

1 Biochemical and Structural Characterization of Two Cif-Like Epoxide Hydrolases from
2 *Burkholderia cenocepacia*

3

4 Noor M. Taher^a, Kelli L. Hvorecny^{a1}, Cassandra M. Burke^a, Morgan S.A. Gilman^{a2}, Gary
5 E. Heussler^{b3}, Jared Adolf-Bryfogle^{c,d,e}, Christopher D. Bahl^{c,d,e}, George A. O'Toole^b,
6 Dean R. Madden^{a#}

7

8 ^aDepartment of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth,
9 Hanover, New Hampshire, USA

10 ^bDepartment of Microbiology and Immunology, Geisel School of Medicine at Dartmouth,
11 Hanover, New Hampshire, USA

12 ^c Institute for Protein Innovation, Boston, Massachusetts, USA

13 ^d Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts,
14 USA

15 ^e Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA

16

17 #Address correspondence to:

18 Dean R. Madden, Dean.R.Madden@dartmouth.edu, +1-603-650-1164,

19 7200 Vail Building, Room 408

20 Hanover, NH 03755-3844, USA

21 ¹Present address: Kelli L. Hvorecny, Department of Biochemistry, University of
22 Washington, Seattle WA 98195

23 ²Present address: Morgan S.A. Gilman, Department of Biological Chemistry and
24 Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston,
25 MA, USA

26 ³Present address: Gary E. Heussler, Division of Biological Sciences, University of
27 California, San Diego, La Jolla, United States

28 **Abstract**

29 Epoxide hydrolases catalyze the conversion of epoxides to vicinal diols in a
30 range of cellular processes such as signaling, detoxification, and virulence. These
31 enzymes typically utilize a pair of tyrosine residues to orient the substrate epoxide ring
32 in the active site and stabilize the hydrolysis intermediate. A new subclass of epoxide
33 hydrolases that utilize a histidine in place of one of the tyrosines was established with
34 the discovery of the CFTR Inhibitory Factor (Cif) from *Pseudomonas aeruginosa*.
35 Although the presence of such Cif-like epoxide hydrolases was predicted in other
36 opportunistic pathogens based on sequence analyses, only Cif and its homologue aCif
37 from *Acinetobacter nosocomialis* have been characterized. Here we report the
38 biochemical and structural characteristics of Cfl1 and Cfl2, two Cif-like epoxide
39 hydrolases from *Burkholderia cenocepacia*. Cfl1 is able to hydrolyze xenobiotic as well
40 as biological epoxides that might be encountered in the environment or during infection.
41 In contrast, Cfl2 shows very low activity against a diverse set of epoxides. The crystal
42 structures of the two proteins reveal quaternary structures that build on the well-known
43 dimeric assembly of the α/β hydrolase domain, but broaden our understanding of the
44 structural diversity encoded in novel oligomer interfaces. Analysis of the interfaces
45 reveals both similarities and key differences in sequence conservation between the two
46 assemblies, and between the canonical dimer and the novel oligomer interfaces of each
47 assembly. Finally, we discuss the effects of these higher-order assemblies on the intra-
48 monomer flexibility of Cfl1 and Cfl2 and their possible roles in regulating enzymatic
49 activity.

50 **Keywords**

51 α/β hydrolase, X-ray crystallography, *Burkholderia cenocepacia*, epoxy-polyunsaturated
52 fatty acids, epoxide hydrolase

53 **Introduction**

54 Epoxide hydrolases serve a variety of cellular functions such as detoxification,
55 cell-cell signaling, cell envelope synthesis, and antibiotic resistance. These enzymes act
56 by catalyzing the conversion of a variety of epoxides to their corresponding vicinal diols.
57 Epoxide hydrolases that belong to the α/β hydrolase superfamily of enzymes utilize an
58 Asp-His-Asp/Glu catalytic triad to open the epoxide ring substrate and release the
59 vicinal diol product. In addition to the catalytic triad, the active site of these enzymes
60 usually contains two conserved tyrosine residues (the “Tyr-Tyr pair”) that orient the
61 substrate epoxide ring in the active site pocket and form an oxyanion hole to stabilize a
62 hydrolysis intermediate [1]. However, a new subclass of epoxide hydrolases that utilize
63 a His-Tyr pair instead of the canonical Tyr-Tyr pair was revealed with the discovery of
64 the CFTR Inhibitory Factor (Cif) from *Pseudomonas aeruginosa* [2].

65 Cif is an epoxide hydrolase from *P. aeruginosa* that serves as a virulence factor
66 in lung infections. Cif has been shown to decrease the concentration of the Cystic
67 Fibrosis Transmembrane Conductance Regulator (CFTR) on the apical surface of lung
68 epithelial cells, sabotage the inflammation resolution signaling between the epithelial
69 cells and the immune system, and hinder mucociliary clearance of bacteria [3,4,5]. The
70 crystal structure of Cif showed that it utilizes a His-Tyr pair instead of the canonical Tyr-
71 Tyr pair for epoxide ring orientation and hydrolysis intermediate stabilization [6]. aCif
72 from *Acinetobacter nosocomialis* was subsequently shown to belong to this new class of
73 Cif-like (Cfl) epoxide hydrolases [7]. While Cif and aCif have been characterized
74 structurally and biochemically, Cfls present in other opportunistic pathogens remain
75 uncharacterized.

76 *Burkholderia cenocepacia* is a gram-negative bacterium that belongs to the
77 *Burkholderia cepacia* complex. *B. cenocepacia* encounters diverse environments where
78 its presence has important implications. It is commonly found in the soil where it can
79 cause plant infections, serve as a biocontrol agent to prevent plant infections, and
80 degrade aromatic hydrocarbon compounds [8,9,10,11]. *B. cenocepacia* can also
81 colonize the lung extracellular milieu of immunocompromised and non-
82 immunocompromised patients where it causes high morbidity and mortality due to its
83 broad antibiotic resistance [12,13]. The bacteria are also able to cause a systemic
84 infection by entering the patient's bloodstream, a condition known "Cepacia Syndrome."
85 *B. cenocepacia* therefore seems well adapted for survival in a wide range of
86 environments where it must process and respond to a variety of signals and
87 metabolites, such as epoxides. However, no epoxide hydrolases from *B. cenocepacia*
88 have been characterized to date. Additionally, whereas it is known that *P. aeruginosa*
89 can use Cif to hydrolyze 14,15-EET to intercept downstream pro-resolution effects and
90 exacerbate the host's inflammatory response, it is not known whether *B. cenocepacia*
91 possesses Cfls with such anti-resolution potential.

92 Here we characterize two predicted Cfls from *B. cenocepacia*, named Cfl1 and
93 Cfl2. We demonstrate that Cfl1 possesses epoxide hydrolysis activity against xenobiotic
94 and potential host-derived epoxides. Our hydrodynamic and structural studies revealed
95 that Cfl1 and Cfl2 exist as octamers and decamers, respectively, unlike Cif and aCif,
96 which exist as dimers. Although the overall assembly of each oligomer is similar,
97 detailed structural analysis revealed key differences between the oligomer as well as
98 the dimer interfaces of each assembly. We finally discuss the possible role of the

99 differential steric constraints placed on the monomer subunit in each structure in
100 regulating enzyme activity.

101 **Results**

102 **Bcen_3967 and Bcen_4419 are Cif-like predicted epoxide hydrolases**

103 In *B. cenocepacia* strain HI2424, the two proteins with the highest amino-acid
104 sequence identity to Cif are encoded by Bcen_3967 (34% identical, hereafter named
105 Cfl1) and Bcen_4419 (32% identical, hereafter named Cfl2). Amino-acid sequence
106 alignment with Cif shows that both proteins are predicted to have the catalytic residues
107 required for epoxide hydrolysis (Figure 1). Cfl1 and Cfl2 also appear to utilize a Cif-like
108 His-Tyr epoxide ring-opening pair instead of the classical Tyr-Tyr pair. In addition to the
109 catalytic residues, canonical epoxide hydrolases are also distinguished by an H-G-X-P
110 motif, where X tends to be an aromatic residue and P is a *cis*-proline [14]. The H-G-W-P
111 sequence of Cfl1 follows the canonical H-G-X-P motif, whereas Cfl2 substitutes the
112 histidine with an alanine (A-G-F-P). Finally, whereas Cif has an N-terminal secretion
113 signal to direct its export from the cell, neither Cfl1 nor Cfl2 are predicted to have such
114 signal (Figure 1).

115 ***B. cenocepacia* HI2424 upregulates the transcription of *Cfl2*, but not *Cfl1*, in
116 response to certain epoxides**

117 In *P. aeruginosa* strain PA14, *cif* is part of a three-gene operon that is under
118 regulation by CifR, a TetR-like transcriptional repressor. CifR binds to the intergenic

119 region between *cifR* and the *cif* operon and represses transcription of the operon. The
120 presence of certain epoxides in the media causes CifR to release the DNA and de-
121 repress *cif* transcription [15,16]. *A. nosocomialis* uses a similar epoxide-sensitive
122 regulatory circuit to control the transcription of its *cif* gene [7]. Similarly, *cfl1* and *cfl2*
123 each reside near a gene coding for a TetR-like protein (Figure 2(A)). However, unlike
124 the divergent transcription seen for *cifR* and *cif*, both the *cfl1/cfl1R* and *cfl2/cfl2R* genes
125 appear to be transcribed convergently, and two other members of the *cif* operon in
126 PA14 - *morB* and the MFS transporter gene - are absent from the putative operons of
127 *cfl1/2* (Figure 2(A)). Given the similarities and differences between the *cif* and *cfl1/2*
128 operons, we sought to determine whether the transcription of *cfl1* and *cfl2* is similarly
129 upregulated in response to epoxides. We found that exposure of *B. cenocepacia*
130 HI2424 to epibromohydrin (EBH), *R*-styrene oxide (*R*-SO), and S-SO increases
131 transcription of *cfl2* by approximately 5 fold, 15 fold, and 3 fold, respectively, relative to
132 the dimethyl sulfoxide vehicle control (DMSO) as measured by RT-qPCR (Figure 2(B)).
133 In contrast, the same treatments do not result in significantly increased transcription of
134 *cfl1* (Figure 2(B)).

135 **Biochemical characterization of Cfl1 and Cfl2**

136 In order to characterize the enzymatic activities and structures of Cfl1 and Cfl2,
137 we sought to express and purify the two proteins heterologously. Both proteins were
138 overexpressed in *E. coli* BL21(DE3) cells C-terminal to a 10xHis-SUMO tag, but only
139 Cfl2 was found in the soluble fraction of the cell lysate. After unsuccessful
140 troubleshooting attempts to obtain soluble Cfl1, we shifted our strategy towards finding

141 a Cfl1 homolog in other *B. cenocepacia* strains with high sequence identity and soluble
142 expression. We found the desired properties in CAR55383.1 from *B. cenocepacia* strain
143 J2315, which exhibits 92% amino-acid sequence identity to Cfl1 (Figure S1). Hereafter
144 "Cfl1" refers to Cfl1 from strain J2315.

145 Following scarless tag cleavage by the SUMO protease Ulp1 [17], Cfl1 and Cfl2
146 both eluted from a size exclusion chromatography (SEC) column as large species, with
147 Cfl1 eluting later than Cfl2 (Figure 3(A)). Calibrating the Superdex 200 10/300 SEC
148 column with standards of known relative molar mass (M_r) revealed that Cfl1 and Cfl2
149 peak elution volumes fall between those of apoferritin (440 kDa) and β -amylase (200
150 kDa), with predicted M_r values of 240 kDa and 350 kDa, respectively. Since the
151 apparent M_r estimates obtained from SEC can be influenced by the shape of the
152 particles in addition to their actual mass, we combined the diffusion coefficients
153 obtained from SEC with the sedimentation coefficients obtained by velocity
154 sedimentation analytical ultracentrifugation in order to gain a more shape-independent
155 estimate of relative molar masses for Cfl1 and Cfl2 (Figure 3(B) and Eq. 1, Materials
156 and Methods). With a sedimentation coefficient of 10.2 S for Cfl1 and 11.2 S for Cfl2,
157 Equation 1 yields M_r estimates of 260 kDa and 320 kDa, respectively. Since the
158 predicted M_r for a monomer of both proteins is ~34.5 kDa, these results indicate that
159 Cfl1 and Cfl2 exist as higher order oligomers compared to the dimeric Cif and aCif.
160 Finally, we used circular dichroism spectroscopy to examine the thermal stability of the
161 two proteins and determined that Cfl1 and Cfl2 are both stable at physiologically
162 relevant temperatures with melting points of >90 °C and ~70 °C, respectively (Figure
163 3(C)).

