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Summary

Obesity, characterized by expansion and metabolic dysregulation of white adipose tissue
(WAT), has reached pandemic proportions and acts as a primer for a wide range of metabolic
disorders. Remodelling of WAT lipidome in obesity and associated comorbidities can explain
disease etiology and provide valuable diagnostic and prognostic markers. To support
understanding of WAT lipidome remodelling at the molecular level, we performed in-depth
lipidomics profiling of human subcutaneous and visceral WAT of lean and obese individuals.
Tissue-tailored preanalytical and analytical workflows allowed accurate identification and
semi-absolute quantification of 1636 and 737 lipid molecular species, respectively, and
summarized here in a form of human WAT reference lipidome. Deep lipidomic profiling
allowed to identify main lipid (sub)classes undergoing depot/phenotype specific remodelling.
Furthermore, previously unanticipated diversity of WAT ceramides was uncovered.
AdipoAtlas reference lipidome will serve as a data-rich resource for the development of WAT-
specific high-throughput methods and as a scaffold for systems medicine data integration.

Keywords: human white adipose tissue, subcutancous WAT, visceral WAT, obesity,
lipidomics, LC-MS/MS, lipid identification, semi-absolute lipid quantification, ceramides,
plasmalogens, triacylglycerols


https://doi.org/10.1101/2021.01.20.427444
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427444; this version posted January 21, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Introduction

The “industrial revolution” in modern omics technologies significantly enriched our
understanding of human biology. Application of high-throughput transcriptomics and
proteomics allowed to compile the Tissue Atlas within the Human Proteome Atlas project with
expression levels of mRNA and proteins reported for 44 healthy human tissues, serving as a
powerful resource for exploration of functional tissue specificities, future drug targets and
potential biomarkers (Uhlén et al., 2015). Lipidomics, an omics branch aiming to identify and
quantify individual lipid species, is not yet as advanced in the characterization of cell-, tissue-
, and organ-specific lipid compositions. The majority of lipidomics studies aim for high-
throughput screening of large sample cohorts and clinical translation (Huynh et al., 2019; Seah
et al., 2020). Such analytical workflows, targeting robust applications, are optimized for bulk
lipid extraction followed by a single analysis method and relative (disease vs control)
quantification.

Considering the cooperative action of lipids in biological membranes and tight coregulation of
anabolic and catabolic pathways of lipid metabolism, identification of tissue and cell type
specific lipid signatures (reference lipidomes) is urgently required to facilitate deeper
understanding of lipid biology in health and disease. Lipid cooperative actions are highly
tissue/cell type specific at all levels of their functional activities including plasticity of cellular
membranes, energy storage, redistribution, and coordinated signalling (Frayn et al., 2006;
Furse et al., 2020). Furthermore, capturing alterations in lipid metabolism might be as
important as identifying static lipid signatures resistant to certain (patho)physiological stimuli.
Current advances in systems biology and medicine allow holistic integration of single and
multiple omics levels (Alves et al., 2021). Several genome scale metabolic networks have been
reconstructed, demonstrating high power in explaining human biology via integration of big
omics datasets (Brunk et al., 2018; Noronha et al., 2019). Application of systems biology tools
to lipid metabolism requires a detailed characterization of lipid molecular species both in a
qualitative and quantitative manner. Availability of tissue-specific reference lipidomes would
enable monitoring of the specificity of lipid metabolism and aid in understanding the cross-talk
within and across different tissues.

Deep lipidome profiling cannot be performed in a high-throughput manner as it requires tissue
specific optimization and application of several orthogonal analytical methods to ensure
simultaneous coverage of lipid classes with different polarities, ionization properties and range
of endogenous concentrations. By now, the best characterized composition is available for the
blood plasma lipidome with around 600 lipid species described at lipid class and lipid
molecular species levels (Bowden et al., 2017; Burla et al., 2018; Criscuolo et al., 2019).
However, detailed quantitative inventory of peripheral tissue lipidomes are scarce. Currently a
lot of scientific attention was attracted towards adipose tissue metabolism. Obesity,
characterized by white adipose tissue (WAT) expansion and metabolic dysregulation, has
reached pandemic proportions in modern societies with a prevalence of more than 20% of the
population (Bliiher, 2019). Obesity is associated with an increased threat of premature death
due to the significantly higher risk of developing type 2 diabetes mellitus (T2DM),
hypertension, coronary heart disease, stroke, and several types of cancer. Remodelling of WAT
metabolism in obesity and, importantly, in development of metabolic complications is a
cornerstone in understanding disease etiology. Adipose tissue is the main lipid storage organ
characterized by its extraordinary capacity to store excess of nutrients in the form of
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triglycerides (TG), buffering this way the excess of free fatty acids (FFA) and preventing
ectopic lipid accumulation in peripheral tissues. At conditions of chronic energy surplus WAT
lipid metabolism undergoes significant remodelling to support oversupply of diet-derived fatty
acids and carbohydrates, manifested in accumulation of TG in adipocyte lipid droplets, cellular
hypertrophy and subsequent increase of WAT mass. So far WAT metabolism was studied from
many different angels including genetic predisposition to obesity via genome wide association
studies (Raulerson et al., 2019), changes in transcriptomics (Haffa et al., 2019), epigenetic
(Martinez et al., 2014), and proteomics (Gémez-Serrano et al., 2016) patterns of WAT upon
obesity development. However, studies reporting detailed quantitative description of depot
specific (subcutaneous vs visceral) WAT lipidomes in lean and obese human individuals are
limited.

