

Spinal V1 neurons inhibit motor targets locally and sensory targets distally to coordinate locomotion

Mohini Sengupta¹, Vamsi Daliparthi¹, Yann Roussel^{2,3}, Tuan Vu Bui² and Martha W. Bagnall¹

¹Washington University School of Medicine, Department of Neuroscience, St Louis, MO, USA.

²Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Biology, University of Ottawa, Ottawa, Canada.

³Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneve, Switzerland.

Corresponding author:

Martha W. Bagnall

bagnall@wustl.edu

Word count: 5487 words. Figures: 7. Supplementary Figures: 3. Supplementary tables: 2.

Acknowledgments:

We would like to thank Dr. David McLean and Dr. Sandeep Kishore for kindly providing us with the *mnx:pTagRFP* construct and Dr. Rich Roberts for helping create the *Tg(mnx:pTagRFP)stl603* fish line. This research was funded by the Pew Scholar Award (M.W.B.), R01 DC016413 (M.W.B.), a McKnight Scholar Award (M.W.B.), and the McDonnell Center for Cellular and Molecular Neurobiology Postdoctoral Fellowship 2021 (M.S.).

1 **Abstract**

2 Rostro-caudal coordination of spinal motor output is essential for locomotion. Most spinal
3 interneurons project axons longitudinally to govern locomotor output, yet their connectivity
4 along this axis remains unclear. In this study, we use larval zebrafish to map synaptic outputs of
5 a major inhibitory population, V1 (Eng1+) neurons, which are implicated in dual sensory and
6 motor functions. We find that V1 neurons exhibit long axons extending rostrally and exclusively
7 ipsilaterally for an average of 6 spinal segments; however, they do not connect uniformly with
8 their post-synaptic targets along the entire length of their axon. Locally, V1 neurons inhibit
9 motor neurons (both fast and slow) and other premotor targets including V2a, V2b and
10 commissural pre-motor neurons. In contrast, V1 neurons make robust inhibitory contacts
11 throughout the rostral extent of their axonal projections onto a dorsal horn sensory population,
12 the Commissural Primary Ascending neurons (CoPAs). In a computational model of the
13 ipsilateral spinal network, we show that this pattern of short range V1 inhibition to motor and
14 premotor neurons is crucial for coordinated rostro-caudal propagation of the locomotor wave.
15 We conclude that spinal network architecture in the longitudinal axis can vary dramatically, with
16 differentially targeted local and distal connections, yielding important consequences for function.

17 Introduction

18 The structure of neuronal connectivity is key to function. In cortex, the structure of inhibitory
19 circuits influences synaptic gain, spike timing, and membrane potential oscillations¹. In
20 vertebrates, the spinal cord is a major seat for motor control as it contains local circuits necessary
21 and sufficient for producing movement. Like the brain, the spinal cord also contains a range of
22 distinct interneuron classes, the interplay of which results in a rich repertoire of movements².
23 Extensive work has focused on understanding the functions of these interneuron classes
24 evaluating the behavioral effects of genetic ablation³⁻⁶; however, at the mechanistic level, the
25 circuit architecture underlying these effects remains largely unclear. Defining spinal network
26 organization can help provide valuable insight into interneuron functions⁷⁻¹¹ especially the
27 spatial structure of connectivity¹².

28 The spinal cord is elongated in the longitudinal or rostro-caudal (R-C) axis, which consists of
29 many repeated segments. Coordination along this axis is crucial for locomotion^{13,14}, yet
30 organization of neurons in this dimension is poorly understood. Based on studies of transected
31 spinal preparations, coordination in the R-C axis is not set up by independent segmental circuits,
32 but instead relies on continuous, segment spanning networks¹⁵ including long propriospinal
33 interneurons. Interestingly, blockade of glycinergic neurons disrupts R-C coordination
34 independently of left-right alternation, implying that ipsilateral inhibition is vital for locomotor
35 propagation¹⁵. Most spinal interneurons, including ipsilateral inhibitory neurons, project axons
36 spanning several segments along the R-C axis¹⁶⁻²⁰ yet not much is known about their
37 connectivity in this axis or its functional implications. Here, taking advantage of the transparency
38 and accessibility of the intact spinal cord in larval zebrafish, as well as its significant homology
39 with other vertebrates, we mapped connectivity along the R-C axis in a major ipsilateral
40 inhibitory population: V1 neurons.

41 V1 interneurons are marked by the expression of Engrailed1 (Eng1) transcription factor across
42 vertebrates^{18,21,22}. Genetic ablation of these neurons reduces locomotor speeds in both zebrafish³
43 and mice^{6,23} indicating that speed regulation is a primitive function of these neurons. In limbed
44 vertebrates, V1 serve as Renshaw cells to provide recurrent inhibition onto motor neurons, and as
45 Ia inhibitory neurons to provide reciprocal inhibition enforcing flexor-extensor alternation²⁴⁻²⁶.
46 Interestingly, connectivity studies have also revealed that V1 neurons inhibit sensory targets,
47 suggesting yet another role for these neurons: sensory gating during locomotion^{18,22}. It is
48 unknown whether and how the motor and sensory functions of V1 neurons are organized along
49 the longitudinal axis of the spinal cord.

50 Using a combination of single cell labelling, optogenetics and electrophysiology *in vivo*, we
51 mapped synaptic connectivity from V1 neurons to eight motor and sensory spinal populations.
52 Our results reveal that V1 neurons exhibit differential connectivity as they traverse the spinal
53 cord longitudinally. Despite projecting long axons spanning > 5 segments, V1 neurons inhibit
54 motor targets only locally. In contrast, they inhibit sensory targets distally. Using our
55 connectivity map as the basis of a simplified model of the ipsilateral spinal cord, we show that
56 this structure of V1 inhibition is critical for maintaining R-C coordination and locomotor speed.

57

58 **Materials and Methods**

59 **Animals:** Adult zebrafish (*Danio rerio*) were maintained at 28.5°C with a 14:10 light:dark cycle
60 in the Washington University Zebrafish Facility following standard care procedures. Larval
61 zebrafish, 4–6 days post fertilization (dpf), were used for experiments and kept in petri dishes in
62 system water or housed with system water flow. Animals older than 5 dpf were fed rotifers or
63 dry powder daily. All procedures described in this work adhere to NIH guidelines and received
64 approval by the Washington University Institutional Animal Care and Use Committee.

65 **Transgenic Fish Lines:** The transgenic line *Tg(eng1b-hs:Gal4)nns40Tg* (ZDB-ALT-151202-14)
66 was generated from CRISPR-mediated transgenesis²⁷ and was a kind gift from Dr. Shin-ichi
67 Higashijima. This line was crossed with a stable *Tg(UAS:CatCh)stl602* line (ZDB-ALT-201209-
68 12) generated by our lab²⁸ to create double transgenic animals that we refer to throughout this
69 paper as *Tg(eng1b:Gal4,UAS:CatCh)*. For targeting V2a and V2b neurons, the *Tg(vsx2:loxP-*
70 *DsRed-loxP-GFP)nns3Tg* (ZDB-ALT-061204-4)²⁹, and *Tg(gata3:lox-Dsred-lox:GFP)nns53Tg*
71 (ZDB-ALT-190724-4)²⁸ lines, respectively, were crossed to *Tg(eng1b:Gal4,UAS:CatCh)* to
72 generate triple transgenics. We generated the *Tg(mnx:pTagRFP)stl603* line by injecting a
73 construct kindly shared by Dr. David McLean.

74 **Stochastic single cell labelling by microinjections:** *Tg(eng1b:Gal4)* embryos were injected
75 with a *UAS:Dendra* plasmid (a gift from Dr. David McLean) at the 1-2 cell stage. Final plasmid
76 DNA concentration was 12-15 ng/μl. The embryos were transferred to system water, regularly
77 cleaned, and allowed to develop. At 4 dpf, larvae were screened for sparse expression of Dendra
78 in the spinal cord and selected for confocal imaging.

79 **Single cell labelling by electroporation:** *Tg(eng1b:Gal4,UAS:GFP)* animals (4–6 dpf) were
80 anesthetized in 0.02% MS-222 and fixed to a sylgard lined petri dish with custom made tungsten
81 pins. One muscle segment was carefully removed to expose the underlying spinal cord. A pipette
82 electrode (10-12 MΩ) filled with 10% Alexa Fluor 647 anionic dextran 10,000 MW (Invitrogen)
83 in potassium-based patch internal solution, was positioned to contact the soma of the target
84 neuron. Dye was electroporated into the cell via one to three 500 ms, 100 Hz pulse trains (1 ms
85 pulse width) at 2–5 V (A-M systems Isolated Pulse Stimulator Model 2100). Confocal imaging
86 was performed after 30 mins for dye filling.

87 **Confocal imaging:** 5–7 dpf larvae were anesthetized in 0.02% MS-222 and embedded in low-
88 melting point agarose (1.5%) in a 10 mm FluoroDish (WPI). Images were acquired on an
89 Olympus FV1200 Confocal microscope equipped with high sensitivity GaAsP detectors (filter
90 cubes FV12-MHY and FV12-MHYR), and a XLUMPlanFl-20x W/0.95 NA water immersion
91 objective. A transmitted light image was obtained along with laser scanning fluorescent images
92 to identify spinal segments. Sequential scanning was used for multi-wavelength images.

93 **Image analysis:** Confocal images were analyzed using ImageJ (FIJI)³⁰. GFP⁺ V1 neurons were
94 marked and counted using the ImageJ Cell Counter. Segment boundaries were marked manually
95 using the transmitted light image. For axon tracing, stitched projection images were made with
96 the Pairwise stitching³¹ ImageJ plugin. The overlap was dictated by selecting ROIs on both
97 images and the fused image smoothed with linear blending. Images were registered using the

98 fluorescent channel. Number of segments traversed by V1 axons were counted manually from
99 the stitched images.

100 **Electrophysiology:** Whole-cell patch-clamp recordings were performed in larvae at 4–6 dpf.
101 Larvae were immobilized with 0.1% α -bungarotoxin and fixed to a Sylgard lined petri dish with
102 custom-sharpened tungsten pins. One muscle segment overlaying the spinal cord was removed at
103 the mid-body level (segments 9–13). The larva was then transferred to a microscope (Nikon
104 Eclipse E600FN) equipped with epifluorescence and immersion objectives (60X, 1.0 NA). The
105 bath solution consisted of (in mM): 134 NaCl, 2.9 KCl, 1.2 MgCl₂, 10 HEPES, 10 glucose, 2.1
106 CaCl₂. Osmolarity was adjusted to ~295 mOsm and pH to 7.5. To record IPSCs, APV (10 μ M)
107 and NBQX (10 μ M) were also added to the bath. Patch pipettes (7–15 M Ω) were filled with
108 either of the following two internal solutions. Current clamp (recordings of V1 spiking): (in
109 mM): 125 K gluconate, 2 MgCl₂, 4 KCl, 10 HEPES, 10 EGTA, and 4 Na₂ATP. Voltage clamp
110 (IPSCs) (in mM): 122 cesium methanesulfonate, 1 tetraethylammonium-Cl, 3 MgCl₂, 1 QX-314
111 Cl, 10 HEPES, 10 EGTA, and 4 Na₂ATP. For both solutions, pH was adjusted to 7.5 and
112 osmolarity to 290 mOsm. Additionally, sulforhodamine 0.02% was included in the patch internal
113 to visualize morphology of recorded cells post-hoc. Recordings were acquired using a
114 Multiclamp 700B amplifier and Digidata 1550 (Molecular Devices). Signals were filtered at 2
115 kHz and digitized at 100 kHz. For IPSCs, cells were recorded at +0.3 mV (after correction for
116 liquid junction potential of 14.7 mV.)

117 **Optogenetic Stimulation:** A Polygon 400 Digital Micromirror Device (Mightex) was used to
118 deliver optical stimulation. The projected optical pattern consisted of a 4x4 grid of 16 squares.
119 Each square in the grid approximately measured 20 μ m x 20 μ m and covered 0-6 cells depending
120 on position. One full stimulus pattern consisted of an ordered sequence of turning ON and OFF
121 each of the 16 squares sequentially. For each small square, illumination consisted of a 20 ms
122 light pulse (470 nm) at 50% intensity. The sequence was triggered using a TTL pulse from the
123 Digidata to synchronize the stimulation with electrophysiology. The objective was carefully
124 positioned over a single spinal segment prior to stimulus delivery; for each new segment, the
125 stage was manually translated and repositioned. V1 spiking reliability was measured by
126 delivering multiple trials to a selected square that had evoked spiking on the first trial. A similar
127 protocol was used for all segments to obtain reliable IPSCs for measurement of conductances.

128 **Analysis of connectivity:** Electrophysiology data were imported into Igor Pro 6.37
129 (Wavemetrics) using NeuroMatic³². Spikes and IPSCs were analyzed using custom code in Igor
130 and MATLAB. Charge transfer for the evoked response was calculated by integrating the current
131 in a 50 ms window from the onset of the optical stimulus (Evoked) and subtracting this from
132 Control 1, a similar integral over a 50 ms window before the optical stimulus (Supplemental Fig.
133 1). This was done to account for spontaneous activity. To calculate background noise values, a
134 similar integral for a different 50 ms window at the end of the recording (Control 2) was
135 subtracted from Control 1 (Supplemental Fig. 1). Both the charge transfer of the evoked response
136 and background noise were summed across the 16 squares for each segment.

137 $Charge\ transfer(Segment\ i, square\ j) = Evoked(i, j) - Control\ 1(i, j)$

138 $Noise(Segment\ i, square\ j) = Control\ 2(i, j) - Control\ 1(i, j)$

139 $Total\ evoked\ charge\ transfer(Seg\ i) = \sum_{j=1}^{16} Charge\ transfer(i, j)$

140 $Total\ noise(Seg\ i) = \sum_{j=1}^{16} Noise(i, j)$

141 For statistical comparisons, *Total evoked charge transfer (Seg i)* was compared to *Total noise*
142 (*Seg i*) for each target population using the Wilcoxon Sign Rank Test ($p < 0.01$). The noise
143 threshold in each Figure represents mean noise + 3*STD, averaged over all segments.

144 Peak amplitudes of IPSCs were calculated from the first IPSC only to avoid effects from
145 synaptic depression/facilitation. Conductances were calculated from peak amplitude / driving
146 force (75 mV). Input resistances was measured by an average of small hyperpolarizing pulses.
147 Statistical tests were performed using MATLAB (R2020b, MathWorks).