164 **Epoxide hydrolysis activity of Cfl1 and Cfl2**

165 Given the presence of the epoxide-hydrolase signature motif in the amino-acid
166 sequences of Cfl1 and Cfl2, we performed a preliminary screen for their catalytic activity
167 against a selection of xenobiotic and biologically relevant epoxides. Cfl1 hydrolyzed the
168 *R* enantiomer of SO, and its activity against S-SO was significant but nonetheless low
169 compared to the *R*-SO reaction (Figure 4). Cfl1 also showed very low levels of activity
170 against other epoxides (Supplementary Table 1). Surprisingly, Cfl2 had very low activity
171 against all of the tested substrates despite using relatively high protein concentrations
172 (20 to 80 μ M) and long incubation periods (1 to 2 hrs) (Figure 4, Table S1). The level of
173 Cfl2 activity against the tested substrates is comparable to the level of activity aCif
174 showed against epoxides that were deemed non-substrates for that epoxide hydrolase
175 [7]. Cfl1 amino-acid sequence alignment with Cif suggests that Asp123 is responsible
176 for the nucleophilic attack that opens the epoxide ring. To test this hypothesis, we
177 expressed and purified a mutant Cfl1 in which Asp123 was substituted with a serine
178 (Cfl1-D123S). Although hydrolysis of *R*-SO by the mutant was still statistically significant
179 compared to its protein-only control, it is sharply decreased compared to the wild-type
180 hydrolysis of *R*-SO (Figure 4).

181 Cif can convert polyunsaturated epoxide fatty acids upstream of pro-resolving
182 signals into their inactive diol counterparts [18]. *P. aeruginosa* strain PA14 can utilize
183 that capability of Cif to intercept pro-resolving signal pathways between lung epithelial
184 cells and immune cells, ultimately leading to a cycle of host tissue injury and further
185 inflammation [3]. We were interested in determining whether Cfl1 possesses similar
186 activity towards physiologically important host-derived substrates. We compared the

187 hydrolytic activity of wild-type Cfl1 and Cfl1-D123S against a panel of four human-
188 derived epoxides that are known signaling molecules *in vivo* [19,20,21,22]. The four
189 epoxides vary in length, number of double bonds, and the position of the epoxide moiety
190 along the hydrocarbon chain. Wild-type Cfl1 showed significantly more activity against
191 these epoxides compared to Cfl1-D123S (Figure 5).

192 **Structural characterization of Cfl1 and Cfl2**

193 As a first look at the architecture of these proteins, we used electron microscopy
194 of negatively stained single particles to examine the overall shape of Cfl2. As shown in
195 Figure S2, a representative raw micrograph of Cfl2 particles shows that they adopt a
196 ring-like structure with a central hole, seen when these molecules adhere to the grid in a
197 “face-on” orientation. Class averages confirm this observation, with some class
198 averages also showing a rectangular shape which is presumably the “side-on”
199 orientation (Figure S2).

200 In order to obtain a more detailed picture of the structures of Cfl1 and Cfl2, we
201 determined the crystal structures of both proteins to 2.2 Å resolution (Table 1). Each
202 monomer of Cfl1 and Cfl2 exhibits the typical tertiary structure of the α/β hydrolase
203 superfamily, with the main-chain atoms RMSD between Cfl1 and Cif being 0.8 Å and
204 between Cfl2 and Cif being 1.2 Å (Figure 6(A) and Figure 6(B)). When we compared the
205 Cfl1 and Cif active sites, we observed two unique features in Cfl1 (Figure 6(A) inset).
206 First, Asp147, the Cfl1 residue presumed to be the charge-relay acid according to the
207 pairwise sequence alignment with Cif, is not hydrogen bonded with His284, as is typical
208 in acid-base-nucleophile catalytic triads. Instead, that hydrogen bond is satisfied by

209 Ser258. The side chain of Asp147 is oriented in the opposite direction compared to Cif's
210 Glu153 and forms a salt bridge with Arg122, which is equivalent to His128 in Cif. The
211 second unique feature of the Cfl1 active site is that Arg122 forms a hydrogen bond with
212 the catalytic water. In Cif, the equivalent residue His128 does not form a hydrogen bond
213 with the catalytic water. In contrast to Cfl1, the catalytic side chains of Cfl2 show a much
214 more similar alignment those of Cif (Figure 6(B) inset).

215 Consistent with the negative-stain electron microscopy and hydrodynamic
216 studies, Cfl1 and Cfl2 form higher order oligomers, either octamers or decamers,
217 respectively, arranged in a ring-like fashion (Figure 7(A) and Figure 7(C)). Each
218 assembly is formed by a ring of dimers; a tetrameric ring in the case of Cfl1, and a
219 pentameric ring in the case of Cfl2. The dimeric subunits of Cfl1 and Cfl2 that are
220 equivalent to the Cif dimer are highlighted in Figures 7(B) (grey) and Figure 7(D)
221 (yellow). Like the Cif dimer, the Cfl1 and Cfl2 dimer subunit is formed through cap
222 domain interactions between two monomers. Unlike Cif, however, each monomer in
223 Cfl1 and Cfl2 has additional oligomerization interfaces that drive the cyclization of the
224 dimer subunits to form the ring-like structures.

225 For an initial, higher-level comparison between the Cfl1 and Cfl2 oligomers, we
226 analyzed their interfaces using Rosetta (Table 2) [23,24,25,26]. The most striking
227 difference is in the dimer (1:2) interface, which is 1080 Å² larger in Cfl2 and has a
228 substantially more favorable binding energy. Given this striking difference, we also
229 analyzed the Cif and aCif dimers. We found that the Cfl2 dimer interface corresponds
230 roughly to those of Cif and aCif, albeit with a modestly higher contribution from
231 hydrophobic residues, whereas the Cfl1 dimer interface is markedly smaller than all of

232 the others (Table 2). In contrast, when comparing the Cfl1 and Cfl2 oligomer interfaces,
233 we found that those of Cfl1 are collectively 435 Å² larger than those of Cfl2 (Table 2).

234 We hypothesized that the large difference between Cfl1's dimerization surface
235 area and energetics and those of Cfl2, Cif, and aCif would allow for more intra-dimer
236 flexibility for Cfl1. In order to test this hypothesis, we carried out Normal Mode Analysis
237 (NMA) to observe the large-scale, longer time-regime movements available for each
238 dimer. In the case of Cfl1 and Cfl2, the dimers were extracted from their respective
239 oligomers before doing the analysis. Unsurprisingly, a comparison of the first non-trivial
240 mode of each dimer shows that the Cfl1 dimer exhibits the largest excursions
241 (Supplementary Movie 1).

242 When comparing the Cfl1 and Cfl2 structures more closely, we observed that the
243 close-contact (<3.2 Å) interactions at their oligomerization interfaces are organized in
244 three similar “clusters” (Figure 7, insets). Clusters 1 and 2 are both part of the in-ring
245 interfaces [*i.e.*, 1:3, 1:7 (Cfl1), and 1:9(Cfl2)], while cluster 3 is part of the cross-ring
246 (*i.e.*, 1:4) diagonal interface. Cluster 1 is where the N-terminus of one monomer
247 contacts the neighboring monomer. In the case of Cfl1, monomer 1 interacts with the N-
248 terminus of adjacent monomer 3, but in Cfl2 the opposite is true: monomer 3 interacts
249 with the N-terminus of monomer 1 (Figure 7(A) and Figure 7(D), cluster 1; Figure S3(A)
250 and Figure S3(B)). The different oligomerization states of the two structures coincide not
251 only with different N-terminal donor-acceptor relationships among neighboring
252 monomers within each ring, but also different conformations of the monomers in the
253 dimer subunit across each ring (Figure S3(C) and Figure S3(D)). The N-terminus of Cfl1
254 monomer 3 makes several electrostatic interactions with monomer 1, as well as a

255 hydrophobic interaction mediated by the insertion of Met13 into a pocket comprised of
256 Phe22, Phe26, Val41, Trp61, and the hydrocarbon portions of Glu23 and Arg28 side
257 chains (Figure 7(A), cluster 1). Similarly, in Cfl2, the N-terminus of monomer 1 makes
258 several electrostatic interactions with monomer 3 and a hydrophobic interaction
259 between Pro17 and Tyr287 (Figure 7(D), cluster 1). Cluster 2 is located near Cluster 1
260 in both structures but does not involve the N-terminus (Figure 7(A) and Figure 7(D),
261 cluster 2). Lastly, Cluster 3 is where monomer 1 contacts monomer 4, and is the only
262 point of contact between these two monomers in both structures (Figure 7(B) and
263 Figure 7(D), cluster 3).

264 Finally, we sought to confirm that the sharp decrease in the activity of Cfl1-
265 D123S seen in Figure 4 is not due to a gross change in the overall structure of the
266 enzyme or its active site caused by the single amino-acid substitution. To that end, we
267 determined the crystal structure of Cfl1-D123S to 2.15 Å resolution (Table 1). As shown
268 in Figure S4, the RMSD of main-chain atoms between wild-type Cfl1 and Cfl1-D123S
269 monomers is 0.2 Å. Closer inspection of the mutant enzyme's active site shows that,
270 apart from the D123S substitution, the active site is largely unchanged compared to the
271 wild-type enzyme (Figure S4, inset).

272 **Evolutionary conservation of the Cfl1 and Cfl2 interfaces**

273 Given the novel oligomerization interfaces of Cfl1 and Cfl2 in comparison to other
274 structurally characterized members of the α/β hydrolase superfamily, we were
275 interested in examining the evolutionary conservation of the oligomer interfaces and

276 how they compare to the canonical dimer interfaces. We used the ConSurf server to
277 analyze the sequence conservation of Cfl1 and Cfl2 [27,28].

278 Comparing the average conservation scores of the interfaces' surface residues
279 reveals that the Cfl1 dimer interface is more conserved than its oligomeric interfaces,
280 while the Cfl2 dimer interface, as a whole, does not appear to be the most conserved
281 interface (Table S2). Both dimer interfaces are more conserved on average than the
282 non-interface surface residues of their respective proteins (Table S2). We note that
283 these differences in the means are not statistically significant due to relatively large
284 standard deviations of conservation scores across whole interfaces. Indeed, comparing
285 the local conservation pattern between the interfaces reveals interesting differences
286 between the dimer interfaces and the oligomer interfaces of both proteins (Figure 8).
287 Both Cfl1 and Cfl2 1:2 interfaces contain a central, relatively larger area of highly
288 conserved residues that is lacking in their oligomeric interfaces. When we analyzed the
289 equivalent 1:2 interfaces of Cif and aCif, we found a similarly positioned and conserved
290 "pivot point" in both dimer interfaces (Figure 8). This suggests that a portion of the dimer
291 interfaces may have evolved before the oligomer interfaces, and that the dimer interface
292 may be under a different evolutionary pressure to serve a different function than the
293 oligomer interfaces. Compared to the Cfl1 and Cfl2 1:2 interface, the Cfl1 1:7 interface
294 and Cfl2 1:9 interfaces, which is where we observe the differential N-terminus donor-
295 acceptor relationship between Cfl1 and Cfl2 monomers, appear to be the least
296 conserved (Figure 8 and Table S2).

297 Although the dimer interfaces of all four proteins feature a central pivot point that
298 is highly conserved, this region is surrounded by more polymorphic residues in all cases

299 (Figure 8). One such polymorphic patch found Cfl1 and Cfl2 is missing from Cfl1's
300 interface (Figure 8 red dashes). This missing region in Cfl1 has a dominant contribution
301 to its smaller dimer interface surface area compared to Cfl2, Cif, and aCif. The same
302 area in aCif shows above-average conservation, but remains less conserved than the
303 core of the interface (Figure 8). Along with NMA results showing that the isolated Cfl1
304 dimer is the most flexible of the four, these data suggest that the dimer interfaces retain
305 a central conserved pivot point with the surrounding polymorphic region serving as a
306 modifier of inter-dimer flexibility according to functional needs.

307 **Discussion**

308 Structural flexibility is a critical factor in enzymatic catalysis. Flexibility plays an
309 important role in substrate specificity and turnover, and it is perhaps especially
310 important for enzymes in which two or more domains contribute to the active site
311 architecture [29,30]. Indeed, protein scientists have learned from nature to leverage this
312 principle and manipulate enzyme dynamics to create new functionalities [31].

313 Despite some similarities between the two structures, the steric environments of
314 the Cfl1 and Cfl2 monomers are distinct and likely lead to differences in freedom of
315 motion. The key differences we noted include the N-terminus donor-acceptor
316 relationships between the monomers, the surface areas and binding energies of the
317 interfaces, and the conformations of the dimer subunit in each structure. Comparative
318 NMA between the dimers of Cfl1, Cfl2, Cif, aCif showed that the *ex circulum* (*i.e.*, out of
319 the ring) dimer of Cfl1 with its smallest dimer interface is the most flexible
320 (Supplemental Movie 1). However, within the ring, several factors may act together to

321 further differentiate the steric environment of the Cfl1 monomer from that of Cfl2, and
322 the difference in the dimer interface is but one of them.

