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Abstract: Traditional Chinese Medicine (TCM) has been practiced for thousands of
years for treating human diseases. In comparison to modern medicine, one of the
advantages of TCM is the principle of herb compatibility, known as TCM formulae.
A TCM formula usually consists of multiple herbs to achieve the maximum treatment
effects, where their interactions are believed to elicit the therapeutic effects. Despite
being a fundamental component of TCM, the rationale of combining specific herb
combinations remains unclear. In this study, we proposed a network-based method to
quantify the interactions in herb pairs. We constructed a protein-protein interaction
network for a given herb pair by retrieving the associated ingredients and protein
targets, and determined multiple network-based distances including the closest,
shortest, center, kernel, and separation, both at the ingredient and at the target levels.
We found that the frequently used herb pairs tend to have shorter distances compared
to random herb pairs, suggesting that a therapeutic herb pair is more likely to affect
neighboring proteins in the human interactome. Furthermore, we found that the center
distance determined at the ingredient level improves the discrimination of top-
frequent herb pairs from random herb pairs, suggesting the rationale of considering
the topologically important ingredients for inferring the mechanisms of action of
TCM. Taken together, we have provided a network pharmacology framework to
quantify the degree of herb interactions, which shall help explore the space of herb
combinations more effectively to identify the synergistic compound interactions based
on network topology.

Keywords: natural products, herb combinations, network modeling, Traditional
Chinese Medicine (TCM), formulae, network pharmacology
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Figure 1: Workflow of the network construction for herb pairs. Top frequent
herb pairs were determined from existing herbal formulas. For each herb pair, the
network consists of three levels of interactions including herb-ingredient,
ingredient-target and target-target interactions. The network proximity can be
determined at either the ingredient level or the target level by multiple metrics
including the closest, shortest, separate, kernel and center distances. We aimed to
determine the network models that can separate the most frequent from the least
frequent herb pairs.
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1 Introduction

The pathogenesis and progression of many complex diseases are complicated such
that the therapeutic effect of a single drug may be modest and further hampered by
various side effects or drug resistance mechanisms*. Meanwhile, the pharmaceutical
industry has begun to face the challenge of ‘more investments, fewer drugs’ in drug
discovery. To reach the goal of better treatment efficacies and fewer side effects, there
has been an increasing interest to investigate the synergistic effects of drug
combinations?.

Although high-throughput phenotypic assays have been developed to screen potential
drug combinations, an exhaustive search for the top hits from the huge combinatorial
space arising from numerous agents remains a daunting task®. In contrast,
computational approaches that leverage the rapid accumulation of pharmacological
data may provide a cost-effective alternative to enable more systematic analyses of
drug combinations. In particular, the advent of ‘omics’ technologies allow us to
measure the drug perturbations in biological pathways and molecular interactions,
resulting in an emerging systems-level approach called network pharmacology®.
Instead of looking for one drug which acts solely on an individual target, multi-target
drugs or drug combinations are more promising to achieve sustainable clinical
response as many complex diseases have been shown to include multiple disease-
causing genes®®. In replacing the concept of ‘magic bullet’, this so-called network
pharmacology paradigm requires accurate computational models that in many cases,
can be used to predict an effective drug combination in order to perturb robustly
disease phenotypes via targeting multiple pathways®. ldeally, such a drug combination
should work synergistically to achieve stronger therapeutic effects with reduced doses
of individual agents, so that the side effects may be minimized®!,

To understand drug combinations better, we may look into an empirical paradigm of
multi-component therapeutics known as Traditional Chinese medicine (TCM) to
search for insights!? 13, Having been developed for over 3,000 years, TCM is
characterized by the use of herbal formulae that usually consists of two or more
medicinal herbs, which are capable of systematically preventing and treating various
diseases via potentially synergistic herb interactions* 1°. Herb pairs involve a unique
combination of two specific herbs, which form the most fundamental component of a
multi-herb therapy'®. By adding more herbs, a formula may be used to treat different
diseases with greater flexibility”°, For instance, Coptis chinensis (Huang Lian, used
part: rhizome) and Evodia rutaecarpa (Wu Zhu Yu, used part: fruit) have been used
together widely as formula ZuojinWan in clinical prescriptions for treating gastric
diseases as a basic herb pair 2°. Depending on the additional herbs that are mixed with
Coptis chinensis and Evodia rutaecarp, they have been used for many disease
indications, including the inhibition of inflammation?!, as well as treating
hypertension?? and obesity?:.

