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Abstract: Traditional Chinese Medicine (TCM) has been practiced for thousands of 8 

years for treating human diseases. In comparison to modern medicine, one of the 9 

advantages of TCM is the principle of herb compatibility, known as TCM formulae. 10 

A TCM formula usually consists of multiple herbs to achieve the maximum treatment 11 

effects, where their interactions are believed to elicit the therapeutic effects. Despite 12 

being a fundamental component of TCM, the rationale of combining specific herb 13 

combinations remains unclear. In this study, we proposed a network-based method to 14 

quantify the interactions in herb pairs. We constructed a protein-protein interaction 15 

network for a given herb pair by retrieving the associated ingredients and protein 16 

targets, and determined multiple network-based distances including the closest, 17 

shortest, center, kernel, and separation, both at the ingredient and at the target levels. 18 

We found that the frequently used herb pairs tend to have shorter distances compared 19 

to random herb pairs, suggesting that a therapeutic herb pair is more likely to affect 20 

neighboring proteins in the human interactome. Furthermore, we found that the center 21 

distance determined at the ingredient level improves the discrimination of top-22 

frequent herb pairs from random herb pairs, suggesting the rationale of considering 23 

the topologically important ingredients for inferring the mechanisms of action of 24 

TCM. Taken together, we have provided a network pharmacology framework to 25 

quantify the degree of herb interactions, which shall help explore the space of herb 26 

combinations more effectively to identify the synergistic compound interactions based 27 

on network topology. 28 

Keywords: natural products, herb combinations, network modeling, Traditional 29 

Chinese Medicine (TCM), formulae, network pharmacology 30 
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Figure 1: Workflow of the network construction for herb pairs. Top frequent 

herb pairs were determined from existing herbal formulas. For each herb pair, the 

network consists of three levels of interactions including herb-ingredient, 

ingredient-target and target-target interactions. The network proximity can be 

determined at either the ingredient level or the target level by multiple metrics 

including the closest, shortest, separate, kernel and center distances. We aimed to 

determine the network models that can separate the most frequent from the least 

frequent herb pairs. 
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1 Introduction 33 

The pathogenesis and progression of many complex diseases are complicated such 34 

that the therapeutic effect of a single drug may be modest and further hampered by 35 

various side effects or drug resistance mechanisms1. Meanwhile, the pharmaceutical 36 

industry has begun to face the challenge of ‘more investments, fewer drugs’ in drug 37 

discovery. To reach the goal of better treatment efficacies and fewer side effects, there 38 

has been an increasing interest to investigate the synergistic effects of drug 39 

combinations2. 40 

Although high-throughput phenotypic assays have been developed to screen potential 41 

drug combinations, an exhaustive search for the top hits from the huge combinatorial 42 

space arising from numerous agents remains a daunting task3. In contrast, 43 

computational approaches that leverage the rapid accumulation of pharmacological 44 

data may provide a cost-effective alternative to enable more systematic analyses of 45 

drug combinations. In particular, the advent of ‘omics’ technologies allow us to 46 

measure the drug perturbations in biological pathways and molecular interactions, 47 

resulting in an emerging systems-level approach called network pharmacology4. 48 

Instead of looking for one drug which acts solely on an individual target, multi-target 49 

drugs or drug combinations are more promising to achieve sustainable clinical 50 

response as many complex diseases have been shown to include multiple disease-51 

causing genes5-8. In replacing the concept of ‘magic bullet’, this so-called network 52 

pharmacology paradigm requires accurate computational models that in many cases, 53 

can be used to predict an effective drug combination in order to perturb robustly 54 

disease phenotypes via targeting multiple pathways9. Ideally, such a drug combination 55 

should work synergistically to achieve stronger therapeutic effects with reduced doses 56 

of individual agents, so that the side effects may be minimized9-11. 57 

To understand drug combinations better, we may look into an empirical paradigm of 58 

multi-component therapeutics known as Traditional Chinese medicine (TCM) to 59 

search for insights12, 13. Having been developed for over 3,000 years, TCM is 60 

characterized by the use of herbal formulae that usually consists of two or more 61 

medicinal herbs, which are capable of systematically preventing and treating various 62 

diseases via potentially synergistic herb interactions14, 15. Herb pairs involve a unique 63 

combination of two specific herbs, which form the most fundamental component of a 64 

multi-herb therapy16. By adding more herbs, a formula may be used to treat different 65 

diseases with greater flexibility17-19. For instance, Coptis chinensis (Huang Lian, used 66 

part: rhizome) and Evodia rutaecarpa (Wu Zhu Yu, used part: fruit) have been used 67 

together widely as formula ZuojinWan in clinical prescriptions for treating gastric 68 

diseases as a basic herb pair 20. Depending on the additional herbs that are mixed with 69 

Coptis chinensis and Evodia rutaecarp, they have been used for many disease 70 

indications, including the inhibition of inflammation21, as well as treating 71 

hypertension22 and obesity23.  72 

Considering the important role of herb pairs in the development of TCM, it might be 73 

of great significance to investigate the rationale of why certain herb pairs are 74 

commonly used for treating a particular disease24, 25. However, there exists very 75 
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limited understanding at the molecular level on how the herb pairs work 76 

synergistically to achieve stronger therapeutic effect12, 26, 27. One of the major 77 

bottlenecks is that herb combination is inherently more complex as herbs usually 78 

consist of multiple ingredients. Recent studies suggested that synergistic effects in 79 

herb combinations mainly rely on the interactions of their ingredients, leading to 80 

boosted treatment effects compared to single herbs28. One example is the cardio-81 

protective effects by the combination of Paeonol (isolated from the root cortex of the 82 