148 **Computational modeling:** Zebrafish spinal cord networks were modeled in Python as a 15-
149 segment ipsilateral network with pacemakers located rostrally to the first segment. The
150 Izhikevich neuron model was used to simulate individual cells in the network³³. The following 6
151 parameters for each neuron were explicitly stated: *a*: recovery rate; *b*: sensitivity to spiking, *c*:
152 reset voltage, *d*: after-spike reset rate, peak V: maximum voltage of a spike, and x: segment
153 location. The reduced network modeled in this study included a cluster of rostrally located
154 pacemaker neurons, V1 neurons, V2a neurons, and motor neurons (MNs). Each segment in the
155 model incorporated a V2a neuron and a MN, with a single V1 neuron in every segment after
156 segment 3. The network was driven using 5 electrically coupled pacemaker neurons (see
157 Supplemental Table 1 for Izhikevich parameters) and a linear descending gradient of tonic drive
158 to V2a neurons. Pacemakers were electrically coupled to the 6 most rostrally located V2a
159 neurons. MNs received glutamatergic drive from V2as and glycinergic drive from V1 neurons.
160 Electrical synapses are modeled as ideal resistors following Ohm's law. Chemical synapses are
161 modeled as a biexponential that accounts for rise and decay rates, as well as glycinergic and
162 glutamatergic reversal potentials (see Supplemental Table 2 for chemical synapse parameters).
163 V2a neurons provided descending glutamatergic projections to other V2as and V1s located up to
164 3 segments away. V2a neurons also made bifurcating glutamatergic projections to motor
165 neurons, connecting to caudal motor neurons up to 3 segments away, and rostral motor neurons
166 up to 2 segments away. V1s formed glycinergic synapses with V2as and MNs; the structure of
167 V1 projections onto V2as and MNs was manipulated to target either local (soma within 1 to 3
168 segments) or distal (soma located 4 to 6 segments away). Individual weights of glycinergic
169 synapses formed by V1s were randomized from simulation to simulation using a gaussian
170 distribution [0.5 ± 0.25 std]; the sum of the weights of all V1 to V2a and V1 to MN was
171 maintained between simulations. Each network configuration was simulated 15 times to generate
172 summary data. Code for the model is available at [https://github.com/bagnall-lab/V1_connecting_project].

174

175 **Results:**

176 **V1 neurons project primarily ascending axons spanning 5-10 spinal segments**

177 V1 neurons are distributed along the length of the spinal cord^{18,24}, but there are no systematic
178 analyses of their cell numbers and morphology in zebrafish. Using confocal imaging of the
179 *Tg(eng1b:Gal4, UAS:GFP)* fish line, we obtained cell counts of GFP+ neurons all along the
180 length of the zebrafish larval spinal cord, which is partitioned by myotomes into ~28 segments.
181 V1 neurons were uniformly distributed along the rostro-caudal (R-C) axis, with an average of
182 18.9 ± 5.6 V1 neurons per segment (Fig. 1A, B; mean \pm SD, N=10 larvae). Next, to optimize
183 design of our subsequent mapping experiments, we investigated the extent of V1 axonal

184 projections in the R-C axis. In mice²¹ and zebrafish¹⁸, V1 neurons project axons ipsilaterally and
185 rostrally, as do their counterparts, the aINs in *Xenopus* tadpoles²². A subset of V1 neurons also
186 exhibit descending axonal branches^{18,34,35}. To study morphology of V1 neurons, we performed
187 single cell labelling in the *Tg(eng1b:Gal4, UAS:RFP)* fish line using two approaches: single cell
188 electroporation of fluorescently tagged dextran or micro-injection of a *UAS:Dendra* plasmid
189 construct, followed by confocal imaging of single cells. Both techniques yielded similar results
190 and were pooled for analysis. Fig. 1C shows an example of a representative V1 neuron labeled
191 with *UAS:Dendra*. All V1 neurons (N=28 cells from 18 larvae) displayed an exclusively
192 ipsilateral ascending axon, extending for a median of 6 segments. 17 / 28 neurons (60.7%) also
193 exhibited a short descending axon branch spanning a median of 1 segment (Fig. 1D). Based on
194 these results, we chose to build a connectivity map covering 7 segments in the ascending
195 direction and 2 segments in the descending direction to encompass the V1 axonal extent.

196 **Patterned optical stimulus evokes localized and reliable spiking in V1 neurons**

197 To create a map of V1 connectivity via optical stimulation, we generated a transgenic fish line,
198 *Tg(eng1b:Gal4, UAS CatCh)*, in which the calcium permeable channelrhodopsin CatCh³⁶ was
199 expressed in V1 neurons (schematic, Fig. 2A). We first needed to ensure that optogenetic
200 stimulation was only effective at eliciting spiking when light was targeted near the soma of a V1
201 neuron, not its axon. We recorded whole cell from V1 neurons while projecting 20 x 20 μm
202 squares of blue light via a digital micromirror device (DMD). A 4x4 grid of these squares was
203 delivered in sequence and effectively tiled each spinal segment (Fig. 2B). The membrane
204 potential responses of an example V1 neuron to each element of the optical stimulus is shown in
205 Fig. 2C. Most squares elicited only subthreshold responses, but illumination of the square
206 directly on the soma (black dot) or in a few surrounding squares effectively drove spiking
207 (asterisks). Note that spikes recorded at the soma are very small amplitude, as previously
208 reported for V1 neurons in zebrafish, likely reflecting their generation at some electrotonic
209 distance from the soma¹⁸. Spiking elicited by illumination is represented as a heat map of spike
210 count (Fig. 2C, right). This spatially restricted response was observed for all 10 V1 neurons
211 recorded (Fig. 2D).

212 Next, because our primary objective was to map connectivity in the R-C axis, we tested the
213 efficacy of the optical stimulus by translating it longitudinally. An identical 4x4 illumination
214 pattern was projected first one and then two segments away from the recorded cell, in the rostral
215 and caudal directions. As shown in the representative example, illumination outside of Segment
216 0 (the recorded segment containing the V1 soma) rarely elicited any appreciable spiking
217 responses (Fig. 2E). Antidromically evoked spiking was recorded in only 2 out of 10 cells, and
218 even in these cases the number of spikes elicited was very low (Figs. 2E and F). Furthermore,
219 repeated presentation of on-soma illumination reliably evoked spiking in 7 out of 10 neurons
220 (Fig. 2G). Taken together, these data indicate that this optical stimulation is able to evoke V1
221 spiking only within the illuminated segment, allowing us to use this method for subsequent
222 longitudinal mapping of connectivity.

223 **V1 neurons inhibit motor neurons locally**

224 Anatomical and physiological studies indicate that V1 neurons directly inhibit motor neurons in
225 mice^{25,34,35,37}, zebrafish^{3,18}, and tadpoles²². Based on the long ascending projections of V1 axons,
226 we anticipated that this inhibition would extend over ~6 segments rostrally from each V1 neuron.
227 To examine the spatial extent of V1 inhibition, we recorded from fast primary and slow
228 secondary motor neurons while delivering optical stimulation as above in *Tg(eng1b:Gal4,*
229 *UAS:CatCh*) larvae. Primary MNs (pMNs) are identifiable by their large, laterally placed
230 somata, low input resistances, and extensive axon arborization in characteristic patterns³⁸. We
231 targeted pMNs for whole-cell recording based on their appearance and validated their identities
232 by post-hoc cell fills. In this and subsequent experiments, neurons were held at 0 mV in voltage
233 clamp with a cesium-based internal solution and glutamate receptor blockers in the bath to
234 isolate IPSCs. The patterned optical stimulus was delivered one segment at a time, caudally up to
235 7 segments and rostrally up to 2 segments relative to the recording site, while recording light
236 evoked IPSCs (schematic, Fig. 3A). Fig. 3B shows representative traces of evoked IPSCs in
237 pMNs (top) when the optical stimulus was presented 1, 3 and 7 segments caudal to the recording
238 site, respectively. pMNs received robust IPSCs when V1s were stimulated 1 segment caudally,
239 but surprisingly, this inhibition diminished drastically as the optical stimulation was translated
240 further caudally (Fig. 3B, top). Charge transfer of the evoked IPSCs (Fig. 3C, inset) was
241 calculated as the area under the curve for the 50 ms following light stimulus and compared to the
242 noise calculated in the same way from a random post-stimulus window of the same duration (see
243 Methods and Supplemental Fig. 1). Charge transfer for segments 0, 1, and 2 was significantly
244 different from noise (Fig. 3B, bottom; N=26 neurons; Wilcoxon Sign Rank Test, $p < 0.01$). In
245 contrast, the responses for segments 3, 5, and 7 were indistinguishable from noise. Charge
246 transfer elicited by the descending axons, in Segments -1 and -2, was small in amplitude and
247 significantly different from noise only for Segment -1. These results indicate that V1 neurons
248 only provide appreciable inhibition onto pMNs located close to the V1 soma.

249 To test V1 connectivity to slow, secondary motor neurons (sMNs), we crossed the
250 *Tg(eng1b:Gal4, UAS:CatCh)* line to a motor neuron reporter line, *Tg(mnx:pTagRFP)*³⁸.
251 Recordings targeted smaller motor neurons, and optical stimulation was performed the same way
252 as above. sMNs also showed evoked IPSCs for V1 stimulation in local segments but not distally
253 (Fig. 3C, top). Charge transfer elicited by stimulation in Segments 0-3 was significantly different
254 from noise (N=11 neurons; Wilcoxon Sign Rank Test, $p < 0.01$), but not for distal segments 5
255 and 7 (Fig. 3C, bottom). Thus, similar to pMNs, sMNs are inhibited predominantly by local V1
256 neurons.

257 This decrease in evoked inhibition onto neurons located distally from the segment of stimulation
258 could arise from a) a decrease in the number of V1 neurons connecting to motor neurons at
259 longer distances, or b) a decrease in the strength of individual connections for distal, as opposed
260 to proximal, synapses from V1 neurons onto motor neurons. To differentiate between these two
261 possibilities, we first analyzed the number of grid squares that evoked IPSCs in each segment.
262 Because V1 neurons are evenly distributed along the R-C axis (Fig. 1A, B) and our patterned
263 stimulus uniformly covered one full segment, the number of squares evoking IPSCs can be used
264 as a proxy for the number of connections. Fig. 3D shows a significant decrease in the percent of
265 squares eliciting IPSCs along the R-C axis for both pMNs and sMNs (Kruskal Wallis Test and

266 post hoc Tukey's test, $p < 0.01$), suggesting that fewer V1 neurons in the distal segments make
267 contact with motor neurons. As a measurement of the strength of individual synaptic
268 connections, we analyzed the peak amplitudes of the evoked IPSCs (Fig. 3E). There was no
269 significant difference between segments (Kruskal Wallis Test, $p > 0.01$), suggesting that the
270 strength of individual connections is consistent along the R-C axis. Overall, these data indicate
271 that despite projecting axons 5-10 segments rostrally, V1 neurons synapse only locally onto both
272 primary and secondary motor neurons (< 3 segments), and that this bias in connectivity is set by
273 the number of V1 neurons synapsing on each target, not by a change in synaptic weights.

274

275 **V2a and V2b neurons also receive inhibition locally from V1 neurons**

276 In addition to motor neurons, premotor spinal circuits are also composed of several classes of
277 interneurons that are crucial for setting different patterns and rhythms of movement². To
278 determine whether this pattern in V1 connectivity extends to other potential synaptic targets, we
279 next examined their inputs onto V2a and V2b cells, which arise from a final division of the p2
280 progenitor class³⁹. V2a (vsx2+, previously known as *chx10* or *alx*) neurons are glutamatergic
281 excitatory drivers of locomotion⁴⁰⁻⁴². V2b (GATA3+) neurons, on the other hand, are
282 glycinergic/GABAergic and their activation slows down locomotion²⁸. V1 inhibition of V2a
283 neurons is implicated in speed control³, and both V2a and V2b neurons have been shown to
284 synapse onto motor neurons^{8,19,43}. We investigated the structure of V1 connectivity to these two
285 premotor classes by crossing the *Tg(eng1b:Gal4, UAS:CatCh)* line to either *Tg(vsx2:lox-Dsred-*
286 *lox:GFP)* or *Tg(gata3:lox-Dsred-lox:GFP)* to target recordings to V2a and V2b neurons,
287 respectively^{28,29} (schematic, Fig. 4A). As shown in Fig. 4B, C, both V2a and V2b neurons could
288 be robustly inhibited by optical stimulation of V1 neurons up to 3 segments away from the
289 recording site. However, stimulation of V1 neurons further caudal elicited little or no inhibition.
290 Charge transfer values for V2a neurons showed that stimulation of segments 0 - 5 evoked
291 inhibitory responses significantly different from noise (N=14 neurons; Wilcoxon Sign Rank
292 Test, $p < 0.01$), whereas stimulation at segment 7 did not (Fig. 4B, bottom). For V2b neurons,
293 the effect was even more local with IPSCs elicited by stimulation at segments 0, 1, 2 and 3
294 significantly different from background noise (Fig. 4C, bottom; N=8 neurons; Wilcoxon Sign
295 Rank Test, $p < 0.01$) but not at segments 5 and 7. V2a neurons also showed significant responses
296 when V1 neurons were stimulated rostral to the recording site (Fig. 4B, Segment -2), but this was
297 not the case for V2b neurons. As with motor neurons, we analyzed the number of squares
298 evoking IPSCs in every segment for V2a and V2b neurons. The number of squares capable of
299 evoking IPSCs decreased steadily as the optical stimulus was translated caudally, indicating
300 fewer V1 neurons connecting with V2as/V2bs distally (Fig. 4E; Kruskal Wallis Test, $p < 0.01$).
301 An analysis of the conductances of IPSCs in different segments did not show any longitudinal
302 bias for either V2a or V2b neurons (Fig. 4F; Kruskal Wallis Test, $p > 0.01$) indicating that the
303 differences in the connectivity along the R-C axis are shaped by a difference in the number of
304 distally contacting V1 neurons and not by a change in the strength of the connections.