Considering the important role of herb pairs in the development of TCM, it might be
of great significance to investigate the rationale of why certain herb pairs are
commonly used for treating a particular disease?* 2. However, there exists very
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limited understanding at the molecular level on how the herb pairs work
synergistically to achieve stronger therapeutic effect'? 2627, One of the major
bottlenecks is that herb combination is inherently more complex as herbs usually
consist of multiple ingredients. Recent studies suggested that synergistic effects in
herb combinations mainly rely on the interactions of their ingredients, leading to
boosted treatment effects compared to single herbs?®. One example is the cardio-
protective effects by the combination of Paeonol (isolated from the root cortex of the
Paeonia moutan [Syn Paeonia suffruticosa]) and Danshensu (isolated from the root of
the Chinese herb Salvia miltiorrhiza)?®. Another example is the comination of icariin
from aerial parts of herb Epimedium brevicornum (Yin Yang Huo), berberin from the
bark of Phellodendron amurense (Huang Bai), and curculigoside from rhizome of
Curculigo orchioides (Xian Mao) in the Er-Xian decoction, which can produce
synergistic effects on Osteoclastic bone resorption®. Furthermore, ingredients within
an herb might also interact synergistically to induce pharmacological effects. One
example is the interaction of ginsenoside Rb1, ginsenoside Rgl and ginsenoside
20(S)-protopanaxatriol found in the root of Panax ginseng, which can produce
synergistic effects on their antioxidant activity®!. These individual studies on specific
herbs form the basis for developing a more systematic method to model the
interactions among TCM herbs at the molecular level, which may hold the key to
rationalize the herb combinations for future drug discovery.

Recently, network pharmacology approaches have been introduced for the study of
drug interactions for a variety of diseases®> 3., For example, Huang et al. proposed a
novel tool called DrugComboRanker based on drug functional network to prioritize
potential synergistic drug combinations and further validated their mechanisms of
action in lung adenocarcinoma and endocrine receptor positive breast cancer®*. Cheng
et al. proposed a network-based methodology to characterize the distance between
two drugs according to their target distributions in a protein-protein network!!. They
demonstrated that clinically approved drug combinations tend to have lower distance
compared to random drug pairs, and for a drug pair working synergistically for a
given disease, both of them need to hit the disease module but via non-overlapping
network neighborhood. Furthermore, a modularity analysis of multipartite networks
has suggested that network modeling might be a promising method for understanding
the mechanisms of actions of traditional medicine®. With the great success in
understanding the interaction between chemicals and diseases, network-based models
warrant further studies to make sense of the rationale of TCM herb interactions.

In this study, we hypothesized that network pharmacology models on the underlying
drug-target interactions behind the herb combination may provide novel insights into
herb pair’s mechanisms of action, which are critical for the phenotypic-based drug
discovery from TCM3-38, We investigated the frequencies of herb pairs that appear in
the common TCM herb formulas. We developed a network-based model to
characterize the distance of herbs within an herb pair in a protein-protein interaction
network. The model considered the interactions of herbs at the herb, ingredient and
target levels, and utilized five distance metrics including the closest, shortest,
separate, kernel and center methods. In addition, Area under curve (AUC) of
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precision and recall (PR) as well as receiver operating character characteristics (ROC)
were used to determine the best distance metric for discriminating the most frequent
herb pairs against non-existing herb pairs. Finally, we found that a commonly used
herb pair tends to have smaller network distance compared to non-existing herb pairs,
suggesting that herb combinations tend to achieve stronger protein-protein
interactions. In addition, we found that the center ingredients of herbs tend to play
important roles. In a case study of an herb pair including Astragalus membranaceus
and Glycyrrhiza uralensisn, we further showed that their network-based distance is
significantly smaller than random and then center ingredients of the herb pair. Taken
together, the network modeling approach provides a more systematic framework to
characterize herb interactions at the molecular level that may lead to the
rationalization and modernization of TCM herb combinations ultimately?’.

2 Methods

2.1 Collection of herb pairs

We searched for existing herbal formulae from TCMID, a manually-curated TCM
database®®. TCMID is by far one of the most comprehensive TCM databases. More
importantly, compared to other databases, TCMID supports data download service,
which facilitates the effective integration of TCM data and PPI data in our study.
Therefore, for allowing a more systematic analysis of the TCM herbs, we decided to
use the data from TCMID. There are 8159 herbs and more than 25,210 herb
ingredients in the TCMID database in total. However, after filtering out herbs and
ingredients that are lack of target information, 349,197 herb pairs were collected from
46,929 herbal formulae, including 4415 herbs, 4330 ingredients, 3171 targets, 17,753
herb-ingredient pairs as well as 25,050 ingredient-target pairs. As the same herb pair
may appear in multiple herbal formulae, we considered the top 200 most frequent
herb pairs with target information for both herbs (frequencies between 358 and 3846)
as a positive set (Supplementary Figure 1). In contrast, we determined 10,000
randomly generated herb pairs, out of which we considered 9459 herb pairs that were
not observed in the actual herbal formulae as a negative control data set. Therefore,
the positive set represents the common herb pairs while the negative set represents the
herb pairs that are not used in any of the herbal formulae. To obtain an independent
validation set, we also collected 268 herb pairs that have been considered as basic
components of herbal formulae according to traditional medicine literature'# 1640,

