

1 **Mining metagenomes for natural product biosynthetic gene** 2 **clusters: unlocking new potential with ultrafast techniques**

3

4 Emiliano Pereira-Flores¹, Marnix Medema², Pier Luigi Buttigieg³, Peter Meinicke⁴,
5 Frank Oliver Glöckner^{5,6} and Antonio Fernández-Guerra^{7,8}

6

7 1. Interdisciplinary Department of Coastal and Marine Systems, Eastern Regional University Centre, University of the Republic, National
8 Route 9 intersection with Route 15, 27000 Rocha, Uruguay

9 2. Bioinformatics Group, Wageningen University, Droevedaalsesteeg 1, 6708 PB Wageningen, The Netherlands

10 3. Helmholtz Metadata Collaboration, GEOMAR Helmholtz Centre for Ocean Research, Wischhofstr. 1-3, 24148 Kiel, Germany

11 4. Department of Bioinformatics, Institute for Microbiology and Genetics, Goettingen University, Goldschmidtstr. 1, 37077 Goettingen,
12 Germany

13 5. Computing and Data Center, Alfred Wegener Institute - Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570
14 Bremerhaven, Germany

15 6. MARUM - Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, D-28359 Bremen, Germany

16 7. Lundbeck GeoGenetics Centre, The Globe Institute, University of Copenhagen, Oester Voldgade 5-7, 1350 Copenhagen, Denmark

17 8. Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen,
18 Germany

19

20 **Microorganisms produce an immense variety of natural products through**
21 **the expression of Biosynthetic Gene Clusters (BGCs): physically clustered**
22 **genes that encode the enzymes of a specialized metabolic pathway. These**
23 **natural products cover a wide range of chemical classes (e.g.,**
24 **aminoglycosides, lantibiotics, nonribosomal peptides, oligosaccharides,**
25 **polyketides, terpenes) that are highly valuable for industrial and medical**
26 **applications¹. Metagenomics, as a culture-independent approach, has**
27 **greatly enhanced our ability to survey the functional potential of**
28 **microorganisms and is growing in popularity for the mining of BGCs.**
29 **However, to effectively exploit metagenomic data to this end, it will be**
30 **crucial to more efficiently identify these genomic elements in highly**
31 **complex and ever-increasing volumes of data². Here, we address this**
32 **challenge by developing the ultrafast Biosynthetic Gene cluster**
33 **MEtagenomic eXploration toolbox (BiG-MEx). BiG-MEx rapidly identifies a**
34 **broad range of BGC protein domains, assess their diversity and novelty,**
35 **and predicts the abundance profile of natural product BGC classes in**
36 **metagenomic data. We show the advantages of BiG-MEx compared to**

37 **standard BGC-mining approaches, and use it to explore the BGC domain**
38 **and class composition of samples in the TARA Oceans³ and Human**
39 **Microbiome Project datasets⁴. In these analyses, we demonstrate BiG-**
40 **MEx's applicability to study the distribution, diversity, and ecological roles**
41 **of BGCs in metagenomic data, and guide the exploration of natural**
42 **products with clinical applications.**

43

44 Metagenomics offers unique opportunities to mine natural product BGCs in
45 diverse microbial assemblages from a wide range of environments⁵⁻⁷. However,
46 given the complexity of microbial communities found in nature, and the limitations
47 of current sequencing technologies, often only a very small fraction of the short-
48 read sequence data can be assembled in contigs long enough to allow the
49 identification of BGC classes. However, the annotation of individual protein
50 domains of BGCs, is much more straightforward, given that these have
51 comparable length to merged paired-end reads. There are several protein
52 domains known to play important functions in the BGC-encoded enzymes.
53 Specific domains or combinations thereof are commonly found in certain types of
54 BGC classes. Accordingly, these are used for the automatic identification of BGC
55 classes in genome sequences⁸⁻¹⁰ and to study the distribution and diversity of
56 particular BGC classes in the environment^{6,7,11-13}. Although there are various BGC
57 mining tools with practical applications¹⁴, only the Natural Product Domain
58 Seeker (NaPDoS)¹¹ and the environmental Surveyor of Natural Product Diversity
59 (eSNaPD¹⁵) are dedicated to the study of BGC domains. Both of these tools
60 focus on nonribosomal peptides and polyketide synthases (NRPSs and PKSs,
61 respectively), and take assembled or amplicon data as input. Currently, there is
62 no technology available capable of efficiently exploiting raw metagenomic data to
63 study the composition and diversity of natural product BGC classes and domains
64 in the environment.

65

66 Capitalizing on the fact that BGC domains can be readily annotated in
67 unassembled metagenomic data, and used to identify the different natural

68 product BGC classes, we developed BiG-MEx. This tool generates ultrafast BGC
69 domain annotations in short-read sequence data and applies a machine-learning
70 approach to predict the BGC class coverage-based abundances (for simplicity,
71 we will refer to these as BGC class abundance profiles). Additionally, the
72 identified domain sequences are used to carry out a domain-based diversity
73 analysis. This allows BiG-MEx both to deeply exploit metagenomic data, and to
74 adapt to their ever-increasing volume. BiG-MEx consists of three interacting
75 modules that are described below and illustrated in Fig. 1:

76 1. **BGC domain identification module.** We use the Ultrafast Protein domain
77 Classification UProC¹⁶ tool to identify BGC protein domains in short-read
78 sequence data. For this purpose, we created an UProC database, which
79 includes 150 BGC domains covering 44 BGC classes.

80 2. **BGC domain-based diversity analysis.** This module performs a domain-
81 targeted assembly, clusters the assembled domain sequences to create
82 Operational Domain Units (ODUs)¹⁷ and computes the ODU alpha diversity.
83 Further, assembled domain sequences are placed onto reference
84 phylogenetic trees. The module includes pre-computed phylogenies for 48
85 BGC domains. These were selected based on domain sequences from
86 experimentally characterized biosynthetic gene clusters with enough
87 sequence information for phylogenetic analysis.

88 3. **BGC class abundance prediction module.** We created machine-learning
89 models that predict the abundance of BGC classes based on the domain
90 annotation. The models are class-specific and consist of a random forest (RF)
91 classifier to predict the presence/absence of a BGC class, and a multiple
92 linear regression (MLR) to predict its abundance. These models can be
93 customised to target metagenomic and genomic data from different
94 environments and taxa, respectively.

95
96 To evaluate the performance of BiG-MEx, we first assessed how the UProC-
97 based domain identification used in BiG-MEx improves the data processing
98 speed compared to HMMER¹⁸ (i.e., the traditional approach for domain

99 annotation) for the annotation of the 150 BGC domains. This comparison showed
100 that UProC was on average 18 times faster than HMMER (Supplementary Fig.
101 1a). We then evaluated the accuracy of BiG-MEx Operational Domain Unit
102 (ODU) diversity estimation approach. We used BiG-MEx to compute the ODU
103 diversity of the NRPS adenylation (AMP-binding) and condensation domains, as
104 well as the PKS ketosynthase (PKS_KS) and acyltransferase (PKS_AT) domains
105 in a simulated metagenomic dataset (Marine-TM dataset; see Materials and
106 Methods section 3). Additionally, we computed the ODU diversity of these
107 domains based on the domain sequences obtained from the genome sequences
108 used to simulate the Marine-TM metagenomes. The latter estimates (henceforth,
109 the reference estimates) were assumed to accurately reflect the ODU diversity,
110 as they were computed using the complete domain sequences. We compared
111 BiG-MEx ODU diversity estimates against the reference ODU diversity and
112 observed that these were highly correlated: PKS_KS domains had a Pearson's r
113 of 0.77, while for the other domains the Pearson's r was greater than 0.9
114 (Supplementary Fig. 1b). Lastly, we evaluated BiG-MEx's BGC class abundance
115 prediction module. We point out that although we modelled the abundance of a
116 few BGC subclasses, we refer to all as BGC classes. For this analysis, we used
117 two different simulated metagenomic datasets, one for training and the other for
118 testing the BGC class abundance models (Marine-RM and Marine-TM,
119 respectively) (see Supplementary Table 1). We predicted the BGC class
120 abundances in the Marine-TM metagenomes, using BiG-MEx BGC class
121 abundance prediction module, and additionally, computed the BGC class
122 abundances based on the complete genome sequences used to simulate the
123 Marine-TM metagenomes. Similarly as indicated previously, the latter
124 abundances were taken as a reference to evaluate the accuracy of the
125 predictions. We observed that the predicted vs. reference abundance
126 comparison for 20 of the 23 BGC classes we modelled (i.e., the total number of
127 classes detected in the Marine-RM training dataset) had a Pearson's r correlation
128 coefficient greater than 0.5 and a median unsigned error (MUE) lower than 0.25
129 (Supplementary Fig. 2). Figure 2a displays the scatter plots of this comparison for

130 the NRPS, terpene, and type I and II PKS BGC classes. To benchmark BiG-MEx
131 BGC class abundance prediction module, we compared its abundance
132 predictions against the abundance estimates derived from running antiSMASH
133 on assemblies of the Marine-TM metagenomes (hereafter referred to as the
134 “assembly approach”). The plots in Figure 2b display the Pearson correlation
135 coefficients and the unsigned error distributions with respect to the reference
136 abundances comparing both approaches for the same four BGC classes
137 mentioned above. All BGC class abundance models included in this analysis
138 were considerably more accurate than the assembly approach (Supplementary
139 Fig. 3).

