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Summary  

Obesity, characterized by expansion and metabolic dysregulation of white adipose tissue 
(WAT), has reached pandemic proportions and acts as a primer for a wide range of metabolic 
disorders. Remodelling of WAT lipidome in obesity and associated comorbidities can explain 
disease etiology and provide valuable diagnostic and prognostic markers. To support 
understanding of WAT lipidome remodelling at the molecular level, we performed in-depth 
lipidomics profiling of human subcutaneous and visceral WAT of lean and obese individuals. 
Tissue-tailored preanalytical and analytical workflows allowed accurate identification and 
semi-absolute quantification of 1636 and 737 lipid molecular species, respectively, and 
summarized here in a form of human WAT reference lipidome. Deep lipidomic profiling 
allowed to identify main lipid (sub)classes undergoing depot/phenotype specific remodelling. 
Furthermore, previously unanticipated diversity of WAT ceramides was uncovered. 
AdipoAtlas reference lipidome will serve as a data-rich resource for the development of WAT-
specific high-throughput methods and as a scaffold for systems medicine data integration.     

 

Keywords: human white adipose tissue, subcutaneous WAT, visceral WAT, obesity, 
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Introduction 

The “industrial revolution” in modern omics technologies significantly enriched our 
understanding of human biology. Application of high-throughput transcriptomics and 
proteomics allowed to compile the Tissue Atlas within the Human Proteome Atlas project with 
expression levels of mRNA and proteins reported for 44 healthy human tissues, serving as a 
powerful resource for exploration of functional tissue specificities, future drug targets and 
potential biomarkers (Uhlén et al., 2015). Lipidomics, an omics branch aiming to identify and 
quantify individual lipid species, is not yet as advanced in the characterization of cell-, tissue-
,  and organ-specific lipid compositions. The majority of lipidomics studies aim for high-
throughput screening of large sample cohorts and clinical translation (Huynh et al., 2019; Seah 
et al., 2020). Such analytical workflows, targeting robust applications, are optimized for bulk 
lipid extraction followed by a single analysis method and relative (disease vs control) 
quantification. 

Considering the cooperative action of lipids in biological membranes and tight coregulation of 
anabolic and catabolic pathways of lipid metabolism, identification of tissue and cell type 
specific lipid signatures (reference lipidomes) is urgently required to facilitate deeper 
understanding of lipid biology in health and disease. Lipid cooperative actions are highly 
tissue/cell type specific at all levels of their functional activities including plasticity of cellular 
membranes, energy storage, redistribution, and coordinated signalling (Frayn et al., 2006; 
Furse et al., 2020). Furthermore, capturing alterations in lipid metabolism might be as 
important as identifying static lipid signatures resistant to certain (patho)physiological stimuli. 
Current advances in systems biology and medicine allow holistic integration of single and 
multiple omics levels (Alves et al., 2021). Several genome scale metabolic networks have been 
reconstructed, demonstrating high power in explaining human biology via integration of big 
omics datasets (Brunk et al., 2018; Noronha et al., 2019). Application of systems biology tools 
to lipid metabolism requires a detailed characterization of lipid molecular species both in a 
qualitative and quantitative manner. Availability of tissue-specific reference lipidomes would 
enable monitoring of the specificity of lipid metabolism and aid in understanding the cross-talk 
within and across different tissues.  

Deep lipidome profiling cannot be performed in a high-throughput manner as it requires tissue 
specific optimization and application of several orthogonal analytical methods to ensure 
simultaneous coverage of lipid classes with different polarities, ionization properties and range 
of endogenous concentrations. By now, the best characterized composition is available for the 
blood plasma lipidome with around 600 lipid species described at lipid class and lipid 
molecular species levels (Bowden et al., 2017; Burla et al., 2018; Criscuolo et al., 2019). 
However, detailed quantitative inventory of peripheral tissue lipidomes are scarce. Currently a 
lot of scientific attention was attracted towards adipose tissue metabolism. Obesity, 
characterized by white adipose tissue (WAT) expansion and metabolic dysregulation, has 
reached pandemic proportions in modern societies with a prevalence of more than 20% of the 
population (Blüher, 2019). Obesity is associated with an increased threat of premature death 
due to the significantly higher risk of developing type 2 diabetes mellitus (T2DM), 
hypertension, coronary heart disease, stroke, and several types of cancer. Remodelling of WAT 
metabolism in obesity and, importantly, in development of metabolic complications is a 
cornerstone in understanding disease etiology. Adipose tissue is the main lipid storage organ 
characterized by its extraordinary capacity to store excess of nutrients in the form of 
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triglycerides (TG), buffering this way the excess of free fatty acids (FFA) and preventing 
ectopic lipid accumulation in peripheral tissues. At conditions of chronic energy surplus WAT 
lipid metabolism undergoes significant remodelling to support oversupply of diet-derived fatty 
acids and carbohydrates, manifested in accumulation of TG in adipocyte lipid droplets, cellular 
hypertrophy and subsequent increase of WAT mass. So far WAT metabolism was studied from 
many different angels including genetic predisposition to obesity via genome wide association 
studies (Raulerson et al., 2019), changes in transcriptomics (Haffa et al., 2019), epigenetic 
(Martínez et al., 2014), and proteomics (Gómez-Serrano et al., 2016) patterns of WAT upon 
obesity development. However, studies reporting detailed quantitative description of depot 
specific (subcutaneous vs visceral) WAT lipidomes in lean and obese human individuals are 
limited.  

Here, we present AdipoAtlas – a mass-spectrometry based reference lipidome of human WAT 
reporting over 1600 and 700 lipid species on qualitative and quantitative levels, respectively. 
To ensure optimal WAT lipidome coverage and recovery we carefully optimized each step of 
the preanalytical workflow from sample preparation over lipid extraction to fractionation.  
Subsequently, a combination of various LC-MS platforms coupled to curated software assisted 
and manual identification, and quantification workflows was applied to provide an inventory 
describing most biologically important lipid classes within adipose tissue. In order to display 
its utility, AdipoAtlas was used as a reference to illustrate the remodeling of WAT lipidome 
upon development of obesity in two different adipose tissue depots, subcutaneous and visceral. 
We show that ceramides containing the unusual sphingadienine base and TG containing 
polyunsaturated fatty acid (PUFA) residues are enriched in obese WAT. Moreover, we 
identified distinct responses of adipose tissue depots to increased metabolic demand by 
upregulation of depot-specific plasmalogen synthesis. AdipoAtlas presents tissue-specific 
quantitative lipidome, a data-rich resource freely available to all lipid researchers. AdipoAtlas 
will support further understanding of lipidomic alterations within human adipose tissue and 
can act as a guideline to generate other tissue specific lipidome maps. 

Results 

WAT-tailored lipid extraction and fractionation - WAT acts as the main lipid storage organ 
with TG present at exceedingly high concentrations masking other less abundant lipid classes 
(Figure 1A). For accurate molecular mapping of the WAT lipidome, both extraction and 
fractionation were optimized to ensure coverage of both highly abundant storage (TG) and low 
abundant membrane and signaling (phospholipids and sphingolipids, PL and SP) lipids. To this 
end, we created tissue pools of WAT from obese and lean individuals representing 
subcutaneous (SAT) and visceral (VAT) depots. Pooled samples were used to test three 
common extraction protocols (Folch, MTBE, and Hex/IPA) (Iverson et al., 2001; Matyash et 
al., 2008; Slatter et al., 2016). The most efficient extraction method was chosen based on the 
recovery of unpolar and polar lipid classes assessed by quantitative high-performance thin-
layer-chromatography (qHPTLC) and 31P-NMR (Figure 1B and C; Supplementary Figure S1). 
Overall, the Folch two-phase extraction protocol was shown to be the most efficient in 
recovering both unpolar and polar lipids in human WAT.  