2.2 Extraction of interactions between herbs, ingredients and targets

We collected the herb-ingredient information from the TCMID. Herbs that lack
ingredient information were not considered. Similarly, ingredient compounds without
structural information were discarded, as they could not be modelled in the PPI
network analysis. For the remaining ingredient compounds, their targets were
extracted from the STITCH database*!. Target-target interactions were extracted from
a manually-curated human interactome including 243,603 PPIs and 16,677 proteins'!,
which are assembled from commonly-used databases including IntAct*?, InnateDB*,
PINA*, HPRD*, BioGRID*, HI-11-14_Net*"“8, PhosphositePlus®,
KinomeNetworkX®, INstruct®, SignaLink2.0% and MINT®3, These databases cover a

wide range of protein-protein interaction data derived from experimental and
5
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computational approaches. All the interactions were denoted as undirected edges in
the network.

2.3 Network proximity models of herb pairs

The herb-herb distance can be determined by considering the ingredients as the nodes,
where for a pair of ingredients their distance can be further determined from their
target profiles in the PPI network. Denote that I(4) = (a4, a,, ...) is the ingredient set
for a herb A, where for an ingredient a the set of targets is T (a) = (ty, ty, ... ). For
another herb B, its ingredient set and target sets are defined similarly. We applied five
measures introduced by Cheng et al.'! to determine the network distance between two
herbs, including closest, separation, shortest, kernel and center.

The closest distance is defined as:

1

dqclosest — ______— Z minba(B)dl'(a, b) +
a€l(A)

1O = i@+ @ }:mmmwmmm> W

beI(B)
, Where di(a, b) is the distance between two ingredient nodes in herb A and herb B,
and ||[I(A)|| and ||I(B)|| are the numbers of ingredients for herb A and B, separately. For
each ingredient in herb A, we considered its distance with all the ingredient nodes in
herb B, and determined the minimal distance as its closest distance. As shown in
equation (1), we determined the mean closest distance for all the ingredients in A and
B, and used it as the closest distance d §{55¢¢5, between the two herbs.

The separation distance is defined as the closest distance between A and B, subtracted
by the average closest distances within A and B:

d closest +d closest
dseparation — J closest 1(A)I(A) 1(B)I(B) 2
IONG R OUC 2 2

The shortest distance sums up all the distances between nodes in A and B, and then
normalized by the product of their sizes:

1
dshortest — ___© Z di(a,b) 3)
1(A)I(B) [11CA)I| x 111(B)I| ac1(5Ters)

The kernel distance is defined as the average of exponent-based pairwise distance,
normalized by their relative network sizes:

Kkernel -1 e—(di(a,b)+1) e—(di(ab)+1)
d i{ne TP NIRRTV SNT Z In _t In P — )
W = T+ BN ey oy MON 4 ™ £ A

The center distance identifies the centers of A and B as the nodes with minimal sum
of distances, and then determines the distance between the two centers:

dfeTsy = di(centre; ), centre;(g)) (5)
, Where

centreys or gy = ArgMiNyei(a or B) Z di(b,u) (6)
beI(B or A)
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The equations (1-6) involve the calculation of distances for two ingredients (a, b), for
which we again have five options based on their target profiles T(a) and T(b)
including:

1
di Eé‘?g)e“ = m( Z minjET(b)dt(i,j) + Z miniET(a)dt(i,j)> (7)

i€T(a) JET ()
di .(czlzz)t;ration — di’rcég.)qgs(i) _ di’lf(lgi?'fg.) '; dircégfﬁi) (8)
;shortest _ 1 . 5
difgpy ©" = mim;em) dt(i, ) 9
dié‘;g’)‘el _ -1 (z n z e—(dt(i,j)+1)+ Z n Z e—(dt(i,j)+1)> 0)
' IT@I] + T B i€T(a) jET(b) T JET(b)  i€T(a) T (@]
di(cgf}f)” = dt(centrer(q), centrery)) (11)

As we considered five distance methods that can be applied at both the target and the
ingredient levels, the network proximity can be defined by an exhaustive combination
of them, resulting in 25 distance models in total. For example, a model can be
constructed using closest (ingredient) - closest (target) distance, defined as the closest
distance for two herbs at the ingredient level:

d closest

1 . . . .
1(DiE) = m(zaexm) Minpepydi(a,b) + Yperpy Mingerydi(a,b) ) (12)