Paeonia moutan [Syn Paeonia suffruticosa]) and Danshensu (isolated from the root of 83 

the Chinese herb Salvia miltiorrhiza)29. Another example is the comination of icariin 84 

from aerial parts of herb Epimedium brevicornum (Yin Yang Huo), berberin from the 85 

bark of Phellodendron amurense (Huang Bai), and curculigoside from rhizome  of 86 

Curculigo orchioides (Xian Mao) in the Er-Xian decoction, which can produce 87 

synergistic effects on Osteoclastic bone resorption30. Furthermore, ingredients within 88 

an herb might also interact synergistically to induce pharmacological effects. One 89 

example is the interaction of ginsenoside Rb1, ginsenoside Rg1 and ginsenoside 90 

20(S)-protopanaxatriol found in the root of Panax ginseng, which can produce 91 

synergistic effects on their antioxidant activity31. These individual studies on specific 92 

herbs form the basis for developing a more systematic method to model the 93 

interactions among TCM herbs at the molecular level, which may hold the key to 94 

rationalize the herb combinations for future drug discovery. 95 

Recently, network pharmacology approaches have been introduced for the study of 96 

drug interactions for a variety of diseases32, 33. For example, Huang et al. proposed a 97 

novel tool called DrugComboRanker based on drug functional network to prioritize 98 

potential synergistic drug combinations and further validated their mechanisms of 99 

action in lung adenocarcinoma and endocrine receptor positive breast cancer34. Cheng 100 

et al. proposed a network-based methodology to characterize the distance between 101 

two drugs according to their target distributions in a protein-protein network11. They 102 

demonstrated that clinically approved drug combinations tend to have lower distance 103 

compared to random drug pairs, and for a drug pair working synergistically for a 104 

given disease, both of them need to hit the disease module but via non-overlapping 105 

network neighborhood. Furthermore, a modularity analysis of multipartite networks 106 

has suggested that network modeling might be a promising method for understanding 107 

the mechanisms of actions of traditional medicine35. With the great success in 108 

understanding the interaction between chemicals and diseases, network-based models 109 

warrant further studies to make sense of the rationale of TCM herb interactions. 110 

In this study, we hypothesized that network pharmacology models on the underlying 111 

drug-target interactions behind the herb combination may provide novel insights into 112 

herb pair’s mechanisms of action, which are critical for the phenotypic-based drug 113 

discovery from TCM36-38. We investigated the frequencies of herb pairs that appear in 114 

the common TCM herb formulas. We developed a network-based model to 115 

characterize the distance of herbs within an herb pair in a protein-protein interaction 116 

network. The model considered the interactions of herbs at the herb, ingredient and 117 

target levels, and utilized five distance metrics including the closest, shortest, 118 

separate, kernel and center methods. In addition, Area under curve (AUC) of 119 
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precision and recall (PR) as well as receiver operating character characteristics (ROC) 120 

were used to determine the best distance metric for discriminating the most frequent 121 

herb pairs against non-existing herb pairs. Finally, we found that a commonly used 122 

herb pair tends to have smaller network distance compared to non-existing herb pairs, 123 

suggesting that herb combinations tend to achieve stronger protein-protein 124 

interactions. In addition, we found that the center ingredients of herbs tend to play 125 

important roles. In a case study of an herb pair including Astragalus membranaceus 126 

and Glycyrrhiza uralensisn, we further showed that their network-based distance is 127 

significantly smaller than random and then center ingredients of the herb pair. Taken 128 

together, the network modeling approach provides a more systematic framework to 129 

characterize herb interactions at the molecular level that may lead to the 130 

rationalization and modernization of TCM herb combinations ultimately27.  131 

2 Methods 132 

2.1 Collection of herb pairs  133 

We searched for existing herbal formulae from TCMID, a manually-curated TCM 134 

database39. TCMID is by far one of the most comprehensive TCM databases. More 135 

importantly, compared to other databases, TCMID supports data download service, 136 

which facilitates the effective integration of TCM data and PPI data in our study. 137 

Therefore, for allowing a more systematic analysis of the TCM herbs, we decided to 138 

use the data from TCMID. There are 8159 herbs and more than 25,210 herb 139 

ingredients in the TCMID database in total. However, after filtering out herbs and 140 

ingredients that are lack of target information, 349,197 herb pairs were collected from 141 

46,929 herbal formulae, including 4415 herbs, 4330 ingredients, 3171 targets, 17,753 142 

herb-ingredient pairs as well as 25,050 ingredient-target pairs. As the same herb pair 143 

may appear in multiple herbal formulae, we considered the top 200 most frequent 144 

herb pairs with target information for both herbs (frequencies between 358 and 3846) 145 

as a positive set (Supplementary Figure 1). In contrast, we determined 10,000 146 

randomly generated herb pairs, out of which we considered 9459 herb pairs that were 147 

not observed in the actual herbal formulae as a negative control data set. Therefore, 148 

the positive set represents the common herb pairs while the negative set represents the 149 

herb pairs that are not used in any of the herbal formulae. To obtain an independent 150 

validation set, we also collected 268 herb pairs that have been considered as basic 151 

components of herbal formulae according to traditional medicine literature14, 16, 40. 152 

2.2 Extraction of interactions between herbs, ingredients and targets 153 

We collected the herb-ingredient information from the TCMID. Herbs that lack 154 

ingredient information were not considered. Similarly, ingredient compounds without 155 

structural information were discarded, as they could not be modelled in the PPI 156 

network analysis. For the remaining ingredient compounds, their targets were 157 

extracted from the STITCH database41. Target-target interactions were extracted from 158 

a manually-curated human interactome including 243,603 PPIs and 16,677 proteins11, 159 

which are assembled from commonly-used databases including IntAct42, InnateDB43, 160 

