

1 **Network-based modeling of herb combinations in Traditional Chinese Medicine**

2 Yinyin Wang¹, Hongbin Yang², Linxiao Chen³, Mohieddin Jafari¹ and Jing Tang^{1*}

3 ¹Research Program in Systems Oncology, Faculty of Medicine, University of
4 Helsinki, Finland

5 ²Department of Chemistry, University of Cambridge, Cambridge, UK

6 ³Department of Mathematics and Statistics, University of Helsinki, Finland

7 *Corresponding author: jing.tang@helsinki.fi

8 Abstract: Traditional Chinese Medicine (TCM) has been practiced for thousands of
9 years for treating human diseases. In comparison to modern medicine, one of the
10 advantages of TCM is the principle of herb compatibility, known as TCM formulae.
11 A TCM formula usually consists of multiple herbs to achieve the maximum treatment
12 effects, where their interactions are believed to elicit the therapeutic effects. Despite
13 being a fundamental component of TCM, the rationale of combining specific herb
14 combinations remains unclear. In this study, we proposed a network-based method to
15 quantify the interactions in herb pairs. We constructed a protein-protein interaction
16 network for a given herb pair by retrieving the associated ingredients and protein
17 targets, and determined multiple network-based distances including the closest,
18 shortest, center, kernel, and separation, both at the ingredient and at the target levels.
19 We found that the frequently used herb pairs tend to have shorter distances compared
20 to random herb pairs, suggesting that a therapeutic herb pair is more likely to affect
21 neighboring proteins in the human interactome. Furthermore, we found that the center
22 distance determined at the ingredient level improves the discrimination of top-
23 frequent herb pairs from random herb pairs, suggesting the rationale of considering
24 the topologically important ingredients for inferring the mechanisms of action of
25 TCM. Taken together, we have provided a network pharmacology framework to
26 quantify the degree of herb interactions, which shall help explore the space of herb
27 combinations more effectively to identify the synergistic compound interactions based
28 on network topology.

29 **Keywords: natural products, herb combinations, network modeling, Traditional**
30 **Chinese Medicine (TCM), formulae, network pharmacology**

31

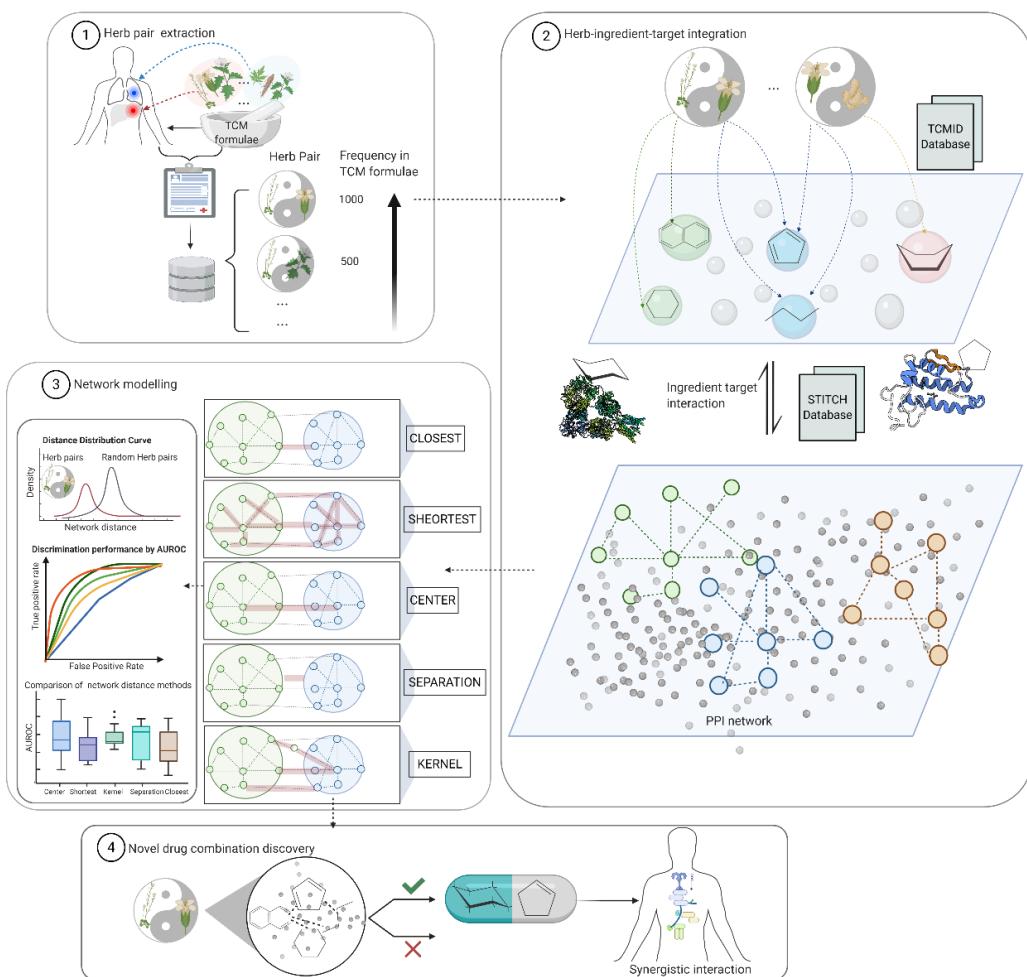


Figure 1: Workflow of the network construction for herb pairs. Top frequent herb pairs were determined from existing herbal formulas. For each herb pair, the network consists of three levels of interactions including herb-ingredient, ingredient-target and target-target interactions. The network proximity can be determined at either the ingredient level or the target level by multiple metrics including the closest, shortest, separate, kernel and center distances. We aimed to determine the network models that can separate the most frequent from the least frequent herb pairs.

33 **1 Introduction**

34 The pathogenesis and progression of many complex diseases are complicated such
35 that the therapeutic effect of a single drug may be modest and further hampered by
36 various side effects or drug resistance mechanisms¹. Meanwhile, the pharmaceutical
37 industry has begun to face the challenge of ‘more investments, fewer drugs’ in drug
38 discovery. To reach the goal of better treatment efficacies and fewer side effects, there
39 has been an increasing interest to investigate the synergistic effects of drug
40 combinations².

41 Although high-throughput phenotypic assays have been developed to screen potential
42 drug combinations, an exhaustive search for the top hits from the huge combinatorial
43 space arising from numerous agents remains a daunting task³. In contrast,
44 computational approaches that leverage the rapid accumulation of pharmacological
45 data may provide a cost-effective alternative to enable more systematic analyses of
46 drug combinations. In particular, the advent of ‘omics’ technologies allow us to
47 measure the drug perturbations in biological pathways and molecular interactions,
48 resulting in an emerging systems-level approach called network pharmacology⁴.
49 Instead of looking for one drug which acts solely on an individual target, multi-target
50 drugs or drug combinations are more promising to achieve sustainable clinical
51 response as many complex diseases have been shown to include multiple disease-
52 causing genes⁵⁻⁸. In replacing the concept of ‘magic bullet’, this so-called network
53 pharmacology paradigm requires accurate computational models that in many cases,
54 can be used to predict an effective drug combination in order to perturb robustly
55 disease phenotypes via targeting multiple pathways⁹. Ideally, such a drug combination
56 should work synergistically to achieve stronger therapeutic effects with reduced doses
57 of individual agents, so that the side effects may be minimized⁹⁻¹¹.

58 To understand drug combinations better, we may look into an empirical paradigm of
59 multi-component therapeutics known as Traditional Chinese medicine (TCM) to
60 search for insights^{12, 13}. Having been developed for over 3,000 years, TCM is
61 characterized by the use of herbal formulae that usually consists of two or more
62 medicinal herbs, which are capable of systematically preventing and treating various
63 diseases via potentially synergistic herb interactions^{14, 15}. Herb pairs involve a unique
64 combination of two specific herbs, which form the most fundamental component of a
65 multi-herb therapy¹⁶. By adding more herbs, a formula may be used to treat different
66 diseases with greater flexibility¹⁷⁻¹⁹. For instance, *Coptis chinensis* (Huang Lian, used
67 part: rhizome) and *Evodia rutaecarpa* (Wu Zhu Yu, used part: fruit) have been used
68 together widely as formula ZuojinWan in clinical prescriptions for treating gastric
69 diseases as a basic herb pair²⁰. Depending on the additional herbs that are mixed with
70 *Coptis chinensis* and *Evodia rutaecarpa*, they have been used for many disease
71 indications, including the inhibition of inflammation²¹, as well as treating
72 hypertension²² and obesity²³.

73 Considering the important role of herb pairs in the development of TCM, it might be
74 of great significance to investigate the rationale of why certain herb pairs are
75 commonly used for treating a particular disease^{24, 25}. However, there exists very

76 limited understanding at the molecular level on how the herb pairs work
77 synergistically to achieve stronger therapeutic effect^{12, 26, 27}. One of the major
78 bottlenecks is that herb combination is inherently more complex as herbs usually
79 consist of multiple ingredients. Recent studies suggested that synergistic effects in
80 herb combinations mainly rely on the interactions of their ingredients, leading to
81 boosted treatment effects compared to single herbs²⁸. One example is the cardio-
82 protective effects by the combination of Paeonol (isolated from the root cortex of the
83 *Paeonia moutan* [Syn *Paeonia suffruticosa*]) and Danshensu (isolated from the root of
84 the Chinese herb *Salvia miltiorrhiza*)²⁹. Another example is the combination of *icariin*
85 from *aerial parts* of herb *Epimedium brevicornum* (Yin Yang Huo), *berberin* from the
86 bark of *Phellodendron amurense* (Huang Bai), and *curculigoside* from rhizome of
87 *Curculigo orchioides* (Xian Mao) in the Er-Xian decoction, which can produce
88 synergistic effects on Osteoclastic bone resorption³⁰. Furthermore, ingredients within
89 an herb might also interact synergistically to induce pharmacological effects. One
90 example is the interaction of *ginsenoside Rb1*, *ginsenoside Rg1* and *ginsenoside*
91 *20(S)-protopanaxatriol* found in the root of *Panax ginseng*, which can produce
92 synergistic effects on their antioxidant activity³¹. These individual studies on specific
93 herbs form the basis for developing a more systematic method to model the
94 interactions among TCM herbs at the molecular level, which may hold the key to
95 rationalize the herb combinations for future drug discovery.