323 Further analysis of the first three non-trivial normal modes of the four proteins
324 reveals that the Cif and aCif dimer motions are coupled to extensive intra-monomer
325 deformations, specifically between the core and cap domains (Figure 9). Compared to
326 Cif and aCif, the extracted Cfl1 dimer deformations are concentrated in a much smaller
327 footprint (Figure 9, “*ex circulum*”). While the dimer interface is smaller in Cfl1, the
328 interfaces formed during its further oligomerization are actually somewhat more
329 extensive than the interfaces formed by Cfl2 ($\delta = +435 \text{ \AA}^2$), but not to an extent that
330 compensates fully (Table 2). As a result, within the Cfl1 ring, the three dominant modes
331 include interdimer flexion, seen in the form of new areas of deformation which
332 correspond to its oligomer interfaces that are lacking from the *ex circulum* Cfl1 dimer
333 (Figure 9, bottom row). This is not the case with Cfl2, where the *ex circulum* dimer loses
334 its deformability at the dimer interface once it oligomerizes but the oligomer interface
335 deformations do not compensate to the same degree as they do in Cfl1 (Figure 9,
336 bottom row). Correspondingly, within the ring, Cfl1 retains some flexibility at the dimer
337 interface, whereas Cfl2 appears more tightly constrained.

338 These observations suggest that the Cfl1 and Cfl2 rings offer different degrees of
339 flexibility for their respective dimers. We hypothesize that in the ring state, Cfl1, but not
340 Cfl2, retains sufficient intra-monomer flexibility to achieve activity. Additionally, we
341 speculate that dissociation or loosening of the ring may modulate the activity of each
342 protein.

343 The involvement of the N-termini in forming the oligomer interfaces of Cfl1 and
344 Cfl2 represents an extension of the known functions of the N-termini in α/β epoxide
345 hydrolases. In aCif, the N-terminus forms an α -helix on the side of the protein opposite
346 the active site, and then contacts the active-site entry by wrapping around the dimer
347 interface as an unstructured loop, forming monomer-monomer interactions along the
348 way [7]. Interestingly, the position of the aCif monomer-monomer contacts mediated by
349 the N-termini resembles that of the 1:4 (Cluster 3) interface contact in Cfl1 and Cfl2.
350 *Aspergillus niger* epoxide hydrolase has a long N-terminus extension which forms a
351 “meander” that also participates in the dimer-interface contacts [32]. These similarities
352 suggest a possibly more general role for the N-terminus in stabilizing monomer-
353 monomer interactions in some α/β epoxide hydrolases.

354 *B. cenocepacia* can establish a presence in a diversity of microenvironments,
355 ranging from the soil to the human lung, where the epoxide hydrolysis of Cfl1 may be
356 deployed. Cfl1 may detoxify xenobiotic epoxides encountered by *B. cenocepacia* in
357 these environments, or funnel them as an energy source in a manner similar to other
358 microorganisms [33,34]. In addition to xenobiotic epoxides, we found that Cfl1 can
359 hydrolyze human-derived epoxides. This raises the possibility that *B. cenocepacia* may
360 potentially utilize Cfl1 in a manner similar to *P. aeruginosa*'s use of Cif to sabotage host
361 signaling pathways. Although Cif's ability to be secreted presumably aids in its capacity
362 to encounter and hydrolyze host epoxides during an infection, it is unknown if secretion
363 is a requirement, as fatty acids are able to passively diffuse through the membrane [35].
364 Cfl1 is predicted to lack general secretory pathway (Sec) and twin-arginine translocation

365 (TAT) motifs. However, there have been instances in the literature of proteins lacking a
366 strict TAT motif yet are secreted through this pathway directly or indirectly [36,37,38].

367 The lack of substantial Cfl2 activity raises the possibility of it functioning as a
368 non-catalytic pseudoenzyme *in vivo*. Pseudoenzymes are typically classified as such
369 based on sequence analyses that reveal missing critical catalytic residues. However,
370 this is not the case with Cfl2 which maintains the epoxide hydrolase motifs in its amino
371 acid sequence and 3-dimensional arrangement of its catalytic residues. A previous
372 study by van Loo *et al.* found that four out of twelve predicted bacterial epoxide
373 hydrolases they solubly expressed showed very low hydrolysis activity against the 25-
374 substrate panel they tested [14]. As the number of biochemical studies of epoxide
375 hydrolases continues to accumulate in the future, sequence analyses paired with
376 structural comparisons may allow us to fine tune the criteria for differentiating between
377 active and pseudo-epoxide hydrolases.

378 **Materials and Methods**

379 **RT-qPCR**

380 *B. cenocepacia* strain HI2424 was streaked on an lysogeny broth (LB; [39]) agar
381 plate and incubated overnight at 37 °C. Several colonies were used to inoculate a 5 mL
382 LB broth and grown overnight at 37 °C in a rotary incubator. Fifty microliters of the
383 overnight culture was used to inoculate 5 mL of LB broth containing 0.02% DMSO [(v/v),
384 =2.8 mM], 1 mM of EBH, R-SO, or S-SO. When each culture reached an O.D.₆₀₀ of 1.0,
385 1 mL of culture was spun down at 3000 × g, 4 °C, for 10 mins and the pellet was stored

386 at -80 °C. RNA was extracted from thawed pellets using the RNeasy RNA extraction kit
387 (Qiagen), and genomic DNA was digested using the RQ1 kit (Promega). cDNA was
388 generated using qScript® cDNA SuperMix (Quantabio) and stored at -20 °C. RT-qPCR
389 was carried out using PerfeCTa® SYBR® Green FastMix® for iQ™. “No-template” and
390 “extracted RNA template” RT-qPCR reactions were included as negative controls for
391 genomic DNA contamination. Genomic DNA from *B. cenocepacia* strain HI2424 was
392 used to generate a standard curve for each pair of primers.

393 **Cloning, protein expression, and purification**

394 Cfl1 (accession number ABK11134.1) and Cfl2 (accession number ABK10685.1)
395 from *B. cenocepacia* strain HI2424 and Cfl1 from *B. cenocepacia* strain K56-2
396 (EPZ88246.1, 100% amino acid identity to CAR55383.1 from strain J2315) coding
397 sequences were PCR amplified and inserted into pCDB24 digested with Xho1 using
398 Gibson Assembly. BL21(DE3) cells were transformed with plasmid and grown on LB +
399 100 µg/mL carbenicillin agar plates at 37 °C overnight. One transformed colony was
400 used to inoculate 10 mL of LB + 100 µg/mL carbenicillin broth and grown overnight at
401 37 °C. After ~12 hrs, the overnight culture was used to inoculate 1 L of Terrific Broth
402 [40] in a 2 L baffled flask and allowed to grow at 37 °C with shaking at 180 rpm. When
403 the culture reached an O.D.₆₀₀ of ~0.3, the bacteria were moved to 16 °C with shaking
404 at 180 rpm for 1 hr. Expression was then induced with 0.1 mM isopropyl β-D-1-
405 thiogalactopyranoside. After ~24 hrs of expression, the bacteria were spun down at
406 5250 × g for 30 mins at 4 °C. The supernatant was discarded and the pellet was
407 resuspended in lysis buffer (500 mM NaCl, 20 mM Tris, pH 8.5, 40 mM imidazole, pH

408 8.5, 2 mM MgCl₂) supplemented with 25 units/mL of Pierce Universal Nuclease. Cells
409 lysis was carried out using an M-110L microfluidizer (Microfluidics) in 3 passes at ~18
410 kpsi. The cell lysate was spun down at 40,000 rpm in a Type 45 Ti rotor for 1 hr at 4 °C,
411 and the supernatant was filtered through a 0.45 µm MCE membrane (Millipore) to
412 remove residual cell debris. Five milliliters of HisPur Ni-NTA resin (Thermo Fisher
413 Scientific) washed with 50 mL of equilibration buffer (500 mM NaCl, 20 mM Tris, pH 8.5,
414 40 mM imidazole, pH 8.5) was added to the clarified cell lysate, and the mixture was
415 gently stirred at room temperature for 30 min. The mixture of resin and clarified lysate
416 was then passed through a gravity column. The protein-bound resin was washed with
417 50 mL of equilibration buffer followed by two 50 mL washes with 500 mM NaCl, 20 mM
418 Tris, pH 8.5, 100 mM imidazole, pH 8.5. The protein was then eluted in 50 mL of 500
419 mM NaCl, 20 mM Tris, pH 8.5, 500 mM imidazole, pH 8.5. The eluate was
420 supplemented with 5.6 mL of 10× Ulp1 reaction buffer (1.5 M NaCl, 500 mM Tris, pH
421 8.5, 10 mM DTT, 2% [v/v] IGEPAL CA-630) and 1.2 mg of Ulp1 protease. The cleavage
422 reaction was simultaneously dialyzed overnight against 4 L of 20 mM NaCl, 20 mM Tris,
423 pH 8.5, 0.5 mM TCEP-HCl at room temperature. The cleaved protein was then passed
424 through HisPur Ni-NTA resin equilibrated with 20 mM NaCl, 20 mM Tris, pH 8.5, 5 mM
425 imidazole, pH 8.5. The flow-through was then applied to a HiTrap Q HP 5 mL anion
426 exchange chromatography column (GE Healthcare) attached to an ÄKTA Explorer 100
427 system (Amersham Pharmacia Biotech). The protein was eluted using a 200 mL
428 gradient of wash buffer (20 mM NaCl, 20 mM Tris, pH 8.5) and increasing concentration
429 of elution buffer (1 M NaCl, 20 mM Tris, pH 8.5) [17].

430 **Hydrodynamic analysis**

431 A Superdex 200 10/300 SEC column (Amersham Pharmacia Biotech) attached
432 to an ÄKTA FPLC system (Amersham Pharmacia Biotech) was used to obtain peak
433 elution volumes for Cfl1, Cfl2, and SEC standards (Sigma Aldrich). Column equilibration
434 and sample elution were carried out at 4 °C using 150 mM NaCl, 50 mM sodium
435 phosphate pH 7.4, and 0.02% (w/v) NaN₃ at a flow-rate of 0.5 mL/min. The diffusion
436 coefficients (D) of Cfl1 and Cfl2 were extrapolated from the plot of the partitioning
437 coefficients (*K*_{av}) of the standards versus their known diffusion coefficients.

438 Velocity sedimentation analytical ultracentrifugation was carried out using a
439 ProteomeLab XL-A centrifuge (Beckman Coulter) at 25,000 rpm, 20 °C, in an An-60 Ti
440 rotor. Sample sedimentation was monitored through absorbance at 280 nm. Data were
441 analyzed using SEDFIT (15.01b) and SEDNTERP (20120828 BETA) to obtain the
442 sedimentation coefficients [41,42]. The relative molar masses of Cfl1 and Cfl2 were
443 estimated using the Svedberg equation:

$$444 M = \frac{sRT}{D(1 - \bar{v} \cdot \rho)}$$

445 where M is the relative molar mass of the protein in g/mol, s is the sedimentation
446 coefficient of the protein in Svedbergs (10⁻¹³ sec), R is the gas constant in J/mol/K, T is
447 the temperature in K, D is the diffusion coefficient of the protein in cm²/sec, \bar{v} is the
448 partial specific volume of the protein in mL/g, and ρ is the buffer density in g/mL.

449 **Circular dichroism spectroscopy**

450 Circular dichroism spectroscopy was performed using a JASCO J-815
451 spectrometer equipped with a CDF-426S Peltier temperature controller and a 5 mm-
452 pathlength quartz cuvette. Circular dichroism spectroscopy was monitored at 222 nm for
453 a buffer-only sample (20 mM sodium phosphate, pH 7.4) and 1.5 μ M Cfl1 or Cfl2
454 samples while the temperature was increased from 20 to 90 °C in 1 °C increments with
455 a 5-second period of equilibration before taking each measurement. The raw data of the
456 buffer-only sample were subtracted from the raw data of the protein samples before
457 plotting the molar ellipticity.

458 **Epoxide hydrolysis assay**

459 An adrenochrome reporter end-point assay adapted from Cedrone *et al.* was
460 used to measure the relative amount of hydrolyzed epoxide [43]. Absorbance at 490 nm
461 was measured using a TECAN Infinite M1000 reader or a Biotek Synergy Neo2 reader.
462 All reactions were carried out at 37 °C with 20 μ M protein and 2 mM substrate in 100
463 mM NaCl, 20 mM HEPES, pH 7.4, and 2% DMSO. When testing the activity of Cfl2
464 against biological substrates, 80 μ M protein was used. The xenobiotic epoxide reactions
465 proceeded for 1 hr in a 100 μ L reaction, and the poly-unsaturated fatty acid epoxide
466 reactions proceeded for 2 hrs in a 50 μ L reaction. The reactions were quenched by
467 adding 0.5 \times the starting reaction volume of a solution of 90% acetonitrile containing
468 sodium periodate at a 1:1 molar ratio to the starting substrate and incubating for 30
469 mins at room temperature. A molar excess of epinephrine-HCl in 0.5 \times the starting
470 reaction volume was finally added, and an aliquot of 100 μ L (xenobiotic epoxide

471 reactions) or 90 μ L (fatty acid epoxide reactions) was then used to measure absorbance
472 at 490 nm in a transparent 96-well flat-bottom plate.

