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20 Microorganisms produce an immense variety of natural products through
21 the expression of Biosynthetic Gene Clusters (BGCs): physically clustered
22 genes that encode the enzymes of a specialized metabolic pathway. These
23 natural products cover a wide range of chemical classes (e.g.,
24 aminoglycosides, lantibiotics, nonribosomal peptides, oligosaccharides,
25 polyketides, terpenes) that are highly valuable for industrial and medical
26 applications®. Metagenomics, as a culture-independent approach, has
27 greatly enhanced our ability to survey the functional potential of
28 microorganisms and is growing in popularity for the mining of BGCs.
29 However, to effectively exploit metagenomic data to this end, it will be
30 crucial to more efficiently identify these genomic elements in highly
31 complex and ever-increasing volumes of data®’. Here, we address this
32 challenge by developing the ultrafast Biosynthetic Gene cluster
33 MEtagenomic eXploration toolbox (BiG-MEXx). BiG-MEx rapidly identifies a
34 broad range of BGC protein domains, assess their diversity and novelty,
35 and predicts the abundance profile of natural product BGC classes in

36 metagenomic data. We show the advantages of BiG-MEx compared to
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37 standard BGC-mining approaches, and use it to explore the BGC domain
38 and class composition of samples in the TARA Oceans® and Human
39 Microbiome Project datasets®’. In these analyses, we demonstrate BiG-
40 MEX’s applicability to study the distribution, diversity, and ecological roles
41 of BGCs in metagenomic data, and guide the exploration of natural
42 products with clinical applications.

43

44 Metagenomics offers unique opportunities to mine natural product BGCs in
45 diverse microbial assemblages from a wide range of environments®>’. However,
46 given the complexity of microbial communities found in nature, and the limitations
47 of current sequencing technologies, often only a very small fraction of the short-
48 read sequence data can be assembled in contigs long enough to allow the
49 identification of BGC classes. However, the annotation of individual protein
50 domains of BGCs, is much more straightforward, given that these have
51 comparable length to merged paired-end reads. There are several protein
52 domains known to play important functions in the BGC-encoded enzymes.
53 Specific domains or combinations thereof are commonly found in certain types of
54 BGC classes. Accordingly, these are used for the automatic identification of BGC
55 classes in genome sequences®™® and to study the distribution and diversity of
56 particular BGC classes in the environment®’***3, Although there are various BGC
57 mining tools with practical applications'®, only the Natural Product Domain
58 Seeker (NaPDoS)'" and the environmental Surveyor of Natural Product Diversity
59 (eSNaPD") are dedicated to the study of BGC domains. Both of these tools
60 focus on nonribosomal peptides and polyketide synthases (NRPSs and PKSs,
61 respectively), and take assembled or amplicon data as input. Currently, there is
62 no technology available capable of efficiently exploiting raw metagenomic data to
63 study the composition and diversity of natural product BGC classes and domains
64 in the environment.

65

66 Capitalizing on the fact that BGC domains can be readily annotated in

67 unassembled metagenomic data, and used to identify the different natural
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68 product BGC classes, we developed BiG-MEXx. This tool generates ultrafast BGC
69 domain annotations in short-read sequence data and applies a machine-learning
70 approach to predict the BGC class coverage-based abundances (for simplicity,
71 we will refer to these as BGC class abundance profiles). Additionally, the
72 identified domain sequences are used to carry out a domain-based diversity
73 analysis. This allows BiG-MEx both to deeply exploit metagenomic data, and to
74 adapt to their ever-increasing volume. BiG-MEXx consists of three interacting
75 modules that are described below and illustrated in Fig. 1:

76 1. BGC domain identification module. We use the Ultrafast Protein domain

77 Classification UProC*® tool to identify BGC protein domains in short-read
78 sequence data. For this purpose, we created an UProC database, which
79 includes 150 BGC domains covering 44 BGC classes.

80 2. BGC domain-based diversity analysis. This module performs a domain-
81 targeted assembly, clusters the assembled domain sequences to create
82 Operational Domain Units (ODUs)*" and computes the ODU alpha diversity.
83 Further, assembled domain sequences are placed onto reference
84 phylogenetic trees. The module includes pre-computed phylogenies for 48
85 BGC domains. These were selected based on domain sequences from
86 experimentally characterized biosynthetic gene clusters with enough
87 sequence information for phylogenetic analysis.

88 3. BGC class abundance prediction module. We created machine-learning

89 models that predict the abundance of BGC classes based on the domain
90 annotation. The models are class-specific and consist of a random forest (RF)
91 classifier to predict the presence/absence of a BGC class, and a multiple
92 linear regression (MLR) to predict its abundance. These models can be
93 customised to target metagenomic and genomic data from different
94 environments and taxa, respectively.

