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Highly accurate barcode and UMI error correction using dual nucleotide dimer blocks
allows direct single-cell nanopore transcriptome sequencing
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Abstract

Droplet-based single-cell sequencing techniques have provided unprecedented insight into
cellular heterogeneities within tissues. However, these approaches only allow for the
measurement of the distal parts of a transcript following short-read sequencing. Therefore,
splicing and sequence diversity information is lost for the majority of the transcript. The
application of long-read Nanopore sequencing to droplet-based methods is challenging
because of the low base-calling accuracy currently associated with Nanopore sequencing.
Although several approaches that use additional short-read sequencing to error-correct the
barcode and UMI sequences have been developed, these techniques are limited by the
requirement to sequence a library using both short- and long-read sequencing. Here we
introduce a novel approach termed single-cell Barcode UMI Correction sequencing (scBUC-
seq) to efficiently error-correct barcode and UMI oligonucleotide sequences synthesized by
using blocks of dimeric nucleotides. The method can be applied to correct either short-read

or long-read sequencing, thereby allowing users to recover more reads per cell and permits
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direct single-cell Nanopore sequencing for the first time. We illustrate our method by using
species-mixing experiments to evaluate barcode assignment accuracy and evaluate
differential isoform usage and fusion transcripts using myeloma and sarcoma cell line

models.

Introduction
Single-cell RNA sequencing (scRNA-seq) is a widely adopted method for profiling the

transcriptome in biology and medicine [1]. Current scRNA-seq methods can be broadly
classified as well-based or droplet-based. Well-based methods, such as SMART-seq2/3 [2,
3], partition single cells into individual wells of a multi-well plate which act as a discrete
reaction vessel for subsequent library production, followed by short-read sequencing.
SMART-seq2/3 has the advantage of producing full-length transcripts, although inferring
individual transcripts from short-read sequencing remains challenging. Furthermore, this
method is limited to processing hundreds of cells at a very high cost per cell. Droplet-based
methods, such as Drop-Seq, InDrops or commercial solutions such as 10X Genomics
Chromium [4-6], co-capture cells and oligonucleotide-barcoded RNA-capture microbeads in
droplets within an oil emulsion. Each droplet becomes a discrete reaction vessel, associating
a different barcode with each cell’s RNA, followed by pooled library production and short-
read sequencing. Barcoded RNA-capture microbeads for Drop-seq are manufactured using
a manual split and pool process that creates a unique bead barcode region within the
oligonucleotide capture sequence [4]. These droplet-based methods are capable of
reporting on many thousands of cells at a dramatically reduced cost per cell but are only

capable of reporting on the 5’ or 3’ ends of transcripts when using lllumina sequencing.

Long-read sequencing platforms, such as Oxford Nanopore [7], have the potential to deliver
the throughput and economy of droplet-based short-read sequencing methods. In addition,
it provides true end-to-end sequencing of transcripts, therefore allowing examination of
RNA splicing events, single nucleotide polymorphisms, structural variation, imprinting and
measurement of chimeric transcripts at the single-cell level. However, the drawback of
Nanopore sequencing is its high error rate compared to lllumina-based short-read
sequencing (5-15% vs <1%) [8]. For many bulk applications, the advantages of long reads

outweigh the low-read accuracy, which can be overcome with consensus sequences from
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homogenous samples. However, in scRNA-seq, maintaining the fidelity of the barcode and
UMI region is indispensable, and accordingly has hampered the adoption of single-cell

Nanopore sequencing.

We here describe a barcode and UMI error correction method (scBUC-seq), whereby the
barcode and UMI regions of the oligonucleotide-barcoded RNA-capture microbeads are
synthesized using dual nucleoside phosphoramidite building blocks. Whilst increasing the
length of barcode regions by additional rounds of split-and-pool synthesis using single
phosphoramidites could possibly provide means for barcode error correction [9], this
approach would substantially increase the time and cost of manufacture of these beads,
while also reducing the yield. Furthermore, it would be impossible to correct the error rate
within the UMI, which is synthesised randomly. Instead, we take the novel approach of
building the barcode and UMI region using homodimeric reverse phosphoramidites during
the split and pool process. These repeated bases allow error detection and correction of

long-read single cell sequencing, without the need for parallel short-read sequencing.

