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Simple Summary: The landscape of infiltrating non-tumor cells in glioblastoma niches remains 

unclear. In this study, we explore the enrichment status of a total of 64 non-tumor cell types 

predicted by applying 540 gene signatures curated from literature and normalized enrichment 

score (NES) across four large gene expression profiling cohorts of glioblastoma with 967 cases. 

Based on non-tumor cell type-based enrichment status, GBMs in each cohort are classified into 

positive or negative immune response clusters, showing a statistically significant different 

overall survival. Astrocytes, macrophages, monocytes, NKTs, preadipocytes, smooth muscle 

cells, and MSC are identified as risk factors, as well as protector factors of CD8 T cells, CD8+ T 

cells, and plasma cells. Our results also find that immune system- and organogenesis-related GO 

terms are uniformly enriched in negative immune response clusters, whereas positive immune 

response clusters are enriched with GO terms concerning the nervous system. The mesenchymal 

differentiation is observed in the negative immune response clusters. Particularly, the high 

presence of macrophages in the negative immune response clusters is further validated using 

scRNA-seq analysis and IHC staining of GBMs from independent cohorts. 

 

Abstract: A comprehensive characterization of non-tumor cells in the niches of primary 

glioblastoma is not fully established yet. This study aims to present an overview of tumor-

infiltrating non-malignant cells in the complex microenvironment of glioblastoma with detailed 

characterizations of their prognostic effects. We curate 540 gene signatures covering a total of 64 

non-tumor cell types. Cell type-specific expression patterns are interrogated by normalized 

enrichment score (NES) across four large gene expression profiling cohorts of glioblastoma with 

a total number of 967 cases. The GBMs in each cohort are hierarchically clustered into negative 

or positive immune response classes with significantly different overall survival. Our results 
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show that astrocytes, macrophages, monocytes, NKTs, preadipocytes, smooth muscle cells, and 

MSC are risk factors, while CD8 T cells, CD8+ T cells, and plasma cells are protective factors. 

Moreover, we find that the immune system and organogenesis are uniformly enriched in negative 

immune response clusters, in contrast to the enrichment of nervous system in positive immune 

response clusters. Mesenchymal differentiation is also observed in the negative immune response 

clusters. High enrichment status of macrophages in negative immune response clusters are 

independently validated by analyzing scRNA-seq data from eight high-grade gliomas, revealing 

that negative immune response samples comprised 46.63% to 55.12% of macrophages, whereas 

positive immune response samples comprised only 1.70% to 8.12%, with IHC staining of 

samples from six short-term and six long-term survivors of GBMs confirming the results.  

 

Keywords: glioblastoma, tumor microenvironment, immunology, prognosis, tumor-infiltrating 

cells 
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1.Introduction 

            Gliomas originating from astrocytes, oligodendroglia, and ependymal cells account for 70% 

of all brain tumors [1] and are categorized into four types: grade I pilocytic astrocytoma and 

grade II astrocytoma are low-grade gliomas, whereas grade III anaplastic astrocytoma and grade 

IV glioblastoma multiform (GBM) are malignant tumors [2]. The latter two types of tumors have 

poor prognosis with a median survival rate of 1 year after diagnosis and a 2-year survival rate of 

only 12.7% to 19.8% according to the SEER database (https://seer.cancer.gov/data/). 

            Glioblastoma shows significant heterogeneity, making prognosis and treatment 

challenging. Categorization of gliomas previously focused on histological features [3]; however, 

characterization methods have shifted toward high-resolution molecular profiling, including 

identification of isocitrate dehydrogenase (IDH) mutation, co-deletion of chromosomal arms, 

O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and miR-181d 

expression [4]. Additionally, new stratifications have been proposed using gene expression 

profiles or specific gene mutations [5,6], methylation status [7,8], and the presence of 

neoantigens [9]. Numerous studies have focused on interpreting the RNA-seq profiles of gliomas 

in an attempt to elucidate their dynamics and mechanisms, with studies on secondary 

glioblastoma able to distinguish comprehensive transcriptome profiling in the malignant 

progression of human gliomas [10] and find critical clues of MET-related mutations [11] and 

oncogenic fusions [12]. The findings of these studies have markedly advanced the investigation 

of gliomas and facilitated prognostic and therapeutic developments.  