140

141 To illustrate the application of BiG-MEx, we performed a Principal Coordinates
142 Analysis (PCoA) based on BiG-MEx-derived BGC class abundance profiles of
143 the 139 prokaryotic metagenomes of TARA Oceans. In Figure 3a, we ordinate
144 the first two axes of the PCoA. The first axis (PCo1; 73.5% of the total variance)
145 differentiated the mesopelagic (MES) from the surface (SRF) and deep
146 chlorophyll maximum (DCM) water layers (Wilcoxon rank sum test; all p-values <
147 0.0001; see Supplementary Table 2). Further, the ordination values of the
148 metagenomes along the PCo1 axis correlated with temperature (Pearson’s $r = -$
149 0.73; p-value < 0.0001). The differences in the BGC class composition between
150 water layers were additionally confirmed with a Permutational Multivariate
151 Analysis of Variance (PERMANOVA) (see Supplementary Table 3). We also
152 performed a PCoA to explore the BGC domain composition and obtained a
153 similar ordination of the metagenomes (Supplementary Fig. 4). These results are
154 in agreement with previous work showing the stratification of microbial
155 communities along depth and temperature gradients^{19,20}. In particular, a very
156 similar differentiation of the MES water layer along the first axis was also
157 observed in the PCoA performed by Sunagawa et al.,¹⁹ based on the 16S _{mt}tag
158 (i.e., 16S ribosomal RNA gene tags²¹) composition of these same TARA Ocean
159 metagenomes.

160

161 Next, we used BiG-MEx domain-based diversity module to compare the
162 Operational Domain Unit (ODU) diversity of the NRPS adenylation (AMP-binding)
163 and condensation domains between the SRF, DCM and MES water layers.
164 These domains provide information about the chemical characteristics of the
165 peptides synthesized by NRPS enzymes. AMP-binding domains recruit the
166 amino acid monomers to be incorporated, while condensation domains catalyse
167 the peptide bond formation^{22,23}. In this analysis, we aimed to assess the potential
168 chemical diversity of the NRPS products. NRPSs are one of the most studied
169 BGC classes and are responsible for the production of many compounds with
170 clinical applications. The results show that the ODU diversity of both domains
171 increased from the surface to the mesopelagic water layers and differentiated
172 significantly between water layers (pairwise Wilcoxon rank sum test; all p-values
173 < 0.005; see Supplementary Table 2) (Fig. 3b). These results indicate that the
174 microbial communities inhabiting deeper water layers contain a significantly
175 higher diversity of NRPS products. The ODU diversity gradients resemble the
176 Operational Taxonomic Unit (OTU) richness and functional diversity distributions
177 shown in Sunagawa et al. We found highly significant correlations between the
178 ODU diversity estimates and the taxonomic and functional richness and diversity
179 obtained by Sunagawa et al. (see Supplementary Table 4).

180
181 To exemplify a more fine-grained analysis with BiG-MEx's domain-based
182 diversity module, we explored the ODU diversity of condensation domains in the
183 three TARA Oceans metagenomes obtained from the SRF, DCM, and MES
184 water layers at the sampling station TARA_085 (Antarctic Ocean). As observed
185 previously, the metagenome from the MES water layer had a higher ODU
186 diversity (Fig. 4a). It contains many low abundance ODUs scattered throughout
187 the reference phylogeny (Fig. 4b). The phylogenetic diversity²⁴ (PD) of ODU
188 representative sequences of the MES metagenome, was 5.24 and 2.65 times
189 greater than the PD estimates of the SRF and DCM metagenomes, respectively.
190 Besides indicating a higher chemical diversity, this result indicates that there is
191 greater potential chemical novelty of nonribosomal peptides. Additionally, the

192 phylogenetic placement analysis revealed that the most abundant condensation
193 ODU is placed close to the reference condensation domain sequences of NRPSs
194 that produce albicidin and cystobactamide antibiotics (both topoisomerase
195 inhibitors) (Fig. 4c). As albicidin is also a phytotoxin, the dominance of such
196 ODU, which originates from the DCM layer, could be explained by the presence
197 of a large number of NRPSs that act on the photosynthetic organisms that
198 concentrate therein. The DCM layer had a notably higher chlorophyll
199 concentration than the other two layers (0.01, 0.28, and 0 mg/m³ for the SRF,
200 DCM, and MES respectively). The NRPS producing albicidin belongs to the class
201 *Gammaproteobacteria* and order *Xanthomonadales*. This is in agreement with
202 the ODU taxonomic affiliation, which was annotated as a *Gammaproteobacteria*
203 (lowest common ancestor). This finding is also supported by the fact that the
204 BLASTP search against the reference MIBiG database, showed that
205 condensation domains significantly similar to NRPS domains producing albicidin
206 (e-value < 1e-5), where only found in the DCM layer. We cannot exclude other
207 possible explanations of these results; however, this line of exploration might be
208 worth considering for further research. Rising ocean temperatures, as a
209 consequence of global warming, are predicted to increase the frequency of
210 events of bacteria affecting the algae populations, which in turn can impact
211 marine ecosystems on a global scale²⁵. Regarding potential biotechnological
212 applications, these results are relevant for bioprospecting, given that albicidin
213 and cystobactamide are antibiotics of interest for clinical treatments^{26,27}.

214 We note that neither the TARA Oceans Metagenomes Assembled Genomes
215 (MAGs)²⁸, nor the DCM assembled metagenome from TARA_085 sampling site,
216 contained albicidin or cystobactamide NRPS-like sequences. The difference
217 between our findings in comparison to standard approaches based on
218 assembled data was expected to occur, given the limitations of the latter to
219 identify BGC classes (as shown in Fig. 2). In Supplementary Figure 5, we
220 illustrate this problem by comparing the sequence length between MIBiG BGCs,
221 and the TARA Oceans MAGs, and assembled metagenomic contigs.

222

223 Considering the relevance of human microbiome-derived natural product BGCs
224 in medical research, we demonstrate the applicability of BiG-MEx to explore the
225 BGC composition in the Human Microbiome Project (HMP) dataset. Our analyses
226 traversed metagenomes from the buccal mucosa, tongue dorsum, and
227 supragingival plaque body sites as well as stool samples (491 metagenomes in
228 total). We used BiG-MEx to compute the BGC domain and class abundance
229 profiles, and applied the same methodology as described for TARA Oceans, to
230 compute the domain and class-based PCoAs. In agreement with previous
231 analyses based on the taxonomic and functional annotation^{4,29}, we observed that
232 metagenomes grouped according to the body site they were sampled from in the
233 first two ordination axes (Supplementary Fig. 6a and b). We conducted a
234 PERMANOVA to test and assess the strength of the differences between body
235 sites according to their BGC class composition, which showed significant
236 differences in all body site comparisons (Supplementary Table 5). Additionally,
237 we used BiG-MEx to compare the ODU diversity of the AMP-binding and
238 condensation domains between body sites and observed that supragingival
239 plaque metagenomes contain significantly higher diversity than the other body
240 sites (pairwise Wilcoxon rank sum test; p-value < 0.0001) (Supplementary Figure
241 7 and Supplementary Table 6). This is in line with previous work showing that the
242 supragingival plaque is one of the most functionally and taxonomically diverse
243 body sites in the HMP dataset⁴.