RESULTS

Barcode and UMI error correction strategy - In order to ensure highly accurate barcode and
UMI assignment, we incorporated homodimeric nucleotides into the synthesis reaction
(scBUC-seq; single cell Barcode Umi Correction sequencing) (Figure 1a). This allows for
accurate assignment of barcodes to cells that have not been affected by either PCR or
sequencing errors (Figure 1b). Additionally, unlike previous computational methods for
Nanopore correction, this approach also allows error correction of the UMI to a high degree
of accuracy (Figure 1c). In order to correctly assign barcodes to cells, we developed a
computational strategy in which true barcodes were identified in a two-pass assignment
method. Firstly, we identified true barcodes based on nucleotide pair complementarity
across the full length of the barcode. Next, we used these true barcodes as a guide to error
correct the remaining barcodes. Using simulated data, we show that our strategy is capable
of correcting barcodes with a high sequencing error rate, with 96% of barcodes recovered
with a sequencing error rate of up to 10% (Figure 1d). Next, we modified the directional
network-based UMI correction method, first proposed by UMI-tools [10], to deduplicate

UMI sequences. In simulated data we show that UMIs are ineffectually deduplicated with
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sequencing error rates > 5% when the oligonucleotide is synthesised using single
nucleotides. However, using the dual nucleotide blocks and incorporating the sequencing
error rate of the UMI into the deduplication strategy, we demonstrate that, even at a
sequencing error rate > 10%, we are able to effectively deduplicate UMI sequences (Figure

1e and Figure 1f, Supplementary Figure 1).

Accurate assignment of cell barcodes and unique molecular identifiers within sequencing
data - In order to validate our method, we prepared human HEK293T and mouse 3T3 single-
cell Dropseq libraries from approximately 500 cells using the DolomiteBio Nadia microfluidic
encapsulation system [11], followed by Illlumina short-read sequencing. The low sequencing
error rate associated with this technology provided a test bed in which to evaluate the
performance of our barcode and UMI correction methodology. Overall, 68% of all barcodes
show complete dual nucleotide block complementarity across the full barcode sequence.
This suggests that the basecalling accuracy is 98.4%, which, given that this includes errors
introduced during library preparation, aligns with the reported accuracy of Illumina
sequencing. However, in barcodes that contain at least one sequencing error, the likelihood
of seeing more than one sequencing error is increased (Supplementary Figure 2). This
reduces the overall basecalling barcode accuracy to 92%. Using those perfectly aligned
reads, we next evaluated their ability to correct inaccurately sequenced barcodes. We
evaluated the accuracy of our method by measuring the proportion of human, mouse and
mixed species cells, identified following increasing the edit distance (i.e. Levenshtein
distance [12]) between the error-sequenced and the accurately sequenced barcodes
(Supplementary Figure 3). Analysis of uncorrected error-prone barcodes revealed a low
number of correctly assigned cells, with the majority of those cells containing a mixed
fraction of mouse and human reads (Figure 2a). Using an edit distance of 4 we found that
this resulted in accurate assignment of both mouse and human reads (Figure 2b). Overall,
using this edit distance we were able to recover an extra 8 % of total reads. Whilst further
reads could be recovered using an edit distance of 6, this was obtained at the expense of

increased mixed cells (Supplementary Figure3i).

Having demonstrated that our single-cell oligonucleotide design could provide reliable base-

calling and barcode error rate information using lllumina data, we next applied the
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technology to the Oxford Nanopore sequencing platform [7]. Using the same cDNA (Figure
2a and Figure 2b), we found that Nanopore sequencing produced a read distribution of a
similar length to that of the input cDNA (Figure 2c ; Figure 2d). We identified the presence
of a polyA sequence in 40% (range 24% — 62% over 4 independent experiments) of all
Nanopore sequencing reads and detected 12.9% (range 9% - 15%) of these reads showing
dual nucleotide complementarity across the full barcode sequence (Figure 2e). This suggests
the basecalling accuracy of single-cell nanopore sequencing is 91.8%. Similar to Illumina
sequencing, we also observe that if a barcode contains at least one sequencing error there is
an increased likelihood of it containing more than one error (Supplementary Figure 2b).
Therefore, the overall basecalling barcode accuracy is measured at 86%. We next evaluated
the ability of our method to error correct barcodes containing sequencing errors. We found
that using a barcode correction edit distance of 6 led to the recovery of 54% (range 43% -
68%) of barcodes containing sequencing errors (Figure 2f, Supplementary Figure 4).
Increasing the edit distance to 7 increased recovery to 82% (range 79.8% - 83.6%), however
this increased recovery was at the expense of increased numbers of mixed cells (Figure 2g
and Supplementary Figure 4c). Despite the increased presence of mixed cells, filtering
removed a substantial proportion of these cells and we were still able to observe clear
mouse and human cell population separation. Despite this, we opted for the conservative

edit distance of 6 for all subsequent analyses.