95

96 To evaluate the performance of BiG-MEXx, we first assessed how the UProC-
97 based domain identification used in BiG-MEx improves the data processing

98 speed compared to HMMER® (i.e., the traditional approach for domain
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99 annotation) for the annotation of the 150 BGC domains. This comparison showed
100 that UProC was on average 18 times faster than HMMER (Supplementary Fig.
101 1l1a). We then evaluated the accuracy of BiG-MEx Operational Domain Unit
102 (ODU) diversity estimation approach. We used BiG-MEx to compute the ODU
103 diversity of the NRPS adenylation (AMP-binding) and condensation domains, as
104 well as the PKS ketosynthase (PKS_KS) and acyltransferase (PKS_AT) domains
105 in a simulated metagenomic dataset (Marine-TM dataset; see Materials and
106 Methods section 3). Additionally, we computed the ODU diversity of these
107 domains based on the domain sequences obtained from the genome sequences
108 used to simulate the Marine-TM metagenomes. The latter estimates (henceforth,
109 the reference estimates) were assumed to accurately reflect the ODU diversity,
110 as they were computed using the complete domain sequences. We compared
111 BIG-MEx ODU diversity estimates against the reference ODU diversity and
112 observed that these were highly correlated: PKS_KS domains had a Pearson’s r
113 of 0.77, while for the other domains the Pearson’s r was greater than 0.9
114 (Supplementary Fig. 1b). Lastly, we evaluated BiG-MEx’'s BGC class abundance
115 prediction module. We point out that although we modelled the abundance of a
116 few BGC subclasses, we refer to all as BGC classes. For this analysis, we used
117 two different simulated metagenomic datasets, one for training and the other for
118 testing the BGC class abundance models (Marine-RM and Marine-TM,
119 respectively) (see Supplementary Table 1). We predicted the BGC class
120 abundances in the Marine-TM metagenomes, using BiG-MEx BGC class
121 abundance prediction module, and additionally, computed the BGC class
122 abundances based on the complete genome sequences used to simulate the
123 Marine-TM metagenomes. Similarly as indicated previously, the latter
124 abundances were taken as a reference to evaluate the accuracy of the
125 predictions. We observed that the predicted vs. reference abundance
126 comparison for 20 of the 23 BGC classes we modelled (i.e., the total number of
127 classes detected in the Marine-RM training dataset) had a Pearson’s r correlation
128 coefficient greater than 0.5 and a median unsigned error (MUE) lower than 0.25

129 (Supplementary Fig. 2). Figure 2a displays the scatter plots of this comparison for
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130 the NRPS, terpene, and type | and Il PKS BGC classes. To benchmark BiG-MEXx
131 BGC class abundance prediction module, we compared its abundance
132 predictions against the abundance estimates derived from running antiSMASH
133 on assemblies of the Marine-TM metagenomes (hereafter referred to as the
134 “assembly approach”). The plots in Figure 2b display the Pearson correlation
135 coefficients and the unsigned error distributions with respect to the reference
136 abundances comparing both approaches for the same four BGC classes
137 mentioned above. All BGC class abundance models included in this analysis
138 were considerably more accurate than the assembly approach (Supplementary
139  Fig. 3).

140

141 To illustrate the application of BiG-MEXx, we performed a Principal Coordinates
142 Analysis (PCoA) based on BiG-MEx-derived BGC class abundance profiles of
143 the 139 prokaryotic metagenomes of TARA Oceans. In Figure 3a, we ordinate
144  the first two axes of the PCoA. The first axis (PCol; 73.5% of the total variance)
145 differentiated the mesopelagic (MES) from the surface (SRF) and deep
146  chlorophyll maximum (DCM) water layers (Wilcoxon rank sum test; all p-values <
147 0.0001; see Supplementary Table 2). Further, the ordination values of the
148 metagenomes along the PCol axis correlated with temperature (Pearson’s r = -
149 0.73; p-value < 0.0001). The differences in the BGC class composition between
150 water layers were additionally confirmed with a Permutational Multivariate
151 Analysis of Variance (PERMANOVA) (see Supplementary Table 3). We also
152 performed a PCoOA to explore the BGC domain composition and obtained a
153 similar ordination of the metagenomes (Supplementary Fig. 4). These results are
154 in agreement with previous work showing the stratification of microbial
155 communities along depth and temperature gradients'®?. In particular, a very
156 similar differentiation of the MES water layer along the first axis was also
157 observed in the PCoA performed by Sunagawa et al.,*® based on the 16S tag
158 (i.e., 16S ribosomal RNA gene tags®') composition of these same TARA Ocean
159 metagenomes.

160
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161 Next, we used BIG-MEx domain-based diversity module to compare the
162  Operational Domain Unit (ODU) diversity of the NRPS adenylation (AMP-binding)
163 and condensation domains between the SRF, DCM and MES water layers.
164 These domains provide information about the chemical characteristics of the
165 peptides synthesized by NRPS enzymes. AMP-binding domains recruit the
166 amino acid monomers to be incorporated, while condensation domains catalyse
167 the peptide bond formation®?%. In this analysis, we aimed to assess the potential
168 chemical diversity of the NRPS products. NRPSs are one of the most studied
169 BGC classes and are responsible for the production of many compounds with
170 clinical applications. The results show that the ODU diversity of both domains
171 increased from the surface to the mesopelagic water layers and differentiated
172  significantly between water layers (pairwise Wilcoxon rank sum test; all p-values
173 < 0.005; see Supplementary Table 2) (Fig. 3b). These results indicate that the
174 microbial communities inhabiting deeper water layers contain a significantly
175 higher diversity of NRPS products. The ODU diversity gradients resemble the
176  Operational Taxonomic Unit (OTU) richness and functional diversity distributions
177 shown in Sunagawa et al. We found highly significant correlations between the
178 ODU diversity estimates and the taxonomic and functional richness and diversity
179 obtained by Sunagawa et al. (see Supplementary Table 4).