            The complexity of glioma tumor components and the immune microenvironment has 

attracted significant attention in recent years, with categorizations based on molecular profiling 

revealing tissue similarities between proneural, proliferative, and mesenchymal-type gliomas, 
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respectively [5]. Certain immune components, such as tumor-associated macrophages (TAMs), 

have been identified as regulators of the proneural-to-mesenchymal transition [13] and 

contributors to immunosuppression [14], thus leading to poor prognosis. However, a 

comprehensive characterization of non-tumor cells in the niches of primary glioblastoma has not 

been fully established. Investigations into the tumor components and immune microenvironment 

would help unravel the cross-talk between the immune system and cancer cells and allow 

determination of therapeutic targets for the development of novel cancer treatments. 

            In this study, we generated a comprehensive description of the infiltrating non-tumor cell 

landscape using four large-scale gene expression data cohorts of glioblastoma. This description 

is presented in the form of enrichment status according to the stratification of patients into two 

clusters (positive immune response and negative immune response) with significant differences 

in overall survival (OS). Additionally, we investigated the risk levels associated with immune 

cell types and the enrichment of Gene Ontology (GO) terms. In particular, we confirmed 

enrichment of a negative prognostic factor (macrophages) in scRNAseq data of high grade 

gliomas and in samples from GBM patients exhibiting short-term survival by 

immunohistochemical (IHC) staining.  

 

2. Methods 

2.1. Gene Expression and Clinical Data 

            Four cohorts of gene expression profiles of GBM tumor tissues were collected from 

Samsung Medical Center [9,15], The Cancer Genome Atlas (TCGA; RNA sequences) [16], 

REMBRANDT (mRNA microarray) [17], and TCGA (mRNA microarray) [18], respectively. 

Samples that were not diagnosed as GBM or did not include complete gene expression or clinical 
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data were removed, resulting in 75, 152, 181, and 559 samples in Cohorts 1, 2, 3, and 4, 

respectively. Tumor samples were obtained from 12 glioblastomas, including from six short-

term-survival and six long-term-survival patients. All research protocols and ethics comply with 

the Declaration of Helsinki. Sample collection and data analyses were approved by the Beijing 

Tiantan Hospital institutional review board (KY 2020-093-02), and written informed consent 

was obtained from each participant.  

 

2.2. Gene Signatures of Immune Cells 

            Gene signatures (n = 540) covering 64 cell types were collected from multiple sources 

[19-23]. The 64 cell types were further categorized into five groups: hematopoietic stem cells 

(HSCs) and hematopoietic cells (lymphoid and myeloid lineage), stromal cells, and others, as 

shown in Supplementary Data 1A and B.  

 

2.3. Generating a Normalized Enrichment Score (NES) for Estimating Cell-Enrichment Status 

            An NES for the Mann–Whitney–Wilcoxon gene set test was adapted to evaluate the 

enrichment status of cells [24]. The NES was determined as follows: 

𝑁𝐸𝑆 = 1 −
𝑈
𝑚𝑛

， 

𝑈 = 𝑛𝑚 +
𝑚(𝑚 + 1)

2
− 𝑇， 

where m is the number of genes in a gene set, n is the number of genes outside the gene set, and 

T is the sum of the ranks of the genes in the gene set [9]. 

            Given a gene signature, the gene expression data of a glioblastoma tumor sample were 

separated into two sections comprising genes expressed in the gene signature and the rest of the 
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genes, respectively. The Wilcoxon rank-sum test was then applied to calculate the NES. In this 

study, the NES value was used to quantify the probability that the expression of a gene in the 

gene set was greater than the expression of a gene outside of that set. 

 

2.4. Risk Level for Gene Signatures 

            Cox regression (proportional hazards regression) in the R was applied for every gene 

signature in each cohort. The protective factor was defined when the hazard ratio of a gene 

signature was <1, and the risk factor was defined when this was >1. Signatures with a p ≤ 0.05 

were defined as significantly associated with survival (valid signatures), with only valid 

signatures used for further analysis. If all valid signatures of one cell type were either protective 

or risk factors, they were defined as consistent factors, otherwise, inconsistent factors. 

 

2.5. Stratification of Glioblastoma Patients 

            Hierarchical clustering of GBMs were applied to z-score transformed NESs of these 

signatures using R. Euclidean distance and complete method were used for clustering, and 

heatmaps were drawn using the R: ‘pheatmap’. Kaplan–Meier survival analysis was performed 

using R: ‘survival’ and ‘survminer’.  

 

2.6. GO Enrichment Analysis 

            Gene Set Enrichment Analysis (GSEA) [25] were performed upon negative and positive 

immune response clusters using a total of 6166 GO terms from the Molecular Signatures 

Database (MSigDB) [26], including cellular component (cc), molecular function (mf), and 
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biological process (bp), followed by visualization through Cytoscape [27]. The results are shown 

in Supplementary Data 2A-D. 