, Where di(a, b) for ingredient a and ingredient b is:

di Crlgf)grs(tb) = m(ZieT(a)minjeT(b)dt(irj) + Yjerm) Miner@dt(@,j) ) (13)
, Where dt(i, j) is the shortest path length between the two targets in the PPI
network>,

2.4 Discrimination performance of the proximity distances

We utilized the area under the receiver operating character characteristic (ROC) curve
(AUC) to evaluate discriminative ability of the network proximity models for
separating the top frequent herb pairs and non-observed random herb pairs. True
positive rate and false positive rate were determined at different thresholds of network
proximity value. To obtain a balanced data set with an equal number of positive and
negative cases, we randomly selected two herbs as non-observed herb pairs from the
4415 herbs for 200 times, resulting in a set of 200 negative herb pairs for comparison.
To determine the average AUC scores, we repeated the procedure 50 times. For the
268 literature-mined herb pairs (described in section 2.1 as an independent validation
set), we also repeatedly generated 268 random pairs as negative control.

2.5 A case study on modeling the combination of Astragalus membranaceus and
Glycyrrhiza uralensis

It is reported that the herb pair Huang Qi (the root of Astragalus membranaceus) and

Gan Cao (the root and rhizome of Glycyrrhiza uralensis) can be used for liver fibrosis

and cirrhosis treatment, while neither Astragalus membranaceus nor Glycyrrhiza

uralensis shows therapeutic effects when used alone®® 6. Therefore, it is important to
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identify the synergistic interactions of the ingredients underlying the herb pair for
treating liver diseases. To explore the mechanisms of the herb pair, we constructed the
herb-herb network based on their ingredients and targets. We first evaluated whether
the distance between Astragalus membranaceus and Glycyrrhiza uralensis is different
from the expectation of a random herb pair. Furthermore, we identified the center
ingredients that are more likely to explain the synergy of the two herbs. Finally, we
performed pathway analysis using enrichr®” based on the target genes of the center
ingredients.

3 Result

3.1 Frequency of single herbs and herb pairs

There are 8159 herbs and more than 25210 herb ingredients in the TCMID database in
total. However, after filtering out herbs and ingredients that lack target information,
349,197 herb pairs were collected from 46,929 herbal formulae, including 4415 herbs,
4330 ingredients, 3171 targets, 17,753 herb-ingredient pairs as well as 25,050
ingredient-target pairs. Most of the herb formulae (97.9 %) contain less than 20 herbs,
with an average of 4.93 (Supplementary Figure 1). The herbs with top-ten highest
frequencies are Gan Cao (root and rhizome of Glycyrrhiza uralensis, 12518), Dang
Gui (root of Angelica sinensis, 7417), Ren Shen (root of Panax Ginseng, 7390), Bai
Zhu (5259, root of Atractylodes macrocephala [Syn. Atractylis macrocephala]),
Huang Qin (4163, root of Scutellaria baicalensis), Fang Feng (4074, root of
Saposhnikovia divaricata [Syn. Ledebouriella seseloides]), Chuan Xiong (4007,
rhizome of Ligusticum chuanxiong [Syn. Ligusticum wallichii]), Fu Ling (3666,
sclerotium of Poria cocos), Chen Pi (3650, from the dried peel of Pericarpium Citri
Reticulatae) (Supplementary Table 1). Glycyrrhiza uralensis is extensively used as a
major component in the 12,518 prescriptions, supported by its various
pharmacological activities including anti-inflammatory, anti-oxidative, antidiabetic,
hepatoprotective and memory enhancing activities®. Angelica sinensis is widely
applied for menstrual disorders by enhancing the blood circulation, and also has been
reported to have multiple immunomodulation and anti-inflammation, as well as
cardio-cerebrovascular effects*®. Panax Ginseng is commonly used as a functional
food with a long medical history, which has shown efficacy in multiple diseases, such
as anti-cancer, neurodegenerative disorders, insulin resistance and hypertension.
Another important effect of Panax Ginseng is maintaining homeostasis of the immune
system®®61, All the top three most frequent herbs tend to activate the immune system,
suggesting the importance of activating the immune system when prescribing TCM.
This observation is consistent with the TCM theory, where these herbs are usually
called tonifying (adjuvant) herbs that possess supplementing and strengthening the
treatment effects in addition to the major herbs.

These high-frequent herbs also tend to show higher chances to be combined with the

other herbs (Figure 2). For example, Panax Ginseng and Glycyrrhiza uralensis

appear together in 3846 of 46,929 herbal formulae, followed by the pair of Angelica

sinensis and Glycyrrhiza uralensis that are co-administered in 2907 herbal formulae.