305

306 **CoPA neurons receive both local and distal V1 inhibition**

307 In addition to their role in motor control, V1 neurons and their counterparts in *Xenopus* (aINs)
308 are known to govern sensory gating²² and project to the dorsal horn^{18,22,24}. In larval zebrafish, V1
309 neurons have been shown to directly contact Commissural Primary Ascending (CoPA)
310 neurons¹⁸, a glutamatergic dorsal horn sensory population which are recruited in response to
311 touch and cause contraversive flexion^{44,45}. CoPA neurons were originally described based on
312 their stereotypic morphology, but recent studies have identified a potential genetic marker,
313 *Mafba*, a zebrafish ortholog of *Mafb*⁴⁶. Based on expression of *Mafb* and their anatomical and
314 functional properties, CoPA neurons are likely homologous to deep dorsal horn Laminae III/IV
315 glutamatergic neurons arising from the dI5/dIL_B precursor populations that receive afferent
316 inputs carrying innocuous mechanoreceptive signals^{47,48}. During early spontaneous coiling and
317 later in burst swimming, the CoPAs receive glycinergic inhibition that gates their activity⁴⁴, a
318 potential source being V1 neurons. Therefore, we next examined the longitudinal structure of V1
319 connectivity to CoPA neurons. CoPAs are readily distinguished by their dorsal location, large
320 triangular somas and elongated dendrites extending several segments^{45,49}, and were identified
321 post hoc with cell fills. As above, we recorded IPSCs from CoPA neurons while delivering V1
322 optical stimulation along the R-C axis (Fig. 5A). Surprisingly, in contrast to our observations in
323 motor targets, CoPA neurons received robust V1-mediated inhibition from stimulation both
324 locally and distally, even up to 9 segments away (Fig. 5B, C, left). Charge transfer values for all
325 segments from 0-9 were significantly different from noise (Fig. 5C, left; N=12 neurons;
326 Wilcoxon Sign Rank Test, $p < 0.01$). No appreciable V1 connectivity was observed from the
327 descending axonal branch of V1 neurons to the CoPAs (Fig. 5C, Segments -1 and -2).

328 We considered the possibility that as V1 axons ascend and travel dorsally, they connect
329 indiscriminately to dorsal horn (sensory) targets. Therefore, we targeted another dorsal horn
330 sensory population, the Dorsal Longitudinal Ascending (DoLA) neurons, a GABAergic
331 population expressing *Tbx16* and *Islet1*⁵⁰ that is likely homologous to GABAergic Islet⁺ / dI4
332 cells in Lamina I-III of mouse spinal cord⁵¹. However, V1 neuron stimulation evoked no synaptic
333 inputs to DoLAs, either locally or distally (Fig. 5B, C, right; N=5 cells). Therefore, the V1
334 connectivity to CoPAs reflects specific targeting within the dorsal horn. An analysis of the
335 number of squares in the grid that evoke IPSCs in CoPAs revealed that there was no significant
336 difference between local segments (Segments 0-1) and distal segments (5-7) (Fig. 5D; Kruskal
337 Wallis Test, $p > 0.01$) indicating that a similar number of V1 neurons connect to CoPAs both
338 locally and distally. We further compared the conductances of IPSCs between local and distal
339 segments. No significant difference was observed between any segment (Fig. 5E; Kruskal Wallis
340 Test, $p > 0.01$), suggesting that the strength of V1 connectivity to CoPAs is maintained all along
341 the R-C axis.

342 **Other pre-motor neurons receive only local inhibition from V1 neurons**

343 Collectively, these data indicate that V1 neurons exhibit a bias in their local vs. distal
344 connectivity. What dictates this bias? One hypothesis is that V1 neurons connect locally to all
345 ipsilaterally projecting targets (MNs, V2as and V2bs) but connect more broadly to
346 contralaterally projecting targets (CoPAs). Alternatively, this bias could be based on motor

347 related (MNs, V2as and V2bs) versus sensory (CoPAs) identities. To test these hypotheses we
348 targeted ventral horn commissurally projecting neurons that are likely dI6/V0 identity. These
349 neurons comprise both inhibitory and excitatory^{52–54} subsets but are characterized by a common
350 morphological motif: a commissural, bifurcating axonal trajectory^{52,53}. We utilized this distinct
351 morphology to categorize these neurons as Commissural Pre-motor (CoPr) neurons. Neurons
352 located dorsally to V1 neurons with commissural, bifurcating axon morphology were identified
353 post hoc with cell fills. V1 optical stimulation was performed as before (Fig. 6A). Interestingly,
354 CoPr neurons also received only local inhibition from V1 neurons (Fig. 6B, C). Charge transfer
355 at Segments 0, Segment 1 and Segment 3 was significantly different from noise (Fig. 6C; N=7
356 neurons; Wilcoxon Sign Rank Test, $p < 0.05$) while other segments were not. We also analyzed
357 the number of squares evoking IPSCs per segment and conductances of IPSCs. No significant
358 differences between segments were observed for either of these parameters (Fig. 6C, D). We also
359 examined connectivity from V1 neurons onto other V1 neurons; only at segment 0 was there
360 significant V1-evoked inhibition (Supplemental Fig. 2). Thus, these data support the notion that
361 V1 neurons connect locally to motor-related targets and long-range to sensory targets.

362 Fig. 6F summarizes connectivity data to all of the targets tested. The magnitude of charge
363 transfer is not directly comparable across neurons, because inhibition's effects will depend on its
364 strength relative to the total conductance of the target neuron. Therefore, we normalized the
365 charge transfer for each neuron to that cell's intrinsic conductance (i.e., the inverse of input
366 resistance) to compare the impact of V1 inhibition between different targets as well as across the
367 R-C axis (Fig. 6F, bottom). We clearly observe differential connectivity from V1 neurons to
368 sensory (CoPA) as compared to motor related (pMN, sMN, V2a, V2b and CoPr) post synaptic
369 targets. Because sensory and motor related targets are found in the dorsal and ventral horns,
370 respectively², this heat map of V1 connectivity along the R-C axis also showed a dorsal – ventral
371 structure. Interestingly, the contribution of the descending axonal branch of V1 neurons, though
372 visible in the individual data sets, appeared to have minimal impact when normalized (Fig. 6F,
373 Segments -1, -2). Taken together, these data show that although V1 neurons extend long,
374 ascending axons spanning several spinal segments, they do not uniformly connect to all post
375 synaptic targets along the extent of their axons. Closer to their somata (locally), V1 neurons
376 preferentially inhibit motor and pre-motor targets. In contrast, as the axon travels rostrally,
377 connectivity with motor and pre-motor neurons falls off sharply, and instead it inhibits sensory
378 CoPAs (schematized in Fig. 6F, top).

379 **V1 connectivity to local motor populations is required for longitudinal coordination**

380 These experimental data demonstrate that V1 connectivity is restricted to motor and premotor
381 targets located within 1 to 3 segments. To evaluate the importance of the structure of ipsilateral
382 inhibition on zebrafish swimming behavior, we developed a computational model of the
383 zebrafish spinal cord. Since V1 neurons do not have any effect on left-right alternation^{6,25}, we
384 modeled only the unilateral cord. V2b neurons were excluded due to lack of knowledge on their
385 downstream targets other than motor neurons. CoPA neurons were not included because they are
386 thought to be active in response to unexpected touch, not during normal locomotion⁴⁴. This
387 reduced model comprised a cluster of pacemaker neurons and a 15 hemisegment spinal cord,

388 consisting of MNs, V2a, and V1 neurons (Fig. 7A, see Methods for detailed description).
389 Individual neurons were simulated with ordinary differential equations as described in the
390 Izhikevich model³³. V2a neurons formed glutamatergic synapses onto other V2as, V1s, and
391 MNs, while V1s formed glycinergic synapses onto V2a and MNs. The spiking activity of MNs
392 served as the readout of our spinal cord model.

393 We first simulated a network that matched our experimental results, with local V1 inhibition
394 (within 1 to 3 segments) onto V2as and MNs (schematic, Fig. 7B; connectivity map, 7C, left).
395 This model recapitulated swim beats with clean rostro-caudal propagation of a locomotor wave
396 (Fig. 7D, left). The tail beat occurred at a frequency of 21.4 Hz (mean ISI between 35 and 70 ms;
397 46.7 ms \pm 6.1 std), as seen in an inter-spike interval (ISI) plot for all MNs (Fig. 7E, left). Next,
398 we tested the consequences of changing V1 inhibition from local to distal by shifting V1
399 connections onto MNs and V2as located 4-6 segments rostrally (Fig. 7B, C, middle). The total
400 amount of inhibition was held constant compared to the first model; only the location of the
401 connections was altered. Distal V1 connectivity to MNs and V2as produced extraneous spikes in
402 MNs outside of swim beats, creating erratic oscillations and aberrant “contractions” that
403 disrupted the smooth rostro-caudal propagation (Fig. 7D, middle). To quantify these effects, we
404 measured the ISI for each MN and found that in addition to ISIs associated with the tail beat
405 (17.9 Hz, 55.6 ms \pm 2.2 ISI, Fig. 7E, middle), new peaks in the histogram revealed MNs firing
406 out of phase, with frequencies of 66.1 Hz (15.1 ms \pm 4.4 ISI, Fig. 7E, middle) and 23.8 Hz (42
407 ms \pm 3.2 ISI, Fig. 7E, middle). These spikes reflect “contractions” during the time immediately
408 after passage of the locomotor wave, when normally spiking would be suppressed to avoid
409 aberrant movement. To determine whether normal network function is impacted more by distal
410 V1 to V2a connectivity or distal V1 to MN connectivity, we simulated a hybrid network with
411 distal V1 to V2a but local V1 to MN connections (Fig. 7B, C, right). Interestingly, this network
412 had fewer extraneous spikes but still exhibited slower swim beats compared to all local V1
413 inhibition (17.8 Hz, 56.1 \pm 3.2 ms vs \sim 21.4 Hz) (Fig. 7D, E, right). We also simulated the reverse
414 hybrid model with local V1 to V2a but distal V1 to MN connections; this network exhibited a
415 similar frequency of swim beats (21.8 Hz, 45.9 ms \pm 6.1) as our experimentally derived model
416 but produced extraneous spikes (53.3 Hz, 18.8 ms \pm 7.7, Supplemental Fig. 3). Taken together,
417 these simulations show that local V1 connectivity is crucial for normal spinal cord rhythmicity,
418 and that alterations in this network structure affect both swim frequency and network reliability.

419

420 **Discussion**

421 In this study, we show that V1 neurons exhibit differential connectivity to targets located
422 proximally vs distally along the longitudinal axis of the spinal cord. Specifically, V1 neurons
423 inhibit motor and premotor targets located nearby, and sensory targets further away, a unique
424 connectivity pattern not described before. Furthermore, we show that this configuration has
425 critical functional implications for propagation of the locomotor wave and R-C coordination. The
426 results demonstrate that circuit architecture can vary along the longitudinal axis of the spinal
427 cord, and that this architecture is important to circuit function.

428 **Distribution and anatomy of V1 neurons**

429 We find that V1 neurons are evenly distributed along the R-C axis, with similar numbers per
430 segment as reported for both V2a and V2b neurons^{19,28}. In mice, not only is V1 distribution
431 weighted to the caudal end⁵⁵ but also transcriptionally different subsets of V1 neurons are
432 enriched differentially in rostral versus caudal spinal segments^{55,56}. It will be interesting to
433 examine whether transcriptional profiles of V1 neurons in zebrafish reveal multiple differentially
434 distributed subsets, or whether that is specific to the evolution of limbs. Morphologically, our
435 observations match earlier descriptions from different amniotes. V1 neurons project primarily
436 ascending and exclusively ipsilateral axons with a shorter descending axonal branch^{18,21,22,34}. The
437 descending axonal branch is of lower caliber and also develops later¹⁸. Our cell fills revealed
438 only short descending branches (up to 2 segments), in contrast with an earlier study in zebrafish
439 reporting longer branches up to 7 segments¹⁴. These morphological results were supported by
440 physiological observations that V1-mediated IPSCs could not be elicited in recordings from
441 targets >2 segments caudal to the stimulated segment (i.e., Segments -3 and -5; data not shown).
442 Future work may reveal the function of long descending branches after their later development.

443 **Heterogeneity of V1 neurons**

444 Recent work in mice has shown that V1 neurons can be divided into 50 transcriptionally
445 different subtypes that exhibit distinct physiology and position in the ventral horn, implying
446 different functions⁵⁷. Our anatomical experiments revealed two different morphologies of V1
447 neurons: those with purely ascending axons (ascending V1s) and others with both an ascending
448 axon and a descending axonal branch (bifurcating V1s) (Fig. 1C, D), suggesting the possibility
449 of two different subclasses. Interestingly, we observed robust contacts from the descending
450 axonal branch onto motor neurons (Fig. 3C, D) and V2as (Fig. 4C) but not with sensory CoPAs
451 (Fig. 5C). One potential explanation is that differential connectivity to motor and sensory targets
452 is accomplished by two different V1 subclasses; i.e., ascending V1s project long distances and
453 connect only to sensory CoPAs whereas bifurcating V1s only project locally and connect to
454 motor targets. However, our data do not support this hypothesis: there are no differences in the
455 ascending axon trajectories (axonal length and D-V positions of the axons) or even the D-V
456 position of the somas between these two subtypes. Therefore, we conclude that individual V1
457 neurons likely connect to both sensory and motor targets differentially along their projections.

458 In limbed vertebrates, multiple functional subclasses of V1 neurons have been identified:
459 Renshaw cells involved in feedback control, and Ia inhibitory neurons participating in flexor-
460 extensor reciprocal inhibition⁵⁸. Both these subclasses contact motor neurons but receive
461 different inputs⁵⁹. Since our data maps the output of V1 neurons, and not the input, we cannot
462 evaluate whether V1 neurons in our study are similar to Renshaw cells or Ia inhibitory neurons.
463 Future delineation of subtypes of V1 neurons in zebrafish, including analysis of their inputs from
464 motor neuron collaterals⁶⁰, will help elucidate additional conserved functions of these neurons in
465 motor control.

