bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427411; this version posted January 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Landscape of glioblastoma niches reveals the prognostic effects of

tumor-infiltrating cells

Zixuan Xiao'", Wei Zhang?*" Guanzhang Li**", Wendong Li*, Lin Li%, Ting Sun®, Yufei He®,
Guang Liu', Lu Wang', Xiaohan Han', Hao Wen', Yong Liu®, Yifan Chen®, Haoyu Wang®, Jing
Li*, Yubo Fan'*, Jing Zhang™*

! Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing
Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and
Medical Engineering, Beihang University, Beijing 100083, P. R. China

2 Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical
University, Beijing 100070, P.R. China

% Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
100070, P.R. China

T Z.X.X. and G.Z.L. contributed equally to this work.

*Correspondence: jz2716@buaa.edu.cn (J.Z.); yubofan@buaa.edu.cn (Y.B.F.); Tel.:
+8615810762065 (J.Z.); +861082339428 (Y.B.F.)

Running title: The prognostic landscape of glioblastoma niches


mailto:jz2716@buaa.edu.cn
mailto:yubofan@buaa.edu.cn
https://doi.org/10.1101/2021.01.20.427411
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427411; this version posted January 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Simple Summary: The landscape of infiltrating non-tumor cells in glioblastoma niches remains
unclear. In this study, we explore the enrichment status of a total of 64 non-tumor cell types
predicted by applying 540 gene signatures curated from literature and normalized enrichment
score (NES) across four large gene expression profiling cohorts of glioblastoma with 967 cases.
Based on non-tumor cell type-based enrichment status, GBMs in each cohort are classified into
positive or negative immune response clusters, showing a statistically significant different
overall survival. Astrocytes, macrophages, monocytes, NKTs, preadipocytes, smooth muscle
cells, and MSC are identified as risk factors, as well as protector factors of CD8 T cells, CD8+ T
cells, and plasma cells. Our results also find that immune system- and organogenesis-related GO
terms are uniformly enriched in negative immune response clusters, whereas positive immune
response clusters are enriched with GO terms concerning the nervous system. The mesenchymal
differentiation is observed in the negative immune response clusters. Particularly, the high
presence of macrophages in the negative immune response clusters is further validated using

scRNA-seq analysis and IHC staining of GBMs from independent cohorts.

Abstract: A comprehensive characterization of non-tumor cells in the niches of primary
glioblastoma is not fully established yet. This study aims to present an overview of tumor-
infiltrating non-malignant cells in the complex microenvironment of glioblastoma with detailed
characterizations of their prognostic effects. We curate 540 gene signatures covering a total of 64
non-tumor cell types. Cell type-specific expression patterns are interrogated by normalized
enrichment score (NES) across four large gene expression profiling cohorts of glioblastoma with
a total number of 967 cases. The GBMs in each cohort are hierarchically clustered into negative

or positive immune response classes with significantly different overall survival. Our results
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show that astrocytes, macrophages, monocytes, NKTs, preadipocytes, smooth muscle cells, and
MSC are risk factors, while CD8 T cells, CD8+ T cells, and plasma cells are protective factors.
Moreover, we find that the immune system and organogenesis are uniformly enriched in negative
immune response clusters, in contrast to the enrichment of nervous system in positive immune
response clusters. Mesenchymal differentiation is also observed in the negative immune response
clusters. High enrichment status of macrophages in negative immune response clusters are
independently validated by analyzing scCRNA-seq data from eight high-grade gliomas, revealing
that negative immune response samples comprised 46.63% to 55.12% of macrophages, whereas
positive immune response samples comprised only 1.70% to 8.12%, with IHC staining of

samples from six short-term and six long-term survivors of GBMs confirming the results.

Keywords: glioblastoma, tumor microenvironment, immunology, prognosis, tumor-infiltrating
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1.Introduction

Gliomas originating from astrocytes, oligodendroglia, and ependymal cells account for 70%
of all brain tumors [1] and are categorized into four types: grade | pilocytic astrocytoma and
grade Il astrocytoma are low-grade gliomas, whereas grade Il anaplastic astrocytoma and grade
IV glioblastoma multiform (GBM) are malignant tumors [2]. The latter two types of tumors have
poor prognosis with a median survival rate of 1 year after diagnosis and a 2-year survival rate of

only 12.7% to 19.8% according to the SEER database (https://seer.cancer.gov/data/).

Glioblastoma shows significant heterogeneity, making prognosis and treatment
challenging. Categorization of gliomas previously focused on histological features [3]; however,
characterization methods have shifted toward high-resolution molecular profiling, including
identification of isocitrate dehydrogenase (IDH) mutation, co-deletion of chromosomal arms,
O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and miR-181d
expression [4]. Additionally, new stratifications have been proposed using gene expression
profiles or specific gene mutations [5,6], methylation status [7,8], and the presence of
neoantigens [9]. Numerous studies have focused on interpreting the RNA-seq profiles of gliomas
in an attempt to elucidate their dynamics and mechanisms, with studies on secondary
glioblastoma able to distinguish comprehensive transcriptome profiling in the malignant
progression of human gliomas [10] and find critical clues of MET-related mutations [11] and
oncogenic fusions [12]. The findings of these studies have markedly advanced the investigation
of gliomas and facilitated prognostic and therapeutic developments.