Here, we present AdipoAtlas — a mass-spectrometry based reference lipidome of human WAT
reporting over 1600 and 700 lipid species on qualitative and quantitative levels, respectively.
To ensure optimal WAT lipidome coverage and recovery we carefully optimized each step of
the preanalytical workflow from sample preparation over lipid extraction to fractionation.
Subsequently, a combination of various LC-MS platforms coupled to curated software assisted
and manual identification, and quantification workflows was applied to provide an inventory
describing most biologically important lipid classes within adipose tissue. In order to display
its utility, AdipoAtlas was used as a reference to illustrate the remodeling of WAT lipidome
upon development of obesity in two different adipose tissue depots, subcutaneous and visceral.
We show that ceramides containing the unusual sphingadienine base and TG containing
polyunsaturated fatty acid (PUFA) residues are enriched in obese WAT. Moreover, we
identified distinct responses of adipose tissue depots to increased metabolic demand by
upregulation of depot-specific plasmalogen synthesis. AdipoAtlas presents tissue-specific
quantitative lipidome, a data-rich resource freely available to all lipid researchers. AdipoAtlas
will support further understanding of lipidomic alterations within human adipose tissue and
can act as a guideline to generate other tissue specific lipidome maps.

Results

WAT-tailored lipid extraction and fractionation - WAT acts as the main lipid storage organ
with TG present at exceedingly high concentrations masking other less abundant lipid classes
(Figure 1A). For accurate molecular mapping of the WAT lipidome, both extraction and
fractionation were optimized to ensure coverage of both highly abundant storage (TG) and low
abundant membrane and signaling (phospholipids and sphingolipids, PL and SP) lipids. To this
end, we created tissue pools of WAT from obese and lean individuals representing
subcutaneous (SAT) and visceral (VAT) depots. Pooled samples were used to test three
common extraction protocols (Folch, MTBE, and Hex/IPA) (Iverson et al., 2001; Matyash et
al., 2008; Slatter et al., 2016). The most efficient extraction method was chosen based on the
recovery of unpolar and polar lipid classes assessed by quantitative high-performance thin-
layer-chromatography (qHPTLC) and *'P-NMR (Figure 1B and C; Supplementary Figure S1).
Overall, the Folch two-phase extraction protocol was shown to be the most efficient in
recovering both unpolar and polar lipids in human WAT.

Even with the optimal extraction, polar lipids represented a minor fraction of WAT lipidome
(Figure 1A and C). To facilitate deep lipidomic profiling, we performed fractionation of WAT
lipid extracts. Lipid fractionation methods utilize differences in molecular motifs or polarity of
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lipid classes, and here we compared three orthogonal protocols based on (i) hydrophobicity
and ionization state (amino propyl solid phase extraction, SPE; hereafter LipFrac) (i7) presence
of phosphodiester groups (Zr-SPE), and (#if) polarity (using liquid-liquid extraction, LLE). All
three protocols showed similar recovery of PC, PE, and SM lipids (Figure 1D). LipFrac resulted
in the highest recovery of free fatty acids but discriminated acidic PL (e.g., PI) due to their
strong binding to the stationary phase. Zr-SPE effectively enriched phosphate group containing
lipid classes but increased content of lysoPL and FFA due to PL alkaline hydrolysis during the
elution step. LLE delivered sufficient enrichment efficiency for all polar lipid classes and was
the most time efficient protocol (Figure 1D).

0.26% Cholesterol

15004

2.45 % PI 1 E 3 Folch
3.64 % PE E [ MTBE
/ 23.04 % SM Hex/IPA
L 29.25 % FA E
98.90% TG [
41.62 % PC : :

0.29% Polar Lipids

=3
S
S

[nmol/mgAT]|
s

n

1.0- 3 Folch 207 O LLE
. g XT[/;E)A - 3 7r-SPE
: ex : LipFrac
ob o0
£ £ 10
E g
= = 0.5

0.0-

E F STD
o —
E—
5 X
Folch lipid - Bo—
OO extraction n
ox -8
O R
adipose tissue e — |
PC— | - -
Total Lipid Extract LLE fraction mo— = =
(unpolar lipids) (polar/amphiphilic lipids)

Figure 1: Optimization of sample preparation protocols for global lipidome profiling of human white
adipose tissue (WAT). Pooled tissue samples from obese visceral and subcutancous WAT were used for
optimization purposes to reflect general abundance of lipid classes within human WAT. A: Lipid class specific
WAT lipidome composition as determined by quantitative high-performance thin layer chromatography
(qHPTLC) of Folch lipid extracts in combination with liquid/liquid extraction (LLE) for polar lipid enrichment.
B: Extraction efficiency of unpolar lipids as determined by qHPTLC. WAT lipids were extracted by either the
Folch, the methyl-tert-butyl-ether (MTBE) or the hexane/i-PrOH/HOAc (Hex/IPA) method. C: Extraction
efficiency of phosphate containing polar lipids by the different lipid extraction protocols was determined with 3'P-
NMR. D: Efficiency to separate polar and unpolar lipids from WAT lipid extracts was compared using polarity
separation by LLE, separation based on the presence of phosphate groups in lipids by zirconia-oxide based solid
phase extraction (Zr-SPE) or aminopropyl SPE based lipid class fractionation (LipFrac). E: Schematic depiction
of the optimized lipid extraction and fractionation protocol. F: qHPTLC analysis of WAT lipidome before (total
lipid extract dominated by unpolar lipids) and after (enriched polar and amphiphilic lipids; ethanol fraction) LLE
fractionation.
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Here, we performed WAT specific optimization of lipid extraction and fractionation protocols,
and identified the most efficient sample preparation strategy based on Folch lipid extraction
followed by polarity based LLE allowing non-discriminative recovery and enrichment of lipids
of different classes (Figure 1E and F). The workflow presented here utilized qHPTLC for bulk
lipid quantification and can be easily adapted for optimization of extraction and enrichment
protocols to any other tissue samples.