180

181 To exemplify a more fine-grained analysis with BiG-MEx's domain-based
182 diversity module, we explored the ODU diversity of condensation domains in the
183 three TARA Oceans metagenomes obtained from the SRF, DCM, and MES
184 water layers at the sampling station TARA_085 (Antarctic Ocean). As observed
185 previously, the metagenome from the MES water layer had a higher ODU
186 diversity (Fig. 4a). It contains many low abundance ODUs scattered throughout
187 the reference phylogeny (Fig. 4b). The phylogenetic diversity** (PD) of ODU
188 representative sequences of the MES metagenome, was 5.24 and 2.65 times
189 greater than the PD estimates of the SRF and DCM metagenomes, respectively.
190 Besides indicating a higher chemical diversity, this result indicates that there is

191 greater potential chemical novelty of nonribosomal peptides. Additionally, the
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192 phylogenetic placement analysis revealed that the most abundant condensation
193 ODU is placed close to the reference condensation domain sequences of NRPSs
194 that produce albicidin and cystobactamide antibiotics (both topoisomerase
195 inhibitors) (Fig. 4c). As albicidin is also a phytotoxin, the dominance of such
196 ODU, which originates from the DCM layer, could be explained by the presence
197 of a large number of NRPSs that act on the photosynthetic organisms that
198 concentrate therein. The DCM layer had a notably higher chlorophyll
199 concentration than the other two layers (0.01, 0.28, and 0 mg/m3 for the SRF,
200 DCM, and MES respectively). The NRPS producing albicidin belongs to the class
201 Gammaproteobacteria and order Xanthomonadales. This is in agreement with
202 the ODU taxonomic affiliation, which was annotated as a Gammaproteobacteria
203 (lowest common ancestor). This finding is also supported by the fact that the
204 BLASTP search against the reference MIBIG database, showed that
205 condensation domains significantly similar to NRPS domains producing albicidin
206 (e-value < le-5), where only found in the DCM layer. We cannot exclude other
207 possible explanations of these results; however, this line of exploration might be
208 worth considering for further research. Rising ocean temperatures, as a
209 consequence of global warming, are predicted to increase the frequency of
210 events of bacteria affecting the algae populations, which in turn can impact
211 marine ecosystems on a global scale®. Regarding potential biotechnological
212 applications, these results are relevant for bioprospecting, given that albicidin
213 and cystobactamide are antibiotics of interest for clinical treatments?®?’,

214 We note that neither the TARA Oceans Metagenomes Assembled Genomes
215 (MAGSs)®, nor the DCM assembled metagenome from TARA 085 sampling site,
216 contained albicidin or cystobactamide NRPS-like sequences. The difference
217 between our findings in comparison to standard approaches based on
218 assembled data was expected to occur, given the limitations of the latter to
219 identify BGC classes (as shown in Fig. 2). In Supplementary Figure 5, we
220 illustrate this problem by comparing the sequence length between MIBIG BGCs,
221 and the TARA Oceans MAGs, and assembled metagenomic contigs.

222
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223  Considering the relevance of human microbiome-derived natural product BGCs
224 in medical research, we demonstrate the applicability of BiG-MEXx to explore the
225 BGC composition in the Human Microbiome Project (HMP) dataset. Our analyses
226 traversed metagenomes from the buccal mucosa, tongue dorsum, and
227 supragingival plague body sites as well as stool samples (491 metagenomes in
228 total). We used BiG-MEx to compute the BGC domain and class abundance
229 profiles, and applied the same methodology as described for TARA Oceans, to
230 compute the domain and class-based PCoAs. In agreement with previous
231 analyses based on the taxonomic and functional annotation*?°, we observed that
232 metagenomes grouped according to the body site they were sampled from in the
233 first two ordination axes (Supplementary Fig. 6a and b). We conducted a
234 PERMANOVA to test and assess the strength of the differences between body
235 sites according to their BGC class composition, which showed significant
236 differences in all body site comparisons (Supplementary Table 5). Additionally,
237 we used BIiG-MEx to compare the ODU diversity of the AMP-binding and
238 condensation domains between body sites and observed that supragingival
239 plaque metagenomes contain significantly higher diversity than the other body
240 sites (pairwise Wilcoxon rank sum test; p-value < 0.0001) (Supplementary Figure
241 7 and Supplementary Table 6). This is in line with previous work showing that the
242 supragingival plaque is one of the most functionally and taxonomically diverse
243  body sites in the HMP dataset”.

244

245 Besides the mining analyses, BiG-MEx BGC class profiling can be used for the
246 screening and prioritization of (meta)genomic samples. BGC class abundance
247  profiles derived from shallow sequencing depth (meta)genomic data can be used
248 for the identification of strains or environments with high biosynthetic potential,
249 before investing in deep sequencing or long read sequencing technologies. As a
250 proof-of-concept for this application, in Supplementary Fig. 8 we show a
251 comparison of the BGC class abundance predictions computed in metagenomes
252 of 100 and 5 million reads.
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253 In our example applications, we processed 630 metagenomes, which sum to
254 more than 85 billion paired-end reads. The analyses showed that BiG-MEx
255 ultrafast domain and class profiling, and ODU diversity estimates provide
256 biologically meaningful information, which can be used to mine BGCs in
257 metagenomic data and as a basis from which to assess the ecological roles of
258 their products in specific environments.

259 BiG-MEx extends BGC-based research and exploitation into large environmental
260 datasets. It can be used to study the biogeography, distribution, and diversity of
261 natural product BGCs either at the class, domain or ODU levels. Such analyses
262 have the potential to accelerate the discovery of new bioactive products.