466 **V1 influence on speed regulation**

467 Ablating or inhibiting V1 neurons results in slower speeds of locomotion in both mouse and
468 zebrafish^{3,6,23}. V1 neurons appear to govern speed through two different mechanisms: suppression of spiking in slow motor neurons and burst termination in fast motor neurons. In
469 accordance with this, we also observed robust evoked IPSCs from V1 neurons to fast, pMNs
470 (Fig. 3C). Although the magnitude of evoked IPSCs was higher in fast pMNs (Fig. 3C), the
471 extent and impact of V1 inhibition was greater in slow sMNs after normalization to conductance
472 (Fig. 6F), consistent with the idea that V1 neurons suppress slow MNs to permit fast swim³. Our
473 results also confirm that V1 neurons directly inhibit V2a neurons³. Moreover, results from our
474 model indicate that local connectivity to both motor neurons as well as V2as is necessary to
475 maintain fast speeds of locomotion and R-C propagation of the locomotor wave (Fig. 7). Another
476 spinal population affecting locomotor speed is the V2b class, an inhibitory, ipsilaterally
477 projecting interneuron population. Loss of V2b neurons result in an increase in locomotor speed,
478 suggesting that V2bs act as brakes on locomotion²⁸. Direct inhibition of V2b neurons by V1
479 neurons, resulting in disinhibition of motor neurons, could be yet another mechanism by which
480 V1 neurons facilitate high locomotor speeds. Future analysis with models including different
481 speed modules as well as V2b inhibition will help shed light on the fine control of these various
482 mechanisms of speed regulation.
483

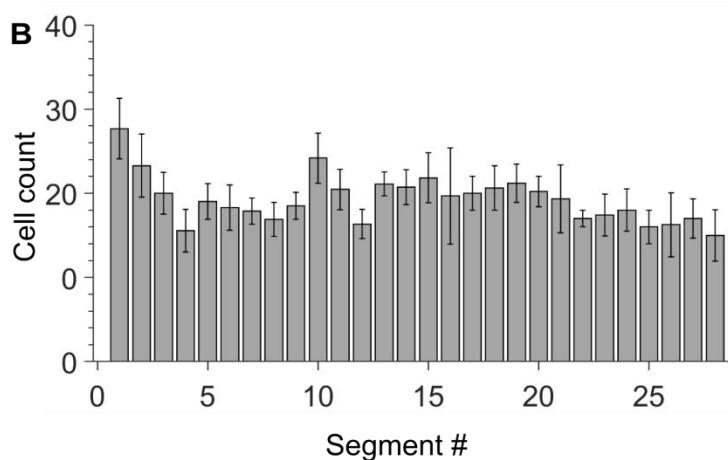
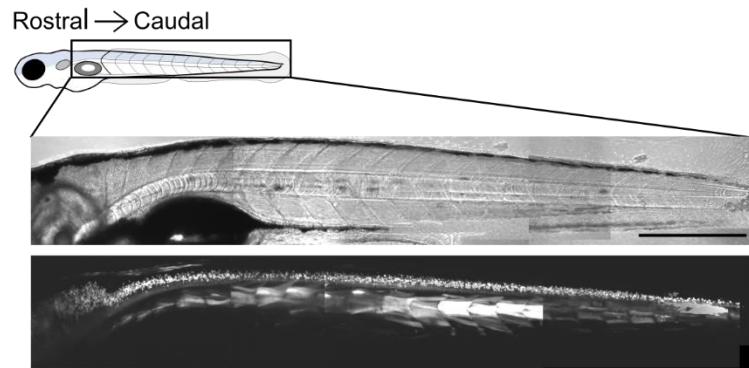
484 Like motor neurons, V1 neurons themselves can be categorized into fast and slow subtypes
485 based on the speed at which they get recruited. Dorsal V1 neurons are recruited at slow
486 locomotor speeds compared to more ventral V1 neurons that are recruited at faster speeds,
487 opposite to the D-V organization of motor and excitatory neurons⁶¹. We analyzed V1-evoked
488 charge transfer based on the D-V position of the V1 optogenetic stimulus but did not find any
489 clear relationship between the D-V position of V1 stimulation and connectivity with fast or slow
490 motor neurons (data not shown). However, the optogenetic stimulus activated V1 neurons in
491 adjacent positions (Fig. 2D), and therefore this result is not conclusive.

492 Effects on rostro-caudal coordination

493 A model of longitudinal coordination in Xenopus demonstrated a requirement for rostrally biased
494 distribution of excitatory neurons as well as ascending excitation for normal locomotor
495 propagation⁶². This model did not feature any ipsilateral inhibition, though separate studies have
496 shown that R-C coordination required both excitatory and inhibitory spinal pathways to be
497 intact¹⁵. Our data for the first time point to a major role of V1-mediated ipsilateral inhibition in
498 R-C coordination. Even though the total amount of inhibition was kept similar, only short range
499 V1 inhibition to both excitatory V2a neurons and motor neurons was able to produce reliable
500 propagation of the locomotor wave. Taken together these studies suggest that there is more than
501 one mechanism at play for executing R-C propagation. In our model, we did not factor in
502 ascending V2a subsets, rostral biases in neuron distribution or contralateral influences. In future,
503 it will be interesting to build a complete model of the spinal cord to see how these different
504 mechanisms interact.

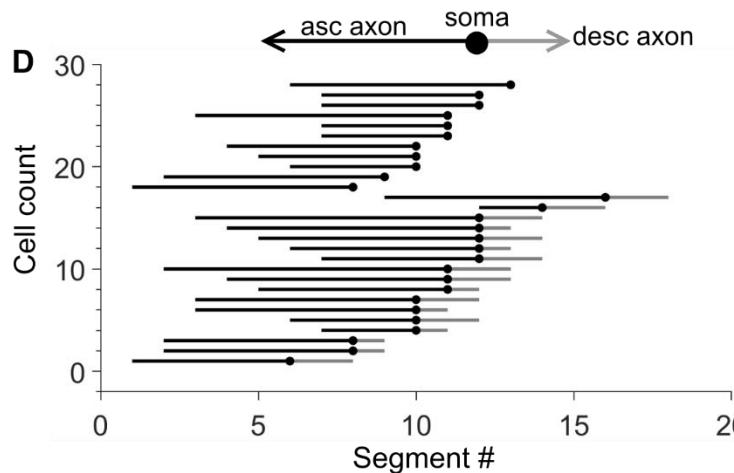
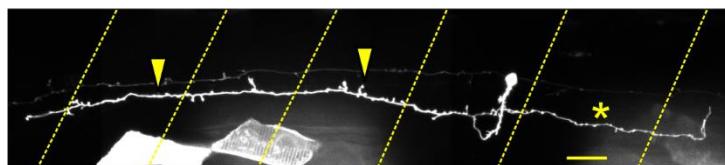
505 Impact of V1 connectivity to sensory functions

506 Our results show robust inhibition of sensory CoPA neurons by V1 neurons, in agreement with
507 previous observations in zebrafish¹⁸ and Xenopus counterparts²². V1 neurons in mouse also
508 project to the deep dorsal horn²⁴, but their specific targets and functions have not been
509 elucidated. Additionally, we show that V1 neurons connect with CoPAs all along their axonal
510 arbors (up to 7-9 segments). Long range suppression of CoPAs indicates that broad impact is the
511 goal of V1-mediated inhibition of sensory responses. In contrast, V1 inhibition of motor targets
512 is local, reflecting precision in timing relative to other segments. Inhibition onto CoPA neurons
513 is thought to be shunting, altering the neuron's membrane resistance and reaction to subsequent
514 excitatory inputs⁴⁴. This is different from the hyperpolarizing inhibition seen in the case of motor
515 neurons³. These results would imply that not only is the spatial pattern of V1 inhibition different
516 between sensory CoPAs and motor neurons but also the physiological effect. It will be
517 interesting in future to see what cellular compartments are targeted by V1 neurons in these two
518 sensory and motor targets to further understand how the structure of connectivity can impact
519 function.

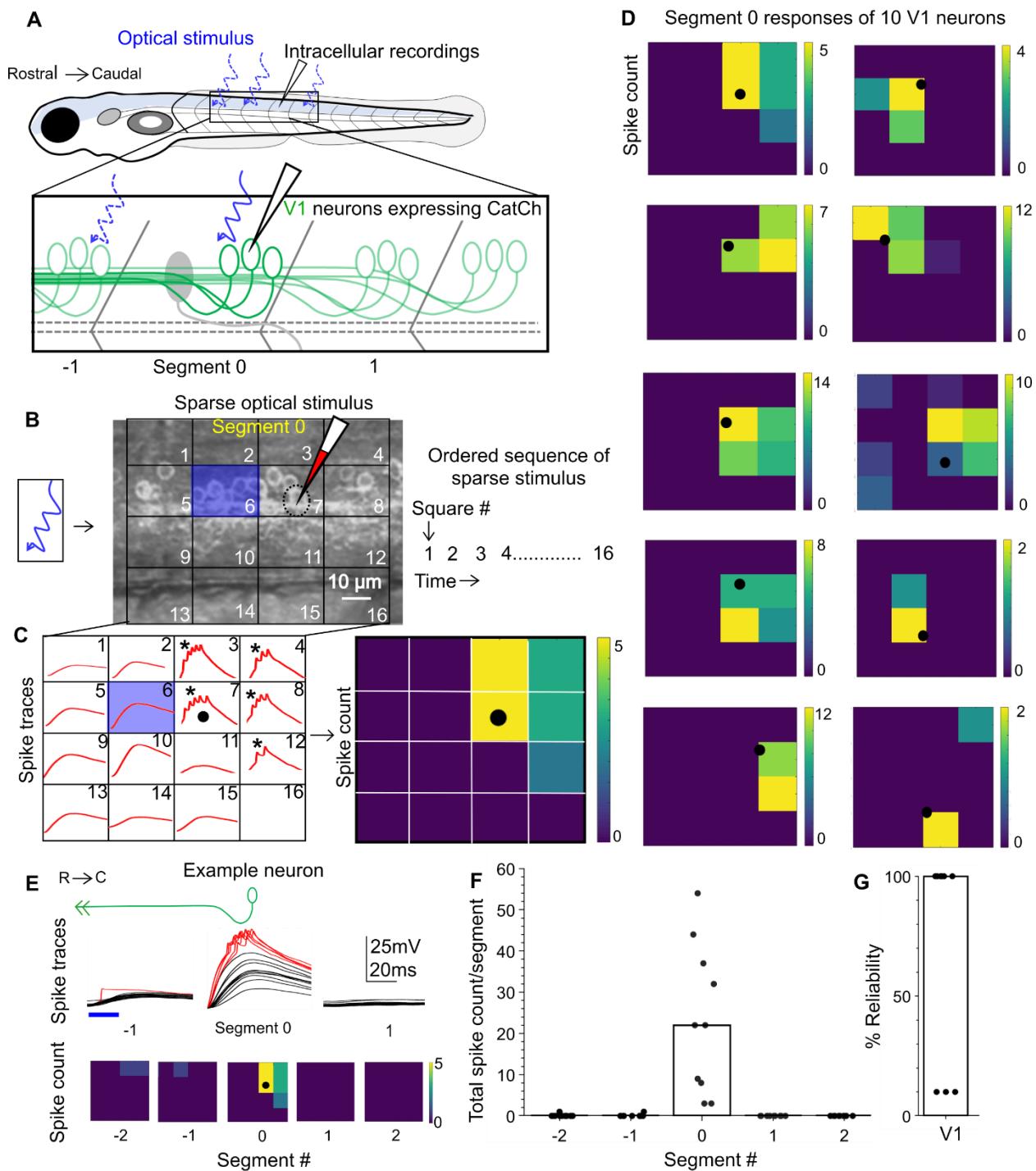


520 **Other examples of differential connectivity**

521 In this study we show that V1 axons target different post-synaptic populations as they traverse
522 the length of the spinal cord. Other types of projection neurons are reported to contact different
523 classes of neurons along their axonal projections, but only because they travel to multiple distinct
524 regions of the nervous system (for example, corticospinal neurons projecting to both pons and
525 spinal cord⁶³). In contrast, cortical pyramidal neurons target similar postsynaptic partners
526 regardless of whether they are synapsing locally or long-range⁶⁴. The differential local to long-
527 range connectivity within one region that we describe here appears unusual; however, it might be
528 a common strategy in the spinal cord due to the propagation of locomotor activity that requires
529 temporal patterning of spinal activity in the R-C axis. In the spinal cord, modular organization of
530 motor neurons and interneurons develops sequentially^{61,65}. It will be interesting in future to study
531 how the differential targeting of V1 neurons is set up developmentally and how this corresponds
532 to the emergence of different behaviors like the touch reflex and locomotion.

533 The diversity of spinal interneurons, their organization, and myriad functions continue to pose
534 challenges in understanding spinal circuits. Even for a relatively simple organism like larval
535 zebrafish, we describe a complex pattern of connectivity within the same neuronal class,
536 suggesting a primitive and intricate code buried within these spinal circuits. Our results further
537 demonstrate significant interconnectivity between spinal interneuron populations, an area that
538 requires future characterization to help decipher the underlying neuronal code. Future studies
539 aimed at exploring other dorsal horn targets and analysis of V1 subsets in zebrafish will help
540 understanding the role of V1 neurons in encoding sensory-motor control.