WAT lipidome profiling - To increase biological meaningfulness of lipidomics data, lipid
annotations should provide information on the lipid class as well as on the discrete fatty acyl
chain composition rather than total number of carbon atoms and double bond equivalents. LC-
MS/MS based lipidomics allows accurate identification of lipids at the molecular species level
(e.g., PC 16:0 18:2), but in complex lipid mixtures with high dynamic range of lipid
concentrations, the coverage of identified lipidome will depend on the total resolution of the
analytical platform. For deep WAT lipidome profiling, we utilized three LC systems each
coupled on-line to high resolution accurate mass (HRAM) tandem mass spectrometry
(MS/MS) (Figure 2A). Highly hydrophobic TG lipids represented by a large diversity of
molecular species and dynamic range of concentrations were separated using C30 reversed
phase liquid chromatography (RPC), whereas the more polar LLE fraction (PLs, SLs, DGs)
was resolved using C18 RPC (Figure 2B). Highly polar acyl carnitines (CAR) were separated
by hydrophilic interaction liquid chromatography (HILIC) (Figure 2B), as they are not
sufficiently retained on RP columns. Moreover, MS analysis using data-dependent acquisition
(DDA) relied on different HRAM platforms and was specifically tailored to enhance
identification depth for each targeted lipid class. To this end, C30 RPC separated TG were
analyzed in positive polarity on a Q Exactive Plus mass spectrometer with traditional DDA,
and on a Orbitrap Fusion Lumos Tribrid mass spectrometer using AcquireX deep scan
acquisition workflow for in-depth identification of TG molecular species. Less abundant
amphiphilic lipids on the other hand were detected by DDA on a Q Exactive platform and a
Orbitrap Fusion Lumos instrument both in the positive and negative modes. As we originally
failed to detect any cholesteryl esters (CE), retinol esters, desmosterol esters or cardiolipins in
WAT total extracts we set up targeted parallel reaction monitoring (PRM) for the detection of
most prominent species. That allowed us to detect 7 CE otherwise masked by highly abundant
TGs. However, both retinol and desmosterol esters as well as cardiolipins remained undetected
in human WAT. Overall, 111 LC-MS/MS analyses were performed to support lipid
identification (Figure 2A and B, Material and Methods Figure 1).

To ensure high-confidence accurate lipid identification, we used three software tools —
LipidHunter (Ni et al., 2017), LipidSearch ( Thermo Scientific, San Jose, CA), and Lipostar
(Goracci et al., 2017). Obtained results were cross-matched, and the list of putative lipid
identifications was manually curated to exclude false-positive identifications. We further
validated manually curated lipid annotations by plotting the retention time of a given lipid
species against its Kendrick mass defect to the hydrogen base (KMD) (Figure 2C). Detailed
description of manual MS/MS curation and retention time mapping for lipids of different
(sub)classes is provided in Supplementary File 1. In some cases (MG, short acyl chain TG,
CAR) coelution with lipid standards was used to validate their identity (Supplementary Figure
2). Such rigorous curation of lipid annotations allowed us to resolve lipid classes, which are
often not discriminated. For instance, using defined set of specific fragment ions as well as
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retention time mapping, unambiguous identification of acyl-, alkyl-, and alkenyl-PL as well as
lysoPL became possible (Supplementary File 1).
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Figure 2: Workflow adapted for high confidence lipid identification from human white adipose tissue
(WAT). A: Schematic depiction of the identification strategy for three dimensionally curated, high confidence
lipid library of human WAT. Liquid chromatography (LC) and mass spectrometry (MS) platforms were tailored
to allow for optimal separation and coverage of unpolar, amphiphilic and polar lipid classes. Data analysis featured
three independent software tools followed by manual curation of lipid annotations. Putative lipid identifications
were furthermore subjected to retention time mapping in order to increase identification confidence. B: Lipid class
specific LC separation was applied to allow for the highest possible chromatographic resolution to achieve optimal
lipidome coverage. LC-MS chromatograms of unpolar lipids separated by C30 reversed phase chromatography
(RPC), amphiphilic lipids by C18 RPC and polar acylcarnitines (CAR) by hydrophilic interaction chromatography
(HILIC). C: Exemplary depiction of retention time mapping for TG, PC and CAR lipid classes. Kendrick mass
defect to the hydrogen base (KMD[H]) was plotted against lipid retention time to increase confidence of lipid
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identification. D: Graphical representation of human WAT lipid molecular species grouped by the corresponding
lipid class obtained by high confidence identification strategy.

Overall, we obtained a list of 1636 lipids representing 23 lipid subclasses (Figure 2D; Table
S1). TG display the highest lipidome complexity by making up 63.2% of all identified lipids
followed by PL (16.8%), SP (9.8%), DG (5.4%), lysoPL (2.8%), acylcarnitines (1.7%) and CEs
(0.4%). Eventually we achieved a three dimensionally curated (RT-MS-MS/MS), high
confidence lipid inventory of human WAT covering all major lipid classes including
glycerolipids, phospholipids, sphingolipids, cholesteryl esters, and acylcarnitines, representing
the most detailed description of human WAT lipidome to date.

Quantitative analysis of human WAT lipidome - Significance of accurate quantification for
harmonization of lipidomics data was recently underlined by the lipidomics community
(Liebisch et al., 2019). However, several analytical challenges need to be accounted for when
aiming for accurate lipid quantification. MS signal intensity is molecular structure dependent
and as such requires application of internal standards (ISTDs) to support accurate
quantification. Highest possible quantitative accuracy can be obtained by using isotopically
labelled ISTDs for each molecular species in the sample, which is unfortunately still not
feasible at the whole lipidome level. Here we performed semi-absolute quantification of
identified WAT lipids using lipid subclass specific ISTDs at concentrations close to the
endogenous analytes (Figure 3A). WAT specific ISTD mixture was designed to cover the
whole range of identified lipid classes by using different classes of PLs (deuterated PC, PE,
PS, PG, PI, LPC, LPE), GL (*C-labeled DG, TG), CE (deuterated CE), SP (natural Cer,
dihydroceramides (DhCer), deoxyceramides (DeoxyCer), phytoceramides (PhytoCer),
hexosylated ceramides (GlcCer, LacCer), SM), CAR (deuterated) and free fatty acids ('*C-
labeled). Isotopically labeled or naturally occurring lipids absent in WAT were used (Table
S2). Next, 6-point calibration curves were generated for each ISTD spiked in the adipose tissue
matrix to determine the linear response range (Supplementary Figures S3 and S4). Final ISTD
amounts in the mixture were chosen to represent intensity close to the native lipids of the
corresponding lipid class while still displaying a linear behavior of ISTD in the concentration-
response relationship. Pooled WAT samples were spiked with the designed ISTD mixture prior
to lipid extraction and fractionation, and analyzed using full scan LC-MS or PRM platforms
utilizing three type of LC separations as described above (C30 RPC, C18 RPC, and HILIC; 90
LC-MS analysis).