The complexity of glioma tumor components and the immune microenvironment has
attracted significant attention in recent years, with categorizations based on molecular profiling

revealing tissue similarities between proneural, proliferative, and mesenchymal-type gliomas,
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respectively [5]. Certain immune components, such as tumor-associated macrophages (TAMS),
have been identified as regulators of the proneural-to-mesenchymal transition [13] and
contributors to immunosuppression [14], thus leading to poor prognosis. However, a
comprehensive characterization of non-tumor cells in the niches of primary glioblastoma has not
been fully established. Investigations into the tumor components and immune microenvironment
would help unravel the cross-talk between the immune system and cancer cells and allow
determination of therapeutic targets for the development of novel cancer treatments.

In this study, we generated a comprehensive description of the infiltrating non-tumor cell
landscape using four large-scale gene expression data cohorts of glioblastoma. This description
is presented in the form of enrichment status according to the stratification of patients into two
clusters (positive immune response and negative immune response) with significant differences
in overall survival (OS). Additionally, we investigated the risk levels associated with immune
cell types and the enrichment of Gene Ontology (GO) terms. In particular, we confirmed
enrichment of a negative prognostic factor (macrophages) in scRNAseq data of high grade
gliomas and in samples from GBM patients exhibiting short-term survival by

immunohistochemical (IHC) staining.

2. Methods
2.1. Gene Expression and Clinical Data

Four cohorts of gene expression profiles of GBM tumor tissues were collected from
Samsung Medical Center [9,15], The Cancer Genome Atlas (TCGA; RNA sequences) [16],
REMBRANDT (mRNA microarray) [17], and TCGA (mRNA microarray) [18], respectively.

Samples that were not diagnosed as GBM or did not include complete gene expression or clinical
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data were removed, resulting in 75, 152, 181, and 559 samples in Cohorts 1, 2, 3, and 4,
respectively. Tumor samples were obtained from 12 glioblastomas, including from six short-
term-survival and six long-term-survival patients. All research protocols and ethics comply with
the Declaration of Helsinki. Sample collection and data analyses were approved by the Beijing
Tiantan Hospital institutional review board (KY 2020-093-02), and written informed consent

was obtained from each participant.

2.2. Gene Signatures of Immune Cells

Gene signatures (n = 540) covering 64 cell types were collected from multiple sources
[19-23]. The 64 cell types were further categorized into five groups: hematopoietic stem cells
(HSCs) and hematopoietic cells (lymphoid and myeloid lineage), stromal cells, and others, as

shown in Supplementary Data 1A and B.

2.3. Generating a Normalized Enrichment Score (NES) for Estimating Cell-Enrichment Status
An NES for the Mann-Whitney—Wilcoxon gene set test was adapted to evaluate the

enrichment status of cells [24]. The NES was determined as follows:

U

NES:1__’

mn

m(m+ 1)
U=nm+T—T,

where m is the number of genes in a gene set, n is the number of genes outside the gene set, and
T is the sum of the ranks of the genes in the gene set [9].
Given a gene signature, the gene expression data of a glioblastoma tumor sample were

separated into two sections comprising genes expressed in the gene signature and the rest of the
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genes, respectively. The Wilcoxon rank-sum test was then applied to calculate the NES. In this
study, the NES value was used to quantify the probability that the expression of a gene in the

gene set was greater than the expression of a gene outside of that set.

2.4. Risk Level for Gene Signatures

Cox regression (proportional hazards regression) in the R was applied for every gene
signature in each cohort. The protective factor was defined when the hazard ratio of a gene
signature was <1, and the risk factor was defined when this was >1. Signatures with a p < 0.05
were defined as significantly associated with survival (valid signatures), with only valid
signatures used for further analysis. If all valid signatures of one cell type were either protective

or risk factors, they were defined as consistent factors, otherwise, inconsistent factors.

2.5. Stratification of Glioblastoma Patients

Hierarchical clustering of GBMs were applied to z-score transformed NESs of these
signatures using R. Euclidean distance and complete method were used for clustering, and
heatmaps were drawn using the R: ‘pheatmap’. Kaplan—Meier survival analysis was performed

using R: “survival’ and ‘survminer’.

2.6. GO Enrichment Analysis
Gene Set Enrichment Analysis (GSEA) [25] were performed upon negative and positive
immune response clusters using a total of 6166 GO terms from the Molecular Signatures

Database (MSigDB) [26], including cellular component (cc), molecular function (mf), and
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biological process (bp), followed by visualization through Cytoscape [27]. The results are shown

in Supplementary Data 2A-D.