473 **Electron microscopy**

474 Using a 400-mesh carbon-coated (4-6 μ m thick) copper grid that was glow
475 discharged for 30 secs at 20 mA in residual air, a five microliter aliquot of Cfl2 at a
476 concentration of 10 μ g/mL in 100 mM NaCl, 20 mM HEPES, pH 7.4 was applied to the
477 grid for 30 seconds. The solution was then quickly blotted with filter paper, briefly
478 washed with 5 μ L of buffer and blotted, and then stained with 5 μ L of 0.75% (w/v) uranyl
479 formate, blotted, and then left to air dry. Images were acquired on an FEI Tecnai F20ST
480 microscope with a Gatan OneView camera. Reference-free class averages of 800
481 manually picked particles were generated using EMAN2 [44].

482 **Crystallography**

483 Cfl2 crystals were obtained in a hanging drop composed of 2 μ L of 1.5 mg/mL
484 protein in 20 mM NaCl, 10 mM HEPES pH 7.5 and 2 μ L of well solution (784 mM
485 sodium thiocyanate, 12% PEG 3350) and equilibrated by vapor diffusion against 400 μ L
486 of well solution. The harvested crystals were soaked in cryoprotectant solution (20%
487 ethylene glycol, 800 mM sodium thiocyanate, 14% PEG 3350) before flash cooling in
488 liquid nitrogen. The oscillation data collection was performed at the Stanford
489 Synchrotron Radiation Lightsource beamline 14-1 equipped with a MAR325 detector at
490 100 K, a phi of 0.3°, a total of wedge of 180°, and a wavelength of 1.18076 \AA . Wild-type
491 Cfl1 crystals were obtained in a hanging drop composed of 2 μ L of 5.2 mg/mL protein in

492 20 mM NaCl, 20 mM HEPES pH 7.4 and 2 μ L of well solution (750 mM potassium
493 sodium tartrate, 100 mM HEPES pH 8.1) and equilibrated by vapor diffusion against
494 400 μ L of well solution. The harvested crystals were directly flash cooled in liquid
495 nitrogen without further cryoprotection. The oscillation data collection was performed at
496 the National Synchrotron Light Source II beamline 17-ID-1 (AMX) equipped with an
497 Eiger 9M detector at 100 K, a phi of 0.1°, a total of wedge of 180°, and a wavelength of
498 0.979331 \AA . Cfl1-D123S crystals were obtained in a hanging drop composed of 2 μ L of
499 1.9 mg/mL protein in 20 mM NaCl, 20 mM HEPES pH 7.4 and 2 μ L of well solution (6%
500 ethylene glycol, 8% PEG 8000, 100 mM HEPES pH 7.6) and equilibrated by vapor
501 diffusion against 400 μ L of well solution. The harvested crystals were soaked in
502 cryoprotectant solution (well solution supplemented with 20% glycerol) before flash
503 cooling in liquid nitrogen. The oscillation data collection was performed at the National
504 Synchrotron Light Source II beamline 17-ID-1 (AMX) equipped with an Eiger 9M
505 detector at 100 K, a phi of 0.1°, a total of wedge of 180°, and a wavelength of 0.920126
506 \AA .

507 The diffraction images were reduced using XDS [45]. The R_{free} set was
508 generated from 5% of the reflections in thin resolution shells using Phenix reflection file
509 editor. In the case of Cfl2 and wild-type Cfl1, initial phases were obtained by molecular
510 replacement with a Cif monomer (PDB ID 3KD2, chain A) as a search model using
511 Phaser. In the case of Cfl1-D123S, a monomer of wild-type Cfl1 structure was used as
512 the search model. Iterative automatic (with torsion-angle NCS restraints) and manual
513 model refinement was performed using phenix.refine and Coot [46,47].

514 **Rosetta Analysis**

515 All calculations were performed using RosettaScripts [23] with Rosetta build
516 version 2020.20.post.dev+53.master.64d08bbfc5f. Briefly, protein models determined
517 by X-ray crystallography were prepared using the FastRelax [24] algorithm with the
518 Rosetta-ICO (a.k.a. beta_nov16) energy function [26] using heavy atom coordinate
519 constraints (see supplementary material for the pre-relax xml protocol); ten decoys were
520 generated and the best scoring model was used for interface analysis. For each protein-
521 protein interface, the shape complementarity [25], change in solvent-accessible surface
522 area (total, polar, and nonpolar area), and binding energy ($\Delta\Delta G$) were calculated (see
523 supplementary material for the interface analysis xml protocol).

524 We approximated residue burial using the sidechain neighbor counts method
525 [48]. Briefly, a cone is placed on the c_α - c_β vector for each residue under consideration,
526 and any residue within the defined cone is counted as a neighbor. This metric was
527 calculated through the RosettaScripts interface using the
528 SidechainNeighborCountMetric, which was created for this work.

529 **Normal Mode Analysis**

530 The Bio3D package as implemented in R was used to carry out NMA using the c-
531 alpha force-field and the nma() command [49,50,51]. The deformation energies
532 displayed in Figure 9 were calculated using the command deformations.nma() [52] and
533 summed over the first three modes for each protein. In the case of the “*ex circulum*” Cfl1
534 and Cfl2 dimers, the analysis was performed on the dimer subunit that was extracted
535 from its respective oligomer.

536 **Evolutionary Conservation Analysis**

537 The conservation analysis was performed by the ConSurf online server using the
538 UniRef90 database [27,28]. The multiple sequence alignment used for calculating
539 conservation scores was automatically generated by ConSurf and had to include at
540 least 100 “homologous” sequences to ensure reliability. In the case of aCif, the
541 minimum threshold for percent sequence identity was lowered from 35% to 30% in
542 order to obtain more than 100 “homologous” sequences. The normalized residue
543 conservation scores were binned by ConSurf and colored according to a 9-shade
544 purple-white-green scale.

545 **Accession Numbers**

546 The coordinates and structure factors for wild-type Cfl1, Cfl1-D123S, and Cfl2
547 structures are available in the Protein Data Bank under PDB ID: 7JQX, 7JQY, and
548 7JQZ, respectively.

549 **Acknowledgements**

550 We would like to thank Dr. Sherry Kuchma for helpful advice on RT-qPCR
551 experiments, and Kelsie Leary for training with CD spectroscopy. We thank Drs. Louisa
552 Howard, Maxime Guinel, and Charles Daghlian for electron microscopy training and
553 assistance. We would also like to thank Drs. Vivian Stojanoff, Jean Jakoncic, Martin
554 Fuchs, Babak Andi, and Wuxian Shi at the FMX, AMX, and SSRL beamlines for advice
555 and support with collection of crystal diffraction data. We are grateful to the members of
556 the Madden lab for helpful discussions and suggestions.

557 This work was supported by the National Institutes of Health grants R01-
558 AI091699, R01-GM113240, R37-AI83256-06, P20-GM113132, P30-DK117469, and the
559 Cystic Fibrosis Foundation grant STANTO19R0.

560 **References**

- 561 1. Yamada, T., Morisseau, C., Maxwell, J. E., Argiriadi, M. A., Christianson, D. W. &
562 Hammock, B. D. (2000). Biochemical evidence for the involvement of tyrosine in
563 epoxide activation during the catalytic cycle of epoxide hydrolase. *J Biol Chem*
564 **275**, 23082-8.
- 565 2. Bahl, C. D. & Madden, D. R. (2012). *Pseudomonas aeruginosa* Cif defines a
566 distinct class of a/b epoxide hydrolases utilizing a His/Tyr ring-opening pair.
567 *Protein Pept Lett* **19**, 186-93.
- 568 3. Flitter, B. A., Hvorecny, K. L., Ono, E., Eddens, T., Yang, J., Kwak, D. H., Bahl,
569 C. D., Hampton, T. H., Morisseau, C., Hammock, B. D., Liu, X., Lee, J. S., Kolls,
570 J. K., Levy, B. D., Madden, D. R. & Bomberger, J. M. (2017). *Pseudomonas*
571 *aeruginosa* sabotages the generation of host proresolving lipid mediators. *Proc
572 Natl Acad Sci U S A* **114**, 136-141.
- 573 4. Hvorecny, K. L., Dolben, E., Moreau-Marquis, S., Hampton, T. H., Shabaneh, T.
574 B., Flitter, B. A., Bahl, C. D., Bomberger, J. M., Levy, B. D., Stanton, B. A.,
575 Hogan, D. A. & Madden, D. R. (2018). An epoxide hydrolase secreted by
576 *Pseudomonas aeruginosa* decreases mucociliary transport and hinders bacterial
577 clearance from the lung. *Am J Physiol Lung Cell Mol Physiol* **314**, L150-L156.
- 578 5. MacEachran, D. P., Ye, S., Bomberger, J. M., Hogan, D. A., Swiatecka-Urban,
579 A., Stanton, B. A. & O'Toole, G. A. (2007). The *Pseudomonas aeruginosa*

580 secreted protein PA2934 decreases apical membrane expression of the cystic
581 fibrosis transmembrane conductance regulator. *Infect Immun* **75**, 3902-12.

582 6. Bahl, C. D., Morisseau, C., Bomberger, J. M., Stanton, B. A., Hammock, B. D.,
583 O'Toole, G. A. & Madden, D. R. (2010). Crystal structure of the cystic fibrosis
584 transmembrane conductance regulator inhibitory factor Cif reveals novel active-
585 site features of an epoxide hydrolase virulence factor. *J Bacteriol* **192**, 1785-95.

586 7. Bahl, C. D., Hvorecny, K. L., Bridges, A. A., Ballok, A. E., Bomberger, J. M.,
587 Cady, K. C., O'Toole, G. A. & Madden, D. R. (2014). Signature motifs identify an
588 *Acinetobacter* Cif virulence factor with epoxide hydrolase activity. *J Biol Chem*
589 **289**, 7460-9.

590 8. Juhasz, A. L., Britz, M. L. & Stanley, G. A. (1997). Degradation of fluoranthene,
591 pyrene, benz[a]anthracene and dibenz[a,h]anthracene by *Burkholderia cepacia*.
592 *Journal of Applied Microbiology* **83**, 189-198.

593 9. Huang, Y. & Wong, P. T. W. (1998). Effect of *Burkholderia (Pseudomonas)*
594 *cepacia* and soil type on the control of crown rot in wheat. *Plant and Soil* **203**,
595 103–108.

596 10. Jacobs, J. L., Fasi, A. C., Ramette, A., Smith, J. J., Hammerschmidt, R. &
597 Sundin, G. W. (2008). Identification and onion pathogenicity of *Burkholderia*
598 *cepacia* complex isolates from the onion rhizosphere and onion field soil. *Appl*
599 *Environ Microbiol* **74**, 3121-9.

600 11. Krumme, M. L., Timmis, K. N. & Dwyer, D. F. (1993). Degradation of
601 trichloroethylene by *Pseudomonas cepacia* G4 and the constitutive mutant strain
602 G4 5223 PR1 in aquifer microcosms. *Appl Environ Microbiol* **59**, 2746-9.

603 12. Agodi, A., Barchitta, M., Giannino, V., Collura, A., Pensabene, T., Garlaschi, M.
604 L., Pasquarella, C., Luzzaro, F., Sinatra, F., Mahenthiralingam, E. & Stefani, S.
605 (2002). *Burkholderia cepacia* complex in cystic fibrosis and non-cystic fibrosis
606 patients: identification of a cluster of epidemic lineages. *J Hosp Infect* **50**, 188-95.
607 13. Belchis, D. A., Simpson, E. & Colby, T. (2000). Histopathologic features of
608 *Burkholderia cepacia* pneumonia in patients without cystic fibrosis. *Mod Pathol*
609 **13**, 369-72.
610 14. van Loo, B., Kingma, J., Arand, M., Wubbolts, M. G. & Janssen, D. B. (2006).
611 Diversity and biocatalytic potential of epoxide hydrolases identified by genome
612 analysis. *Appl Environ Microbiol* **72**, 2905-17.
613 15. Ballok, A. E., Bahl, C. D., Dolben, E. L., Lindsay, A. K., St Laurent, J. D., Hogan,
614 D. A., Madden, D. R. & O'Toole, G. A. (2012). Epoxide-mediated CifR repression
615 of cif gene expression utilizes two binding sites in *Pseudomonas aeruginosa*. *J*
616 *Bacteriol* **194**, 5315-24.
617 16. MacEachran, D. P., Stanton, B. A. & O'Toole, G. A. (2008). Cif is negatively
618 regulated by the TetR family repressor CifR. *Infect Immun* **76**, 3197-206.
619 17. Lau, Y. K., Baytshtok, V., Howard, T. A., Fiala, B. M., Johnson, J. M., Carter, L.
620 P., Baker, D., Lima, C. D. & Bahl, C. D. (2018). Discovery and engineering of
621 enhanced SUMO protease enzymes. *J Biol Chem* **293**, 13224-13233.
622 18. Hvorecny, K. L., Bahl, C. D., Kitamura, S., Lee, K. S. S., Hammock, B. D.,
623 Morrisseau, C. & Madden, D. R. (2017). Active-Site Flexibility and Substrate
624 Specificity in a Bacterial Virulence Factor: Crystallographic Snapshots of an
625 Epoxide Hydrolase. *Structure* **25**, 697-707 e4.