 

2.7. Identification of Non-Transformed Cells from ScRNA-seq Data 

            The single-cell gene expression data used in this analysis were accessed from the Gene 

Expression Omnibus (accession: GSE103224) [28]. For scRNA-seq data, genes expressed in less 

than or equal to 10 cells were eliminated, followed by a moving average method [29] to 

determine chromosome expression patterns. The number of original molecules per cell was 

converted to log2(cpm + 1). The moving average used 100 gene lengths as the window, and the 

value for the gene in the center of the window was considered the average expression of the 

window. We used the Seurat package (v.3.0) [30,31] to analyze the screened data according to 

standard procedures. Amplification of chromosome 7 and loss of chromosome 10 were used to 

differentiate malignant (transformed) cells from non-malignant (non-transformed) cells [32].  

 

2.8. Determination of Non-Transformed Cell Types 

            scibet [33] was used to predict the identities of the non-transformed cells in the scRNA-

seq data. The trained model ‘30 major human cell types’ (http://scibet.cancer-

pku.cn/download_references.html), including 30 major human cell types from 42 scRNA-seq 

datasets, served as the reference for cell type identification. 

 

2.9. Stratification of Single-cell Gene Expression Samples 

            To determine whether a sample in the scRNA-seq data was positive or negative immune 

response, Spearman correlation analysis was applied between the sample in the scRNA-seq 
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cohort and the samples in the four gene expression profiling cohorts, respectively. Only positive 

correlations were retained, and the mean value of the correlation coefficients in each cohort was 

calculated. The fold change for a sample in the scRNA-seq data was calculated as the mean 

correlation coefficient of the sample in the scRNA-seq data involving samples in the positive 

immune response clusters divided by the mean correlation coefficients of the sample in the 

scRNA-seq data involving samples in the negative immune response clusters. The fold changes 

in the correlation coefficients calculated for the four cohorts were multiplied to determine the 

total fold change. A total fold change >1 indicated that the Spearman correlation coefficient was 

higher in the positive immune response clusters, and thus the sample in the scRNA-seq data was 

determined as positive immune response; otherwise, it was designated as negative immune 

response (Supplementary Data 3). 

 

2.10. IHC Staining for Macrophage Markers 

            Tumor samples used for IHC staining were obtained from 12 GBMs, including six short-

term-survival and six long-term-survival patients. The surgically removed tumor tissues were 

stored in formalin immediately after excision and embedded in paraffin within 3 days. IHC 

staining and image capture were performed as previously described [11]. The primary antibody 

for the detection of macrophage marker MS4A4A was obtained from Sigma-Aldrich 

(HPA029323; St. Louis, MO, USA), with staining was performed according to manufacturer 

instructions. The proportion of positive cells was counted using ImageJ software (v.1.52; 

National Institutes of Health, Bethesda, MD, USA). Clinical information and IHC staining 

results are summarized in Supplementary Data 4. 
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2.11. Statistical Analysis 

            P-values for NES distributions in negative immune response and positive immune 

response clusters were calculated using Student’s t test, and those for IHC staining percentages 

were generated from the Wilcoxon test. All analyses were conducted in R. P-values ≤ 0.05 were 

determined as statistical significance. 

 

3. Results 

3.1. Stratification of Glioblastomas Based on Cell Type-specific Enrichment Status 

            To determine the enrichment status of each cell type, we applied the NES algorithm using 

a total of 540 gene signatures covering 64 cell types (Supplementary Data 1A). The workflow for 

stratifying samples is shown in Figure 1A. The overview of the NES distribution landscape 

revealed that the enrichment status calculated from different gene signatures exhibited similar 

and stable trends for CD8 naïve T cells, common lymphoid progenitors (CLPs), epithelial cells, 

hepatocytes, HSCs, keratinocytes, lymphoid endothelial cells, neurons, natural killer T cells 

(NKTs), osteoblasts, sebocytes, and γΔT cells (Figures 1B and S1A).  

            Based on the enrichment status of the gene signatures correlated with OS (valid 

signatures), unsupervised hierarchical clustering stratified samples into two significantly 

different prognostic clusters among the four cohorts (p=0.025, p=0.015, p=0.0004 and 

p=0.00056 for cohort 1-4, respectively) (Figures 1C–F and S1B–E) (Table 1). Clusters with 

patients exhibiting long- and short-term OS were designated as positive and negative immune 

response, respectively. We discovered that negative immune response samples were 

characterized by enrichment of “stromal cells”, such as skeletal muscle cells and mesenchymal 
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stem cells (MSCs), whereas CD8 T cells were universally enriched in positive immune response 

samples. 

