

1 **A nexus of intrinsic dynamics underlies translocase priming**

2
3
4 Srinath Krishnamurthy^{1*}, Nikolaos Eleftheriadis^{1*}, Konstantina Karathanou², Jochem
5 H. Smit¹, Athina G. Portaliou¹, Katerina E. Chatzi¹, Spyridoula Karamanou¹, Ana-
6 Nicoleta Bondar², Giorgos Gouridis^{1,3,4,5} and Anastassios Economou^{1,5,6}

7
8 ¹ KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and
9 Immunology, 3000 Leuven, Belgium

10 ² Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics
11 Group, Arnimallee 14, D-14195 Berlin, Germany

12 ³ Molecular Microscopy Research Group, Zernike Institute for Advanced Materials,
13 University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

14 ⁴ Structural Biology Division, Institute of Molecular Biology and Biotechnology (IMBB-
15 FORTH), Nikolaou Plastira 100, Heraklion-Crete, Greece

16
17 * Equal contribution

18 ⁵ For correspondence: e-mail: tassos.economou@kuleuven.be,
19 g.gouridis@imbb.forth.gr

20 ⁶ Lead Contact

21
22 **Running title:** Translocase intrinsic dynamics

23 **Characters with spaces:** 34,607

24 **Keywords:** translocase; protein secretion; SecA; SecYEG channel, HDX-MS,
25 smFRET, signal peptide, intrinsic dynamics, MD simulation, Graph analysis

26

27 **Authors e-mail addresses:**

28 Srinath Krishnamurthy: srinath.krishnamurthy@kuleuven.be
29 Nikolaos Eleftheriadis: nikolaos.eleftheriadis@kuleuven.be
30 Konstantina Karathanou: kkarathanou@zedat.fu-berlin.de
31 Jochem H. Smit: jochem.smit@kuleuven.be
32 Athina G. Portaliou: athina.portaliou@kuleuven.be
33 Katerina E. Chatzi: kat.chatzi@gmail.com
34 Spyridoula Karamanou: lily.karamanou@kuleuven.be
35 Ana-Nicoleta Bondar: nbondar@zedat.fu-berlin.de
36 Giorgos Gouridis: g.gouridis@imbb.forth.gr
37 Anastassios Economou: tassos.economou@kuleuven.be

38 **Summary**

39 **The cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel**
40 **assemble to form the functional Sec translocase. How this interaction primes**
41 **and catalytically activates the translocase remains unclear. We now show that**
42 **priming exploits a sophisticated nexus of intrinsic dynamics in SecA. Using**
43 **atomistic simulations, single molecule FRET and hydrogen/deuterium**
44 **exchange mass spectrometry we reveal multiple distributed dynamic islands**
45 **that cross-talk with domain and quaternary motions. These dynamic elements**
46 **are highly conserved and essential for function. Central to the nexus is a**
47 **slender Stem through which, motions in the helicase ATPase domain of SecA**
48 **biases how the preprotein binding domain rotates between open-closed**
49 **clamping states. Multi-tier dynamics are enabled by an H-bonded framework**
50 **covering most of the SecA structure and allowing conformational alterations**
51 **with minimal energy inputs. As a result, dimerization, the channel and**
52 **nucleotides select pre-existing conformations, and alter local dynamics to**
53 **restrict or promote catalytic activity and clamp motions. These events prime**
54 **the translocase for high affinity reception of non-folded preprotein clients.**
55 **Such dynamics nexuses are likely universal and essential in multi-liganded**
56 **protein machines.**

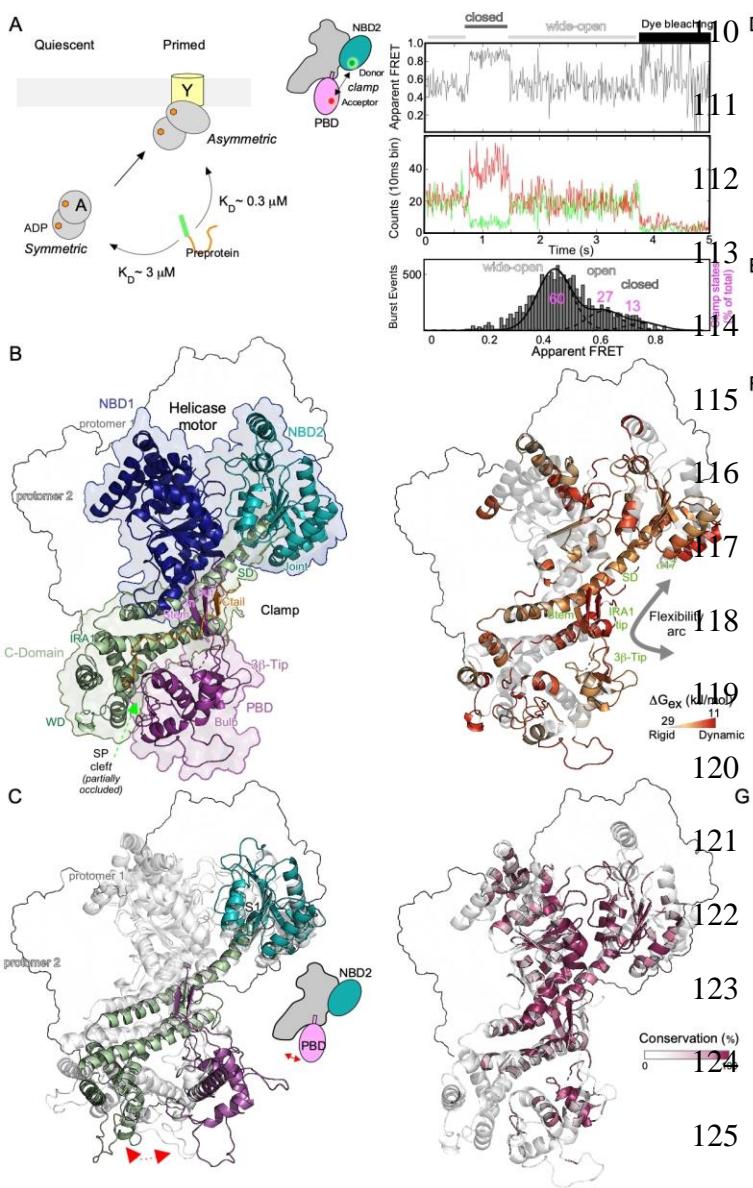
57

58 **Word count: 175**

59

60 **Introduction**

61 Protein machines handle replication, transcription and unwinding of nucleic
62 acids or folding, disaggregation, degradation and secretion of polypeptides
63 (Avellaneda et al., 2017; Flechsig and Mikhailov, 2019; Kurakin, 2006). Such
64 machines are commonly auto-inhibited and become activated by their partner
65 subunits and polymeric substrates and then spend energy to remodel the latter. Their
66 function exploits intrinsic dynamics that span multiple time regimes (Henzler-Wildman
67 et al., 2007; Yang et al., 2014).


68 Unique to each protein, dynamics describe combined relative motions of
69 protomers/subunits (hereafter ‘quaternary’), tertiary motions within a single chain
70 (‘global’), relative ‘domain’ and ‘local’ motions (e.g. loss or displacement of secondary
71 structure elements, hinges, loops, fluctuations of interactions between amino acids).
72 Intrinsic dynamics usually underlie allosteric interactions however, their regulation or
73 coupling to function remains unclear (Bhabha et al., 2015; Loutchko and Flechsig,
74 2020; Zhang et al., 2019).

75 Here we studied, the four domain DEAD box helicase member SecA that
76 chaperones and translocates bacterial secretory polypeptides. SecA binds to the
77 SecYEG channel in membranes to form the primed Sec translocase allosteric
78 ensemble (Ahdash et al., 2019; Corey et al., 2019; Gouridis et al., 2013) and
79 interacts with non-folded clients bearing signal peptides, nucleotides, lipids,
80 chaperones and undergoes dimer to monomer transitions (De Geyter et al., 2020;
81 Rapoport et al., 2017; Tsirigotaki et al., 2017a). Orderly, sequential ligand
82 interactions transform the translocase from a quiescent to an active state. However,
83 the presumably multi-tier dynamics and energetics and their link to translocation work
84 remain elusive.

85 SecA, a dimeric, auto-inhibited ATPase (Fig. 1A)(Sianidis et al., 2001; Wowor
86 et al., 2011), retains a tight ADP-stabilized state until it peripherally associates to the
87 channel with one protomer, to form the primed translocase. This converts SecA to a
88 10-fold tighter preprotein binder (Fig. 1A)(Gouridis et al., 2013) and somehow
89 prepares it for ATP hydrolysis turnovers once signal peptides and mature domain
90 bind (Fak et al., 2004; Gouridis et al., 2009; Sianidis et al., 2001). SecA then converts
91 to a monomeric processive motor working through mechanical strokes, Brownian
92 ratcheting and/or by alternating channel conformations (Allen et al., 2016; Catipovic
93 et al., 2019; Economou and Wickner, 1994; Vandenberk et al., 2019).

94 SecA's helicase motor (Nucleotide Binding Domains 1 and 2) is fused to an
95 ATPase suppressing C-domain and a Preprotein Binding Domain (PBD) (Fig. 1B;
96 S1A-B; S1C.I). PBD, rooted via a Stem in NBD1, intrinsically rotates towards NBD2
97 to clamp mature domains (Bauer and Rapoport, 2009), and occupies three distinct
98 states: Wide-open, Open and Closed (Fig. 1B; Table S1 II,III) (Ernst et al., 2018;
99 Sardis and Economou, 2010; Vandenberk et al., 2019). Moreover, the PBD carries
100 both the signal peptide cleft in its “Bulb” globular domain and the mature domain
101 binding site on the narrow Stem that connects it to NBD1 (Chatzi et al., 2017)(Fig.
102 1B, Fig. S1B, S1C.II). When the PBD is in the Wide-open state, the dynamic C-tail of
103 SecA folds over the signal peptide cleft and Stem regions where it binds as a
104 pseudo-substrate guarding access to the client binding surfaces (Chatzi et al., 2017;
105 Gelis et al., 2007).

106 Structures of soluble and detergent-solubilized channel/preprotein SecA states
107 revealed their static architectures (Ma et al., 2019; Rapoport et al., 2017; Sardis and
108 Economou, 2010) but how the underlying dynamics prime (channel binding) and
109 activate (channel and preprotein binding) the translocase in a physiological

membrane environment remain elusive. Here, we determined the intrinsic dynamics of SecA and probed how they underlie the conversion from quiescence to priming by assembly with the channel, using an integrated approach.

Fully atomistic molecular dynamics (MD) simulations and graph analysis determined 'global' dynamics and H-bond networks that interconnect remote regions of SecA (Karathanou and Bondar, 2019). Single molecule Förster

Fig. 1 Local dynamics islands in SecA regulate clamp domain dynamics

A. Cytoplasmic SecA is a catalytically quiescent symmetric dimer that binds the SecYEG channel asymmetrically and forms the primed translocase holo-enzyme. Primed SecA₂ has 10-fold higher preprotein affinity compared to quiescent SecA₂. **B.** Domain organization of ecSecA₂ (modelled after the *B. subtilis* 1M6N ribbon (shaded surface). ATPase motor (NBD 1 and 2: Nucleotide binding domains); PBD (Preprotein binding domain); C-domain [comprising: Scaffold (SD), Wing (WD), IRA1 (Intra-molecular regulator of ATPase 1) and C-tail]. See also Fig. S1. **C.** MD simulations of ecSecA_{2,1M6N}. Two coordinate snapshots shown from start (0 ns; grey) and end (262 ns) aligned on their NBD1 (protomer 1, coloured as in Fig. 1B and 2: contoured). **D.-E.** smFRET analysis of PBD motions using His-SecAD2, stochastically labelled with Alexa555 and Alexa647, that was either immobilized on a PEG-biotinylated- α -His antibody surface (D) or freely diffusing (50-100pM) (E). Cold His-SecAD2 (1 μM) promoted dimers (see Fig. S3A). **D.** Top: Representative FRET trace (out of 162) showing rare transitions between the indicated states. Bottom: Photon counts collected during FRET trace recording. **E.** The FRET value of every labelled SecA molecule randomly diffusing through the confocal volume (i.e. burst event, y-axis) was calculated (Apparent FRET, E^* , x-axis) and plotted (left). Derived histograms ($>10,000$ total burst events binned in E^* tranches; y axis) were fitted to a minimum of three Gaussians (Fig. S3B) representing distinct quantified clamp states (as indicated). Sum of 3 integrals= 100%; each state is a % of the total. $n=6$. **F.** ΔG_{ex} values (in kJ/mol) were calculated by PyHDX (Smit et al., 2020) from HDX-MS experiments and visualized on the dimeric ecSecA_{2,1M6N} apoprotein structure. Residues are colored on a linear scale from grey (28 kJ/mol, rigid) to red (11 kJ/mol, dynamic). Highly rigid residues ($\Delta G_{ex} > 28$ kJ/mol, transparent grey) (see also Fig. S4; Table S3). **G.** Highly conserved residues in 200 SecAs, derived from Consurf (Ben Chorin et al., 2020), coloured as indicated onto ecSecA_{2,1M6N} (represented as in C).

126 resonance energy transfer (smFRET) reported on ‘domain’ dynamics (Gouridis et al.,
127 2015; Kapanidis et al., 2004; Vandenberk et al., 2019) and hydrogen deuterium
128 exchange mass spectrometry (HDX-MS) identified ‘local’ dynamics (Tsirigotaki et al.,
129 2017b; Vadas and Burke, 2015). In both cases translocation-permitting physiological
130 membranes and concentrations in detergent-free conditions were used.