626 19. Jung, F., Schulz, C., Blaschke, F., Muller, D. N., Mrowietz, C., Franke, R. P.,
627 Lendlein, A. & Schunck, W. H. (2012). Effect of cytochrome P450-dependent
628 epoxyeicosanoids on Ristocetin-induced thrombocyte aggregation. *Clin
629 Hemorheol Microcirc* **52**, 403-16.

630 20. VanRollins, M. (1995). Epoxygenase metabolites of docosahexaenoic and
631 eicosapentaenoic acids inhibit platelet aggregation at concentrations below those
632 affecting thromboxane synthesis. *J Pharmacol Exp Ther* **274**, 798-804.

633 21. Ye, D., Zhang, D., Oltman, C., Dellsperger, K., Lee, H. C. & VanRollins, M.
634 (2002). Cytochrome p-450 epoxygenase metabolites of docosahexaenoate
635 potently dilate coronary arterioles by activating large-conductance calcium-
636 activated potassium channels. *J Pharmacol Exp Ther* **303**, 768-76.

637 22. Zhang, Y., Oltman, C. L., Lu, T., Lee, H. C., Dellsperger, K. C. & VanRollins, M.
638 (2001). EET homologs potently dilate coronary microvessels and activate BK(Ca)
639 channels. *Am J Physiol Heart Circ Physiol* **280**, H2430-40.

640 23. Fleishman, S. J., Leaver-Fay, A., Corn, J. E., Strauch, E. M., Khare, S. D., Koga,
641 N., Ashworth, J., Murphy, P., Richter, F., Lemmon, G., Meiler, J. & Baker, D.
642 (2011). RosettaScripts: a scripting language interface to the Rosetta
643 macromolecular modeling suite. *PLoS One* **6**, e20161.

644 24. Khatib, F., Cooper, S., Tyka, M. D., Xu, K., Makedon, I., Popovic, Z., Baker, D. &
645 Players, F. (2011). Algorithm discovery by protein folding game players. *Proc
646 Natl Acad Sci U S A* **108**, 18949-53.

647 25. Lawrence, M. C. & Colman, P. M. (1993). Shape complementarity at
648 protein/protein interfaces. *J Mol Biol* **234**, 946-50.

649 26. Pavlovicz, R., Park, H. & DiMaio, F. (2019). Efficient consideration of coordinated
650 water molecules improves computational protein-protein and protein-ligand
651 docking. *bioRxiv*.

652 27. Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T. & Ben-Tal,
653 N. (2016). ConSurf 2016: an improved methodology to estimate and visualize
654 evolutionary conservation in macromolecules. *Nucleic Acids Res* **44**, W344-50.

655 28. Landau, M., Mayrose, I., Rosenberg, Y., Glaser, F., Martz, E., Pupko, T. & Ben-
656 Tal, N. (2005). ConSurf 2005: the projection of evolutionary conservation scores
657 of residues on protein structures. *Nucleic Acids Res* **33**, W299-302.

658 29. Pintar, S., Borisek, J., Usenik, A., Perdih, A. & Turk, D. (2020). Domain sliding of
659 two *Staphylococcus aureus* N-acetylglucosaminidases enables their substrate-
660 binding prior to its catalysis. *Commun Biol* **3**, 178.

661 30. Light, S. H., Cahoon, L. A., Mahasenan, K. V., Lee, M., Boggess, B., Halavaty, A.
662 S., Mobashery, S., Freitag, N. E. & Anderson, W. F. (2017). Transferase Versus
663 Hydrolase: The Role of Conformational Flexibility in Reaction Specificity.
664 *Structure* **25**, 295-304.

665 31. Boehr, D. D., D'Amico, R. N. & O'Rourke, K. F. (2018). Engineered control of
666 enzyme structural dynamics and function. *Protein Sci* **27**, 825-838.

667 32. Zou, J., Hallberg, B. M., Bergfors, T., Oesch, F., Arand, M., Mowbray, S. L. &
668 Jones, T. A. (2000). Structure of *Aspergillus niger* epoxide hydrolase at 1.8 Å
669 resolution: implications for the structure and function of the mammalian
670 microsomal class of epoxide hydrolases. *Structure* **8**, 111-22.

671 33. Bendigiri, C., Zinjarde, S. & RaviKumar, A. (2017). Ylehd, an epoxide hydrolase
672 with promiscuous haloalkane dehalogenase activity from tropical marine yeast
673 Yarrowia lipolytica is induced upon xenobiotic stress. *Sci Rep* **7**, 11887.

674 34. Jacobs, M. H., Van den Wijngaard, A. J., Pentenga, M. & Janssen, D. B. (1991).
675 Characterization of the epoxide hydrolase from an epichlorohydrin-degrading
676 Pseudomonas sp. *Eur J Biochem* **202**, 1217-22.

677 35. Kamp, F. & Hamilton, J. A. (2006). How fatty acids of different chain length enter
678 and leave cells by free diffusion. *Prostaglandins Leukot Essent Fatty Acids* **75**,
679 149-59.

680 36. Hinsley, A. P., Stanley, N. R., Palmer, T. & Berks, B. C. (2001). A naturally
681 occurring bacterial Tat signal peptide lacking one of the 'invariant' arginine
682 residues of the consensus targeting motif. *FEBS Lett* **497**, 45-9.

683 37. Ignatova, Z., Hornle, C., Nurk, A. & Kasche, V. (2002). Unusual signal peptide
684 directs penicillin amidase from *Escherichia coli* to the Tat translocation
685 machinery. *Biochem Biophys Res Commun* **291**, 146-9.

686 38. Rodrigue, A., Chanal, A., Beck, K., Muller, M. & Wu, L. F. (1999). Co-
687 translocation of a periplasmic enzyme complex by a hitchhiker mechanism
688 through the bacterial tat pathway. *J Biol Chem* **274**, 13223-8.

689 39. Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by
690 lysogenic *Escherichia coli*. *J Bacteriol* **62**, 293-300.

691 40. Tartoff, K. & Hobbs, C. (1987). Improved media for growing plasmid and cosmid
692 clones. *Bethesda Research Laboratories* **9**, 12.

693 41. Schuck, P. (2000). Size-distribution analysis of macromolecules by
694 sedimentation velocity ultracentrifugation and Lamm equation modeling. *Biophys
695 J* **78**, 1606-19.

696 42. Laue, T., Shah, B., Ridgeway, T. & Pelletier, S. (1992). Computer-aided
697 Interpretation of Sedimentation Data for Proteins. In *Analytical Ultracentrifugation
698 in Biochemistry and Polymer Science* (Harding, S. E., Rowe, A. J. & Horton, J.
699 C., eds.), pp. 90–125. Cambridge: Royal Society of Chemistry.

700 43. Cedrone, F., Bhatnagar, T. & Baratti, J. C. (2005). Colorimetric assays for
701 quantitative analysis and screening of epoxide hydrolase activity. *Biotechnol Lett*
702 **27**, 1921-7.

703 44. Tang, G., Peng, L., Baldwin, P. R., Mann, D. S., Jiang, W., Rees, I. & Ludtke, S.
704 J. (2007). EMAN2: an extensible image processing suite for electron microscopy.
705 *J Struct Biol* **157**, 38-46.

706 45. Kabsch, W. (2010). Xds. *Acta Crystallogr D Biol Crystallogr* **66**, 125-32.

707 46. Liebschner, D., Afonine, P. V., Baker, M. L., Bunkoczi, G., Chen, V. B., Croll, T.
708 I., Hintze, B., Hung, L. W., Jain, S., McCoy, A. J., Moriarty, N. W., Oeffner, R. D.,
709 Poon, B. K., Prisant, M. G., Read, R. J., Richardson, J. S., Richardson, D. C.,
710 Sammito, M. D., Sobolev, O. V., Stockwell, D. H., Terwilliger, T. C., Urzhumtsev,
711 A. G., Videau, L. L., Williams, C. J. & Adams, P. D. (2019). Macromolecular
712 structure determination using X-rays, neutrons and electrons: recent
713 developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-877.

714 47. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Features and
715 development of Coot. *Acta Crystallogr D Biol Crystallogr* **66**, 486-501.

716 48. Bhardwaj, G., Mulligan, V. K., Bahl, C. D., Gilmore, J. M., Harvey, P. J.,
717 Cheneval, O., Buchko, G. W., Pulavarti, S. V., Kaas, Q., Eletsky, A., Huang, P.
718 S., Johnsen, W. A., Greisen, P. J., Rocklin, G. J., Song, Y., Linsky, T. W.,
719 Watkins, A., Rettie, S. A., Xu, X., Carter, L. P., Bonneau, R., Olson, J. M.,
720 Coutsias, E., Correnti, C. E., Szyperski, T., Craik, D. J. & Baker, D. (2016).
721 Accurate *de novo* design of hyperstable constrained peptides. *Nature* **538**, 329-
722 335.

723 49. Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A. & Caves, L. S.
724 (2006). Bio3d: an R package for the comparative analysis of protein structures.
725 *Bioinformatics* **22**, 2695-6.

726 50. Skjaerven, L., Yao, X. Q., Scarabelli, G. & Grant, B. J. (2014). Integrating protein
727 structural dynamics and evolutionary analysis with Bio3D. *BMC Bioinformatics*
728 **15**, 399.

729 51. Team, R. C. (2013). R: a language and environment for statistical computing.

730 52. Hinsen, K. (1998). Analysis of domain motions by approximate normal mode
731 calculations. *Proteins* **33**, 417-29.

732 53. Needleman, S. B. & Wunsch, C. D. (1970). A general method applicable to the
733 search for similarities in the amino acid sequence of two proteins. *J Mol Biol* **48**,
734 443-53.

735

736

737 **Table 1** Data collection, reduction, and refinement statistics.

Data collection & reduction	Cfl2	Cfl1-WT	Cfl1-D123S	738
Beamline	SSRL 14-1	NSLS-II 17-ID-1	NSLS-II 17-ID-1	
Wavelength (Å)	1.1808	0.9793	0.9201	739
Space group	<i>P</i> 2 ₁ 2 ₁ 2	<i>I</i> 4 2 2	<i>C</i> 2	
Unit cell parameters:				
<i>a</i> , <i>b</i> , <i>c</i> (Å)	182.7, 210.5, 87.0	132.2, 132.2, 341.7	195, 98.4, 170	740
<i>α</i> , <i>β</i> , <i>γ</i> (°)	90, 90, 90	90, 90, 90	90, 118.6, 90	
Resolution ^a (Å)	46.9 -2.2 (2.33-2.2)	45.8-2.2 (2.33-2.2)	44.7-2.15 (2.25-2.15)	
<i>R</i> _{meas} ^b (%)	9.7 (84.1)	17.8 (138.7)	9.3 (101.2)	741
CC _{1/2} ^c (%)	99.9 (82.2)	99.8 (79.4)	99.8 (73.1)	
I/σ _I	16.6 (2.45)	11.71 (1.97)	10.66 (1.46)	
Completeness (%)	99.9 (99.8)	99.5 (96.9)	99.0 (94.8)	742
Redundancy	7.5 (7.47)	13.3 (13.4)	3.5 (3.6)	
Refinement				743
Total number of reflections	170263	76600	152005	
Reflections in the test set	8500	3819	7615	744
<i>R</i> _{work} ^d / <i>R</i> _{free} ^e (%)	18.59/21.60	18.20/21.38	22.72/26.55	
Number of atoms:				
Protein	23337	9276	18502	745
Water	1141	604	787	
Ramachandran plot ^f (%)	97.4/2.6/0.0	96.8/2.9/0.3	96.8/2.8/0.3	
<i>B</i> _{average} (Å ²):				746
Protein	39.3	42.1	51.3	
Water	41.6	44.5	45.6	
Bond length RMSD (Å)	0.01	0.01	0.01	747
Bond angle RMSD (°)	1.13	1.05	1.10	
PDB ID	7JQZ	7JQX	7JQY	748

749 ^aValues in parentheses correspond to the highest resolution shell.

750 ^b*R*_{meas}: the redundancy independent R-factor, described in Diederichs & Karplus, 1997; Nat. Struct. Biol. 4, 269–
751 275.