PINA44, HPRD45, BioGRID46, HI-II-14_Net47, 48, PhosphositePlus49, 161 

KinomeNetworkX50, INstruct51, SignaLink2.052 and MINT53. These databases cover a 162 

wide range of protein-protein interaction data derived from experimental and 163 
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computational approaches. All the interactions were denoted as undirected edges in 164 

the network. 165 

2.3 Network proximity models of herb pairs 166 

The herb-herb distance can be determined by considering the ingredients as the nodes, 167 

where for a pair of ingredients their distance can be further determined from their 168 

target profiles in the PPI network. Denote that 𝐼(𝐴) = (𝑎1, 𝑎2, … ) is the ingredient set 169 

for a herb A, where for an ingredient 𝑎 the set of targets is 𝑇(𝑎) = (𝑡1, 𝑡2, … ). For 170 

another herb B, its ingredient set and target sets are defined similarly. We applied five 171 

measures introduced by Cheng et al.11 to determine the network distance between two 172 

herbs, including closest, separation, shortest, kernel and center.  173 

The closest distance is defined as: 174 

𝑑 𝐼(𝐴)𝐼(𝐵)
𝑐𝑙𝑜𝑠𝑒𝑠𝑡  =

1

||𝐼(𝐴)|| + ||𝐼(𝐵)||
( ∑ 𝑚𝑖𝑛𝑏∈𝐼(𝐵)𝑑𝑖(𝑎, 𝑏)

𝑎∈𝐼(𝐴)

 +  ∑ 𝑚𝑖𝑛𝑎∈𝐼(𝐴)𝑑𝑖(𝑎, 𝑏)

𝑏∈𝐼(𝐵)

 )       (1) 175 

, where 𝑑𝑖(𝑎, 𝑏) is the distance between two ingredient nodes in herb A and herb B, 176 

and ||I(A)|| and ||I(B)|| are the numbers of ingredients for herb A and B, separately. For 177 

each ingredient in herb A, we considered its distance with all the ingredient nodes in 178 

herb B, and determined the minimal distance as its closest distance. As shown in 179 

equation (1), we determined the mean closest distance for all the ingredients in A and 180 

B, and used it as the closest distance 𝑑 𝐼(𝐴)𝐼(𝐵)
𝑐𝑙𝑜𝑠𝑒𝑠𝑡  between the two herbs. 181 

The separation distance is defined as the closest distance between A and B, subtracted 182 

by the average closest distances within A and B: 183 

𝑑𝐼(𝐴)𝐼(𝐵)
 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

 = 𝑑𝐼(𝐴)𝐼(𝐵)
 𝑐𝑙𝑜𝑠𝑒𝑠𝑡  −  

𝑑𝐼(𝐴)𝐼(𝐴) 
 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 +  𝑑𝐼(𝐵)𝐼(𝐵)

 𝑐𝑙𝑜𝑠𝑒𝑠𝑡

2
                                                 (2) 184 

The shortest distance sums up all the distances between nodes in A and B, and then 185 

normalized by the product of their sizes: 186 

 𝑑𝐼(𝐴)𝐼(𝐵)
𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡  =  

1

||𝐼(𝐴)|| × ||𝐼(𝐵)||
∑ 𝑑𝑖(𝑎, 𝑏) 

𝑎∈𝐼(𝐴),𝑏∈𝐼(𝐵)

                                        (3) 187 

The kernel distance is defined as the average of exponent-based pairwise distance, 188 

normalized by their relative network sizes: 189 

𝑑𝐼(𝐴)𝐼(𝐵)
𝑘𝑒𝑟𝑛𝑒𝑙  =  

−1

||𝐼(𝐴)|| + ||𝐼(𝐵)||
( ∑ 𝑙𝑛 ∑

𝑒−(𝑑𝑖(𝑎,𝑏)+1)

||𝐼(𝐵)||
𝑏∈𝐼(𝐵)𝑎∈𝐼(𝐴)

+ ∑ 𝑙𝑛 ∑
𝑒−(𝑑𝑖(𝑎,𝑏)+1)

||𝐼(𝐴)||
𝑎∈𝐼(𝐴)𝑏∈𝐼(𝐵)

)       (4) 190 

The center distance identifies the centers of A and B as the nodes with minimal sum 191 

of distances, and then determines the distance between the two centers: 192 

 𝑑𝐼(𝐴)𝐼(𝐵)
𝑐𝑒𝑛𝑡𝑒𝑟  = 𝑑𝑖(𝑐𝑒𝑛𝑡𝑟𝑒𝐼(𝐴), 𝑐𝑒𝑛𝑡𝑟𝑒𝐼(𝐵))                                                           (5) 193 

, where 194 

𝑐𝑒𝑛𝑡𝑟𝑒𝐼(𝐴 𝑜𝑟 𝐵) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢∈𝐼(𝐴 𝑜𝑟 𝐵) ∑ 𝑑𝑖(𝑏, 𝑢)

𝑏∈𝐼(𝐵 𝑜𝑟 𝐴)

                               (6) 195 
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The equations (1-6) involve the calculation of distances for two ingredients (𝑎, 𝑏), for 196 

which we again have five options based on their target profiles T(a) and T(b) 197 

including: 198 

𝑑𝑖 (𝑎,𝑏)
𝑐𝑙𝑜𝑠𝑒𝑠𝑡  =

1

||𝑇(𝑎)|| + ||𝑇(𝑏)||
( ∑ 𝑚𝑖𝑛𝑗∈𝑇(𝑏)𝑑𝑡(𝑖, 𝑗)

𝑖∈𝑇(𝑎)

 + ∑ 𝑚𝑖𝑛𝑖∈𝑇(𝑎)𝑑𝑡(𝑖, 𝑗) 
𝑗∈𝑇(𝑏)