Identification of alternative transcript isoform usage using scBUC-seq in multiple myeloma
cell lines - We applied scBUC long-read sequencing to a mixture (1:1:1 ratio) of NCI-H929,
JIN3 and DF15 myeloma cell lines and performed cDNA synthesis on approximately 500 cells
sequenced using a MinlON device and 1200 cells sequenced using the PromethION
platform. Following filtering (Supplementary Figure 5 and Supplementary Figure 6), we
show that Nanopore sequencing is capable of resolving the different myeloma cell types at
both the gene level (Figure 3a and Supplementary Figure 7a) and the transcript level (Figure
3b and Supplementary Figure 7b). There was also a good correlation between Nanopore
and lllumina gene counts (Supplementary Figure 8). We next searched for differentially
expressed transcripts between cell types and clusters. In this experiment we observed cell-
type specific usage for 359 genes and 416 differentially expressed isoforms. Differential

transcript usage was particularly apparent in the marker CD74 (Figure 3c; Figure 3d; Figure
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3e; Figure 3f), which is a potential therapeutic target in multiple myeloma [13].
Furthermore, in agreement with the literature and the biology of plasma cells [14], we
observed a significant differential expression of both immunoglobulin kappa and lambda
light-chain isoform usage between the different Myeloma cell lines (Supplementary Figure 9

and Supplementary Figure 10).

Identification of fusion transcripts using long-read single-cell sequencing — We next
examined how scBUC long-read sequencing performs at measuring fusion transcripts as a
result of genomic translocations. Long-read sequencing permits the analysis of chimeric
sequences between two different gene regions that are drivers of certain cancers. To
illustrate the principle, we selected Ewing’s sarcoma which harbours such oncogenic fusion
protein drivers. The most common chromosomal translocation in Ewing’s sarcoma is the
t(11:22)(q24:q212) translocation, which generates the EWS-FLI protein, consisting of a
fusion between EWSR1 (Ewing’s sarcoma breakpoint region 1) and the Ets transcription
factor FLI1 (Friend leukemia integration 1) gene [15]. As a consequence of this fusion, the
EWS-FLI protein regulates the expression of numerous target genes that maintain stem cell
phenotypes, promote cell proliferation, survival and drug resistance [16, 17]. We performed
scBUC-seq on STA-ET-1 Ewing’s cells, which are known to express the EWS-FLI protein, and
measured the presence of this fusion transcript within each single-cell. Given that fusion
transcripts can be falsely detected as a consequence of PCR artefacts [18], we first used the
mixed-species data (Figure 2f) to determine the frequency of false-positive fusion events.
We show that 5% of total reads contain a fusion event, with 35 % of these reads showing
mixed human and mouse fusion transcripts (Supplementary figure 11). This suggests that
over 70% of detected fusion transcripts could be registered as a result of PCR artifacts.
However, application of a filtering threshold based on a minimum of 5 UMIs for each fusion
event removed all of the mixed human/mouse fusion reads (Supplementary figure 11b and
Supplementary figure 11c). This strategy suggests that a filter of 5 UMls is sufficient to
eliminate the vast majority of false positive fusion events and was therefore used to filter
our Ewing’s cell data. Following filtering, we detected a total of 10258 unique fusion
transcripts allowing measurement of the EWS-FLI fusion protein in 17% of cells (Figure 4a
and Figure 4b). In addition, we observed a novel fusion transcript between FLI1 and the long

non-coding RNA AL596087.2 (Figure 4c). Several EWS-FLI fusion transcripts have been
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reported [19]. We accurately detected the presence of the most common “type 1” form in
our single-cell data, consisting of the first seven exons of EWSR1 joined to exons 6-9 of the

FLI1 gene (Figure 4d and Supplementary Figure 12).

DISCUSSION

Recent advancements in single-cell droplet-based sequencing technologies have enabled
molecular profiling of the transcriptional status of cells and tissues at the single-cell level.
However, transcriptional activity is typically summarised at the gene-level due to the
limitations of short-read sequencing technologies that typically only allow sequencing of the
3’ portion of a gene transcript. The recent development of long-read sequencing
technologies such as PacBio single-molecule real-time (SMRT) sequencing or Oxford
Nanopore sequencing promises to revolutionise the sequencing of full-length transcripts
[20]. However, its application to single-cell experiments has been stymied by the high base-
calling error rates associated with long-read sequencing technologies. This makes it
challenging to simultaneously assign a sequencing read to a cell and correct for library-
associated PCR duplication errors.

