 6: 70.
18. Dickson RP, Hotchkin DL, Lamm WJ, Hinkson C, Pierson DJ, Glenny RW, Rubinson L. A porcine model for initial surge mechanical ventilator assessment and evaluation of two limited-function ventilators. *Crit Care Med* 2011; 39: 527-532.
19. Schuster DP. ARDS: clinical lessons from the oleic acid model of acute lung injury. *Am J Respir Crit Care Med* 1994; 149: 245-260.
20. Russ M, Kronfeldt S, Boemke W, Busch T, Francis RC, Pickerodt PA. Lavage-induced Surfactant Depletion in Pigs As a Model of the Acute Respiratory Distress Syndrome (ARDS). *J Vis Exp* 2016.
21. Sjoding MW, Hofer TP, Co I, McSparron JI, Iwashyna TJ. Differences between patients in whom physicians agree and disagree about the diagnosis of acute respiratory distress syndrome. *Annals of the American Thoracic Society* 2019; 16: 258-264.
22. Wiener-Kronish JP, Albertine KH, Matthay MA. Differential responses of the endothelial and epithelial barriers of the lung in sheep to *Escherichia coli* endotoxin. *The Journal of Clinical Investigation* 1991; 88: 864-875.
23. Tiba MH, McCracken BM, Dickson RP, Nemzek JA, Colmenero CI, Leander DC, Flott TL, Daniels RC, Konopka KE, VanEpps JS, Stringer KA, Ward KR. A comprehensive assessment of multi-system responses to a renal inoculation of uropathogenic *E. coli* in swine. *PLoS one* 2020; 15: e0243577.
24. National Research Council (U.S.). Committee for the Update of the Guide for the Care and Use of Laboratory Animals., Institute for Laboratory Animal Research (U.S.), National Academies Press (U.S.). Guide for the care and use of laboratory animals. 8th ed. Washington, D.C.: National Academies Press; 2011.
25. Raghavendran K, Davidson BA, Huebschmann JC, Helinski JD, Hutson AD, Dayton MT, Notter RH, Knight PR. Superimposed gastric aspiration increases the severity of inflammation and permeability injury in a rat model of lung contusion. *J Surg Res* 2009; 155: 273-282.

26. Nemzek JA, Hodges AP, He Y. Bayesian network analysis of multi-compartmentalized immune responses in a murine model of sepsis and direct lung injury. *BMC Res Notes* 2015; 8: 516.
27. Polak SB, Van Gool IC, Cohen D, von der Thüsen JH, van Paassen J. A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression. *Mod Pathol* 2020; 33: 2128-2138.
28. Hariri LP, North CM, Shih AR, Israel RA, Maley JH, Villalba JA, Vinarsky V, Rubin J, Okin DA, Sclafani A, Alladina JW, Griffith JW, Gillette MA, Raz Y, Richards CJ, Wong AK, Ly A, Hung YP, Chivukula RR, Petri CR, Calhoun TF, Brenner LN, Hibbert KA, Medoff BD, Hardin CC, Stone JR, Mino-Kenudson M. Lung Histopathology in Coronavirus Disease 2019 as Compared With Severe Acute Respiratory Syndrome and H1N1 Influenza: A Systematic Review. *Chest* 2021; 159: 73-84.
29. Heffernan DS, Dossett LA, Lightfoot MA, Fremont RD, Ware LB, Sawyer RG, May AK. Gender and acute respiratory distress syndrome in critically injured adults: a prospective study. *J Trauma* 2011; 71: 878-883; discussion 883-875.