2.7. Identification of Non-Transformed Cells from ScCRNA-seq Data

The single-cell gene expression data used in this analysis were accessed from the Gene
Expression Omnibus (accession: GSE103224) [28]. For scRNA-seq data, genes expressed in less
than or equal to 10 cells were eliminated, followed by a moving average method [29] to
determine chromosome expression patterns. The number of original molecules per cell was
converted to log(cpm + 1). The moving average used 100 gene lengths as the window, and the
value for the gene in the center of the window was considered the average expression of the
window. We used the Seurat package (v.3.0) [30,31] to analyze the screened data according to
standard procedures. Amplification of chromosome 7 and loss of chromosome 10 were used to

differentiate malignant (transformed) cells from non-malignant (non-transformed) cells [32].

2.8. Determination of Non-Transformed Cell Types

scibet [33] was used to predict the identities of the non-transformed cells in the SCRNA-
seq data. The trained model ‘30 major human cell types’ (http://scibet.cancer-
pku.cn/download_references.html), including 30 major human cell types from 42 scRNA-seq

datasets, served as the reference for cell type identification.

2.9. Stratification of Single-cell Gene Expression Samples
To determine whether a sample in the scRNA-seq data was positive or negative immune

response, Spearman correlation analysis was applied between the sample in the scRNA-seq
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cohort and the samples in the four gene expression profiling cohorts, respectively. Only positive
correlations were retained, and the mean value of the correlation coefficients in each cohort was
calculated. The fold change for a sample in the sScRNA-seq data was calculated as the mean
correlation coefficient of the sample in the scCRNA-seq data involving samples in the positive
immune response clusters divided by the mean correlation coefficients of the sample in the
scRNA-seq data involving samples in the negative immune response clusters. The fold changes
in the correlation coefficients calculated for the four cohorts were multiplied to determine the
total fold change. A total fold change >1 indicated that the Spearman correlation coefficient was
higher in the positive immune response clusters, and thus the sample in the ScRNA-seq data was
determined as positive immune response; otherwise, it was designated as negative immune

response (Supplementary Data 3).

2.10. IHC Staining for Macrophage Markers

Tumor samples used for IHC staining were obtained from 12 GBMs, including six short-
term-survival and six long-term-survival patients. The surgically removed tumor tissues were
stored in formalin immediately after excision and embedded in paraffin within 3 days. IHC
staining and image capture were performed as previously described [11]. The primary antibody
for the detection of macrophage marker MS4A4A was obtained from Sigma-Aldrich
(HPA029323; St. Louis, MO, USA), with staining was performed according to manufacturer
instructions. The proportion of positive cells was counted using ImageJ software (v.1.52;
National Institutes of Health, Bethesda, MD, USA). Clinical information and IHC staining

results are summarized in Supplementary Data 4.
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2.11. Statistical Analysis

P-values for NES distributions in negative immune response and positive immune
response clusters were calculated using Student’s t test, and those for IHC staining percentages
were generated from the Wilcoxon test. All analyses were conducted in R. P-values < 0.05 were

determined as statistical significance.

3. Results
3.1. Stratification of Glioblastomas Based on Cell Type-specific Enrichment Status

To determine the enrichment status of each cell type, we applied the NES algorithm using
a total of 540 gene signatures covering 64 cell types (Supplementary Data 1A). The workflow for
stratifying samples is shown in Figure 1A. The overview of the NES distribution landscape
revealed that the enrichment status calculated from different gene signatures exhibited similar
and stable trends for CD8 naive T cells, common lymphoid progenitors (CLPs), epithelial cells,
hepatocytes, HSCs, keratinocytes, lymphoid endothelial cells, neurons, natural killer T cells
(NKTs), osteoblasts, sebocytes, and YAT cells (Figures 1B and S1A).

Based on the enrichment status of the gene signatures correlated with OS (valid
signatures), unsupervised hierarchical clustering stratified samples into two significantly
different prognostic clusters among the four cohorts (p=0.025, p=0.015, p=0.0004 and
p=0.00056 for cohort 1-4, respectively) (Figures 1C-F and S1B-E) (Table 1). Clusters with
patients exhibiting long- and short-term OS were designated as positive and negative immune
response, respectively. We discovered that negative immune response samples were

characterized by enrichment of “stromal cells”, such as skeletal muscle cells and mesenchymal
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stem cells (MSCs), whereas CD8 T cells were universally enriched in positive immune response

samples.