263

264 Materials and Methods

265 1. Data acquisition, pre-processing and annotation

266 We retrieved the 139 prokaryotic metagenomes of the TARA Oceans dataset
267 from the European Nucleotide Archive®* (ENA:PRJEB1787, filter size: 0.22-1.6
268 and 0.22-3). To pre-process the metagenomic short-read data, we clipped the
269 adapter sequences (obtained from Shinichi Sunagawa personal communication,
270 July 21, 2015) using the BBDuk tool from the BBMap 35.00 suite
271  (https://sourceforge.net/projects/bbmap/) with a maximum Hamming distance of
272 one (hdist=1). We then merged the paired-end reads using VSEARCH 2.3.4%,
273 quality trimmed all reads at Q20 and filtered out sequences shorter than 45bp

274 using BBDuk, and de-replicated the resulting quality-controlled sequences with
275 VSEARCH. We annotated the BGC domains by first predicting the Open Reading
276 Frames (ORFs) in the pre-processed data with FragGeneScan-plus® and then
277  running BiG-MEXx on the predicted ORF’s amino acid sequences.

278 We downloaded 491 human microbiome metagenomes from the Data Analysis
279 and Coordination Center (DACC) for the Human Microbiome Project (HMP)
280  (https://www.hmpdacc.org/hmp/HMASM/). Our dataset included the

281 metagenomes of the supragingival plaque (118), tongue dorsum (128), buccal
282 mucosa (107), and the stool (138) body sites. These metagenomes have been

283 already pre-processed as described in The Human Microbiome Project
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284 Consortium 2012%. The additional pre-processing tasks we performed consisted
285 of merging the metagenomic reads with VSEARCH, quality trimming all reads at
286 Q20 and filtering out sequences shorter than 45 bp with BBduk. To annotate the
287 BGC domains, we predicted the ORFs with FragGeneScan-plus and ran BiG-
288 MEx BGC domain identification module on the ORF's amino acid sequences
289 (Supplementary Table 7).

290

291 2. Exploratory analysis performed on TARA Oceans and HVIP datasets

292 The domain abundance profiles of the TARA Oceans and HMP metagenomes
293 were used to predict the BGC class abundance profiles with BiG-MEx BGC class
294 abundance prediction module. The models used to generate the predictions for
295 the TARA Oceans, and the oral and stool HMP metagenomes, were trained with
296 the Marine-RM, Human-Oral and Human-Stool simulated metagenomic datasets,
297 respectively. For each dataset, we performed a Principal Coordinate Analysis
298 (PCoA) as follows: 1) We applied a total sum scaling standardization to both the
299 domain and class abundance matrices; 2) We used the standardized matrices to
300 compute the domain and class Bray-Curtis dissimilarity matrices; 3) We
301 performed the PCoAs on the dissimilarity matrices with vegan R package utilizing
302 the function capscale®.

303 We applied a Permutational Multivariate Analysis of Variance (PERMANOVA)®*
304 to quantify the strength and test the differences between water layers and body
305 sites according to their BGC class composition. For these analyses, we selected
306 a balanced subset of metagenomes from the TARA Oceans and HMP datasets
307 (63 and 216 metagenomes, respectively; see below). We performed a
308 PERMANOVA on the Bray-Curtis dissimilarity matrix, computed for the TARA
309 Oceans and HMP metagenome subsets as described above, to test the
310 differentiation between all groups simultaneously. Subsequently, we tested each
311 pair of groups independently, applying the Bonferroni correction for multiple
312 comparisons. To perform the PERMANOVA, we employed the adonis function of
313 the vegan R package, with the permutation parameter set to 999.

314

10
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315 To compare the domain ODU diversity of the NRPS adenylation (AMP-binding)
316 and condensation domains between the surface (SRF), deep chlorophyll
317 maximum (CDM) and mesopelagic (MES) water layers, we used a subset of 63
318 TARA Oceans metagenomes, representing the three water layers in 21 sampling
319 stations. We computed the ODU Shannon diversity in these metagenomes, using
320 routines implemented in the BiG-MEx domain-based diversity module.
321 Additionally, we used the same BiG-MEx module to examine the diversity of the
322 condensation domains in the metagenomes representing the three water layers
323 at sampling station TARA_085. To perform the ODU taxonomy annotation, we
324 used MMseqs2 taxonomy assignment function®*® based on UniRef100%
325 sequences (release-2018_08), with the e-value and sensitivity parameters set to
326 0.75 and 0.01, respectively. To compare the AMP-binding and condensation
327 ODU diversity between body sites, we applied a similar approach as described
328 above. We selected a subset of 216 metagenomes, 54 from each of the
329 supragingival plaque, tongue dorsum, buccal mucosa, and stool body sites. This
330 subset includes only the metagenomes obtained from individuals for whom the
331 four body sites were sampled. We applied BiG-MEx domain-based diversity
332  module to compute the ODU Shannon diversity estimates.

333 The Wilcoxon rank-sum tests (two-sided) to assess the significance of the
334 differentiations between metagenomes from different groups (i.e., water layers or
335 body sites), were performed with the wilcox.test function from the R package
336 stats®.