244
245 Besides the mining analyses, BiG-MEx BGC class profiling can be used for the
246 screening and prioritization of (meta)genomic samples. BGC class abundance
247 profiles derived from shallow sequencing depth (meta)genomic data can be used
248 for the identification of strains or environments with high biosynthetic potential,
249 before investing in deep sequencing or long read sequencing technologies. As a
250 proof-of-concept for this application, in Supplementary Fig. 8 we show a
251 comparison of the BGC class abundance predictions computed in metagenomes
252 of 100 and 5 million reads.

253 In our example applications, we processed 630 metagenomes, which sum to
254 more than 85 billion paired-end reads. The analyses showed that BiG-MEx
255 ultrafast domain and class profiling, and ODU diversity estimates provide
256 biologically meaningful information, which can be used to mine BGCs in
257 metagenomic data and as a basis from which to assess the ecological roles of
258 their products in specific environments.

259 BiG-MEx extends BGC-based research and exploitation into large environmental
260 datasets. It can be used to study the biogeography, distribution, and diversity of
261 natural product BGCs either at the class, domain or ODU levels. Such analyses
262 have the potential to accelerate the discovery of new bioactive products.

263

264 **Materials and Methods**

265 **1. Data acquisition, pre-processing and annotation**

266 We retrieved the 139 prokaryotic metagenomes of the TARA Oceans dataset
267 from the European Nucleotide Archive³⁰ (ENA:PRJEB1787, filter size: 0.22-1.6
268 and 0.22-3). To pre-process the metagenomic short-read data, we clipped the
269 adapter sequences (obtained from Shinichi Sunagawa personal communication,
270 July 21, 2015) using the BBDuk tool from the BBMap 35.00 suite
271 (<https://sourceforge.net/projects/bbmap/>) with a maximum Hamming distance of
272 one (hdist=1). We then merged the paired-end reads using VSEARCH 2.3.4³¹,
273 quality trimmed all reads at Q20 and filtered out sequences shorter than 45bp
274 using BBDuk, and de-replicated the resulting quality-controlled sequences with
275 VSEARCH. We annotated the BGC domains by first predicting the Open Reading
276 Frames (ORFs) in the pre-processed data with FragGeneScan-plus³² and then
277 running BiG-MEx on the predicted ORF's amino acid sequences.

278 We downloaded 491 human microbiome metagenomes from the Data Analysis
279 and Coordination Center (DACC) for the Human Microbiome Project (HMP)
280 (<https://www.hmpdacc.org/hmp/HMASMI>). Our dataset included the
281 metagenomes of the supragingival plaque (118), tongue dorsum (128), buccal
282 mucosa (107), and the stool (138) body sites. These metagenomes have been
283 already pre-processed as described in The Human Microbiome Project

284 Consortium 2012³³. The additional pre-processing tasks we performed consisted
285 of merging the metagenomic reads with VSEARCH, quality trimming all reads at
286 Q20 and filtering out sequences shorter than 45 bp with BBduk. To annotate the
287 BGC domains, we predicted the ORFs with FragGeneScan-plus and ran BiG-
288 MEx BGC domain identification module on the ORF's amino acid sequences
289 (Supplementary Table 7).

290

291 **2. Exploratory analysis performed on TARA Oceans and HMP datasets**

292 The domain abundance profiles of the TARA Oceans and HMP metagenomes
293 were used to predict the BGC class abundance profiles with BiG-MEx BGC class
294 abundance prediction module. The models used to generate the predictions for
295 the TARA Oceans, and the oral and stool HMP metagenomes, were trained with
296 the Marine-RM, Human-Oral and Human-Stool simulated metagenomic datasets,
297 respectively. For each dataset, we performed a Principal Coordinate Analysis
298 (PCoA) as follows: 1) We applied a total sum scaling standardization to both the
299 domain and class abundance matrices; 2) We used the standardized matrices to
300 compute the domain and class Bray-Curtis dissimilarity matrices; 3) We
301 performed the PCoAs on the dissimilarity matrices with vegan R package utilizing
302 the function capscale³⁴.

303 We applied a Permutational Multivariate Analysis of Variance (PERMANOVA)³⁵
304 to quantify the strength and test the differences between water layers and body
305 sites according to their BGC class composition. For these analyses, we selected
306 a balanced subset of metagenomes from the TARA Oceans and HMP datasets
307 (63 and 216 metagenomes, respectively; see below). We performed a
308 PERMANOVA on the Bray-Curtis dissimilarity matrix, computed for the TARA
309 Oceans and HMP metagenome subsets as described above, to test the
310 differentiation between all groups simultaneously. Subsequently, we tested each
311 pair of groups independently, applying the Bonferroni correction for multiple
312 comparisons. To perform the PERMANOVA, we employed the adonis function of
313 the vegan R package, with the permutation parameter set to 999.

314

315 To compare the domain ODU diversity of the NRPS adenylation (AMP-binding)
316 and condensation domains between the surface (SRF), deep chlorophyll
317 maximum (CDM) and mesopelagic (MES) water layers, we used a subset of 63
318 TARA Oceans metagenomes, representing the three water layers in 21 sampling
319 stations. We computed the ODU Shannon diversity in these metagenomes, using
320 routines implemented in the BiG-MEx domain-based diversity module.
321 Additionally, we used the same BiG-MEx module to examine the diversity of the
322 condensation domains in the metagenomes representing the three water layers
323 at sampling station TARA_085. To perform the ODU taxonomy annotation, we
324 used MMseqs2 taxonomy assignment function³⁶ based on UniRef100³⁷
325 sequences (release-2018_08), with the e-value and sensitivity parameters set to
326 0.75 and 0.01, respectively. To compare the AMP-binding and condensation
327 ODU diversity between body sites, we applied a similar approach as described
328 above. We selected a subset of 216 metagenomes, 54 from each of the
329 supragingival plaque, tongue dorsum, buccal mucosa, and stool body sites. This
330 subset includes only the metagenomes obtained from individuals for whom the
331 four body sites were sampled. We applied BiG-MEx domain-based diversity
332 module to compute the ODU Shannon diversity estimates.
333 The Wilcoxon rank-sum tests (two-sided) to assess the significance of the
334 differentiations between metagenomes from different groups (i.e., water layers or
335 body sites), were performed with the wilcox.test function from the R package
336 stats³⁸.
337

338 **3. Data simulation, pre-processing and annotation**

339 **3.1 Construction of simulated metagenomic datasets**

340 We created four simulated metagenomic datasets: Two of these approximate
341 the taxonomic composition found in marine environments (Marine-RM and
342 Marine-TM), and the other two, the taxonomic composition found in the human
343 oral cavity and stool body sites (Human-Oral and Human-Stool, respectively).
344 Each dataset is composed of 150 metagenomes, all of which have a size of
345 two million paired-end reads. To simulate a metagenomic dataset, we first

346 created a dataset of reference genome sequences and the genome
347 abundance profiles to specify the metagenomes' taxonomic composition. That
348 is, we defined a hypothetical microbial community from which a metagenome
349 is simulated by specifying which reference genomes and the number of times
350 each genome occurs in the community.

351 To create the Marine-RM (Marine Reference Microbiome) genome dataset, we
352 downloaded all genomes belonging to the Ocean Microbial Reference Gene
353 Catalogue (OM-RGC)¹⁹ having an assembly status of "Complete genome"
354 from RefSeq³⁹ (on December 7th, 2017). If a given species did not have a
355 complete genome sequence available, we randomly selected another species
356 of the same genus. In total, we obtained 378 genomes corresponding to 363
357 species.

358 We applied a similar methodology to create the Marine-TM (Marine TARA
359 Microbiome) genome dataset. To determine the taxonomic composition, we
360 used the genus affiliation of TARA Oceans Operational Taxonomic Units
361 (OTUs)¹⁹. We only included 30 shared genera (randomly selected) between
362 TARA OTU and the Marine-TM genome dataset. This latter filtering was
363 necessary to reduce the taxonomic overlap, given that we used the Marine-TM
364 dataset to evaluate the performance of the BGC class abundance models
365 trained with the Marine-RM dataset (see section 4.3). For the remaining
366 genera for which there was at least one representative completely sequenced
367 genome, we downloaded a maximum of three genomes per genus from
368 RefSeq, irrespective of their species affiliation. This resulted in a database
369 composed of 344 genomes from 308 species.