Even with the optimal extraction, polar lipids represented a minor fraction of WAT lipidome 
(Figure 1A and C). To facilitate deep lipidomic profiling, we performed fractionation of WAT 
lipid extracts. Lipid fractionation methods utilize differences in molecular motifs or polarity of 
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lipid classes, and here we compared three orthogonal protocols based on (i) hydrophobicity 
and ionization state (amino propyl solid phase extraction, SPE; hereafter LipFrac) (ii) presence 
of phosphodiester groups (Zr-SPE), and (iii) polarity (using liquid-liquid extraction, LLE). All 
three protocols showed similar recovery of PC, PE, and SM lipids (Figure 1D). LipFrac resulted 
in the highest recovery of free fatty acids but discriminated acidic PL (e.g., PI) due to their 
strong binding to the stationary phase. Zr-SPE effectively enriched phosphate group containing 
lipid classes but increased content of lysoPL and FFA due to PL alkaline hydrolysis during the 
elution step. LLE delivered sufficient enrichment efficiency for all polar lipid classes and was 
the most time efficient protocol (Figure 1D).  

 
Figure 1: Optimization of sample preparation protocols for global lipidome profiling of human white 
adipose tissue (WAT). Pooled tissue samples from obese visceral and subcutaneous WAT were used for 
optimization purposes to reflect general abundance of lipid classes within human WAT. A: Lipid class specific 
WAT lipidome composition as determined by quantitative high-performance thin layer chromatography 
(qHPTLC) of Folch lipid extracts in combination with liquid/liquid extraction (LLE) for polar lipid enrichment. 
B: Extraction efficiency of unpolar lipids as determined by qHPTLC. WAT lipids were extracted by either the 
Folch, the methyl-tert-butyl-ether (MTBE) or the hexane/i-PrOH/HOAc (Hex/IPA) method. C: Extraction 
efficiency of phosphate containing polar lipids by the different lipid extraction protocols was determined with 31P-
NMR. D: Efficiency to separate polar and unpolar lipids from WAT lipid extracts was compared using polarity 
separation by LLE, separation based on the presence of phosphate groups in lipids by zirconia-oxide based solid 
phase extraction (Zr-SPE) or aminopropyl SPE based lipid class fractionation (LipFrac). E: Schematic depiction 
of the optimized lipid extraction and fractionation protocol. F: qHPTLC analysis of WAT lipidome before (total 
lipid extract dominated by unpolar lipids) and after (enriched polar and amphiphilic lipids; ethanol fraction) LLE 
fractionation.   
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Here, we performed WAT specific optimization of lipid extraction and fractionation protocols, 
and identified the most efficient sample preparation strategy based on Folch lipid extraction 
followed by polarity based LLE allowing non-discriminative recovery and enrichment of lipids 
of different classes (Figure 1E and F). The workflow presented here utilized qHPTLC for bulk 
lipid quantification and can be easily adapted for optimization of extraction and enrichment 
protocols to any other tissue samples.   

WAT lipidome profiling - To increase biological meaningfulness of lipidomics data, lipid 
annotations should provide information on the lipid class as well as on the discrete fatty acyl 
chain composition rather than total number of carbon atoms and double bond equivalents. LC-
MS/MS based lipidomics allows accurate identification of lipids at the molecular species level 
(e.g., PC 16:0_18:2), but in complex lipid mixtures with high dynamic range of lipid 
concentrations, the coverage of identified lipidome will depend on the total resolution of the 
analytical platform. For deep WAT lipidome profiling, we utilized three LC systems each 
coupled on-line to high resolution accurate mass (HRAM) tandem mass spectrometry 
(MS/MS) (Figure 2A). Highly hydrophobic TG lipids represented by a large diversity of 
molecular species and dynamic range of concentrations were separated using C30 reversed 
phase liquid chromatography (RPC), whereas the more polar LLE fraction (PLs, SLs, DGs) 
was resolved using C18 RPC (Figure 2B). Highly polar acyl carnitines (CAR) were separated 
by hydrophilic interaction liquid chromatography (HILIC) (Figure 2B), as they are not 
sufficiently retained on RP columns. Moreover, MS analysis using data-dependent acquisition 
(DDA) relied on different HRAM platforms and was specifically tailored to enhance 
identification depth for each targeted lipid class. To this end, C30 RPC separated TG were 
analyzed in positive polarity on a Q Exactive Plus mass spectrometer with traditional DDA, 
and on a Orbitrap Fusion Lumos Tribrid mass spectrometer using AcquireX deep scan 
acquisition workflow for in-depth identification of TG molecular species. Less abundant 
amphiphilic lipids on the other hand were detected by DDA on a Q Exactive platform and a 
Orbitrap Fusion Lumos instrument both in the positive and negative modes. As we originally 
failed to detect any cholesteryl esters (CE), retinol esters, desmosterol esters or cardiolipins in 
WAT total extracts we set up targeted parallel reaction monitoring (PRM) for the detection of 
most prominent species. That allowed us to detect 7 CE otherwise masked by highly abundant 
TGs. However, both retinol and desmosterol esters as well as cardiolipins remained undetected 
in human WAT. Overall, 111 LC-MS/MS analyses were performed to support lipid 
identification (Figure 2A and B, Material and Methods Figure 1).  

To ensure high-confidence accurate lipid identification, we used three software tools – 
LipidHunter (Ni et al., 2017), LipidSearch ( Thermo Scientific, San Jose, CA), and Lipostar 
(Goracci et al., 2017). Obtained results were cross-matched, and the list of putative lipid 
identifications was manually curated to exclude false-positive identifications. We further 
validated manually curated lipid annotations by plotting the retention time of a given lipid 
species against its Kendrick mass defect to the hydrogen base (KMD) (Figure 2C). Detailed 
description of manual MS/MS curation and retention time mapping for lipids of different 
(sub)classes is provided in Supplementary File 1. In some cases (MG, short acyl chain TG, 
CAR) coelution with lipid standards was used to validate their identity (Supplementary Figure 
2). Such rigorous curation of lipid annotations allowed us to resolve lipid classes, which are 
often not discriminated. For instance, using defined set of specific fragment ions as well as 
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retention time mapping, unambiguous identification of acyl-, alkyl-, and alkenyl-PL as well as 
lysoPL became possible (Supplementary File 1).  

 
Figure 2: Workflow adapted for high confidence lipid identification from human white adipose tissue 
(WAT). A: Schematic depiction of the identification strategy for three dimensionally curated, high confidence 
lipid library of human WAT. Liquid chromatography (LC) and mass spectrometry (MS) platforms were tailored 
to allow for optimal separation and coverage of unpolar, amphiphilic and polar lipid classes. Data analysis featured 
three independent software tools followed by manual curation of lipid annotations. Putative lipid identifications 
were furthermore subjected to retention time mapping in order to increase identification confidence. B: Lipid class 
specific LC separation was applied to allow for the highest possible chromatographic resolution to achieve optimal 
lipidome coverage. LC-MS chromatograms of unpolar lipids separated by C30 reversed phase chromatography 
(RPC), amphiphilic lipids by C18 RPC and polar acylcarnitines (CAR) by hydrophilic interaction chromatography 
(HILIC). C: Exemplary depiction of retention time mapping for TG, PC and CAR lipid classes. Kendrick mass 
defect to the hydrogen base (KMD[H]) was plotted against lipid retention time to increase confidence of lipid 
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identification. D: Graphical representation of human WAT lipid molecular species grouped by the corresponding 
lipid class obtained by high confidence identification strategy.  

Overall, we obtained a list of 1636 lipids representing 23 lipid subclasses (Figure 2D; Table 
S1). TG display the highest lipidome complexity by making up 63.2% of all identified lipids 
followed by PL (16.8%), SP (9.8%), DG (5.4%), lysoPL (2.8%), acylcarnitines (1.7%) and CEs 
(0.4%). Eventually we achieved a three dimensionally curated (RT-MS-MS/MS), high 
confidence lipid inventory of human WAT covering all major lipid classes including 
glycerolipids, phospholipids, sphingolipids, cholesteryl esters, and acylcarnitines, representing 
the most detailed description of human WAT lipidome to date. 