3.2. The Predicted Risk and Protective Landscape of Non-tumor Cells in The Glioblastoma
Microenvironment

To understand the prognostic effect of different cell types, we estimated associations
between the enrichment status of gene signatures and OS through Cox regression analysis across
four gene expression profiling cohorts. In each cohort, statistically significant gene signatures
with a hazard ratio >1 or <1 were defined as risk or protective factors, respectively. We found
that risk effects consistently agreed with statistically significant gene signatures for given cell
types, including activated dendritic cells (aDCs), astrocytes, class-switched memory (CSM) B
cells, epithelial cells, fibroblasts, macrophages, M2 macrophages, monocytes, MSCs, NKTs,
plasmacytoid (p)DCs, and preadipocytes. By contrast, CD8 naive T cells, CD8 T cells,
endothelial cells, eosinophils, megakaryocyte—erythroid progenitor cells, plasma cells, and
regulatory T cells (Tregs) were consistently estimated as being protective. Additionally,
basophils, B cells, CD8 central memory T cells, mast cells, multi-potent progenitor cells,
memory B cells, naive B cell, and T helper 1 (Thl) cells were predicted as being protective
according to a majority of gene signatures across the four cohorts, whereas CD4 central memory
T cells, chondrocytes, mesangial cells, pericytes, and smooth muscle cells were predicted as a
risk by most of the gene signatures. Interestingly, the risk and protective effects of CD8 effector
memory T cells, DCs, myocytes, NK cells, and skeletal muscle cells were inconsistent according

to the different gene signatures (Figure 2A).
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Notably, we identified inconsistencies in some estimated risk or protective effects
predicted by the gene signatures across the four cohorts. The prognostic effects of enrichment
status estimated from one gene signature for basophils, B cells, pericytes, and Thl cells were
inconsistent among the four cohorts (Figure 2A and B); however, basophils, B cells, and
pericytes were more likely to manifest an enrichment-dependent effect on survival time, with
basophils and B cells being protective when highly enriched and pericytes presenting a risk when
highly enriched.

The risk level landscape across statistically significant signatures showed consistency in
risk level for certain cell types. Figure 2C shows the hazard ratios for cell types demonstrating
consistent agreement in their prognostic effects across all corresponding signatures in at least
two cohorts. Osteoblasts, MSCs, preadipocytes, adipocytes, pDCs, CSM B cells, and CLPs were
consistent risk factors with relatively high hazard ratios in at least two cohorts. Conversely,
common myeloid progenitors, CD4 naive T cells, plasma cells, and CD4 T cells showed hazard
ratios <1, suggesting potentially strong protective effects (Figure 2C). Figure 2D shows the
group count of consistent risk levels. Astrocytes, preadipocytes, MSCs, monocytes, pDCs, NKTs,
macrophages, M2 macrophages, fibroblasts, epithelial cells, CSM B cells, and aDCs were
consistent risk factors appearing in at least two cohorts, with astrocytes being significantly
negatively correlated with OS in all four cohorts. CD8 T cells, Tregs, plasma cells, MEPs,
eosinophils, endothelial cells, and CD8 naive T cells were also consistent risk factors, with CD8
T cells most frequently identified in three cohorts; however, for risk factors identified in only

two cohorts (i.e., Tregs), more evidence is needed to support these findings.

3.3. Identification of Immune Dysregulation in the negative immune response Cluster
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We then performed GSEA for the four cohorts. Enrichment map analysis of dysregulated
GO terms revealed that those related to the immune system, metabolism, and organogenesis were
highly enriched in all four cohorts (Figures 3A, S2A-C, and Supplementary Data 2). Specifically,
GO terms related to the immune system (defense response, cytokines, myeloid lineage, and
lymphoid lineage cell regulation) were enriched in negative immune response clusters,
suggesting uniform dysregulation of the immune response in negative immune response clusters.
Interferon (IFN)-related GO terms were significantly enriched in the negative immune response
group (Figure 3B), consistent with constitutive type | IFNs (IFN-a and IFN-B) facilitating
glioma-related immune escape [34], unfavorable prognosis, chemotherapy resistance, and more
aggressive immune reponse [35].

Activities associated with several interleukins (ILs), including IL-6, IL-8, and IL-10,
were enriched in negative immune response clusters (Figure 3C), with IL-8 expression
negatively correlated with GBMs survival and positively correlated with the expression of genes
associated with the glioblastoma-initiating cell phenotype, as well as the possibility of GBM
recurrence [36]. Additionally, IL-1p contributes to cancer cell stemness, invasiveness, and drug
resistance in glioblastoma [37,38].

Moreover, we identified macrophage activation, differentiation, and chemotaxis as
enriched activities in negative immune response clusters (Figure 3D), consistent with
identification of macrophages as risk factors. Downregulation of major histocompatibility
complex (MHC)-I and -11 molecules is associated with glioma migration and invasion [39], with
their altered expression associated with the negative immune response cluster (Figure 3E).

The majority of nervous system-associated GO terms (nervous system organogenesis in

G1, nervous system organogenesis, neural function and synaptic in G2, and nervous system
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organogenesis in G4) were enriched in the positive immune response cluster (Figure 3A, S2B
and S2C), demonstrating that regulation of the nervous system was a shared feature in the
positive immune response cluster. This agrees with the proneural subtype of gliomas categorized
by molecular profiling, in that this subtype usually demonstrated tissue similarity with adult and
fetal brain and biological processes related to neurogenesis [5]. Additionally, this glioma subtype

is regarded as less malignant relative to other subtypes (e.g., proliferative and mesenchymal) [5].