SMRT sequencing has addressed this using circular consensus sequencing (CCS), where
subreads are generated by multiple passes around a circularized template during
sequencing, allowing a consensus sequence to be determined with >99% accuracy [21].
Although this approach limits the effective read length to <15 kb, which would be an
important consideration for some long-read sequencing applications, this would be
sufficient to sequence almost all polyA transcripts for single-cell long-read sequencing.
However, analysis of single-cell data is highly dependent on acquiring sufficient reads per
cell, typically 30,000-100,000 reads per cell. Currently, the highest capacity PacBio SMRT
cell returns a maximum of 4 million reads, meaning a single run could report on just 40-133
cells at a prohibitively high cost per cell. Recently, Zeng et al described high-throughput
single-cell isoform sequencing (HIT-scISOseq) [22], which, by concatenating multiple full-
length cDNAs into a single insert, was able to return 10 million reads from a single SMRT
cell. They used HIT-sclSOseq to distinguish between a mixture of thousands of injured and
uninjured corneal epithelial cells, although were only able to detect an order of magnitude

less transcripts per cell than matching short-read scRNAseq. It is unclear how this method
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would fare with more complex populations of cells, where it would likely be necessary to
reduce the number of cells per run into the range of a few hundred cells to reach sufficient
transcript coverage. On the other hand, Oxford Nanopore sequencing is more scalable, with
a range of flow cells suitable for hundreds to thousands of cells per run at 40,000 reads per
cell, as well as the ability to run multiple flow cells in parallel, at a cost per cell that can rival
or beat lllumina short-read sequencing, making this approach attractive for single-cell long
read sequencing.

Several groups have reported using short-read Illlumina sequencing to error correct long-
read Nanopore single-cell sequencing [23-25]. While this approach was able to increase
assignment rates from just ~6% to >60%, the requirement to independently construct and
sequence two libraries considerably raises the cost of single-cell sequencing. Moreover,
accurate UMI assignment is challenging with this approach because of the random nature of
the UMI generation and the low base-calling accuracy of Nanopore sequencing. Volden et al
used a Rolling Circle Amplification to Concatemeric Consensus (R2C2) method to error
correct Nanopore sequencing [26]. Although this method achieved 96% sequencing
accuracy, this still only translated to 72% of barcodes demultiplexing correctly, with 45% of
UMls not matching against parallel lllumina sequencing. Furthermore, the increased read
length needed to support this error correction approach is prone to increased error rates for
longer reads in the late stages of a sequencing run [27].

By modifying the barcode and UMI synthesis methodology, we build our oligonucleotide
sequences using homodimeric reverse phosphoramidites during the split and pool process.
Having a homodimer provides us with the ability to detect base-calling errors within both
the barcode and UMI sequences. We use the highly accurate barcodes, determined by full
complementarity of the blocks of homodimer nucleotides across the full oligonucleotide
length, as a guide to error correct barcodes with sequencing errors. Furthermore, we adapt
directional network approaches, first published by UMI-tools [10], to account for errors
within the UMI sequence. Using this approach, we can effectively error correct single-cell
sequencing barcodes, with over 80% recovery of our reads when using an edit distance of 7,
or over 60% recovery when using a conservative edit distance of 6. Furthermore, we can
also deduplicate UMIs with a high level of accuracy. Our approach has multiple advantages
over current methodologies to correct error-prone sequencing. First, our approach uses

direct Nanopore sequencing, which circumvents the need for additional short-read
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alignment data. Second, we are able to provide a base-calling accuracy rate for each
barcode and UMI sequence and, by using the combined accuracy of all barcodes and UMls,
we can approximate the overall accuracy of a single-cell sequencing experiment. The
barcode and UMI sequencing accuracy information is then applied to recover single-cell
barcodes and deduplicate UMI sequencing. We show that this approach can be used to
error-correct both short-read (lllumina) and long-read Nanopore sequencing data, thereby

recovering sequencing data that would otherwise be lost due to barcode mis-assignment.

While we have shown that our method can error-correct sequencing errors to a high
accuracy, the method could be further improved by synthesising our oligonucleotide
structure in blocks of trimeric phosphoramidites, which would also make the computational
analysis less complicated. We are currently exploring this, however the synthesis of reverse

trimer phosphoramidites is more complex than dimers [4, 6].