96 Recently, network pharmacology approaches have been introduced for the study of
97 drug interactions for a variety of diseases^{32, 33}. For example, Huang *et al.* proposed a
98 novel tool called DrugComboRanker based on drug functional network to prioritize
99 potential synergistic drug combinations and further validated their mechanisms of
100 action in lung adenocarcinoma and endocrine receptor positive breast cancer³⁴. Cheng
101 *et al.* proposed a network-based methodology to characterize the distance between
102 two drugs according to their target distributions in a protein-protein network¹¹. They
103 demonstrated that clinically approved drug combinations tend to have lower distance
104 compared to random drug pairs, and for a drug pair working synergistically for a
105 given disease, both of them need to hit the disease module but via non-overlapping
106 network neighborhood. Furthermore, a modularity analysis of multipartite networks
107 has suggested that network modeling might be a promising method for understanding
108 the mechanisms of actions of traditional medicine³⁵. With the great success in
109 understanding the interaction between chemicals and diseases, network-based models
110 warrant further studies to make sense of the rationale of TCM herb interactions.

111 In this study, we hypothesized that network pharmacology models on the underlying
112 drug-target interactions behind the herb combination may provide novel insights into
113 herb pair's mechanisms of action, which are critical for the phenotypic-based drug
114 discovery from TCM³⁶⁻³⁸. We investigated the frequencies of herb pairs that appear in
115 the common TCM herb formulas. We developed a network-based model to
116 characterize the distance of herbs within an herb pair in a protein-protein interaction
117 network. The model considered the interactions of herbs at the herb, ingredient and
118 target levels, and utilized five distance metrics including the closest, shortest,
119 separate, kernel and center methods. In addition, Area under curve (AUC) of

precision and recall (PR) as well as receiver operating character characteristics (ROC) were used to determine the best distance metric for discriminating the most frequent herb pairs against non-existing herb pairs. Finally, we found that a commonly used herb pair tends to have smaller network distance compared to non-existing herb pairs, suggesting that herb combinations tend to achieve stronger protein-protein interactions. In addition, we found that the center ingredients of herbs tend to play important roles. In a case study of an herb pair including *Astragalus membranaceus* and *Glycyrrhiza uralensis*, we further showed that their network-based distance is significantly smaller than random and then center ingredients of the herb pair. Taken together, the network modeling approach provides a more systematic framework to characterize herb interactions at the molecular level that may lead to the rationalization and modernization of TCM herb combinations ultimately²⁷.

2 Methods

2.1 Collection of herb pairs

We searched for existing herbal formulae from TCMID, a manually-curated TCM database³⁹. TCMID is by far one of the most comprehensive TCM databases. More importantly, compared to other databases, TCMID supports data download service, which facilitates the effective integration of TCM data and PPI data in our study. Therefore, for allowing a more systematic analysis of the TCM herbs, we decided to use the data from TCMID. There are 8159 herbs and more than 25,210 herb ingredients in the TCMID database in total. However, after filtering out herbs and ingredients that are lack of target information, 349,197 herb pairs were collected from 46,929 herbal formulae, including 4415 herbs, 4330 ingredients, 3171 targets, 17,753 herb-ingredient pairs as well as 25,050 ingredient-target pairs. As the same herb pair may appear in multiple herbal formulae, we considered the top 200 most frequent herb pairs with target information for both herbs (frequencies between 358 and 3846) as a positive set (**Supplementary Figure 1**). In contrast, we determined 10,000 randomly generated herb pairs, out of which we considered 9459 herb pairs that were not observed in the actual herbal formulae as a negative control data set. Therefore, the positive set represents the common herb pairs while the negative set represents the herb pairs that are not used in any of the herbal formulae. To obtain an independent validation set, we also collected 268 herb pairs that have been considered as basic components of herbal formulae according to traditional medicine literature^{14, 16, 40}.

2.2 Extraction of interactions between herbs, ingredients and targets

We collected the herb-ingredient information from the TCMID. Herbs that lack ingredient information were not considered. Similarly, ingredient compounds without structural information were discarded, as they could not be modelled in the PPI network analysis. For the remaining ingredient compounds, their targets were extracted from the STITCH database⁴¹. Target-target interactions were extracted from a manually-curated human interactome including 243,603 PPIs and 16,677 proteins¹¹, which are assembled from commonly-used databases including IntAct⁴², InnateDB⁴³, PINA⁴⁴, HPRD⁴⁵, BioGRID⁴⁶, HI-II-14_Net^{47, 48}, PhosphositePlus⁴⁹, KinomeNetworkX⁵⁰, INstruct⁵¹, SignaLink2.0⁵² and MINT⁵³. These databases cover a wide range of protein-protein interaction data derived from experimental and

164 computational approaches. All the interactions were denoted as undirected edges in
 165 the network.

166 **2.3 Network proximity models of herb pairs**

167 The herb-herb distance can be determined by considering the ingredients as the nodes,
 168 where for a pair of ingredients their distance can be further determined from their
 169 target profiles in the PPI network. Denote that $I(A) = (a_1, a_2, \dots)$ is the ingredient set
 170 for a herb A , where for an ingredient a the set of targets is $T(a) = (t_1, t_2, \dots)$. For
 171 another herb B , its ingredient set and target sets are defined similarly. We applied five
 172 measures introduced by Cheng *et al.*¹¹ to determine the network distance between two
 173 herbs, including closest, separation, shortest, kernel and center.

174 The closest distance is defined as:

$$175 \quad d_{I(A)I(B)}^{\text{closest}} = \frac{1}{\|I(A)\| + \|I(B)\|} \left(\sum_{a \in I(A)} \min_{b \in I(B)} di(a, b) + \sum_{b \in I(B)} \min_{a \in I(A)} di(a, b) \right) \quad (1)$$

176 , where $di(a, b)$ is the distance between two ingredient nodes in herb A and herb B ,
 177 and $\|I(A)\|$ and $\|I(B)\|$ are the numbers of ingredients for herb A and B , separately. For
 178 each ingredient in herb A , we considered its distance with all the ingredient nodes in
 179 herb B , and determined the minimal distance as its closest distance. As shown in
 180 equation (1), we determined the mean closest distance for all the ingredients in A and
 181 B , and used it as the closest distance $d_{I(A)I(B)}^{\text{closest}}$ between the two herbs.

182 The separation distance is defined as the closest distance between A and B , subtracted
 183 by the average closest distances within A and B :

$$184 \quad d_{I(A)I(B)}^{\text{separation}} = d_{I(A)I(B)}^{\text{closest}} - \frac{d_{I(A)I(A)}^{\text{closest}} + d_{I(B)I(B)}^{\text{closest}}}{2} \quad (2)$$

185 The shortest distance sums up all the distances between nodes in A and B , and then
 186 normalized by the product of their sizes:

$$187 \quad d_{I(A)I(B)}^{\text{shortest}} = \frac{1}{\|I(A)\| \times \|I(B)\|} \sum_{a \in I(A), b \in I(B)} di(a, b) \quad (3)$$

188 The kernel distance is defined as the average of exponent-based pairwise distance,
 189 normalized by their relative network sizes:

$$190 \quad d_{I(A)I(B)}^{\text{kernel}} = \frac{-1}{\|I(A)\| + \|I(B)\|} \left(\sum_{a \in I(A)} \ln \sum_{b \in I(B)} \frac{e^{-(di(a, b) + 1)}}{\|I(B)\|} + \sum_{b \in I(B)} \ln \sum_{a \in I(A)} \frac{e^{-(di(a, b) + 1)}}{\|I(A)\|} \right) \quad (4)$$

191 The center distance identifies the centers of A and B as the nodes with minimal sum
 192 of distances, and then determines the distance between the two centers:

$$193 \quad d_{I(A)I(B)}^{\text{center}} = di(\text{centre}_{I(A)}, \text{centre}_{I(B)}) \quad (5)$$

194 , where

$$195 \quad \text{centre}_{I(A \text{ or } B)} = \operatorname{argmin}_{u \in I(A \text{ or } B)} \sum_{b \in I(B \text{ or } A)} di(b, u) \quad (6)$$

196 The equations (1-6) involve the calculation of distances for two ingredients (a, b) , for
 197 which we again have five options based on their target profiles $T(a)$ and $T(b)$
 198 including:

$$199 \quad di_{(a,b)}^{closest} = \frac{1}{||T(a)|| + ||T(b)||} \left(\sum_{i \in T(a)} \min_{j \in T(b)} dt(i, j) + \sum_{j \in T(b)} \min_{i \in T(a)} dt(i, j) \right) \quad (7)$$

$$200 \quad di_{(a,b)}^{separation} = di_{T(a)T(b)}^{closest} - \frac{di_{T(a)T(a)}^{closest} + di_{T(b)T(b)}^{closest}}{2} \quad (8)$$

$$201 \quad di_{(a,b)}^{shortest} = \frac{1}{||T(a)|| \times ||T(b)||} \sum_{i \in T(a), j \in T(b)} dt(i, j) \quad (9)$$

$$202 \quad di_{(a,b)}^{kernel} = \frac{-1}{||T(a)|| + ||T(b)||} \left(\sum_{i \in T(a)} \ln \sum_{j \in T(b)} \frac{e^{-(dt(i,j)+1)}}{||T(b)||} + \sum_{j \in T(b)} \ln \sum_{i \in T(a)} \frac{e^{-(dt(i,j)+1)}}{||T(a)||} \right) \quad (10)$$

$$203 \quad di_{(a,b)}^{center} = dt(\text{centre}_{T(a)}, \text{centre}_{T(b)}) \quad (11)$$

204 As we considered five distance methods that can be applied at both the target and the
 205 ingredient levels, the network proximity can be defined by an exhaustive combination
 206 of them, resulting in 25 distance models in total. For example, a model can be
 207 constructed using *closest (ingredient) - closest (target)* distance, defined as the closest
 208 distance for two herbs at the ingredient level:

$$209 \quad di_{I(A)I(B)}^{closest} = \frac{1}{||I(A)|| + ||I(B)||} (\sum_{a \in I(A)} \min_{b \in I(B)} di(a, b) + \sum_{b \in I(B)} \min_{a \in I(A)} di(a, b)) \quad (12)$$

210 , where $di(a, b)$ for ingredient a and ingredient b is:

$$211 \quad di_{T(a)T(b)}^{closest} = \frac{1}{||T(a)|| + ||T(b)||} (\sum_{i \in T(a)} \min_{j \in T(b)} dt(i, j) + \sum_{j \in T(b)} \min_{i \in T(a)} dt(i, j)) \quad (13)$$

212 , where $dt(i, j)$ is the shortest path length between the two targets in the PPI
 213 network⁵⁴.