3.4. Mesenchymal Differentiation Characterized in the negative immune response Cluster
Gliomas of the mesenchymal subtype are defined by high expression of chitinase 3-like 1
and METS5, as well as a high frequency of neurofibromatosis type 1 (NF1) mutation/deletion and
low levels of NF1 mRNA [40]. The negative immune response clusters defined by cell-
enrichment analysis shared an obvious similarity with this glioma subtype. Among the cell
signatures applied to cell-enrichment analysis, 14 were categorized as stromal cells, including
cells relevant to angiogenesis, muscle and bone development, and other components of
connective tissue. Nine of 14 stromal cell types exhibited a significantly higher NES value in the
negative immune response cluster than in the positive immune response cluster in at least three
cohorts (Figure 4A-1). For the remaining five cell types, negative immune response clusters with
skeletal muscle cells and endothelial cells showed higher NESs in three cohorts but distributed
between two different signatures (Figure S2D and E). Lymphoid endothelial cells showed higher
negative immune response-enrichment in one cohort, with no significant differences observed in
other cohorts, and chondrocytes and adipocytes were more highly enriched in negative immune
response clusters for two of the four cohorts. These results supported tissue similarities between

negative immune response clusters and the mesenchymal subtype.
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Furthermore, we identified aspects related to mesenchymal differentiation in negative
immune response clusters, with enrichment of activities related to tumor necrosis factor (TNF)-a
and nuclear factor-kappaB (NF-kB) identified from three cohorts and all four cohorts (Figure 4J
and K), respectively. Previous studies of glioma sphere cultures indicated that TNF-a promotes
mouse embryonic stem cell differentiation accompanied by increased resistance to radiotherapy
in an NF-xB-dependent manner [13]. Macrophages are also an important source of TNF-a

secretion.

3.5. ScCRNA-seq and IHC Confirmation of The Negative Prognostic Effects of TAMs

To validate our findings, we collected scRNA-seq data for cell-component analysis. We
classified all eight samples with available scRNA-seq data into negative or positive immune
response clusters by calculating NES-based Spearman similarity between single-cell samples and
bulk tumor samples (Supplementary Data 3). The results identified samples PJ016, PJ017, PJ032,
and PJ048 as negative immune response and PJ018, PJ025, PJ032, and PJO35 as positive
immune response.

We applied Seurat and copy number variation (CNV) analyses to distinguish non-
transformed cells from malignant transformed glioma cells in the scRNA-seq data. All HGGs,
except PJO16, harbored clear amplification of chromosome 7 and loss of chromosome 10 (Figure
S3A-H), consistent with transformed tissues demonstrating large-scale copy number alterations
and aneuploidies [41,42], as well as glioblastoma often being accompanied with amplification of
chromosome 7 and loss of chromosome 10 [39]. PJ016 was found apparent loss of chromosomes

13 and 19, revealing that the cell population had indeed undergone transformation.
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The identities of non-transformed cells in the glioma microenvironment were then
determined using Scibet [33] (Figure 5A-H). We found no immune cells in PJ016 or PJ048
(Table 2), possibly due to the heterogeneity of different sampling areas. Those with a high
percentage of macrophages (PJO17 and PJ032; 46.63% and 55.12%, respectively) belonged to
the negative immune response cluster (Table 2), whereas samples with fewer macrophages
(PJ018, PJ025, and PJ035; 2.28%, 1.70%, and 8.12%, respectively) overlapped with the positive
immune response cluster (Table 2), confirming macrophage enrichment as a risk factor.

Moreover, we confirmed the negative prognosis associated with macrophages IHC
staining for the macrophage marker MS4A4A in 12 glioblastoma samples, including six from
short-term-survival and six from long-term-survival patients (Figures 5K and Supplementary
Data 4). The short-term-survival samples showed a significantly higher percentage of MS4A4A-

positive cells relative to the six long-term-survival samples (p = 0.00051) (Figure 51 and J).

4. Discussion

In this study, we generated a landscape of glioblastoma niches using four gene expression
profiling cohorts of tumor tissues from GBMs based on the NES method. The patients in each
cohort were divided into two categories (positive or negative immune response) according to
hierarchical clustering analysis of cell type-based enrichment status and showing a significantly
different survival (p < 0.05). The analysis revealed risk factors, including astrocytes,
macrophages, monocytes, NKTs, preadipocytes, smooth muscle cells, and MSC, as well as
protective factors, CD8 T cells, CD8+ T cells, and plasma cells. Additionally, GSEA
demonstrated that immune system- and organogenesis-related GO terms were uniformly

enriched in negative immune response clusters, whereas positive immune response clusters were
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enriched in the nervous system. Moreover, significant signs of mesenchymal differentiation were
observed in the negative immune response clusters, and validation using SCRNA-seq analysis and
IHC staining showed correlations between the presence of macrophages and negative immune
response.