)             (7) 199 

𝑑𝑖 (𝑎,𝑏)
𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

= 𝑑𝑖𝑇(𝑎)𝑇(𝑏)
 𝑐𝑙𝑜𝑠𝑒𝑠𝑡  −  

𝑑𝑖𝑇(𝑎)𝑇(𝑎) 
 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 +  𝑑𝑖𝑇(𝑏)𝑇(𝑏)

 𝑐𝑙𝑜𝑠𝑒𝑠𝑡

2
                                            (8) 200 

 𝑑𝑖(𝑎,𝑏)
𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡  =  

1

||𝑇(𝑎)|| × ||𝑇(𝑏)||
∑ 𝑑𝑡(𝑖, 𝑗) 

𝑖∈𝑇(𝑎),𝑗∈𝑇(𝑏)

                                         (9) 201 

𝑑𝑖(𝑎,𝑏)
𝑘𝑒𝑟𝑛𝑒𝑙  =  

−1

||𝑇(𝑎)|| + ||𝑇(𝑏)||
( ∑ 𝑙𝑛 ∑

𝑒−(𝑑𝑡(𝑖,𝑗)+1)

||𝑇(𝑏)||
𝑗∈𝑇(𝑏)𝑖∈𝑇(𝑎)

+ ∑ 𝑙𝑛 ∑
𝑒−(𝑑𝑡(𝑖,𝑗)+1)

||𝑇(𝑎)||
𝑖∈𝑇(𝑎)𝑗∈𝑇(𝑏)

 )    (10) 202 

 𝑑𝑖(𝑎,𝑏)
𝑐𝑒𝑛𝑡𝑒𝑟  = 𝑑𝑡(𝑐𝑒𝑛𝑡𝑟𝑒𝑇(𝑎), 𝑐𝑒𝑛𝑡𝑟𝑒𝑇(𝑏))                                                          (11) 203 

As we considered five distance methods that can be applied at both the target and the 204 

ingredient levels, the network proximity can be defined by an exhaustive combination 205 

of them, resulting in 25 distance models in total. For example, a model can be 206 

constructed using closest (ingredient) - closest (target) distance, defined as the closest 207 

distance for two herbs at the ingredient level: 208 

𝑑 𝐼(𝐴)𝐼(𝐵)
𝑐𝑙𝑜𝑠𝑒𝑠𝑡  =

1

||𝐼(𝐴)||+||𝐼(𝐵)||
(∑ 𝑚𝑖𝑛𝑏∈𝐼(𝐵)𝑑𝑖(𝑎, 𝑏)𝑎∈𝐼(𝐴)  + ∑ 𝑚𝑖𝑛𝑎∈𝐼(𝐴)𝑑𝑖(𝑎, 𝑏) 𝑏∈𝐼(𝐵) )       (12)         209 

, where 𝑑𝑖(𝑎, 𝑏) for ingredient a and ingredient b is: 210 

𝑑𝑖 𝑇(𝑎)𝑇(𝑏)
𝑐𝑙𝑜𝑠𝑒𝑠𝑡  =

1

||𝑇(𝑎)||+||𝑇(𝑏)||
(∑ 𝑚𝑖𝑛𝑗∈𝑇(𝑏)𝑑𝑡(𝑖, 𝑗)𝑖∈𝑇(𝑎)  + ∑ 𝑚𝑖𝑛𝑖∈𝑇(𝑎)𝑑𝑡(𝑖, 𝑗)𝑗∈𝑇(𝑏)  )     (13)  211 

, where 𝑑𝑡(𝑖, 𝑗) is the shortest path length between the two targets in the PPI 212 

network54. 213 

 214 

2.4 Discrimination performance of the proximity distances 215 

We utilized the area under the receiver operating character characteristic (ROC) curve 216 

(AUC) to evaluate discriminative ability of the network proximity models for 217 

separating the top frequent herb pairs and non-observed random herb pairs. True 218 

positive rate and false positive rate were determined at different thresholds of network 219 

proximity value. To obtain a balanced data set with an equal number of positive and 220 

negative cases, we randomly selected two herbs as non-observed herb pairs from the 221 

4415 herbs for 200 times, resulting in a set of 200 negative herb pairs for comparison. 222 

To determine the average AUC scores, we repeated the procedure 50 times. For the 223 

268 literature-mined herb pairs (described in section 2.1 as an independent validation 224 

set), we also repeatedly generated 268 random pairs as negative control.  225 

2.5 A case study on modeling the combination of Astragalus membranaceus and 226 

Glycyrrhiza uralensis 227 

It is reported that the herb pair Huang Qi (the root of Astragalus membranaceus) and 228 

Gan Cao (the root and rhizome of Glycyrrhiza uralensis) can be used for liver fibrosis 229 

and cirrhosis treatment, while neither Astragalus membranaceus nor Glycyrrhiza 230 

uralensis shows therapeutic effects when used alone55, 56. Therefore, it is important to 231 
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identify the synergistic interactions of the ingredients underlying the herb pair for 232 

treating liver diseases. To explore the mechanisms of the herb pair, we constructed the 233 

herb-herb network based on their ingredients and targets. We first evaluated whether 234 

the distance between Astragalus membranaceus and Glycyrrhiza uralensis is different 235 

from the expectation of a random herb pair. Furthermore, we identified the center 236 

ingredients that are more likely to explain the synergy of the two herbs. Finally, we 237 

performed pathway analysis using enrichr57 based on the target genes of the center 238 

ingredients. 239 

3 Result 240 

3.1 Frequency of single herbs and herb pairs 241 

There are 8159 herbs and more than 25210 herb ingredients in the TCMID database in 242 

total. However, after filtering out herbs and ingredients that lack target information, 243 

349,197 herb pairs were collected from 46,929 herbal formulae, including 4415 herbs, 244 