Quantitative analysis of human WAT lipidome - Significance of accurate quantification for 
harmonization of lipidomics data was recently underlined by the lipidomics community 
(Liebisch et al., 2019). However, several analytical challenges need to be accounted for when 
aiming for accurate lipid quantification. MS signal intensity is molecular structure dependent 
and as such requires application of internal standards (ISTDs) to support accurate 
quantification. Highest possible quantitative accuracy can be obtained by using isotopically 
labelled ISTDs for each molecular species in the sample, which is unfortunately still not 
feasible at the whole lipidome level. Here we performed semi-absolute quantification of 
identified WAT lipids using lipid subclass specific ISTDs at concentrations close to the 
endogenous analytes (Figure 3A). WAT specific ISTD mixture was designed to cover the 
whole range of identified lipid classes by using different classes of PLs (deuterated PC, PE, 
PS, PG, PI, LPC, LPE), GL (13C-labeled DG, TG), CE (deuterated CE), SP (natural Cer, 
dihydroceramides (DhCer), deoxyceramides (DeoxyCer), phytoceramides (PhytoCer), 
hexosylated ceramides (GlcCer, LacCer), SM), CAR (deuterated) and free fatty acids (13C-
labeled). Isotopically labeled or naturally occurring lipids absent in WAT were used (Table 
S2). Next, 6-point calibration curves were generated for each ISTD spiked in the adipose tissue 
matrix to determine the linear response range (Supplementary Figures S3 and S4). Final ISTD 
amounts in the mixture were chosen to represent intensity close to the native lipids of the 
corresponding lipid class while still displaying a linear behavior of ISTD in the concentration-
response relationship. Pooled WAT samples were spiked with the designed ISTD mixture prior 
to lipid extraction and fractionation, and analyzed using full scan LC-MS or PRM platforms 
utilizing three type of LC separations as described above (C30 RPC, C18 RPC, and HILIC; 90 
LC-MS analysis).  

All obtained data were corrected for lipid isotopic patterns (type I) as well as for incomplete 
isotopic enrichment of deuterated ISTDs (Figure 3A). Since not only the lipid class but also 
the fatty acyl chain composition in a given lipid will determine its MS response, we defined 
acyl chain specific response factors for the most abundant and diverse WAT lipid class, TG, 
which were used to increase quantitative accuracy of TG (Supplementary Figure S5). Thus, 
using comprehensive separation strategy coupled to HRAM MS detection and in-house 
designed ISTD mixture customized to WAT, we performed semi-absolute quantification of 
human WAT lipidome covering 522 lipid molecular species as well as 215 TG quantified at 
lipid class level, providing the most detailed semi-quantitative mapping of human adipose 
tissue lipidome to date (Figure 3B, Table S3). 
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Figure 3: Quantitative representation of human WAT lipidome and description of used analytical strategy. 
A: Schematic depiction of the quantitative lipidomics workflow. Subclass specific lipid internal standards (ISTD) 
were spiked into WAT samples prior to lipid extraction. Lipid subclass specific liquid chromatography (LC) and 
high resolution, accurate mass (HRAM) MS enabled quantification of the highest possible number of lipid species. 
Lipid class specific differential adduction and MS stability was assessed by quantification of all adducts and in-
source fragments (ISF) of the corresponding lipid molecular species. Type I isotopic correction as well as 
correction for incomplete isotopic labeling of the ISTD were additionally applied to increase quantitative 
accuracy. Quantification of triacylglycerol (TG) was further refined by the generation of molecular structure 
dependent response factors (RF). The use of lipid class-/subclass specific ISTDs allowed for confident, accurate 
quantification. B: Quantitative distribution of lipid class and corresponding lipid molecular species within 
subclasses of human WAT. Total lipid class concentration is represented by bold lines (SUM) and each single 
lipid molecular species is represented by thin lines. C: Distribution of single TG based on bulk fatty acid chain 
length (expressed as total carbon number, n(C); black dots)  and unsaturation (expressed as double bond number, 
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n(DB); red dots). Quantitative distribution of fatty acids, fatty alcohols, fatty vinyl alcohols and sphingoid bases 
across D: phospholipids, E: acylcarnitines, F: cholesteryl esters and diacylglycerols and G: sphingolipids.  

Adipose tissue lipids span over a wide concentration range and display lipid class specific 
fatty acyl signatures - Quantified WAT lipids displayed a huge dynamic range of 
concentrations from 12 amol/μg protein (CAR 20:5) up to 8 nmol/μg protein (TG 52:2), 
spanning over eight orders of magnitude (Table S3). Total TG concentration (96.2 nmol/μg 
protein) within WAT is overarching other lipid classes by two orders of magnitude, resembling 
their role as energy storage lipids. Importantly, concentrations of individual TG species ranged 
over five orders of magnitude showing the molecular species dependent abundance, with just 
20 most abundant TG resembling over 71% of the total TG amount. Those top 20 TG contained 
primarily saturated and monounsaturated fatty acyl chains with an average of two double bonds 
per three acyl chains (Figure 3C). CE were the second most abundant lipid class of which CE 
20:4 was the most concentrated (Figure 3F).  

Unpolar lipids were followed by PC, PE, and SM. Interestingly, PC and PE lipids showed 
inverted distribution of the corresponding subclasses (Figure 3D). Thus, diacyl-PC were ≈ 4.5 
times more abundant than ether-PCs, whereas ether-PEs were ≈ 3 times more abundant than 
diacyl-PE. Specifically, plasmalogen PE were the most abundant lipid subclass within PE 
lipids. Closer inspection of the fatty acyl chain distribution revealed class/subclass specific 
differences. For PC lipids, the fatty acyl chain abundance was largely similar between acyl- 
alkyl-, and alkenyl-species, whereas for PE a higher concentration of PUFA-containing 
alkenyl-PE (plasmalogens) was observed over diacyl-PE. Interestingly, plasmalogen lipids 
were previously reported to be enriched in brain and heart tissues. Here, we demonstrate that 
in human WAT plasmalogen PE represent the 4th most abundant lipid class with a total 
concentration of 11.3 pmol/μg protein and the most abundant molecular species of plasmalogen 
PE are rich in PUFA. LysoPC and lysoPE lipids were one order of magnitude less abundant 
than PCs and PE, with acyl chain composition similar to the corresponding diacyl-species, 
indicating active lipid remodeling within these PL classes via the Lands cycle (Figure 3D). 
Other PL were detected only as diacyl species with PS being the next abundant class followed 
by PI and PG. All minor PL lipids showed fatty acyl chain distribution characteristic for those 
classes (Paul et al., 2019; Skotland and Sandvig, 2019). Thus, most abundant PS molecular 
species were PS 18:0_18:1 and PS 18:0_18:2, whereas PIs were rich in FA 20:4. The most 
abundant PG was PG 18:1_18:1 (Figure 3D).  