Potential mechanisms associated with specific cell types manifested consistent risk levels.
Some cell types exhibited identical risk levels across the four cohorts and all gene expression
signatures. Specifically, astrocytes were frequently observed as a consistent risk factor with a
high hazard ratio. As an important component of the blood-brain barrier and the tripartite
synaptic neural network, the normal physiological role of astrocytes involves promoting mutual
communication with neurons. However, astrocytes can also develop into tumor cells and form
astrocytomas. Given the heterogeneity of gliomas, the high frequency of astrocytes as a risk
factor is explainable. Moreover, evidence suggests that tumor-reactive astrocytes can interact
with glioma tumor cells and promote the development, invasion, and survival of gliomas by
releasing different cytokines or regulating the entry and exit of calcium and hydrogen ions in cell
channels [43].

NKTs were also a consistent risk factor. miR-92a was reported to induce immune
tolerance of NKTs to glioma cells [44]. Co-culture of glioma cells and NKTs showed miR-92a
expressing in glioma cells played a key role in inducing the elevated expression of IL-6 and IL-
10 in NKTs [44]. In the present study, we found IL-6- and IL-10-related GO terms in the
negative immune response cluster. Compared with NKTs cultured alone, the expression of
antitumor molecules, including perforin, Fas ligand, and IFN-y, was significantly reduced in

NKTs co-cultured with glioma cells [44]. Moreover, IL-6+IL-10+ NKTs exhibit a weak ability
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to induce apoptosis in glioma cells but have an immunosuppressive effect on CD8+ T cell
activity [44].

CD8 T cells play defensive roles against cancer cells, consistent with the risk levels
generated in the present analysis. Serologic analysis of antigens using recombinant cDNA
expression cloning (SEREX) identified several tumor-associated antigens capable of generating a
specific response in a variety of human cancers, including malignant glioma [45,46]. Tumor-
related antigens can be recognized by cytotoxic CD8+ T cells in the context of tumors expressing
MHC-I [47,48], suggesting that a T cell-dependent immune response might improve the outcome
of glioma patients through an antigen-mediated immune response. This was supported by a
clinical study of newly diagnosed glioblastoma patients that reported significantly attenuated
CD8+ T cell infiltration in samples from long-survival patients (>403 days) relative to that in
samples from short-survival patients (<95 days) [49]. These findings agreed with those of the
present study showing that CD8+ T cells were categorized as a protective factor.

Some cell types exhibited inconsistent risk levels. In these cases, it is likely that other
conditions caused a shift in risk levels (e.g., age, co-existence with other cells, or a combination
of other clinical symptoms). Different signatures of the same cell type might display different
risk levels, suggesting the impact of cell status. To further investigate this concept, a specific
gene in each gene signature should be investigated. Other conditions, such as the presence of
neoantigens [9], IDH mutation(s) [5,50], and MGMT methylation [8], can also provide insight
into conditions causing a shift in risk levels. Furthermore, the data used in this study were from
primary gliomas; therefore, comparisons between recurrent and primary glioma samples would

provide additional information concerning dynamics in the glioma microenvironment.
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Myeloid lineage cells, such as monocytes and macrophages, were consistent risk factors
in agreement with previously reported results [51]. These cells (i.e., TAMS) account for up to 40%
of the total number of solid tumor cells [52]. Numerous studies report that the frequency of TAM
detection is usually higher in tumors with a mesenchymal subtype and/or recurrent tumors [53].
Glioma stem cells are recently shown to release periostin, which accumulates in the surrounding
environment of blood vessels and acts as an inducer of TAM chemotaxis through signaling via
the integrin receptor avp3 [54]. Transforming growth factor (TGF)-p released by TAMs induces
matrix metalloprotein-9 expression in glioblastoma stem cells, thereby increasing their
invasiveness [55]. Furthermore, the supernatant from glioma stem cells (GSCs) inhibits the
phagocytic activity of TAMs and induces IL-10 and TGF-f secretion [56].

Ontogeny analysis revealed that macrophages in human GBM can be divided into either
blood-derived or tissue-resident variants (i.e., microglia) [57]. These two ontogenies were also
found in other types of cancer and displayed different prognostic effects. In mouse mammary
carcinoma, a distinction was made between monocyte-derived TAMs and resident mammary
tissue macrophages; it was found that only the former contributes to the suppression of antitumor
cytotoxic T cell responses [58,59]. Normal naive microglial cells can reduce the ability of human
stem cells to acquire a spheroid morphology, thereby adversely affecting GSCs and inhibiting the
growth of gliomas. However, another study suggested that microglial cells or monocytes derived
from gliomas lack such antitumor potential [60]. sScRNA-seq analysis of human gliomas showed
that blood-derived TAMs upregulate immunosuppressive cytokines and demonstrate an altered
metabolism relative to microglial TAMs and that the gene signature of blood-derived TAMSs but
not microglial TAMs correlates with significantly inferior survival in low-grade glioma [56].