4330 ingredients, 3171 targets, 17,753 herb-ingredient pairs as well as 25,050 245 

ingredient-target pairs. Most of the herb formulae (97.9 %) contain less than 20 herbs, 246 

with an average of 4.93 (Supplementary Figure 1). The herbs with top-ten highest 247 

frequencies are Gan Cao (root and rhizome of Glycyrrhiza uralensis, 12518), Dang 248 

Gui (root of Angelica sinensis, 7417), Ren Shen (root of Panax Ginseng, 7390), Bai 249 

Zhu (5259, root of Atractylodes macrocephala [Syn.  Atractylis macrocephala]), 250 

Huang Qin (4163, root of Scutellaria baicalensis), Fang Feng (4074, root of 251 

Saposhnikovia divaricata [Syn. Ledebouriella seseloides]), Chuan Xiong (4007,   252 

rhizome of Ligusticum chuanxiong [Syn.  Ligusticum wallichii]), Fu Ling (3666, 253 

sclerotium of Poria cocos), Chen Pi (3650, from the dried peel of Pericarpium Citri 254 

Reticulatae) (Supplementary Table 1). Glycyrrhiza uralensis is extensively used as a 255 

major component in the 12,518 prescriptions, supported by its various 256 

pharmacological activities including anti-inflammatory, anti-oxidative, antidiabetic, 257 

hepatoprotective and memory enhancing activities58. Angelica sinensis is widely 258 

applied for menstrual disorders by enhancing the blood circulation, and also has been 259 

reported to have multiple immunomodulation and anti-inflammation, as well as 260 

cardio-cerebrovascular effects40. Panax Ginseng is commonly used as a functional 261 

food with a long medical history, which has shown efficacy in multiple diseases, such 262 

as anti-cancer, neurodegenerative disorders, insulin resistance and hypertension. 263 

Another important effect of Panax Ginseng is maintaining homeostasis of the immune 264 

system59-61. All the top three most frequent herbs tend to activate the immune system, 265 

suggesting the importance of activating the immune system when prescribing TCM. 266 

This observation is consistent with the TCM theory, where these herbs are usually 267 

called tonifying (adjuvant) herbs that possess supplementing and strengthening the 268 

treatment effects in addition to the major herbs.  269 

These high-frequent herbs also tend to show higher chances to be combined with the 270 

other herbs (Figure 2). For example, Panax Ginseng and Glycyrrhiza uralensis 271 

appear together in 3846 of 46,929 herbal formulae, followed by the pair of Angelica 272 

sinensis and Glycyrrhiza uralensis that are co-administered in 2907 herbal formulae. 273 

However, the majority of the 349,197 herb pairs (99.4%) occurred in less than 100 274 

herbal formulae. Only 163 herb pairs of the remaining 1950 (0.6%) herb pairs showed 275 
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a frequency higher than 500 (Supplementary Figure 2).  276 

 

Figure 2: Patterns of pairing for the top ten most frequent herbs. The 

frequency of the herbs is shown in the top panel while the number of unique herbs 

that are co-administrated with them is shown in the left panel. The numbers inside 

the heat map show the frequencies of their pairwise combinations.  

 277 

As shown in the Supplementary Figure 2, there is a sharp decrease of herb pair 278 

frequency after 200. Therefore, we considered those herb pairs with frequency larger 279 

than 200 and target information for both herbs to be the popular herb pairs. In the 280 

following analyses, we focused on these top herb pairs and searched for their target 281 

and ingredient information (Supplementary Table 2). These herb pairs involve 61 282 

unique herbs, for which the average number of ingredients is 16.80. There is at least 283 

one common ingredient for 43% (86) of the top 200 herb pairs, while only 2.08% of 284 

randomly generated herb pairs share at least one ingredient (Supplementary Figure 285 

3). Use of common ingredients tends to be a strategy of TCM prescription, as it was 286 

found that synergistic effects may be achieved by affecting the same pathways with 287 

common or similar compounds62. For example, Qiang Huo (the rhizome or root part 288 

of Notopterygium incisum) and Du Huo (the root part of Angelica pubescens f.  289 

biserrata [Syn. Angelica pubescens]) share ten common ingredients (including 290 
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gamma-amin.yri., camphor, columbianetin, guaiol, guanidinium, isoimperatorin, 291 

isopimpinellin, nodakenin, scopoletin, and osthole) and have appeared in 522 herbal 292 

formulas. At the same time, different ingredients in these herb pairs may play various 293 

roles, such as optimization of pharmacodynamics and/or pharmacokinetics to improve 294 

therapeutic efficacy and/or reduce toxicity and adverse reactions17, which can be 295 

explained by the “Jun-Chen-Zuo-Shi” theory in TCM system63. For example, the 296 

combination of cacalol from plant Cacalia delphinifolia and paclitaxel extracted from 297 

the yew trees can significantly suppress tumor growth and overcome chemo-298 

resistance64. 299 

3.2 Network distance for top-frequent herb pairs 300 

We modelled the interactions for an herb pair at two levels including the ingredient 301 

and the target levels. For each level, we considered five distance methods including 302 

closest, separation, shortest, kernel and center. In the next step, we examined all 303 

combinations of distance metrics in both levels, resulting in 25 (5*5) distance models 304 

in total. We focused on the top 200 most frequent herb pairs and determined their 305 

network-based distances, as compared to randomly selected herb pairs. We found that 306 

the average network distance of the top herbs pairs is mostly less than the average 307 

distance of random herb pairs, with statistical significance in 16 of the 25 distance 308 

models (p-value <0.05) (Figure 3, Table 1). For example, the center-separation 309 

model showed the best performance to differentiate the top herb pairs from random 310 

pairs, with a difference of 0.489 (p-value = 9.91E-28, t-test). As the herb-herb 311 

network is constructed based on their interactions in ingredients and targets, a shorter 312 

distance therefore indicates that herb pairs tend to affect similar pathways in order to 313 

produce synergistic effects. We also examined the likelihood of a top-frequent herb 314 

pair sharing the same ingredients, which might explain why they have shorter 315 

distance. These shared ingredients may contribute partly to the closer distances of the 316 

herb pairs.  317 

 318 
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Figure 3. Network distances for the top herb pairs when comparing with 

random herb pairs. ‘I’ stands for the ingredient-level distance methods and ‘T’ 

stands for the target-level distance methods.  