Our direct long-read single-cell sequencing technology has the potential to open new
avenues within genomics. For example, we demonstrate that it is possible to measure fusion
events in chimeric reads, which is only possible with long-read technology. The same
approach could also be applied to study biomedically important events such as
immunoglobulin (IgG), T-cell receptor (TCR) and B-cell receptor (BCR) gene rearrangements
and cellular repertoires. It should be noted that chimeric reads can be generated during the
PCR amplification steps of library preparation [18, 28]. We chose to only consider a fusion
transcript if the UMI count was greater than 5. However, even with stringent UMI filtering,
artefacts may still be present within the data. Therefore, results should ideally be validated
with orthogonal methods such as fluorescence in situ hybridization (FISH) based techniques

if trying to ascribe biological function.

Single-cell long read technology provides detection of full-length transcripts and expands
the toolbox of functional genomic techniques, including epigenetics and mutational
analyses. Applications of these techniques, along with single-cell copy number variation and
mutational analysis, would have a significant potential in diagnostics and understanding of

human disease.
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MATERIAL AND METHODS
Cell lines and reagents

HEK293T, JIN3, H929 and 3T3 cells were purchased from ATCC. DF15 cells were a kind gift
by Celgene (now Bristol Myers Squibb). Cell lines were cultured in DMEM low glucose
medium supplemented with FBS for no longer than 20 passages. They were mycoplasma
tested routinely and authenticated by STR during the course of this project.

Oligonucleotide synthesis

Bead functionalization and solid-phase phosphoramidite oligonucleotide synthesis was
performed by ATDBio. Toyopearl HW-65s resin, purchased from Tosoh Biosciences (product
number: 0019815), was used as the solid support. Prior to oligonucleotide synthesis, the
initial loading of hydroxyl groups on the resin was reduced via a capping reaction. Capping
was performed by suspending the resin in a mixture of acetic anhydride and lutidine in THF,
and N-methyl| imadazole in acetonitrile for 24 hours. Following capping, the synthesis was
performed using an ABI394 DNA synthesiser. The sequence of the capture oligonucleotide is

given below:

Bead - 5' TT - HEG - PC- HEG-

TTTTTTTAAGCAGTGGTATCAACGCAGAGTACHUIIIIIIINNNNNNNNTTTTTTTTTITITTITTTTITTTT
TTTTTTTT

where ') indicates a dimer nucleotide added via split and pool synthesis and 'N' indicates a

degenerate dimer nucleotide.

The barcode was generated via 12 split and pool synthesis cycles [4]. Prior to the first split
and-pool synthesis cycle, beads were removed from the synthesis column, pooled and
mixed, and divided into four equal aliquots. The bead aliquots were then transferred to
separate synthesis columns and reacted with either 3'-DMT-dG-dG-5'-CE, 3'-DMT-dC-dC-5'-
CE, 3'-DMT-dA-dA-5'-CE, or 3'-DMT-dT-dT-5'-CE phosphoramidite. This process was
repeated 11 times. Following the final split and pool cycle, the resin was pooled, mixed and
divided between four columns prior to the synthesis of the UMI and poly-T tail. An
equimolar mixture of the four dimer phosphoramidites was used in the synthesis of the

degenerate UMI region.
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Following the synthesis, the resin was washed with acetonitrile and dried prior to
deprotection in aqueous ammonia (55°C, 6 hours).

Reverse directionality dimer phosphoramidites required for the split and pool and UMI
region, were purchased as a custom product from ChemGenes: 3'-DMT-dA{(N-Bz)5'-
Phosphate-3'-dA(N-Bz)-5'-CE, 3'-DMT-dG(N-iBu)5'-Phosphate-3'-dG(N-iBu)-5'-CE, 3'-DMT-
dC(N-Ac)5'-Phosp hate-3'-dC(N-Ac)-5'-CE, 3'-DMT-dT 5'-Phosphate-3'-dT-5'-CE. Reverse
directionality monomer phosphoramidites, used for the SMART primer binding site and
poly-T tail, were purchased from LGC Link: 3'-DMT-dA (N-Bz)-5'-CE, 3'-DMT-dG (N-iBu)-CE-5',
3'-DMT-dC (N-Ac)-5'-CE, 3'-DMT-dT-5'-CE (ltem numbers: 2022, 2021, 2023, 2020). The
modified phosphoramidite reagents were purchased from LGC Link: Spacer-CE

Phosphoramidite (Item number: 2129).

Simulated barcode data

We simulated barcode sequences with a length of 24 (12 blocks of nucleotides pairs) and
then imitated the process of randomly introducing PCR errors and sequencing errors into
95% of our barcodes. We then performed a two-pass barcode assignment strategy in which
true barcodes were identified based off the nucleotide pair complementarity across the full
length of the barcode. These true barcodes were then used as a guide to correct the
remaining barcodes based on approximate string matching (Levenshtein distance). The
following values were used as values within our simulations unless otherwise stated:
Sequencing depth 400; number of UMIs 10-100; barcode-length 24; PCR error rate 1x10'5;

sequencing error rate 1x10™ — 1x10” and number of PCR cycles 25.