752 ^cCC_{1/2}: the percentage of correlation between intensities from random half-datasets, described in detail in Karplus &
753 Diederichs, 2012; Science 336, 1030–1033.

754 ^d*R*_{work} = $\sum_h |F_{\text{obs}}(h) - F_{\text{calc}}(h)| / \sum_h F_{\text{obs}}(h)$, $h \in \{\text{working set}\}$

755 ^e*R*_{free} = $\sum_h |F_{\text{obs}}(h) - F_{\text{calc}}(h)| / \sum_h F_{\text{obs}}(h)$, $h \in \{\text{test set}\}$

756 ^f Favored/allowed/outliers

757 **Table 2** Rosetta analysis of the interfaces of Cfls and Cifs

interface*	buried surface area (Å ²)	% nonpolar buried surface area	% polar buried surface area	shape complementarity	ΔΔG (kcal/mol)
Cfl1 1:2	1471	80	20	0.67	-21.5
Cfl1 1:3	1095	59	41	0.69	-36.4
Cfl1 1:4	971	71	29	0.59	-25.8
Cfl1 1:7	1113	58	42	0.70	-39.0
Cfl2 1:2	2551	85	15	0.70	-80.4
Cfl2 1:3	989	49	51	0.65	-19.3
Cfl2 1:4	694	67	33	0.71	-23.0
Cfl2 1:9	1061	46	54	0.67	-31.6
Cif 1:2	2685	76	24	0.75	-63.1
aCif 1:2	2983	68	32	0.76	-84.5

758

759 *The interface interactions are numbered according to the monomer numbering in

760 Figure 7.

761

762

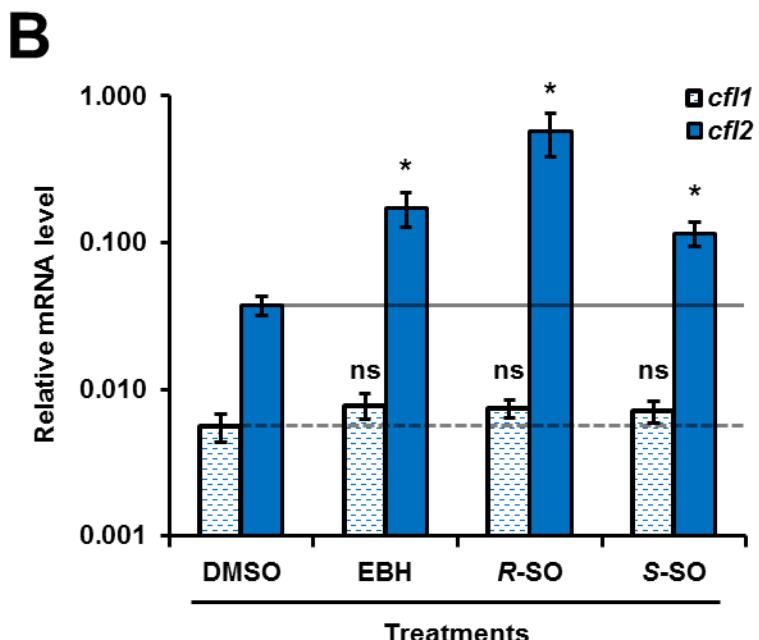
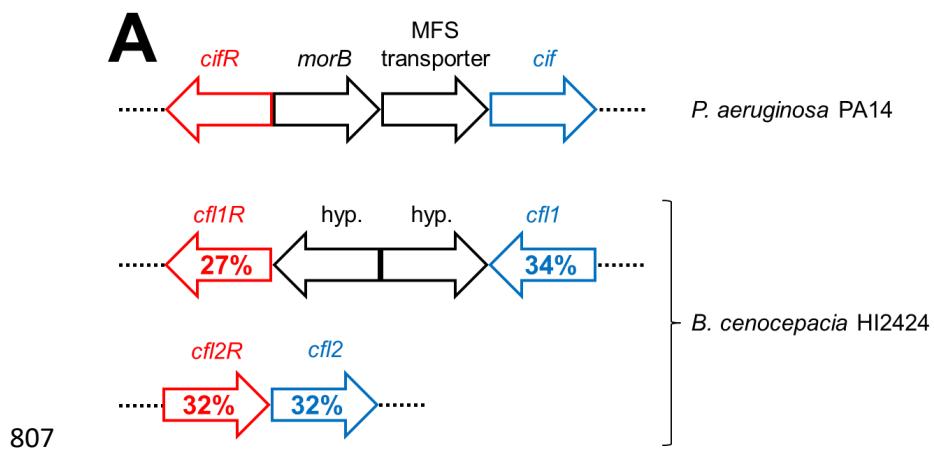
763