131 We reveal that SecA comprises an extensive H-bond network that yields a
132 nexus of multi-level intertwined dynamics that combine; quaternary effects from
133 dimerization including dimer to monomer transitions, global and domain effects in
134 each protomer, and multiple islands of local intrinsic dynamics. Within each protomer,
135 specific islands in the helicase motor, its associated scaffold helix and the Stem
136 conformationally crosstalk and affect the inter-conversions of the preprotein clamp
137 between three states. ADP that occupies pre-activated SecA, tightly restricts these
138 local dynamics but does not affect clamp motions. Dimeric, cytoplasmically diffusing
139 SecA maintains a predominantly Wide-open clamp with weak client access. In
140 contrast, the channel on one hand, binds to dimeric SecA, and on the other uses its
141 carboxyterminal region to trigger re-distribution of the SecA clamp equally between
142 the three states in the channel-bound active protomer. This structural transformation
143 allows increased access to preprotein clients, enhanced flexibility due to relief of
144 ADP-driven suppression of SecA local dynamics. These events thereby prepare the
145 translocase for pre-protein mediated ADP release and activation of the enzyme for
146 secretion work. Our data reveal how multiple ligands of a protein machine can
147 promote step-wise priming, activation and catalysis by exploiting sophisticated and
148 coordinated, multi-level intrinsic dynamics. The tools used here will be widely
149 available in other membrane-embedded systems.

150 **Results**

151 **Cytoplasmic SecA₂ has restricted domain motions and a wide-open clamp**

152 To understand how the cytoplasmic SecA₂ is auto-inhibited but becomes
153 primed and activated when channel-bound, we first probed its ‘global’ dynamics
154 using simulations in bulk water. Two different, likely physiological, dimers (Gouridis et
155 al., 2013)(Table S2), both with their clamps in Wide-open states (Fig. 1C; S2A), were
156 used as starting structures for two independent simulations.

157 All four SecA domains, particularly NBD1, are extensively H-bonded (Fig.
158 S2B) and exhibited similar dynamics irrespective of the protomer in which they
159 belong to. Several residues participate in multiple H-bonds and/or are hubs in multi-
160 residue H-bond pathways (Fig. S2B-D; Table S2). During 260 ns MD simulations,
161 either of the two SecA₂ structures only displayed minor domain motions in each of
162 their protomers without loss of the Wide-open state (Fig. 1C; Fig. S2E). The Wide-
163 open state is stabilized through multiple interactions that the PBD makes with the
164 wing domain and the C-tail. This partially restricts access to the signal peptide cleft
165 (Fig. S1C.II-III, top; Table S2).

166 To monitor domain motions specifically in the clamp we used our established
167 smFRET pipeline (Fig. 1D-E; S3A)(Vandenberk et al., 2019). His-SecAD2, a single
168 cysteinyl pair (V280C_{PBD}/L464C_{NBD2}) derivative, was stochastically labelled with
169 donor and acceptor fluorophores (Vandenberk et al., 2019). The FRET state of
170 labelled His-SecAD2 reports directly on how proximal PBD and NBD2 are and thus,
171 on clamp motions (Fig. 1D, cartoon). Heterodimers of His-SecAD2 were generated
172 by mixing fluorescent kinetic monomers with excess unlabeled His-SecAD2. FRET
173 traces from surface-immobilized heterodimers were recorded as a function of time on
174 a confocal microscope (Gouridis et al., 2015). The analysis of 162 such trajectories

175 demonstrated that the clamp of SecA₂ predominantly existed in a low FRET state,
176 consistent with the ‘Wide-open’ clamp state, rarely transiting to the Open and Closed
177 states (~10% of the 162 traces; Fig. 1D; S3C-D)(Sardis and Economou, 2010).
178 These data reveal that the clamp is intrinsically dynamic with individual states stable
179 with lifetimes in the near second time regime, indicative of large domain motions
180 (Henzler-Wildman and Kern, 2007).

181 Clamp states were quantified by solution smFRET. Fluorescently labelled
182 heterodimers were monitored as they freely diffused through the confocal volume.
183 Following pulsed interleaved excitation (Muller et al., 2005; Vandenberk et al., 2019),
184 >10,000 photon burst events from molecules carrying both fluorophores (hence could
185 FRET) were analyzed per experiment (Fig. 1E). 2D plots of stoichiometry vs apparent
186 FRET efficiency were globally fitted with a mixture model of Gaussians (Fig. S3B;
187 S3E)(Gouridis et al., 2019). The data were best fitted with 3 distributions and
188 quantified using the area under the curve, taking the sum of all states as 100% (Fig.
189 1E). The clamp of SecA predominantly sampled the Wide-open state (60% of the
190 population) and less so the Open and Closed states (27 and 13% respectively).

191 Collectively, these data show that SecA₂ displays limited intrinsic domain
192 dynamics and has its clamp predominantly in the Wide-open state. This state is
193 maintained by several inter protomer interactions and limits access to the signal
194 peptide cleft (Gelis et al., 2007) (Table S1; Fig. S1.C III top).

195

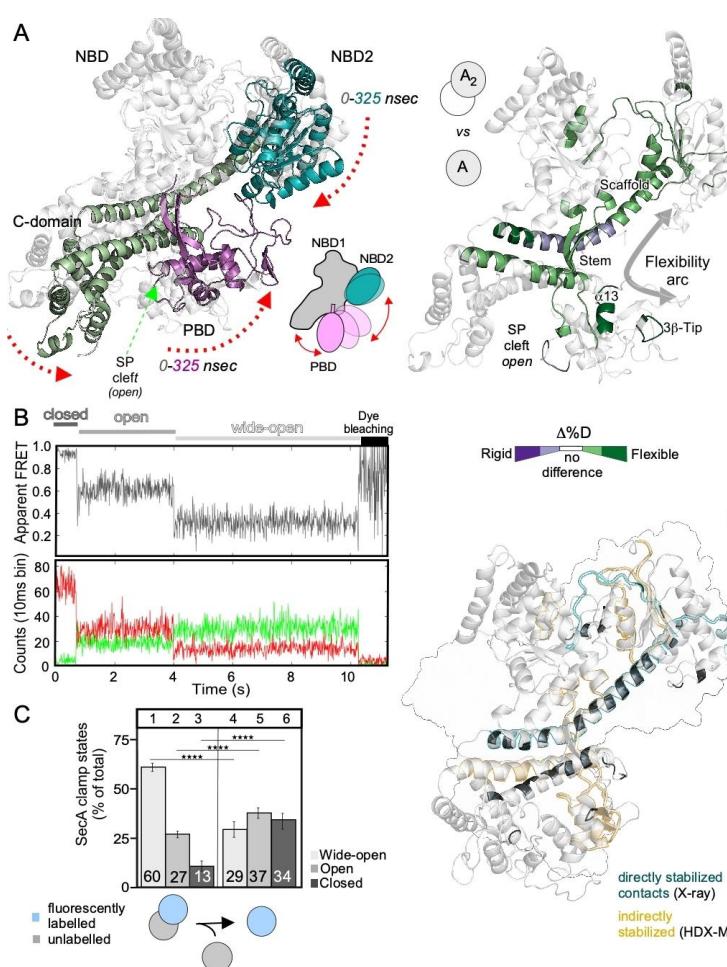
196 **Conserved Islands of intrinsic dynamics in SecA₂**

197 To define the underlying residue dynamics that define domain motions, we
198 determined the residue level ‘local’ dynamics of SecA₂ using HDX-MS. This technique
199 non-invasively monitors loss or gain of backbone H-bonds, common in secondary

200 structure, at low micromolar concentrations, near-residue resolution and in seconds
201 timescales (Brown and Wilson, 2017; Hu et al., 2013; Skinner et al., 2012).

202 SecA₂ was diluted to ~2 μ M into D₂O buffer for various time-points. Samples
203 were acid-quenched, protease-digested (Wowor et al., 2014) and D-uptake was
204 determined by mass spectrometry (Fig. S4A.I). 190 peptides with high signal/noise
205 ratio yielded ~95% primary sequence coverage (Table S3). The D-uptake for each
206 peptide was expressed as a percentage of its fully deuterated control (taken as
207 100%). D-uptake data were then processed by our in-house software PyHDX (Smit
208 et al., 2020) to yield Gibbs free energy of exchange (ΔG_{ex} , kJ mol⁻¹) values for each
209 residue. ΔG_{ex} values quantify the degree of dynamics existing within the protein
210 backbone to which they are inversely correlated, i.e lower and higher ΔG_{ex} values
211 represent greater and lower backbone rigidity, respectively).

212 SecA₂ has several distributed regions of flexibility that together form islands of
213 high intrinsic dynamics (Fig 1F; orange and red; Fig S4B), some of them sharply
214 delimited against an otherwise 'rigid' backdrop (grey). Dynamics islands in the
215 nucleotide binding cleft in the ATPase motor and signal peptide clefts are linked by a
216 chain of intrinsic dynamic residues that form a 'flexibility arc' that lines the inner walls
217 of the clamp (Fig 1F; grey arrow). The arc includes the 3 β -tip_{PBD}, peripheral loops of
218 the PBD core, the three stranded anti-parallel β -sheet formed by the Stem (consisting
219 of two anti-parallel β -strands and its flexible linker) and the C-tail, the tip of IRA1, the
220 motor-associated scaffold with its kinked middle region that ultimately connects to the
221 joint that includes α 17_{NBD2s}.


222 The nucleotide binding cleft and flexibility arc are highly conserved while the
223 signal peptide cleft is not (Fig 1G). The local dynamics observed are likely

224 fundamental for SecA function, and may underpin large-scale domain motions and
225 coupling to nucleotide cycles and client binding.

226

227 **Monomeric SecA displays enhanced domain dynamics and a distributed clamp**

228 We next determined how dimerisation affects the inherent dynamics of the
229 SecA protomer. MD simulations of monomeric SecA revealed that PBD and NBD2
230 move towards each other, meet within 150 ns and form a stably Closed clamp till the
231 end of the simulation (325 nsec). Concomitantly, C-domain sub-structures undergo
232 domain motions (Fig. 2A; S2E-G; Movie S1). Clamp closing also exposes the signal
233 peptide cleft (Gelis et al., 2007)(Fig. S1C.II and III, bottom; Table S1). Some residues
234 negotiate distances of ~2nm (Fig. S2F). During these motions PBD loses internal H-
235 bonds (Fig. S2B). We analysed two coordinate

Fig. 2 Effect of SecA monomerization on its domain and local dynamics

A. Two coordinate snapshots from the start (0 ns; grey) and end (325 ns) of the MD simulations of monomeric ecSecA_{2VDA} aligned based on their NBD1 (grey). Domains coloured as in Fig. 1B (see also Fig. S2G-H). **B.** Top: Representative FRET trace (out of 84) of monomeric SecA. Bottom: Photon counts collected during FRET trace recording. **C.** Clamp states quantified from solution smFRET of labelled SecA₂ with a single labelled protomer or monomers (50-100pM), as in Fig. 1E. $n \geq 6$ biological repeats; mean \pm SEM (see also Fig. S3A-B; S6A). **D.** Effect of monomerization on local dynamics of SecA. (see also Fig. S5A). D-uptake differences (light/dark hues: $\Delta D = 10-20\% / >20\%$ respectively) between the indicated dimer/monomer end-states (control: dimer, test: monomer) are coloured on the ecSecA_{2VDA} structure (Top; decreased/increased dynamics: purple/green respectively; no difference: white). Flexibility arc: grey arrow. **E.** Regions of a SecA protomer stabilized in SecA₂ either directly (involved in dimerization; ecSecA_{1M6N} X-ray structure; black/teal), or indirectly (from Fig. 1F; sand) as indicated.

236 snapshots of the Open and Closed clamp, representative conformations based on H-
237 bond networks and centrality measurements (Fig. S2C-D, S2H). Multiple inter-
238 domain salt bridges, dynamic H-bond clusters (mainly between PBD, scaffold and
239 NBD2) and an extensive local hydration network lie behind clamp motions (Fig. S2I-
240 J; Table S2). Initially, the salt-bridge of R709_{WD} with E294_{PBD} of a signal peptide cleft
241 loop, breaks (Fig. S2H, left). Then, PBD moves towards and binds NBD2 using two
242 prongs to form a Closed conformation (prong1: aa250-275; prong2 or 3 β -tip: aa320-
243 347; Fig. 2A; S1C.II and III, bottom; S2H, right; S2J). In this “loose Closed”
244 conformation identified for the first time by these MD simulations, the PBD is more
245 peripherally associated compared to the “tightly Closed” conformation seen in
246 SecYEG:SecA:ADP.BeF₄ crystals (Zimmer et al., 2008).