Simulated UMI data

We generated simulated UMI data of length 16 {8 blocks of nucleotide pairs) to confirm the
accuracy of our UMI correction method by mimicking UMI PCR amplification and sequencing
errors seen with Nanopore sequencing. UMIs were generated following an approach that
was initially proposed by UMI-tools [10]. Briefly, each UMI was generated at random, with a
uniform probability of amplification (0.8-1.0). We simulated PCR cycles so that each UMI
was selected in turn and duplicated according to the probability of amplification. PCR errors
were added randomly and then any new UMI sequences were assigned new probabilities of

amplification. A defined number of UMIs were randomly sampled to simulate sequencing
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depth and sequencing errors introduced with a specified probability. Finally, we checked for
the presence of mismatched double nucleotides within the UMI and if errors were detected,
the UMIs were split into two and then separately collapsed into 8bp nucleotides.
Unambiguous UMlis were collapsed into 8bp nucleotides without splitting. The number of
true UMIs was then estimated from the final pool of UMIs using UMI correction methods
proposed in the original UMI-tools manuscript [10]. The following values were used as
values within our simulations. Sequencing depth 10-400; number of UMIs 10-100; UMI-
length 6 — 16; PCR error rate 1x10° — 1x10; sequencing error rate 1x10" — 1x10” and

number of PCR cycles 4-12.

Droplet based scRNA-seq

Single-cell capture and reverse transcription (RT) were performed using the Drop-seq
approach, as previously described [4]. Briefly, cells were loaded into the DolomiteBio Nadia
system microfluidic cartridge at a concentration of 310 cells per microliter. Oligonucleotide
beads were synthesised by ATDBio {Oxford, UK). Beads were loaded into the microfluidic
cartridge at a concentration of 620,000 beads per mL. Cell capture and lysis were performed
according to the Nadia instrument manufacturer’s instructions (DolomiteBio). The droplet
emulsion was then disrupted using 1ml of 1H, 1H, 2H, 2H-Perfluoro-1-octanol (PFO; Sigma)
and beads were released into aqueous solution. Following several washes, the beads were
then subjected to RT. Prior to PCR amplification, beads were washed and then treated with
Exol exonuclease for 45 mins. PCR was then performed using the SMART PCR primer
(AAGCAGTGGTATCAACGCAGAGT) and then cDNA purified using AMPure beads (Beckman
Coulter). In order to achieve a high concentration of cDNA the input was subjected to 25
cycles of PCR amplification, rather than the 13 stated in the original Drop-seq protocol.
Finally, cDNA was quantified using a TapeStation (Agilent Technologies) using DNA high

sensitivity D5000 tape before being split for [llumina or Nanopore library generation.

Single-cell lllumina library preparation for sequencing

Library preparation for lllumina sequencing was performed as previously described [4].
Briefly, purified cDNA was used as an input for the Nextera XT DNA library preparation kit
(Hlumina). Library quality and size was determined using a TapeStation (Agilent

Technologies) High Sensitivity D1000 tape. High quality samples were then sequenced to a
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minimum of 50,000 reads per cell on a NextSeq 500 sequencer (lllumina) using a 75-cycle
High Output kit using a custom readl primer

(GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC).

Nanopore library preparation for sequencing

Full length cDNA samples were prepared using Oxford Nanopore Technologies SQK-LSK-109
Ligation Sequencing Kit, with the following modifications. Incubation times for end-
preparation and A-tailing were lengthened to 15 minutes and all washes were performed
with 1.8X AMPure beads to improve recovery of smaller fragments. SFB was used for the
final wash of libraries. 50 fmol of library were sequenced on either a MinlON FLO-MIN106D
R9.4.1 flow cell or PromethlON FLO-PRO002 R9.4.1 flow cell (Novogene were used as the
sequencing service provider), according to the manufacturer’s protocol. Samples sequenced
using the MinlON platform were usually sequenced across two or three flow cells so that
the final sequencing depth was at least 20 million {~40,000 reads per cell). Samples
sequenced using the PromethlON were sequenced using one flow cell so that the final read

depth was at least 48 million (~40,000 reads per cell).

lllumina-based scRNA-seq analysis workflow

The fastq data was processed wusing a custom written cgatcore pipeline

(https://github.com/Acribbs/TallyNN) [29]. We identified ambiguous and unambiguous

reads based on the occurrence of dual nucleotide complementarity within the barcode
sequence. The unambiguous barcodes were then used to error correct the ambiguous reads
by fuzzy searching using a Levenshtein distance of 4 (unless stated in the figure legend). The
barcode and UMI sequence for the corrected read pairs were then collapsed into single
nucleotide sequences. The resulting fastq files were used as an input for Kallisto (v0.46.1)
bustools (v0.39.3) [30], which was used to generate a counts matrix. This counts matrix was

used as an input to the standard Seurat pipeline (v3.1.4) [31].