Figure 1

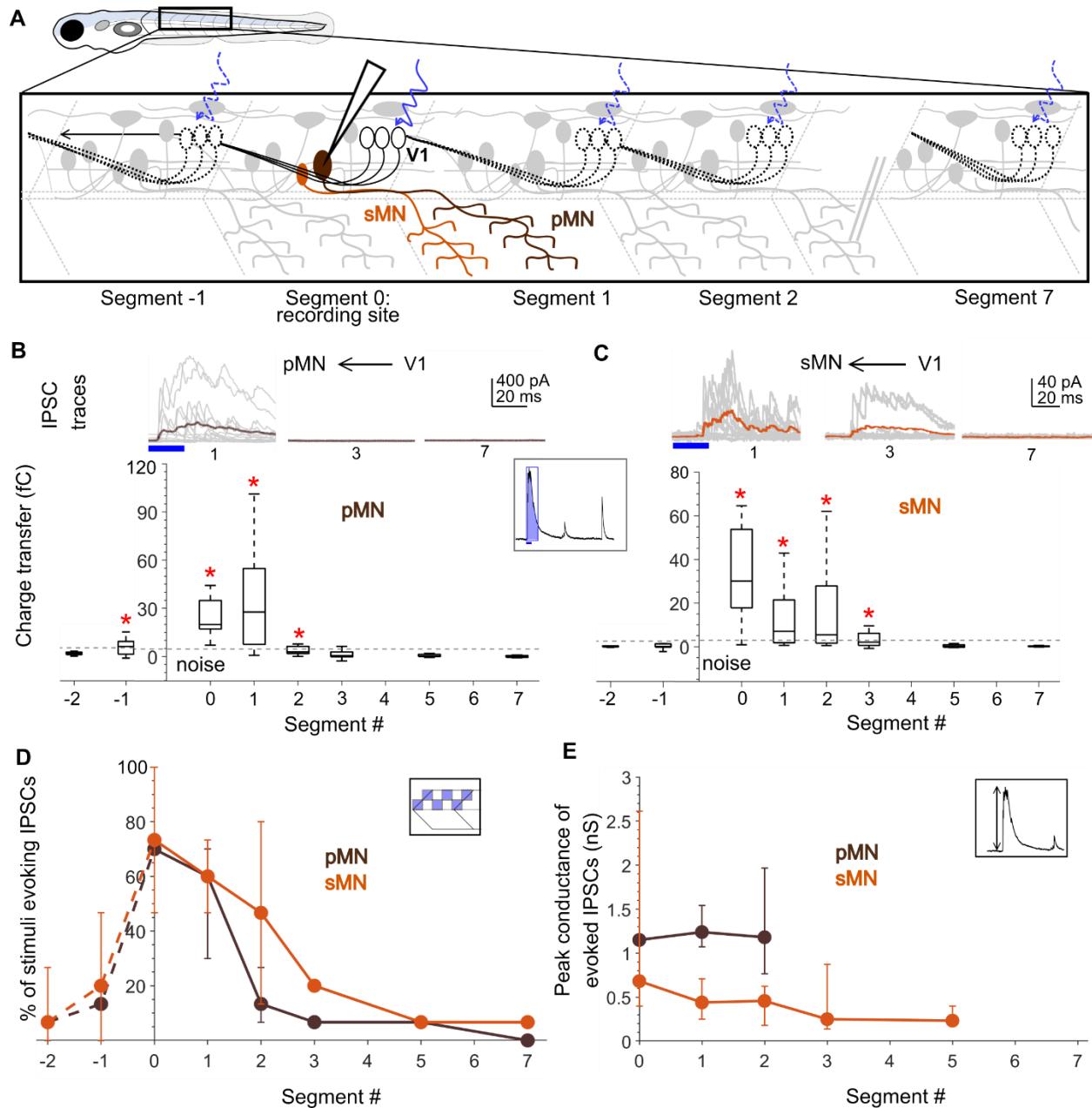
A V1 neuron distribution


V1 axon lengths

C

542 **Figure 1: Engrailed⁺ V1 neurons project long, primarily ascending axons.** A. Transmitted
543 light image (top) and confocal image (bottom) of a 5 dpf *Tg (eng1b:Gal4,UAS:GFP)* larva. In
544 this and subsequent Figures, rostral is to the left and dorsal to the top. Some non-specific
545 expression of GFP is present in muscle fibers as well. Scale bar: 0.5 mm B. Bar plot showing
546 mean cell count of V1 neurons per segment along the rostro-caudal axis. n = 15 larvae from 4
547 clutches. Error bars represent SEM. C. Representative example of a sparsely labelled V1 neuron
548 in a mid-body segment. Segment borders are shown in yellow dashed lines. Arrowheads mark
549 the ascending axon, and the asterisk marks the descending axon. Scale bar: 20 μ m. D. Ball and
550 stick plots representing the soma (ball) and ascending and descending axon lengths of V1
551 neurons (sticks) relative to body segments. N = 28 neurons from 18 larvae.

Figure 2

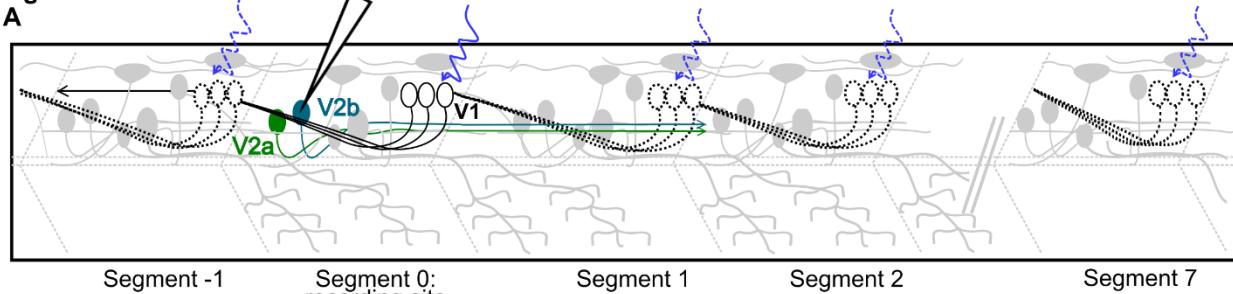

552

553 **Figure 2: Calibration of V1 spiking with patterned optical stimulus.** A. Schematic of the
 554 experimental set-up showing targeted intracellular recording and optical stimulation in
 555 *Tg(eng1b:Gal4,UAS:CatCh)* animals. B. Schematic of the patterned optical stimulus. A 4x4 grid
 556 was overlaid on approximately one segment and each square in the grid (blue square) was
 557 optically stimulated in an ordered sequence (right). Position of the recorded cell is shown as a
 558 dotted black circle. C. Illustration of the analysis. Intracellular recordings (red traces) elicited

559 from optical stimulation in each grid square (left). Spiking is denoted by asterisks. Same data
560 shown as a heat map and superimposed on the optical stimulus grid (right). Position of the
561 recorded cell is indicated with a black circle. D. Heat maps generated as in C for 10 V1 neurons.
562 E. V1 responses evoked by optical stimuli in rostral or caudal segments to the recorded neuron.
563 Representative traces of activity (top) and spike count (bottom) of the same V1 neuron while the
564 optical stimulation was moved along the rostro-caudal axis. Red traces indicate spiking. F.
565 Quantification of spiking in V1 neurons as the optical stimulus is presented along the rostro-
566 caudal axis. N = 10 neurons. Bar indicates median value. G. Reliability of spiking in these
567 neurons with multiple trials of the same optical stimulus. Bar indicates median value.

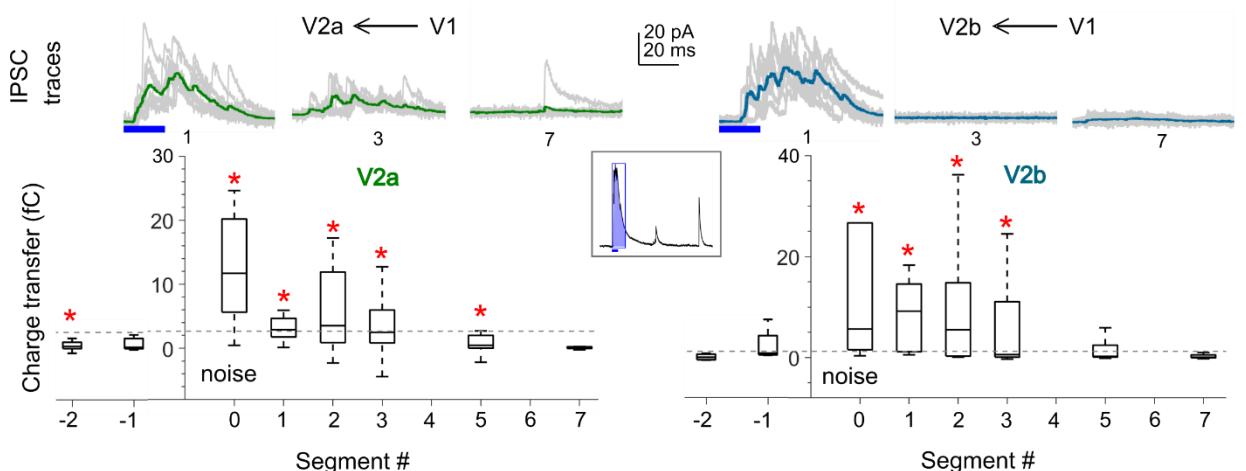
568

Figure 3

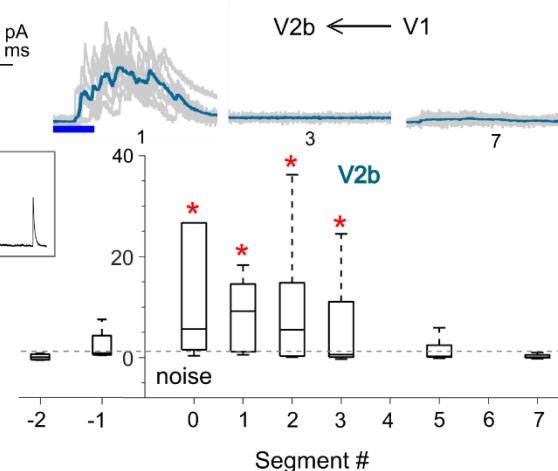

Figure 3: Motor neurons receive input only from local V1 neurons. A. Schematic of the experimental design showing intracellular recordings from primary (brown) and secondary (orange) motor neurons paired with optical stimulation of V1 neurons (black) along the rostro-caudal axis. B. Top: Representative overlay of 15 traces of IPSCs recorded in primary motor neurons (pMNs) during illumination of segments 1, 3, and 7 caudal to the recorded neuron position. Colored trace represents mean. Duration of the optical stimulus is shown as a blue bar. B. Bottom: Box plots showing the total charge transfer per segment (as illustrated in inset) recorded in primary motor neurons. In this and subsequent Figures, the box shows the median,

579 25th, and 75th percentile values; whiskers show $+\!-\!2.7\sigma$. Dashed line indicates the level of base
580 line noise from spontaneous activity. Red asterisks mark segments that were significantly
581 different from noise ($p < 0.01$). N = 8-26 neurons for each data point. C. Same as in B for
582 secondary motor neurons (sMNs). N = 10-11 neurons for each data point. D, E. Comparison of
583 the number of squares in the optical stimuli grid that evoked IPSCs (D) and the peak
584 conductance of IPSCs (E) in primary (brown) and secondary (orange) motor neurons. Here and
585 in subsequent Figures, circles represent median values and error bars indicate the 25th and 75th
586 percentiles. N= 8-26 pMNs and 11 sMNs.

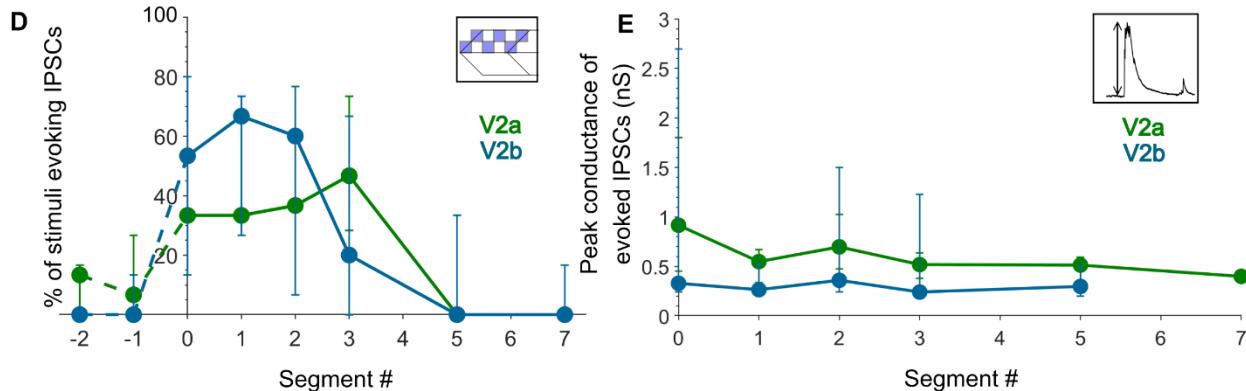
587

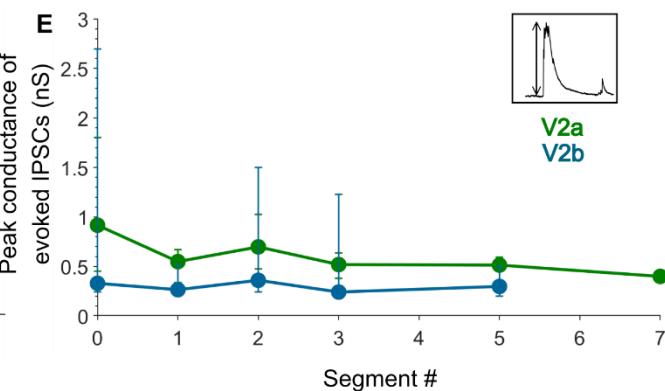

Figure 4

A



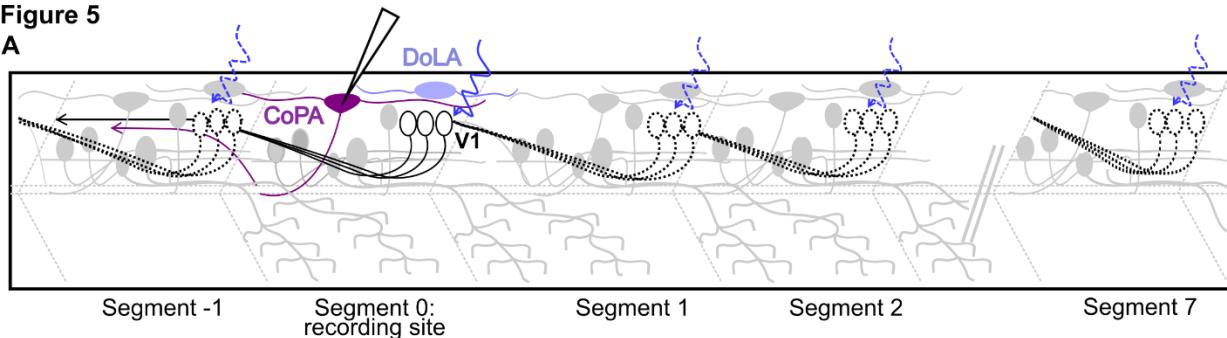
Segment -1 Segment 0: recording site Segment 1 Segment 2 Segment 7


B


C

D

E


588

589 **Figure 4: V2a and V2b neurons also receive inputs from local V1 neurons.** A. Schematic of
590 the experimental design showing intracellular recordings from V2a (green) and V2b (cyan)
591 neurons paired with optical stimulation of V1 neurons (black) along the rostro-caudal axis. B.
592 Top: Representative overlay of 15 traces of IPSCs recorded in V2a neurons during illumination
593 of segments 1, 3, and 7 caudal to the recorded neuron position. Colored trace represents mean.
594 Duration of the optical stimulus is shown as a blue bar. B. Bottom: Box plots showing the total
595 charge transfer per segment (as illustrated in inset) recorded in V2a neurons. Dashed line
596 indicates the level of base line noise from spontaneous activity. Red asterisks mark segments that
597 were significantly different from noise ($p < 0.01$). N = 8-14 neurons for each data point. C. Same
598 as in B for V2b neurons. N = 5-9 neurons. D, E. Comparison of the number of squares in the