764

765

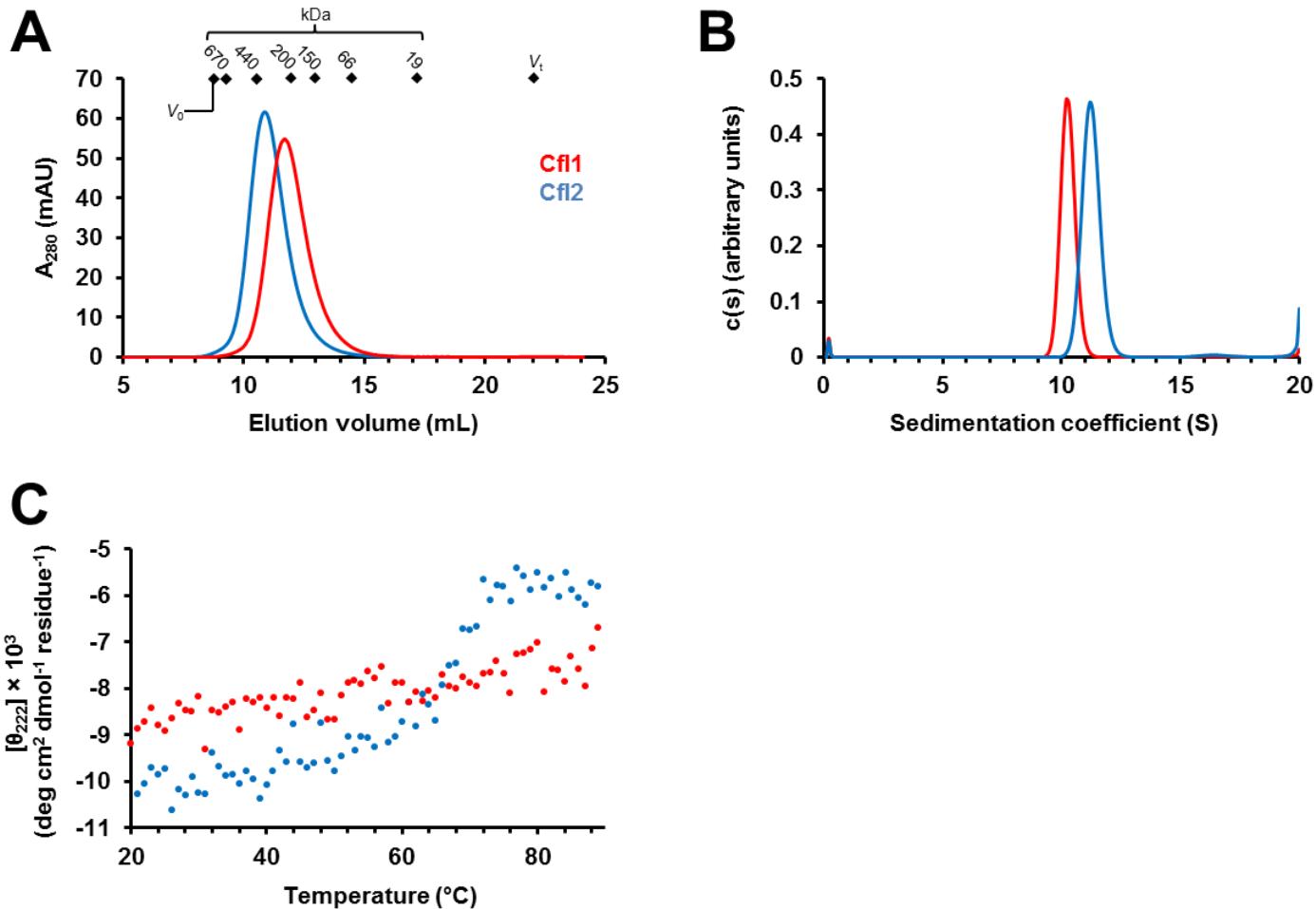
766

767

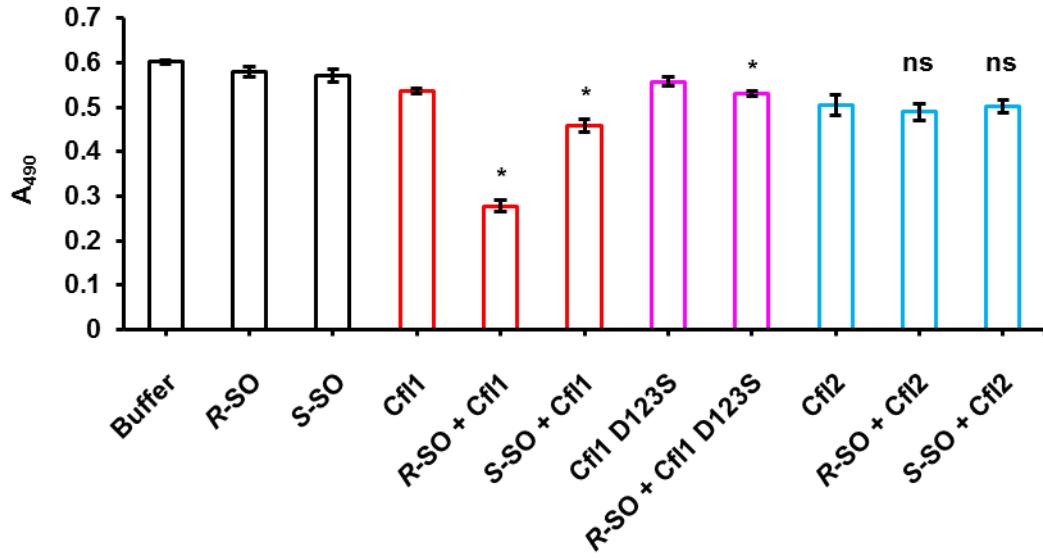


768

769

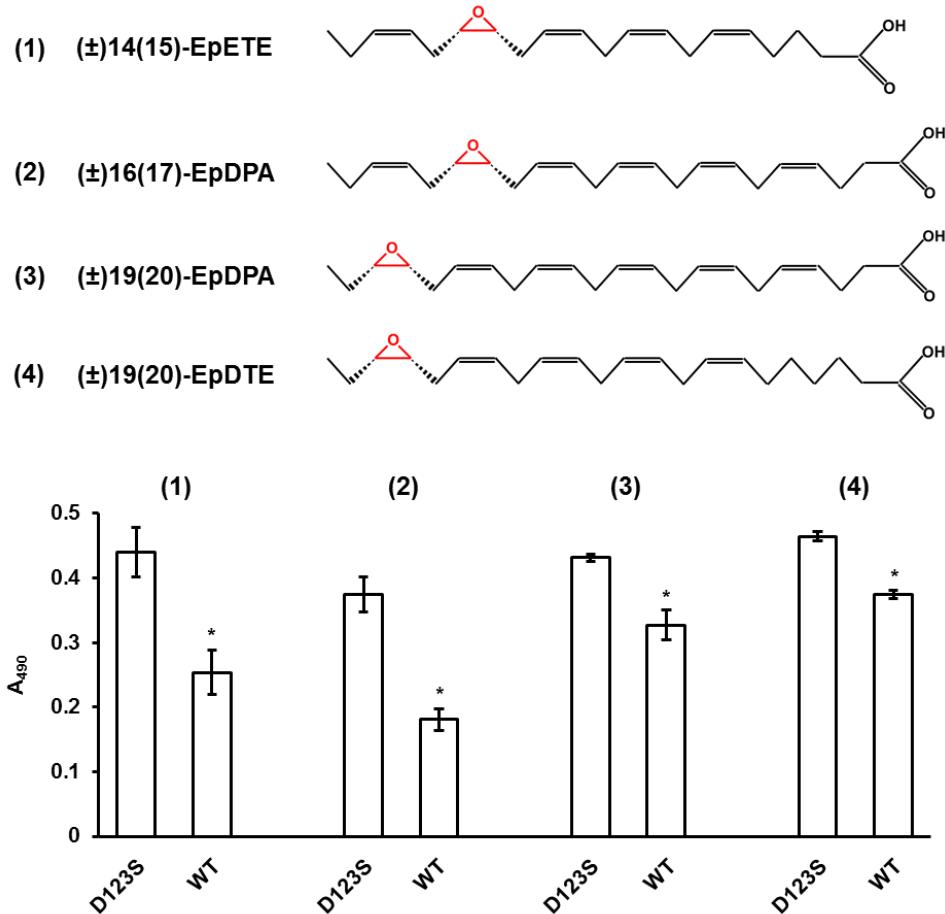
770


771	Cif	MILDRLCRLGGLLAGIALTFSLGGA AEEFPVPNGFESAYREVDGVKLHYVKGGQ--GPLVM	58
772	Cfl1	-----MQNEPSMSGMPAPGLPAGFDR-----RFSRRYAQVDDVRLHYVTGGPDDGELVV	49
773	Cfl2	-----MYQHQSTEASHLEATPYFREDPRLTGFRHRFDTVDGVRLHFVEGGRADGETIV	54
774		:	*
775			*: ** *; **: * ** * * : :
776	Cif	LV HGFG QTWYEHQQLMPPELAKR-FTVIAPDPLGLGQSEPPKTGYSQE QVAVY LHKLARQF	117
777	Cfl1	LL HGWP QTWYTWRHVM PVLAQEGY RVVAVD YRGAGES DKPLGGYDKASMA GDIRAL VRLQ	109
778	Cfl2	LLAGFP ESWYAWRRVMP LLADE -FRIVAPDLPQGQGSDRPLVG YDTQTV ATLARLLERQ	113
779		*: *: :** *: :** *: * : :* * * *: * ** :* : * : * :	
780			
781	Cif	SPDRPFDLVAHD IGIWNTY PMVVKNQADIARLV YMEAPI PDARIYRFPAFTA QGESLVW H	177
782	Cfl1	GATR-IHLVGRD IGVMVAYAYAAQRPAE IVKL AMLD DPVPGTRI WDEAKARADP --QI W H	166
783	Cfl2	NIAR-FYLAAH DVGAWVAYPFAAMY PESVKRL ALLDAGI PGVTLPAALPIEPGNAWRT W H	172
784		* : * :*: * : * : :* : : : * : : * : : * : :	**
785			
786	Cif	FSFFAADDRLAETL IAKGERFF LEHFIKSHSSNTEV FSER LLDLYARSYAKPHS LN ASFE	237
787	Cfl1	FGLHQQRD-IAEL LIAGKE HAYILDFYKKRAH--VALSNNDDIAVYADAYA APGAL RAGFE	223
788	Cfl2	FAFHTVAD-LP ETLIAK GEREYLDWF LRRKA ANPESFSDADVDEYLRV FTRDG GLRAGLA	231
789		* : * : * : * : * : * : : * : : * : : * : : * : * * : *	
790			
791	Cif	YY RALNESVRQNAELAKT-RLQMPMTL LAGGGHGGMGT FQLEQMKAYADDVEGHVLP CG	296
792	Cfl1	LY RAFPQDETQFKAFMKH-KLPMPV LALAG --DKSNGAKE FDMA KELALDVRGA VAP NTG	280
793	Cfl2	FY RAVSESSAQNRKL QALGKL KMPV LAVSA --DQGSIPDMAGPLEHVAEEV TAATIAY SG	289
794		*** : * : : * ** : : : * : * : * : * : * : * : * : * : *	
795			
796	Cif	HWL PEECAAPMNRLVIDFLSRGR--- 319	
797	Cfl1	HWL PDENPAFLTRQLLDFFREPA P NR 306	
798	Cfl2	HF PIEEQP QALARE LRDFFR----- 309	
799		* : * : * : * : * : * : * : * :	

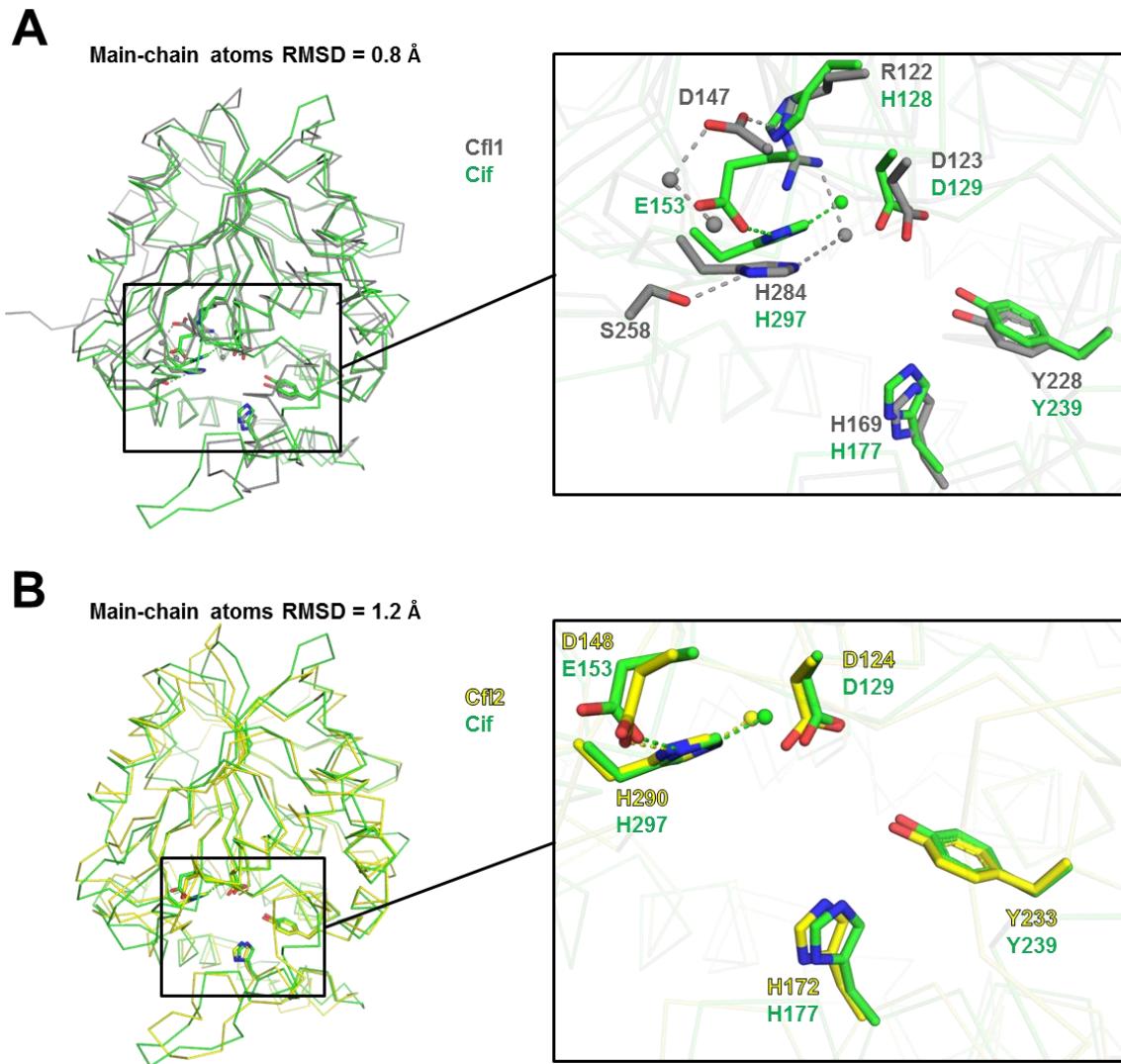
800 **Figure 1.** Cfl1 and Cfl2 amino-acid sequences contain Cif-like epoxide hydrolase
801 sequence motifs. ClustalW was used to align the amino-acid sequences of Cif from *P.*
802 *aeruginosa* strain PA14 with Cfl1 and Cfl2 from *B. cenocepacia* strain HI2424. The
803 residues corresponding to the canonical epoxide hydrolase H-G-X-P motif and the core
804 catalytic residues are highlighted in bold blue and bold red, respectively. The secretion
805 signal sequence of Cif is highlighted in bold magenta. Asterisks and colons below each
806 position indicate identity and similarity among the three sequences, respectively.


809 **Figure 2.** *B. cenocepacia* strain HI2424 upregulates the transcription of *cfl2* in the
810 presence of epoxides in the growth medium. (A) The *cif* operon in *P. aeruginosa* strain
811 PA14 and the genomic regions in *B. cenocepacia* strain HI2424 that encompass *cfl1*-
812 *cfl1R* and *cfl2*-*cfl2R* genes are shown. The percent amino-acid sequence identities of
813 Cfl1 and Cfl2 to Cif (blue) and of Cfl1R and Cfl2R to CifR (red) calculated using
814 EMBOSS Needle [53] are indicated on each respective gene. (B) Relative mRNA levels

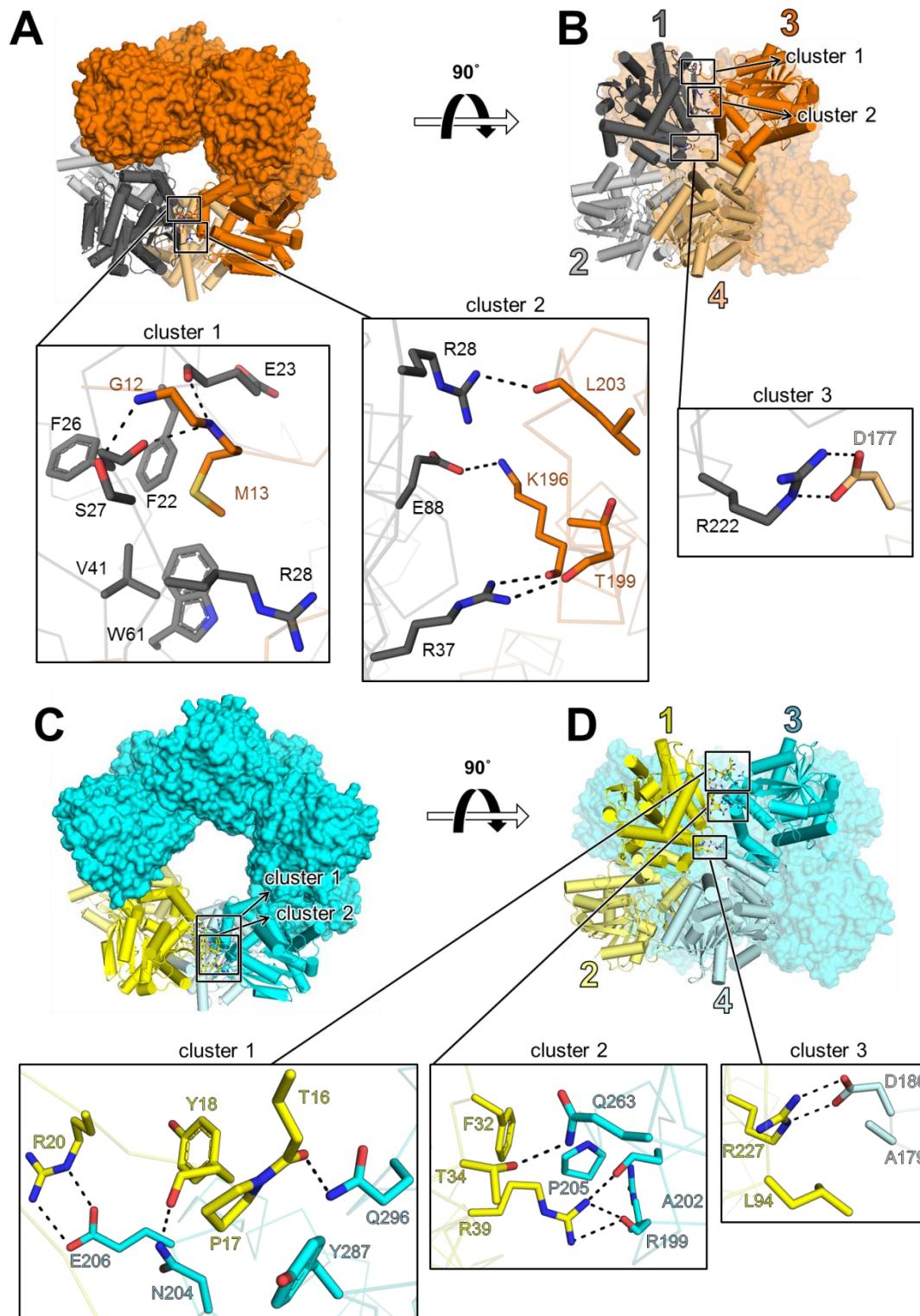
815 of *cfl1* and *cfl2* in *B. cenocepacia* strain HI2424 treated with various epoxides (EBH,
816 epibromohydrin; R-SO, R-styrene oxide; S-SO, S-styrene oxide) or control (DMSO,
817 dimethylsulfoxide) were measured using RT-qPCR. The change in measured transcript
818 levels of *cfl1* and *cfl2* between treatments was normalized to the levels of *rplU*. Values
819 are reported on a \log_{10} scale as the means of three experiments, and the error bars
820 represent the standard deviation. An asterisk indicates $p < 0.05$ when Student's
821 unpaired *t*-test was used to compare mRNA levels between epoxide-treated and
822 DMSO-treated bacteria (n = 3). ns, not significant.