Signatures of microglial TAMs were not included among the curated markers used for tumor
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tissue analysis; however, sScCRNA-seq analysis showed that negative immune response samples
comprised a significantly higher macrophage:microglia ratio than positive immune response
samples (98 vs. 34.5, respectively) (Table 2).

This study has some limitations. The stratification in this study was based on hierarchical
clustering, an advantage of which is that the batch difference in each cohort is considered.
However, the trade-off is that all stratifications need to be conducted in a given cohort, meaning
that individual samples cannot be stratified in this way unless adopting a new categorization
standard for stratification of single-cell sequencing samples. Therefore, further investigations
should consider designing a supervised machine learning method for stratification. Under such
circumstances, the focus should be to initially filter features for classification. In the present
study, Cox regression analysis showed that not all signatures exert significant effects on survival
or prognosis. Furthermore, prior to application of supervised machine learning, determination of

label values will need to be undertaken.

5. Conclusions

In conclusion, we present a comprehensive characterization of non-tumor cells in the
niches of primary glioblastoma by integrating four large cohorts of GBM gene expression data
and 540 gene signatures covering 64 non-tumor cells types. We find that non-tumor cell type
enrichment status are useful for stratifying glioblastomas into different prognostic groups
(positive or negative immune response clusters). The negative immune response clusters are
uniformly enriched with immune system- and organogenesis-related GO terms, whereas positive
immune response clusters are enriched with the nervous system. The mesenchymal

differentiation is also observed in the negative immune response clusters. Moreover, risk analysis
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using cell components to determine glioma niches help interpret the impact of cell type on cancer
prognosis. Astrocytes, macrophages, monocytes, NKTs, preadipocytes, smooth muscle cells, and
MSC are found as risk factors, and CD8 T cells, CD8+ T cells, and plasma cells are protective
factors. Particularly, the high presence of macrophages in the negative immune response clusters
is validated using scRNA-seq analysis and IHC staining of GBMs from independent cohorts.
Future investigations should focus on cell types with variable risk levels in order to elucidate the
potential mechanisms involved in shifts in prognostic effects. Other stratification methods should

be established and evaluated for categorizing samples individually rather than as groups.
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Table 1. Hierarchical clustering results for the four cohorts.

Cohort Sample Signature  Celltype PIR NIR p Data source

1 75 31 18 22 53 0.02499 Samsung Medical Center

2 152 51 24 67 85 0.01462  TCGA (RNA-seq)

3 181 57 24 60 121 0.0004 REMBRANDT (mRNA microarray)
4 559 138 46 198 361 0.00056 TCGA (mRNA microarray)

NIR, negative immune response; PIR, positive immune response; TCGA, The Cancer Genome Atlas.
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Table 2. Summary of sScRNA-seq analysis.

Patient

Age Sex Diagnosis

Macrophage

Microglial

All

Macrophage:All

Macrophage:Microglia

Cluster

(%)
PJ016 49 F Glioblastoma, WHO grade IV 0 0 3085 0 — NIR
PJ017 62 M  Glioblastoma, WHO grade IV 588 6 1261 46.63 98 NIR
PJ018 65 M  Glioblastoma, WHO grade IV 50 13 2197 2.28 3.85 PIR
PJ025 74 M  Glioblastoma, WHO grade IV 101 33 5924 1.70 3.06 PIR
PJO30 56 F Anaplastic astrocytoma, 258 108 3097 8.33 2.39 PIR
WHO grade 111
PJ032 63 F Glioblastoma, recurrent 759 22 1377 55.12 34.5 NIR
PJ035 50 M  Glioblastoma, recurrent 306 232 3768 8.12 1.32 PIR
PJ048 59 M  Glioblastoma, WHO grade IV 0 0 3084 O — NIR

NIR, negative immune response; PIR, positive immune response; scCRNA, single-cell RNA; WHO, World Health Organization.
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Figure 1. NES-based stratification of patient survival. (A) Workflow of NES-based stratification
and validation of survival time. (B) NES distribution of four gene expression profiling cohorts of
tumor tissues from GBM patients. Cell types and cohorts are noted. (C-F) Kaplan-Meier
survival curves of the NIR and PIR clusters in the four cohorts (PIR, orange; NIR, green).

NES, normalized enrichment score; NIR, negative immune response; PIR, positive immune
response.

31


https://doi.org/10.1101/2021.01.20.427411
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427411; this version posted January 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A NES Distributions in Risk Level B Variety within Signature
abC Astrocytes Basoph\ls Bcells CD4 Tem CD8 naive Tcells  CD8 Tcells Basophils_FANTOM_3

0 75 o o

050- #‘-“‘ 0"‘” Vel § - e b 06"

.............. f I | I 1 I 1 0.4- ‘
_ CcD8Tem CD8 Tem Chondrocyies Switched memory DC Endothelial cells  Eosinophils 0.2 1 "

&?g, + Beells .