370 To create the genome datasets for the Human-Oral and Human-Stool
371 metagenomic datasets, we used the genomes sequenced by the HMP derived
372 from samples of the oral cavity and stool body sites. Given that few of these
373 genomes were completely sequenced, we also included partially complete
374 sequenced genomes. We downloaded all genomes with an assembly status of
375 "Complete genome" or "Chromosome" or "Scaffold" generated by the HMP
376 from the GenBank database⁴⁰ (on March 15th, 2018). In the cases where a

377 genome (sequenced by the HMP) had an assembly status lower than
378 “Scaffold”, we downloaded another genome with the same species affiliation
379 and an assembly status of “Complete genome” or “Chromosome”. The
380 Human-Oral and Human-Stool reference genome datasets contain 209, and
381 479 genomes representing 140 and 338 species, respectively.

382 To create the community abundance profile of a metagenomic dataset, we
383 randomly selected between 20 and 80 genomes from its genome reference
384 dataset and defined the number of times each genome occurs by sampling
385 from a lognormal distribution with mean 1 and standard deviation of 0.5.
386 Lastly, we simulated the metagenomes with MetaSim v0.9.5⁴¹. MetaSim was
387 set to generate paired-end reads with a length of 101bp, and a substitution
388 rate increasing constantly along each read from 1×10^{-4} to 9.9×10^{-2} . With this
389 data, we aimed to simulate the short-read sequences generated by an Illumina
390 HiSeq 2000 platform.

391 Dataset statistics are shown in Supplementary Table 1. The assembly
392 accessions, organism names, taxids and NCBI FTP paths of the genome
393 sequences used to create the genome databases are found in the
394 Supplementary File 1. The workflow used to create the simulated
395 metagenomic datasets can be found at <https://github.com/pereiramemo/BiG-MEx/wiki/Data-simulation>

396

398 **3.2 Annotation of the simulated metagenomes**

399 To estimate the reference BGC class abundances in a simulated
400 metagenome, we annotated the BGC classes in its reference genome
401 sequences with antiSMASH 3.0, mapped the paired-end reads to the identified
402 BGC sequences with BWA-MEM 0.7.12⁴², and filtered out read alignments
403 with a quality score lower than 10. Next, we removed read duplicates with
404 Picard tools v1.133 (<http://broadinstitute.github.io/picard>), and computed the
405 mean coverage with BEDtools v2.23⁴³. The coverage estimates were assumed
406 to accurately reflect the BGC class coverage-based abundances, as they were
407 computed using complete BGC sequences, obtained from the genome

408 sequences used to simulate the metagenomes. Additionally, we merged the
409 paired-end reads of the simulated metagenomes with VSEARCH 2.3.4,
410 predicted the ORFs with FragGeneScan-plus, and used BiG-MEx domain
411 identification module to annotate the BGC domains in the ORF's amino acid
412 sequences. The workflow to annotate the synthetic metagenomes can be
413 found at <https://github.com/pereiramemo/BiG-MEx/wiki/Data-simulation#7-bgc-domain-annotation>
414

416 **4. Performance evaluation**

417 **4.1 BGC domain identification module**

418 We compared the running time (wall-clock) of UProc (i.e., uproc-prot) against
419 a typical search using hmmsearch from the HMMER3 package¹⁸, for the
420 identification of the 150 BGC domains included in BiG-MEx, in nine prokaryotic
421 metagenomes of the TARA Oceans dataset (Supplementary Table 8). To run
422 hmmsearch, we used the domain HMM profiles of antiSMASH. We annotated
423 the nine metagenomes with both these tools in four independent rounds, each
424 round using a different thread number (i.e., 4, 8, 16 and 32 threads). All
425 parameters of uproc-prot and hmmsearch were set to default. The annotations
426 were carried out on a workstation with Intel(R) Xeon(R) CPU E7-4820 v4
427 2.00GHz processors.

428

429 **4.2 BGC domain-based diversity analysis module**

430 We evaluated BiG-MEx Operation Domain Unit (ODU) diversity estimation
431 approach using NRPS adenylation (AMP-binding) and condensation, and PKS
432 ketosynthase and acyltransferase domains (PKS_KS and PKS_AT,
433 respectively). In this analysis, we used the BGC domain-based diversity
434 analysis module to compute the ODU diversity in the Marine-TM dataset, and
435 compared these estimates with the ODU diversity computed using the
436 complete domain sequences. To obtain the latter ODU diversity, we applied
437 the workflow implemented in BiG-MEx, with the exception that instead of
438 assembling the domain sequences, we extracted these from the complete

439 genome sequences used to simulate the Marine-TM metagenomes. We
440 annotated the four domains in the complete genome sequences with
441 hmmsearch using the antiSMASH HMM profiles.

442

443 **4.3 BGC class abundance predictions**

444 We used the BGC class models trained with the Marine-RM metagenomic
445 dataset to predict the BGC class abundances in the Marine-TM metagenomic
446 dataset. We applied the methodology described in section 3.2 to compute the
447 BGC class abundances in the Marine-TM metagenomes based on the
448 complete genome sequences (i.e., reference abundance). To predict the BGC
449 class abundances using machine-learning models, we annotated the Marine-
450 TM metagenomes with the BiG-MEx domain identification module and used
451 the domain abundance profiles as an input for the BiG-MEx BGC class
452 abundance prediction module. The evaluation consisted of computing the
453 Pearson correlation and median unsigned squared error (MUE) between the
454 predicted and reference BGC class abundances. The MUE was computed as
455 $|\hat{A} - A|/A$, where \hat{A} and A are the predicted and reference abundance,
456 respectively. To benchmark the machine-learning models, we compared the
457 BGC class abundance predictions against the abundance estimates based on
458 the assembly of 50 metagenomes of the Marine-TM dataset (assembly
459 approach). The assembly approach consisted of assembling the
460 metagenomes with MEGAHIT (default parameters), running BiG-MEx domain
461 identification module to select the contigs with potential BGC sequences,
462 annotating the selected contigs with antiSMASH 3.0, and estimating the BGC
463 class abundance following the same approach as described in section 3.2
464 (Supplementary Table 9). We computed the unsigned error, and the Pearson
465 correlation coefficient of BGC class abundance estimates obtained by the
466 assembly approach and predicted by BiG-MEx, with respect to the reference
467 BGC class abundances. The analysis performed to evaluate the accuracy of
468 the models can be reproduced here: https://rawgit.com/pereiramemo/BiG-MEx/master/machine_leaRning/bgcpred_workflow.html

470

471 **4.4 Evaluation of the BGC class abundance predictions in shallow**
472 **metagenomes**

473 We selected 30 merged pre-processed TARA Oceans metagenomes and
474 randomly subsampled these to generate two sets of metagenomes, one with
475 100 million and the other with 5 million reads, using the seqtk v1.0 tool (<https://github.com/lh3/seqtk>). We then annotated the BGC domains and predicted the
476 BGC class abundances in this data using BiG-MEx (as described in sections 1
477 and 2), and compared the BGC class abundance predictions between the two
478 sets of metagenomes.

480

481 **5. BiG-MEx implementation**

482 **5.1 BGC domain identification module**

483 BiG-MEx BGC domain identification module uses the UProC 1.2.0¹⁶ software
484 to classify short-read sequences using BGC domain references. To train
485 UProC for this purpose, we manually curated all amino acid sequences
486 matching 150 antiSMASH hidden Markov model profiles (HMMs)¹⁰. In this
487 task, we removed sequences shorter than 25 amino acids and checked for the
488 presence of overlaps between sequences of different HMM profiles. In
489 addition, we categorized multi-domain proteins into multiple families. For the
490 training process, we included a set of negative control profiles to assess the
491 ratio of false positive hits. Namely, we used the t2fas, fabH, bt1fas, ft1fas
492 profiles as negative controls for the PKS_KS, t2ks, t2ks2, t2clf,
493 Chal_sti_synt_N, Chal_sti_synt_C, hglD and hglE profiles. Once we curated
494 the amino acid sequence data, we applied the SEG(mentation) low complexity
495 filter from the NCBI Blast+ 2.2 Suite⁴⁴ and created the UProC database. This
496 UProC database can be downloaded from
497 <https://github.com/pereiramemo/BiG-MEx>. Based on the identified reads
498 containing a BGC domain sequence, the module computes a count-based
499 abundance profile of BGC domains.