 319 

We found that 114 out of the 200 herb pairs did not share any common ingredients, 320 

while a few herb pairs (n = 15) shared more than three ingredients (Supplementary 321 

Figure 3). However, when we considered the 114 herb pairs that did not share any 322 

common ingredients, we still found that their distances are significantly lower than 323 

that for random herb pairs (Supplementary Figure 4). This result suggested that in 324 

addition to the common ingredients, target interactions from different ingredients 325 

within an herb pair remain a major mechanism of action to affect functionally related 326 

disease pathways.  327 

 328 
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Table 1: Comparing the network proximity models. The p-values are 

determined by the difference between the top 200 herb pairs and random herb 

pairs. Distances 1, 2, 3, 4 are the average distance for top 200 herb pairs, top 

10000 herb pairs, top non-overlapping 114 herb pairs and random herb pairs, 

respectively. 

Herb-

level 

distance  

Ingredient-

level 

distance  

Distance 

1 

Distance 2 Distance 3 Distance 4 ↑p-

value 

AUROC AUPRC 

center shortest 1.92 2.09 1.81 2.41 2.50E-28 0.85 0.87 

center separation 0.32 0.04 0.47 0.48 9.91E-28 0.87 0.87 

closest center 1.61 1.78 1.46 2.06 4.39E-24 0.84 0.84 

center kernel 2.91 3.08 2.78 3.36 1.87E-23 0.82 0.83 

separation kernel 0.50 0.63 0.18 1.70 6.36E-22 0.73 0.78 

separation shortest 0.34 0.44 0.11 1.24 2.11E-21 0.73 0.79 

closest closest 1.77 1.92 1.57 2.16 1.14E-20 0.81 0.80 

closest separation 0.02 0.18 0.24 0.56 1.30E-18 0.81 0.81 

center closest 1.67 1.84 1.53 2.13 1.82E-18 0.79 0.79 

separation center 0.43 0.53 0.20 1.12 3.58E-16 0.73 0.79 

closest kernel 3.13 3.23 3.00 3.40 3.93E-16 0.77 0.78 

center center 1.62 1.75 1.49 2.05 1.76E-13 0.69 0.79 

closest shortest 2.22 2.31 2.12 2.47 8.31E-13 0.74 0.76 

separation closest 0.63 0.67 0.33 1.22 1.11E-11 0.71 0.76 

kernel center 3.04 3.06 3.03 3.14 0.009391 0.56 0.67 

kernel separation 1.52 1.55 1.47 1.68 0.029083 0.52 0.64 
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shortest center 2.10 2.10 2.10 2.16 0.126387 0.48 0.62 

shortest separation 0.63 0.64 0.61 0.71 0.238476 0.48 0.61 

kernel closest 3.21 3.22 3.18 3.24 0.337705 0.50 0.64 

separation separation 0.46 0.46 0.30 0.51 0.358257 0.46 0.58 

kernel kernel 4.46 4.47 4.45 4.47 0.463986 0.47 0.62 

kernel shortest 3.53 3.54 3.53 3.54 0.488536 0.47 0.61 

shortest kernel 3.49 3.49 3.49 3.48 0.503392 0.45 0.60 

shortest closest 2.26 2.26 2.26 2.26 0.503841 0.45 0.60 

shortest shortest 2.56 2.56 2.56 2.55 0.51079 0.45 0.60 

 329 

3.3 Discrimination performance of the distance metrics 330 

To evaluate the discrimination power of the network models, we determined the 331 

Receiver Operating Characteristic (ROC) curve and Precision-Recall (PR) curve 332 

using the top frequent herb pairs as positive cases and random herb pairs as negative 333 

cases. In general, we found that the average AUROC (Area Under the ROC curve) 334 

and AUPRC (Area Under the PR curve) for the 25 distance metrics reach 0.65 and 335 

0.72, respectively, suggesting the general validity of using the network-based distance 336 

metrics to characterize the herb-pair interactions (Table 1). We found that the top 337 

performance was achieved by two models that utilize the center distance at the 338 

ingredient level, including the center (ingredient) - separation (target) model and the 339 

center (ingredient) - shortest (target) model. The ROC curves for these two models 340 

were shown in Figure 4, confirming the superior discrimination performance. 341 
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Figure 4. Receiver operating characteristic curves and precision-recall curves of the 

(A-B) center-separation model and (C-D) the center-shortest model. Each curve is a 

result of one permutation while the blue curve is the average value of all the 

permutations. 

 342 

Interestingly, we found that the five models utilizing the center distance at the 343 

ingredient level (i.e. center (ingredient) - center (target), center (ingredient) - closest 344 

(target), center (ingredient) - kernel (target), center (ingredient) - separation (target) 345 

and center (ingredient) - shortest (target)) have a better discrimination performance 346 

with mean AUROC of 0.80 and mean AUPRC of 0.83, in contrast to that of the other 347 

models (Figure 5). Different from using the other distance metric at the ingredient 348 

level, the center-based models involve the identification of the central ingredients that 349 

have a minimal sum of shortest path lengths in the herb-ingredient network. The 350 

superior performance of the center-based distance models therefore suggests that the 351 

herb-pair interactions are mainly driven by few ingredients as determined as the 352 

center nodes. These topologically important ingredients may hold the key for 353 
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understanding herb pair interactions.  354 

 

Figure 5: AUROC and AUPRC grouped by the distance models at the 

ingredient level. The statistical significance is determined by t-test.   