214

215 2.4 Discrimination performance of the proximity distances

216 We utilized the area under the receiver operating characteristic (ROC) curve
 217 (AUC) to evaluate discriminative ability of the network proximity models for
 218 separating the top frequent herb pairs and non-observed random herb pairs. True
 219 positive rate and false positive rate were determined at different thresholds of network
 220 proximity value. To obtain a balanced data set with an equal number of positive and
 221 negative cases, we randomly selected two herbs as non-observed herb pairs from the
 222 4415 herbs for 200 times, resulting in a set of 200 negative herb pairs for comparison.
 223 To determine the average AUC scores, we repeated the procedure 50 times. For the
 224 268 literature-mined herb pairs (described in section 2.1 as an independent validation
 225 set), we also repeatedly generated 268 random pairs as negative control.

226 2.5 A case study on modeling the combination of *Astragalus membranaceus* and 227 *Glycyrrhiza uralensis*

228 It is reported that the herb pair Huang Qi (the root of *Astragalus membranaceus*) and
 229 Gan Cao (the root and rhizome of *Glycyrrhiza uralensis*) can be used for liver fibrosis
 230 and cirrhosis treatment, while neither *Astragalus membranaceus* nor *Glycyrrhiza*
 231 *uralensis* shows therapeutic effects when used alone^{55, 56}. Therefore, it is important to

232 identify the synergistic interactions of the ingredients underlying the herb pair for
233 treating liver diseases. To explore the mechanisms of the herb pair, we constructed the
234 herb-herb network based on their ingredients and targets. We first evaluated whether
235 the distance between *Astragalus membranaceus* and *Glycyrrhiza uralensis* is different
236 from the expectation of a random herb pair. Furthermore, we identified the center
237 ingredients that are more likely to explain the synergy of the two herbs. Finally, we
238 performed pathway analysis using enrichr⁵⁷ based on the target genes of the center
239 ingredients.

240 **3 Result**

241 **3.1 Frequency of single herbs and herb pairs**

242 There are 8159 herbs and more than 25210 herb ingredients in the TCMID database in
243 total. However, after filtering out herbs and ingredients that lack target information,
244 349,197 herb pairs were collected from 46,929 herbal formulae, including 4415 herbs,
245 4330 ingredients, 3171 targets, 17,753 herb-ingredient pairs as well as 25,050
246 ingredient-target pairs. Most of the herb formulae (97.9 %) contain less than 20 herbs,
247 with an average of 4.93 (**Supplementary Figure 1**). The herbs with top-ten highest
248 frequencies are Gan Cao (root and rhizome of *Glycyrrhiza uralensis*, 12518), Dang
249 Gui (root of *Angelica sinensis*, 7417), Ren Shen (root of *Panax Ginseng*, 7390), Bai
250 Zhu (5259, root of *Atractylodes macrocephala* [Syn. *Atractylis macrocephala*]),
251 Huang Qin (4163, root of *Scutellaria baicalensis*), Fang Feng (4074, root of
252 *Saposhnikovia divaricata* [Syn. *Ledebouriella seseloides*]), Chuan Xiong (4007,
253 rhizome of *Ligusticum chuanxiong* [Syn. *Ligusticum wallichii*]), Fu Ling (3666,
254 sclerotium of *Poria cocos*), Chen Pi (3650, from the dried peel of *Pericarpium Citri*
255 *Reticulatae*) (**Supplementary Table 1**). *Glycyrrhiza uralensis* is extensively used as a
256 major component in the 12,518 prescriptions, supported by its various
257 pharmacological activities including anti-inflammatory, anti-oxidative, antidiabetic,
258 hepatoprotective and memory enhancing activities⁵⁸. *Angelica sinensis* is widely
259 applied for menstrual disorders by enhancing the blood circulation, and also has been
260 reported to have multiple immunomodulation and anti-inflammation, as well as
261 cardio-cerebrovascular effects⁴⁰. *Panax Ginseng* is commonly used as a functional
262 food with a long medical history, which has shown efficacy in multiple diseases, such
263 as anti-cancer, neurodegenerative disorders, insulin resistance and hypertension.
264 Another important effect of *Panax Ginseng* is maintaining homeostasis of the immune
265 system⁵⁹⁻⁶¹. All the top three most frequent herbs tend to activate the immune system,
266 suggesting the importance of activating the immune system when prescribing TCM.
267 This observation is consistent with the TCM theory, where these herbs are usually
268 called tonifying (adjuvant) herbs that possess supplementing and strengthening the
269 treatment effects in addition to the major herbs.

270 These high-frequent herbs also tend to show higher chances to be combined with the
271 other herbs (**Figure 2**). For example, *Panax Ginseng* and *Glycyrrhiza uralensis*
272 appear together in 3846 of 46,929 herbal formulae, followed by the pair of *Angelica*
273 *sinensis* and *Glycyrrhiza uralensis* that are co-administered in 2907 herbal formulae.
274 However, the majority of the 349,197 herb pairs (99.4%) occurred in less than 100
275 herbal formulae. Only 163 herb pairs of the remaining 1950 (0.6%) herb pairs showed

276 a frequency higher than 500 (**Supplementary Figure 2**).

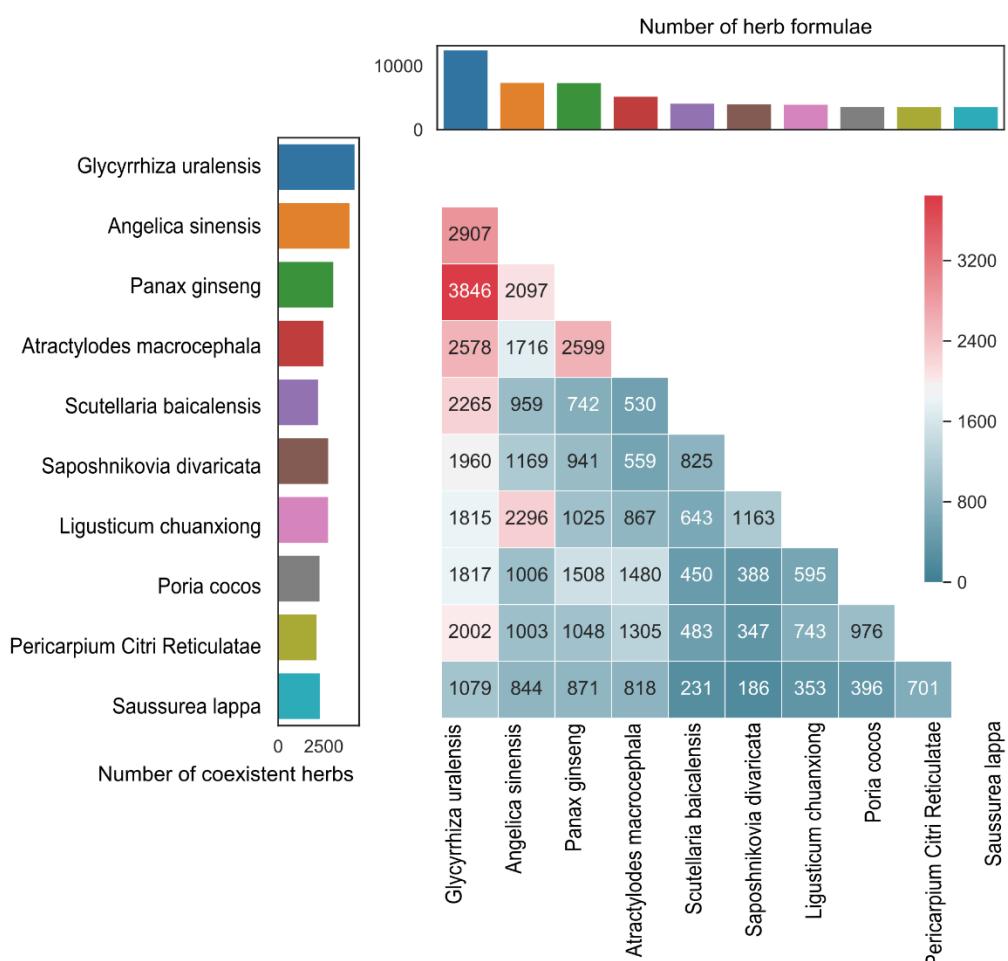


Figure 2: Patterns of pairing for the top ten most frequent herbs. The frequency of the herbs is shown in the top panel while the number of unique herbs that are co-administrated with them is shown in the left panel. The numbers inside the heat map show the frequencies of their pairwise combinations.

277

278 As shown in the **Supplementary Figure 2**, there is a sharp decrease of herb pair
279 frequency after 200. Therefore, we considered those herb pairs with frequency larger
280 than 200 and target information for both herbs to be the popular herb pairs. In the
281 following analyses, we focused on these top herb pairs and searched for their target
282 and ingredient information (**Supplementary Table 2**). These herb pairs involve 61
283 unique herbs, for which the average number of ingredients is 16.80. There is at least
284 one common ingredient for 43% (86) of the top 200 herb pairs, while only 2.08% of
285 randomly generated herb pairs share at least one ingredient (**Supplementary Figure**
286 **3**). Use of common ingredients tends to be a strategy of TCM prescription, as it was
287 found that synergistic effects may be achieved by affecting the same pathways with
288 common or similar compounds⁶². For example, Qiang Huo (the rhizome or root part
289 of *Notopterygium incisum*) and Du Huo (the root part of *Angelica pubescens f.*
290 *biserrata* [Syn. *Angelica pubescens*]) share ten common ingredients (including

291 *gamma-amin.yri., camphor, columbianetin, guaiol, guanidinium, isoimperatorin,*
292 *isopimpinellin, nodakenin, scopoletin, and osthole*) and have appeared in 522 herbal
293 formulas. At the same time, different ingredients in these herb pairs may play various
294 roles, such as optimization of pharmacodynamics and/or pharmacokinetics to improve
295 therapeutic efficacy and/or reduce toxicity and adverse reactions¹⁷, which can be
296 explained by the “Jun-Chen-Zuo-Shi” theory in TCM system⁶³. For example, the
297 combination of *cacalol* from plant *Cacalia delphinifolia* and *paclitaxel* extracted from
298 the yew trees can significantly suppress tumor growth and overcome chemo-
299 resistance⁶⁴.