However, the majority of the 349,197 herb pairs (99.4%) occurred in less than 100

herbal formulae. Only 163 herb pairs of the remaining 1950 (0.6%) herb pairs showed
8
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276  afrequency higher than 500 (Supplementary Figure 2).
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Figure 2: Patterns of pairing for the top ten most frequent herbs. The
frequency of the herbs is shown in the top panel while the number of unique herbs
that are co-administrated with them is shown in the left panel. The numbers inside
the heat map show the frequencies of their pairwise combinations.

277

278  Asshown in the Supplementary Figure 2, there is a sharp decrease of herb pair
279  frequency after 200. Therefore, we considered those herb pairs with frequency larger
280 than 200 and target information for both herbs to be the popular herb pairs. In the
281  following analyses, we focused on these top herb pairs and searched for their target
282 and ingredient information (Supplementary Table 2). These herb pairs involve 61
283 unique herbs, for which the average number of ingredients is 16.80. There is at least
284  one common ingredient for 43% (86) of the top 200 herb pairs, while only 2.08% of
285  randomly generated herb pairs share at least one ingredient (Supplementary Figure
286  3). Use of common ingredients tends to be a strategy of TCM prescription, as it was
287  found that synergistic effects may be achieved by affecting the same pathways with
288 common or similar compounds®?. For example, Qiang Huo (the rhizome or root part
289  of Notopterygium incisum) and Du Huo (the root part of Angelica pubescens f.
290 biserrata [Syn. Angelica pubescens]) share ten common ingredients (including
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gamma-amin.yri., camphor, columbianetin, guaiol, guanidinium, isoimperatorin,
isopimpinellin, nodakenin, scopoletin, and osthole) and have appeared in 522 herbal
formulas. At the same time, different ingredients in these herb pairs may play various
roles, such as optimization of pharmacodynamics and/or pharmacokinetics to improve
therapeutic efficacy and/or reduce toxicity and adverse reactions’, which can be
explained by the “Jun-Chen-Zuo-Shi” theory in TCM system®. For example, the
combination of cacalol from plant Cacalia delphinifolia and paclitaxel extracted from
the yew trees can significantly suppress tumor growth and overcome chemo-
resistance®*.

3.2 Network distance for top-frequent herb pairs

We modelled the interactions for an herb pair at two levels including the ingredient
and the target levels. For each level, we considered five distance methods including
closest, separation, shortest, kernel and center. In the next step, we examined all
combinations of distance metrics in both levels, resulting in 25 (5*5) distance models
in total. We focused on the top 200 most frequent herb pairs and determined their
network-based distances, as compared to randomly selected herb pairs. We found that
the average network distance of the top herbs pairs is mostly less than the average
distance of random herb pairs, with statistical significance in 16 of the 25 distance
models (p-value <0.05) (Figure 3, Table 1). For example, the center-separation
model showed the best performance to differentiate the top herb pairs from random
pairs, with a difference of 0.489 (p-value = 9.91E-28, t-test). As the herb-herb
network is constructed based on their interactions in ingredients and targets, a shorter
distance therefore indicates that herb pairs tend to affect similar pathways in order to
produce synergistic effects. We also examined the likelihood of a top-frequent herb
pair sharing the same ingredients, which might explain why they have shorter
distance. These shared ingredients may contribute partly to the closer distances of the
herb pairs.

10
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Figure 3. Network distances for the top herb pairs when comparing with
random herb pairs. ‘I’ stands for the ingredient-level distance methods and ‘T’
stands for the target-level distance methods.

319

320  We found that 114 out of the 200 herb pairs did not share any common ingredients,
321 while a few herb pairs (n = 15) shared more than three ingredients (Supplementary
322 Figure 3). However, when we considered the 114 herb pairs that did not share any
323 common ingredients, we still found that their distances are significantly lower than
324  that for random herb pairs (Supplementary Figure 4). This result suggested that in
325  addition to the common ingredients, target interactions from different ingredients
326 within an herb pair remain a major mechanism of action to affect functionally related
327  disease pathways.

328
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Table 1: Comparing the network proximity models. The p-values are
determined by the difference between the top 200 herb pairs and random herb
pairs. Distances 1, 2, 3, 4 are the average distance for top 200 herb pairs, top
10000 herb pairs, top non-overlapping 114 herb pairs and random herb pairs,

respectively.
Herb- Ingredient- Distance Distance 2 Distance 3  Distance 4 Tp- AUROC AUPRC
level level 1 value