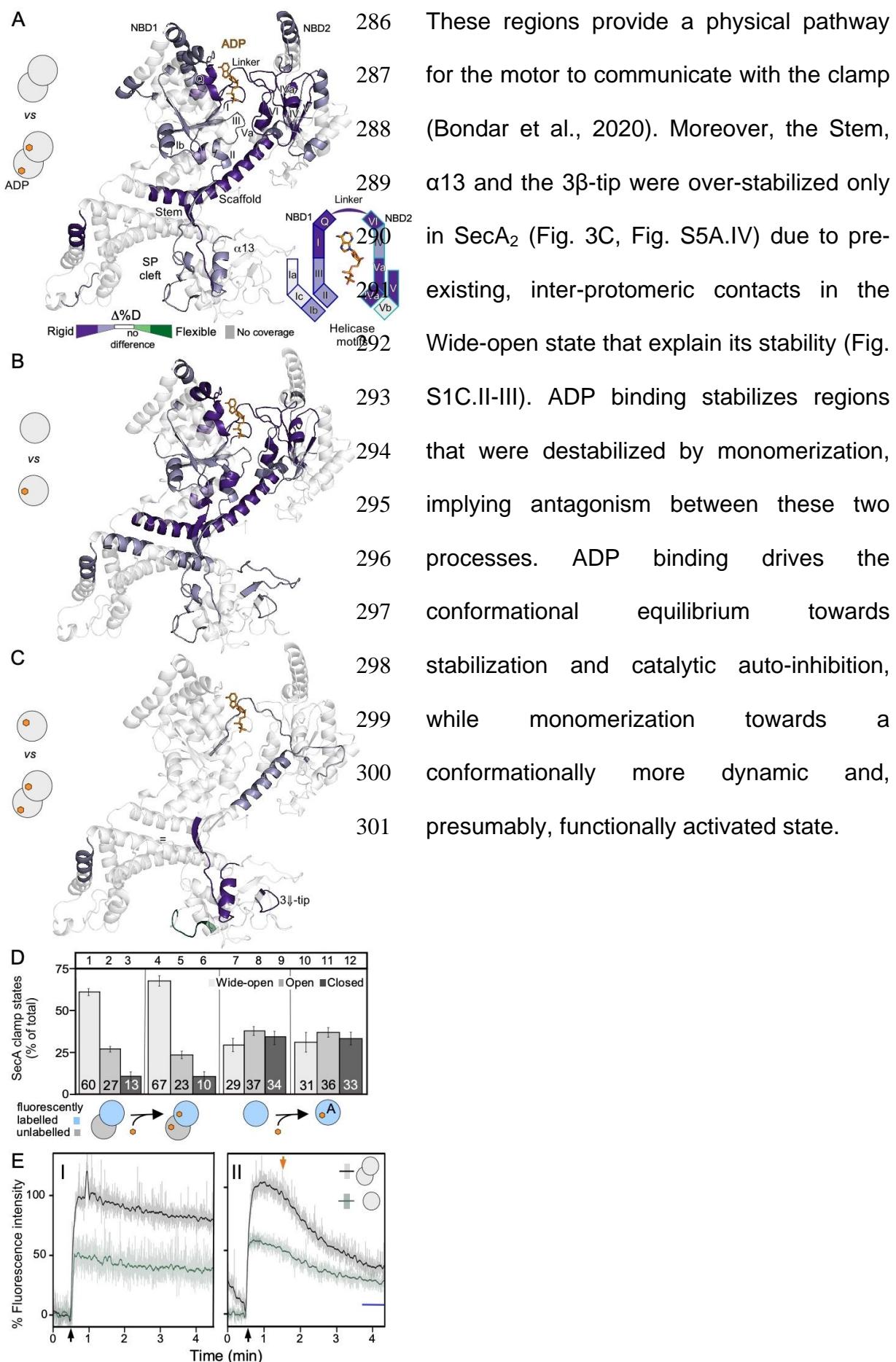
247 smFRET experiments were carried out at low protein concentrations (50-100
248 pM) at which His-SecAD2 existed as kinetic monomers. Analysis of 84 trajectories
249 from surface-immobilized His-SecAD2, demonstrated that the clamp of monomeric
250 SecA freely interconverted between the Wide-open, Open, and Closed states
251 (representative trace, Fig. 2B, S3C-D), revealed by solution smFRET to be sampled
252 almost equally (29, 37 and 34%, respectively) (Fig. 2C, lanes 4-6; S3F; S6A I-II).
253 Therefore, dimerization is a key extrinsic factor that suppresses the intrinsic clamp
254 motions inherent to the monomer.

255

256 **SecA monomers display enhanced local dynamics**

257 To monitor the local dynamics of monomeric SecA, we analysed mSecA, a fully
258 functional derivative with reduced dimerization K_d (~130 μ M) (Gouridis et al., 2013), by
259 HDX-MS. We compared mSecA to SecA₂, focusing only on prominent differences
260 within 5 minutes of D exchange. To ease comparison, D-uptake differences (ΔD) of a

261 control state (Fig. 2D, upper left pictogram, top) were compared to a test one
262 (bottom). Positive/negative values indicate regions with enhanced/suppressed
263 dynamics (green/purple respectively), quantified as minor or major (%ΔD; 10-20%
264 light hues; >20% dark hues).


265 Monomerization increased the dynamics specifically in the nucleotide binding
266 cleft and in the flexibility arc, including most of the scaffold (Fig. 2D, green; S5A.I;
267 Table S3). Most of the destabilized elements corresponded to regions that either
268 directly participate in the dimer interface (Fig 2E, teal), or that are adjacent to the
269 former, presumably reflecting allosteric effects (sand)(Fig. S1C.III top, e.g. stem,
270 $\alpha 13_{PBD}$ and the IRA1 second helix). The kinked middle region of the scaffold showed
271 suppressed dynamics (purple) (Fig S4D).

272

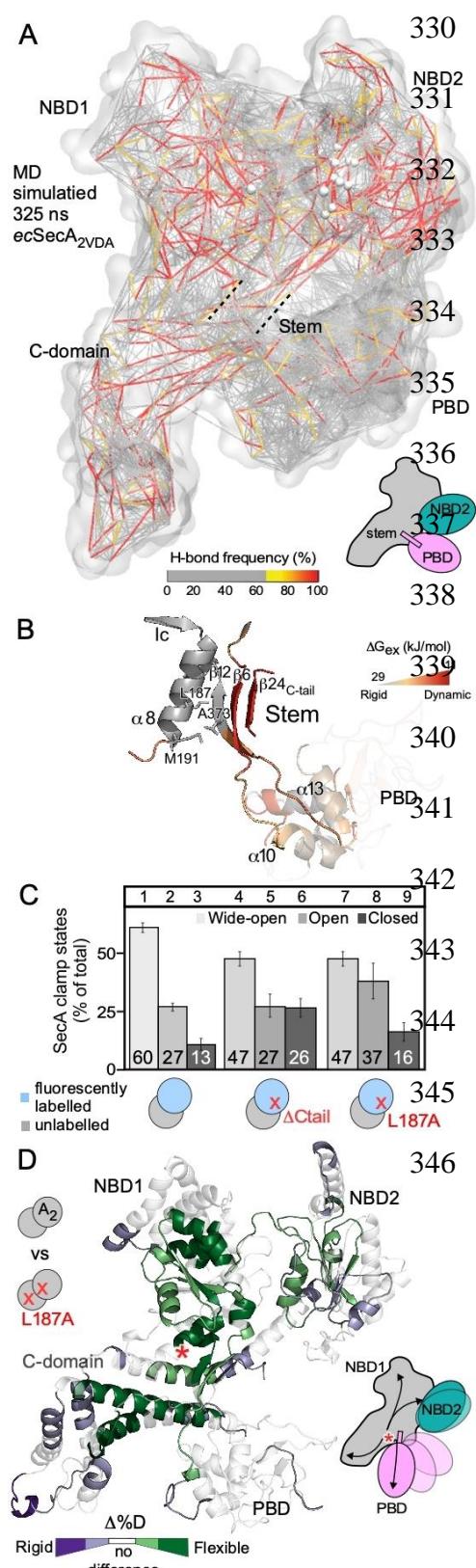
273 **ADP rigidifies SecA₂ and mSecA local dynamics but not clamp motion**

274 Cytoplasmic SecA₂ exists in a highly stable ADP state (Keramisanou et al.,
275 2006; Sianidis et al., 2001). HDX-MS analysis demonstrated that ADP extensively
276 stabilized multiple regions in SecA₂ (Fig 3A, Fig S5A.II). As most of these are also
277 stabilized in mSecA (Fig. 3B, Fig S5A.III), the ADP effects are primarily intra-
278 protomeric.

279 The nucleotide binding cleft was stabilized by multiple direct contacts that ADP
280 makes with the helicase motifs inside the cleft and the allosteric stabilization of more
281 peripheral ones (Fig. 3A, right panel; Fig. S1C.I), driving disorder to order transitions
282 (Keramisanou et al., 2006). ADP binding also stabilized allosterically regions of the
283 flexibility arc that lie several nanometers away from the nucleotide: the Scaffold
284 (attached to the ATPase motor *in trans*) and the Stem (rooted in NBD1), that
285 associate with each other, and the PBD that is an extension of the Stem (Fig. S1C.II).

302 Stem dynamics are expected to regulate PBD motions and thus clamp
303 dynamics. Remarkably, while ADP
304 binding marginally strengthened the
305 pre-existing contacts of the already
306 predominant Wide-open state of
307 SecA₂ (Fig. 3D, compare lanes 4-6
308 to 1-3; Fig. S3C-D, Fig. S6B), it had
309 no effect in monomeric SecA
310 (compare lanes 10-12 to 7-9). In
311 other words, the intrinsic PBD
312 rotation occurs irrespectively of the
313 nucleotide state of the motor. This
314 suggested that in monomeric SecA
315 additional factors are required to
316 couple the local dynamics of the nucleotide binding cleft to clamp motions.

317


318 **ADP binds asymmetrically to the protomers of cytoplasmic SecA₂**

319 In the two SecA₂ derivatives analyzed by MD simulations, the intra-domain H-
320 bonding networks within each of the four domains in each protomer are similar (Fig.
321 S2B-D). Nevertheless, they also revealed some detectable differences suggesting
322 that despite their similarities the two protomers of the dimer retain some degree of
323 structural asymmetry. To test if this reflects on the interaction of ADP with each
324 protomer we monitored the binding of ADP with the environmentally sensitive
325 fluorescent probe MANT ((2'-(or 3')-O-(N-Methylanthraniloyl) Adenosine 5'; (Galletto
326 et al., 2000; Karamanou et al., 2005).

Fig. 3 Effect of ADP on local and domain dynamics of SecA

A-B. Pairwise comparisons of local dynamics determined by HDX-MS (as in Fig. 2D) upon ADP binding on SecA₂ or mSecA. To simplify comparison, data from both proteins have been mapped on the ecSecA_{2VDA} “open” state (ribbon, left) and a cartoon of the helicase motifs (right). **C.** Pairwise comparison of local dynamics of ADP-bound mSecA (control) and SecA₂ (test) to reveal the quantitative changes in dynamics that dimerization brings on top to those of ADP alone (see Fig. S5A.IV). **D.** Quantification of clamp states from solution smFRET measurements comparing apo and ADP-bound SecA dimers (as in Fig. 1E) or monomers (50-100pM; as in Fig. 1E). $n \geq 6$ biological repeats; mean \pm SEM. See also Fig. S6A. **E.** Fluorescence intensity of SecA₂ (0.5 μ M) or mSecA (1 μ M), added at 30 s (black arrow) binding to MANT-ADP (1 μ M) for 4.5 minutes. Raw fluorescence data (transparent lines) are superimposed on smoothed data (solid lines). The data was recorded for 4.5min normalized taking the fluorescence signal of free MANT-ADP as 0% (I) and that of SecA₂-bound MANT-ADP as 100% (II; maximum fluorescence intensity). In II, MANT-ADP was chased with cold ADP (2 mM; added at 90 s; orange arrow). Blue line: % fluorescence

327 MANT-ADP rapidly binds to both SecA derivatives reaching maximal intensities
328 within 1min and remaining very stably bound for several minutes. Given its provision
329 of two biding sites, SecA₂ yields a ~2-fold higher intensity than does monomeric

mSecA (Fig. 3E.I). When chased with unlabeled ADP, the MANT-ADP bound to SecA₂ is approximately halved while that of mSecA is significantly more stable and only partially exchanges (Fig. 3E.II). These data suggested that after ADP chase, SecA₂, like mSecA, retain a single MANT-ADP tightly bound. In contrast, SecA₂ using mutants with elevated ATPase activity, thus reduced ADP affinity, completely released the bound MANT-ADP (Fig. 3E.II, blue line; Fig. S7A).

We concluded that ADP binds to SecA₂ asymmetrically.

The Stem is a central checkpoint of allosteric networks

The widespread responses to

Fig. 4 The Stem regulates the intrinsic dynamics in SecA

SecA
A. An H-bond protein-water network is shown for the “loose Closed” (325ns) MD simulation of ecSecA_{2VDA}. Each line of the network represents one-water-mediated H-bond bridge in the protein-water network and is colour-coded based on frequency of appearance in the simulation. **B.** The Stem- α 8 interface structure and dynamics. The Stem (β 12, β 6 and β 24) links to α 10 and α 13 of the PBD. α 8 is an extension of helicase motif Ic. ΔG_{ex} values of the Stem region (from Fig 1F) coloured as indicated. **C.** Quantification of clamp states from solution smFRET comparing apoSecA₂ with SecA(Δ Ctail)₂, and SecA(L187A)₂ (as in Fig. 2C). $n \geq 6$ biological repeats; mean \pm SEM. **D.** Left: Pairwise comparison of local dynamics of SecA₂ (control) against SecA(L187A)₂ (test) (as in Fig. 2D; single protomer shown for simplicity). Right: Cartoon of SecA(L187A)₂ (red asterisk) resulting in allosteric local effects that radiate to all SecA₂.

347 monomerization or ADP binding implied the existence of extensive allosteric
348 networks across the protein. We probed them, by graph analysis of the H-bonding
349 networks derived from MD simulations. A large extended surface (Fig. 4A) involving
350 many SecA residues (~67%), are inter-connected via a dynamic water-mediated H-
351 bond network. The Stem (Fig. 4A, dashed lines) appears to be a critical linchpin,
352 providing a narrow passage through which the ATPase motor communicates with the
353 PBD. To better understand its role, we probed its structural contributions further.

354 The Stem is an anti-parallel β -sheet consisting of Stem_{in} (β 12) and Stem_{out} (β 6)
355 of the PBD (Fig. 4B) to which a third β strand (β 24_{C-tail}) associates (Hunt et al., 2002).
356 All three β strands display enhanced dynamics but lean against the rigid α 8_{NBD1}.
357 While not essential for function or dimerization (Karamanou et al., 2005), β 24
358 occupies the binding site of client mature domains (Chatzi et al., 2017). Deleting the
359 C-tail of SecA₂ destabilized the Wide-open state and led to clamp closing (Fig. 4C,
360 lanes 4-6, Fig. S6B.III-IV), along with increased local intrinsic dynamics in the
361 flexibility arc (Fig. S5B). Thus, β 24_{C-tail} contributes to Stem stabilization and restriction
362 of clamp motions.