300 **3.2 Network distance for top-frequent herb pairs**

301 We modelled the interactions for an herb pair at two levels including the ingredient
302 and the target levels. For each level, we considered five distance methods including
303 closest, separation, shortest, kernel and center. In the next step, we examined all
304 combinations of distance metrics in both levels, resulting in 25 (5*5) distance models
305 in total. We focused on the top 200 most frequent herb pairs and determined their
306 network-based distances, as compared to randomly selected herb pairs. We found that
307 the average network distance of the top herbs pairs is mostly less than the average
308 distance of random herb pairs, with statistical significance in 16 of the 25 distance
309 models (p-value <0.05) (**Figure 3, Table 1**). For example, the center-separation
310 model showed the best performance to differentiate the top herb pairs from random
311 pairs, with a difference of 0.489 (p-value = 9.91E-28, t-test). As the herb-herb
312 network is constructed based on their interactions in ingredients and targets, a shorter
313 distance therefore indicates that herb pairs tend to affect similar pathways in order to
314 produce synergistic effects. We also examined the likelihood of a top-frequent herb
315 pair sharing the same ingredients, which might explain why they have shorter
316 distance. These shared ingredients may contribute partly to the closer distances of the
317 herb pairs.

318

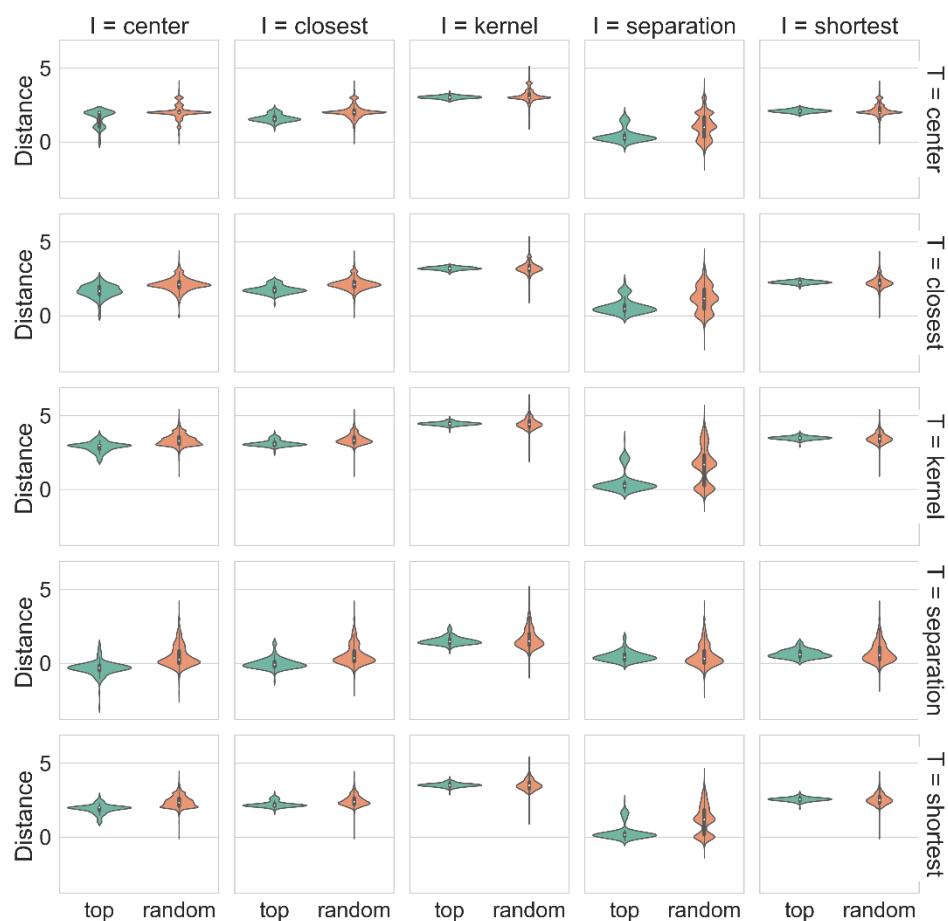


Figure 3. Network distances for the top herb pairs when comparing with random herb pairs. 'I' stands for the ingredient-level distance methods and 'T' stands for the target-level distance methods.

319

320 We found that 114 out of the 200 herb pairs did not share any common ingredients,
321 while a few herb pairs ($n = 15$) shared more than three ingredients (**Supplementary**
322 **Figure 3**). However, when we considered the 114 herb pairs that did not share any
323 common ingredients, we still found that their distances are significantly lower than
324 that for random herb pairs (**Supplementary Figure 4**). This result suggested that in
325 addition to the common ingredients, target interactions from different ingredients
326 within an herb pair remain a major mechanism of action to affect functionally related
327 disease pathways.

328

Table 1: Comparing the network proximity models. The p-values are determined by the difference between the top 200 herb pairs and random herb pairs. Distances 1, 2, 3, 4 are the average distance for top 200 herb pairs, top 10000 herb pairs, top non-overlapping 114 herb pairs and random herb pairs, respectively.

Herb-level distance	Ingredient-level distance	Distance 1	Distance 2	Distance 3	Distance 4	↑p-value	AUROC	AUPRC
center	shortest	1.92	2.09	1.81	2.41	2.50E-28	0.85	0.87
center	separation	0.32	0.04	0.47	0.48	9.91E-28	0.87	0.87
closest	center	1.61	1.78	1.46	2.06	4.39E-24	0.84	0.84
center	kernel	2.91	3.08	2.78	3.36	1.87E-23	0.82	0.83
separation	kernel	0.50	0.63	0.18	1.70	6.36E-22	0.73	0.78
separation	shortest	0.34	0.44	0.11	1.24	2.11E-21	0.73	0.79
closest	closest	1.77	1.92	1.57	2.16	1.14E-20	0.81	0.80
closest	separation	0.02	0.18	0.24	0.56	1.30E-18	0.81	0.81
center	closest	1.67	1.84	1.53	2.13	1.82E-18	0.79	0.79
separation	center	0.43	0.53	0.20	1.12	3.58E-16	0.73	0.79
closest	kernel	3.13	3.23	3.00	3.40	3.93E-16	0.77	0.78
center	center	1.62	1.75	1.49	2.05	1.76E-13	0.69	0.79
closest	shortest	2.22	2.31	2.12	2.47	8.31E-13	0.74	0.76
separation	closest	0.63	0.67	0.33	1.22	1.11E-11	0.71	0.76
kernel	center	3.04	3.06	3.03	3.14	0.009391	0.56	0.67
kernel	separation	1.52	1.55	1.47	1.68	0.029083	0.52	0.64

shortest	center	2.10	2.10	2.10	2.16	0.126387	0.48	0.62
shortest	separation	0.63	0.64	0.61	0.71	0.238476	0.48	0.61
kernel	closest	3.21	3.22	3.18	3.24	0.337705	0.50	0.64
separation	separation	0.46	0.46	0.30	0.51	0.358257	0.46	0.58
kernel	kernel	4.46	4.47	4.45	4.47	0.463986	0.47	0.62
kernel	shortest	3.53	3.54	3.53	3.54	0.488536	0.47	0.61
shortest	kernel	3.49	3.49	3.49	3.48	0.503392	0.45	0.60
shortest	closest	2.26	2.26	2.26	2.26	0.503841	0.45	0.60
shortest	shortest	2.56	2.56	2.56	2.55	0.51079	0.45	0.60

329

330 **3.3 Discrimination performance of the distance metrics**

331 To evaluate the discrimination power of the network models, we determined the
332 Receiver Operating Characteristic (ROC) curve and Precision-Recall (PR) curve
333 using the top frequent herb pairs as positive cases and random herb pairs as negative
334 cases. In general, we found that the average AUROC (Area Under the ROC curve)
335 and AUPRC (Area Under the PR curve) for the 25 distance metrics reach 0.65 and
336 0.72, respectively, suggesting the general validity of using the network-based distance
337 metrics to characterize the herb-pair interactions (**Table 1**). We found that the top
338 performance was achieved by two models that utilize the center distance at the
339 ingredient level, including the center (ingredient) - separation (target) model and the
340 center (ingredient) - shortest (target) model. The ROC curves for these two models
341 were shown in **Figure 4**, confirming the superior discrimination performance.