 

3.2. The Predicted Risk and Protective Landscape of Non-tumor Cells in The Glioblastoma 

Microenvironment 

            To understand the prognostic effect of different cell types, we estimated associations 

between the enrichment status of gene signatures and OS through Cox regression analysis across 

four gene expression profiling cohorts. In each cohort, statistically significant gene signatures 

with a hazard ratio >1 or <1 were defined as risk or protective factors, respectively. We found 

that risk effects consistently agreed with statistically significant gene signatures for given cell 

types, including activated dendritic cells (aDCs), astrocytes, class-switched memory (CSM) B 

cells, epithelial cells, fibroblasts, macrophages, M2 macrophages, monocytes, MSCs, NKTs, 

plasmacytoid (p)DCs, and preadipocytes. By contrast, CD8 naïve T cells, CD8 T cells, 

endothelial cells, eosinophils, megakaryocyte–erythroid progenitor cells, plasma cells, and 

regulatory T cells (Tregs) were consistently estimated as being protective. Additionally, 

basophils, B cells, CD8 central memory T cells, mast cells, multi-potent progenitor cells, 

memory B cells, naïve B cell, and T helper 1 (Th1) cells were predicted as being protective 

according to a majority of gene signatures across the four cohorts, whereas CD4 central memory 

T cells, chondrocytes, mesangial cells, pericytes, and smooth muscle cells were predicted as a 

risk by most of the gene signatures. Interestingly, the risk and protective effects of CD8 effector 

memory T cells, DCs, myocytes, NK cells, and skeletal muscle cells were inconsistent according 

to the different gene signatures (Figure 2A).  
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            Notably, we identified inconsistencies in some estimated risk or protective effects 

predicted by the gene signatures across the four cohorts. The prognostic effects of enrichment 

status estimated from one gene signature for basophils, B cells, pericytes, and Th1 cells were 

inconsistent among the four cohorts (Figure 2A and B); however, basophils, B cells, and 

pericytes were more likely to manifest an enrichment-dependent effect on survival time, with 

basophils and B cells being protective when highly enriched and pericytes presenting a risk when 

highly enriched. 

            The risk level landscape across statistically significant signatures showed consistency in 

risk level for certain cell types. Figure 2C shows the hazard ratios for cell types demonstrating 

consistent agreement in their prognostic effects across all corresponding signatures in at least 

two cohorts. Osteoblasts, MSCs, preadipocytes, adipocytes, pDCs, CSM B cells, and CLPs were 

consistent risk factors with relatively high hazard ratios in at least two cohorts. Conversely, 

common myeloid progenitors, CD4 naïve T cells, plasma cells, and CD4 T cells showed hazard 

ratios <1, suggesting potentially strong protective effects (Figure 2C). Figure 2D shows the 

group count of consistent risk levels. Astrocytes, preadipocytes, MSCs, monocytes, pDCs, NKTs, 

macrophages, M2 macrophages, fibroblasts, epithelial cells, CSM B cells, and aDCs were 

consistent risk factors appearing in at least two cohorts, with astrocytes being significantly 

negatively correlated with OS in all four cohorts. CD8 T cells, Tregs, plasma cells, MEPs, 

eosinophils, endothelial cells, and CD8 naïve T cells were also consistent risk factors, with CD8 

T cells most frequently identified in three cohorts; however, for risk factors identified in only 

two cohorts (i.e., Tregs), more evidence is needed to support these findings. 

 

3.3. Identification of Immune Dysregulation in the negative immune response Cluster 
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            We then performed GSEA for the four cohorts. Enrichment map analysis of dysregulated 

GO terms revealed that those related to the immune system, metabolism, and organogenesis were 

highly enriched in all four cohorts (Figures 3A, S2A-C, and Supplementary Data 2). Specifically, 

GO terms related to the immune system (defense response, cytokines, myeloid lineage, and 

lymphoid lineage cell regulation) were enriched in negative immune response clusters, 

suggesting uniform dysregulation of the immune response in negative immune response clusters. 

Interferon (IFN)-related GO terms were significantly enriched in the negative immune response 

group (Figure 3B), consistent with constitutive type I IFNs (IFN-α and IFN-β) facilitating 

glioma-related immune escape [34], unfavorable prognosis, chemotherapy resistance, and more 

aggressive immune reponse [35].  