All obtained data were corrected for lipid isotopic patterns (type 1) as well as for incomplete
isotopic enrichment of deuterated ISTDs (Figure 3A). Since not only the lipid class but also
the fatty acyl chain composition in a given lipid will determine its MS response, we defined
acyl chain specific response factors for the most abundant and diverse WAT lipid class, TG,
which were used to increase quantitative accuracy of TG (Supplementary Figure S5). Thus,
using comprehensive separation strategy coupled to HRAM MS detection and in-house
designed ISTD mixture customized to WAT, we performed semi-absolute quantification of
human WAT lipidome covering 522 lipid molecular species as well as 215 TG quantified at
lipid class level, providing the most detailed semi-quantitative mapping of human adipose
tissue lipidome to date (Figure 3B, Table S3).


https://doi.org/10.1101/2021.01.20.427444
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427444; this version posted January 21, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A

« SPLASH Lipidomix (d,)
+ CAR Mix (d)

. TG(EC)
+ DG (:C)
. FA(SC)

« dhCer, deoxyCer,

Data Acquisition
Sub-/Class Specific ISTD Class Specific Separation HRAM MS
Reversed Phase Full-MS
N Phospholipids . 7
Si-0-Cis Sphingolipids unpolar
Diacylglycerols
« amphiphilic

S8i0-Cyy  TriteYlglycerols o

phytoCer (natural)
« Cer/SpH Mix I (natural)

oQ
(0®)

WAT

Acyleas

He(a)-Phyto-Cer 2 |

Spike*

R =

rnitines

Dihydro-Deay-Cer 11 |

Cholesteyl Esters

Hydrophilic Interaction PRM
Sample  Si-O-H
Preparation

Acyl-Camitines « unpolar (CE)

=90 Runs

cerols 216 |

o
Diacylglycerols 88 IINTTIEIEEINIRURTEETRRNE 01001

Class Specific
Adducts and ISF
Unpolar (C30 RPC)
TG: + NH, H,K, Na
CE: + NH,

Amphiphilic (C18 RPC)
DG: + NH,, Na

PL: -
Cer: +

H (PG also +NH,)
H, Na, (H,0H)

Polar (HILIC)
CAR: + H

0 0O O O R LR 00 0 00T T

Cholesteryl Esters 7 | ]

TR NIRRT 1 ol

Phosphatidylcholine 71

2| (]

Ether/plasmalogen-PC 46 | e
Phosphatidylethanolamine 45 (NIl
Ether/plasmalogen-PE 69 n LN}
Phosphatdyleriae 7
Phosphatidylglycerol 5 |

Phosphatidylinositol 15 |

[T VT 11 T Y B
ysor 101 ] roo i T

Lyso-PC 30 | || ]

T

IR TV B TR
spingadienine-Cer 14 [0 T i
T

[ N | i

cer 34}

Phyto.
Hex(n)-Cer 22 [ Rl BRI 1 |
He 3 I

LT R T R B

Isotopic Corrections

Data Analysis

TG — Response Factors

2[ISTD  Lipid
i

time

’ M. IM..

TG,
= TGy
RFipiq ISTD,5p

Accuracy

10° 4

=)
=
L

[fmol/ngProt]
2
1l

10% 4

10' 4

10° 4

0! 10

. . .
cwm o .
® o .
. . .
.o _
e &
T
ce . L4
. o« o
. . . r2
) .
. 0
2000 4000 6000 8000 10000
[pmol/ugProt]

£55333 0w

Hex3Cer
Hex2Cer
Hex1Cer
10n PhytoCer
DhDeoxCer
DeoxyCer
DhCer

Cer

Output

Accurate Quantification

* CisTp

‘ il
1()8 — Triacylglycerols
107

— Cholesteryl Esters

_ YM, +RFLipid
Clipia = T

Quantitative
Lipidome
Atlas

— Phyto-Cer

=g
@ 10

IpmoligProtein)
- oz
1081
100
1o
102
103
104

goopmEm

Figure 3: Quantitative representation of human WAT lipidome and description of used analytical strategy.
A: Schematic depiction of the quantitative lipidomics workflow. Subclass specific lipid internal standards (ISTD)
were spiked into WAT samples prior to lipid extraction. Lipid subclass specific liquid chromatography (LC) and
high resolution, accurate mass (HRAM) MS enabled quantification of the highest possible number of lipid species.
Lipid class specific differential adduction and MS stability was assessed by quantification of all adducts and in-
source fragments (ISF) of the corresponding lipid molecular species. Type I isotopic correction as well as
correction for incomplete isotopic labeling of the ISTD were additionally applied to increase quantitative
accuracy. Quantification of triacylglycerol (TG) was further refined by the generation of molecular structure
dependent response factors (RF). The use of lipid class-/subclass specific ISTDs allowed for confident, accurate
quantification. B: Quantitative distribution of lipid class and corresponding lipid molecular species within
subclasses of human WAT. Total lipid class concentration is represented by bold lines (SUM) and each single
lipid molecular species is represented by thin lines. C: Distribution of single TG based on bulk fatty acid chain
length (expressed as total carbon number, n(C); black dots) and unsaturation (expressed as double bond number,
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n(DB); red dots). Quantitative distribution of fatty acids, fatty alcohols, fatty vinyl alcohols and sphingoid bases
across D: phospholipids, E: acylcarnitines, F: cholesteryl esters and diacylglycerols and G: sphingolipids.