DG and acylcarnitines (CAR) displayed quantities in the medium abundance range reasoning 
for their role as intermediates within lipid metabolism. Indeed, DG acyl chain distribution was 
quite similar to PL indicating the role of DG as structural precursors of membrane lipids (Figure 
3E). The most abundant acylcarnitine was CAR 2:0 in line with its proposed function as a sink 
for acetyl equivalents, accumulating due to the constant energy surplus, to prevent complete 
CoA consumption, especially in highly metabolically active tissues as WAT (Figure 3E) 
(Lopaschuk et al., 1994; Ramsay et al., 2001; Schooneman et al., 2013). Other abundant species 
CAR 3:0 and CAR 5:0 possibly originate from branched chain amino acid oxidation (Newgard, 
2012; Newgard et al., 2009). Additionally relatively high concentrations of CAR 16:0, 16:1, 
18:0, 18:1, and 18:2 were observed indicating acylcarnitines shuttling of medium chain fatty 
acids to mitochondrial β-oxidation (Schooneman et al., 2013). This is, to the best of our 
knowledge, so far the first quantitative assessment of CAR species within human WAT further 
supporting its role as a highly metabolically active organ. 
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Another lipid class of high metabolic importance often implicated in development of obesity 
related pathologies are ceramides (Cer) (Figure 3G). We found preferential incorporation of 
saturated or monounsaturated long and very-long chain fatty acids in Cer lipids, typical for this 
lipid class. The most abundant (203 fmol/μg protein) Cer in human WAT was Cer 34:1;O2 
represented by two isomeric species – Cer 18:1;O2/16:0 and Cer 16:1;O2/18:0. Cer 
18:1;O2/16:0 and corresponding ceramide synthase (CerS6) were previously associated with 
weight gain and glucose intolerance (Turpin et al., 2014). On the other hand, Cer with 
sphingoid bases others than SPB 18:1;O2 are rarely monitored, thus usually not reported 
(Chaurasia et al., 2016; Turpin et al., 2014). Overall, we demonstrated previously unanticipated 
diversity of Cer subclasses in human WAT. Cer were represented by species with varying 
length of sphingoid bases of which SPB 18:1;O2 and SPB 16:1;O2 were the most abundant. 
Dihydroceramides (dhCer), precursors in de novo Cer biosynthesis, were one order of 
magnitude lower than ceramides themselves. The next most abundant Cer subclass were 
hexosylated Cer derivatives, closely followed by sphingadienine-Cer, a class of lipids only 
recently discovered and monitored in human blood plasma (Karsai et al., 2020). Finally, to our 
surprise, human WAT was enriched in deoxy-Cer lipids. This potentially cytotoxic Cer 
subclass was detected in human blood plasma where it represents a minor (0.1-0.3%) fraction 
of total sphingoid bases. Here, WAT contained significant amounts of deoxy-Cer lipids, 
corresponding to 12.6% of all Cer subclasses. Considering close interconnection of 
sphingolipid metabolic pathways, and already established functional differences of structurally 
diverse Cer lipids (Chaurasia et al., 2016; Sokolowska and Blachnio-Zabielska, 2019), 
AdipoAtlas significantly enriches the current knowledge on the human WAT lipid 
composition.  

PUFA containing TG are specifically upregulated in obese WAT - Having detailed semi-
quantitative map of human WAT in hands, we compared global lipidome compositions of 
subcutaneous and visceral WAT from lean and obese individuals. As expected, we found a 
statistically significant upregulation of TG in obese adipose tissue (Figure 4A). Interestingly, 
all obesity upregulated TG contained at least one PUFA residue with FA 20:4, FA 20:5, FA 
22:5 and FA 22:6 acyl chains being the most upregulated PUFAs in that respect (Figure 4B). 
Conversely, TG species containing mostly SFA and MUFA residues were markedly decreased 
in the adipose tissue of obese individuals (Figure 4A). Correlation analysis further confirmed 
strong co-regulation of PUFA-TG (Figure 4C). Previously, obesity driven global accumulation 
of long-chain PUFA containing TG was demonstrated in murine models and human biopsies 
(Cao et al., 2008; Liesenfeld et al., 2015; Pietiläinen et al., 2011). Increased activity of the fatty 
acid elongase Elovl6 was proposed to play a role as a common phenomenon in rodent and 
human adipose tissue in response to excessive nutrient consumption (Liesenfeld et al., 2015). 
This suggests that besides upregulation of total enzymatic fatty acid elongation/desaturation 
machinery, the generation of specific TG molecular species is regulated during obesity 
development, and opens up the question how and why specific lipogenic enzymes generate 
distinct TG species and what is their role in obesity development.  
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Figure 4: Human white adipose tissue (WAT) displays distinct lipidome profiles depending on WAT depot 
(visceral vs subcutaneous, VAT vs SAT) and phenotype (lean vs obese, lean vs ob). The global lipidome was 
quantified for representative pools of WAT from visceral and subcutaneous depots of lean (n=5) and obese (n=81) 
individuals. A: Heatmap displaying statistically significantly regulated lipid molecular species between the WAT 
of obese and lean patients. B: Concentration of differentially regulated triacylglycerols (TG) between obese and 
lean WAT. C: Pearson correlation of significantly regulated lipids between lean and obese WAT. D: 
Concentration of statistically significantly regulated ceramide (Cer) species between lean and obese WAT. E: 
Heatmap displaying statistically significantly regulated lipid molecular species between obese visceral (VAT(ob)) 
and obese subcutaneous (SAT(ob)) depots. F: Concentrations of phospholipid and plasmalogen phospholipid 
species that are statistically significantly regulated between VAT (ob) and SAT (ob). Statistical significance was 
determined by Student’s t-test (FDR adjusted) with a cutoff of p ≤ 0.05 and a minimum fold change ≥ 2.  
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Increase in sphingadienine containing ceramides is a hallmark of obese adipose tissue - 
Obesity is one of the main risk factors for the development of type 2 diabetes mellitus, 
precluded by organ specific or systemic insulin resistance (Wondmkun, 2020). Ceramides are 
well known mediators of insulin resistance with Cer levels in different organs reflecting insulin 
sensitivity state (Sokolowska and Blachnio-Zabielska, 2019). Here, in the obese adipose tissue 
we found a marked upregulation of ceramides with FA 24:1 acyl chains, and ceramides with 
the unusual sphingoid base sphingadienine (SPB 18:2;O2) (Figure 4A and D). Sphingadienine 
(SPB 18:2;O2) ceramides are a so far functionally undescribed class, synthesis of which has 
been proposed in adipose tissue but not confirmed until now (Karsai et al., 2020). Upregulated 
sphingadienine Cer contained diverse range of esterified acyl chains (from FA 14:0 up to FA 
24:0) (Figure 4D). Correlation analysis showed that there is a strong co-regulation between all 
upregulated SPB 18:2;O2 containing ceramides (Figure 4B) indicating an increased 
biosynthesis of this unusual sphingoid base or/and an increased acylation rate of the 
sphingadienine base.  

Plasmalogen phospholipids are a depot specific signature in acquired obesity - Encouraged 
by the fact that AdipoAtlas provided new insights in the lipidomics signature of obese vs lean 
adipose tissue, we next looked at the possible difference in lipid compositions of obese 
subcutaneous and visceral AT depots. Interestingly, a clear discrimination of SAT and VAT 
depots was possible based on their respective plasmalogen PL signatures (Figure 4E). Thus, 
higher amounts of plasmalogen PC with long chain PUFA (e.g. FA 20:4, FA 20:5, FA 22:6) 
were characteristic to subcutaneous obese WAT, whereas plasmalogen PE accumulated in 
visceral obese WAT. The majority of VAT upregulated plasmalogen PE carried 18 carbon long 
fatty acyl chains (Figure 5B). Differential regulation of plasmalogen PE was already indicated 
in previous studies (Barchuk et al., 2020; Liesenfeld et al., 2015; Pietiläinen et al., 2011). Here 
we further demonstrated involvement of plasmalogen PC, and, importantly, fatty acyl 
specificity within the regulated lipid species.  