363 The Stem and α 8_{NBD1}, share a conserved hydrophobic interface, formed
364 primarily by α 8_{NBD1} residues L187 and M191 and their juxtaposed A373 from the
365 Stem_{in,PBD} (Fig. 4B). While the Stem as a whole is highly dynamic, the backbone of
366 residues of β 12 of Stem_{in}, that participate in the Stem/ α 8 interface, including that of
367 A373, are rigid (Fig. 4B). We hypothesized that this hydrophobic interface might be
368 important for the Stem to regulate local and clamp dynamics of SecA. To test this, we
369 weakened the hydrophobic and bulk contribution of L187 by mutating it to alanine, so
370 as to externally affect the Stem without internally affecting the Stem β -strands.
371 SecA₂(L187A) is functionally active and binds preproteins with a similar affinity to

372 SecA₂ (Fig. S7B-C). SecA₂(L187A) showed partial loss of the Wide-open state and
373 consequently clamp closing (Fig. 3C, lanes 4-6, Fig. S6B.V-VI).

374 Remarkably, the minor mutation in L187A (Fig. 4D, red asterisk; Fig. S5C)
375 resulted in widespread allosteric responses, mostly increased local dynamics,
376 radiating to almost all regions of SecA₂ (Fig. 4D).

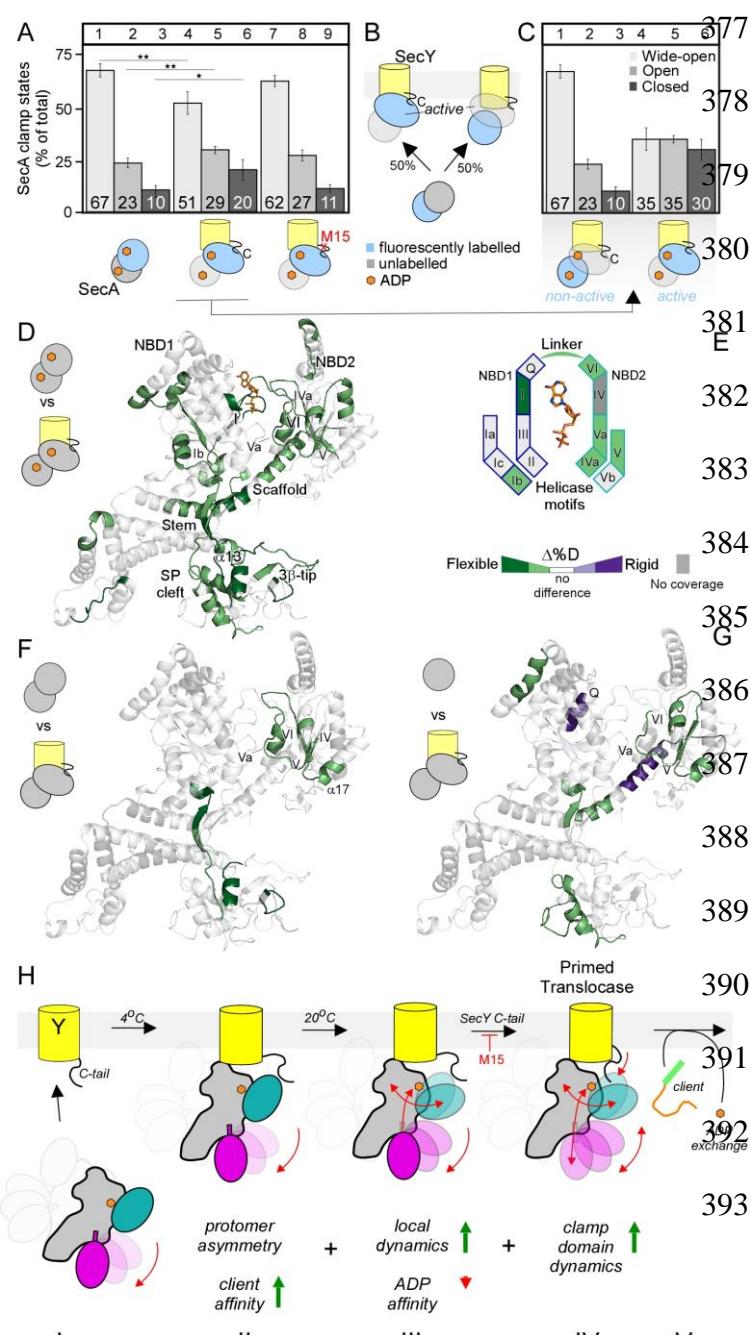


Fig. 5 Krishnamurthy et al
SecYEG leads to two, equally distributed, labelled or unlabelled, active SecA protomer (oval) populations.
C. Clamp states calculated for the non-active and active protomer in channel-bound SecA₂ (related to Fig 5A lane 4-6) D-E. Effect of channel binding on the dynamics of SecA₂:ADP. D-uptake differences of channel:SecA₂:ADP compared to SecA₂:ADP are coloured onto the structure (D) and onto a cartoon map of the helicase motifs (E) (as in Fig 2D). F-G. The dynamics of channel:SecA₂ are compared to either those of SecA₂ (F) or of mSecA (G) apoproteins. See also Fig. S5. H. Model of translocase priming upon channel binding to SecA (see text for details). Asymmetric binding of soluble SecA₂:ADP with a predominantly Wide-open clamp to SecYEG is temperature-independent and enhances local dynamics in SecA and loosening of the ADP cleft without ADP loss. >20°C, via its C-tail SecY increases clamp

We concluded that the
377 Stem exploits the α 8/C-tail
378 hydrophobic interactions to
379 directly regulate both far-
380 reaching intrinsic dynamics
381 networks across SecA and
382 clamp motions (Fig. 4D, right).

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
77710
77711
77712
77713
77714
77715
77716
77717
77718
77719
77720
77721
77722
77723
77724
77725
77726
77727
77728
77729
77730
77731
77732
77733
77734
77735
77736
77737
77738
77739
77740
77741
77742
77743
77744
77745
77746
77747
77748
77749
77750
77751
77752
77753
77754
77755
77756
77757
77758
77759
77760
77761
77762
77763
77764
77765
77766
77767
77768
77769
77770
77771
77772
77773
77774
77775
77776
77777
77778
77779
77780
77781
77782
77783
77784
77785
77786
77787
77788
77789
77790
77791
77792
77793
77794
77795
77796
77797
77798
77799
777100
777101
777102
777103
777104
777105
777106
777107
777108
777109
777110
777111
777112
777113
777114
777115
777116
777117
777118
777119
777120
777121
777122
777123
777124
777125
777126
777127
777128
777129
777130
777131
777132
777133
777134
777135
777136
777137
777138
777139
777140
777141
777142
777143
777144
777145
777146
777147
777148
777149
777150
777151
777152
777153
777154
777155
777156
777157
777158
777159
777160
777161
777162
777163
777164
777165
777166
777167
777168
777169
777170
777171
777172
777173
777174
777175
777176
777177
777178
777179
777180
777181
777182
777183
777184
777185
777186
777187
777188
777189
777190
777191
777192
777193
777194
777195
777196
777197
777198
777199
777200
777201
777202
777203
777204
777205
777206
777207
777208
777209
777210
777211
777212
777213
777214
777215
777216
777217
777218
777219
777220
777221
777222
777223
777224
777225
777226
777227
777228
777229
777230
777231
777232
777233
777234
777235
777236
777237
777238
777239
777240
777241
777242
777243
777244
777245
777246
777247
777248
777249
777250
777251
777252
777253
777254
777255
777256
777257
777258
777259
777260
777261
777262
777263
777264
777265
777266
777267
777268
777269
777270
777271
777272
777273
777274
777275
777276
777277
777278
777279
777280
777281
777282
777283
777284
777285
777286
777287
777288
777289
777290
777291
777292
777293
777294
777295
777296
777297
777298
777299
777300
777301
777302
777303
777304
777305
777306
777307
777308
777309
777310
777311
777312
777313
777314
777315
777316
777317
777318
777319
777320
777321
777322
777323
777324
777325
777326
777327
777328
777329
777330
777331
777332
777333
777334
777335
777336
777337
777338
777339
777340
777341
777342
777343
777344
777345
777346
777347
777348
777349
777350
777351
777352
777353
777354
777355
777356
777357
777358
777359
777360
777361
777362
777363
777364
777365
777366
777367
777368
777369
777370
777371
777372
777373
777374
777375
777376
777377
777378
777379
777380
777381
777382
777383
777384
777385
777386
777387
777388
777389
777390
777391
777392
777393
777394
777395
777396
777397
777398
777399
777400
777401
777402
777403
777404
777405
777406
777407
777408
777409
777410
777411
777412
777413
777414
777415
777416
777417
777418
777419
777420
777421
777422
777423
777424
777425
777426
777427
777428
777429
777430
777431
777432
777433
777434
777435
777436
777437
777438
777439
777440
777441
777442
777443
777444
777445
777446
777447
777448
777449
777450
777451
777452
777453
777454
777455
777456
777457
777458
777459
777460
777461
777462
777463
777464
777465
777466
777467
777468
777469
777470
777471
777472
777473
777474
777475
777476
777477
777478
777479
777480
777481
777482
777483
777484
777485
777486
777487
777488
777489
777490
777491
777492
777493
777494
777495
777496
777497
777498
777499
777500
777501
777502
777503
777504
777505
777506
777507
777508
777509
777510
777511
777512
777513
777514
777515
777516
777517
777518
777519
777520
777521
777522
777523
777524
777525
777526
777527
777528
777529
777530
777531
777532
777533
777534
777535
777536
777537
777538
777539
777540
777541
777542
777543
777544
777545
777546
777547
777548
777549
777550
777551
777552
777553
777554
777555
777556
777557
777558
777559
777560
777561
777562
777563
777564
777565
777566
777567
777568
777569
777570
777571
777572
777573
777574
777575
777576
777577
777578
777579
777580
777581
777582
777583
777584
777585
777586
777587
777588
777589
777590
777591
777592
777593
777594
777595
777596
777597
777598
777599
777600
777601
777602
777603
777604
777605
777606
777607
777608
777609
777610
777611
777612
777613
777614
777615
777616
777617
777618
777619
777620
777621
777622
777623
777624
777625
777626
777627
777628
777629
777630
777631
777632
777633
777634
777635
777636
777637
777638
777639
777640
777641
777642
777643
777644
777645
777646
777647
777648
777649
777650
777651
777652
777653
777654
777655
777656
777657
777658
777659
777660
777661
777662
777663
777664
777665
777666
777667
777668
777669
777670
777671
777672
777673
777674
777675
777676
777677
777678
777679
777680
777681
777682
777683
777684
777685
777686
777687
777688
777689
777690
777691
777692
777693
777694
777695
777696
777697
777698
777699
777700
777701
777702
777703
777704
777705
777706
777707
777708
777709
777710
777711
777712
777713
777714
777715
777716
777717
777718
777719
777720
777721
777722
777723
777724
777725
777726
777727
777728
777729
777730
777731
777732
777733
777734
777735
777736
777737
777738
777739
777740
777741
777742
777743
777744
777745
777746
777747
777748
777749
777750
777751
777752
777753
777754
777755
777756
777757
777758
777759
777760
777761
777762
777763
777764
777765
777766
777767
777768
777769
777770
777771
777772
777773
777774
777775
777776
777777
777778
777779
777780
777781
777782
777783
777784
777785
777786
777787
777788
777789
777790
777791
777792
777793
777794
777795
777796
777797
777798
777799
777800
777801
777802
777803
777804
777805
777806
777807
777808
777809
777810
777811
777812
777813
777814
777815
777816
777817
777818
777819
777820
777821
777822
777823
777824
777825
777826
777827
777828
777829
777830
777831
777832
777833
777834
777835
777836
777837
777838
777839
777840
777841
777842
777843
777844
777845
777846
777847
777848
777849
777850
777851
777852
777853
777854
777855
777856
777857
777858
777859
777860
777861
777862
777863
777864
777865
777866
777867
777868
777869
777870
777871
777872
777873
777874
777875
777876
777877
777878
777879
777880
777881
777882
777883
777884
777885
777886
777887
77

394 binding to yield a translocase primed for preprotein secretion.

395 The channel carried in inverted inner membrane vesicles (IMVs), was added
396 at stoichiometric excess over SecA and its effect on clamp dynamics was probed.
397 Channel binding shifts clamp equilibria from the Wide-open to Open/Closed states
398 compared to freely diffusing SecA₂ (compare Fig. 5A lanes 4-6 to 1-3; S6C.I-II) but
399 not when it is mutated for interaction with SecA₂ (SecY_{M15}; Fig. 5A, lanes 7-9, Fig.
400 S6C.III)(Karamanou et al., 2008; Matsumoto et al., 2000). Therefore, the observed
401 alteration of clamp equilibria caused by IMVs is specific to the channel. SecY_{M15} is a
402 conditional mutant that carries a substitution in the carboxy-terminal C-tail of SecY
403 (Karamanou et al., 2008; Matsumoto et al., 2000), The SecY C-tail has not been
404 crystallographically resolved but is apposed proximally to SecA, in the SecYEG:SecA
405 complex (Fig. S7D-E) (Zimmer et al., 2008) and binds SecA directly in a peptide
406 array (Karamanou et al., 2008). These data suggested that a functional C-tail is
407 required for the channel to trigger clamp closing in SecA. It is important to note that
408 this apparently occurs at a late stage of the SecA₂-channel interaction after SecA₂
409 has docked since, the SecY_{M15} channel interacts with and renders SecA a high
410 affinity preprotein receptor (Fig. S7C) and affects it conformationally, similarly to the
411 wild-type channel (Fig. S5E, see below).

412 This channel-induced loss of the Wide-open clamp state must be essential for
413 translocase function. At non-permissive conditions, cells carrying SecY_{M15}EG are
414 non-viable, as the catalytic activity of the translocase was severely compromised
415 (Fig. S7F-H)(Karamanou et al., 2008).