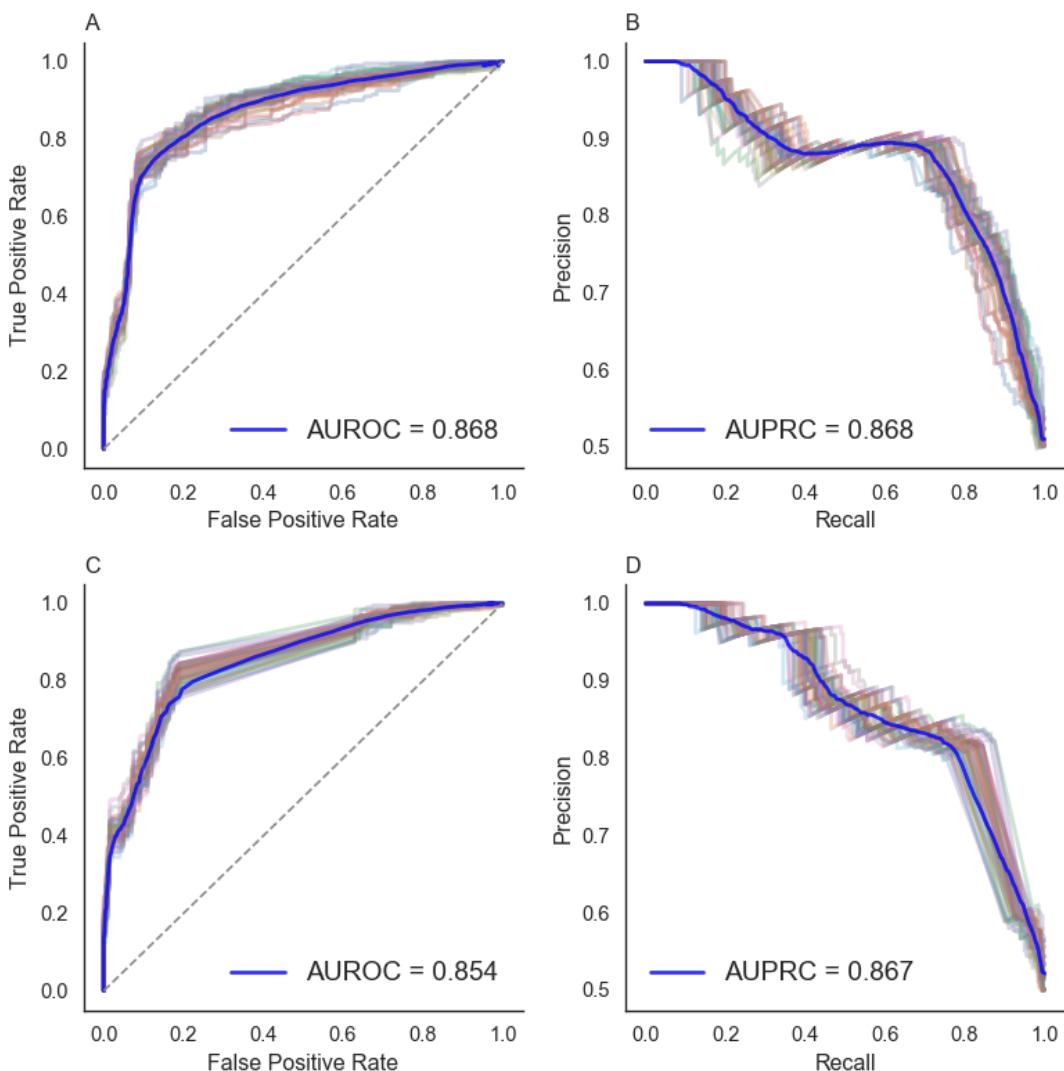


Figure 4. Receiver operating characteristic curves and precision-recall curves of the (A-B) center-separation model and (C-D) the center-shortest model. Each curve is a result of one permutation while the blue curve is the average value of all the permutations.

342

343 Interestingly, we found that the five models utilizing the center distance at the
344 ingredient level (i.e. center (ingredient) - center (target), center (ingredient) - closest
345 (target), center (ingredient) - kernel (target), center (ingredient) - separation (target)
346 and center (ingredient) - shortest (target)) have a better discrimination performance
347 with mean AUROC of 0.80 and mean AUPRC of 0.83, in contrast to that of the other
348 models (**Figure 5**). Different from using the other distance metric at the ingredient
349 level, the center-based models involve the identification of the central ingredients that
350 have a minimal sum of shortest path lengths in the herb-ingredient network. The
351 superior performance of the center-based distance models therefore suggests that the
352 herb-pair interactions are mainly driven by few ingredients as determined as the
353 center nodes. These topologically important ingredients may hold the key for

354 understanding herb pair interactions.

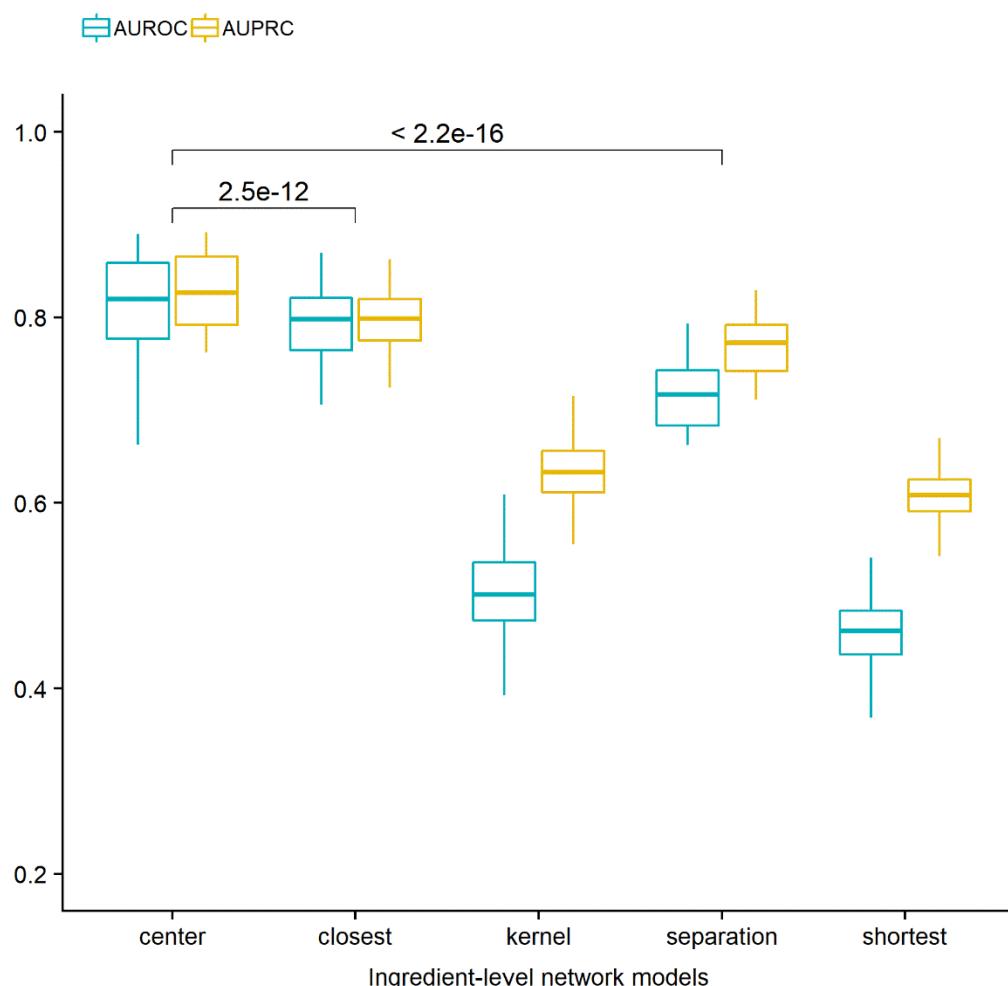


Figure 5: AUROC and AUPRC grouped by the distance models at the ingredient level. The statistical significance is determined by t-test.

355

356 To validate our hypothesis, we also collected 268 known herb pairs from the literature
357 (**Supplementary Table 3**). We applied the 25 network models to evaluate how well
358 these 268 known herb pairs can be separated from random pairs. In line with the
359 previous results, we found that the distance between these known herb pairs is on
360 average smaller than random pairs (**Supplementary Table 4**). The average AUROC
361 and AUPRC across all the 25 models is 0.62 and 0.65, respectively. Furthermore, the
362 center (ingredient) - shortest (target) model can achieve the top accuracy of AUROC
363 0.75 and AUPRC 0.73 (**Supplementary Table 4, Supplementary Figure 5**).
364 Notably, the 268 known herb pairs were extracted from the literature that was
365 independent from the datasets extracted from the TCMID. The overlap between these
366 two datasets is minimal ($n = 32$), suggesting a general validity of using network
367 models to predict the potential of herb pairs in TCM.

368 **3.4 The combination mechanism of herb pair *Astragalus membranaceus* and**
369 ***Glycyrrhiza uralensis***

370 We applied our network pharmacology modeling to the study of herb pair *Astragalus*
371 *membranaceus* and *Glycyrrhiza uralensis*. The combination of *Astragalus*
372 *membranaceus* and *Glycyrrhiza uralensis* has shown clinical efficacy to treat liver
373 diseases by the inhibition of notch signaling pathways⁶⁵. It was also reported that this
374 herb pair is able to inhibit bile acid-stimulated inflammation in chronic cholestatic
375 liver injury mice⁵⁶ based on transcriptomics profiling⁵⁵. However, their active
376 ingredients and the mechanisms of action of remain poorly understood.

377 We retrieved 15 ingredients for *Astragalus membranaceus* and 27 ingredients for
378 *Glycyrrhiza uralensis*, separately, for which three ingredients were common including
379 *formononetin*, *clionasterol* and *clionasterol* (**Supplementary Table 5**). Based on the
380 conclusion that center-based distance models tend to achieve better performance, we
381 considered the distance for the herb pair as the distance of their center ingredients,
382 which can be determined by five different models at the target level. We compared
383 the herb distances with that of the top 200 herb pairs as well as the random herb pairs.
384 We found that the herb pair distances are much smaller than that of the random herb
385 pairs, suggesting a strong evidence for the close network proximity of the two herbs
386 (**Table 2**).

387 **Table 2:** The center ingredients for *Astragalus membranaceus* and *Glycyrrhiza*
388 *uralensis* determined by models with different distance methods at the target level
389 while fixing the center distance method at the ingredient level.

Center of <i>Astragalus</i> <i>membranaceus</i>	Center of <i>Glycyrrhiza</i> <i>uralensis</i>	Method	Distance	Distance (top)	Distance (random)
<i>isorhamnetin</i>	<i>glycyrrhizin</i> ; <i>glycyrrhizic acid</i> ; <i>18beta-glycyrrhetic acid</i> ; <i>glycyrrhetic acid</i> ; <i>monoammonium glycyrrhizinate</i> ;	center	1.00	1.62	2.05
<i>astramembrannin i</i>	<i>glycyrrhizin</i> ; <i>monoammonium glycyrrhizinate</i> ; <i>glycyrrhizic acid</i>	closest	1.17	1.67	2.13
<i>lupeol</i>	<i>isoorientin</i>	kernel	2.78	2.91	3.36
<i>calycosin</i>	<i>isolicoflavonol</i>	separation	0.33	-0.32	0.48
<i>lupeol</i>	<i>isoorientin</i>	shortest	1.82	1.92	2.41

390
391 By applying the center (ingredient) - closest (target) model, we found that
392 *astramembrannin i* and *glycyrrhizin* were identified as the center of *Astragalus*

393 *membranaceus* and *Glycyrrhiza uralensis*, separately. It was shown that *glycyrrhizin*
394 from *Glycyrrhiza uralensis* is effective on ferroptosis by inhibiting oxidative stress
395 during acute liver failure⁶⁶. Interestingly, it was reported that the synergistic anti-liver
396 fibrosis actions by the *Astragalus membranaceus* and *Glycyrrhiza uralensis* can be
397 attributed to the ingredient *astragalus saponins* from *Astragalus membranaceus* and
398 ingredient of *glycyrrhizic acid* of *Glycyrrhiza uralensis* via TGF- β 1/Smads signaling
399 pathway modulation⁶⁷, which is consistent with our analysis.