distance  distance

center shortest 1.92 2.09 1.81 241 2.50E-28 0.85 0.87
center separation 0.32 0.04 0.47 0.48 9.91E-28 0.87 0.87
closest center 1.61 1.78 1.46 2.06 4.39E-24 0.84 0.84
center kernel 291 3.08 2.78 3.36 1.87E-23 0.82 0.83
separation  kernel 0.50 0.63 0.18 1.70 6.36E-22 0.73 0.78
separation  shortest 0.34 0.44 0.11 1.24 2.11E-21 0.73 0.79
closest closest 177 1.92 1.57 2.16 1.14E-20 0.81 0.80
closest separation  0.02 0.18 0.24 0.56 1.30E-18 0.81 0.81
center closest 1.67 1.84 1.53 2.13 1.82E-18 0.79 0.79
separation center 0.43 0.53 0.20 112 3.58E-16 0.73 0.79
closest kernel 3.13 3.23 3.00 3.40 3.93E-16 0.77 0.78
center center 1.62 1.75 1.49 2.05 1.76E-13 0.69 0.79
closest shortest 2.22 231 212 247 8.31E-13 0.74 0.76
separation closest 0.63 0.67 0.33 1.22 1.11E-11 0.71 0.76
kernel center 3.04 3.06 3.03 3.14 0.009391 0.56 0.67
kernel separation 1.52 1.55 1.47 1.68 0.029083 0.52 0.64

12


https://doi.org/10.1101/2021.01.22.427821
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.22.427821; this version posted January 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

329

330
331
332
333
334
335
336
337
338
339
340
341

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

shortest center 2.10 2.10 2.10 2.16 0.126387 0.48 0.62
shortest separation 0.63 0.64 0.61 0.71 0.238476 0.48 0.61
kernel closest 3.21 3.22 3.18 3.24 0.337705 0.50 0.64
separation ~ separation  0.46 0.46 0.30 0.51 0.358257 0.46 0.58
kernel kernel 4.46 4.47 4.45 4.47 0.463986 0.47 0.62
kernel shortest 3.53 3.54 3.53 3.54 0.488536 0.47 0.61
shortest kernel 3.49 3.49 3.49 3.48 0.503392 0.45 0.60
shortest closest 2.26 2.26 2.26 2.26 0.503841 0.45 0.60
shortest shortest 2.56 2.56 2.56 2.55 0.51079 0.45 0.60

3.3 Discrimination performance of the distance metrics

To evaluate the discrimination power of the network models, we determined the
Receiver Operating Characteristic (ROC) curve and Precision-Recall (PR) curve
using the top frequent herb pairs as positive cases and random herb pairs as negative
cases. In general, we found that the average AUROC (Area Under the ROC curve)
and AUPRC (Area Under the PR curve) for the 25 distance metrics reach 0.65 and
0.72, respectively, suggesting the general validity of using the network-based distance
metrics to characterize the herb-pair interactions (Table 1). We found that the top
performance was achieved by two models that utilize the center distance at the
ingredient level, including the center (ingredient) - separation (target) model and the
center (ingredient) - shortest (target) model. The ROC curves for these two models
were shown in Figure 4, confirming the superior discrimination performance.
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Figure 4. Receiver operating characteristic curves and precision-recall curves of the
(A-B) center-separation model and (C-D) the center-shortest model. Each curve is a
result of one permutation while the blue curve is the average value of all the
permutations.

342

343 Interestingly, we found that the five models utilizing the center distance at the

344  ingredient level (i.e. center (ingredient) - center (target), center (ingredient) - closest
345  (target), center (ingredient) - kernel (target), center (ingredient) - separation (target)
346  and center (ingredient) - shortest (target)) have a better discrimination performance
347  with mean AUROC of 0.80 and mean AUPRC of 0.83, in contrast to that of the other
348  models (Figure 5). Different from using the other distance metric at the ingredient
349 level, the center-based models involve the identification of the central ingredients that
350 have a minimal sum of shortest path lengths in the herb-ingredient network. The

351 superior performance of the center-based distance models therefore suggests that the
352  herb-pair interactions are mainly driven by few ingredients as determined as the

353  center nodes. These topologically important ingredients may hold the key for
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understanding herb pair interactions.
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Figure 5: AUROC and AUPRC grouped by the distance models at the
ingredient level. The statistical significance is determined by t-test.

To validate our hypothesis, we also collected 268 known herb pairs from the literature
(Supplementary Table 3). We applied the 25 network models to evaluate how well
these 268 known herb pairs can be separated from random pairs. In line with the
previous results, we found that the distance between these known herb pairs is on
average smaller than random pairs (Supplementary Table 4). The average AUROC
and AUPRC across all the 25 models is 0.62 and 0.65, respectively. Furthermore, the
center (ingredient) - shortest (target) model can achieve the top accuracy of AUROC
0.75 and AUPRC 0.73 (Supplementary Table 4, Supplementary Figure 5).
Notably, the 268 known herb pairs were extracted from the literature that was
independent from the datasets extracted from the TCMID. The overlap between these
two datasets is minimal (n = 32), suggesting a general validity of using network
models to predict the potential of herb pairs in TCM.
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3.4 The combination mechanism of herb pair Astragalus membranaceus and
Glycyrrhiza uralensis
We applied our network pharmacology modeling to the study of herb pair Astragalus
membranaceus and Glycyrrhiza uralensis. The combination of Astragalus
membranaceus and Glycyrrhiza uralensis has shown clinical efficacy to treat liver
diseases by the inhibition of notch signaling pathways®®. It was also reported that this
herb pair is able to inhibit bile acid-stimulated inflammation in chronic cholestatic
liver injury mice®® based on transcriptomics profiling®. However, their active
ingredients and the mechanisms of action of remain poorly understood.