416 To properly quantify the extent of the channel-driven clamp redistribution and
417 assign this effect to a specific SecA protomer, the asymmetric nature of SecA₂ was
418 considered (Fig. 3E; (Gouridis et al., 2013). SecA₂ in solution has two functionally

419 and structurally comparable but asymmetric protomers (Fig. 3E; Fig. 5B, bottom
420 double circles) (Gouridis et al., 2009) and binds stochastically to the channel with
421 only one of them that becomes the only nanomolar affinity preprotein receptor (Fig.
422 5B, top, ovals). The “active” protomer will also recognize the functional short C-tail of
423 the wild-type channel but not the non-functional one of SecY_{M15}. Since only one
424 protomer in SecA₂ is fluorescent (cyan), only half of the total measured fluorescence
425 reflects channel-induced loss of the Wide-open clamp state in active protomers (Fig.
426 5A, lanes 4-6). Clamp closing exposes the signal peptide cleft for high affinity
427 preprotein binding. The other half of the total fluorescence comes from the inactive
428 protomers that do not contact the channel (Fig. 5B, top, circles) (Gouridis et al.,
429 2013). These are expected to retain the domain dynamics of soluble SecA₂
430 consistent with the Wide-open clamp (Fig. 5C, lanes 1-3). Subtracting the distribution
431 of the non-active protomers from the total, yielded the distribution of the active
432 protomer (Fig. 5C, lanes 4-6). These results revealed that the channel-primed, active
433 protomer of SecA₂ has its clamp almost equally distributed in three states,
434 reminiscent of the PBD distribution in monomeric SecA (Fig. 2C, lanes 4-6).

435 We concluded that channel binding shifts the clamp equilibrium away from the
436 Wide-open state and that this conformational motion is essential for translocase
437 function.

438

439 **Channel binding to SecA₂:ADP allosterically affects motor and Stem dynamics**

440 We next monitored the local dynamics of the physiological SecA₂:ADP upon
441 channel binding. For this we developed a methodology in near-native, detergent-free
442 conditions using IMVs (Fig. S4A.II), ensuring all available SecA₂ was channel-bound
443 (channel at 1.5 molar excess over SecA; 40-fold >K_d). Peripherally bound SecA was

444 pepsinized, IMVs removed and peptides analyzed (81% coverage; Table S3), under
445 identical conditions to those for soluble SecA. HDX-MS averages out D-uptake
446 values from the two asymmetric protomers of SecYEG:SecA₂:ADP.

447 Channel binding resulted in increased dynamics across multiple SecA₂:ADP
448 regions (Fig. 5D; S5D). The most characteristic effect was the partial reversal of the
449 extensive ADP-driven stability that had been observed in soluble SecA₂:ADP (Fig.
450 3B). This included enhanced dynamics in most helicase motifs of NBD2 and only in
451 motifs I and Ib of NBD1 (Fig. 5D and E). Despite the increased dynamics observed in
452 many islands, dynamics of the Q motif that anchors the adenosine ring of ADP (Fig
453 S1C.V), were unaltered, providing direct evidence that ADP remained bound.
454 Corroborating this observation, no significant channel-driven release of MANT-ADP
455 was detectable (Fig. S7I-J). Increased dynamics predominantly in NBD2 and in the
456 NBD1/NBD2 linker suggested that channel binding caused NBD2 to dissociate from
457 NBD1 (Fig. 5E). These dynamics are consistent with a helicase motor being primed
458 by the channel for, but not yet performing, ATP catalysis (Keramisanou et al., 2006;
459 Sianidis et al., 2001).

460 Elevated dynamics in the motor were directly transferred to the Scaffold, Stem
461 and most regions of the PBD (α 13, 3 β -tip and the signal peptide binding cleft). Stem
462 and PBD elevated dynamics are coincident with the enhanced clamp mobility (Fig.
463 5C, lanes 4-6).

464 To determine whether channel binding causes direct allosteric effects
465 additionally to relieving those of ADP, we monitored the interactions of the SecA₂
466 apoprotein with the channel. Channel binding enhanced dynamics in two regions of
467 SecA₂ (Fig. 5F; S5D): NBD2 (motifs IV, V/Va, VI, α 17 to which PBD binds in the
468 closed state) and PBD (3 β -tip, α 13_{PBD}, Stem_{in} and C-tail). This further corroborated

469 previous observations that channel binding results in NBD2 dynamics and liberates
470 the clamp from the dimerization-imposed Wide-open state (Fig. 2C; S1C.III).

471 While the PBD distribution in the channel-bound active SecA protomer is
472 reminiscent of that of monomeric SecA in solution, local dynamics of channel-bound
473 SecA are nevertheless distinct from those of either free (Fig. 5G) or channel-bound
474 (Fig. S5F) monomeric SecA, demonstrating that SecA remains dimeric upon binding
475 the channel.

476 Channel-induced dynamics in SecA, prime but do not activate the motor for
477 subsequent nucleotide cycling, while the liberated clamp prepares the translocase for
478 binding of preprotein clients.

479

480 **Discussion**

481 Translocase function is driven by multi-level intra- and inter-molecular intrinsic
482 dynamics. An excessively H-bonded framework of the SecA monomer comprising
483 flexible, distributed islands and domain motions yields a conformational repertoire of
484 soft motion modes (Meireles et al., 2011; Zhang et al., 2020). These elements are
485 controlled by external modulators that select pre-existing attainable conformations
486 and contribute their own dynamics: the second SecA protomer, nucleotides, the
487 channel and secretory clients. Such dynamics collectively support a conceptual
488 departure from views of major ligand-biased enzyme motions between fixed start/end
489 states, to one of subtly-balanced co-existing equilibria of dynamically interconverting
490 states. Such mechanisms are likely generic in multi-liganded protein machines.

491 We dissected this dynamic landscape in depth using a multi-pronged
492 approach under similar conditions, on physiological membranes and conditions in the
493 absence of detergents. We linked specific intrinsic dynamics to translocase functional
494 outcomes, i.e. the quiescent and the primed state. This pipeline sets the foundations
495 for future studies of the translocase and other complex motors with dynamic clients,
496 diffusing in solution or membrane-bound (Jang et al., 2019; Ramirez-Sarmiento and
497 Komives, 2018).

498 Local and domain dynamics in SecA co-exist in multi-state equilibria facilitated
499 by extensive H-bonding (Fig. 4A; S2; Table S2). Dynamics islands are sharply
500 delimited (e.g. a few helical turns, half a β strand) and have escaped previous
501 structural detection. They may act as either “on-off” switches (e.g. the ADP binding
502 Walker A/motif I) or “rheostats” emanating gradients of dynamics to adjacent regions
503 (e.g. the Stem to the Bulb). Different ligands target dynamics islands/domains

504 differently and shift conformational equilibria; e.g. ADP affects dynamics islands in
505 the helicase motor and scaffold but less so clamp motions.

506 All of the above establish an “intrinsic dynamics nexus” with distinct features at
507 the heart of translocase catalysis. a. As the nexus exploits the pre-existing dynamics
508 of monomeric SecA, minor free energy changes suffice for ligands to change enzyme
509 states. We presume that this is also why ligand effects can be so easily recapitulated
510 by point mutations that mimic signal peptide effects (Prl; (Silhavy and Mitchell, 2019)
511 or others that render the translocase temperature-sensitive (Fig. 5A) (Ito et al., 1983;
512 Karamanou et al., 2008; Pogliano and Beckwith, 1993). b. The multiplicity of
513 dynamics nodes secures that SecA responds to multiple ligands, each incrementally
514 changing its dynamics. Presumably, this also allows in the next steps of the
515 translocation reaction the coupling of nucleotide cycling in the motor to client cycling
516 on-off SecA and their threading through the channel. c. Long-range effects are
517 transmitted nanometers away from a ligand interaction site as seen prominently with
518 ADP.

519 Dimerization prevents monomeric SecA from expressing its excessive
520 dynamics prematurely. This created a stable, cytoplasmically diffusing quiescent
521 cytoplasmic state with a mainly Wide-open clamp and reduced client affinity (Fig. 1C-
522 D; 5H.I). The two protomers of the same dimer display dynamics differences between
523 them (Fig. S2) and therefore protomer asymmetry may predispose them to stochastic
524 SecY binding. Channel-binding partially relieves these suppressed dynamics in the
525 active protomer to which it binds and weakens the protomer-protomer interface while
526 retaining dimerization (Fig. 5H.III). This allows a free tri-state Clamp distribution in the
527 active protomer (Fig. 5.IV) and prepares the motor for ADP release (Fig. 5A-C; Fig.
528 5H.V). The smFRET data revealed that the Clamp in the monomeric SecA

529 apoprotein occupies three near-isoenergetic troughs separated by activation energy
530 barriers (Fig. 2C). Dimerization elevates the Wide-open/Open energy barrier and
531 traps the clamp in a stable Wide-open state. In contrast, the simulated MD
532 environment revealed a presumably energetically favoured, Open to “loose Closed”
533 equilibrium shift in monomeric SecA (Fig. 2A; Movie S1). Crossing this energetic
534 barrier in smFRET experiments, presumably requires the presence of both
535 membranes and preproteins.

536 ADP is a top-level extrinsic regulator. It suppresses helicase motor and
537 scaffold dynamics and hyper-stabilizes the Wide-open clamp, securing that SecA₂
538 remains quiescent in the cytoplasm (Fig. 3A) and even on the channel, prior to client
539 arrival. The main consequence of channel-induced priming is to reverse these effects
540 to allow the free intrinsic motion of the clamp and loosen the ADP-induced restricted
541 dynamics. In a demonstration of remarkable fine-tuning and despite its acquisition of
542 enhanced dynamics, the helicase motor, retains ADP bound as evidenced by critical
543 helicase motifs remaining stabilized (Fig. 5D) and fluorescence assays (Fig. S7I-J)
544 and retains the ADP-bound asymmetry of SecA₂. This explains how the ATPase
545 activity of SecA₂ is not significantly stimulated upon channel binding (Karamanou et
546 al., 2007). Excessive stimulation will only occur once the preprotein clients bind
547 presumably by overcoming a significant energetic obstacle driving ADP release (Fig.
548 5H.V). In quiescent cytoplasmic SecA₂:ADP, a stable Wide-open clamp with its
549 associated C-tail might impede mature domain access to the binding site (Chatzi et
550 al., 2017), fending off unwanted cytoplasmic binders.

551 Protein structures are selected because their scaffolds successfully mediate
552 specific surface chemistries. Intrinsic dynamics networks may drive their further
553 evolution (Tiwari and Reuter, 2018; Zhang et al., 2020). Our data raise the possibility

554 that a protein may be primarily selected because of its intrinsic dynamics propensities
555 and then adapted to specific chemistries. The structurally conserved DEAD-box
556 superfamily helicases, to which SecA belongs, only share sequence conservation in
557 the helicase motifs (Jarmoskaite and Russell, 2014; Linder and Jankowsky, 2011;
558 Papanikou et al., 2007). These motifs, many of them in weak internal parallel β -
559 sheets (Fairman-Williams et al., 2010; Keramisanou et al., 2006; Sianidis et al.,
560 2001), are all intrinsically dynamic (Fig. 1F-G). Such dynamics are client chemistry
561 agnostic. The ancestral helicase motor was presumably effective in reshaping the
562 conformational states of dynamic clients, commonly nucleic acids, albeit
563 promiscuously and inefficiently. SecA evolved to apply the ancestral helicase motor
564 intrinsic dynamics to amino-acyl polymer chemistries. It did this by incorporating one
565 specificity domain that reshapes dynamic non-folded polypeptides and binds signal
566 peptides and another that brought this chemistry to the SecY channel by associating
567 with it.

568

569 **Experimental Procedures**

570

571 **Molecular dynamics simulations**

572 We performed atomistic MD simulations of the *E. coli* SecA monomer
573 (*ecSecA*_{2VDA}), and two independent simulations of *ecSecA* dimers. In all simulations,
574 we considered standard protonation for all titratable groups, i.e., Asp and Glu are
575 negatively charged, Arg and Lys, positively charged, and His groups are singly
576 protonated. Simulation systems of the proteins in aqueous solution were prepared
577 using CHARMM-GUI(Jo and Kim, 2008; Jo et al., 2008); ions were added for charge
578 neutrality.

579 To study the dynamics of the *ecSecA*_{2VDA} monomer we used a coordinate
580 snapshot from the NMR ensemble of SecA structures (Gelis et al., 2007). *E.coli* SecA
581 dimer models with a Wide-open PBD and a closed ATPase motor were generated by
582 threading the structure of the SecA monomer separately onto dimers of *B. subtilis*
583 SecA (PDB ID: 1M6N) and *M.tuberculosis* PDB ID: 1NL3_1, two of the dimeric
584 conformations proposed as physiologically relevant (Gouridis et al., 2013), hereafter
585 *ecSecA*_{1M6N} and *ecSecA*_{1NL3_1}. The simulation systems for the SecA monomer and
586 dimers contain in total 345,330 (*ecSecA*_{2VDA}), 635,979 (*ecSecA*_{1M6N}), and 666,629
587 atoms (*ecSecA*_{1NL3_1}).

588 Interactions between atoms of the system were computed using the CHARMM
589 36 force field (Brooks et al., 1983; MacKerell Jr. et al., 1998; MacKerell Jr. et al.,
590 2004) with TIP3P water (Jorgensen et al., 1983). All simulations were performed with
591 NAMD (Kalé et al., 1999; Phillips et al., 2005) using a Langevin dynamics scheme
592 (Feller et al., 1995; Martyna et al., 1994). Geometry optimization and an initial 25ps
593 initial equilibration with velocity rescaling were performed with soft harmonic
594 restraints; all harmonic restraints were switched off for the production runs.