Adipose tissue lipids span over a wide concentration range and display lipid class specific
fatty acyl signatures - Quantified WAT lipids displayed a huge dynamic range of
concentrations from 12 amol/ug protein (CAR 20:5) up to 8 nmol/ug protein (TG 52:2),
spanning over eight orders of magnitude (Table S3). Total TG concentration (96.2 nmol/pg
protein) within WAT is overarching other lipid classes by two orders of magnitude, resembling
their role as energy storage lipids. Importantly, concentrations of individual TG species ranged
over five orders of magnitude showing the molecular species dependent abundance, with just
20 most abundant TG resembling over 71% of the total TG amount. Those top 20 TG contained
primarily saturated and monounsaturated fatty acyl chains with an average of two double bonds
per three acyl chains (Figure 3C). CE were the second most abundant lipid class of which CE
20:4 was the most concentrated (Figure 3F).

Unpolar lipids were followed by PC, PE, and SM. Interestingly, PC and PE lipids showed
inverted distribution of the corresponding subclasses (Figure 3D). Thus, diacyl-PC were = 4.5
times more abundant than ether-PCs, whereas ether-PEs were = 3 times more abundant than
diacyl-PE. Specifically, plasmalogen PE were the most abundant lipid subclass within PE
lipids. Closer inspection of the fatty acyl chain distribution revealed class/subclass specific
differences. For PC lipids, the fatty acyl chain abundance was largely similar between acyl-
alkyl-, and alkenyl-species, whereas for PE a higher concentration of PUFA-containing
alkenyl-PE (plasmalogens) was observed over diacyl-PE. Interestingly, plasmalogen lipids
were previously reported to be enriched in brain and heart tissues. Here, we demonstrate that
in human WAT plasmalogen PE represent the 4th most abundant lipid class with a total
concentration of 11.3 pmol/ug protein and the most abundant molecular species of plasmalogen
PE are rich in PUFA. LysoPC and lysoPE lipids were one order of magnitude less abundant
than PCs and PE, with acyl chain composition similar to the corresponding diacyl-species,
indicating active lipid remodeling within these PL classes via the Lands cycle (Figure 3D).
Other PL were detected only as diacyl species with PS being the next abundant class followed
by PI and PG. All minor PL lipids showed fatty acyl chain distribution characteristic for those
classes (Paul et al., 2019; Skotland and Sandvig, 2019). Thus, most abundant PS molecular
species were PS 18:0 18:1 and PS 18:0 18:2, whereas PIs were rich in FA 20:4. The most
abundant PG was PG 18:1_18:1 (Figure 3D).

DG and acylcarnitines (CAR) displayed quantities in the medium abundance range reasoning
for their role as intermediates within lipid metabolism. Indeed, DG acyl chain distribution was
quite similar to PL indicating the role of DG as structural precursors of membrane lipids (Figure
3E). The most abundant acylcarnitine was CAR 2:0 in line with its proposed function as a sink
for acetyl equivalents, accumulating due to the constant energy surplus, to prevent complete
CoA consumption, especially in highly metabolically active tissues as WAT (Figure 3E)
(Lopaschuk et al., 1994; Ramsay et al., 2001; Schooneman et al., 2013). Other abundant species
CAR 3:0 and CAR 5:0 possibly originate from branched chain amino acid oxidation (Newgard,
2012; Newgard et al., 2009). Additionally relatively high concentrations of CAR 16:0, 16:1,
18:0, 18:1, and 18:2 were observed indicating acylcarnitines shuttling of medium chain fatty
acids to mitochondrial B-oxidation (Schooneman et al., 2013). This is, to the best of our
knowledge, so far the first quantitative assessment of CAR species within human WAT further
supporting its role as a highly metabolically active organ.
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Another lipid class of high metabolic importance often implicated in development of obesity
related pathologies are ceramides (Cer) (Figure 3G). We found preferential incorporation of
saturated or monounsaturated long and very-long chain fatty acids in Cer lipids, typical for this
lipid class. The most abundant (203 fmol/ug protein) Cer in human WAT was Cer 34:1;02
represented by two isomeric species — Cer 18:1;02/16:0 and Cer 16:1;02/18:0. Cer
18:1;02/16:0 and corresponding ceramide synthase (CerS6) were previously associated with
weight gain and glucose intolerance (Turpin et al., 2014). On the other hand, Cer with
sphingoid bases others than SPB 18:1;02 are rarely monitored, thus usually not reported
(Chaurasia et al., 2016; Turpin et al., 2014). Overall, we demonstrated previously unanticipated
diversity of Cer subclasses in human WAT. Cer were represented by species with varying
length of sphingoid bases of which SPB 18:1;02 and SPB 16:1;02 were the most abundant.
Dihydroceramides (dhCer), precursors in de novo Cer biosynthesis, were one order of
magnitude lower than ceramides themselves. The next most abundant Cer subclass were
hexosylated Cer derivatives, closely followed by sphingadienine-Cer, a class of lipids only
recently discovered and monitored in human blood plasma (Karsai et al., 2020). Finally, to our
surprise, human WAT was enriched in deoxy-Cer lipids. This potentially cytotoxic Cer
subclass was detected in human blood plasma where it represents a minor (0.1-0.3%) fraction
of total sphingoid bases. Here, WAT contained significant amounts of deoxy-Cer lipids,
corresponding to 12.6% of all Cer subclasses. Considering close interconnection of
sphingolipid metabolic pathways, and already established functional differences of structurally
diverse Cer lipids (Chaurasia et al., 2016; Sokolowska and Blachnio-Zabielska, 2019),
AdipoAtlas significantly enriches the current knowledge on the human WAT lipid
composition.