337

338 3. Data simulation, pre-processing and annotation

339 3.1 Construction of simulated metagenomic datasets

340 We created four simulated metagenomic datasets: Two of these approximate
341 the taxonomic composition found in marine environments (Marine-RM and
342 Marine-TM), and the other two, the taxonomic composition found in the human
343 oral cavity and stool body sites (Human-Oral and Human-Stool, respectively).
344 Each dataset is composed of 150 metagenomes, all of which have a size of
345 two million paired-end reads. To simulate a metagenomic dataset, we first

11
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346 created a dataset of reference genome sequences and the genome
347 abundance profiles to specify the metagenomes' taxonomic composition. That
348 is, we defined a hypothetical microbial community from which a metagenome
349 is simulated by specifying which reference genomes and the number of times
350 each genome occurs in the community.

351 To create the Marine-RM (Marine Reference Microbiome) genome dataset, we
352 downloaded all genomes belonging to the Ocean Microbial Reference Gene
353 Catalogue (OM-RGC)* having an assembly status of “Complete genome”
354 from RefSeq® (on December 7", 2017). If a given species did not have a
355 complete genome sequence available, we randomly selected another species
356 of the same genus. In total, we obtained 378 genomes corresponding to 363
357 species.

358 We applied a similar methodology to create the Marine-TM (Marine TARA

359 Microbiome) genome dataset. To determine the taxonomic composition, we
360 used the genus affiliation of TARA Oceans Operational Taxonomic Units
361 (OTUs)*. We only included 30 shared genera (randomly selected) between

362 TARA OTU and the Marine-TM genome dataset. This latter filtering was

363 necessary to reduce the taxonomic overlap, given that we used the Marine-TM
364 dataset to evaluate the performance of the BGC class abundance models
365 trained with the Marine-RM dataset (see section 4.3). For the remaining
366 genera for which there was at least one representative completely sequenced
367 genome, we downloaded a maximum of three genomes per genus from
368 RefSeq, irrespective of their species affiliation. This resulted in a database
369 composed of 344 genomes from 308 species.

370 To create the genome datasets for the Human-Oral and Human-Stool
371 metagenomic datasets, we used the genomes sequenced by the HMP derived
372 from samples of the oral cavity and stool body sites. Given that few of these
373 genomes were completely sequenced, we also included partially complete
374 sequenced genomes. We downloaded all genomes with an assembly status of
375 “Complete genome” or “Chromosome” or “Scaffold” generated by the HMP

376 from the GenBank database® (on March 15th, 2018). In the cases where a

12
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377 genome (sequenced by the HMP) had an assembly status lower than
378 “Scaffold”, we downloaded another genome with the same species affiliation
379 and an assembly status of “Complete genome” or “Chromosome”. The
380 Human-Oral and Human-Stool reference genome datasets contain 209, and
381 479 genomes representing 140 and 338 species, respectively.

382 To create the community abundance profile of a metagenomic dataset, we
383 randomly selected between 20 and 80 genomes from its genome reference
384 dataset and defined the number of times each genome occurs by sampling
385 from a lognormal distribution with mean 1 and standard deviation of 0.5.
386 Lastly, we simulated the metagenomes with MetaSim v0.9.5*". MetaSim was
387 set to generate paired-end reads with a length of 101bp, and a substitution
388 rate increasing constantly along each read from 1x10* to 9.9x102. With this
389 data, we aimed to simulate the short-read sequences generated by an Illumina
390 HiSeq 2000 platform.

391 Dataset statistics are shown in Supplementary Table 1. The assembly
392 accessions, organism names, taxids and NCBI FTP paths of the genome
393 sequences used to create the genome databases are found in the
394 Supplementary File 1. The workflow used to create the simulated
395 metagenomic datasets can be found at https://github.com/pereiramemo/BiG-
396 MEx/wiki/Data-simulation

397

398 3.2 Annotation of the simulated metagenomes

399 To estimate the reference BGC class abundances in a simulated
400 metagenome, we annotated the BGC classes in its reference genome

401 sequences with antiSMASH 3.0, mapped the paired-end reads to the identified
402 BGC sequences with BWA-MEM 0.7.12%, and filtered out read alignments
403 with a quality score lower than 10. Next, we removed read duplicates with
404 Picard tools v1.133 (http://broadinstitute.github.io/picard), and computed the

405 mean coverage with BEDtools v2.23*. The coverage estimates were assumed
406 to accurately reflect the BGC class coverage-based abundances, as they were
407 computed using complete BGC sequences, obtained from the genome
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408 sequences used to simulate the metagenomes. Additionally, we merged the
409 paired-end reads of the simulated metagenomes with VSEARCH 2.3.4,
410 predicted the ORFs with FragGeneScan-plus, and used BiG-MEx domain

411 identification module to annotate the BGC domains in the ORF’'s amino acid
412 sequences. The workflow to annotate the synthetic metagenomes can be
413 found at https://github.com/pereiramemo/BiG-MEXx/wiki/Data-simulation#7-bgc-
414 domain-annotation

416 4. Performance evaluation

417 4.1 BGC domain identification module

418 We compared the running time (wall-clock) of UProC (i.e., uproc-prot) against
419 a typical search using hmmsearch from the HMMER3 package®®, for the
420 identification of the 150 BGC domains included in BiG-MEX, in nine prokaryotic
421 metagenomes of the TARA Oceans dataset (Supplementary Table 8). To run
422 hmmsearch, we used the domain HMM profiles of antiSMASH. We annotated
423 the nine metagenomes with both these tools in four independent rounds, each
424 round using a different thread number (i.e., 4, 8, 16 and 32 threads). All
425 parameters of uproc-prot and hmmsearch were set to default. The annotations
426 were carried out on a workstation with Intel(R) Xeon(R) CPU E7-4820 v4
427 2.00GHz processors.