595 Equilibration was performed in the *NVT* ensemble (constant number of particles N ,
596 constant volume V , and constant temperature T), and all production runs in the *NPT*
597 ensemble (constant pressure P) with isotropic pressure coupling. Equilibration and
598 the first 500ps of production runs were performed with an integration step of 1fs and
599 all remaining production runs with a multiple timestep integration scheme using 1fs
600 for bonded forces, 2fs for short-range non-bonded, and 4fs for long-range
601 electrostatics. We used smooth-particle mesh Ewald summation for Coulomb
602 interactions and a switch function between 10 and 12Å for short-range real-space
603 interactions.

604

605 **H-bond graphs and long-distance conformational coupling**

606 To characterize protein conformational dynamics and identify H-bond paths for
607 long-distance conformational couplings we used algorithms based on graph theory
608 and centrality measures (Karathanou and Bondar, 2019).

609 Protein groups were considered as H-bonded when the distance between the
610 hydrogen and the acceptor heavy atom, d_{HA} , is ≤ 2.5 Å. We computed H bonds
611 between protein sidechains, and between protein sidechains and backbone groups.
612 From each simulation, we derived lists of H-bonded pairs and their interaction
613 distances and constructed adjacency matrices. These are binary matrices
614 representing the H-bond interactions between groups (=1 if there is an H-bond
615 connection between each amino-acid pair in the protein, and 0 otherwise). Adjacency
616 matrices allowed us compute H-bond graphs whose nodes (vertices) are H-bonding
617 residues, and edges, H-bonds.

618 For simplicity, we visualize H-bond networks by drawing unique lines between
619 Ca atoms of pairs of residues that H-bond. These lines are coloured according to the

620 frequency, or occupancy, of H-bonding, defined as the percentage of the analysed
621 trajectory segment during which the two residues are H-bonded.

622 Using graphs, we monitored nodes and their possible interactions in the
623 network and created clusters, i.e. paths of connected nodes (Karathanou and
624 Bondar, 2018, 2019). To find the shortest H-bonded pathways between SecA protein
625 domains, we use the Dijkstra's algorithm (Cormen et al., 2009). The algorithm starts
626 with an initial (source) and end node and finds the shortest pathway between those
627 nodes based on positive weights. Edge weight is 1 if there is an H-bond connection
628 between each amino-acid pair in the protein during the simulation time used for
629 analysis and 0 otherwise. A shortest path between two nodes has the least number
630 of intermediate nodes. We obtain the most frequently visited H-bond paths by
631 inverting the H-bond frequencies and setting them as positive weights in Dijkstra's
632 algorithm.

633 To identify groups important for connectivity within H-bond clusters, we
634 computed the Betweenness Centrality (BC) (Freeman, 1977, 1979) and the Degree
635 Centrality (DC) (Freeman, 1979) of each H-bonding amino acid residue. The BC of
636 node n is given by the number of shortest-distance paths that link any other two
637 nodes (v_1, v_2) and pass via node n , divided by the total number of shortest paths
638 linking v_1 and v_2 . BC of node n can be normalized by dividing its BC by the number
639 of pairs of nodes in the graph not including n . The DC (Freeman, 1977, 1979) of
640 node n , equals the number of edges connecting to n . DC of node n can be
641 normalized by dividing its DC by the maximum possible edges to n (which is $N-1$,
642 where N is the number of total nodes in the graph). For the H-bond clusters
643 computed here, high BC values indicate H-bonding residues that are part of many H-
644 bond paths, whereas high DC indicates high local H-bond connectivity.

645 Data analyses scripts were implemented in Tcl within VMD (Humphrey et al.,
646 1996). Additional data processing was performed using MatLab (Version R2017b,
647 MathWorks). Unless specified otherwise, average values were computed from the
648 last 200 ns of the monomeric and last 100 ns of the dimeric SecA simulations.

649

650 **Materials**

651 For buffers, strains, plasmids see Supplementary Table S1, S2 and S3
652 respectively. D₂O (99.9%) was obtained from Euroisotop; Alexa555 and Alexa647 -
653 maleimide from Thermo Fisher Scientific; TCEP ([Tris(2-carboxyethyl)phosphine]
654 from Carl Roth, formic acid-MS grade from Sigma Aldrich, LC-MS grade acetonitrile
655 LC-MS grade from Merck. All other chemicals and buffers were ACS grade from
656 Merck or Carl Roth. proPhoA signal peptide, obtained from GenScript as lyophilized
657 powder, was dissolved in DMSO (Merck) to a final concentration of 45 mM. Protein
658 concentration was determined using either Bradford assay (Biorad) or/and
659 NanodropTM spectrophotometry (Thermo Scientific) following manufacturers
660 instructions.

661

662 **Molecular cloning**

663 Genes were cloned in the plasmid vectors listed in Supplementary Table S3.
664 Mutations were introduced on genes via the QuickChange Site-Directed Mutagenesis
665 protocol (Stratagene-Agilent) using the indicated templates and primers (see
666 supplementary Table S3). Restriction enzymes and T4 DNA Ligase were purchased
667 from Promega. For PCR mutagenesis PFU Ultra Polymerase (Stratagene) was used;
668 for gene amplification either Expand High fidelity Polymerase (Roche) or PFU Ultra
669 polymerase (Promega). DpnI was used to cleave the maternal methylated DNA

670 (Promega). Primers (Supplementary Table S4) were synthesized by Eurogentec
671 (Belgium). All PCR-generated plasmids were sequenced (Macrogen Europe).
672 Plasmids were stored in DH5 α cells.

673

674 **Protein purification**

675 SecA and derivatives were expressed and purified as described (Gouridis et
676 al., 2013; Papanikolau et al., 2007). In brief, proteins were overexpressed in BL21
677 (DE3) cells and purified at 4°C, using home-made Cibacron-Blue resin (SephadexTM
678 CL-6B; GE healthcare) followed by two consecutive gel filtration steps (HiLoad
679 26/600 Superdex 200 pg; GE healthcare), the first in buffer A (50 mM Tris-HCl, pH
680 8.0, 1M NaCl), the second in buffer B (50 mM Tris-HCl, pH 8.0, 50 mM NaCl), and
681 stored in buffer C (50 mM Tris-HCl, pH 8.0, 50 mM NaCl, 50% v/v glycerol) at -20°C.
682 The His-tagged derivatives of SecA-D2 and proPhoA were purified as previously
683 described (Chatzi et al., 2017; Vandenberk et al., 2019) and stored in buffer C or D
684 (buffer C with 6 M urea) respectively. All proteins were purified to >95% purity, as
685 assessed by gel filtration chromatography and SDS-PAGE.

686 SecYEG-IMVs and derivatives were prepared as previously described (Lill et
687 al., 1989; Lill et al., 1990) and stored at -80°C. SecY concentration in these
688 preparations was determined as described (Gouridis et al., 2013). All Sec
689 translocase components and preprotein preparations were tested in ATPase and *in*
690 *vitro* preprotein translocation assays.

691

692 **Fluorescent labeling of SecA and sample preparation for smFRET and PIE**

693 His-SecA-D2 (10 nmol) in buffer H (50 mM Tris-HCl pH 8.0, 50 mM NaCl,
694 0.1mM EDTA) was treated with 10 mM DTT (1 h; 4°C), diluted to 1 mL with buffer B

695 and added immediately onto an anion exchange resin (Q resin; GE Healthcare; 0.2
696 mL; equilibrated in buffer H) and incubated (5 min). The resin was subsequently
697 washed twice with buffer H (2 x 5 mL). Alexa555-maleimide (Thermo Fisher
698 Scientific, 50 nmol and Alexa647-maleimide (Thermo Fisher Scientific, 50 nmol) were
699 dissolved in 5 μ L DMSO. The dissolved dyes were diluted in 1 mL buffer H and
700 added onto the resin and incubated (under gentle agitation; 12 h; 4°C shielded from
701 light). The resin was washed with 3 mL buffer H to remove excess of dyes and
702 allowed to settle. Proteins were eluted with buffer I (600 μ L; 50 mM Tris-HCl pH 8.0, 1
703 M NaCl, 0.1mM EDTA). Subsequently, analytical gel filtration (Superdex 200
704 Increase PC 10/300; GE Healthcare) was carried in buffer J (50 mM Tris-HCl pH 8.0,
705 50 mM NaCl, 0.01mM EDTA) while recording the absorbance at 280 nm (protein),
706 555 nm (Alexa555), and 645 nm (Alexa647). The labeling ratio was estimated
707 (>80%) based of the protein absorbance and fluorescent intensities and their
708 corresponding extinction coefficient (ϵ) ($\epsilon_{\text{SecA}} = 75750 \text{ cm}^{-1}\text{M}^{-1}$, $\epsilon_{\text{Alexa555}} = 158000$
709 $\text{cm}^{-1}\text{M}^{-1}$ and $\epsilon_{\text{Alexa647}} = 265000 \text{ cm}^{-1}\text{M}^{-1}$)

710 To study the monomeric state of SecA and derivatives the concentration of the
711 fluorescently labelled protein was kept at 50-100 pM; the dimeric state was
712 generated upon addition of unlabelled SecA at 0.5-1.0 μ M. Incubation with different
713 partners (ADP, unlabelled SecA, SecYEG embedded in IMVs and signal peptide)
714 was performed at 4°C for 30min.

715

716 **Single-molecule fluorescence microscopy and PIE**

717 Single-molecule PIE experiments were performed at 20°C using the
718 MicroTime 200 (Picoquant, Germany). Typical average laser powers were 70 μ W at
719 532 nm and 30 μ W at 640 nm. Fluorescence emitted by diffusing molecules in

720 solution at the focus was collected by the same water objective (UPLSAPO 60x
721 Ultra-Planapochromat, NA 1.2, Olympus), focused onto a 75 μm pinhole and
722 separated onto two Single-photon avalanche diodes (SPAD) with appropriate
723 spectral filtering (donor channel: 582/64 BrightLine HC (F37-082); acceptor channel:
724 690/70H Bandpass (F49-691); both AHF Analysentechnik).

725

726 **PIE data analysis**

727 Analysis was performed as described (de Boer et al., 2019; Ploetz et al.,
728 2016). Briefly, the stoichiometry S and apparent FRET efficiency E^* were calculated
729 for fluorescent bursts having at least 200 photons, to yield a two-dimensional
730 histogram (Kapanidis et al., 2004). Uncorrected FRET efficiency E^* monitors the
731 proximity between the two fluorophores via normalization of sensitized acceptor
732 emission to the total fluorescence of both fluorophores during green excitation. S is
733 defined as the ratio between the overall green fluorescence intensity over the total
734 green and red fluorescence intensity and describes the ratio of donor-to-acceptor
735 fluorophores in the sample.

$$E^* = \frac{F(\text{DA})}{F(\text{DA}) + F(\text{DD})} \quad S = \frac{F(\text{DD}) + F(\text{DA})}{F(\text{DA}) + F(\text{DD}) + F(\text{AA})}$$

736 We used published procedures to identify bursts corresponding to single molecules
737 (Eggeling et al., 2001). For this we used three parameters characterizing the burst:
738 total of L photons with M neighbouring photons within a time interval of T
739 microseconds. For the data presented in this study, a dual-colour burst search (Nir et
740 al., 2006), using parameters M = 35, T = 500 μs and L = 50, was applied. Additional
741 thresholding removed spurious changes in fluorescence intensity and selected for
742 intense single-molecule bursts (all photons > 200 photons unless otherwise
743 mentioned). E^* and S values for each burst and thus for individual molecules were

744 binned into a two-dimensional histogram, where we selected donor-acceptor-
745 containing sub-populations according to their intermediate S values. The one-
746 dimensional E* histograms were fitted with a mixture model of a variable number of
747 Gaussian distributions (1-3). In the fitting procedure the mean and the amplitude
748 were derived from fitting, whereas the standard deviation was fixed or allowed to vary
749 over a small region defined from static DNA samples having attached fluorophores at
750 specific positions (Fig S3). We used the minimum number of distributions that fitted
751 the experimental data, in which the mean value defines the apparent FRET value
752 (E*) and the amplitude the abundance of a conformational state.

753

754 **Confocal scanning microscopy and data analysis**

755 To gain information on possible conformational sampling of SecA at room
756 temperature, we used the same home-built confocal microscope as described before
757 (Gouridis et al., 2015). Surface scanning was performed using a XYZ-piezo stage
758 with 100x100x20 μm range (P-517-3CD with E-725.3CDA, Physik Instrumente). The
759 detector signal was registered using a Hydra Harp 400 picosecond event timer and a
760 module for time-correlated single photon counting (both Picoquant). The data, e.g.,
761 time traces and scanning images, were extracted using custom made software. Data
762 were recorded with constant 532-nm excitation at an intensity of 0.5 μW . Surface
763 immobilization was conducted using an anti-His antibody and established surface-
764 chemistry protocols as described (Gouridis et al., 2015).

765

766 **Quantification and statistical analysis for FRET data**

767 Statistical analysis was performed with Origin software version 2018
768 (OriginLab), Matlab R2014b (MathWorks). FRET histograms were fitted with a

769 Gaussian mixture model with a restricted standard deviation (see methods section for
770 details). The data (means and the amplitudes) correspond to mean of 3-5 repeated
771 experiments (i.e. independent protein purification and labelled sample).