Nanopore-based scRNA-seq analysis workflow

We performed base-calling on the raw fast5 data to generate fastq files using Guppy

(v4.2.2) (guppy_basecaller —compress-fastq -c dna_r9.4.1 _450bps_hac.cfg x “cuda:1”) in
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GPU mode from Oxford Nanopore Technologies running on a GTX 1080 Ti graphics card. For
each read we identify the barcode and UMI sequence by searching for the polyA region and
flanking regions before and after the barcode/UMI. Accurately sequenced barcodes were
identified based on their dual nucleotide complementarity. Unambiguous barcodes were
then used as a guide to error correct the ambiguous barcodes in a second pass correction
analysis approach. We performed fuzzy searching using a Levenshtein distance of 6 (unless
otherwise stated in the figure legend) and replaced the original ambiguous barcode with the
unambiguous sequence. A whitelist of barcodes was then generated using UMiI-tools
whitelist (umi_tools whitelist --bc-
pattern=CCCCCCCCCCCCCCCCCCCCCCCCNNNNNNNNNNNNNNNN  --set-cell-number=1000)
[10]. This whitelist was used to assess the quality of cells to read count ratio and used as an
input for UMI-tools extract. Next the barcode and UMI sequence of each read was extracted
and placed within the read2 header file using UMI-tools extract (umi_tools extract --bc-
pattern=CCCCCCCCCCCCCCCCCCCCCCCCNNNNNNNNNNNNNNNN  —whitelist=whitelist.txt).
Reads were then aligned to the transcriptome using minimap2 [32] (-ax splice -uf --MD --
sam-hit-only --junc-bed) using the reference transcriptome for human hg38 and mouse
mm10. The resulting sam file was converted to a bam file and then sorted and indexed using
samtools [33]. The transcript name was then added as a XT tag within the bam file using
pysam. Finally, UMI-tools count (umi_tools count —per-gene —gene-tag=XT —per-cell —
double-barcode), with modifications that allow it to handle oligonucleotide blocks, was used
to count features to cells before being converted to a market matrix format. We modified
UMI-tools count to handle the double nucleotide UMIs as defined below. This counts matrix

was then used as an input into the standard Seurat pipeline.

UMI error correction

UMl-tools was forked on Github and the counts functionality was

(https://github.com/Acribbs/UMI-tools) modified to handle our double oligonucleotide

design. Briefly, if a UMI contained at least one sequencing error the UMI was split into two
and then separately collapsed into 8bp nucleotides. UMIs that did not contain a sequencing
error were collapsed into 8bp nucleotides without splitting. The directional method
implemented within the original UMI-tools was then performed to correct UMI sequencing

errors.
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Dimensionality reduction and clustering

Raw transcript expression matrices generated by UMI-tools count (for Nanopore data) or
kallisto bustools {for Illumina data) were processed using R/Bioconductor (v4.0.3) and the
Seurat package (v3.1.4). Gene matrices were cell-level scaled and log-transformed. The top
2000 highly variable genes were then selected based on variance stabilising transformation
which was used for principal component analysis (PCA). Clustering was performed within
Seurat using the Louvain algorithm. To visualise the single-cell data, we projected data onto
a Uniform Manifold Approximation and Projection (UMAP). Cell type determination was
performed using clustifyr v1.0.0 to identify correlated gene expression between single-cells

and bulk RNA-seq gene lists from the harmonize database [34, 35].

Differential gene and isoform expression

Differential expression analysis was performed using nonparametric Wilcoxon test on
log>(TPM) expression values. Differentially expressed genes and transcripts were selected

based on the basis of absolute log, fold change of >1 and the adjusted P value of <. 0.05.