            Activities associated with several interleukins (ILs), including IL-6, IL-8, and IL-10, 

were enriched in negative immune response clusters (Figure 3C), with IL-8 expression 

negatively correlated with GBMs survival and positively correlated with the expression of genes 

associated with the glioblastoma-initiating cell phenotype, as well as the possibility of GBM 

recurrence [36]. Additionally, IL-1β contributes to cancer cell stemness, invasiveness, and drug 

resistance in glioblastoma [37,38].  

            Moreover, we identified macrophage activation, differentiation, and chemotaxis as 

enriched activities in negative immune response clusters (Figure 3D), consistent with 

identification of macrophages as risk factors. Downregulation of major histocompatibility 

complex (MHC)-I and -II molecules is associated with glioma migration and invasion [39], with 

their altered expression associated with the negative immune response cluster (Figure 3E).  

            The majority of nervous system-associated GO terms (nervous system organogenesis in 

G1, nervous system organogenesis, neural function and synaptic in G2, and nervous system 
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organogenesis in G4) were enriched in the positive immune response cluster (Figure 3A, S2B 

and S2C), demonstrating that regulation of the nervous system was a shared feature in the 

positive immune response cluster. This agrees with the proneural subtype of gliomas categorized 

by molecular profiling, in that this subtype usually demonstrated tissue similarity with adult and 

fetal brain and biological processes related to neurogenesis [5]. Additionally, this glioma subtype 

is regarded as less malignant relative to other subtypes (e.g., proliferative and mesenchymal) [5]. 

 

3.4. Mesenchymal Differentiation Characterized in the negative immune response Cluster 

            Gliomas of the mesenchymal subtype are defined by high expression of chitinase 3-like 1 

and MET5, as well as a high frequency of neurofibromatosis type 1 (NF1) mutation/deletion and 

low levels of NF1 mRNA [40]. The negative immune response clusters defined by cell-

enrichment analysis shared an obvious similarity with this glioma subtype. Among the cell 

signatures applied to cell-enrichment analysis, 14 were categorized as stromal cells, including 

cells relevant to angiogenesis, muscle and bone development, and other components of 

connective tissue. Nine of 14 stromal cell types exhibited a significantly higher NES value in the 

negative immune response cluster than in the positive immune response cluster in at least three 

cohorts (Figure 4A–I). For the remaining five cell types, negative immune response clusters with 

skeletal muscle cells and endothelial cells showed higher NESs in three cohorts but distributed 

between two different signatures (Figure S2D and E). Lymphoid endothelial cells showed higher 

negative immune response-enrichment in one cohort, with no significant differences observed in 

other cohorts, and chondrocytes and adipocytes were more highly enriched in negative immune 

response clusters for two of the four cohorts. These results supported tissue similarities between 

negative immune response clusters and the mesenchymal subtype.  
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            Furthermore, we identified aspects related to mesenchymal differentiation in negative 

immune response clusters, with enrichment of activities related to tumor necrosis factor (TNF)-α 

and nuclear factor-kappaB (NF-κB) identified from three cohorts and all four cohorts (Figure 4J 

and K), respectively. Previous studies of glioma sphere cultures indicated that TNF-α promotes 

mouse embryonic stem cell differentiation accompanied by increased resistance to radiotherapy 

in an NF-κB-dependent manner [13]. Macrophages are also an important source of TNF-α 

secretion. 

 

3.5. ScRNA-seq and IHC Confirmation of The Negative Prognostic Effects of TAMs  

            To validate our findings, we collected scRNA-seq data for cell-component analysis. We 

classified all eight samples with available scRNA-seq data into negative or positive immune 

response clusters by calculating NES-based Spearman similarity between single-cell samples and 

bulk tumor samples (Supplementary Data 3). The results identified samples PJ016, PJ017, PJ032, 

and PJ048 as negative immune response and PJ018, PJ025, PJ032, and PJ035 as positive 

immune response.  

            We applied Seurat and copy number variation (CNV) analyses to distinguish non-

transformed cells from malignant transformed glioma cells in the scRNA-seq data. All HGGs, 

except PJ016, harbored clear amplification of chromosome 7 and loss of chromosome 10 (Figure 

S3A–H), consistent with transformed tissues demonstrating large-scale copy number alterations 

and aneuploidies [41,42], as well as glioblastoma often being accompanied with amplification of 

chromosome 7 and loss of chromosome 10 [39]. PJ016 was found apparent loss of chromosomes 

13 and 19, revealing that the cell population had indeed undergone transformation. 
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            The identities of non-transformed cells in the glioma microenvironment were then 

determined using Scibet [33] (Figure 5A–H). We found no immune cells in PJ016 or PJ048 

(Table 2), possibly due to the heterogeneity of different sampling areas. Those with a high 

percentage of macrophages (PJ017 and PJ032; 46.63% and 55.12%, respectively) belonged to 

the negative immune response cluster (Table 2), whereas samples with fewer macrophages 

(PJ018, PJ025, and PJ035; 2.28%, 1.70%, and 8.12%, respectively) overlapped with the positive 

immune response cluster (Table 2), confirming macrophage enrichment as a risk factor.  