772

773 **Amide hydrogen/deuterium exchange mass spectrometry**

774 HDX sample preparation: SecA and derivatives (see Supplementary material)
775 were dialyzed overnight into buffer E (50 mM Tris-HCl pH 8.0, 50 mM KCl, 1 mM
776 MgCl₂, 1 mM DTT) and concentrated (~100 µM) using centrifugal filters (Vivaspin
777 500, Sartorius). In the *apo* condition, the protein stock was diluted into aqueous
778 buffer B at 1:5 ratio prior to dilution in D₂O. For the ADP-bound state, SecA was
779 incubated with 20 mM nucleotide, prior to dilution into D₂O (2 mM final nucleotide
780 concentration in D exchange reaction). To monitor SecA:proPhoA₁₋₁₂₂ interactions,
781 proPhoA₁₋₁₂₂ (in Buffer D) was diluted in buffer E to a final concentration of 250 µM
782 (0.2 M Urea), immediately added to SecA at 1:10 ratio (SecA: proPhoA₁₋₁₂₂) and
783 incubated for 2 minutes prior to D exchange. For the SecA:SecYEG state, IMVs were
784 sonicated as described (Chatzi et al., 2017; Gouridis et al., 2010) and incubated with
785 SecA at 1:1.5 (SecA:SecY) molar ratio, for 2 min on ice, prior to D exchange. To
786 monitor how signal peptides (signal peptide) activate the translocase, the synthetic
787 proPhoA signal peptide (Genescript; 45mM in 100 % DMSO) was diluted 30-fold into
788 Buffer E (to obtain 1.5 mM signal peptide in 3 % DMSO), added to preincubated
789 SecA:SecYEG (see above) at a final molar ratio of 2:3:15 (SecA:SecYEG:signal
790 peptide) and the reaction was incubated for a further 1 minute. All mutant proteins
791 were handled similar to the wild type ones and reactions were maintained at similar
792 molar ratios.

793 D exchange reaction: Isotope labeling was carried out using lyophilized buffer F (50
794 mM Tris-HCl pH 8.0, 50 mM KCl, 1 mM MgCl₂, 4 μM ZnSO₄) reconstituted in 99.9%
795 D₂O (Euriso-top), with fresh TCEP [tris(2-carboxyethyl)phosphine] added at 2 mM.
796 Buffer pH_{read} was adjusted to 8.0 using NaOD (Sigma). D exchange buffer was pre-
797 incubated in a 30°C water bath, and the D exchange reaction was initiated by diluting
798 200 pmol of protein into D₂O buffer F at a 1:10 ratio (final D₂O concentration 90%).
799 Final concentration of SecA was maintained at 4 μM in the D exchange reaction.
800 Continuous labeling reaction was incubated for various time points (10 s, 30 s, 1 min,
801 2 min, 5 min, 10 min, 30 min and 48 h), primarily at 30°C. For D exchange
802 experiments carried out at 18 °C, fewer time points were obtained (1 min, 5 min, 10
803 min, 30 min, 60 min).

804 Quenching: The D exchange reaction was quenched by the addition of pre-chilled
805 quench buffer G (1.3% formic acid, 4 mM TCEP, 1 mg/mL fungal protease XII) at a
806 1:1 ratio (final pH of 2.5), and incubated (4°C; 2 min). In samples containing SecYEG
807 IMVs, the reaction was centrifuged at 20000 x g for 90 s on a benchtop cooled
808 centrifuge (Eppendorf), the supernatant containing SecA peptides was collected and
809 immediately injected into the LC-MS system. 100 pmol of SecA was injected into a
810 nanoACQUITY UPLC System with HDX technology (Waters, UK) coupled to a
811 SYNAPT G2 ESI-Q-TOF mass spectrometer. For enhanced peptide coverage, SecA
812 was digested in 2 steps, first with fungal protease XIII (Sigma) (Wowor et al., 2014) at
813 the quench step, and subsequently online digestion on a home-packed immobilized
814 pepsin (Sigma) cartridge (2 mm x 2 cm, Idex), at 16°C. The resulting peptides were
815 loaded and trapped onto a VanGuard C18 Pre-column, (130 Å, 1.7 mm, 2.1 x 5 mm,
816 Waters) at 100 mL/min for 3 min using 0.23% (v/v) formic acid. Peptides were
817 subsequently separated on a C18 analytical column (130 Å, 1.7 mm, 1 x 100 mm,

818 Waters) at 40 mL/min. UPLC separation (solvent A: 0.23% v/v formic acid, solvent B:
819 0.23% v/v formic acid in acetonitrile) was carried out using a 12 min linear gradient
820 (5-50% solvent B). At the end, solvent B was raised to 90% for 1 min for column
821 cleaning. Peptide trapping-desalting and separation were performed at 2°C. The MS
822 parameters were as follows: capillary voltage 3.0 kV, sampling cone voltage 20 V,
823 extraction cone voltage 3.6 V, source temperature 80°C, desolvation gas flow 500
824 L/h at 150°C. D exchange experiments were carried out in technical triplicates for
825 most conditions (details in Table S3), and experiments were performed over multiple
826 days to control for day to day instrument variation. Further, SecA apo data were
827 obtained from 3 separate protein purifications (biological triplicates) and data was
828 compared to check for any biological or technical variability. Full deuteration controls
829 were obtained by incubating SecA in buffer F containing 6M Urea-d4 (98% D, Sigma)
830 overnight at room temperature. D-uptake (%) was calculated using the full
831 deuteration control D-uptake values. Deuterium/Protium back exchange values for
832 our instrumental set up was calculated to be between 20-45% depending on peptide
833 composition. These values are consistent with previously reported studies using
834 similar instrumental set ups (Walters et al., 2012). The data has not been corrected
835 for back exchange and is represented either as absolute D values or as a percent of
836 the full deuteration control (Wales et al., 2013).

837

838 **Peptide identification and HDX data analysis**

839 Peptide identification was carried out using 100 pmol of protein diluted in
840 protiated buffer F. The sample was quenched as described above and analysed in
841 the MS^E acquisition mode in a nanoACQUITY UPLC System with HDX technology
842 (Waters, UK) coupled to a SYNAPT G2 ESI-Q-TOF mass spectrometer over the m/z

843 range 100-2,000 Da. The collision energy was ramped from 15 to 35 V. Other
844 instrument parameters were as described above. Peptide identification was
845 performed using ProteinLynx Global Server (PLGS v3.0.1, Waters, UK) using the
846 primary sequence of SecA or derivatives as a search template. Peptides were
847 individually assessed for accurate identification and were only considered if they had
848 a signal to noise ratio above 10 and a PLGS score above 7.5. Further, peptides were
849 only considered if they appeared in 3 out of 5 replicate runs for each protein. Data
850 analysis was carried out using DynamX 3.0 (Waters, Milford MA) software to compile
851 and process raw mass spectral data and generate centroid values to calculate
852 relative deuteration values. All spectra were individually inspected and manually
853 curated to ensure accurate centroid calculations. Maximum errors between replicate
854 runs were found to be ± 0.15 Da with most errors within ± 0.08 Da, thus a difference of
855 ± 0.5 Da between peptides from different states was considered significant (Houde et
856 al., 2011).

857

858 **HDX-MS data interpretation and visualization**

859 Comparison between different states of SecA was carried out by considering
860 one state as the control and the other as the test state. D-uptake values were first
861 converted to %D values (as a percentage of 100% deuteration control). %D values of
862 the control state were subtracted from the test state. Positive values indicated
863 increased dynamics and negative values indicated decreased dynamics in the test
864 state compared to the control state. Comparison between states was carried out only
865 on the same peptide and time point obtained from different states. A significant
866 difference in D-uptake in a peptide between two states was identified if it satisfied 2
867 criteria: a. $> \pm 0.5$ Da absolute difference in deuterium exchange (Houde et al.,

868 2011), and b. >10% difference in % D values between the 2 states. A peptide was
869 considered different in dynamics if 1 or more time points showed significant
870 differences in D-uptake between 2 compared states. Differences observed within 5
871 min of D exchange were weighted with greater importance as these time points are
872 hypothesized to monitor the determinants of sub-second domain motions (as
873 determined by smFRET). The peptides that showed significant differences were
874 further classified into those with minor and major differences based on difference in
875 % exchange between the two states; differences between 10%-20% were considered
876 minor and differences > 20% were considered major changes.

877

878 **Binding of MANT-ADP to the Sec translocase**

879 Binding of MANT-ADP to the ATPase motor of SecA results in a strong
880 increase in fluorescence intensity due to the hydrophobic environment within the
881 nucleotide binding cleft (Galletto et al., 2000). Fluorescence intensity was measured
882 on a Cary Eclipse fluorimeter (Agilent) at fixed wavelengths $\lambda_{\text{ex}} = 356$ nm and $\lambda_{\text{em}} =$
883 450 nm. Excitation slit was at 2.5 nm and emission slit was at 5 nm. All experiments
884 were carried out in 1 mL of buffer K (50 mM Tris-HCl pH 8, 50 mM NaCl, 1 mM
885 MgCl_2). MANT-ADP was maintained at 1 μM . 1 μM of SecA/SecYEG:SecA was
886 added at $t=30$ sec and fluorescence intensity was monitored for 5 min. In ADP chase
887 experiments, 2 mM of cold ADP was added at $t= 90$ sec and fluorescence was
888 monitored till $t= 5$ min. Fluorescent measurement graphs were smoothed using
889 cubic spline smoothing (GraphPad Prism 5).

890

891 **Miscellaneous**

892 Structural analysis was performed and movies were generated using Pymol
893 (<https://pymol.org/>) and sequence conservation was visualized onto the structure
894 using Consurf (Ben Chorin et al., 2020). Affinity determination of SecA and/or
895 proPhoA for the translocase, SecA ATPase activity, *in vivo* proPhoA and PhoA
896 translocation, *in vitro* proPhoA translocation, SecA activation energy determination, *in*
897 *vivo* SecA complementation were as described (Chatzi et al., 2011; Gouridis et al.,
898 2009; Gouridis et al., 2010; Gouridis et al., 2013).

899

900 **Acknowledgements**

901 This paper is dedicated to the memory of Yiannis Papanikolau who solved the first
902 *E.coli* SecA structure. We are grateful to: M. Papanastasiou for preliminary HDX-MS
903 analysis of SecA and A.Tsirigotaki, M.B.Trelle, J.T.D. Jorgensen for discussions and
904 advice; T. Cordes for sharing software for smFRET data analysis and V. Krasnikov
905 for advise in setting up the smFRET microscope. Research in the Economou lab was
906 funded by grants (to AE): RiMembR (Vlaanderen Onderzoeksprojecten; #G0C6814N;
907 FWO); MeNaGe (RUN #RUN/16/001; KU Leuven); ProFlow (FWO/F.R.S.-FNRS
908 "Excellence of Science - EOS" programme grant #30550343); DIP-BiD
909 (#AKUL/15/40 - G0H2116N; Hercules/FWO); PROFOUND (Protein folding/un-folding
910 and dynamics; W002421N; WoG/FWO) and (to AE and SK): FOscil (ZKD4582 -
911 C16/18/008; KU Leuven) and (to AE and GG): CARBS (#G0C6814N; FWO). Funds
912 for the smFRET microscope were from ZKD4582 and Economou lab resources.
913 Research in the lab of A-NB was supported in part by the Excellence Initiative of the
914 German Federal and State Governments via the Freie Universität Berlin, and by
915 allocations of computing time from the North-German Supercomputing Alliance,
916 HLRN. GG was funded by the NWO (Veni grant 722.012.012), the Zernike Institute
917 for Advanced Materials and the Rega Foundation postdoctoral program; SKr was a
918 FWO [PEGASUS]² MSC fellow, JHS is a PDM/KU Leuven fellow and NE is a MSCA
919 SoE FWO fellow. This project has received funding from the Research Foundation –
920 Flanders (FWO) and the European Union's Horizon 2020 research and innovation
921 programme under the Marie Skłodowska-Curie grant agreements No 665501 and
922 195872.

923

924 **Competing interests**

925 The authors declare they have no competing financial interests or other conflicts of
926 interest.

927

928 **Author contributions**

929 SKr purified proteins and membranes, did biochemical assays, designed and
930 performed HDX-MS work and data analysis, performed ADP release assays and
931 homology analysis. NE purified and labelled proteins and performed smFRET
932 calibrations and experiments and data analysis, analysed structures and made
933 movies. KK performed MD simulations and graph analysis of H-bond networks. JHS

934 developed the PyHDX software and adapted FRET burst analysis for Microtime200
935 output data. AGP produced the HDX-MS and smFRET constructs by molecular
936 cloning and mutagenesis. KEC performed molecular biology and *in vivo* assays. SK
937 designed and supervised molecular biology experiments and smFRET constructs,
938 purified proteins for smFRET, performed and supervised biochemical and biophysical
939 assays and data analysis. ANB set up and supervised the MD simulations and
940 performed runs and data analysis. GG adapted the smFRET pipeline to His-tagged
941 SecA and designed the immobilized smFRET with major contributions from NE,
942 technically supervised the smFRET work, the installation of the Microtime200 set up,
943 performed molecular biology, biochemical and biophysical assays, analysed data. AE
944 designed experiments, did structure and data analysis, performed
945 biological/structural interpretation and integration of HDX-MS, smFRET and MD data.
946 AE and SKr wrote the first draft with contributions from NE, KK, JHS, AP, ANB, KK,
947 SK and GG. All authors reviewed and approved the final manuscript. AE and SK
948 conceived and managed the project.