500

501 **5.2 BGC domain-based diversity analysis module**

502 This module performs two different analyses: Operational Domain Unit (ODU)
503 diversity estimation and phylogenetic placement of domain sequences. The
504 pipeline to estimate the ODU diversity, analyses each domain independently,
505 and consists of the following steps: 1) Short-read sequences, where the
506 domain being studied was identified, are recruited to perform a targeted
507 assembly metaSPAdes 3.11⁴⁵ with default parameters; 2) The Open Reading
508 Frames (ORFs) in the resulting contigs are predicted with FragGeneScan-
509 Plus; 3) Domain sequences are identified within the ORF amino acid
510 sequences with *hmmsearch* from HMMER v3 and extracted; 4) Domain amino
511 acid sequences are clustered into ODUs using MMseqs2⁴⁶ with the cascaded
512 clustering option and the sensitivity parameter set to 7.5; 5) Annotated
513 unassembled reads are mapped to the domain nucleotide sequences with
514 BWA-MEM 0.7.12, and the mean depth coverage is calculated using BEDtools
515 v2.23; 6) Based on this information, the coverage-based abundance of the
516 ODUs is computed and used to estimate an ODU alpha Shannon diversity. To
517 allow a comparison of the ODU diversity estimates between samples with
518 different sequencing depth, we include an option to estimate the diversity for
519 rarefied subsamples.

520 To perform the phylogenetic placement of domain sequences, we applied an
521 approach similar to NaPDoS¹¹. However, we extended the phylogenetic
522 placement analysis to 48 domains and included more comprehensive
523 reference trees, which are critical for the analysis of large metagenomic
524 samples. In detail, the phylogenetic placement consists of aligning the target
525 domain sequences to their corresponding reference multiple sequence
526 alignment (MSA) with MAFFT⁴⁷ (using --add option). Subsequently, the
527 extended MSA together with its reference tree are used as the input to run
528 pplacer⁴⁸ (with parameters: --keep-at-most 10 and --discard-nonoverlapped; all
529 other parameters set to default). pplacer performs the phylogenetic placement
530 using the maximum-likelihood criteria and outputs the extended tree in Newick
531 and jplace formats⁴⁹, and a table with statistics and information about the

532 placement of each sequence (i.e., likelihood, posterior probability, expected
533 distance between placement locations (EDPL), pendant length, and edge
534 number). To visualise the phylogenetic placement, a tree figure is generated
535 using the *ggtree* R package⁵⁰, where the coverage of the placed sequences is
536 mapped on their tree tips and used to scale a bubble representation. Besides
537 the phylogenetic placement, we included in this module an option to perform a
538 BLASTP search of the assembled domain sequences against the reference
539 domain sequences.

540 To construct the reference phylogenies, we first downloaded all the BGC
541 amino acid sequences from the MIBiG database⁵¹. We identified the domain
542 sequences with *hmmsearch* using the BGC domain HMM profiles from
543 antiSMASH. Subsequently, we extracted and clustered these sequences with
544 MMseqs2 to create a non-redundant dataset of amino acid sequences for
545 each domain. If the number of reference sequences identified in the MIBiG
546 database was greater than 500, we used a clustering threshold of 0.7 identity
547 at the amino acid level; otherwise, the threshold was set to 0.9; all other
548 parameters of MMseqs2 were set as specified previously. All domains with
549 less than 20 representative sequences were discarded. This resulted in a
550 subset of 48 domains that were considered for the phylogenetic
551 reconstructions. For each set of domain representative sequences, we
552 generated an MSA with MAFFT using the E-INS-I algorithm, removed
553 sequence outliers with OD-seq⁵² and constructed a phylogenetic tree with
554 RAxML⁵³. To select the protein evolutionary model for the phylogenetic
555 reconstruction, we used the automatic model selection implemented in RAxML
556 with the maximum likelihood criterion. We used the GAMMA model of rate
557 heterogeneity and searched the tree space using the rapid hill-climbing
558 algorithm⁵⁴, starting from a maximum parsimony tree. For the sake of
559 reproducibility, we specified a random seed number (i.e., -p 12345). Finally,
560 we used RAxML to root the trees and compute the SH-like support scores⁵⁵. In
561 Supplementary File 2, we provide for each domain phylogeny the number of
562 sequences and amino acid substitution model used, the mean, standard

563 deviation, maximum and minimum cophenetic distances between sequences,
564 Faith's phylogenetic diversity²⁴ and the name of its corresponding BGC class.

565

566 **5.3 BGC class abundance prediction module**

567 BiG-MEx uses machine-learning models to predict the abundance of the BGC
568 classes, based on the counts of annotated domains in unassembled
569 metagenomes. Each model is class-specific and was trained using the
570 abundance of the BGC class and its corresponding protein domains, as the
571 response and predictor variables, respectively. We used the classification
572 rules defined in antiSMASH for the annotation of BGC classes, to determine
573 the protein domains used as predictor variables in each model. To model the
574 abundance of a given BGC class, we implemented a two-step zero-inflated
575 process. First, the presence or absence of the target BGC class is predicted
576 using a random forest (RF) binary classifier⁵⁶. Second, a multiple linear
577 regression (MLR) is applied to predict the class abundance, but only if the
578 class was previously predicted as present. In the cases where the number of
579 zero values was lower than 10 or non-existent, we directly applied an MLR.
580 We trained the models using simulated metagenomic data (i.e., Marine-RM,
581 Human-Oral and Human-Stool datasets). The models predict a coverage-
582 based abundance since this was the response variable used in the training
583 process. The RF binary classification models were created with the
584 randomForest function of the randomForest R package⁵⁷, with the parameters
585 ntree set to 1000 (number of trees grown), nodesize set to 10 (minimum size
586 of terminal nodes), and mtry set to 1 (number of variables randomly sampled
587 as candidates at each split). For the MLR, we used the lm function of the stats
588 R package (<https://www.R-project.org/>) with default parameters.

589

590 **Code availability**

591 BiG-MEx is freely distributed using Docker container technology
592 (www.docker.com), under the GNU General Public License v3.0. It can be
593 downloaded from <https://github.com/pereiramemo/BiG-MEx>, where we also

594 provide thorough documentation. Currently, we provide BGC class abundance
595 models targeting the marine environment, four different human body sites, and
596 the genus *Streptomyces*. To help users create their own BGC class abundance
597 models and compute the predictions, we developed the R package *bgcpred*:
598 <https://github.com/pereiramemo/bgcpred>. *bgcpred* is integrated in BiG-MEx, and
599 is used to generate the BGC class abundance predictions.

600

601 **Data availability**

602 In Supplementary file 1, we provide the GenBank and RefSeq assembly
603 accessions for the genomes used to generate the simulated metagenomic
604 datasets. We provide the BGC class and domain abundance tables, obtained
605 from the simulated data, at <https://github.com/pereiramemo/BiG-MEx/>.

607 **Acknowledgements**

608 EP-F was supported by a Ph.D. fellowship of the German Academic Exchange
609 Service (DAAD) and the Uruguayan National Research and Innovation Agency
610 (ANII). PLB was supported by the HGF Infrastructure Programme FRAM of the
611 Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung.
612 MHM was supported by Rubicon (825.13.001) and Veni (863.15.002) grants from
613 the Netherlands Organization for Scientific Research (NWO). P-M was partially
614 supported by German Research Foundation (DFG). AF-G received funding from
615 the European Union's Horizon 2020 research and innovation program [Blue
616 Growth: Unlocking the potential of Seas and Oceans] under grant agreement no.
617 [634486] 436 (project acronym INMARE). This work was accomplished using
618 computational facilities provided by the Max Planck Society.

619

620 **Competing interests**

621 The authors declare no competing interests.

622

623 **Author contributions**

624 EP-F, AF-G, PLB, and MHM conceived BiG-MEx's algorithms. EP-F developed
625 the tools, and analysed the data, and wrote the paper with contributions from all
626 authors. All authors reviewed and approved the manuscript.