 

Discussion 

Deep profiling of tissue-specific lipidomes is essential to support our understanding of human 
biology by elucidating not only tissue/organ specific lipid remodeling mechanisms but also the 
cross-talk between different tissues and its impact on systemic regulation of the lipid 
metabolism.  In contrast to robust screening applications necessary for the analysis of large 
sample cohorts and potential clinical translation, deep lipidomics profiling of a particular 
tissue, organ or cell type cannot be performed in a high-throughput manner and requires 
rigorous tissue-tailored optimizations and application of multiple orthogonal analytical 
workflows. Here we provide the example of analytical strategy targeting deep lipidomic 
profiling of human WAT, which can be transferred and adapted for the generation of reference 
lipidomes from any other human tissues. The workflow included three main steps to ensure 
non-discriminative deep lipidome coverage providing qualitative and quantitative inventory of 
human WAT lipidome:  

I. Tissue-tailored lipid extraction and fractionation to ensure non-discriminative coverage of 
all lipid (sub)classes was optimized by testing several protocols using quantitative high-
performance thin layer chromatography (qHPTLC) as a robust readout method allowing fast 
quantitative assessment of extraction and fractionation efficiencies.  
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II. Rigorous identification of lipid molecular species was performed by employing multiple 
separation (C18 RPC, C30 RPC, HILIC) and MS analysis platforms (+/- DDA, AcquireX, 
PRM). LC-MS/MS analysis of four samples pools (SAT and VAT from lean and obese 
individuals) resulted in over 110 datasets used for lipid identification. Importantly, 
identification was performed using three independent software tools and was followed up 
by manual curation of MS/MS spectra and retention time mapping. Such a meticulous 
strategy was rewarded by accurate identification of over 1600 lipid molecular species, 
including rarely resolved ones. For instance, using specific sets of fragment ions and 
subclass specific elution order, unambiguous identification of diacyl-, alkyl-, and alkenyl-
PC and PE lipids was achieved. Furthermore, three-dimensional (LC-MS-MS/MS) curation 
including control for in-source fragmentation artefacts allowed to uncover unexpected 
diversity of WAT sphingolipidome. To support accurate lipid identification at the molecular 
species level we provide here a summary of lipid fragmentation patterns and retention time 
maps (Supplementary File 1), which can be used by other researchers aiming for deep 
lipidome mapping.  

III. Semi-absolute quantification of human WAT was based on lipid class specific ISTDs that 
were carefully selected to represent the diversity of endogenous lipids. To this end, a tissue-
tailored ISTD mixture was designed and validated. Quantitative data were processed using 
several types of isotopic corrections, adducts and in-source fragments. Additionally, 
response factors accounting for the distribution of diverse acyl chains in TG lipids were 
calculated and applied to enhance the accuracy of the quantification results. That allowed 
us to provide semi-quantitative values for 23 lipid subclasses and for the first time to 
appreciate the extraordinary dynamic range of lipid concentrations within and between 
different lipid subclasses in human WAT.  

Human WAT reference lipidome was reconstructed using pooled samples representative of 
SAT and VAT depots from lean and obese individuals. Although application of pooled samples 
limits a detailed assessment of diseases specific lipid alterations, several depot and phenotype 
specific lipid features became apparent. Accumulation of TG lipids in WAT is a known 
hallmark of obesity. AdipoAtlas demonstrated a large diversity of WAT TG represented by 
1029 molecular species. Interestingly, TG also were characterized by the largest dynamic range 
of concentrations with only 20 TG covering over 70% of total TG concentration. Thus, the 
most abundant TG 52:2 corresponded to 6.8 μg/μg of AT proteins. Although top 20 most 
abundant WAT TG were mostly saturated (2 double bonds per 3 acyl chains on average), PUFA 
rich TG species were significantly upregulated in obese WAT. These results are in line with 
previous studies illustrating the enrichment of PUFA TG in obese adipose tissue (Pietiläinen 
et al., 2011; Liesenfeld et al., 2015). However mechanistic understanding of such specificity 
remains limited.   

One of the main discoveries provided by AdipoAtlas is the previously uncovered diversity of 
WAT sphingolipidome. Sphingolipids, and especially ceramides, recently attracted a lot of 
scientific attention. Tissues and blood plasma levels of these lipids emerge as important 
predictors of metabolic malfunction in human pathologies associated with altered lipid 
metabolism. Ceramide accumulation was associated with deleterious metabolic outcomes 
including insulin resistance, ectopic lipid accumulation, apoptosis and fibrosis (Turpin-Nolan 
and Brüning, 2020). Ceramide biosynthesis and catabolic pathways were identified as 
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favourable targets for pharmacological intervention in metabolic diseases. Thus, knockdown 
or small molecule-based inhibition of serine palmitoyltransferase (SPTLC), dihydroceramide 
desaturase 1 (DEGS1), selected isoforms of ceramide synthases (CerS), as well as 
overexpression of ceramidases (acid ceramidase and adiponectin receptor) all showed 
beneficial effects in metabolically challenged mice (Chaurasia et al., 2019; Correnti et al., 
2014; Glaros et al., 2008; Holland et al., 2007). 

 
Figure 5: Complexity of the human white adipose tissue (WAT) sphingolipidome: A: Sankey plot displays 
the concentration of ceramide (Cer) subclasses, its corresponding esterified sphingoid bases (SPB) and fatty acids 
(FA). Depicted concentrations were calculated by averaging concentrations of WAT from subcutaneous and 
visceral depots of lean and obese patients in order to reflect the general WAT sphingolipidome. Length of boxes 
correspond to the determined concentrations. B: Differential regulation of sphingosine and sphingadienine SPBs 
over Cer subclasses in obese (ob) and lean tissues from visceral (VAT) and subcutaneous (SAT) depots. C: 
Differential regulation of deoxy-sphingosine and deoxy- sphingadienine SPBs over Cer subclasses in obese (ob) 
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and lean tissues from visceral (VAT) and subcutaneous (SAT) depots. Statistical significance was calculated by 
ANOVA. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.005. 

 

Elevated Cer levels were found in WAT in obesity and obesity associated diseases including 
type 2 diabetes mellitus (Chaurasia et al., 2016), fatty liver diseases (Kolak et al., 2007), and 
metabolic syndrome (Choromańska et al., 2019). Details on Cer tissue depot specificity (SAT 
vs VAT) remain less obvious. Majority of the human studies used either SAT or VAT, and 
reports directly comparing SAT vs VAT Cer levels are rare. However, current data indicate the 
significance of Cer acylated with FA 16:0 as the molecular species associated with adverse 
metabolic outcomes (Turpin et al., 2014). This observation is further supported by 
transcriptomics analyses showing significant upregulation of CerS6, an isoform of ceramide 
synthase preferentially acylating FA 16:0 into Cer, in WAT of obese individuals (Turpin et al., 
2014). It is important to note that most of the studies reporting Cer levels in human WAT utilize 
targeted detection methods that cover only “classical” species (Cer, dhCer, and sometimes their 
glycosylated derivatives) in which SPB 18:1;O2 (sphingosine) is acylated with different fatty 
acyl chains. Using our advanced analytical workflow, we demonstrated that WAT 
sphingolipidome is more complex, with SPB 18:1;O2 Cer representing only 69.2% of all 
classical Cer (Figure 5). AdipoAtlas facilitated identification of four additional bases including 
SPB 16:1;O2 (26.1 %), SPB 19:1;O2 (2.6%), SPB 17:1;O2 (2.1%) and SPB 20:1;O2 (0.7%). 
Both SPB 18:1;O2 and SPB 16:1;O2 were elevated in obese WAT and their levels were higher 
in VAT in comparison to SAT of lean and obese origin (Figure 5B). Overall, “classical” Cer 
represent only 40% of total Cer species quantified in WAT. The next most abundant subclass 
was glycosylated Cer (25%) containing up to three hexoses (Hex(n)Cer).  