            Moreover, we confirmed the negative prognosis associated with macrophages IHC 

staining for the macrophage marker MS4A4A in 12 glioblastoma samples, including six from 

short-term-survival and six from long-term-survival patients (Figures 5K and Supplementary 

Data 4). The short-term-survival samples showed a significantly higher percentage of MS4A4A-

positive cells relative to the six long-term-survival samples (p = 0.00051) (Figure 5I and J).  

 

4. Discussion 

            In this study, we generated a landscape of glioblastoma niches using four gene expression 

profiling cohorts of tumor tissues from GBMs based on the NES method. The patients in each 

cohort were divided into two categories (positive or negative immune response) according to 

hierarchical clustering analysis of cell type-based enrichment status and showing a significantly 

different survival (p < 0.05). The analysis revealed risk factors, including astrocytes, 

macrophages, monocytes, NKTs, preadipocytes, smooth muscle cells, and MSC, as well as 

protective factors, CD8 T cells, CD8+ T cells, and plasma cells. Additionally, GSEA 

demonstrated that immune system- and organogenesis-related GO terms were uniformly 

enriched in negative immune response clusters, whereas positive immune response clusters were 
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enriched in the nervous system. Moreover, significant signs of mesenchymal differentiation were 

observed in the negative immune response clusters, and validation using scRNA-seq analysis and 

IHC staining showed correlations between the presence of macrophages and negative immune 

response. 

            Potential mechanisms associated with specific cell types manifested consistent risk levels. 

Some cell types exhibited identical risk levels across the four cohorts and all gene expression 

signatures. Specifically, astrocytes were frequently observed as a consistent risk factor with a 

high hazard ratio. As an important component of the blood–brain barrier and the tripartite 

synaptic neural network, the normal physiological role of astrocytes involves promoting mutual 

communication with neurons. However, astrocytes can also develop into tumor cells and form 

astrocytomas. Given the heterogeneity of gliomas, the high frequency of astrocytes as a risk 

factor is explainable. Moreover, evidence suggests that tumor-reactive astrocytes can interact 

with glioma tumor cells and promote the development, invasion, and survival of gliomas by 

releasing different cytokines or regulating the entry and exit of calcium and hydrogen ions in cell 

channels [43]. 

            NKTs were also a consistent risk factor. miR-92a was reported to induce immune 

tolerance of NKTs to glioma cells [44]. Co-culture of glioma cells and NKTs showed miR-92a 

expressing in glioma cells played a key role in inducing the elevated expression of IL-6 and IL-

10 in NKTs [44]. In the present study, we found IL-6- and IL-10-related GO terms in the 

negative immune response cluster. Compared with NKTs cultured alone, the expression of 

antitumor molecules, including perforin, Fas ligand, and IFN-γ, was significantly reduced in 

NKTs co-cultured with glioma cells [44]. Moreover, IL-6+IL-10+ NKTs exhibit a weak ability 
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to induce apoptosis in glioma cells but have an immunosuppressive effect on CD8+ T cell 

activity [44]. 

            CD8 T cells play defensive roles against cancer cells, consistent with the risk levels 

generated in the present analysis. Serologic analysis of antigens using recombinant cDNA 

expression cloning (SEREX) identified several tumor-associated antigens capable of generating a 

specific response in a variety of human cancers, including malignant glioma [45,46]. Tumor-

related antigens can be recognized by cytotoxic CD8+ T cells in the context of tumors expressing 

MHC-I [47,48], suggesting that a T cell-dependent immune response might improve the outcome 

of glioma patients through an antigen-mediated immune response. This was supported by a 

clinical study of newly diagnosed glioblastoma patients that reported significantly attenuated 

CD8+ T cell infiltration in samples from long-survival patients (>403 days) relative to that in 

samples from short-survival patients (<95 days) [49]. These findings agreed with those of the 

present study showing that CD8+ T cells were categorized as a protective factor. 