Identification of fusion transcripts

Nanopore reads were aligned to the hg38 genome with minimap2 (-map-ont --MD --sam-
hit-only -junc-bed —secondary=no). The splice junction bed file was generated from the
Gencode v36 gtf file using paftools, the minimap2 companion software. The sam file was
filtered using samtools to remove all non-primary alignment and supplementary alignments
(samtools view -F 3328). Chimeric reads were identified based on the SA SAM tag, which
lists all other supplementary alignments. All SAM file processing was performed using
pysam v0.15.2. Next the SA tag was inspected and assigned to the genomic feature using a
BED file containing records of all known coding genes. The SAM record was updated with Ta,
Tb, Tc and Td tags, which defines gene positional information from the BED file. Finally,
fusion transcripts were annotated with gene information and the barcode information was
used to generate a per cell counts for each translocated read. The counts table was then
merged with the original transcript Seurat object. Original UMAP embeddings that were

calculated for the transcript only level analysis was used for visualisation.
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PCR artifacts must be taken into consideration when investigating novel isoforms or
translocations. Most PCR duplications and artefacts can be eliminated when the UMI is
accounted for, but some artifacts may remain. Reverse transcription (RT) artifacts are a lot
more difficult to identify because RT introduces template switching between homologous
sequences leading to increased chimeric cDNA [18, 28]. However, to minimise the false
positive translocations in our data we used thermostable RT enzyme, we removed exonic

chimeric transcripts and required a minimum of 5 UMlIs per translocation event.

Data availability

Sequencing data has been deposited to GEO under accession number GSE162053.

Code availability
Source data is provided with this manuscript. All custom pipelines used within the analysis is

available on Github (https://github.com/Acribbs/TallyNN). Modifications to the UMI-tools

code is also available as a fork on Github (https://github.com/Acribbs/UMI-tools).
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Figure Legend

Figure 1: Developing a strategy to error correct barcode and UMI sequences from droplet-
based sequencing.
a Schematic bead and oligonucleotide structure using dimer blocks of nucleotides for BUC-

seq. b Cell barcode assignment strategy. ¢ UMI deduplication strategy. d Simulated data
showing the number of barcodes recovered with increasing simulated sequencing error
rates. e, f Simulated data showing the difference and coefficient of variation between the
deduplicated UMIs and the ground truth. Deduplication was performed using a basic
directional network-based approach and accounting for sequencing errors within paired

nucleotides.

Figure 2: Error correction of both lllumina and Nanopore droplet based scRNA-seq data

Human HEK293T and mouse 3T3 were mixed at a 1:1 ratio and approximately 500 cells were
taken for encapsulation and cDNA synthesis. Barcodes and UMIs identified as having at least
one sequencing error were processed a before and b after barcode error correction. The
proportion of mouse and human UMIs are shown in the Barnyard plot. Insert bar plots show
the number of cells identified for each species. ¢ The length of the input cDNA Nanopore
library, as measured using a tapestation. d The read length of the sequenced Nanopore
library. e The percent of reads that have a polyA tail. The percent of polyA’ reads that show
perfect based on the nucleotide pairing complementarity and the percent of reads that ccan
be recovered using an Levenshtein distance of 6. Boxes and error bars indicate the means
and standard deviations for n=4 individual experiments. Barnyard plots showing the
expression of mouse and human UMIs using a g Levenshtein distance (LD) of 6 and a h
Levenshtein distance of 7. The insert bar plots show the number of cells recovered for each
species. UMAP plots of the showing human, mouse or mixed human and mouse cells when

barcodes are corrected using a i Levenshtein distance of 6 or a j Levenshtein distance of 7.

Figure 3: Nanopore droplet based scRNA-seq identifies isoform diversity
NCI-H929, DF15 and JIN3 myeloma cell lines were mixed at a 1:1:1 ratio and approximately

1200 cells were taken for cDNA synthesis and sequenced using a PromethION flow cell.
UMAP plot of a gene expression and b transcript isoform expression. ¢ Principal CD74 (HLA-

DR) splice variants showing all protein coding transcripts. UMAP plot showing the isoform
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expression of detected CD74 (HLA-DR) transcripts d ENST00000009530.12, e
ENST00000377775.7 and f ENSTO0000353334.10.

Figure 4: Nanopore scRNA-seq reveals fusion transcripts in Ewing’s cells

A UMAP plot of a total fusion transcripts in Ewing’s cells mapped as a parentage of the cell’s
total RNA and a UMAP plot showing the expression of the b EWS-FLI fusion transcript. ¢ A
circular representation of the fusion transcripts identified between FLI1 and EWSR1. d A
schematic showing the structure of the EWSR1 and FLI1 genes. The EWS-FLI1 fusion
transcript consists of the 5 end of the EWS gene and the 3’ end of the FLI1 gene.
Arrowheads denote known fusion events and the most common type 1 fusion transcript is

shown.
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