627

628 **Bibliography**

- 629 1. Fischbach, M. & Voigt, C. a. Prokaryotic gene clusters: A rich toolbox for
630 synthetic biology. *Biotechnology Journal* **5**, 1277–1296 (2010).
- 631 2. Medema, M. H. & Fischbach, M. A. Computational approaches to natural
632 product discovery. *Nature Chemical Biology* **11**, 639–648 (2015).
- 633 3. Karsenti, E. *et al.* A holistic approach to marine eco-systems biology. *PLoS
634 Biol.* **9**, e1001177 (2011).
- 635 4. Huttenhower, C. & Human Microbiome Project Consortium. Structure,
636 function and diversity of the healthy human microbiome. *Nature* **486**, 207–
637 14 (2012).
- 638 5. Reddy, B. V. B. *et al.* Natural product biosynthetic gene diversity in
639 geographically distinct soil microbiomes. *Appl. Environ. Microbiol.* **78**,
640 3744–3752 (2012).
- 641 6. Charlop-Powers, Z. *et al.* Global biogeographic sampling of bacterial
642 secondary metabolism. *Elife* **2015**, e05048 (2015).
- 643 7. Lemetre, C. *et al.* Bacterial natural product biosynthetic domain
644 composition in soil correlates with changes in latitude on a continent-wide
645 scale. *Proc. Natl. Acad. Sci.* **114**, 201710262 (2017).
- 646 8. van Heel, A. J., de Jong, A., Montalbán-López, M., Kok, J. & Kuipers, O. P.
647 BAGEL3: Automated identification of genes encoding bacteriocins and
648 (non-)bactericidal posttranslationally modified peptides. *Nucleic Acids Res.*
649 **41**, W448–W453 (2013).
- 650 9. Cimermancic, P. *et al.* Insights into secondary metabolism from a global
651 analysis of prokaryotic biosynthetic gene clusters. *Cell* **158**, 412–421
652 (2014).
- 653 10. Weber, T. *et al.* AntiSMASH 3.0-A comprehensive resource for the genome
654 mining of biosynthetic gene clusters. *Nucleic Acids Res.* **43**, W237–W243

655 (2015).

656 11. Ziemert, N. *et al.* The natural product domain seeker NaPDoS: A
657 phylogeny based bioinformatic tool to classify secondary metabolite gene
658 diversity. *PLoS One* **7**, (2012).

659 12. Reddy, B. V. B. *et al.* Natural product biosynthetic gene diversity in
660 geographically distinct soil microbiomes. *Appl. Environ. Microbiol.* **78**,
661 3744–3752 (2012).

662 13. Borchert, E., Jackson, S. A., O'Gara, F. & Dobson, A. D. W. Diversity of
663 natural product biosynthetic genes in the microbiome of the deep sea
664 sponges *Inflatella pellicula*, *Poecillastra compressa*, and *Stelletta normani*.
665 *Front. Microbiol.* **7**, 1027 (2016).

666 14. Weber, T. & Kim, H. U. The secondary metabolite bioinformatics portal:
667 Computational tools to facilitate synthetic biology of secondary metabolite
668 production. *Synthetic and Systems Biotechnology* **1**, 69–79 (2016).

669 15. Reddy, B. V. ija. B., Milshteyn, A., Charlop-Powers, Z. & Brady, S. F.
670 eSNaPD: a versatile, web-based bioinformatics platform for surveying and
671 mining natural product biosynthetic diversity from metagenomes. *Chem.*
672 *Biol.* **21**, 1023–1033 (2014).

673 16. Meinicke, P. UProC: Tools for ultra-fast protein domain classification.
674 *Bioinformatics* **31**, 1382–1388 (2015).

675 17. Ziemert, N. *et al.* Diversity and evolution of secondary metabolism in the
676 marine actinomycete genus *Salinispora*. *Proc. Natl. Acad. Sci.* **111**,
677 E1130–E1139 (2014).

678 18. Eddy, S. R. Accelerated profile HMM searches. *PLoS Comput. Biol.* **7**,
679 e1002195 (2011).

680 19. Sunagawa, S. *et al.* Structure and function of the global ocean microbiome.
681 *Science*. **348**, 1261359–1261359 (2015).

682 20. Walsh, E. A. *et al.* Bacterial diversity and community composition from
683 seafloor to subseafloor. *ISME J.* **10**, 1–11 (2015).

684 21. Logares, R. *et al.* Metagenomic 16S rDNA Illumina tags are a powerful
685 alternative to amplicon sequencing to explore diversity and structure of

686 microbial communities. *Environ. Microbiol.* **16**, 2659–2671 (2014).

687 22. Rausch, C., Hoof, I., Weber, T., Wohlleben, W. & Huson, D. H.

688 Phylogenetic analysis of condensation domains in NRPS sheds light on

689 their functional evolution. *BMC Evol. Biol.* **7**, 78 (2007).

690 23. Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W. & Huson, D. H.

691 Specificity prediction of adenylation domains in nonribosomal peptide

692 synthetases (NRPS) using transductive support vector machines (TSVMs).

693 *Nucleic Acids Res.* **33**, 5799–5808 (2005).

694 24. Faith, D. P. Conservation evaluation and phylogenetic diversity. *Biol.*

695 *Conserv.* **61**, 1–10 (1992).

696 25. Mayers, T. J., Bramucci, A. R., Yakimovich, K. M. & Case, R. J. A bacterial

697 pathogen displaying temperature-enhanced virulence of the microalga

698 *Emiliania huxleyi*. *Front. Microbiol.* **7**, 892 (2016).

699 26. Cociancich, S. et al. The gyrase inhibitor albicidin consists of p-

700 aminobenzoic acids and cyanoalanine. *Nat. Chem. Biol.* **11**, 195–197

701 (2015).

702 27. Baumann, S. et al. Cystobactamids: Myxobacterial topoisomerase

703 inhibitors exhibiting potent antibacterial activity. *Angew. Chemie - Int. Ed.*

704 **53**, 14605–14609 (2014).

705 28. Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and

706 Proteobacteria are abundant in surface ocean metagenomes. *Nat.*

707 *Microbiol.* **3**, 804–813 (2018).

708 29. Segata, N. et al. Composition of the adult digestive tract bacterial

709 microbiome based on seven mouth surfaces, tonsils, throat and stool

710 samples. *Genome Biol.* **13**, R42 (2012).

711 30. Leinonen, R. et al. Improvements to services at the European Nucleotide

712 Archive. *Nucleic Acids Res.* **38**, D39-45 (2010).

713 31. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a

714 versatile open source tool for metagenomics. *PeerJ* **4**, e2584 (2016).

715 32. Kim, D. et al. FragGeneScan-plus for scalable high-throughput short-read

716 open reading frame prediction. in *2015 IEEE Conference on Computational*

717 *Intelligence in Bioinformatics and Computational Biology, CIBCB 2015* 1–8
718 (IEEE, 2015). doi:10.1109/CIBCB.2015.7300341

719 33. Human Microbiome Project, C. A framework for human microbiome
720 research. *Nature* **486**, 215–221 (2012).

721 34. Oksanen, J. *et al.* Title Community Ecology Package. (2017). at
722 <<https://github.com/vegandeve/vegan/issues>>

723 35. Anderson, M. J. A new method for non-parametric multivariate analysis of
724 variance. *Austral Ecol* **26**, 32–46 (2001).

725 36. Burke, C. & Steinberg, P. Bacterial community assembly based on
726 functional genes rather than species. *Proc. ...* **108**, 14288–14293 (2011).

727 37. Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. UniRef
728 clusters: A comprehensive and scalable alternative for improving sequence
729 similarity searches. *Bioinformatics* **31**, 926–932 (2015).

730 38. R: a language and environment for statistical computing | GBIF.ORG. at
731 <<http://www.gbif.org/resource/81287>>

732 39. O'Leary, N. A. *et al.* Reference sequence (RefSeq) database at NCBI:
733 Current status, taxonomic expansion, and functional annotation. *Nucleic
734 Acids Res.* **44**, D733–D745 (2016).

735 40. Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W.
736 GenBank. *Nucleic Acids Res.* **44**, D67–D72 (2016).

737 41. Richter, D. C., Ott, F., Auch, A. F., Schmid, R. & Huson, D. H. in *Handbook
738 of Molecular Microbial Ecology I: Metagenomics and Complementary
739 Approaches* **3**, 417–421 (2011).

740 42. Li, H. Aligning sequence reads, clone sequences and assembly contigs
741 with BWA-MEM. **00**, 1–3 (2013).

742 43. Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for
743 comparing genomic features. *Bioinformatics* **26**, 841–842 (2010).

744 44. Camacho, C. *et al.* BLAST plus: architecture and applications. *BMC
745 Bioinformatics* **10**, 1 (2009).

746 45. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. MetaSPAdes: A
747 new versatile metagenomic assembler. *Genome Res.* **27**, 824–834 (2017).

748 46. Hauser, M., Steinegger, M. & Söding, J. MMseqs software suite for fast
749 and deep clustering and searching of large protein sequence sets.
750 *Bioinformatics* **32**, 1323–1330 (2016).