            Some cell types exhibited inconsistent risk levels. In these cases, it is likely that other 

conditions caused a shift in risk levels (e.g., age, co-existence with other cells, or a combination 

of other clinical symptoms). Different signatures of the same cell type might display different 

risk levels, suggesting the impact of cell status. To further investigate this concept, a specific 

gene in each gene signature should be investigated. Other conditions, such as the presence of 

neoantigens [9], IDH mutation(s) [5,50], and MGMT methylation [8], can also provide insight 

into conditions causing a shift in risk levels. Furthermore, the data used in this study were from 

primary gliomas; therefore, comparisons between recurrent and primary glioma samples would 

provide additional information concerning dynamics in the glioma microenvironment.  
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            Myeloid lineage cells, such as monocytes and macrophages, were consistent risk factors 

in agreement with previously reported results [51]. These cells (i.e., TAMs) account for up to 40% 

of the total number of solid tumor cells [52]. Numerous studies report that the frequency of TAM 

detection is usually higher in tumors with a mesenchymal subtype and/or recurrent tumors [53]. 

Glioma stem cells are recently shown to release periostin, which accumulates in the surrounding 

environment of blood vessels and acts as an inducer of TAM chemotaxis through signaling via 

the integrin receptor αvβ3 [54]. Transforming growth factor (TGF)-β released by TAMs induces 

matrix metalloprotein-9 expression in glioblastoma stem cells, thereby increasing their 

invasiveness [55]. Furthermore, the supernatant from glioma stem cells (GSCs) inhibits the 

phagocytic activity of TAMs and induces IL-10 and TGF-β secretion [56]. 

            Ontogeny analysis revealed that macrophages in human GBM can be divided into either 

blood-derived or tissue-resident variants (i.e., microglia) [57]. These two ontogenies were also 

found in other types of cancer and displayed different prognostic effects. In mouse mammary 

carcinoma, a distinction was made between monocyte-derived TAMs and resident mammary 

tissue macrophages; it was found that only the former contributes to the suppression of antitumor 

cytotoxic T cell responses [58,59]. Normal naïve microglial cells can reduce the ability of human 

stem cells to acquire a spheroid morphology, thereby adversely affecting GSCs and inhibiting the 

growth of gliomas. However, another study suggested that microglial cells or monocytes derived 

from gliomas lack such antitumor potential [60]. scRNA-seq analysis of human gliomas showed 

that blood-derived TAMs upregulate immunosuppressive cytokines and demonstrate an altered 

metabolism relative to microglial TAMs and that the gene signature of blood-derived TAMs but 

not microglial TAMs correlates with significantly inferior survival in low-grade glioma [56]. 

Signatures of microglial TAMs were not included among the curated markers used for tumor 
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tissue analysis; however, scRNA-seq analysis showed that negative immune response samples 

comprised a significantly higher macrophage:microglia ratio than positive immune response 

samples (98 vs. 34.5, respectively) (Table 2). 

            This study has some limitations. The stratification in this study was based on hierarchical 

clustering, an advantage of which is that the batch difference in each cohort is considered. 

However, the trade-off is that all stratifications need to be conducted in a given cohort, meaning 

that individual samples cannot be stratified in this way unless adopting a new categorization 

standard for stratification of single-cell sequencing samples. Therefore, further investigations 

should consider designing a supervised machine learning method for stratification. Under such 

circumstances, the focus should be to initially filter features for classification. In the present 

study, Cox regression analysis showed that not all signatures exert significant effects on survival 

or prognosis. Furthermore, prior to application of supervised machine learning, determination of 

label values will need to be undertaken.  

             

5. Conclusions 

            In conclusion, we present a comprehensive characterization of non-tumor cells in the 

niches of primary glioblastoma by integrating four large cohorts of GBM gene expression data 

and 540 gene signatures covering 64 non-tumor cells types. We find that non-tumor cell type 

enrichment status are useful for stratifying glioblastomas into different prognostic groups 

(positive or negative immune response clusters). The negative immune response clusters are 

uniformly enriched with immune system- and organogenesis-related GO terms, whereas positive 

immune response clusters are enriched with the nervous system. The mesenchymal 

differentiation is also observed in the negative immune response clusters. Moreover, risk analysis 
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using cell components to determine glioma niches help interpret the impact of cell type on cancer 

prognosis. Astrocytes, macrophages, monocytes, NKTs, preadipocytes, smooth muscle cells, and 

MSC are found as risk factors, and CD8 T cells, CD8+ T cells, and plasma cells are protective 

factors. Particularly, the high presence of macrophages in the negative immune response clusters 

is validated using scRNA-seq analysis and IHC staining of GBMs from independent cohorts. 