Interestingly, we furthermore identified two high abundant “atypical” Cer classes in human 
WAT, namely deoxyCer and sphigadienineCer. DeoxyCer are acylated derivatives of 1-deoxy-
sphingosine (SPB 18:0;O), synthesised by SPT from palmitate and alanine instead of serine 
(Duan and Merrill, 2015). They are typically considered as toxic by-products in Cer 
metabolism, as they can neither be degraded via classical Cer catabolic pathways nor be 
converted to SM and glycoCer species. DeoxyCer were only recently identified in human 
adipose tissue with higher levels in VAT relative to serum, particularly in obese individuals 
with type 2 diabetes mellitus (Hannich et al., 2020). Plasma levels of deoxyCer were positively 
associated with age, BMI and waist-to-hip ratio (Beyene et al., 2020; Othman et al., 2012) 
proposing them as a hallmark of metabolic complications.  Interestingly, in plasma SPB 18:1;O 
represents only a minor (0.1-0.3%) fraction (Othman et al., 2012), whereas AdipoAtlas 
revealed ten times higher values in human WAT (12.6%) (Figure 5A). This suggests a 
significant enrichment of these potentially toxic species in WAT although the exact role of 
deoxyCer remains to be uncovered. Previously believed to be mainly of hepatic origin, 
deoxyCer were shown to be directly synthesized by adipocytes during differentiation (Hannich 
et al., 2020). Thus, AdipoAtlas as well as recently reported data (Hannich et al., 2020), allows 
to propose human WAT as an important reservoir and a source of potentially toxic deoxyCer.  

SphigadienineCer represented another abundant Cer subclass in human WAT (Figure 5). In 
comparison to “classical” Cer, sphigadienineCer contain one more double bound at the position 
Δ14Z (SPB 18:2;O2). Previously, SPB 18:2;O2 Cer were shown to reflect metabolic fitness 
due to inverse association with homeostatic model assessment for insulin resistance, BMI and 
incidence of cardiovascular events (Chew et al., 2019; Othman et al., 2015). Although the 
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existence of SPB 18:2;O2 is long known, the enzyme (fatty acid desaturase 3; FADS3), 
responsible for the introduction of Δ14Z double bond, was discovered only recently (Karsai et 
al., 2020). According to gene expression data from GTEx portal (https://gtexportal.org), 
highest FADS3 expression levels were found in peripheral nerve, aorta, and WAT. Gender 
specific expression analysis further unravelled highest expression of FADS3 in female WAT. 
So far sphigadienineCer were not characterized in adipose tissue. Here we report that they 
represent 19% of all Cer subclasses within human WAT (Figure 5A). Moreover, 18:2;O2 Cer 
were elevated in both SAT and VAT obese depots with significant enrichment of this lipid 
class in VAT vs SAT. Importantly, elevated levels of 18:2;O2 Cer represented a specific 
signature of obese WAT showing statistical significance even for the pooled samples utilized 
in this study (Figure 4D). Although depot and phenotype specific increase in sphigadienineCer 
displayed the trend similar to Cer, their fatty acyl chain distribution was somewhat different, 
with a lower portion of FA 18:0 acylated into 18:2;O2 Cer in comparison to 18:1;O2 Cer. Our 
results strongly suggest that sphingadieneCer accumulation is a hallmark of obesity. Previously 
published data showed significant gender-specificity for deoxy- and sphigadienineCer 
subclasses with SPB 18:2;O being more abundant in men and SPB 18:2;O2 Cer in women. 
Interestingly, we observed inverse correlation between those lipid classes in lean and obese 
WAT (Figure 5B), which might be explained by 2/3 prevalence of female WAT donors in our 
sample pools. Further analysis of individual samples based on AdipoAtlas list will provide 
deeper insights in gender and disease specific signatures of ceramide lipids.  

Another emerging class of lipids potentially involved in regulation of cellular and systemic 
lipid homeostasis are etherPL (ePL), including plasmalogens (pPL). Previously, brain and heart 
were identified to be rich in pPL. AdipoAtlas showed that ePC and ePE lipids composed 41% 
of total PC and PE.  Specifically, we demonstrated that PUFA rich ePE (40 pmol/μg protein) 
represented the 4th most abundant lipid class in human WAT, closely following the most 
abundant PC phospholipids (62 pmol/μg protein). We identified depot specific signatures of 
ePL with higher levels of PUFA pPC in SAT, and enrichment of C18 fatty acyl chain 
containing pPE in VAT. Ether lipids, and plasmalogens especially, play a central role in lipid 
quality control, adaptive responses to the change in lipid saturation levels, and maintenance of 
membrane fluidity (Jiménez-Rojo and Riezman, 2019). pPE compose over 20% of inner leaflet 
of plasma membrane (Lorent et al., 2020), making them important players in membrane 
remodelling during adipocyte hypertrophic growth (Pietiläinen et al., 2011). Moreover, levels 
of circulating plasmalogens were inversely associated with hypertension, prediabetes, type 2 
diabetes mellitus, cardiovascular diseases, and obesity (Paul et al., 2019). Interestingly, inverse 
co-regulation of ether lipids and sphingolipids was recently demonstrated, with depletion of 
ePL leading to the Cer accumulation and vice versa (Jiménez-Rojo et al., 2020). AdipoAtlas 
provides an inventory of ePL molecular species including resolved diacyl-, alkyl- and alkenyl-
PL which can be used as a resource for close, targeted follow up of this inverse correlation in 
larger sample cohorts.  

Overall, deep lipidomic profiling allowed to reconstruct human WAT reference lipidome. 
AdipoAtlas provides an inventory of over 1600 lipid molecular species from 23 lipid 
(sub)classes fortified by their semi-quantitative values in two WAT depots (subcutaneous and 
visceral) from lean and obese individuals. That allowed us to demonstrate an amazing diversity 
of adipose tissue lipids together with assessment of their quantities between and within lipid 
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classes. Several important lipid signatures characteristic for obesity were discovered or 
reproduced pointing out qualitative and quantitative accuracy of the applied methodology. 
With AdipoAtlas freely available for all researchers interested in WAT biology, it can be 
further used to design human WAT-specific high-throughput experiments targeting 
quantification of any given lipid (sub)class in large sample cohorts. Moreover, AdipoAtlas will 
provide so far missing scaffold for systems biology integration of lipidomics data via 
reconstruction of lipid-centric genome scale metabolic models, linking big omics data with 
identification of disease characteristic metabolic and signaling pathways.  

 

Acknowledgments 
Financial support from the German Federal Ministry of Education and Research (BMBF) 
within the framework of the e:Med research and funding concept for SysMedOS project (to 
MF) are gratefully acknowledged. We thank Prof. Ralf Hoffmann (Institute of Bioanalytical 
Chemistry, University of Leipzig) for providing access to his laboratory. 
 
Author Contributions 
MF conceived the project, guided the research, assisted with the experiments and data 
interpretation, and wrote the manuscript. ML designed and performed most of the experiments, 
analyzed and interpreted data, wrote the manuscript. GA performed lipid identification 
including manual annotation and retention time mapping. ZN performed lipid identification, 
dataset merging, prepared the illustrations. AC performed parts of the LC-MS/MS experiments. 
JS assisted with 31P NMR and analysis of lipids from TLC plates. MB provided human WAT 
samples. All authors edited and approved the manuscript.  
  
Conflict of interests 
MB received honoraria as a consultant and speaker from Amgen, AstraZeneca, Bayer, 
Boehringer-Ingelheim, Lilly, Novo Nordisk, Novartis and Sanofi. All other authors declare no 
conflict of interests. 
 
References 
Alves, M.A., Lamichhane, S., Dickens, A., McGlinchey, A., Ribeiro, H.C., Sen, P., Wei, F., Hyötyläinen, T., 
and Orešič, M. (2021). Systems biology approaches to study lipidomes in health and disease. Biochim. Biophys. 
Acta - Mol. Cell Biol. Lipids 1866, 158857. 

Barchuk, M., Dutour, A., Ancel, P., Svilar, L., Miksztowicz, V., Lopez, G., Rubio, M., Schreier, L., Nogueira, 
J.P., Valéro, R., et al. (2020). Untargeted lipidomics reveals a specific enrichment in plasmalogens in epicardial 
adipose tissue and a specific signature in coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 40, 986–
1000. 