428

429 4.2 BGC domain-based diversity analysis module

430 We evaluated BiG-MEx Operation Domain Unit (ODU) diversity estimation
431 approach using NRPS adenylation (AMP-binding) and condensation, and PKS
432 ketosynthase and acyltransferase domains (PKS_KS and PKS_AT,

433 respectively). In this analysis, we used the BGC domain-based diversity
434 analysis module to compute the ODU diversity in the Marine-TM dataset, and
435 compared these estimates with the ODU diversity computed using the
436 complete domain sequences. To obtain the latter ODU diversity, we applied
437 the workflow implemented in BiG-MEXx, with the exception that instead of
438 assembling the domain sequences, we extracted these from the complete
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439 genome sequences used to simulate the Marine-TM metagenomes. We
440 annotated the four domains in the complete genome sequences with
441 hmmsearch using the antiSMASH HMM profiles.

442

443 4.3 BGC class abundance predictions

444 We used the BGC class models trained with the Marine-RM metagenomic
445 dataset to predict the BGC class abundances in the Marine-TM metagenomic

446 dataset. We applied the methodology described in section 3.2 to compute the

447 BGC class abundances in the Marine-TM metagenomes based on the
448 complete genome sequences (i.e., reference abundance). To predict the BGC
449 class abundances using machine-learning models, we annotated the Marine-
450 TM metagenomes with the BiG-MEx domain identification module and used
451 the domain abundance profiles as an input for the BiG-MEx BGC class
452 abundance prediction module. The evaluation consisted of computing the
453 Pearson correlation and median unsigned squared error (MUE) between the
454 predicted and reference BGC class abundances. The MUE was computed as
455 |A—A\/A, where A and A are the predicted and reference abundance,
456 respectively. To benchmark the machine-learning models, we compared the
457 BGC class abundance predictions against the abundance estimates based on
458 the assembly of 50 metagenomes of the Marine-TM dataset (assembly
459 approach). The assembly approach consisted of assembling the

460 metagenomes with MEGAHIT (default parameters), running BiG-MEx domain
461 identification module to select the contigs with potential BGC sequences,

462 annotating the selected contigs with antiSMASH 3.0, and estimating the BGC

463 class abundance following the same approach as described in section 3.2
464 (Supplementary Table 9). We computed the unsigned error, and the Pearson
465 correlation coefficient of BGC class abundance estimates obtained by the

466 assembly approach and predicted by BiG-MEXx, with respect to the reference

467 BGC class abundances. The analysis performed to evaluate the accuracy of
468 the models can be reproduced here: https://rawgit.com/pereiramemo/BiG-
469 MEx/master/machine_leaRning/bgcpred_workflow.html
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470

471 4.4 Evaluation of the BGC class abundance predictions in shallow
472 metagenomes

473 We selected 30 merged pre-processed TARA Oceans metagenomes and
474 randomly subsampled these to generate two sets of metagenomes, one with

475 100 million and the other with 5 million reads, using the seqtk v1.0 tool (https://
476 github.com/lh3/seqtk). We then annotated the BGC domains and predicted the

477 BGC class abundances in this data using BiG-MEXx (as described in sections 1
478 and 2), and compared the BGC class abundance predictions between the two
479 sets of metagenomes.

480

481 5. BiIG-MEx implementation

482 5.1 BGC domain identification module

483 BiG-MEx BGC domain identification module uses the UProC 1.2.0'® software
484 to classify short-read sequences using BGC domain references. To train
485 UProC for this purpose, we manually curated all amino acid sequences
486 matching 150 antiSMASH hidden Markov model profiles (HMMs)™. In this

487 task, we removed sequences shorter than 25 amino acids and checked for the
488 presence of overlaps between sequences of different HMM profiles. In
489 addition, we categorized multi-domain proteins into multiple families. For the
490 training process, we included a set of negative control profiles to assess the
491 ratio of false positive hits. Namely, we used the t2fas, fabH, btlfas, ftlfas

492 profiles as negative controls for the PKS_KS, t2ks, t2ks2, t2clf,
493 Chal_sti_synt N, Chal_sti_synt C, hglD and hglE profiles. Once we curated
494 the amino acid sequence data, we applied the SEG(mentation) low complexity
495 filter from the NCBI Blast+ 2.2 Suite** and created the UProC database. This
496 UProC database can be downloaded from

497 https://github.com/pereiramemo/BiG-MEx. Based on the identified reads

498 containing a BGC domain sequence, the module computes a count-based
499 abundance profile of BGC domains.
500
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501 5.2 BGC domain-based diversity analysis module

502 This module performs two different analyses: Operational Domain Unit (ODU)
503 diversity estimation and phylogenetic placement of domain sequences. The
504 pipeline to estimate the ODU diversity, analyses each domain independently,
505 and consists of the following steps: 1) Short-read sequences, where the
506 domain being studied was identified, are recruited to perform a targeted

507 assembly metaSPAdes 3.11* with default parameters; 2) The Open Reading

508 Frames (ORFS) in the resulting contigs are predicted with FragGeneScan-
509 Plus; 3) Domain sequences are identified within the ORF amino acid
510 sequences with hmmsearch from HMMER v3 and extracted; 4) Domain amino
511 acid sequences are clustered into ODUs using MMseqgs2* with the cascaded
512 clustering option and the sensitivity parameter set to 7.5; 5) Annotated
513 unassembled reads are mapped to the domain nucleotide sequences with

514 BWA-MEM 0.7.12, and the mean depth coverage is calculated using BEDtools

515 v2.23; 6) Based on this information, the coverage-based abundance of the
516 ODUs is computed and used to estimate an ODU alpha Shannon diversity. To
517 allow a comparison of the ODU diversity estimates between samples with
518 different sequencing depth, we include an option to estimate the diversity for
519 rarefied subsamples.