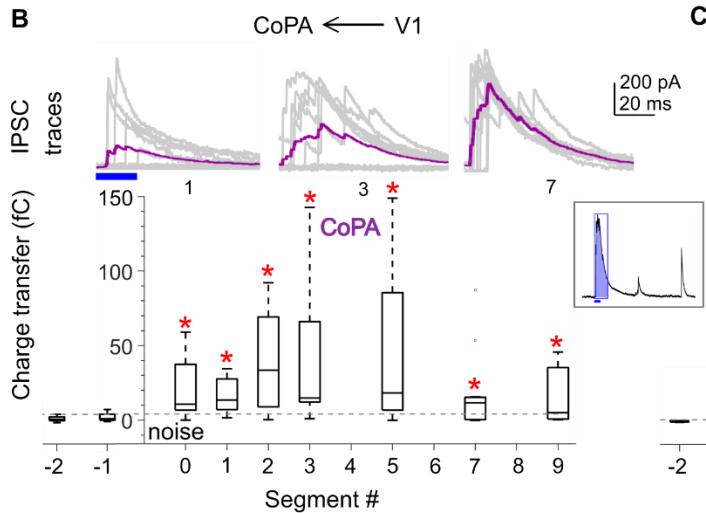
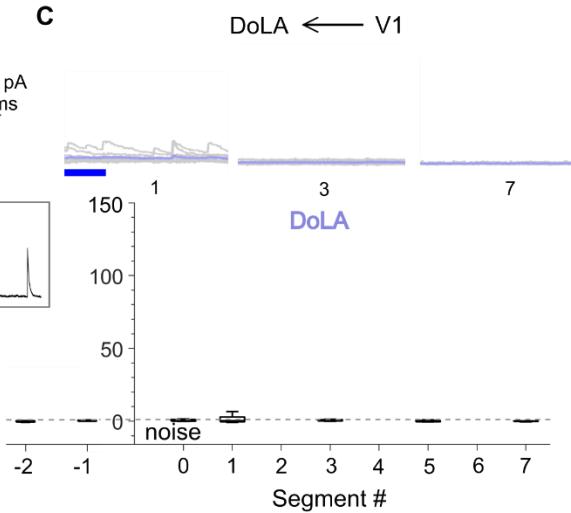
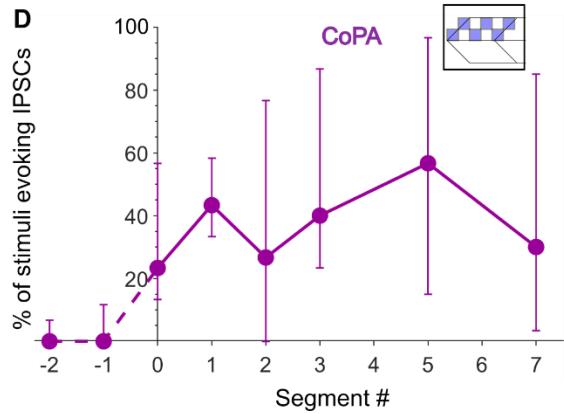
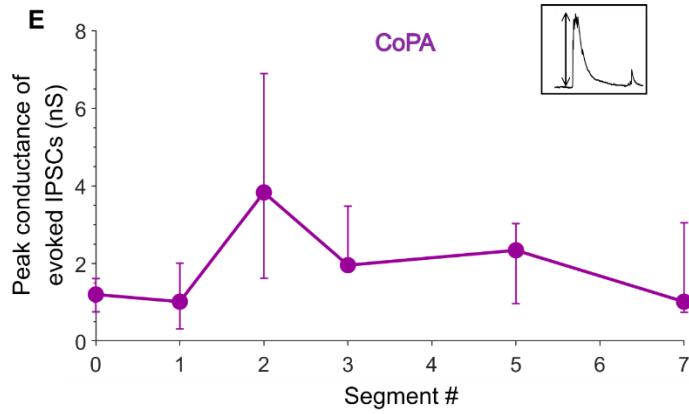

599 optical stimuli grid that evoked IPSCs (D) and the peak conductance of IPSCs (E) in V2a (green)
 600 and V2b (cyan) neurons. N= 8-14 V2as, 5-9 V2bs.

Figure 5

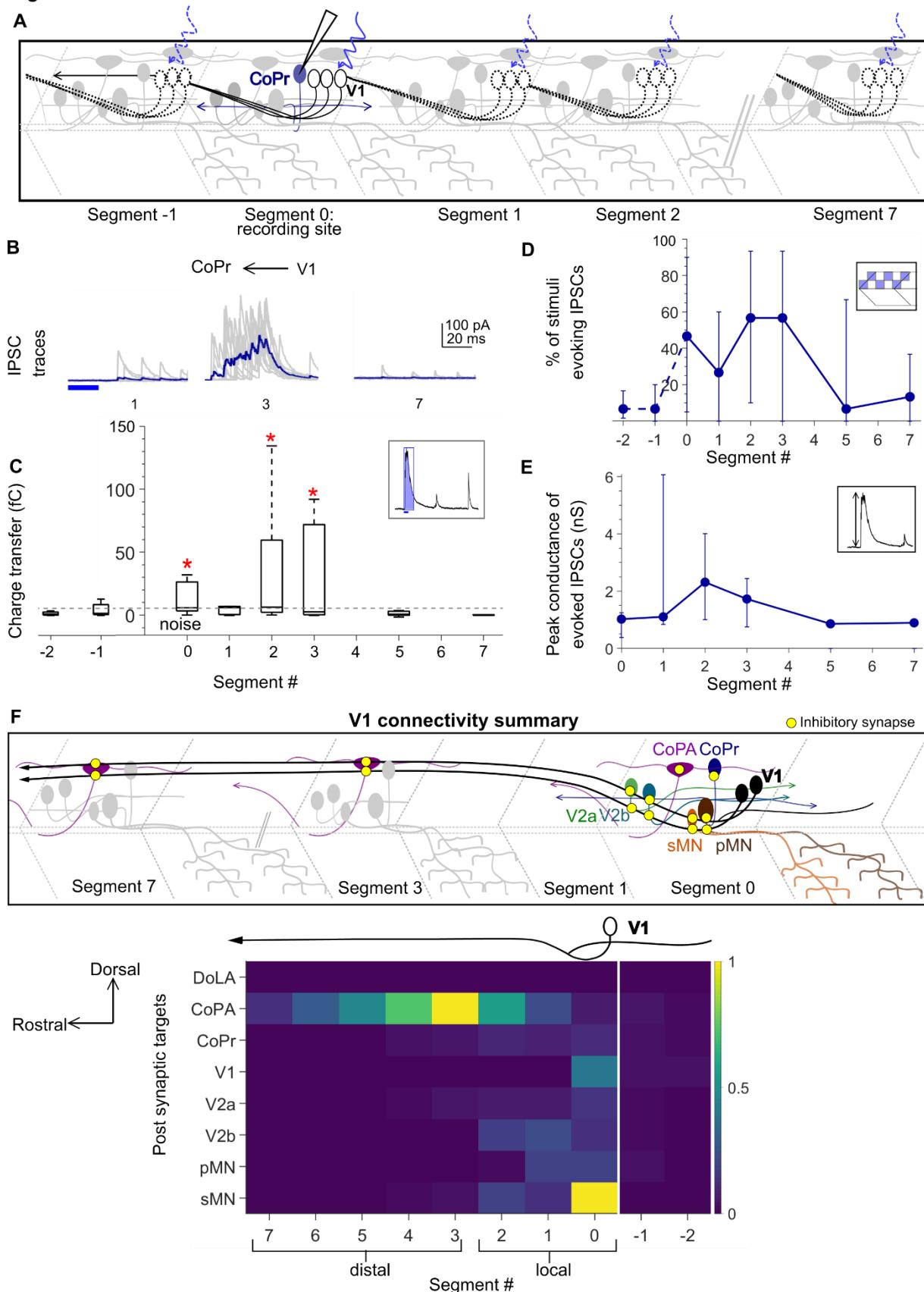

A


B


C

D

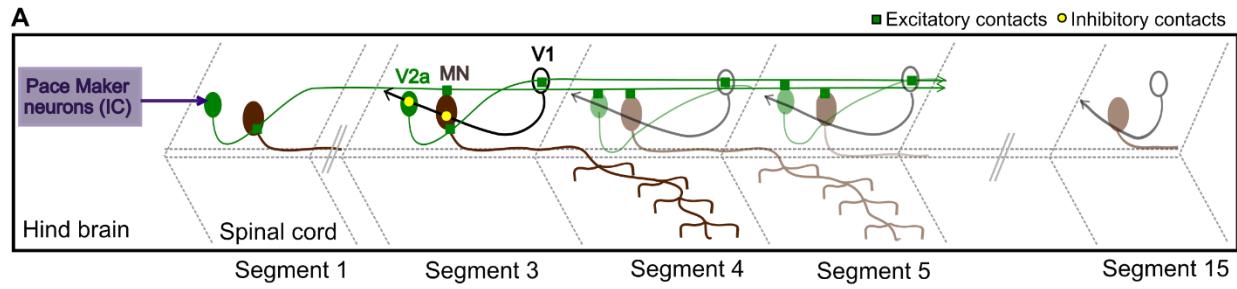
E



601

602 **Figure 5: Dorsal horn CoPA neurons receive both local and long-range inputs from V1**
 603 **neurons.** A. Schematic of the experimental design showing intracellular recordings from CoPA
 604 (magenta) and DoLA (violet) neurons paired with optical stimulation of V1 neurons (black)
 605 along the rostro-caudal axis. B. Top: Representative overlay of 15 traces of IPSCs recorded in
 606 CoPA neurons during illumination of segments 1, 3, and 7 caudal to the recorded neuron
 607 position. Colored trace represents mean. Duration of the optical stimulus is shown as a blue bar.
 608 B. Bottom: Box plots showing the total charge transfer per segment (as illustrated in inset)

609 recorded in CoPA neurons. Dashed line indicates the level of base line noise from spontaneous
610 activity. Red asterisks mark segments that were significantly different from noise ($p < 0.01$). N =
611 7 to 12 neurons for each data point. C. Same as in B for DoLA neurons. N = 4-5 neurons for each
612 data point. D, E. Comparison of the number of squares in the optical stimuli grid that evoked
613 IPSCs (D) and the peak conductance of IPSCs (E) in CoPA neurons. N = 7-12 neurons.


Figure 6

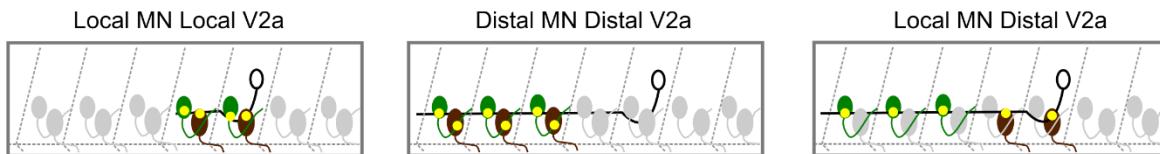
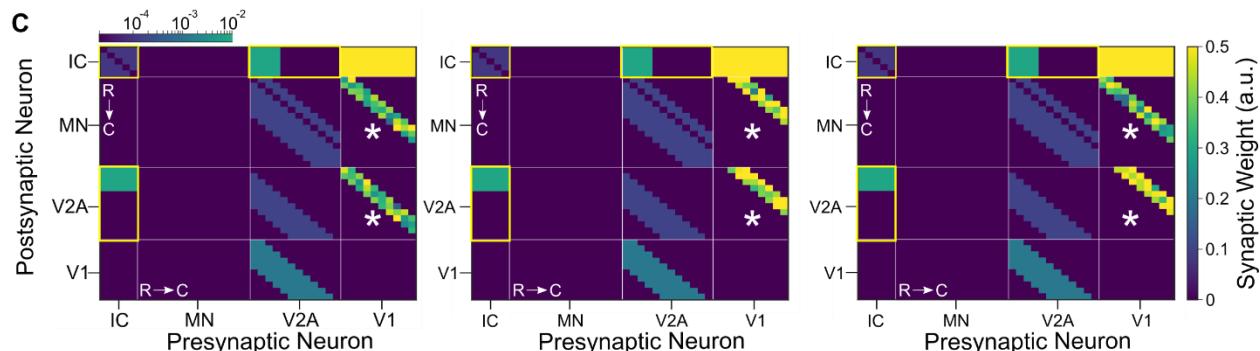
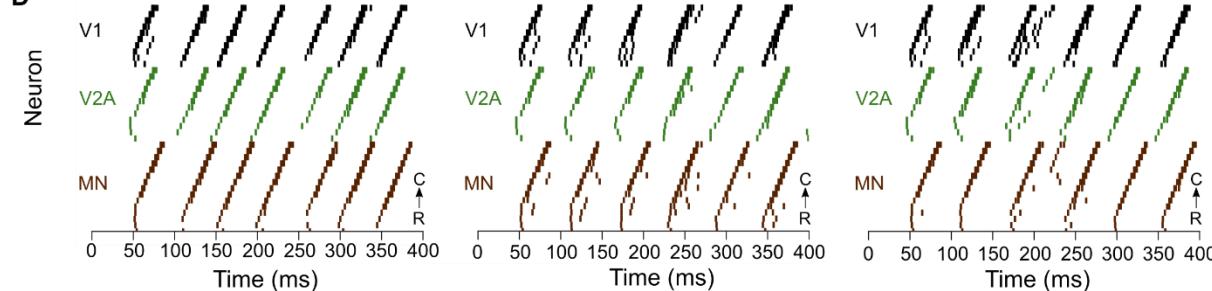
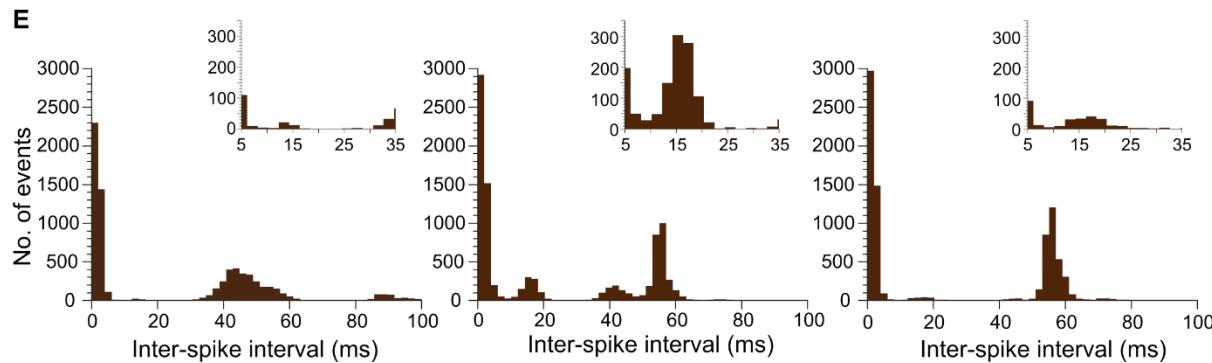