 355 

To validate our hypothesis, we also collected 268 known herb pairs from the literature 356 

(Supplementary Table 3). We applied the 25 network models to evaluate how well 357 

these 268 known herb pairs can be separated from random pairs. In line with the 358 

previous results, we found that the distance between these known herb pairs is on 359 

average smaller than random pairs (Supplementary Table 4). The average AUROC 360 

and AUPRC across all the 25 models is 0.62 and 0.65, respectively. Furthermore, the 361 

center (ingredient) - shortest (target) model can achieve the top accuracy of AUROC 362 

0.75 and AUPRC 0.73 (Supplementary Table 4, Supplementary Figure 5). 363 

Notably, the 268 known herb pairs were extracted from the literature that was 364 

independent from the datasets extracted from the TCMID. The overlap between these 365 

two datasets is minimal (n = 32), suggesting a general validity of using network 366 

models to predict the potential of herb pairs in TCM.  367 
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3.4 The combination mechanism of herb pair Astragalus membranaceus and 368 

Glycyrrhiza uralensis 369 

We applied our network pharmacology modeling to the study of herb pair Astragalus 370 

membranaceus and Glycyrrhiza uralensis. The combination of Astragalus 371 

membranaceus and Glycyrrhiza uralensis has shown clinical efficacy to treat liver 372 

diseases by the inhibition of notch signaling pathways65. It was also reported that this 373 

herb pair is able to inhibit bile acid-stimulated inflammation in chronic cholestatic 374 

liver injury mice56 based on transcriptomics profiling55. However, their active 375 

ingredients and the mechanisms of action of remain poorly understood. 376 

We retrieved 15 ingredients for Astragalus membranaceus and 27 ingredients for 377 

Glycyrrhiza uralensis, separately, for which three ingredients were common including 378 

formononetin, clionasterol and clionasterol (Supplementary Table 5). Based on the 379 

conclusion that center-based distance models tend to achieve better performance, we 380 

considered the distance for the herb pair as the distance of their center ingredients, 381 

which can be determined by five different models at the target level. We compared 382 

the herb distances with that of the top 200 herb pairs as well as the random herb pairs. 383 

We found that the herb pair distances are much smaller than that of the random herb 384 

pairs, suggesting a strong evidence for the close network proximity of the two herbs 385 

(Table 2).  386 

Table 2: The center ingredients for Astragalus membranaceus and Glycyrrhiza 387 

uralensis determined by models with different distance methods at the target level 388 

while fixing the center distance method at the ingredient level. 389 

Center of 

Astragalus 

membranaceus 

Center of Glycyrrhiza 

uralensis 

Method Distance Distance 

(top) 

Distance 

(random) 

isorhamnetin glycyrrhizin; glycyrrhizic 

acid; 18beta-

glycyrrhetinic acid; 

glycyrrhetinic acid; 

monoammonium 

glycyrrhizinate; 

center 1.00 1.62 2.05 

astramembrannin i glycyrrhizin; 

monoammonium 

glycyrrhizinate; 

glycyrrhizicacid 

closest 1.17 1.67 2.13 

lupeol isoorientin kernel 2.78 2.91 3.36 

calycosin isolicoflavonol separation 0.33 -0.32 0.48 

lupeol isoorientin shortest 1.82 1.92 2.41 

 390 

By applying the center (ingredient) - closest (target) model, we found that 391 

astramembrannin i and glycyrrhizin were identified as the center of Astragalus 392 
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membranaceus and Glycyrrhiza uralensis, separately. It was shown that glycyrrhizin 393 

from Glycyrrhiza uralensis is effective on ferroptosis by inhibiting oxidative stress 394 

during acute liver failure66.  Interestingly, it was reported that the synergistic anti-liver 395 

fibrosis actions by the Astragalus membranaceus and Glycyrrhiza uralensis can be 396 

attributed to the ingredient astragalus saponins from Astragalus membranaceus and 397 

ingredient of glycyrrhizic acid of Glycyrrhiza uralensis via TGF-β1/Smads signaling 398 

pathway modulation67, which is consistent with our analysis.  399 

On the other hand, to apply the center (ingredient) - shortest (target) model, we first 400 

determined the shortest distance for each ingredient pair using the target interaction 401 

network, with which we can determine lupeol and isoorientin as the central 402 

ingredients of Astragalus membranaceus and Glycyrrhiza uralensis, separately. We 403 

found that the distance is 1.82, which is lower than the average (1.92) of the top herb 404 

pairs, and much lower than the average (2.41) of the random herb pairs. Interestingly, 405 

we found that the same center ingredients were also identified by the center 406 

(ingredient) - kernel (target) model. It was reported that isoorientin might protect 407 

alcohol induced hepatic fibrosis in rats by reducing the levels of inflammation-related 408 

pathways68. On the other hand, lupeol was known for protecting oxidative stress-409 

induced cellular injury of mouse liver by downregulating anti-apoptotic Bcl-2 and 410 

upregulating pro-apoptotic Bax and Caspase 369. To illustrate further the potential 411 

combinational effects of lupeol and isoorientin, we performed pathway analysis by 412 

the targets of these two ingredients (NFE2L2, AKT1 form isoorientin and CTNNB1, 413 

MITF, LSS, PTEN and TP53 form lupeol) (Figure 6). We found that these target 414 

genes are associated with pathways related to liver disease, especially the cholesterol 415 

biosynthesis pathway, the hepatocellular carcinoma pathway, the IL-5 signaling 416 

pathway as well as the ethanol metabolism resulting in production of ROS by the 417 

CYP2E1 pathway. Therefore, it is plausible that the anti-liver fibrosis effects of herb 418 

pair Astragalus membranaceus and Glycyrrhiza uralensis can be attributed to the 419 

combination of lupeol and isoorientin. Taken together, this case study exemplified the 420 

feasibility and rational of applying the network model to pinpoint potential ingredient 421 

interactions and their mechanisms of action. 422 
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Figure 6: PPI network and pathway enrichment of the combination of 

isoorientin of Glycyrrhiza uralensis and lupeol of Astragalus membranaceus. The 

targets of the two center ingredients and their associated pathways are listed. 