751 47. Yamada, K. D., Tomii, K. & Katoh, K. Application of the MAFFT sequence
752 alignment program to large data - Reexamination of the usefulness of
753 chained guide trees. *Bioinformatics* **32**, 3246–3251 (2016).

754 48. Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time
755 maximum-likelihood and Bayesian phylogenetic placement of sequences
756 onto a fixed reference tree. *BMC Bioinformatics* **11**, 538 (2010).

757 49. Matsen, F. a, Hoffman, N. G., Gallagher, A. & Stamatakis, A. A format for
758 phylogenetic placements. *PLoS One* **7**, e31009 (2012).

759 50. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. ggtree: an r
760 package for visualization and annotation of phylogenetic trees with their
761 covariates and other associated data. *Methods Ecol. Evol.* **8**, 28–36 (2017).

762 51. Medema, M. H. et al. The Minimum Information about a Biosynthetic Gene
763 cluster (MIBiG) specification. *Nat. Chem. Biol.* **11**, 625–631 (2015).

764 52. Jehl, P., Sievers, F. & Higgins, D. G. OD-seq: Outlier detection in multiple
765 sequence alignments. *BMC Bioinformatics* **16**, (2015).

766 53. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-
767 analysis of large phylogenies. *Bioinformatics* **30**, 1312–1313 (2014).

768 54. Stamatakis, A., Blagojevic, F., Nikolopoulos, D. S. & Antonopoulos, C. D.
769 Exploring new search algorithms and hardware for phylogenetics: RAxML
770 meets the IBM cell. *J. VLSI Signal Process. Syst. Signal Image. Video
771 Technol.* **48**, 271–286 (2007).

772 55. Guindon, S. et al. New algorithms and methods to estimate maximum-
773 likelihood phylogenies: Assessing the performance of PhyML 3.0. *Syst.
774 Biol.* **59**, 307–321 (2010).

775 56. Breiman, L. Random forests. *Mach. Learn.* **45**, 5–32 (2001).

776 57. Liaw, A. & Wiener, M. Classification and Regression by randomForest. *R
777 news* **2**, 18–22 (2002).

778

779 **Figures**

780

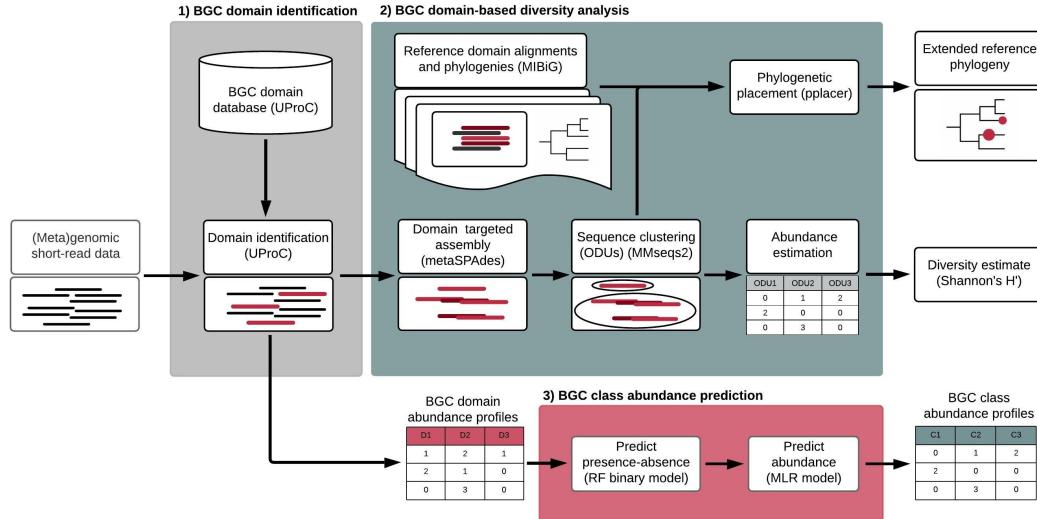


Fig. 1 | BiG-MEx analysis workflow. **1)** BGC domain identification module. To annotate the BGC domains with UProC, we created an UProC database including 150 domains, which originate from 44 different BGC classes. This database was generated based on the amino acid sequences of antiSMASH hidden Markov model (HMM) profiles¹⁰. Using UProC output, this module generates a count-based abundance profile of BGC domains; **2)** BGC domain-based diversity analysis module. Using the previously identified domains, this module performs a targeted assembly with metaSPAdes⁴⁵ to reconstruct the domain sequences. Assembled domain sequences are clustered into Operational Domain Units, and the number of ODUs and the coverage of the domain sequences within each ODU (used to approximate the abundance of the ODU) are used to compute the ODU alpha diversity. The environmental reconstructed domain sequences are placed onto reference phylogenetic trees with pplacer⁴⁸ (maximum likelihood criteria). In this module, we include pre-computed phylogenies for 48 domains, which are based on sequence data contained in the Minimum Information about a Biosynthetic Gene cluster (MIBiG)⁵¹ database, allowing us to identify the relationships of query sequences with domains from pathways of known function; **3)** BGC class abundance prediction module. The domain abundance profiles are used to predict the BGC class coverage-based abundance profiles using class-specific machine-learning models. These models consist of a two-step process: First, the presence/absence of the BGC class is predicted using a random forest (RF) classifier; Secondly, the abundance is predicted with a multiple linear regression (MLR) only if the class was previously predicted as present.

782

783

784

785

786

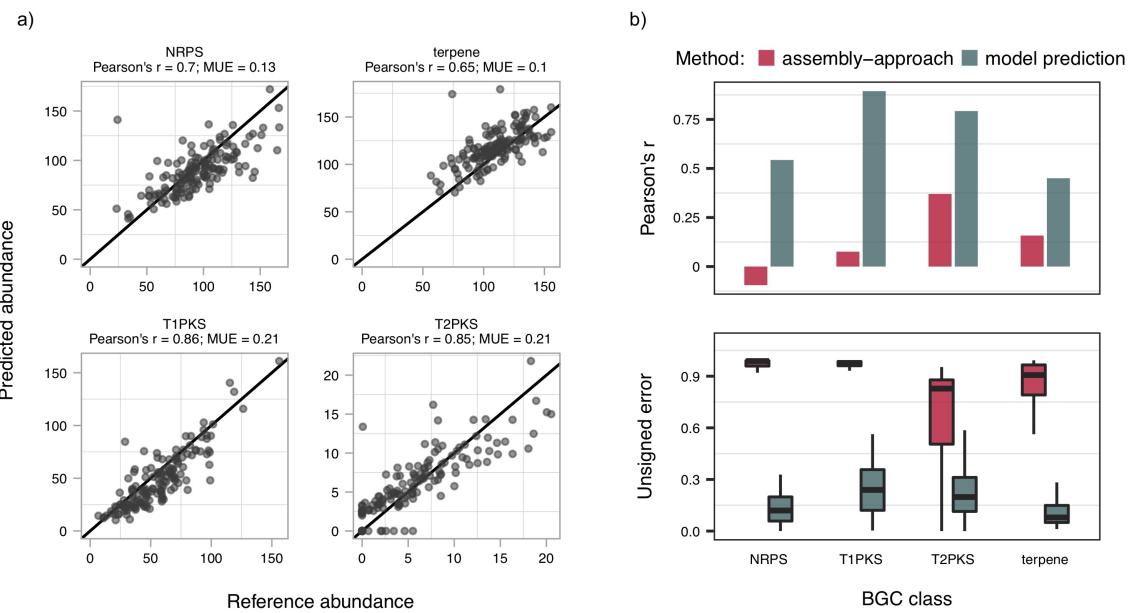


Fig. 2 | Evaluating and benchmarking the BGC abundance prediction models. (a) Scatter plots comparing the reference and predicted abundances of the NRPS, terpene, T1PKS and T2PKS BGC classes. MUE: Median Unsigned Error. The black, solid line represents the one-to-one relationship between the reference and predicted BGC class abundances. The BGC class abundance models were trained with the Marine-RM metagenomes and used to predict the abundances in the Marine-TM metagenomes. (b) Plots of the Pearson correlation coefficients (upper panel) and the unsigned error distributions (lower panel) of the BGC class abundances predicted by the models and estimated by the assembly approach, with respect to the reference abundances. In this comparison, we used 50 Marine-TM metagenomes. For the sake of clarity, 12 outlying unsigned error values (3% of the total comparisons) were excluded from the plot. The assembly approach consisted of the following tasks: 1) Assembling the metagenomes of the Marine-TM dataset; 2) Selecting the contigs with potential BGC sequences using BiG-MEx domain identification module; 3) Annotating the contigs with antiSMASH; 4) Mapping the short-read sequences to the identified BGC sequences; 5) Estimating the BGC class abundances.