PUFA containing TG are specifically upregulated in obese WAT - Having detailed semi-
quantitative map of human WAT in hands, we compared global lipidome compositions of
subcutaneous and visceral WAT from lean and obese individuals. As expected, we found a
statistically significant upregulation of TG in obese adipose tissue (Figure 4A). Interestingly,
all obesity upregulated TG contained at least one PUFA residue with FA 20:4, FA 20:5, FA
22:5 and FA 22:6 acyl chains being the most upregulated PUFAs in that respect (Figure 4B).
Conversely, TG species containing mostly SFA and MUFA residues were markedly decreased
in the adipose tissue of obese individuals (Figure 4A). Correlation analysis further confirmed
strong co-regulation of PUFA-TG (Figure 4C). Previously, obesity driven global accumulation
of long-chain PUFA containing TG was demonstrated in murine models and human biopsies
(Cao et al., 2008; Liesenfeld et al., 2015; Pietildinen et al., 2011). Increased activity of the fatty
acid elongase Elovl6 was proposed to play a role as a common phenomenon in rodent and
human adipose tissue in response to excessive nutrient consumption (Liesenfeld et al., 2015).
This suggests that besides upregulation of total enzymatic fatty acid elongation/desaturation
machinery, the generation of specific TG molecular species is regulated during obesity
development, and opens up the question how and why specific lipogenic enzymes generate
distinct TG species and what is their role in obesity development.
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Figure 4: Human white adipose tissue (WAT) displays distinct lipidome profiles depending on WAT depot
(visceral vs subcutaneous, VAT vs SAT) and phenotype (lean vs obese, lean vs ob). The global lipidome was
quantified for representative pools of WAT from visceral and subcutaneous depots of lean (n=5) and obese (n=81)
individuals. A: Heatmap displaying statistically significantly regulated lipid molecular species between the WAT
of obese and lean patients. B: Concentration of differentially regulated triacylglycerols (TG) between obese and
lean WAT. C: Pearson correlation of significantly regulated lipids between lean and obese WAT. D:
Concentration of statistically significantly regulated ceramide (Cer) species between lean and obese WAT. E:
Heatmap displaying statistically significantly regulated lipid molecular species between obese visceral (VAT(ob))
and obese subcutaneous (SAT(ob)) depots. F: Concentrations of phospholipid and plasmalogen phospholipid
species that are statistically significantly regulated between VAT (ob) and SAT (ob). Statistical significance was
determined by Student’s t-test (FDR adjusted) with a cutoff of p < 0.05 and a minimum fold change > 2.


https://doi.org/10.1101/2021.01.20.427444
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427444; this version posted January 21, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Increase in sphingadienine containing ceramides is a hallmark of obese adipose tissue -
Obesity is one of the main risk factors for the development of type 2 diabetes mellitus,
precluded by organ specific or systemic insulin resistance (Wondmkun, 2020). Ceramides are
well known mediators of insulin resistance with Cer levels in different organs reflecting insulin
sensitivity state (Sokolowska and Blachnio-Zabielska, 2019). Here, in the obese adipose tissue
we found a marked upregulation of ceramides with FA 24:1 acyl chains, and ceramides with
the unusual sphingoid base sphingadienine (SPB 18:2;02) (Figure 4A and D). Sphingadienine
(SPB 18:2;02) ceramides are a so far functionally undescribed class, synthesis of which has
been proposed in adipose tissue but not confirmed until now (Karsai et al., 2020). Upregulated
sphingadienine Cer contained diverse range of esterified acyl chains (from FA 14:0 up to FA
24:0) (Figure 4D). Correlation analysis showed that there is a strong co-regulation between all
upregulated SPB 18:2;02 containing ceramides (Figure 4B) indicating an increased
biosynthesis of this unusual sphingoid base or/and an increased acylation rate of the
sphingadienine base.

Plasmalogen phospholipids are a depot specific signature in acquired obesity - Encouraged
by the fact that AdipoAtlas provided new insights in the lipidomics signature of obese vs lean
adipose tissue, we next looked at the possible difference in lipid compositions of obese
subcutaneous and visceral AT depots. Interestingly, a clear discrimination of SAT and VAT
depots was possible based on their respective plasmalogen PL signatures (Figure 4E). Thus,
higher amounts of plasmalogen PC with long chain PUFA (e.g. FA 20:4, FA 20:5, FA 22:6)
were characteristic to subcutaneous obese WAT, whereas plasmalogen PE accumulated in
visceral obese WAT. The majority of VAT upregulated plasmalogen PE carried 18 carbon long
fatty acyl chains (Figure 5B). Differential regulation of plasmalogen PE was already indicated
in previous studies (Barchuk et al., 2020; Liesenfeld et al., 2015; Pietildinen et al., 2011). Here
we further demonstrated involvement of plasmalogen PC, and, importantly, fatty acyl
specificity within the regulated lipid species.

Discussion

Deep profiling of tissue-specific lipidomes is essential to support our understanding of human
biology by elucidating not only tissue/organ specific lipid remodeling mechanisms but also the
cross-talk between different tissues and its impact on systemic regulation of the lipid
metabolism. In contrast to robust screening applications necessary for the analysis of large
sample cohorts and potential clinical translation, deep lipidomics profiling of a particular
tissue, organ or cell type cannot be performed in a high-throughput manner and requires
rigorous tissue-tailored optimizations and application of multiple orthogonal analytical
workflows. Here we provide the example of analytical strategy targeting deep lipidomic
profiling of human WAT, which can be transferred and adapted for the generation of reference
lipidomes from any other human tissues. The workflow included three main steps to ensure
non-discriminative deep lipidome coverage providing qualitative and quantitative inventory of
human WAT lipidome:

I. Tissue-tailored lipid extraction and fractionation to ensure non-discriminative coverage of
all lipid (sub)classes was optimized by testing several protocols using quantitative high-
performance thin layer chromatography (QHPTLC) as a robust readout method allowing fast
quantitative assessment of extraction and fractionation efficiencies.
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II. Rigorous identification of lipid molecular species was performed by employing multiple
separation (C18 RPC, C30 RPC, HILIC) and MS analysis platforms (+/- DDA, AcquireX,
PRM). LC-MS/MS analysis of four samples pools (SAT and VAT from lean and obese
individuals) resulted in over 110 datasets used for lipid identification. Importantly,
identification was performed using three independent software tools and was followed up
by manual curation of MS/MS spectra and retention time mapping. Such a meticulous
strategy was rewarded by accurate identification of over 1600 lipid molecular species,
including rarely resolved ones. For instance, using specific sets of fragment ions and
subclass specific elution order, unambiguous identification of diacyl-, alkyl-, and alkenyl-
PC and PE lipids was achieved. Furthermore, three-dimensional (LC-MS-MS/MS) curation
including control for in-source fragmentation artefacts allowed to uncover unexpected
diversity of WAT sphingolipidome. To support accurate lipid identification at the molecular
species level we provide here a summary of lipid fragmentation patterns and retention time
maps (Supplementary File 1), which can be used by other researchers aiming for deep
lipidome mapping.