 423 

4 Discussion 424 

Understanding the mechanisms of actions of TCM requires a more systematic 425 

investigation of the herb interactions. In this paper, we proposed a novel PPI-based 426 

network model to characterize the interaction of herb pairs. To illustrate the complex 427 

nature of TCM pharmacology, we developed network distance metrics by integrating 428 

the relationships between herb, ingredients and targets. We defined the herb-herb 429 

distance based on a multiple partite network which is commonly used for biological 430 

network modeling35. The components of such a multi-modal network include bipartite 431 

networks of herb-ingredient and ingredient-target interactions. We considered the 432 

network proximity distance at two levels, where the nodes of the networks can be 433 

either ingredients or targets. The two-level network modeling allows the 434 

characterization of herb-herb and ingredient-ingredient interactions with greater 435 

flexibility. In this study, we have provided a panel of 25 distance models, based on 436 

which we achieved a comprehensive evaluation of herb-herb interactions. Compared 437 

to the existing methods that are mainly focusing on single herbs, our network 438 

modeling can provide more insights on the mechanisms of action of TCM herb 439 

formulae, which by principle mainly involve multi-herb combinations.  440 

We found that commonly used herb pairs tend to have smaller network proximity 441 

distance, suggesting stronger PPI interactions between them. Moreover, using the 442 

center distance at the ingredient level, the network model tends to achieve higher 443 
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accuracy of discriminating the commonly used herb pairs from random herb pairs 444 

with the best AUROC of 0.87 and AUPRC of 0.87. In general, we found that the 445 

center distance at the ingredient level improved the prediction accuracy, suggesting 446 

that ingredients that are located in the center of the herb PPI network play important 447 

roles when combined with the other herbs. These center ingredients showed a 448 

minimal sum of shortest path lengths within the herb PPI network, and therefore are 449 

more likely to activate a cascade of multiple pathways. Prioritization of these center 450 

ingredients for further functional studies shall help us understand the synergistic 451 

effects of herb pairs. Using the herb pair Astragalus membranaceus and Glycyrrhiza 452 

uralensis as a case study, we confirmed that its network distance was shorter than that 453 

of random herb pairs. More interestingly, the potential synergistic effects of the center 454 

ingredient lupeol from Astragalus membranaceus and the center ingredient 455 

isoorientin from Glycyrrhiza uralensis were supported by the literature67-69, which 456 

warrants more experimental validation. 457 

On the other hand, the stronger network proximity distance between the TCM herb 458 

pairs might be due to the overlapping ingredients. Indeed, we found that 86 out of 200 459 

top common herb pairs shared at least one common ingredient. However, using the 460 

114 herb pairs that do not share any common ingredients, we retained the same level 461 

of top prediction accuracy (AUROC 0.75 and AUPRC 0.73). Therefore, the strong 462 

PPI interactions were largely attributed by functionally related ingredients that may 463 

share common or similar targets. For example, the ingredient nodakenin from herb 464 

Notopterygium incisum and ingredient limonene from herb Angelica pubescens f.  465 

biserrata have five common targets, including NOS1, NOS2, NOS3, POR and 466 

MTRR. Targeting the same disease proteins with multiple ingredients is in fact an 467 

important strategy of TCM formula, as it may achieve the same level of efficacy 468 

while lowering the side effects that are caused by the high doses of single 469 

ingredient15. 470 

Previously, Li et al. have proposed a Distance-Based-mutual-Information (DMIM) 471 

approach14 to determine an interaction score between herb pairs based on their 472 

frequencies. Compared to DMIM, our method is based on the information at deeper 473 

molecular levels such as herb-ingredient, ingredient-target and target-target 474 

relationships, which shall provide a more refined characterization of herb-interactions. 475 

However, there are limitations in our study that need to be improved in the future. For 476 

example, despite the knowledge of existing ingredients in an herb, their actual 477 

concentrations are largely unknown. Therefore, the current model treats each 478 

ingredient equally, which might lead to certain bias. Moreover, we empirically 479 

determined the common herb pairs by their frequencies of occurrences in TCM 480 

formulae, which might be suboptimal. On the other hand, we did not filter the 481 

ingredients by oral bioavailability (OB) and drug-likeness (DL) in our study of herb 482 

combinations, as it is known that ingredients in TCM with low OB or DL values may 483 

still play active roles due to their superior pharmacological properties70. Another 484 

limitation is the lack of target information for certain ingredients. In our model, we 485 

discarded the herbs and ingredients without any target information, as their biological 486 

roles remain unclear. In the future, computational methods, such as the similarity 487 
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ensemble approach (SEA)71, and experimental methods such as thermal proteomics 488 

profiling (TPP)72 can help the TCM research in the aspect of targeted discovery of 489 

herb ingredients.  490 

In conclusion, TCM formulae provide important resource of drug combinations in 491 

natural products. In this study, we proposed a network-based model to understand the 492 

rational of herb pairs in TCM. By qualifying the distances between herb pairs based 493 

on herb-ingredient-target interactions, the network model can identify the potential 494 

synergistic ingredients for which the mechanisms of action can be further explored. 495 

The modelling strategy itself not only helps us explore the space of herb combinations 496 

more effectively, but also can be used for prioritizing synergistic compound 497 

interactions that shall facilitate the drug discovery from TCM. 498 
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