400 On the other hand, to apply the center (ingredient) - shortest (target) model, we first
401 determined the shortest distance for each ingredient pair using the target interaction
402 network, with which we can determine *lupeol* and *isoorientin* as the central
403 ingredients of *Astragalus membranaceus* and *Glycyrrhiza uralensis*, separately. We
404 found that the distance is 1.82, which is lower than the average (1.92) of the top herb
405 pairs, and much lower than the average (2.41) of the random herb pairs. Interestingly,
406 we found that the same center ingredients were also identified by the center
407 (ingredient) - kernel (target) model. It was reported that *isoorientin* might protect
408 alcohol induced hepatic fibrosis in rats by reducing the levels of inflammation-related
409 pathways⁶⁸. On the other hand, *lupeol* was known for protecting oxidative stress-
410 induced cellular injury of mouse liver by downregulating anti-apoptotic Bcl-2 and
411 upregulating pro-apoptotic Bax and Caspase 3⁶⁹. To illustrate further the potential
412 combinational effects of *lupeol* and *isoorientin*, we performed pathway analysis by
413 the targets of these two ingredients (NFE2L2, AKT1 form *isoorientin* and CTNNB1,
414 MITF, LSS, PTEN and TP53 form *lupeol*) (**Figure 6**). We found that these target
415 genes are associated with pathways related to liver disease, especially the cholesterol
416 biosynthesis pathway, the hepatocellular carcinoma pathway, the IL-5 signaling
417 pathway as well as the ethanol metabolism resulting in production of ROS by the
418 CYP2E1 pathway. Therefore, it is plausible that the anti-liver fibrosis effects of herb
419 pair *Astragalus membranaceus* and *Glycyrrhiza uralensis* can be attributed to the
420 combination of *lupeol* and *isoorientin*. Taken together, this case study exemplified the
421 feasibility and rational of applying the network model to pinpoint potential ingredient
422 interactions and their mechanisms of action.

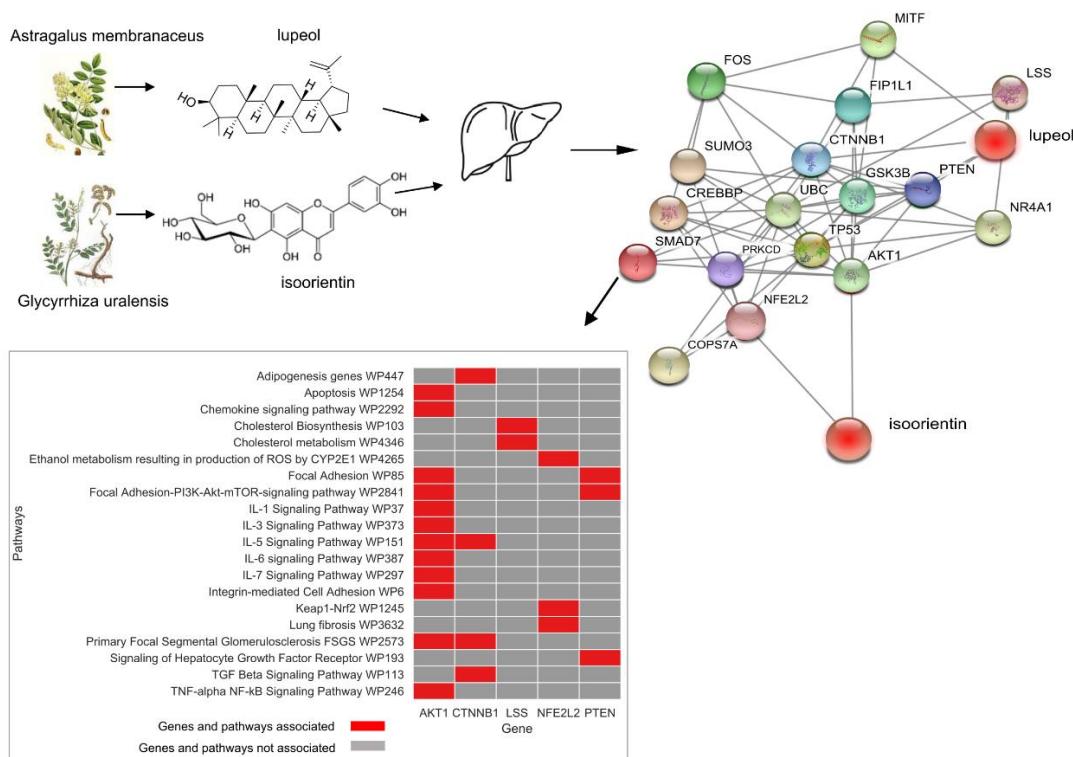


Figure 6: PPI network and pathway enrichment of the combination of isoorientin of *Glycyrrhiza uralensis* and lupeol of *Astragalus membranaceus*. The targets of the two center ingredients and their associated pathways are listed.

423

424 4 Discussion

425 Understanding the mechanisms of actions of TCM requires a more systematic
426 investigation of the herb interactions. In this paper, we proposed a novel PPI-based
427 network model to characterize the interaction of herb pairs. To illustrate the complex
428 nature of TCM pharmacology, we developed network distance metrics by integrating
429 the relationships between herb, ingredients and targets. We defined the herb-herb
430 distance based on a multiple partite network which is commonly used for biological
431 network modeling³⁵. The components of such a multi-modal network include bipartite
432 networks of herb-ingredient and ingredient-target interactions. We considered the
433 network proximity distance at two levels, where the nodes of the networks can be
434 either ingredients or targets. The two-level network modeling allows the
435 characterization of herb-herb and ingredient-ingredient interactions with greater
436 flexibility. In this study, we have provided a panel of 25 distance models, based on
437 which we achieved a comprehensive evaluation of herb-herb interactions. Compared
438 to the existing methods that are mainly focusing on single herbs, our network
439 modeling can provide more insights on the mechanisms of action of TCM herb
440 formulae, which by principle mainly involve multi-herb combinations.

441 We found that commonly used herb pairs tend to have smaller network proximity
442 distance, suggesting stronger PPI interactions between them. Moreover, using the
443 center distance at the ingredient level, the network model tends to achieve higher

444 accuracy of discriminating the commonly used herb pairs from random herb pairs
445 with the best AUROC of 0.87 and AUPRC of 0.87. In general, we found that the
446 center distance at the ingredient level improved the prediction accuracy, suggesting
447 that ingredients that are located in the center of the herb PPI network play important
448 roles when combined with the other herbs. These center ingredients showed a
449 minimal sum of shortest path lengths within the herb PPI network, and therefore are
450 more likely to activate a cascade of multiple pathways. Prioritization of these center
451 ingredients for further functional studies shall help us understand the synergistic
452 effects of herb pairs. Using the herb pair *Astragalus membranaceus* and *Glycyrrhiza*
453 *uralensis* as a case study, we confirmed that its network distance was shorter than that
454 of random herb pairs. More interestingly, the potential synergistic effects of the center
455 ingredient *lupeol* from *Astragalus membranaceus* and the center ingredient
456 *isoorientin* from *Glycyrrhiza uralensis* were supported by the literature⁶⁷⁻⁶⁹, which
457 warrants more experimental validation.

458 On the other hand, the stronger network proximity distance between the TCM herb
459 pairs might be due to the overlapping ingredients. Indeed, we found that 86 out of 200
460 top common herb pairs shared at least one common ingredient. However, using the
461 114 herb pairs that do not share any common ingredients, we retained the same level
462 of top prediction accuracy (AUROC 0.75 and AUPRC 0.73). Therefore, the strong
463 PPI interactions were largely attributed by functionally related ingredients that may
464 share common or similar targets. For example, the ingredient *nodakenin* from herb
465 *Notopterygium incisum* and ingredient *limonene* from herb *Angelica pubescens f.*
466 *biserrata* have five common targets, including NOS1, NOS2, NOS3, POR and
467 MTRR. Targeting the same disease proteins with multiple ingredients is in fact an
468 important strategy of TCM formula, as it may achieve the same level of efficacy
469 while lowering the side effects that are caused by the high doses of single
470 ingredient¹⁵.

471 Previously, Li et al. have proposed a Distance-Based-mutual-Information (DMIM)
472 approach¹⁴ to determine an interaction score between herb pairs based on their
473 frequencies. Compared to DMIM, our method is based on the information at deeper
474 molecular levels such as herb-ingredient, ingredient-target and target-target
475 relationships, which shall provide a more refined characterization of herb-interactions.
476 However, there are limitations in our study that need to be improved in the future. For
477 example, despite the knowledge of existing ingredients in an herb, their actual
478 concentrations are largely unknown. Therefore, the current model treats each
479 ingredient equally, which might lead to certain bias. Moreover, we empirically
480 determined the common herb pairs by their frequencies of occurrences in TCM
481 formulae, which might be suboptimal. On the other hand, we did not filter the
482 ingredients by oral bioavailability (OB) and drug-likeness (DL) in our study of herb
483 combinations, as it is known that ingredients in TCM with low OB or DL values may
484 still play active roles due to their superior pharmacological properties⁷⁰. Another
485 limitation is the lack of target information for certain ingredients. In our model, we
486 discarded the herbs and ingredients without any target information, as their biological
487 roles remain unclear. In the future, computational methods, such as the similarity

488 ensemble approach (SEA)⁷¹, and experimental methods such as thermal proteomics
489 profiling (TPP)⁷² can help the TCM research in the aspect of targeted discovery of
490 herb ingredients.

491 In conclusion, TCM formulae provide important resource of drug combinations in
492 natural products. In this study, we proposed a network-based model to understand the
493 rational of herb pairs in TCM. By qualifying the distances between herb pairs based
494 on herb-ingredient-target interactions, the network model can identify the potential
495 synergistic ingredients for which the mechanisms of action can be further explored.
496 The modelling strategy itself not only helps us explore the space of herb combinations
497 more effectively, but also can be used for prioritizing synergistic compound
498 interactions that shall facilitate the drug discovery from TCM.

499

500 **Funding**

501 This work was supported by the European Research Council Starting Grant agreement
502 [grant number 716063]; the Academy of Finland Research Fellow funding [grant
503 number 317680]; and Helsinki Institute of Life Science Research Fellow funding.
504 Y.W was supported by the China Scholarship Council [grant number 201706740080]
505 and the Finland EDUFI Fellowship [grant number TM-18-10928].