520 To perform the phylogenetic placement of domain sequences, we applied an
521 approach similar to NaPDoS". However, we extended the phylogenetic
522 placement analysis to 48 domains and included more comprehensive
523 reference trees, which are critical for the analysis of large metagenomic
524 samples. In detail, the phylogenetic placement consists of aligning the target
525 domain sequences to their corresponding reference multiple sequence

526 alignment (MSA) with MAFFT* (using --add option). Subsequently, the

527 extended MSA together with its reference tree are used as the input to run
528 pplacer®® (with parameters: --keep-at-most 10 and --discard-nonoverlapped; all
529 other parameters set to default). pplacer performs the phylogenetic placement
530 using the maximume-likelihood criteria and outputs the extended tree in Newick
531 and jplace formats*, and a table with statistics and information about the
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532 placement of each sequence (i.e., likelihood, posterior probability, expected
533 distance between placement locations (EDPL), pendant length, and edge
534 number). To visualise the phylogenetic placement, a tree figure is generated
535 using the ggtree R package®, where the coverage of the placed sequences is
536 mapped on their tree tips and used to scale a bubble representation. Besides
537 the phylogenetic placement, we included in this module an option to perform a
538 BLASTP search of the assembled domain sequences against the reference
539 domain sequences.

540 To construct the reference phylogenies, we first downloaded all the BGC
541 amino acid sequences from the MIBIiG database®'. We identified the domain
542 sequences with hmmsearch using the BGC domain HMM profiles from
543 antiSMASH. Subsequently, we extracted and clustered these sequences with
544 MMseqs2 to create a non-redundant dataset of amino acid sequences for
545 each domain. If the number of reference sequences identified in the MIBIG
546 database was greater than 500, we used a clustering threshold of 0.7 identity
547 at the amino acid level; otherwise, the threshold was set to 0.9; all other
548 parameters of MMseqs2 were set as specified previously. All domains with
549 less than 20 representative sequences were discarded. This resulted in a
550 subset of 48 domains that were considered for the phylogenetic
551 reconstructions. For each set of domain representative sequences, we

552 generated an MSA with MAFFT using the E-INS-I algorithm, removed

553 sequence outliers with OD-seq® and constructed a phylogenetic tree with
554 RAXML®3, To select the protein evolutionary model for the phylogenetic
555 reconstruction, we used the automatic model selection implemented in RAXML
556 with the maximum likelihood criterion. We used the GAMMA model of rate
557 heterogeneity and searched the tree space using the rapid hill-climbing
558 algorithm®*, starting from a maximum parsimony tree. For the sake of

559 reproducibility, we specified a random seed number (i.e., -p 12345). Finally,

560 we used RAXML to root the trees and compute the SH-like support scores®. In
561 Supplementary File 2, we provide for each domain phylogeny the number of
562 sequences and amino acid substitution model used, the mean, standard
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563 deviation, maximum and minimum cophenetic distances between sequences,
564 Faith’'s phylogenetic diversity?* and the name of its corresponding BGC class.
565

566 5.3 BGC class abundance prediction module

567 BiG-MEXx uses machine-learning models to predict the abundance of the BGC
568 classes, based on the counts of annotated domains in unassembled
569 metagenomes. Each model is class-specific and was trained using the
570 abundance of the BGC class and its corresponding protein domains, as the
571 response and predictor variables, respectively. We used the classification
572 rules defined in antiSMASH for the annotation of BGC classes, to determine
573 the protein domains used as predictor variables in each model. To model the
574 abundance of a given BGC class, we implemented a two-step zero-inflated
575 process. First, the presence or absence of the target BGC class is predicted
576 using a random forest (RF) binary classifier®. Second, a multiple linear

577 regression (MLR) is applied to predict the class abundance, but only if the

578 class was previously predicted as present. In the cases where the number of
579 zero values was lower than 10 or non-existent, we directly applied an MLR.
580 We trained the models using simulated metagenomic data (i.e., Marine-RM,
581 Human-Oral and Human-Stool datasets). The models predict a coverage-
582 based abundance since this was the response variable used in the training
583 process. The RF binary classification models were created with the
584 randomForest function of the randomForest R package®’, with the parameters
585 ntree set to 1000 (number of trees grown), nodesize set to 10 (minimum size
586 of terminal nodes), and mtry set to 1 (number of variables randomly sampled
587 as candidates at each split). For the MLR, we used the Im function of the stats
588 R package (https://www.R-project.org/) with default parameters.

589

590 Code availability
591 BIG-MEx is freely distributed wusing Docker container technology
592 (www.docker.com), under the GNU General Public License v3.0. It can be

593 downloaded from https://github.com/pereiramemo/BiG-MEX, where we also
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594 provide thorough documentation. Currently, we provide BGC class abundance
595 models targeting the marine environment, four different human body sites, and
596 the genus Streptomyces. To help users create their own BGC class abundance
597 models and compute the predictions, we developed the R package bgcpred:
598 https://github.com/pereiramemo/bgcpred. bgcpred is integrated in BiG-MEXx, and
599 is used to generate the BGC class abundance predictions.