We retrieved 15 ingredients for Astragalus membranaceus and 27 ingredients for
Glycyrrhiza uralensis, separately, for which three ingredients were common including
formononetin, clionasterol and clionasterol (Supplementary Table 5). Based on the
conclusion that center-based distance models tend to achieve better performance, we
considered the distance for the herb pair as the distance of their center ingredients,
which can be determined by five different models at the target level. We compared
the herb distances with that of the top 200 herb pairs as well as the random herb pairs.
We found that the herb pair distances are much smaller than that of the random herb
pairs, suggesting a strong evidence for the close network proximity of the two herbs
(Table 2).

Table 2: The center ingredients for Astragalus membranaceus and Glycyrrhiza
uralensis determined by models with different distance methods at the target level
while fixing the center distance method at the ingredient level.

Center of Center of Glycyrrhiza Method Distance Distance Distance

Astragalus uralensis (top) (random)

membranaceus

isorhamnetin glycyrrhizin; glycyrrhizic  center 1.00 1.62 2.05
acid; 18beta-

glycyrrhetinic acid;
glycyrrhetinic acid;
monoammonium
glycyrrhizinate;

astramembrannin i glycyrrhizin; closest 1.17 1.67 2.13
monoammonium
glycyrrhizinate;
glycyrrhizicacid

lupeol isoorientin kernel 2.78 291 3.36
calycosin isolicoflavonol separation  0.33 -0.32 0.48
lupeol isoorientin shortest 1.82 1.92 241

By applying the center (ingredient) - closest (target) model, we found that
astramembrannin i and glycyrrhizin were identified as the center of Astragalus
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membranaceus and Glycyrrhiza uralensis, separately. It was shown that glycyrrhizin
from Glycyrrhiza uralensis is effective on ferroptosis by inhibiting oxidative stress
during acute liver failure®®. Interestingly, it was reported that the synergistic anti-liver
fibrosis actions by the Astragalus membranaceus and Glycyrrhiza uralensis can be
attributed to the ingredient astragalus saponins from Astragalus membranaceus and
ingredient of glycyrrhizic acid of Glycyrrhiza uralensis via TGF-p1/Smads signaling
pathway modulation®’, which is consistent with our analysis.

On the other hand, to apply the center (ingredient) - shortest (target) model, we first
determined the shortest distance for each ingredient pair using the target interaction
network, with which we can determine lupeol and isoorientin as the central
ingredients of Astragalus membranaceus and Glycyrrhiza uralensis, separately. We
found that the distance is 1.82, which is lower than the average (1.92) of the top herb
pairs, and much lower than the average (2.41) of the random herb pairs. Interestingly,
we found that the same center ingredients were also identified by the center
(ingredient) - kernel (target) model. It was reported that isoorientin might protect
alcohol induced hepatic fibrosis in rats by reducing the levels of inflammation-related
pathways®®. On the other hand, lupeol was known for protecting oxidative stress-
induced cellular injury of mouse liver by downregulating anti-apoptotic Bcl-2 and
upregulating pro-apoptotic Bax and Caspase 3%°. To illustrate further the potential
combinational effects of lupeol and isoorientin, we performed pathway analysis by
the targets of these two ingredients (NFE2L2, AKT1 form isoorientin and CTNNB1,
MITF, LSS, PTEN and TP53 form lupeol) (Figure 6). We found that these target
genes are associated with pathways related to liver disease, especially the cholesterol
biosynthesis pathway, the hepatocellular carcinoma pathway, the IL-5 signaling
pathway as well as the ethanol metabolism resulting in production of ROS by the
CYP2E1 pathway. Therefore, it is plausible that the anti-liver fibrosis effects of herb
pair Astragalus membranaceus and Glycyrrhiza uralensis can be attributed to the
combination of lupeol and isoorientin. Taken together, this case study exemplified the
feasibility and rational of applying the network model to pinpoint potential ingredient
interactions and their mechanisms of action.
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Figure 6: PPI network and pathway enrichment of the combination of
isoorientin of Glycyrrhiza uralensis and lupeol of Astragalus membranaceus. The
targets of the two center ingredients and their associated pathways are listed.