0I- ¥ wese " g+t e 'S . - S Beells

0.256° - et 06-

Epithelial cells Fibroblasts Macrophages ~ Macrophages M2 Mast cells Memory Bcells MEP 0.4- _.‘,

(1]?2: : ‘ -0’ Vooe ’ ?*";:’f:” ' ; : . y < 0.2;

050 ARSEEEEN IENANETT ARSI N bt R A |
ﬂ ) + ........................................... ' % Pericytes_ FANTOM_3
z 1.00- Mesangial cells ,;\do'nocytes ’ MPP MSC Myocytes Naive Beells ’ Nch 06- e

0.75° e b St <+ 0.4 il -

050" § & -d ! + + i T

Z22L) + ‘. t =F o

1.00- NKT pDC Pericytes Plasma cells Preadipocytes  Skeletal muscle  Smooth musc‘\e— Thi_cells

0.75- - P -

050 - ‘Y’¢ e . — t 4 1 06" g™

e * 0.4-
0.2-
Th1 cell T
1 00 = == B Protective | P
Risk
050 { L 4 3 +444¢ B Risk B rs
,,,,,, . Gene signature
Gene signature
c Consistent Risk Factor Hazard Ratio Consistent Risk Factor Cohort Count
Osteoblast. L)
MSC- [T A ) ll Ao
Preadipocyfes. " [Ty
2"':’“%%3 Vg b CD8 Teells | mmmmn Astrocytes | Emmm—
strocytes L ) L )
Classswitched memory Bt(::etla- [ £ 1 Tregs | I— Pread\poch:tseg I—
i ] Plasma cells| I I
Epithelial cells- e
plglgno&yiets- sl o NEP/ m— Monocytes | Emmmm—
Macmpﬂargoesaﬁaz- AR Eosinophils | I il?(? ——
Hepat NtKT- e Endethelial cells| NN fS—
lep: OCVSCS;_ TeA B Macrophages M2 - mm—
Melanocytes CD8 naive Tcells | IN_— Macrophages | mmm—
Mac&oeegggggwl\g- y Pro Beells{ I ‘Flbr‘oblasls [r—
Macr hages. snliss Neurons | I Epithelial cells | mum—
Neut?:gh?\il Mv Endothelial cells; Il Classswitched memory Beells { Iu—
Neurons- Ly Endothelial cells{ aDC |
Erythrocy1es: HsC! Sebocytes | .
figg GMP{ Osteoblast |
 Tregs: Erythrocytes | Neutrophils {
Ly Endothelial cells- e
’ Endotholhal als. GMP) - M Mianomnj: —
ndothelial cells- acrophages
Mv Endolhel%al cells- Cohorts cDC | . Kepraﬂgnc tes
CD8 Tcells CD4 Tcells Y e
Eosinophils- s 1 - Hepatocytes | mmmm
CD4 memory Tcel E: P CD4 naive Tcells | CLP.
CD8 naive Tcells- = c2 CDh4 Tcell Adi
PFD" Teele, o memory Tcells ! ‘ . ipocytes -
asma cells -
CD4 naive Tcells: 01 2 3 4 0 1 2 3 4
CMP- Number of Cohorts Number of Cohorts
0 5 B Protective
Hazard Ratio (log10) I Risk

Figure 2. Risk levels according to calculated NESs. (A) NES distribution of valid signatures as
denoted by risk levels (risk factors, orange; protective factors, green). (B) Variety of NES
distribution within signatures. ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
(C) Hazard ratio of consistent risk factors (>1, risk factor; <1, protective factor; A, mean value).
(D) Group count of consistent risk factors. NES, normalized enrichment score; NIR, negative

immune response; ns, not significant; PIR, positive immune response.
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Figure 3. GO enrichment in clusters. Enrichment map of GO terms (selected according to p <
0.05) aggregated by functions for cohorts (A) 2. Enrichments scores for GO terms (selected
according to p < 0.05) associated with the immune-related (B) interferons, (C) interleukins, (D)

macrophages, and (E) MHCs. GO, Gene Ontology; MHC, major histocompatibility complex.
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Figure 5. Cell type analysis using scRNA-seq data. (A-H) Cell type counts in scRNA-seq
samples. (1) IHC staining of macrophages (NIR samples, upper; PIR samples, bottom). (J)
Percentage of macrophages in NIR and PIR samples (according to staining for MS4A4A; scale
bar: 100 pm). (K) Kaplan-Meier survival curves of NIR and PIR samples. IHC,
immunohistochemical; LTS, long-term survival; NIR, negative immune response; PIR, positive

immune response; SCRNA, single-cell RN A; STS, short-term survival.
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