600

601 Data availability

602 In Supplementary file 1, we provide the GenBank and RefSeq assembly
603 accessions for the genomes used to generate the simulated metagenomic
604 datasets. We provide the BGC class and domain abundance tables, obtained

605 from the simulated data, at https://github.com/pereiramemo/BiG-MEX/.
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Fig. 1 | BiG-MEXx analysis workflow. 1) BGC domain identification module. To annotate the BGC domains with UProC,
we created an UProC database including 150 domains, which originate from 44 different BGC classes. This database was
generated based on the amino acid sequences of antiSMASH hidden Markov model (HMM) profiles®. Using UProC
output, this module generates a count-based abundance profile of BGC domains; 2) BGC domain-based diversity analysis
module. Using the previously identified domains, this module performs a targeted assembly with metaSPAdes* to
reconstruct the domain sequences. Assembled domain sequences are clustered into Operational Domain Units, and the
number of ODUs and the coverage of the domain sequences within each ODU (used to approximate the abundance of
the ODU) are used to compute the ODU alpha diversity. The environmental reconstructed domain sequences are placed
onto reference phylogenetic trees with pplacer*® (maximum likelihood criteria). In this module, we include pre-computed
phylogenies for 48 domains, which are based on sequence data contained in the Minimum Information about a
Biosynthetic Gene cluster (MIBIiG)** database, allowing us to identify the relationships of query sequences with domains
from pathways of known function; 3) BGC class abundance prediction module. The domain abundance profiles are used
to predict the BGC class coverage-based abundance profiles using class-specific machine-learning models. These
models consist of a two-step process: First, the presence/absence of the BGC class is predicted using a random forest
(RF) classifier; Secondly, the abundance is predicted with a multiple linear regression (MLR) only if the class was

previously predicted as present.
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Fig. 2 | Evaluating and benchmarking the BGC abundance prediction models. (a) Scatter plots comparing the
reference and predicted abundances of the NRPS, terpene, T1PKS and T2PKS BGC classes. MUE: Median Unsigned
Error. The black, solid line represents the one-to-one relationship between the reference and predicted BGC class
abundances. The BGC class abundance models were trained with the Marine-RM metagenomes and used to predict the
abundances in the Marine-TM metagenomes. (b) Plots of the Pearson correlation coefficients (upper panel) and the
unsigned error distributions (lower panel) of the BGC class abundances predicted by the models and estimated by the
assembly approach, with respect to the reference abundances. In this comparison, we used 50 Marine-TM metagenomes.
For the sake of clarity, 12 outlying unsigned error values (3% of the total comparisons) were excluded from the plot. The
assembly approach consisted of the following tasks: 1) Assembling the metagenomes of the Marine-TM dataset; 2)
Selecting the contigs with potential BGC sequences using BiG-MEx domain identification module; 3) Annotating the contigs
with antiSMASH; 4) Mapping the short-read sequences to the identified BGC sequences; 5) Estimating the BGC class
abundances.
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Fig. 3 | BiG-MEx BGC class composition and domain-based diversity analysis in the TARA Oceans dataset. (a)
Principal Coordinates Analysis (PCoA) performed on a Bray-Curtis dissimilarity matrix of BGC class relative abundance
profiles of the 139 prokaryotic metagenomes of TARA Oceans. BGC class abundance profiles were generated with BiG-
MEx BGC class abundance module, using machine-learning models trained with the simulated Marine-RM metagenomic
dataset. The abbreviations SRF, DCM, MES, and MIX correspond to surface, deep chlorophyll maximum, mesopelagic,
and mixed epipelagic water layers, respectively. The boxplot in the bottom section of the panel shows the PCol value
distributions for the metagenomes from the SRF, DCM and MES water layers. The PCol axis differentiated the MES
water layer from the other two layers (Wilcoxon rank sum test; all p-values < 0.0001). (b) Bar plots showing the
distribution of the ODU Shannon alpha diversity indices for the AMP-binding and condensation domains (NRPSs). The
ODU diversity was computed for a match subset of 63 TARA Oceans metagenomes representing SRF, DCM, and MES
water layers in 21 sampling stations. The AMP-binding and Condensation ODU diversity estimates were significantly

different between the three water layers (pairwise Wilcoxon rank sum test; all p-values < 0.0001).
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Fig. 4 | BiG-MEx diversity analysis of condensation domains in three metagenomes from TARA Oceans sampling
station TARA_085 (a) Rarefaction curves of the Shannon alpha diversity indices generated by BiG-MEx domain-based
diversity analysis module, comparing the diversity of condensation ODUs in the metagenomes of the SRF, DCM, and MES
water layers. Condensation domain sequences were clustered into ODUs using a 75% amino acid identity threshold. The
diversity was computed using the number and abundance of distinct condensation ODUs. (b) Phylogenetic placement of the
condensation ODU representative sequences, as performed by the BiG-MEx domain-based diversity analysis module. The
SRF, DCM and MES had a phylogenetic diversity (Faith’s PD)* of 58.15, 114.98 and 304.88, respectively. The size and colour
of the bubbles on the leaves represent the ODU abundance and sample origin, respectively. (c) Detail of the clade contained in
the orange, hollow square in (c), including the most abundant ODU (obtained in the TARA_085_DCM_0_22-3 sample; indicated
with an orange arrow).
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