III. Semi-absolute quantification of human WAT was based on lipid class specific ISTDs that
were carefully selected to represent the diversity of endogenous lipids. To this end, a tissue-
tailored ISTD mixture was designed and validated. Quantitative data were processed using
several types of isotopic corrections, adducts and in-source fragments. Additionally,
response factors accounting for the distribution of diverse acyl chains in TG lipids were
calculated and applied to enhance the accuracy of the quantification results. That allowed
us to provide semi-quantitative values for 23 lipid subclasses and for the first time to
appreciate the extraordinary dynamic range of lipid concentrations within and between
different lipid subclasses in human WAT.

Human WAT reference lipidome was reconstructed using pooled samples representative of
SAT and VAT depots from lean and obese individuals. Although application of pooled samples
limits a detailed assessment of diseases specific lipid alterations, several depot and phenotype
specific lipid features became apparent. Accumulation of TG lipids in WAT is a known
hallmark of obesity. AdipoAtlas demonstrated a large diversity of WAT TG represented by
1029 molecular species. Interestingly, TG also were characterized by the largest dynamic range
of concentrations with only 20 TG covering over 70% of total TG concentration. Thus, the
most abundant TG 52:2 corresponded to 6.8 ug/ug of AT proteins. Although top 20 most
abundant WAT TG were mostly saturated (2 double bonds per 3 acyl chains on average), PUFA
rich TG species were significantly upregulated in obese WAT. These results are in line with
previous studies illustrating the enrichment of PUFA TG in obese adipose tissue (Pietildinen
et al., 2011; Liesenfeld et al., 2015). However mechanistic understanding of such specificity
remains limited.

One of the main discoveries provided by AdipoAtlas is the previously uncovered diversity of
WAT sphingolipidome. Sphingolipids, and especially ceramides, recently attracted a lot of
scientific attention. Tissues and blood plasma levels of these lipids emerge as important
predictors of metabolic malfunction in human pathologies associated with altered lipid
metabolism. Ceramide accumulation was associated with deleterious metabolic outcomes
including insulin resistance, ectopic lipid accumulation, apoptosis and fibrosis (Turpin-Nolan
and Briining, 2020). Ceramide biosynthesis and catabolic pathways were identified as
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favourable targets for pharmacological intervention in metabolic diseases. Thus, knockdown
or small molecule-based inhibition of serine palmitoyltransferase (SPTLC), dihydroceramide
desaturase 1 (DEGSI1), selected isoforms of ceramide synthases (CerS), as well as
overexpression of ceramidases (acid ceramidase and adiponectin receptor) all showed
beneficial effects in metabolically challenged mice (Chaurasia et al., 2019; Correnti et al.,
2014; Glaros et al., 2008; Holland et al., 2007).
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Figure 5: Complexity of the human white adipose tissue (WAT) sphingolipidome: A: Sankey plot displays
the concentration of ceramide (Cer) subclasses, its corresponding esterified sphingoid bases (SPB) and fatty acids
(FA). Depicted concentrations were calculated by averaging concentrations of WAT from subcutaneous and
visceral depots of lean and obese patients in order to reflect the general WAT sphingolipidome. Length of boxes
correspond to the determined concentrations. B: Differential regulation of sphingosine and sphingadienine SPBs
over Cer subclasses in obese (ob) and lean tissues from visceral (VAT) and subcutaneous (SAT) depots. C:
Differential regulation of deoxy-sphingosine and deoxy- sphingadienine SPBs over Cer subclasses in obese (ob)
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and lean tissues from visceral (VAT) and subcutaneous (SAT) depots. Statistical significance was calculated by
ANOVA. *p <0.05; **p <0.01; *** p < 0.005.

Elevated Cer levels were found in WAT in obesity and obesity associated diseases including
type 2 diabetes mellitus (Chaurasia et al., 2016), fatty liver diseases (Kolak et al., 2007), and
metabolic syndrome (Choromanska et al., 2019). Details on Cer tissue depot specificity (SAT
vs VAT) remain less obvious. Majority of the human studies used either SAT or VAT, and
reports directly comparing SAT vs VAT Cer levels are rare. However, current data indicate the
significance of Cer acylated with FA 16:0 as the molecular species associated with adverse
metabolic outcomes (Turpin et al., 2014). This observation is further supported by
transcriptomics analyses showing significant upregulation of CerS6, an isoform of ceramide
synthase preferentially acylating FA 16:0 into Cer, in WAT of obese individuals (Turpin et al.,
2014). It is important to note that most of the studies reporting Cer levels in human WAT utilize
targeted detection methods that cover only “classical” species (Cer, dhCer, and sometimes their
glycosylated derivatives) in which SPB 18:1;02 (sphingosine) is acylated with different fatty
acyl chains. Using our advanced analytical workflow, we demonstrated that WAT
sphingolipidome is more complex, with SPB 18:1;02 Cer representing only 69.2% of all
classical Cer (Figure 5). AdipoAtlas facilitated identification of four additional bases including
SPB 16:1;02 (26.1 %), SPB 19:1;02 (2.6%), SPB 17:1;02 (2.1%) and SPB 20:1;02 (0.7%).
Both SPB 18:1;02 and SPB 16:1;02 were elevated in obese WAT and their levels were higher
in VAT in comparison to SAT of lean and obese origin (Figure 5B). Overall, “classical” Cer
represent only 40% of total Cer species quantified in WAT. The next most abundant subclass
was glycosylated Cer (25%) containing up to three hexoses (Hex(n)Cer).