506

507 **References**

- 508 1. Ramsay, R. R.; Popovic-Nikolic, M. R.; Nikolic, K.; Uliassi, E.; Bolognesi, M. L., A perspective
509 on multi-target drug discovery and design for complex diseases. *Clin Transl Med* **2018**, 7 (1), 3.
- 510 2. Reddy, A. S.; Zhang, S., Polypharmacology: drug discovery for the future. *Expert Rev Clin
511 Pharmacol* **2013**, 6 (1), 41-47.
- 512 3. Madani Tonekaboni, S. A.; Soltan Ghoraie, L.; Manem, V. S. K.; Haibe-Kains, B., Predictive
513 approaches for drug combination discovery in cancer. *Brief Bioinform* **2018**, 19 (2), 263-276.
- 514 4. Hopkins, A. L., Network pharmacology: the next paradigm in drug discovery. *Nat Chem Biol*
515 **2008**, 4 (11), 682-690.
- 516 5. Silverman, E. K.; Loscalzo, J., Developing new drug treatments in the era of network medicine.
517 *Clin Pharmacol Ther* **2013**, 93 (1), 26-28.
- 518 6. Bolognesi, M. L.; Cavalli, A., Multitarget drug discovery and polypharmacology.
519 *ChemMedChem* **2016**, 11 (12), 1190-1192.
- 520 7. Cardon, L. R.; Bell, J. I., Association study designs for complex diseases. *Nat Rev Genet* **2001**, 2
521 (2), 91-99.
- 522 8. Kibble, M.; Saarinen, N.; Tang, J.; Wennerberg, K.; Mäkelä, S.; Aittokallio, T., Network
523 pharmacology applications to map the unexplored target space and therapeutic potential of natural
524 products. *Nat Prod Rep* **2015**, 32 (8), 1249-1266.
- 525 9. Tang, J.; Gautam, P.; Gupta, A.; He, L.; Timonen, S.; Akimov, Y.; Wang, W.; Szwajda, A.;
526 Jaiswal, A.; Turei, D.; applications, Network pharmacology modeling identifies synergistic Aurora B and
527 ZAK interaction in triple-negative breast cancer. *NPJ Syst Biol Appl* **2019**, 5 (1), 1-11.
- 528 10. Malyutina, A.; Majumder, M. M.; Wang, W.; Pessia, A.; Heckman, C. A.; Tang, J., Drug
529 combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations
530 in cancer. *PLoS Comput Biol* **2019**, 15 (5), e1006752.
- 531 11. Cheng, F.; Kovács, I. A.; Barabási, A.-L., Network-based prediction of drug combinations. *Nat
532 Commun* **2019**, 10 (1), 1-11.
- 533 12. Qiu, J., Traditional medicine: a culture in the balance. *Nature* **2007**, (448), 126-128.
- 534 13. Yuan, H.; Ma, Q.; Ye, L.; Piao, G., The traditional medicine and modern medicine from natural
535 products. *Molecules* **2016**, 21 (5), 559.
- 536 14. Li, S.; Zhang, B.; Jiang, D.; Wei, Y.; Zhang, N., Herb network construction and co-module
537 analysis for uncovering the combination rule of traditional Chinese herbal formulae. *J BMC
538 bioinformatics* **2010**, 11 (S11), S6.
- 539 15. Li, S.; Zhang, B.; Zhang, N., Network target for screening synergistic drug combinations with
540 application to traditional Chinese medicine. *BMC Syst Biol* **2011**, 5 (S1), S10.
- 541 16. Wang, S.; Hu, Y.; Tan, W.; Wu, X.; Chen, R.; Cao, J.; Chen, M.; Wang, Y., Compatibility art of
542 traditional Chinese medicine: from the perspective of herb pairs. *J Ethnopharmacol* **2012**, 143 (2), 412-
543 423.
- 544 17. Zhou, M.; Hong, Y.; Lin, X.; Shen, L.; Feng, Y., Recent pharmaceutical evidence on the
545 compatibility rationality of traditional Chinese medicine. *J Ethnopharmacol* **2017**, 206, 363-375.
- 546 18. Zhou, W.; Wang, J.; Wu, Z.; Huang, C.; Lu, A.; Wang, Y., Systems pharmacology exploration
547 of botanic drug pairs reveals the mechanism for treating different diseases. *Sci Rep* **2016**, 6 (1), 1-17.
- 548 19. Ung, C. Y.; Li, H.; Cao, Z. W.; Li, Y. X.; Chen, Y. Z., Are herb-pairs of traditional Chinese medicine
549 distinguishable from others? Pattern analysis and artificial intelligence classification study of
550 traditionally defined herbal properties. *J Ethnopharmacol* **2007**, 111 (2), 371-377.
- 551 20. Zhao, F.-R.; Mao, H.-P.; Zhang, H.; Hu, L.-M.; Wang, H.; Wang, Y.-F.; Yanagihara, N.; Gao, X.-
552 M., Antagonistic effects of two herbs in Zuojin Wan, a traditional Chinese medicine formula, on
553 catecholamine secretion in bovine adrenal medullary cells. *J Phytomedicine* **2010**, 17 (8-9), 659-668.
- 554 21. Chen, Y.; Chen, W.; Li, R., Effect of Zuojin wan and retro-zuojin wan on inflammatory and
555 protection factors of chills and fever gastric mucosa injury. *Chin J Integr Tradit West Med Dig* **2003**, 11,
556 133-135.
- 557 22. Xianzheng, B.; Huaqin, W.; Yuanhui, H., Effect of Drug Pair of Coptis Chinensis and Evodia
558 Rutatecarpa on Blood Pressure Plasma Endothelin and Calcitonin Gene-related Peptide in Spontaneous
559 Hypertension Rats. *Chinese Journal of Integrative Medicine on Cardio-/Cerebrovascular Disease* **2011**,
560 (9), 35.
- 561 23. Hu, Y.; Fahmy, H.; Zjawiony, J. K.; Davies, G. E., Inhibitory effect and transcriptional impact of

562 berberine and evodiamine on human white preadipocyte differentiation. *J Fitoterapia* **2010**, *81* (4), 259-
563 268.

564 24. Tang, J.; Aittokallio, T., Network pharmacology strategies toward multi-target anticancer
565 therapies: from computational models to experimental design principles. *Curr Pharm Des* **2014**, *20* (1),
566 23-36.

567 25. Huang, C.; Zheng, C.; Li, Y.; Wang, Y.; Lu, A.; Yang, L., Systems pharmacology in drug discovery
568 and therapeutic insight for herbal medicines. *Brief Bioinform* **2014**, *15* (5), 710-733.

569 26. Stone, R., Biochemistry. Lifting the veil on traditional Chinese medicine. *Science* **2008**, *319*
570 (5864), 709.

571 27. Xu, Z., Modernization: one step at a time. *Nature* **2011**, *480* (7378), S90-S92.

572 28. Kim, H. U.; Ryu, J. Y.; Lee, J. O.; Lee, S. Y., A systems approach to traditional oriental medicine.
573 *Nat Biotechnol* **2015**, *33* (3), 264-8.

574 29. Li, H.; Xie, Y.-H.; Yang, Q.; Wang, S.-W.; Zhang, B.-L.; Wang, J.-B.; Cao, W.; Bi, L.-L.; Sun, J.-
575 Y.; Miao, S., Cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced
576 myocardial injury in rats. *J PLoS one* **2012**, *7* (11), e48872.

577 30. Xue, L.; Jiao, L.; Wang, Y.; Nie, Y.; Han, T.; Jiang, Y.; Rahman, K.; Zhang, Q.; Qin, L., Effects
578 and interaction of icariin, curculigoside, and berberine in er-xian decoction, a traditional chinese
579 medicinal formula, on osteoclastic bone resorption. *Evid Based Complement Alternat Med* **2012**, *2012*,
580 490843.

581 31. Saw, C. L. L.; Yang, A. Y.; Cheng, D. C.; Boyanapalli, S. S.-S.; Su, Z.-Y.; Khor, T. O.; Gao, S.;
582 Wang, J.; Jiang, Z.-H.; Kong, A.-N. T., Pharmacodynamics of ginsenosides: antioxidant activities,
583 activation of Nrf2, and potential synergistic effects of combinations. *Chem Res Toxicol* **2012**, *25* (8),
584 1574-1580.

585 32. Fang, J.; Liu, C.; Wang, Q.; Lin, P.; Cheng, F., In silico polypharmacology of natural products.
586 *Brief Bioinform* **2018**, *19* (6), 1153-1171.

587 33. Oulas, A.; Minadakis, G.; Zachariou, M.; Sokratous, K.; Bourdakou, M. M.; Spyrou, G. M.,
588 Systems Bioinformatics: increasing precision of computational diagnostics and therapeutics through
589 network-based approaches. *Brief Bioinform* **2019**, *20* (3), 806-824.

590 34. Huang, L.; Li, F.; Sheng, J.; Xia, X.; Ma, J.; Zhan, M.; Wong, S. T., DrugComboRanker: drug
591 combination discovery based on target network analysis. *J Bioinformatics* **2014**, *30* (12), i228-i236.

592 35. Jafari, M.; Wang, Y.; Amiryousefi, A.; Tang, J., Unsupervised learning and multipartite network
593 models: a promising approach for understanding traditional medicine. *Front Pharmacol* **2020**, *11*, 1319.

594 36. Keiser, M. J.; Setola, V.; Irwin, J. J.; Laggner, C.; Abbas, A. I.; Hufeisen, S. J.; Jensen, N. H.;
595 Kuijer, M. B.; Matos, R. C.; Tran, T. B., Predicting new molecular targets for known drugs. *Nature* **2009**,
596 *462* (7270), 175-181.

597 37. Mohd Fauzi, F.; Koutsoukas, A.; Lowe, R.; Joshi, K.; Fan, T.-P.; Glen, R. C.; Bender, A.,
598 Chemogenomics approaches to rationalizing the mode-of-action of traditional Chinese and Ayurvedic
599 medicines. *J Chem Inf Model* **2013**, *53* (3), 661-673.

600 38. Wang, X.; Zhang, A.; Sun, H., Future perspectives of Chinese medical formulae: chinomedomics
601 as an effector. *OMICS* **2012**, *16* (7-8), 414-421.

602 39. Xue, R.; Fang, Z.; Zhang, M.; Yi, Z.; Wen, C.; Shi, T., TCMID: traditional Chinese medicine
603 integrative database for herb molecular mechanism analysis. *Nucleic Acids Res* **2012**, *41* (D1), D1089-
604 D1095.

605 40. Jin, Y.; Qu, C.; Tang, Y.; Pang, H.; Liu, L.; Zhu, Z.; Shang, E.; Huang, S.; Sun, D.; Duan, J.-a.,
606 Herb pairs containing Angelicae Sinensis Radix (Danggui): a review of bio-active constituents and
607 compatibility effects. *J Ethnopharmacol* **2016**, *181*, 158-171.