615 **Figure 6: Commissural premotor (CoPr) neurons receive input from local V1 neurons.** A.
616 Schematic of the experimental design showing intracellular recording from CoPr neurons (blue)
617 paired with optical stimulation of V1 neurons (black) along the rostro-caudal axis. B, C.
618 Representative traces of IPSCs (B) and the total charge transfer (C) recorded in CoPr neurons
619 with optical stimulation of V1 neurons along different segments in the rostro-caudal axis.
620 Colored traces in B indicate mean. Dashed line in C indicates the level of base line noise from
621 spontaneous activity. D, E. Comparison of the number of squares in the optical stimuli grid that
622 evoked IPSCs (D) and the conductance of IPSCs (E) in CoPr neurons. N = 5 to 7 neurons for
623 each data point. F. Summary of V1 connectivity to different post synaptic targets. Top:
624 Schematic of the inferred connectivity of V1 neurons (black) to different targets locally and
625 distally. Yellow dots symbolize inhibitory synapses. Bottom: Heat map showing normalized
626 charge transfer for the different post synaptic targets along the rostro-caudal axis. The charge
627 transfer per segment for each recorded neuronal target was normalized to its measured intrinsic
628 neuronal conductance (inverse of R_{in}). Median values of normalized charge transfer for each
629 target cell population are plotted. Values for Segment 4 and Segment 6 were interpolated as
630 averages of the two neighboring segments. The resulting values are plotted on the same color
631 scale for all target populations.

Figure 7


A


B


C

D

E

632

633 **Figure 7: Modeling spinal circuitry with local and distal V1 circuitry.** A. Schematic of the
634 computational model showing a reduced V1 (black), V2A (green), and motor neuron (MN,
635 brown) network driven by rostrally located pacemaker neurons (purple box). B. Schematic of 3

636 different network structures simulated with the network model. Left: Local MN and local V2A
637 connectivity from V1s. V1s synapse onto V2As and MNs located within 1 to 3 segments.
638 Middle: Distal MN and distal V2A connectivity from V1s. V1s synapse onto V2As and MNs
639 located 4 to 6 segments away. Right: Local MNs and distal V2A connectivity from V1s. V1s
640 synapse onto V2As located 4 to 6 segments away and MNs located within 1 to 3 segments. C.
641 Heatmap showing connectivity weights for neurons across 3 different network models.
642 Connections highlighted in yellow are gap junctional and follow a logarithmic scale. Asterisks
643 indicate altered connections. D. Raster plots of spike times from 1 representative simulation of
644 each network. E. Inter-spike interval (ISIs) frequency histograms of motor neuron spiking from
645 15 simulations for each network structure. Insets highlight ISIs in an intermediate range.

646

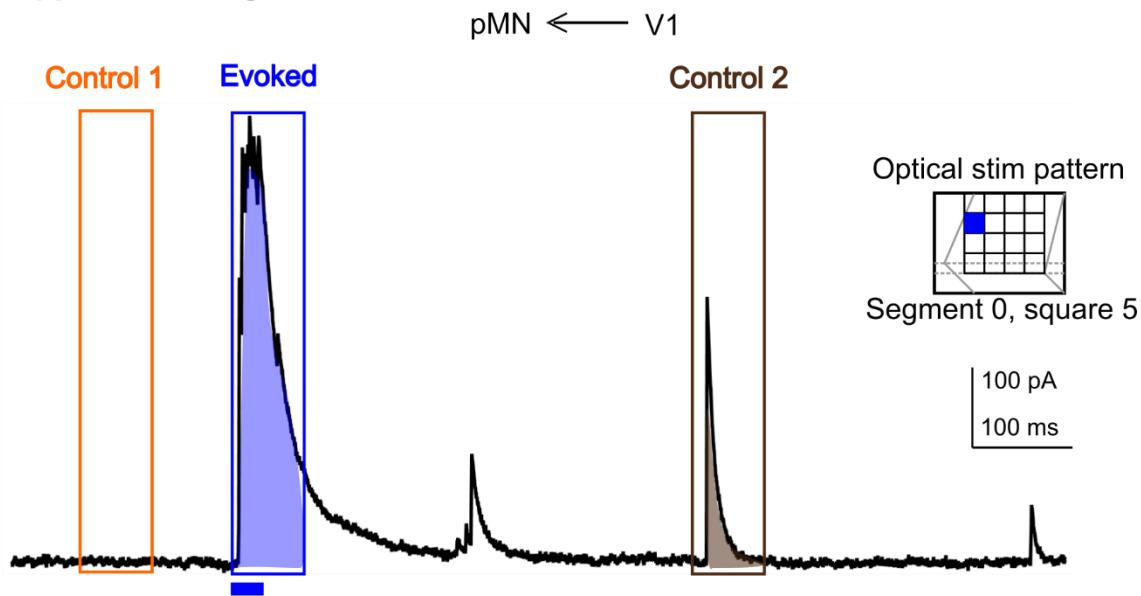
647

648

649

650

651


652

653

654

655

Supplemental Figure 1

Charge transfer (Seg 0, sq 5)= **Evoked - Control 1**

656 Noise (Seg 0, sq 5)= **Control 2 - Control 1**

657 **Supplemental Figure 1: Analysis of charge transfer per segment and calculation of noise.**

658 Representative trace of IPSCs recorded in a single primary motor neuron during illumination of square 5
659 in Segments 0 (inset). Duration of the optical stimulus is shown as a blue bar. Charge transfer for the
660 evoked response was calculated by integrating the current in a 50 ms window from the onset of the optical
661 stimulus (Evoked, shaded region in the blue block). To account for spontaneous activity, the Evoked
662 response was subtracted from Control 1, a 50 ms window before the onset of the stimulus (Orange block).
663 To calculate noise, the charge transfer in a separate 50 ms window post stimulus was calculated (Control
664 2, shaded region in the brown block) and this was subtracted from Control 1.

665 Charge transfer (Seg 0, sq 5) = Evoked - Control 1

666 Noise (Seg 0, sq 5) = Control 2 - Control 1

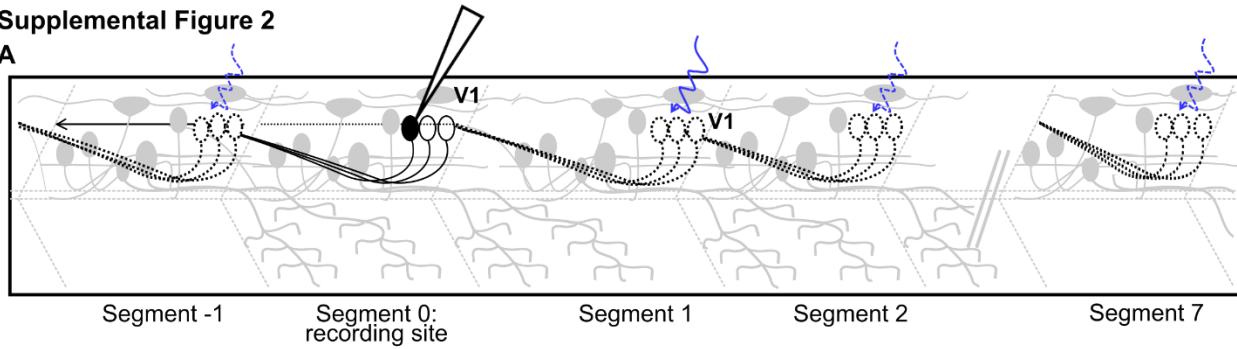
667

668 Total evoked charge transfer (Seg 0) = Charge transfer (Seg 0, sq 1) + Charge transfer (Seg 0, sq 2)

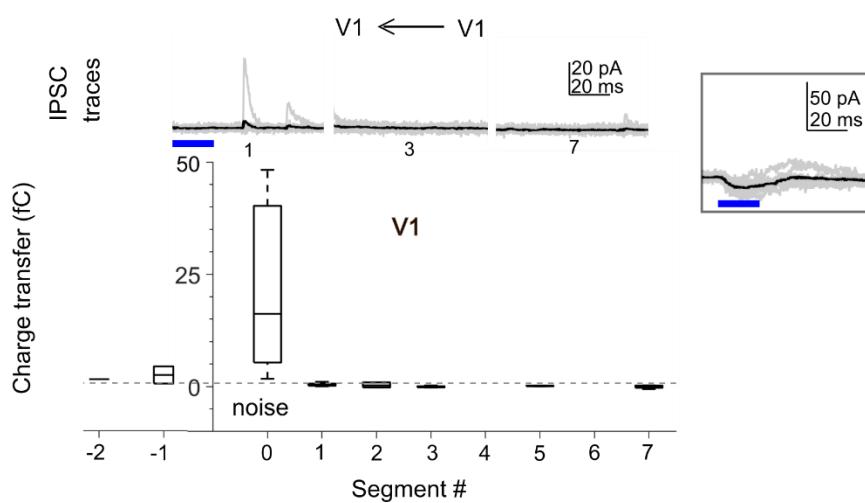
669+ Charge transfer (Seg 0, sq 16)

670

671 Total noise (Seg 0) = Noise (Seg 0, sq 1) + Noise (Seg 0, sq 2)+ Noise (Seg 0, sq 16)

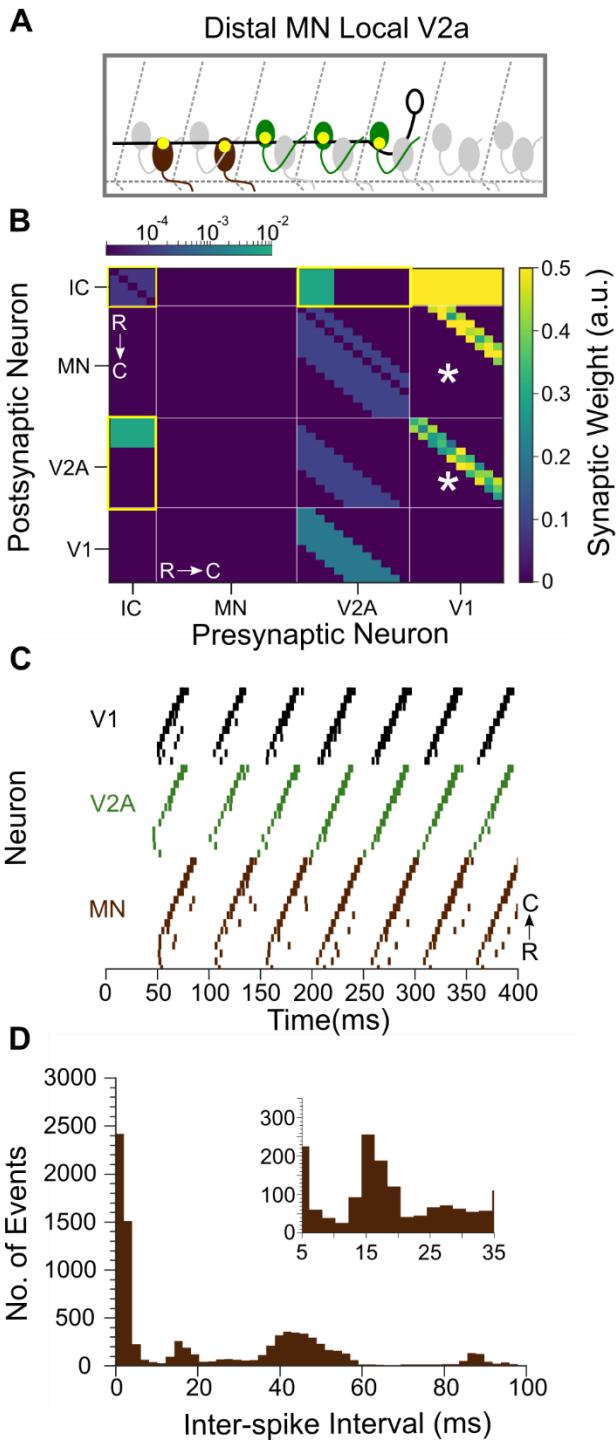

672

673 For statistical comparisons, total charge transfer per segment was compared to
674 total noise per segment for each neuron.


675

Supplemental Figure 2

A


B

676

677 **Supplemental Figure 2: V1 neurons inhibit other V1 neurons only locally.** A. Schematic of the
678 experimental design showing intracellular recordings from V1 neurons paired with optical stimulation of
679 V1 neurons along the rostro-caudal axis. B. Top: Representative overlay of 15 traces of IPSCs recorded
680 in V1 neurons during illumination of segments 1, 3, and 7 caudal to the recorded neuron position. Colored
681 trace represents mean. Duration of the optical stimulus is shown as a blue bar. B. Bottom: Box plots
682 showing the total charge transfer per segment recorded in V1 neurons. Dashed line indicates the level of
683 base line noise from spontaneous activity. N = 5 neurons for each data point. Inset: Recording from the
684 same cell holding at -65 mV showing slow CatCh induced depolarization. Blue bar represents duration of
685 the optical stimulus.

Supplemental Figure 3

686

687 **Supplemental Figure 3: Spinal cord model with local V1 to V2a and distal V1 to MN connectivity.**

688 A. Schematic showing local V2a and distal MN connectivity from V1s. V1s synapse onto MNs 4 to 6
689 segments away and V2As located within 1 to 3 segments. B. Heatmap showing connectivity weights
690 (scale bar, right). Connections highlighted in yellow are gap junctional and follow a logarithmic scale

691 (top). Asterisks highlight the portion of the model that was altered, with connectivity shifted from more
692 local to distal (more rostral) positions. C. Raster plots of spike times from 1 representative simulation.
693 Rostrally located neurons are at the bottom within each neuron class, and thus the locomotor propagation
694 moves from bottom to top. E. Inter-spike Interval (ISIs) frequency histograms of motor neuron spiking
695 from 15 simulations of this network structure. Inset highlights ISIs from 5-35 ms.