Interestingly, we furthermore identified two high abundant “atypical” Cer classes in human
WAT, namely deoxyCer and sphigadienineCer. DeoxyCer are acylated derivatives of 1-deoxy-
sphingosine (SPB 18:0;0), synthesised by SPT from palmitate and alanine instead of serine
(Duan and Merrill, 2015). They are typically considered as toxic by-products in Cer
metabolism, as they can neither be degraded via classical Cer catabolic pathways nor be
converted to SM and glycoCer species. DeoxyCer were only recently identified in human
adipose tissue with higher levels in VAT relative to serum, particularly in obese individuals
with type 2 diabetes mellitus (Hannich et al., 2020). Plasma levels of deoxyCer were positively
associated with age, BMI and waist-to-hip ratio (Beyene et al., 2020; Othman et al., 2012)
proposing them as a hallmark of metabolic complications. Interestingly, in plasma SPB 18:1;0
represents only a minor (0.1-0.3%) fraction (Othman et al., 2012), whereas AdipoAtlas
revealed ten times higher values in human WAT (12.6%) (Figure 5A). This suggests a
significant enrichment of these potentially toxic species in WAT although the exact role of
deoxyCer remains to be uncovered. Previously believed to be mainly of hepatic origin,
deoxyCer were shown to be directly synthesized by adipocytes during differentiation (Hannich
et al., 2020). Thus, AdipoAtlas as well as recently reported data (Hannich et al., 2020), allows
to propose human WAT as an important reservoir and a source of potentially toxic deoxyCer.

SphigadienineCer represented another abundant Cer subclass in human WAT (Figure 5). In
comparison to “classical” Cer, sphigadienineCer contain one more double bound at the position
A14Z (SPB 18:2;02). Previously, SPB 18:2;02 Cer were shown to reflect metabolic fitness
due to inverse association with homeostatic model assessment for insulin resistance, BMI and
incidence of cardiovascular events (Chew et al., 2019; Othman et al., 2015). Although the
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existence of SPB 18:2;02 is long known, the enzyme (fatty acid desaturase 3; FADS3),
responsible for the introduction of A14Z double bond, was discovered only recently (Karsai et
al., 2020). According to gene expression data from GTEx portal (https://gtexportal.org),
highest FADS3 expression levels were found in peripheral nerve, aorta, and WAT. Gender
specific expression analysis further unravelled highest expression of FADS3 in female WAT.
So far sphigadienineCer were not characterized in adipose tissue. Here we report that they
represent 19% of all Cer subclasses within human WAT (Figure 5A). Moreover, 18:2;02 Cer
were elevated in both SAT and VAT obese depots with significant enrichment of this lipid
class in VAT vs SAT. Importantly, elevated levels of 18:2;02 Cer represented a specific
signature of obese WAT showing statistical significance even for the pooled samples utilized
in this study (Figure 4D). Although depot and phenotype specific increase in sphigadienineCer
displayed the trend similar to Cer, their fatty acyl chain distribution was somewhat different,
with a lower portion of FA 18:0 acylated into 18:2;02 Cer in comparison to 18:1;02 Cer. Our
results strongly suggest that sphingadieneCer accumulation is a hallmark of obesity. Previously
published data showed significant gender-specificity for deoxy- and sphigadienineCer
subclasses with SPB 18:2;0 being more abundant in men and SPB 18:2;02 Cer in women.
Interestingly, we observed inverse correlation between those lipid classes in lean and obese
WAT (Figure 5B), which might be explained by 2/3 prevalence of female WAT donors in our
sample pools. Further analysis of individual samples based on AdipoAtlas list will provide
deeper insights in gender and disease specific signatures of ceramide lipids.

Another emerging class of lipids potentially involved in regulation of cellular and systemic
lipid homeostasis are etherPL (ePL), including plasmalogens (pPL). Previously, brain and heart
were identified to be rich in pPL. AdipoAtlas showed that ePC and ePE lipids composed 41%
of total PC and PE. Specifically, we demonstrated that PUFA rich ePE (40 pmol/pg protein)
represented the 4th most abundant lipid class in human WAT, closely following the most
abundant PC phospholipids (62 pmol/ug protein). We identified depot specific signatures of
ePL with higher levels of PUFA pPC in SAT, and enrichment of C18 fatty acyl chain
containing pPE in VAT. Ether lipids, and plasmalogens especially, play a central role in lipid
quality control, adaptive responses to the change in lipid saturation levels, and maintenance of
membrane fluidity (Jiménez-Rojo and Riezman, 2019). pPE compose over 20% of inner leaflet
of plasma membrane (Lorent et al., 2020), making them important players in membrane
remodelling during adipocyte hypertrophic growth (Pietildinen et al., 2011). Moreover, levels
of circulating plasmalogens were inversely associated with hypertension, prediabetes, type 2
diabetes mellitus, cardiovascular diseases, and obesity (Paul et al., 2019). Interestingly, inverse
co-regulation of ether lipids and sphingolipids was recently demonstrated, with depletion of
ePL leading to the Cer accumulation and vice versa (Jiménez-Rojo et al., 2020). AdipoAtlas
provides an inventory of ePL molecular species including resolved diacyl-, alkyl- and alkenyl-
PL which can be used as a resource for close, targeted follow up of this inverse correlation in
larger sample cohorts.

Overall, deep lipidomic profiling allowed to reconstruct human WAT reference lipidome.
AdipoAtlas provides an inventory of over 1600 lipid molecular species from 23 lipid
(sub)classes fortified by their semi-quantitative values in two WAT depots (subcutaneous and
visceral) from lean and obese individuals. That allowed us to demonstrate an amazing diversity
of adipose tissue lipids together with assessment of their quantities between and within lipid
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classes. Several important lipid signatures characteristic for obesity were discovered or
reproduced pointing out qualitative and quantitative accuracy of the applied methodology.
With AdipoAtlas freely available for all researchers interested in WAT biology, it can be
further used to design human WAT-specific high-throughput experiments targeting
quantification of any given lipid (sub)class in large sample cohorts. Moreover, AdipoAtlas will
provide so far missing scaffold for systems biology integration of lipidomics data via
reconstruction of lipid-centric genome scale metabolic models, linking big omics data with
identification of disease characteristic metabolic and signaling pathways.
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