823

824 **Figure 3.** Biochemical characterization of Cfl1 and Cfl2. (A) Cfl1 (red) and Cfl2 (blue)
825 elute as large oligomers in SEC. Diamonds indicate the Superdex S200 10/30 column
826 void volume (V_0), total volume (V_t), and peak elution volumes of molecular mass
827 standards (670 kDa = bovine thyroglobulin, 440 kDa = equine spleen apoferritin, 200
828 kDa = sweet potato β -amylase, 150 kDa = yeast alcohol dehydrogenase, 66 kDa =
829 bovine serum albumin, 19 kDa = bovine carbonic anhydrase). (B) Sedimentation
830 coefficient distribution of Cfl1 (red) and Cfl2 (blue) analyzed by velocity sedimentation
831 analytical ultracentrifugation. (C) Molar ellipticity at 222 nm (θ_{222}) was monitored as Cfl1
832 (red) and Cfl2 (blue) were heated to determine their melting temperatures ($n = 1$).


833

834 **Figure 4.** Cfl1 is an active epoxide hydrolase. Cfl1 (red) and Cfl2 (blue) catalytic activity
835 against the *R* and *S* enantiomers of styrene oxide (SO) and the catalytic activity of Cfl1-
836 D123S (magenta) against *R*-SO was determined using the adrenochrome assay. A
837 decrease in absorbance at 490 nm indicates hydrolysis of the epoxide. Values are
838 reported as the means of three experiments, and the error bars represent the standard
839 deviations. An asterisk indicates $p < 0.05$ when Student's unpaired *t*-test was used to
840 compare the protein+substrate reactions and their respective protein-only controls ($n =$
841 3). ns, not significant.


842

843 **Figure 5.** Cfl1 hydrolyzes physiological epoxides *in vitro*. Top: The structures of four
844 physioloical epoxides (1-4) are shown. The epoxide moiety is highlighted in red. Bottom:
845 the hydrolysis activity of Cfl1-D123S and Cfl1-WT against the four physioloical epoxides
846 is shown. Values are reported as the means of three experiments, and the error bars
847 represent the standard deviation. An asterisk indicates $p < 0.05$ when Student's
848 unpaired *t*-test was used to compare the wild-type enzyme reactions to D123S mutant
849 controls for a particular substrate ($n = 3$).

851 **Figure 6.** Alignment of the Cfl1 and Cfl2 monomers to the Cif monomer. The main-chain
852 atoms of the Cif (green) and Cfl1 (grey) (A), and of Cif and Cfl2 (yellow) (B) monomers
853 aligned using PyMol are shown. The insets show a closer view of the catalytic and other
854 select active site residues (sticks) and waters (spheres). Electrostatic interactions are
855 represented as dashed lines.

856

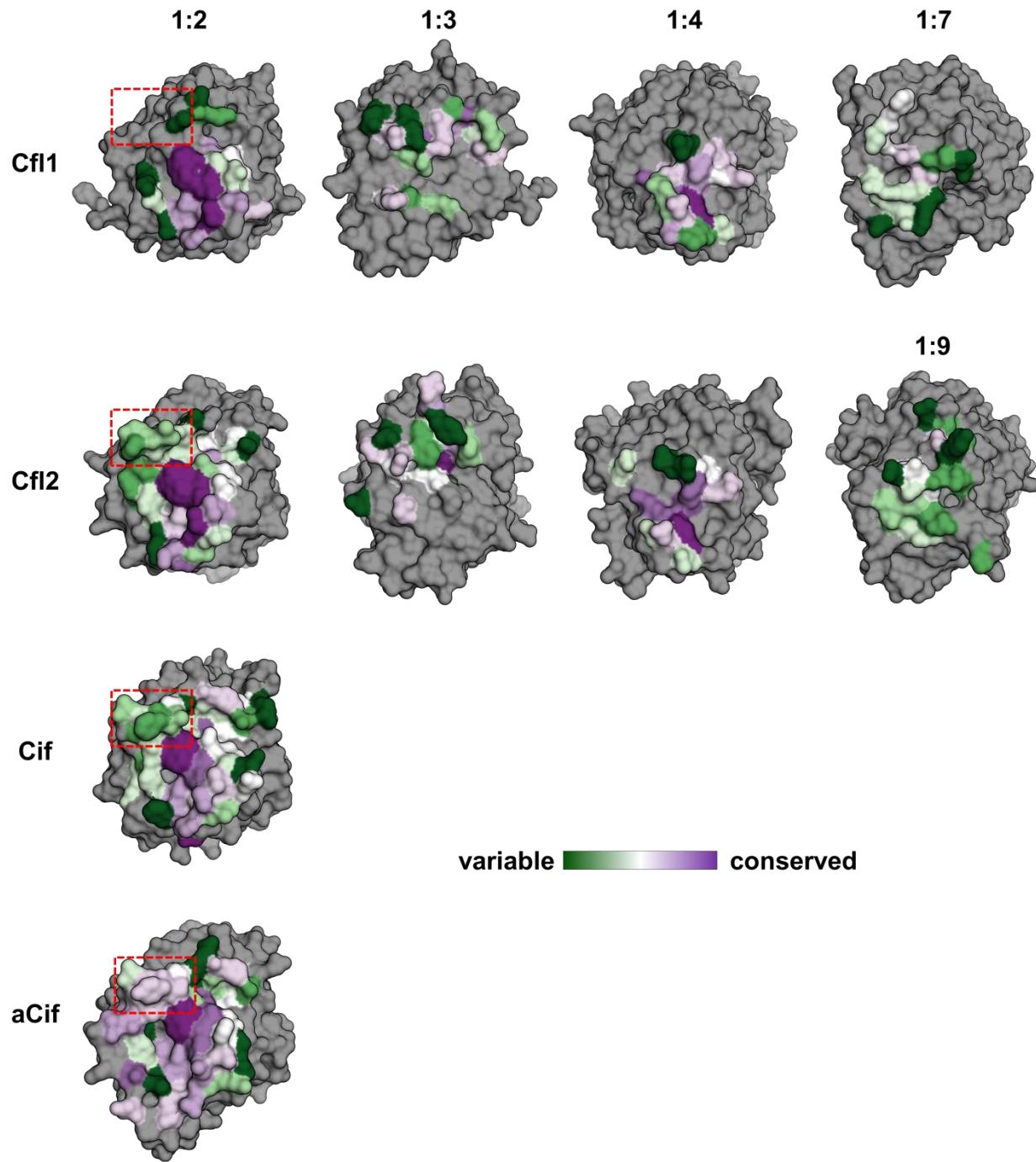
859 **Figure 7.** Crystal structures of Cfl1 and Cfl2. (A) Top view of Cfl1. All subunits are
860 shown in surface representation except subunits 1 – 4, which are shown in cartoon

861 representation with cylindrical α -helices. All subunits are colored orange except dimer
862 subunits 1 and 2, which are highlighted in grey. (B) Side view of Cfl1. Colors and
863 representations are the same as in (A). Subunits 1 - 4 are numbered. The positions of
864 Cluster 1 and Cluster 2 in this perspective are only outlined with boxes. (C) Top-down
865 view of Cfl2. All subunits are shown in surface representation except subunits 1 – 4,
866 which are shown in cartoon representation with cylindrical α -helices. All subunits are
867 colored cyan except dimer subunits 1 and 2, which are highlighted in yellow. The
868 positions of Cluster 1 and Cluster 2 in this perspective are outlined with boxes. (D) Side
869 view of Cfl2. Colors and representations are the same as in (C). Subunits 1 - 4 are
870 numbered. Insets represent magnified views of clusters 1 - 3 in each structure. Side
871 chains are depicted as sticks and electrostatic interactions as dashes. Main-chain
872 atoms involved in electrostatic interactions are depicted as sticks; otherwise they are
873 shown as transparent ribbons. Oxygens are colored red, and nitrogens are colored blue.

874

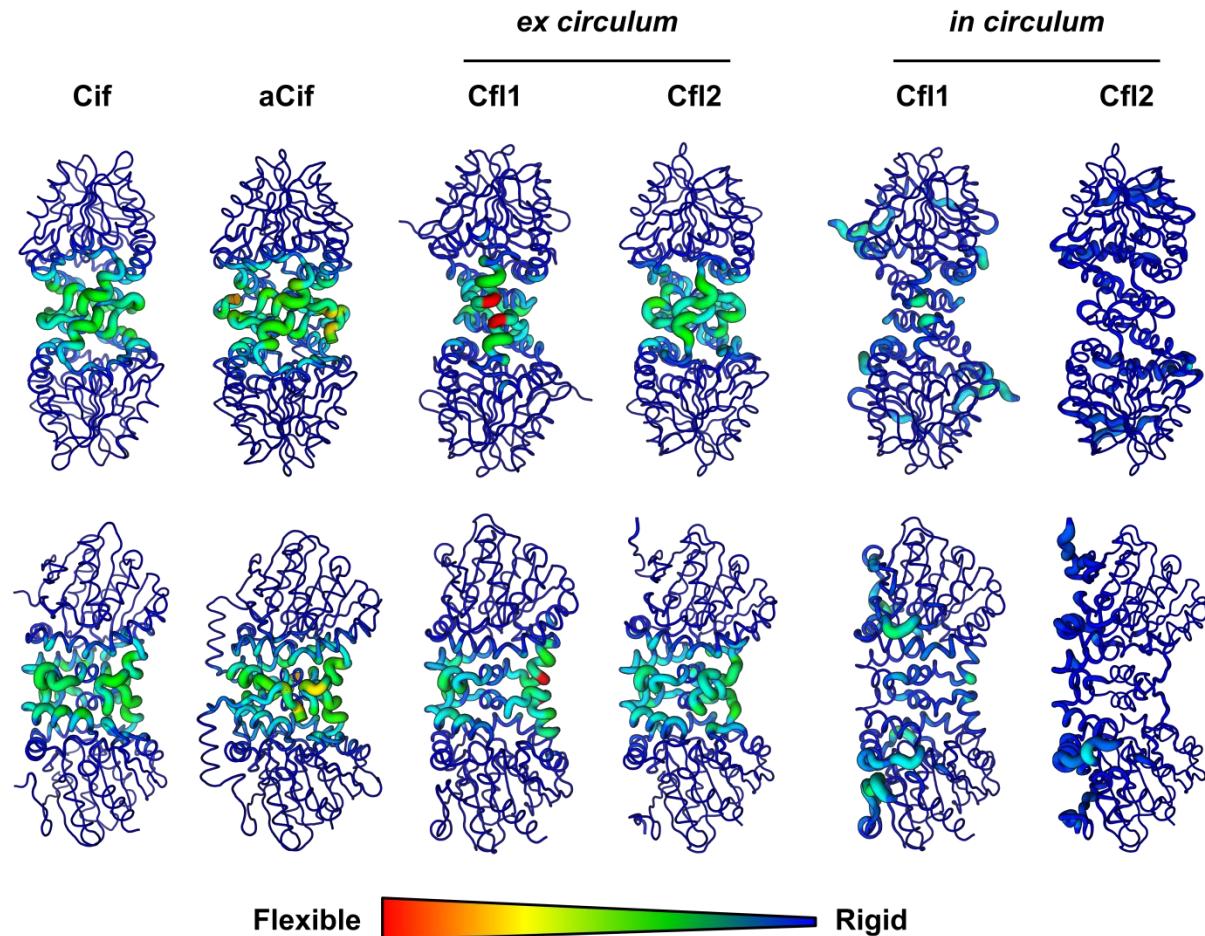
875

876


877

878

879


880

881

883 **Figure 8.** Evolutionary conservation of the interfaces of the Cfls and Cifs. The interfaces
884 of Cfl1, Cfl2, Cif, and aCif are shown on each protein's monomer subunit as surfaces.
885 The interfaces are labeled at the top according to the monomer numbering used in
886 Figure 7. The interface residues calculated by Rosetta are colored according to the

887 ConSurf conservation score as indicated by the color legend, and all other residues are
888 colored grey. The region outlined with red dashes indicates a structural element that is
889 found in Cfl2, Cif, aCif, but not Cfl1.

890

891 **Figure 9.** Deformation energy analysis of the Cfls and Cifs. The sum of the deformation
892 energies of the first three modes of each protein is depicted as a heatmap onto its
893 structure. The colors and thickness of the heatmap indicate relative flexibility and rigidity
894 as shown by the scale. The top row shows the face-on view of each dimer, and the
895 bottom row shows the side-on view. In the case of the “*ex circulum*” (out of the ring) Cfl1
896 and Cfl2 dimers, the calculations were performed on the dimer after extracting it from its
897 respective oligomer. *in circulum*, in the ring.