423

424 4 Discussion

425  Understanding the mechanisms of actions of TCM requires a more systematic

426 investigation of the herb interactions. In this paper, we proposed a novel PPI-based
427  network model to characterize the interaction of herb pairs. To illustrate the complex
428  nature of TCM pharmacology, we developed network distance metrics by integrating
429  the relationships between herb, ingredients and targets. We defined the herb-herb
430  distance based on a multiple partite network which is commonly used for biological
431 network modeling®. The components of such a multi-modal network include bipartite
432 networks of herb-ingredient and ingredient-target interactions. We considered the
433 network proximity distance at two levels, where the nodes of the networks can be
434  either ingredients or targets. The two-level network modeling allows the

435  characterization of herb-herb and ingredient-ingredient interactions with greater

436  flexibility. In this study, we have provided a panel of 25 distance models, based on
437  which we achieved a comprehensive evaluation of herb-herb interactions. Compared
438  to the existing methods that are mainly focusing on single herbs, our network

439 modeling can provide more insights on the mechanisms of action of TCM herb

440  formulae, which by principle mainly involve multi-herb combinations.

441  We found that commonly used herb pairs tend to have smaller network proximity
442  distance, suggesting stronger PPI interactions between them. Moreover, using the
443 center distance at the ingredient level, the network model tends to achieve higher
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accuracy of discriminating the commonly used herb pairs from random herb pairs
with the best AUROC of 0.87 and AUPRC of 0.87. In general, we found that the
center distance at the ingredient level improved the prediction accuracy, suggesting
that ingredients that are located in the center of the herb PPI network play important
roles when combined with the other herbs. These center ingredients showed a
minimal sum of shortest path lengths within the herb PPI network, and therefore are
more likely to activate a cascade of multiple pathways. Prioritization of these center
ingredients for further functional studies shall help us understand the synergistic
effects of herb pairs. Using the herb pair Astragalus membranaceus and Glycyrrhiza
uralensis as a case study, we confirmed that its network distance was shorter than that
of random herb pairs. More interestingly, the potential synergistic effects of the center
ingredient lupeol from Astragalus membranaceus and the center ingredient
isoorientin from Glycyrrhiza uralensis were supported by the literature®”-%, which
warrants more experimental validation.

On the other hand, the stronger network proximity distance between the TCM herb
pairs might be due to the overlapping ingredients. Indeed, we found that 86 out of 200
top common herb pairs shared at least one common ingredient. However, using the
114 herb pairs that do not share any common ingredients, we retained the same level
of top prediction accuracy (AUROC 0.75 and AUPRC 0.73). Therefore, the strong
PPI interactions were largely attributed by functionally related ingredients that may
share common or similar targets. For example, the ingredient nodakenin from herb
Notopterygium incisum and ingredient limonene from herb Angelica pubescens f.
biserrata have five common targets, including NOS1, NOS2, NOS3, POR and
MTRR. Targeting the same disease proteins with multiple ingredients is in fact an
important strategy of TCM formula, as it may achieve the same level of efficacy
while lowering the side effects that are caused by the high doses of single
ingredient?®.

Previously, Li et al. have proposed a Distance-Based-mutual-Information (DMIM)
approach! to determine an interaction score between herb pairs based on their
frequencies. Compared to DMIM, our method is based on the information at deeper
molecular levels such as herb-ingredient, ingredient-target and target-target
relationships, which shall provide a more refined characterization of herb-interactions.
However, there are limitations in our study that need to be improved in the future. For
example, despite the knowledge of existing ingredients in an herb, their actual
concentrations are largely unknown. Therefore, the current model treats each
ingredient equally, which might lead to certain bias. Moreover, we empirically
determined the common herb pairs by their frequencies of occurrences in TCM
formulae, which might be suboptimal. On the other hand, we did not filter the
ingredients by oral bioavailability (OB) and drug-likeness (DL) in our study of herb
combinations, as it is known that ingredients in TCM with low OB or DL values may
still play active roles due to their superior pharmacological properties’. Another
limitation is the lack of target information for certain ingredients. In our model, we
discarded the herbs and ingredients without any target information, as their biological
roles remain unclear. In the future, computational methods, such as the similarity
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ensemble approach (SEA)™!, and experimental methods such as thermal proteomics
profiling (TPP)"2 can help the TCM research in the aspect of targeted discovery of
herb ingredients.

In conclusion, TCM formulae provide important resource of drug combinations in
natural products. In this study, we proposed a network-based model to understand the
rational of herb pairs in TCM. By qualifying the distances between herb pairs based
on herb-ingredient-target interactions, the network model can identify the potential
synergistic ingredients for which the mechanisms of action can be further explored.
The modelling strategy itself not only helps us explore the space of herb combinations
more effectively, but also can be used for prioritizing synergistic compound
interactions that shall facilitate the drug discovery from TCM.
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