Future investigations should focus on cell types with variable risk levels in order to elucidate the 

potential mechanisms involved in shifts in prognostic effects. Other stratification methods should 

be established and evaluated for categorizing samples individually rather than as groups. 
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Table 1. Hierarchical clustering results for the four cohorts. 

Cohort Sample Signature Cell type PIR NIR p Data source 

1 75 31 18 22 53 0.02499 Samsung Medical Center 

2 152 51 24 67 85 0.01462 TCGA (RNA-seq) 

3 181 57 24 60 121 0.0004 REMBRANDT (mRNA microarray) 

4 559 138 46 198 361 0.00056 TCGA (mRNA microarray) 

NIR, negative immune response; PIR, positive immune response; TCGA, The Cancer Genome Atlas. 
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Table 2. Summary of scRNA-seq analysis.  

Patient Age Sex Diagnosis Macrophage Microglial All 
Macrophage:All 

(%) 
Macrophage:Microglia Cluster 

PJ016 49 F Glioblastoma, WHO grade IV 0 0 3085 0 — NIR 

PJ017 62 M Glioblastoma, WHO grade IV 588 6 1261 46.63 98 NIR 

PJ018 65 M Glioblastoma, WHO grade IV 50 13 2197 2.28 3.85 PIR 

PJ025 74 M Glioblastoma, WHO grade IV 101 33 5924 1.70 3.06 PIR 

PJ030 56 F 
Anaplastic astrocytoma, 

WHO grade III 
258 108 3097 8.33 2.39 PIR 

PJ032 63 F Glioblastoma, recurrent 759 22 1377 55.12 34.5 NIR 

PJ035 50 M Glioblastoma, recurrent 306 232 3768 8.12 1.32 PIR 

PJ048 59 M Glioblastoma, WHO grade IV 0 0 3084 0 — NIR 

NIR, negative immune response; PIR, positive immune response; scRNA, single-cell RNA; WHO, World Health Organization.
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Figures 

 
Figure 1. NES-based stratification of patient survival. (A) Workflow of NES-based stratification 

and validation of survival time. (B) NES distribution of four gene expression profiling cohorts of 

tumor tissues from GBM patients. Cell types and cohorts are noted. (C–F) Kaplan–Meier 

survival curves of the NIR and PIR clusters in the four cohorts (PIR, orange; NIR, green). 

NES, normalized enrichment score; NIR, negative immune response; PIR, positive immune 

response. 
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Figure 2. Risk levels according to calculated NESs. (A) NES distribution of valid signatures as 

denoted by risk levels (risk factors, orange; protective factors, green). (B) Variety of NES 

distribution within signatures. ns, p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001. 

(C) Hazard ratio of consistent risk factors (>1, risk factor; <1, protective factor; ∆, mean value). 

(D) Group count of consistent risk factors. NES, normalized enrichment score; NIR, negative 

immune response; ns, not significant; PIR, positive immune response. 
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Figure 3. GO enrichment in clusters. Enrichment map of GO terms (selected according to p < 

0.05) aggregated by functions for cohorts (A) 2. Enrichments scores for GO terms (selected 

according to p < 0.05) associated with the immune-related (B) interferons, (C) interleukins, (D) 

macrophages, and (E) MHCs. GO, Gene Ontology; MHC, major histocompatibility complex. 
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Figure 4. NES distributions in NIR and PIR clusters. (A) Osteoblasts, (B) smooth muscle cells, 

(C) fibroblasts, (D) preadipocytes, (E) myocytes, (F) pericytes, (G) MSCs, (H) mesangial cells, 

and (I) endothelial cells. ns, p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001. 

Enrichment scores for GO terms associated with the mesenchymal differentiation-related 

cytokines (selected according to a p < 0.05) (J) NF-κB and (K) TNF-α. GO, Gene Ontology; 

MSC, mesenchymal stem cell; NES, normalized enrichment score; NF-κB, nuclear factor-

kappaB; NIR, negative immune response; PIR, positive immune response; TNF-α, tumor 

necrosis factor-α. 
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Figure 5. Cell type analysis using scRNA-seq data. (A–H) Cell type counts in scRNA-seq 

samples. (I) IHC staining of macrophages (NIR samples, upper; PIR samples, bottom). (J) 

Percentage of macrophages in NIR and PIR samples (according to staining for MS4A4A; scale 

bar: 100 μm). (K) Kaplan–Meier survival curves of NIR and PIR samples. IHC, 

immunohistochemical; LTS, long-term survival; NIR, negative immune response; PIR, positive 

immune response; scRNA, single-cell RNA; STS, short-term survival.  
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