Beyene, H.B., Olshansky, G., Smith, A.A.T., Giles, C., Huynh, K., Cinel, M., Mellett, N.A., Cadby, G., Hung, 
J., Hui, J., et al. (2020). High-coverage plasma lipidomics reveals novel sex-specific lipidomic fingerprints of 
age and BMI: Evidence from two large population cohort studies. PLoS Biol. 18. 

Blüher, M. (2019). Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15, 288–298. 

Bowden, J.A., Heckert, A., Ulmer, C.Z., Jones, C.M., Koelmel, J.P., Abdullah, L., Ahonen, L., Alnouti, Y., 
Armando, A.M., Asara, J.M., et al. (2017). Harmonizing lipidomics: NIST interlaboratory comparison exercise 
for lipidomics using SRM 1950-Metabolites in frozen human plasma. J. Lipid Res. 58, 2275–2288. 

Brunk, E., Sahoo, S., Zielinski, D.C., Altunkaya, A., Dräger, A., Mih, N., Gatto, F., Nilsson, A., Preciat 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427444
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gonzalez, G.A., Aurich, M.K., et al. (2018). Recon3D enables a three-dimensional view of gene variation in 
human metabolism. Nat. Biotechnol. 36, 272–281. 

Burla, B., Arita, M., Arita, M., Bendt, A.K., Cazenave-Gassiot, A., Dennis, E.A., Ekroos, K., Han, X., Ikeda, K., 
Liebisch, G., et al. (2018). MS-based lipidomics of human blood plasma: A community-initiated position paper 
to develop accepted guidelines. J. Lipid Res. 59, 2001–2017. 

Cao, H., Gerhold, K., Mayers, J.R., Wiest, M.M., Watkins, S.M., and Hotamisligil, G.S. (2008). Identification 
of a Lipokine, a Lipid Hormone Linking Adipose Tissue to Systemic Metabolism. Cell 134, 933–944. 

Chaurasia, B., Kaddai, V.A., Lancaster, G.I., Henstridge, D.C., Sriram, S., Galam, D.L.A., Gopalan, V., 
Prakash, K.N.B., Velan, S.S., Bulchand, S., et al. (2016). Adipocyte Ceramides Regulate Subcutaneous Adipose 
Browning, Inflammation, and Metabolism. Cell Metab. 24, 820–834. 

Chaurasia, B., Tippetts, T.S., Monibas, R.M., Liu, J., Li, Y., Wang, L., Wilkerson, J.L., Rufus Sweeney, C., 
Pereira, R.F., Sumida, D.H., et al. (2019). Targeting a ceramide double bond improves insulin resistance and 
hepatic steatosis. Science (80-. ). 365, 386–392. 

Chew, W.S., Torta, F., Ji, S., Choi, H., Begum, H., Sim, X., Khoo, C.M., Khoo, E.Y.H., Ong, W.Y., Van Dam, 
R.M., et al. (2019). Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM 
incidence. JCI Insight 4. 

Choromańska, B., Myśliwiec, P., Razak Hady, H., Dadan, J., Myśliwiec, H., Chabowski, A., and Mikłosz, A. 
(2019). Metabolic Syndrome is Associated with Ceramide Accumulation in Visceral Adipose Tissue of Women 
with Morbid Obesity. Obesity 27, 444–453. 

Correnti, J.M., Juskeviciute, E., Swarup, A., and Hoek, J.B. (2014). Pharmacological ceramide reduction 
alleviates alcohol-induced steatosis and hepatomegaly in adiponectin knockout mice. Am. J. Physiol. - 
Gastrointest. Liver Physiol. 306. 

Criscuolo, A., Zeller, M., Cook, K., Angelidou, G., and Fedorova, M. (2019). Rational selection of reverse 
phase columns for high throughput LC–MS lipidomics. Chem. Phys. Lipids 221, 120–127. 

Duan, J., and Merrill, A.H. (2015). 1-deoxysphingolipids encountered exogenously and made de novo: 
Dangerous mysteries inside an enigma. J. Biol. Chem. 290, 15380–15389. 

Frayn, K.N., Arner, P., and Yki-Järvinen, H. (2006). Fatty acid metabolism in adipose tissue, muscle and liver in 
health and disease. Essays Biochem. 42, 89–103. 

Furse, S., Fernandez-Twinn, D.S., Jenkins, B., Meek, C.L., Williams, H.E.L., Smith, G.C.S., Charnock-Jones, 
D.S., Ozanne, S.E., and Koulman, A. (2020). A high-throughput platform for detailed lipidomic analysis of a 
range of mouse and human tissues. Anal. Bioanal. Chem. 412, 2851–2862. 

Glaros, E.N., Kim, W.S., Quinn, C.M., Jessup, W., Rye, K.A., and Garner, B. (2008). Myriocin slows the 
progression of established atherosclerotic lesions in apolipoprotein E gene knockout mice. J. Lipid Res. 49, 
324–331. 

Gómez-Serrano, M., Camafeita, E., García-Santos, E., López, J.A., Rubio, M.A., Sánchez-Pernaute, A., Torres, 
A., Vázquez, J., and Peral, B. (2016). Proteome-wide alterations on adipose tissue from obese patients as age-, 
diabetes- and gender-specific hallmarks. Sci. Rep. 6. 

Goracci, L., Tortorella, S., Tiberi, P., Pellegrino, R.M., Di Veroli, A., Valeri, A., and Cruciani, G. (2017). 
Lipostar, a Comprehensive Platform-Neutral Cheminformatics Tool for Lipidomics. Anal. Chem. 89, 6257–
6264. 

Haffa, M., Holowatyj, A.N., Kratz, M., Toth, R., Benner, A., Gigic, B., Habermann, N., Schrotz-King, P., 
Böhm, J., Brenner, H., et al. (2019). Transcriptome Profiling of Adipose Tissue Reveals Depot-Specific 
Metabolic Alterations among Patients with Colorectal Cancer. J. Clin. Endocrinol. Metab. 104, 5225–5237. 

Hannich, J.T., Loizides‐Mangold, U., Sinturel, F., Harayama, T., Vandereycken, B., Saini, C., Gosselin, P., 
Brulhart‐Meynet, M., Robert, M., Chanon, S., et al. (2020). Ether lipids, sphingolipids, and toxic 1‐
deoxyceramides as hallmarks for lean and obese type 2 diabetic patients. Acta Physiol. 

Holland, W.L., Brozinick, J.T., Wang, L.P., Hawkins, E.D., Sargent, K.M., Liu, Y., Narra, K., Hoehn, K.L., 
Knotts, T.A., Siesky, A., et al. (2007). Inhibition of Ceramide Synthesis Ameliorates Glucocorticoid-, Saturated-
Fat-, and Obesity-Induced Insulin Resistance. Cell Metab. 5, 167–179. 

Huynh, K., Barlow, C.K., Jayawardana, K.S., Weir, J.M., Mellett, N.A., Cinel, M., Magliano, D.J., Shaw, J.E., 
Drew, B.G., and Meikle, P.J. (2019). High-Throughput Plasma Lipidomics: Detailed Mapping of the 
Associations with Cardiometabolic Risk Factors. Cell Chem. Biol. 26, 71-84.e4. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427444
http://creativecommons.org/licenses/by-nc-nd/4.0/


Iverson, S.J., Lang, S.L.C., and Cooper, M.H. (2001). Comparison of the bligh and dyer and folch methods for 
total lipid determination in a broad range of marine tissue. Lipids 36, 1283–1287. 

Jiménez-Rojo, N., and Riezman, H. (2019). On the road to unraveling the molecular functions of ether lipids. 
FEBS Lett. 593, 2378–2389. 

Jiménez-Rojo, N., Leonetti, M.D., Zoni, V., Colom, A., Feng, S., Iyengar, N.R., Matile, S., Roux, A., Vanni, S., 
Weissman, J.S., et al. (2020). Conserved Functions of Ether Lipids and Sphingolipids in the Early Secretory 
Pathway. Curr. Biol. 30, 3775-3787.e7. 