608 41. Szklarczyk, D.; Santos, A.; von Mering, C.; Jensen, L. J.; Bork, P.; Kuhn, M., STITCH 5:
609 augmenting protein-chemical interaction networks with tissue and affinity data. *Nucleic Acids Res* **2016**,
610 *44* (D1), D380-4.

611 42. Orchard, S.; Ammari, M.; Aranda, B.; Breuza, L.; Briganti, L.; Broackes-Carter, F.; Campbell,
612 N. H.; Chavali, G.; Chen, C.; Del-Toro, N., The MIntAct project—IntAct as a common curation platform
613 for 11 molecular interaction databases. *Nucleic Acids Res* **2014**, *42* (D1), D358-D363.

614 43. Breuer, K.; Foroushani, A. K.; Laird, M. R.; Chen, C.; Sribnaia, A.; Lo, R.; Winsor, G. L.; Hancock,
615 R. E.; Brinkman, F. S.; Lynn, D. J., InnateDB: systems biology of innate immunity and beyond--recent
616 updates and continuing curation. *Nucleic Acids Res* **2013**, *41* (Database issue), D1228-33.

617 44. Cowley, M. J.; Pinese, M.; Kassahn, K. S.; Waddell, N.; Pearson, J. V.; Grimmond, S. M.;
618 Biankin, A. V.; Hautaniemi, S.; Wu, J., PINA v2. 0: mining interactome modules. *Nucleic Acids Res* **2012**,
619 *40* (D1), D862-D865.

620 45. Peri, S.; Navarro, J. D.; Kristiansen, T. Z.; Amanchy, R.; Surendranath, V.; Muthusamy, B.;
621 Gandhi, T.; Chandrika, K.; Deshpande, N.; Suresh, S., Human protein reference database as a discovery
622 resource for proteomics. *Nucleic Acids Res* **2004**, *32* (suppl_1), D497-D501.

623 46. Chatr-Aryamontri, A.; Breitkreutz, B.-J.; Oughtred, R.; Boucher, L.; Heinicke, S.; Chen, D.;
624 Stark, C.; Breitkreutz, A.; Kolas, N.; O'Donnell, L., The BioGRID interaction database: 2015 update.
625 *Nucleic Acids Res* **2015**, *43* (D1), D470-D478.

626 47. Rolland, T.; Taşan, M.; Charlotteaux, B.; Pevzner, S. J.; Zhong, Q.; Sahni, N.; Yi, S.; Lemmens,
627 I.; Fontanillo, C.; Mosca, R., A proteome-scale map of the human interactome network. *Cell* **2014**, *159*
628 (5), 1212-1226.

629 48. Rual, J.-F.; Venkatesan, K.; Hao, T.; Hirozane-Kishikawa, T.; Dricot, A.; Li, N.; Berriz, G. F.;
630 Gibbons, F. D.; Dreze, M.; Ayivi-Guedehoussou, N., Towards a proteome-scale map of the human
631 protein-protein interaction network. *Nature* **2005**, *437* (7062), 1173-1178.

632 49. Hornbeck, P. V.; Zhang, B.; Murray, B.; Kornhauser, J. M.; Latham, V.; Skrzypek, E.,
633 PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. *Nucleic Acids Res* **2015**, *43* (D1), D512-
634 D520.

635 50. Cheng, F.; Jia, P.; Wang, Q.; Zhao, Z., Quantitative network mapping of the human kinase
636 interactome reveals new clues for rational kinase inhibitor discovery and individualized cancer therapy.
637 *Oncotarget* **2014**, *5* (11), 3697.

638 51. Meyer, M. J.; Das, J.; Wang, X.; Yu, H., INstruct: a database of high-quality 3D structurally
639 resolved protein interactome networks. *Bioinformatics* **2013**, *29* (12), 1577-1579.

640 52. Fazekas, D.; Koltai, M.; Türei, D.; Módos, D.; Pálfy, M.; Dúl, Z.; Zsákai, L.; Szalay-Bekő, M.;
641 Lenti, K.; Farkas, I. J., SignalLink 2—a signaling pathway resource with multi-layered regulatory networks.
642 *BMC Syst Biol* **2013**, *7* (1), 1-15.

643 53. Licata, L.; Brigandt, L.; Peluso, D.; Perfetto, L.; Iannuccelli, M.; Galeota, E.; Sacco, F.; Palma,
644 A.; Nardozza, A. P.; Santonicò, E., MINT, the molecular interaction database: 2012 update. *Nucleic Acids
645 Res* **2012**, *40* (D1), D857-D861.

646 54. Cherkassky, B. V.; Goldberg, A. V.; Radzik, T., Shortest paths algorithms: Theory and
647 experimental evaluation. *Math Program* **1996**, *73* (2), 129-174.

648 55. Zhang, G.-b.; Song, Y.-n.; Chen, Q.-l.; Dong, S.; Lu, Y.-y.; Su, M.-y.; Liu, P.; Su, S.-b., Actions
649 of Huangqi decoction against rat liver fibrosis: a gene expression profiling analysis. *Chin Med* **2015**, *10*
650 (1), 1-11.

651 56. Li, W.-K.; Wang, G.-F.; Wang, T.-M.; Li, Y.-Y.; Li, Y.-F.; Lu, X.-Y.; Wang, Y.-H.; Zhang, H.; Liu,
652 P.; Wu, J.-S., Protective effect of herbal medicine Huangqi decoction against chronic cholestatic liver
653 injury by inhibiting bile acid-stimulated inflammation in DDC-induced mice. *Phytomedicine* **2019**, *62*,
654 152948.

655 57. Chen, E. Y.; Tan, C. M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G. V.; Clark, N. R.; Ma'ayan,
656 A., Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC Bioinformatics*
657 **2013**, *14* (1), 128.

658 58. Zhang, Q.; Ye, M., Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). *J
659 Chromatogr A* **2009**, *1216* (11), 1954-1969.

660 59. Yun, T.-K., Panax ginseng—a non-organ-specific cancer preventive? *Lancet Oncol* **2001**, *2* (1),
661 49-55.

662 60. Kang, S.; Min, H., Ginseng, the 'immunity boost': the effects of Panax ginseng on immune
663 system. *J Ginseng Res* **2012**, *36* (4), 354.

664 61. Tang, W.; Eisenbrand, G., Panax ginseng C.A. Mey. In *Chinese Drugs of Plant Origin*, Springer
665 Berlin Heidelberg: 1992; pp 711-737.

666 62. Liu, J.; Liu, J.; Shen, F.; Qin, Z.; Jiang, M.; Zhu, J.; Wang, Z.; Zhou, J.; Fu, Y.; Chen, X., Systems
667 pharmacology analysis of synergy of TCM: an example using saffron formula. *Sci Rep* **2018**, *8* (1), 1-11.

668 63. Duan, D. D.; Wang, Z.; Wang, Y.-y., New omic and network paradigms for deep understanding
669 of therapeutic mechanisms for Fangji of traditional Chinese medicine. *Acta Pharmacol Sin* **2018**, *39* (6),
670 903-905.

671 64. Liu, W.; Furuta, E.; Shindo, K.; Watabe, M.; Xing, F.; Pandey, P. R.; Okuda, H.; Pai, S. K.;

672 Murphy, L. L.; Cao, D.; Mo, Y. Y.; Kobayashi, A.; Iiizumi, M.; Fukuda, K.; Xia, B.; Watabe, K., Cacalol, a
673 natural sesquiterpene, induces apoptosis in breast cancer cells by modulating Akt-SREBP-FAS signaling
674 pathway. *Breast Cancer Res Treat* **2011**, *128* (1), 57-68.

675 65. Zhang, X.; Xu, Y.; Chen, J.-M.; Liu, C.; Du, G.-L.; Zhang, H.; Chen, G.-F.; Jiang, S.-L.; Liu, C.-
676 H.; Mu, Y.-P., Huang Qi Decoction prevents BDL-induced liver fibrosis through inhibition of Notch
677 signaling activation. *Am J Chin Med* **2017**, *45* (01), 85-104.

678 66. Wang, Y.; Chen, Q.; Shi, C.; Jiao, F.; Gong, Z., Mechanism of glycyrrhizin on ferroptosis during
679 acute liver failure by inhibiting oxidative stress. *Mol Med Rep* **2019**, *20* (5), 4081-4090.

680 67. Zhou, Y.; Tong, X.; Ren, S.; Wang, X.; Chen, J.; Mu, Y.; Sun, M.; Chen, G.; Zhang, H.; Liu, P.,
681 Synergistic anti-liver fibrosis actions of total astragalus saponins and glycyrrhizic acid via TGF- β 1/Smads
682 signaling pathway modulation. *J Ethnopharmacol* **2016**, *190*, 83-90.

683 68. Huang, Q. F.; Zhang, S. J.; Zheng, L.; Liao, M.; He, M.; Huang, R.; Zhuo, L.; Lin, X., Protective
684 effect of isoorientin-2" -O- α -L-arabinopyranosyl isolated from Gypsophila elegans on alcohol induced
685 hepatic fibrosis in rats. *Food Chem Toxicol* **2012**, *50* (6), 1992-2001.

686 69. Prasad, S.; Kalra, N.; Shukla, Y., Hepatoprotective effects of lupeol and mango pulp extract of
687 carcinogen induced alteration in Swiss albino mice. *Mol Nutr Food Res* **2007**, *51* (3), 352-359.

688 70. Yue, S.-J.; Liu, J.; Feng, W.-W.; Zhang, F.-L.; Chen, J.-X.; Xin, L.-T.; Peng, C.; Guan, H.-S.;
689 Wang, C.-Y.; Yan, D., System pharmacology-based dissection of the synergistic mechanism of Huangqi
690 and Huanglian for diabetes mellitus. *Front Pharmacol* **2017**, *8*, 694.

691 71. Gu, S.; Lai, L.-h., Associating 197 Chinese herbal medicine with drug targets and diseases using
692 the similarity ensemble approach. *Acta Pharmacol Sin* **2020**, *41* (3), 432-438.

693 72. Mateus, A.; Kurzawa, N.; Becher, I.; Sridharan, S.; Helm, D.; Stein, F.; Typas, A.; Savitski, M.
694 M., Thermal proteome profiling for interrogating protein interactions. *Mol Syst Biol* **2020**, *16* (3), e9232.

695