788

789

790

791

792

793

794

795

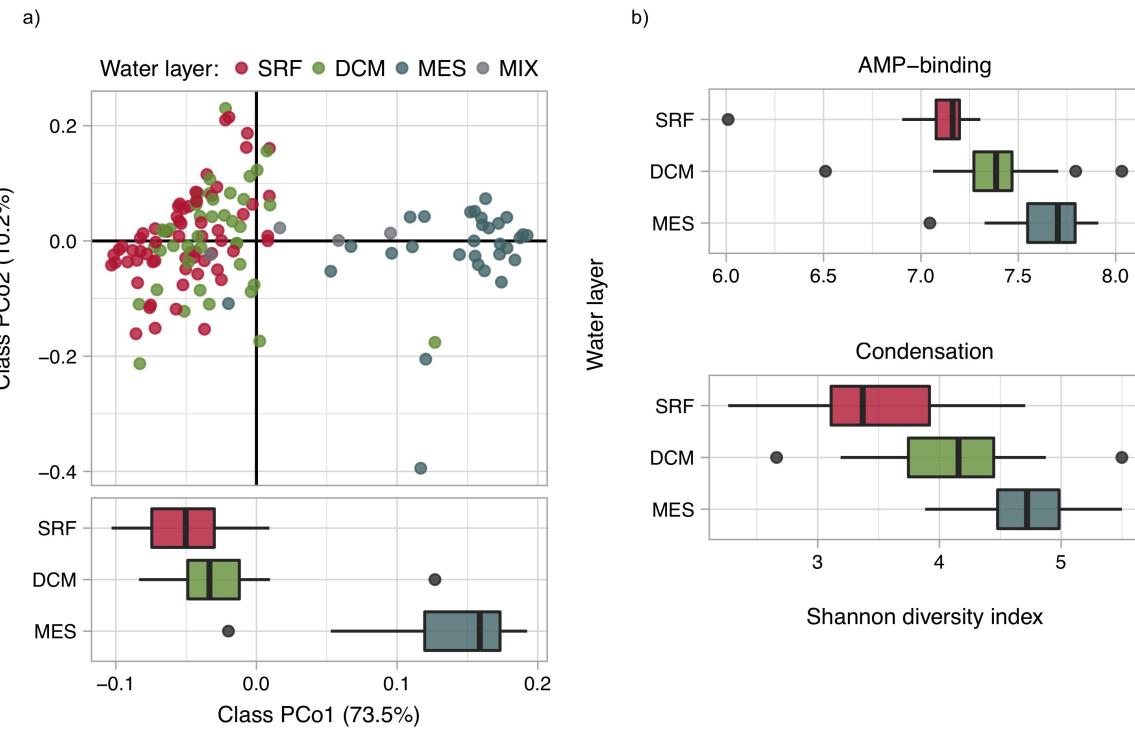


Fig. 3 | BiG-MEx BGC class composition and domain-based diversity analysis in the TARA Oceans dataset. (a) Principal Coordinates Analysis (PCoA) performed on a Bray-Curtis dissimilarity matrix of BGC class relative abundance profiles of the 139 prokaryotic metagenomes of TARA Oceans. BGC class abundance profiles were generated with BiG-MEx BGC class abundance module, using machine-learning models trained with the simulated Marine-RM metagenomic dataset. The abbreviations SRF, DCM, MES, and MIX correspond to surface, deep chlorophyll maximum, mesopelagic, and mixed epipelagic water layers, respectively. The boxplot in the bottom section of the panel shows the PCo1 value distributions for the metagenomes from the SRF, DCM and MES water layers. The PCo1 axis differentiated the MES water layer from the other two layers (Wilcoxon rank sum test; all p-values < 0.0001). **(b)** Bar plots showing the distribution of the ODU Shannon alpha diversity indices for the AMP-binding and condensation domains (NRPSs). The ODU diversity was computed for a match subset of 63 TARA Oceans metagenomes representing SRF, DCM, and MES water layers in 21 sampling stations. The AMP-binding and Condensation ODU diversity estimates were significantly different between the three water layers (pairwise Wilcoxon rank sum test; all p-values < 0.0001).

797

798

799

800

801

802

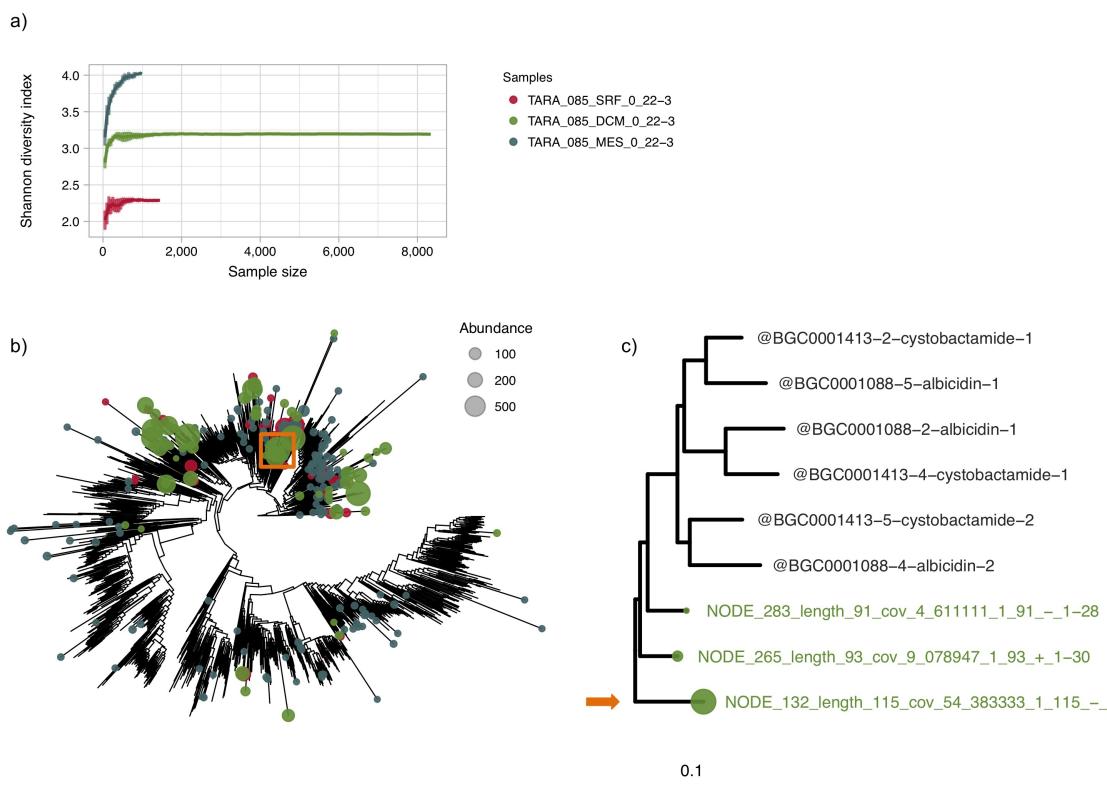


Fig. 4 | BiG-MEx diversity analysis of condensation domains in three metagenomes from TARA Oceans sampling station TARA_085 (a) Rarefaction curves of the Shannon alpha diversity indices generated by BiG-MEx domain-based diversity analysis module, comparing the diversity of condensation ODUs in the metagenomes of the SRF, DCM, and MES water layers. Condensation domain sequences were clustered into ODUs using a 75% amino acid identity threshold. The diversity was computed using the number and abundance of distinct condensation ODUs. (b) Phylogenetic placement of the condensation ODU representative sequences, as performed by the BiG-MEx domain-based diversity analysis module. The SRF, DCM and MES had a phylogenetic diversity (Faith's PD)²⁴ of 58.15, 114.98 and 304.88, respectively. The size and colour of the bubbles on the leaves represent the ODU abundance and sample origin, respectively. (c) Detail of the clade contained in the orange, hollow square in (b), including the most abundant ODU (obtained in the TARA_085_DCM_0_22-3 sample; indicated with an orange arrow).

804

805

806

807

808

809