Karsai, G., Lone, M., Kutalik, Z., Thomas Brenna, J., Li, H., Pan, D., von Eckardstein, A., and Thorsten 
Hornemann, X. (2020). FADS3 is a Δ14Z sphingoid base desaturase that contributes to gender differences in the 
human plasma sphingolipidome. J. Biol. Chem. 295, 1889–1897. 

Kolak, M., Westerbacka, J., Velagapudi, V.R., Wågsäter, D., Yetukuri, L., Makkonen, J., Rissanen, A., 
Häkkinen, A.M., Lindell, M., Bergholm, R., et al. (2007). Adipose tissue inflammation and increased ceramide 
content characterize subjects with high liver fat content independent of obesity. Diabetes 56, 1960–1968. 

Liebisch, G., Ahrends, R., Arita, M., Arita, M., Bowden, J.A., Ejsing, C.S., Griffiths, W.J., Holčapek, M., 
Köfeler, H., Mitchell, T.W., et al. (2019). Lipidomics needs more standardization. Nat. Metab. 1, 745–747. 

Liesenfeld, D.B., Grapov, D., Fahrmann, J.F., Salou, M., Scherer, D., Toth, R., Habermann, N., Böhm, J., 
Schrotz-King, P., Gigic, B., et al. (2015). Metabolomics and transcriptomics identify pathway differences 
between visceral and subcutaneous adipose tissue in colorectal cancer patients: The ColoCare study. Am. J. 
Clin. Nutr. 102, 433–443. 

Lopaschuk, G.D., Belke, D.D., Gamble, J., Toshiyuki, I., and Schönekess, B.O. (1994). Regulation of fatty acid 
oxidation in the mammalian heart in health and disease. Biochim. Biophys. Acta (BBA)/Lipids Lipid Metab. 
1213, 263–276. 

Lorent, J.H., Levental, K.R., Ganesan, L., Rivera-Longsworth, G., Sezgin, E., Doktorova, M., Lyman, E., and 
Levental, I. (2020). Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. 
Chem. Biol. 16, 644–652. 

Martínez, J.A., Milagro, F.I., Claycombe, K.J., and Schalinske, K.L. (2014). Epigenetics in adipose tissue, 
obesity, weight loss, and diabetes. Adv. Nutr. 5, 71–81. 

Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A., and Schwudke, D. (2008). Lipid extraction by 
methyl-terf-butyl ether for high-throughput lipidomics. In Journal of Lipid Research, (J Lipid Res), pp. 1137–
1146. 

Newgard, C.B. (2012). Interplay between lipids and branched-chain amino acids in development of insulin 
resistance. Cell Metab. 15, 606–614. 

Newgard, C.B., An, J., Bain, J.R., Muehlbauer, M.J., Stevens, R.D., Lien, L.F., Haqq, A.M., Shah, S.H., Arlotto, 
M., Slentz, C.A., et al. (2009). A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates 
Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metab. 9, 311–326. 

Ni, Z., Angelidou, G., Lange, M., Hoffmann, R., and Fedorova, M. (2017). LipidHunter Identifies 
Phospholipids by High-Throughput Processing of LC-MS and Shotgun Lipidomics Datasets. Anal. Chem. 89, 
8800–8807. 

Noronha, A., Modamio, J., Jarosz, Y., Guerard, E., Sompairac, N., Preciat, G., Daníelsdóttir, A.D., Krecke, M., 
Merten, D., Haraldsdóttir, H.S., et al. (2019). The Virtual Metabolic Human database: Integrating human and 
gut microbiome metabolism with nutrition and disease. Nucleic Acids Res. 47, D614–D624. 

Othman, A., Rütti, M.F., Ernst, D., Saely, C.H., Rein, P., Drexel, H., Porretta-Serapiglia, C., Lauria, G., 
Bianchi, R., Von Eckardstein, A., et al. (2012). Plasma deoxysphingolipids: A novel class of biomarkers for the 
metabolic syndrome? Diabetologia 55, 421–431. 

Othman, A., Saely, C.H., Muendlein, A., Vonbank, A., Drexel, H., von Eckardstein, A., and Hornemann, T. 
(2015). Plasma C20-Sphingolipids predict cardiovascular events independently from conventional 
cardiovascular risk factors in patients undergoing coronary angiography. Atherosclerosis 240, 216–221. 

Paul, S., Lancaster, G.I., and Meikle, P.J. (2019). Plasmalogens: A potential therapeutic target for 
neurodegenerative and cardiometabolic disease. Prog. Lipid Res. 74, 186–195. 

Pietiläinen, K.H., Róg, T., Seppänen-Laakso, T., Virtue, S., Gopalacharyulu, P., Tang, J., Rodriguez-Cuenca, S., 
Maciejewski, A., Naukkarinen, J., Ruskeepää, A.L., et al. (2011). Association of Lipidome remodeling in the 
Adipocyte membrane with acquired obesity in humans. PLoS Biol. 9. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427444
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ramsay, R.R., Gandour, R.D., and Van Der Leij, F.R. (2001). Molecular enzymology of carnitine transfer and 
transport. Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 1546, 21–43. 

Raulerson, C.K., Ko, A., Kidd, J.C., Currin, K.W., Brotman, S.M., Cannon, M.E., Wu, Y., Spracklen, C.N., 
Jackson, A.U., Stringham, H.M., et al. (2019). Adipose Tissue Gene Expression Associations Reveal Hundreds 
of Candidate Genes for Cardiometabolic Traits. Am. J. Hum. Genet. 105, 773–787. 

Schooneman, M.G., Vaz, F.M., Houten, S.M., and Soeters, M.R. (2013). Acylcarnitines: Reflecting or inflicting 
insulin resistance? Diabetes 62, 1–8. 

Seah, J.Y.H., Chew, W.S., Torta, F., Khoo, C.M., Wenk, M.R., Herr, D.R., Choi, H., Tai, E.S., and van Dam, 
R.M. (2020). Plasma sphingolipids and risk of cardiovascular diseases: a large-scale lipidomic analysis. 
Metabolomics 16. 

Skotland, T., and Sandvig, K. (2019). The role of PS 18:0/18:1 in membrane function. Nat. Commun. 10, 1–10. 

Slatter, D.A., Aldrovandi, M., O’Connor, A., Allen, S.M., Brasher, C.J., Murphy, R.C., Mecklemann, S., Ravi, 
S., Darley-Usmar, V., and O’Donnell, V.B. (2016). Mapping the Human Platelet Lipidome Reveals Cytosolic 
Phospholipase A 2 as a Regulator of Mitochondrial Bioenergetics during Activation. Cell Metab. 23, 930–944. 

Sokolowska, E., and Blachnio-Zabielska, A. (2019). The Role of Ceramides in Insulin Resistance. Front. 
Endocrinol. (Lausanne). 10. 

Turpin-Nolan, S.M., and Brüning, J.C. (2020). The role of ceramides in metabolic disorders: when size and 
localization matters. Nat. Rev. Endocrinol. 16, 224–233. 

Turpin, S.M., Nicholls, H.T., Willmes, D.M., Mourier, A., Brodesser, S., Wunderlich, C.M., Mauer, J., Xu, E., 
Hammerschmidt, P., Brönneke, H.S., et al. (2014). Obesity-induced CerS6-dependent C16:0 ceramide 
production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686. 

Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, 
C., Sjöstedt, E., Asplund, A., et al. (2015). Tissue-based map of the human proteome. Science (80-. ). 347. 

Wondmkun, Y.T. (2020). Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic 
implications. Diabetes, Metab. Syndr. Obes. Targets Ther. 13, 3611–3616. 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2021. ; https://doi.org/10.1101/2021.01.20.427444doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.20.427444
http://creativecommons.org/licenses/by-nc-nd/4.0/