696 **Supplemental Table 1:**

Table 1: Izhikevich Parameters					
Neuron Type	a	b	c	d	Peak V (mV)
Pacemakers	0.02	0.25	-50	2.0	-10
V2a	0.1	0.25	-53	6.0	0
V1	0.2	0.25	-53	6.0	0
MN	0.1	0.25	-53	6.0	0

697

698 **Supplemental Table 2:**

Table 2: Chemical Synapse Parameters			
Synapse Type	τ rise	τ decay	Reversal V (mV)
Glycinergic	0.5	3.0	-70
Glutamatergic	0.25	1.0	0

699

References:

700 1. Isaacson, J. S. & Scanziani, M. How inhibition shapes cortical activity. *Neuron* **72**, 231–243 (2011).

701 2. Goulding, M. Circuits controlling vertebrate locomotion: moving in a new direction. *Nature reviews. Neuroscience* **10**, 507–518 (2009).

703 3. Kimura, Y. & Higashijima, S. ichi. Regulation of locomotor speed and selection of active sets of neurons by V1 neurons. *Nature Communications* **10**, (2019).

705 4. Crone, S. A. *et al.* Genetic Ablation of V2a Ipsilateral Interneurons Disrupts Left-Right Locomotor Coordination in Mammalian Spinal Cord. *Neuron* **60**, 70–83 (2008).

707 5. Talpalar, A. E. *et al.* Dual-mode operation of neuronal networks involved in left-right alternation. *Nature* **500**, 85–88 (2013).

709 6. Gosgnach, S. *et al.* V1 spinal neurons regulate the speed of vertebrate locomotor outputs. *Nature* **440**, 215–219 (2006).

711 7. Bagnall, M. W. & Mclean, D. L. Modular Organization of Axial Microcircuits in Zebrafish. *Science* (2014).

713 8. Menelaou, E. & McLean, D. L. Hierarchical control of locomotion by distinct types of spinal V2a interneurons in zebrafish. *Nature Communications* **10**, (2019).

715 9. Knafo, S. & Wyart, C. Active mechanosensory feedback during locomotion in the zebrafish spinal cord. *Current Opinion in Neurobiology* vol. **52** 48–53 (2018).

717 10. Ruder, L., Takeoka, A. & Arber, S. Long-Distance Descending Spinal Neurons Ensure Quadrupedal Locomotor Stability. *Neuron* **92**, 1063–1078 (2016).

719 11. Danner, S. M., Shevtsova, N. A., Frigon, A. & Rybak, I. A. Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. (2017) doi:10.7554/eLife.31050.001.

722 12. Dale, N. Coordinated Motor Activity in Simulated Spinal Networks Emerges from Simple Biologically Plausible Rules of Connectivity. *Journal of Computational Neuroscience* vol. **14** (2003).

724 13. Jan Ijspeert, A., Crespi, A., Ryczko, D. & Cabelguen, J.-M. From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model. *Science* **315**, (2007).

726 14. Müller, U. K. & van Leeuwen, J. L. Swimming of larval zebrafish: Ontogeny of body waves and implications for locomotory development. *Journal of Experimental Biology* **207**, 853–868 (2004).

728 15. Wiggin, T. D., Peck, J. H. & Masino, M. A. Coordination of fictive motor activity in the larval zebrafish is generated by non-segmental mechanisms. *PLoS ONE* **9**, (2014).

730 16. Li, H., Yang, C., Yusoff, N. M., Yahaya, B. H. & Lin, J. Direction of commissural axon projections in different regions of the spinal cord during chicken embryonic development. *Neuroscience* **358**, 269–276 (2017).

733 17. Yoshida, M., Roberts, A. & Soffe, S. R. Axon Projections of Reciprocal Inhibitory Interneurons in
734 the Spinal Cord of Young Xenopus Tadpoles and Implications for the Pattern of Inhibition During
735 Swimming and Struggling. *J. Comp. Neurol.* vol. 400 (1998).

736 18. Higashijima, S. I., Masino, M. A., Mandel, G. & Fecho, J. R. Engrailed-1 expression marks a
737 primitive class of inhibitory spinal interneuron. *Journal of Neuroscience* **24**, 5827–5839 (2004).

738 19. Menelaou, E., Vandunk, C. & McLean, D. L. Differences in the morphology of spinal V2a neurons
739 reflect their recruitment order during swimming in larval Zebrafish. *Journal of Comparative*
740 *Neurology* **522**, 1232–1248 (2014).

741 20. Moran-Rivard, L. *et al.* Evx1 Is a Postmitotic Determinant of V0 Interneuron Identity in the Spinal
742 Cord. *Neuron* **29**, 385–399 (2001).

743 21. Saueressig, H., Burrill, J. & Goulding, M. Pathfinding by EN1 spinal interneurons. *Development*
744 **126**, 4201–4212 (1999).

745 22. Li, W. C., Higashijima, S. I., Parry, D. M., Roberts, A. & Soffe, S. R. Primitive roles for inhibitory
746 interneurons in developing frog spinal cord. *Journal of Neuroscience* **24**, 5840–5848 (2004).

747 23. Falgairolle, M. & O'Donovan, M. J. V1 interneurons regulate the pattern and frequency of
748 locomotor-like activity in the neonatal mouse spinal cord. *PLoS Biology* **17**, (2019).

749 24. Alvarez, F. J. *et al.* Postnatal phenotype and localization of spinal cord V1 derived interneurons.
750 *Journal of Comparative Neurology* **493**, 177–192 (2005).

751 25. Zhang, J. *et al.* V1 and V2b interneurons secure the alternating flexor-extensor motor activity
752 mice require for limbed locomotion. *Neuron* **82**, 138–150 (2014).

753 26. Britz, O. *et al.* A genetically defined asymmetry underlies the inhibitory control of flexor-extensor
754 locomotor movements. doi:10.7554/eLife.04718.001.

755 27. Kimura, Y., Hisano, Y., Kawahara, A. & Higashijima, S. I. Efficient generation of knock-in
756 transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome
757 engineering. *Scientific Reports* **4**, (2014).

758 28. Callahan, R. A. *et al.* Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control.
759 (2019) doi:10.7554/eLife.47837.001.

760 29. Kimura, Y., Okamura, Y. & Higashijima, S. I. alx, a zebrafish homolog of Chx10, marks ipsilateral
761 descending excitatory interneurons that participate in the regulation of spinal locomotor circuits.
762 *Journal of Neuroscience* **26**, 5684–5697 (2006).

763 30. Schindelin, J. *et al.* Fiji: An open-source platform for biological-image analysis. *Nature Methods*
764 vol. 9 676–682 (2012).

765 31. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image
766 acquisitions. *Bioinformatics* **25**, 1463–1465 (2009).

767 32. Rothman, J. S. & Silver, R. A. Neuromatic: An integrated open-source software toolkit for
768 acquisition, analysis and simulation of electrophysiological data. *Frontiers in Neuroinformatics* **12**,
769 (2018).

770 33. Izhikevich, E. M. Simple model of spiking neurons. *IEEE Transactions on Neural Networks* vol. **14**
771 1569–1572 (2003).

772 34. Saywell, S. A., Ford, T. W. & Kirkwood, P. A. Axonal projections of renshaw cells in the thoracic
773 spinal cord. *Physiological Reports* **1**, 1–12 (2013).

774 35. Fyffe, R. E. W. Spatial Distribution of Recurrent Inhibitory Synapses on Spinal Motoneurons in the
775 Cat. *Journal of Neurophysiology* **65**, 1134–1149 (1991).

776 36. Kleinlogel, S. *et al.* Ultra light-sensitive and fast neuronal activation with the Ca²⁺-permeable
777 channelrhodopsin CatCh. *Nature Neuroscience* **14**, 513–518 (2011).

778 37. Jankowska, E. & Smith, D. O. Antidromic Activation of Renshaw Cells and their Axonal
779 Projections. *Acta Physiologica Scandinavica* **88**, (1973).

780 38. Menelaou, E. & McLean, D. L. A gradient in endogenous rhythmicity and oscillatory drive
781 matches recruitment order in an axial motor pool. *Journal of neuroscience* **32**, 10925–10939
782 (2012).

783 39. Kimura, Y., Satou, C. & Higashijima, S. I. V2a and V2b neurons are generated by the final divisions
784 of pair-producing progenitors in the zebrafish spinal cord. *Development* **135**, 3001–3005 (2008).

785 40. Kimura, Y. *et al.* Hindbrain V2a neurons in the excitation of spinal locomotor circuits during
786 zebrafish swimming. *Current Biology* **23**, 843–849 (2013).

787 41. Cregg, J. M. *et al.* Brainstem neurons that command mammalian locomotor asymmetries. *Nature
788 Neuroscience* **23**, 730–740 (2020).

789 42. Eklöf Ljunggren, E., Haupt, S., Ausborn, J., Ampatzis, K. & el Manira, A. Optogenetic activation of
790 excitatory premotor interneurons is sufficient to generate coordinated locomotor activity in
791 larval zebrafish. *Journal of Neuroscience* **34**, 134–139 (2014).

792 43. Song, J., Dahlberg, E. & el Manira, A. V2a interneuron diversity tailors spinal circuit organization
793 to control the vigor of locomotor movements. *Nature Communications* **9**, (2018).

794 44. Knogler, L. D. & Drapeau, P. Sensory gating of an embryonic zebrafish interneuron during
795 spontaneous motor behaviors. *Frontiers in Neural Circuits* **8**, (2014).

796 45. Higashijima, S. I., Schaefer, M. & Fethcho, J. R. Neurotransmitter properties of spinal interneurons
797 in embryonic and larval zebrafish. *Journal of Comparative Neurology* **480**, 19–37 (2004).

798 46. Wells, S., Nornes, S. & Lardelli, M. Transgenic zebrafish recapitulating tbx16 gene early
799 developmental expression. *PLoS ONE* **6**, (2011).

800 47. del Barrio, M. G. *et al.* A transcription factor code defines nine sensory interneuron subtypes in
801 the mechanosensory area of the spinal cord. *PLoS ONE* **8**, (2013).

802 48. Gatto, G. *et al.* A Functional Topographic Map for Spinal Sensorimotor Reflexes. *Neuron* (2020)
803 doi:10.1016/j.neuron.2020.10.003.

804 49. Hale, M. E., Ritter, D. A. & Fethcho, J. R. A Confocal Study of Spinal Interneurons in Living Larval
805 Zebrafish. *J. Comp. Neurol.* vol. **437** (2001).

806 50. Wells, S. *et al.* Cryptic organisation within an apparently irregular rostrocaudal distribution of
807 interneurons in the embryonic zebrafish spinal cord. *Experimental Cell Research* **316**, 3292–3303
808 (2010).

809 51. Todd, A. J. & Mckenzie, J. Gaba-immunoreactive neurons in the dorsal horn of the rat spinal
810 cord. *Neuroscience* vol. **31** (1989).

811 52. Satou, C., Kimura, Y. & Higashijima, S. ichi. Generation of multiple classes of V0 neurons in
812 Zebrafish spinal cord: Progenitor heterogeneity and temporal control of neuronal diversity.
813 *Journal of Neuroscience* **32**, 1771–1783 (2012).

814 53. Satou, C. *et al.* Functional Diversity of Glycinergic Commissural Inhibitory Neurons in Larval
815 Zebrafish. *Cell Reports* **30**, 3036-3050.e4 (2020).

816 54. Griener, A., Zhang, W., Kao, H., Wagner, C. & Gosgnach, S. Probing diversity within
817 subpopulations of locomotor-related V0 interneurons. *Developmental Neurobiology* **75**, 1189–
818 1203 (2015).

819 55. Francius, C. *et al.* Identification of Multiple Subsets of Ventral Interneurons and Differential
820 Distribution along the Rostrocaudal Axis of the Developing Spinal Cord. *PLoS ONE* **8**, (2013).

821 56. Sweeney, L. B. *et al.* Origin and Segmental Diversity of Spinal Inhibitory Interneurons. *Neuron* **97**,
822 341-355.e3 (2018).

823 57. Bikoff, J. B. *et al.* Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits.
824 *Cell* **165**, 207–219 (2016).

825 58. Alvarez, F. J., Benito-Gonzalez, A. & Siembab, V. C. Principles of interneuron development
826 learned from Renshaw cells and the motoneuron recurrent inhibitory circuit. *Annals of the New
827 York Academy of Sciences* **1279**, 22–31 (2013).

828 59. Siembab, V. C. *et al.* Target selection of proprioceptive and motor axon synapses on neonatal V1-
829 derived Ia inhibitory interneurons and Renshaw cells. *Journal of Comparative Neurology* **518**,
830 4675–4701 (2010).

831 60. Bello-Rojas, S., Istrate, A. E., Kishore, S. & McLean, D. L. Central and peripheral innervation
832 patterns of defined axial motor units in larval zebrafish. *Journal of Comparative Neurology* **527**,
833 2557–2572 (2019).

834 61. Fethcho, J. R. & McLean, D. L. Some principles of organization of spinal neurons underlying
835 locomotion in zebrafish and their implications. in *Annals of the New York Academy of Sciences*
836 vol. 1198 94–104 (Blackwell Publishing Inc., 2010).

837 62. Wolf, E., Soffe, S. R. & Roberts, A. Longitudinal neuronal organization and coordination in a
838 simple vertebrate: A continuous, semi-quantitative computer model of the central pattern

839 generator for swimming in young frog tadpoles. *Journal of Computational Neuroscience* **27**, 291–
840 308 (2009).

841 63. O'leary, D. D. M. & Terashima, T. Cortical Axons Branch to Multiple Subcortical Targets by
842 Interstitial Axon Budding: Implications for Target Recognition and 'Waiting Periods'. *Neuron* vol.
843 **1** (1988).

844 64. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping
845 of long-range callosal projections. *Nature Neuroscience* **10**, 663–668 (2007).

846 65. Kishore, S., Cadoff, E. B., Agha, M. A. & Mclean, D. L. Orderly compartmental mapping of
847 premotor inhibition in the developing zebrafish spinal cord. *Science* **370**, 431–436 (2020).

848