949

950 **References**

951 Ahdash, Z., Pyle, E., Allen, W.J., Corey, R.A., Collinson, I., and Politis, A. (2019).
952 HDX-MS reveals nucleotide-dependent, anti-correlated opening and closure of SecA
953 and SecY channels of the bacterial translocon. *Elife* 8, e47402.
954 Allen, W.J., Corey, R.A., Oatley, P., Sessions, R.B., Baldwin, S.A., Radford, S.E.,
955 Tuma, R., and Collinson, I. (2016). Two-way communication between SecY and
956 SecA suggests a Brownian ratchet mechanism for protein translocation. *Elife* 5,
957 e15598.
958 Avellaneda, M.J., Koers, E.J., Naqvi, M.M., and Tans, S.J. (2017). The chaperone
959 toolbox at the single-molecule level: From clamping to confining. *Protein Sci* 26,
960 1291-1302.
961 Bauer, B.W., and Rapoport, T.A. (2009). Mapping polypeptide interactions of the
962 SecA ATPase during translocation. *Proceedings of the National Academy of
963 Sciences of the United States of America* 106, 20800-20805.
964 Ben Chorin, A., Maserati, G., Kessel, A., Narunsky, A., Sprinzak, J., Lahav, S.,
965 Ashkenazy, H., and Ben-Tal, N. (2020). ConSurf-DB: An accessible repository for the
966 evolutionary conservation patterns of the majority of PDB proteins. *Protein Sci* 29,
967 258-267.
968 Bhabha, G., Biel, J.T., and Fraser, J.S. (2015). Keep on moving: discovering and
969 perturbing the conformational dynamics of enzymes. *Accounts of chemical research*
970 48, 423-430.
971 Bondar, A.N., Mishima, H., and Okamoto, Y. (2020). Molecular movie of nucleotide
972 binding to a motor protein. *Biochim Biophys Acta Gen Subj* 1864, 129654.
973 Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., and
974 Karplus, M. (1983). CHARMM: a program for macromolecular energy, minimization,
975 and dynamics calculations. *J Comput Chem* 4, 187-217.
976 Brown, K.A., and Wilson, D.J. (2017). Bottom-up hydrogen deuterium exchange
977 mass spectrometry: data analysis and interpretation. *Analyst* 142, 2874-2886.
978 Catipovic, M.A., Bauer, B.W., Loparo, J.J., and Rapoport, T.A. (2019). Protein
979 translocation by the SecA ATPase occurs by a power-stroke mechanism. *The EMBO
980 journal* 38.
981 Chatzi, K.E., Sardis, M.F., Tsirigotaki, A., Koukaki, M., Sostaric, N., Konijnenberg, A.,
982 Sobott, F., Kalodimos, C.G., Karamanou, S., and Economou, A. (2017). Preprotein
983 mature domains contain translocase targeting signals that are essential for secretion.
984 *The Journal of cell biology* 216, 1357-1369.
985 Chatzi, K.I., Gouridis, G., Orfanoudaki, G., Koukaki, M., Tsamardinos, I., Karamanou,
986 S., and Economou, A. (2011). The signal peptides and the early mature domain
987 cooperate for efficient secretion. *Febs Journal* 278, 14-14.
988 Corey, R.A., Ahdash, Z., Shah, A., Pyle, E., Allen, W.J., Fessl, T., Lovett, J.E., Politis,
989 A., and Collinson, I. (2019). ATP-induced asymmetric pre-protein folding as a driver
990 of protein translocation through the Sec machinery. *Elife* 8, e41803.
991 Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Sten, C. (2009). *Introduction to
992 algorithms*, third edition. Massachusetts Institute of Technology.
993 de Boer, M., Gouridis, G., Vietrov, R., Begg, S.L., Schuurman-Wolters, G.K., Husada,
994 F., Eleftheriadis, N., Poolman, B., McDevitt, C.A., and Cordes, T. (2019).
995 Conformational and dynamic plasticity in substrate-binding proteins underlies
996 selective transport in ABC importers. *Elife* 8, e44652.
997 De Geyter, J., Portaliou, A.G., Srinivasu, B., Krishnamurthy, S., Economou, A., and
998 Karamanou, S. (2020). Trigger factor is a bona fide secretory pathway chaperone
999 that interacts with SecB and the translocase. *EMBO Rep* 21, e49054.

1000 Economou, A., and Wickner, W. (1994). SecA promotes preprotein translocation by
1001 undergoing ATP-driven cycles of membrane insertion and deinsertion. *Cell* 78, 835-
1002 843.

1003 Eggeling, C., Berger, S., Brand, L., Fries, J.R., Schaffer, J., Volkmer, A., and Seidel,
1004 C.A. (2001). Data registration and selective single-molecule analysis using multi-
1005 parameter fluorescence detection. *J Biotechnol* 86, 163-180.

1006 Ernst, I., Haase, M., Ernst, S., Yuan, S., Kuhn, A., and Leptihn, S. (2018). Large
1007 conformational changes of a highly dynamic pre-protein binding domain in SecA.
1008 *Commun Biol* 1, 130.

1009 Fairman-Williams, M.E., Guenther, U.P., and Jankowsky, E. (2010). SF1 and SF2
1010 helicases: family matters. *Curr Opin Struct Biol* 20, 313-324.

1011 Fak, J.J., Itkin, A., Ciobanu, D.D., Lin, E.C., Song, X.J., Chou, Y.T., Giersch, L.M.,
1012 and Hunt, J.F. (2004). Nucleotide exchange from the high-affinity ATP-binding site in
1013 SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs
1014 through a specialized conformational state. *Biochemistry* 43, 7307-7327.

1015 Feller, S.E., Zhang, Y., Pastor, R.W., and Brooks, B. (1995). Constant pressure
1016 molecular dynamics simulation: The Langevin piston method. *J Chem Phys* 103,
1017 4613-4621.

1018 Flechsig, H., and Mikhailov, A.S. (2019). Simple mechanics of protein machines.
1019 *Journal of the Royal Society, Interface* 16, 20190244.

1020 Freeman, L.C. (1977). A set of measures of centrality based on betweenness.
1021 *Sociometry* 40, 35-41.

1022 Freeman, L.C. (1979). Centrality in social networks. Conceptual clarification. *Social*
1023 *Networks* 1, 215-239.

1024 Galletto, R., Rajendran, S., and Bujalowski, W. (2000). Interactions of nucleotide
1025 cofactors with the *Escherichia coli* replication factor DnaC protein. *Biochemistry* 39,
1026 12959-12969.

1027 Gelis, I., Bonvin, A.M., Keramisanou, D., Koukaki, M., Gouridis, G., Karamanou, S.,
1028 Economou, A., and Kalodimos, C.G. (2007). Structural basis for signal-sequence
1029 recognition by the translocase motor SecA as determined by NMR. *Cell* 131, 756-
1030 769.

1031 Gouridis, G., Hetzert, B., Kiosze-Becker, K., de Boer, M., Heinemann, H., Nurenberg-
1032 Goloub, E., Cordes, T., and Tampe, R. (2019). ABCE1 Controls Ribosome Recycling
1033 by an Asymmetric Dynamic Conformational Equilibrium. *Cell reports* 28, 723-734
1034 e726.

1035 Gouridis, G., Karamanou, S., Gelis, I., Kalodimos, C.G., and Economou, A. (2009).
1036 Signal peptides are allosteric activators of the protein translocase. *Nature* 462, 363-
1037 367.

1038 Gouridis, G., Karamanou, S., Koukaki, M., and Economou, A. (2010). In vitro assays
1039 to analyze translocation of the model secretory preprotein alkaline phosphatase.
1040 *Methods in molecular biology* 619, 157-172.

1041 Gouridis, G., Karamanou, S., Sardis, M.F., Scharer, M.A., Capitani, G., and
1042 Economou, A. (2013). Quaternary dynamics of the SecA motor drive translocase
1043 catalysis. *Mol Cell* 52, 655-666.

1044 Gouridis, G., Schuurman-Wolters, G.K., Ploetz, E., Husada, F., Vietrov, R., de Boer,
1045 M., Cordes, T., and Poolman, B. (2015). Conformational dynamics in substrate-
1046 binding domains influences transport in the ABC importer GlnPQ. *Nat Struct Mol Biol*
1047 22, 57-64.

1048 Henzler-Wildman, K., and Kern, D. (2007). Dynamic personalities of proteins. *Nature*
1049 450, 964-972.

1050 Henzler-Wildman, K.A., Lei, M., Thai, V., Kerns, S.J., Karplus, M., and Kern, D.
1051 (2007). A hierarchy of timescales in protein dynamics is linked to enzyme catalysis.
1052 *Nature* **450**, 913-916.

1053 Houde, D., Berkowitz, S.A., and Engen, J.R. (2011). The utility of
1054 hydrogen/deuterium exchange mass spectrometry in biopharmaceutical
1055 comparability studies. *J Pharm Sci* **100**, 2071-2086.

1056 Hu, W., Walters, B.T., Kan, Z.Y., Mayne, L., Rosen, L.E., Marqusee, S., and
1057 Englander, S.W. (2013). Stepwise protein folding at near amino acid resolution by
1058 hydrogen exchange and mass spectrometry. *Proceedings of the National Academy
1059 of Sciences of the United States of America* **110**, 7684-7689.

1060 Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics.
1061 *J Mol Graph* **14**, 33-38, 27-38.

1062 Hunt, J.F., Weinkauf, S., Henry, L., Fak, J.J., McNicholas, P., Oliver, D.B., and
1063 Deisenhofer, J. (2002). Nucleotide control of interdomain interactions in the
1064 conformational reaction cycle of SecA. *Science* **297**, 2018-2026.

1065 Ito, K., Wittekind, M., Nomura, M., Shiba, K., Yura, T., Miura, A., and Nashimoto, H.
1066 (1983). A temperature-sensitive mutant of *E. coli* exhibiting slow processing of
1067 exported proteins. *Cell* **32**, 789-797.

1068 Jang, S., Kang, C., Yang, H.S., Jung, T., Hebert, H., Chung, K.Y., Kim, S.J., Hohng,
1069 S., and Song, J.J. (2019). Structural basis of recognition and destabilization of the
1070 histone H2B ubiquitinated nucleosome by the DOT1L histone H3 Lys79
1071 methyltransferase. *Genes & development* **33**, 620-625.

1072 Jarmoskaite, I., and Russell, R. (2014). RNA helicase proteins as chaperones and
1073 remodelers. *Annual review of biochemistry* **83**, 697-725.

1074 Jo, S., and Kim, T. (2008). CHARMM-GUI Solvator.

1075 Jo, S., Kim, T., Iyer, V.G., and Im, W. (2008). CHARMM-GUI: a web-based graphical
1076 user interface for CHARMM. *Journal of Computational Chemistry* **29**, 1859-1865.

1077 Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L.
1078 (1983). Comparison of simple potential functions for simulating liquid water. *J Chem
1079 Phys* **79**, 926-935.

1080 Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J.,
1081 Shinozaki, A., Varadarajan, K., and Schulten, K. (1999). NAMD2: greater scalability
1082 for parallel molecular dynamics. *J Comput Phys* **151**, 283-312.

1083 Kapanidis, A.N., Lee, N.K., Laurence, T.A., Doose, S., Margeat, E., and Weiss, S.
1084 (2004). Fluorescence-aided molecule sorting: analysis of structure and interactions
1085 by alternating-laser excitation of single molecules. *Proceedings of the National
1086 Academy of Sciences of the United States of America* **101**, 8936-8941.

1087 Karamanou, S., Bariami, V., Papanikou, E., Kalodimos, C.G., and Economou, A.
1088 (2008). Assembly of the translocase motor onto the preprotein-conducting channel.
1089 *Molecular microbiology* **70**, 311-322.

1090 Karamanou, S., Gouridis, G., Papanikou, E., Sianidis, G., Gelis, I., Keramisanou, D.,
1091 Vrontou, E., Kalodimos, C.G., and Economou, A. (2007). Preprotein-controlled
1092 catalysis in the helicase motor of SecA. *The EMBO journal* **26**, 2904-2914.

1093 Karamanou, S., Sianidis, G., Gouridis, G., Pozidis, C., Papanikolau, Y., Papanikou,
1094 E., and Economou, A. (2005). *Escherichia coli* SecA truncated at its termini is
1095 functional and dimeric. *FEBS letters* **579**, 1267-1271.

1096 Karathanou, K., and Bondar, A.N. (2018). Dynamic Water Hydrogen-Bond Networks
1097 at the Interface of a Lipid Membrane Containing Palmitoyl-Oleoyl
1098 Phosphatidylglycerol. *J Membr Biol* **251**, 461-473.

1099 Karathanou, K., and Bondar, A.N. (2019). Using Graphs of Dynamic Hydrogen-Bond
1100 Networks To Dissect Conformational Coupling in a Protein Motor. *J Chem Inf Model*
1101 59, 1882-1896.

1102 Keramisanou, D., Biris, N., Gelis, I., Sianidis, G., Karamanou, S., Economou, A., and
1103 Kalodimos, C.G. (2006). Disorder-order folding transitions underlie catalysis in the
1104 helicase motor of SecA. *Nat Struct Mol Biol* 13, 594-602.

1105 Kurakin, A. (2006). Self-organization versus watchmaker: molecular motors and
1106 protein translocation. *Biosystems* 84, 15-23.

1107 Lill, R., Cunningham, K., Brundage, L.A., Ito, K., Oliver, D., and Wickner, W. (1989).
1108 SecA protein hydrolyzes ATP and is an essential component of the protein
1109 translocation ATPase of *Escherichia coli*. *The EMBO journal* 8, 961-966.

1110 Lill, R., Dowhan, W., and Wickner, W. (1990). The ATPase activity of SecA is
1111 regulated by acidic phospholipids, SecY, and the leader and mature domains of
1112 precursor proteins. *Cell* 60, 271-280.

1113 Linder, P., and Jankowsky, E. (2011). From unwinding to clamping - the DEAD box
1114 RNA helicase family. *Nature reviews Molecular cell biology* 12, 505-516.

1115 Loutchko, D., and Flechsig, H. (2020). Allosteric communication in molecular
1116 machines via information exchange: what can be learned from dynamical modeling.
1117 *Biophysical reviews*.

1118 Ma, C., Wu, X., Sun, D., Park, E., Catipovic, M.A., Rapoport, T.A., Gao, N., and Li, L.
1119 (2019). Structure of the substrate-engaged SecA-SecY protein translocation
1120 machine. *Nat Commun* 10, 2872.

1121 MacKerell Jr., A.D., Bashford, D., Bellot, M., Dunbrack, R.L., Evanseck, J.D., Field,
1122 M.J., Fischer, S., Gao, J., Guo, H., Ha, S., et al. (1998). All-atom empirical potential
1123 for molecular modeling and dynamics studies of proteins. *J Phys Chem B* 102, 3586-
1124 3616.

1125 MacKerell Jr., A.D., Feig, M., and Brooks, C.L.I. (2004). Extending the treatment of
1126 backbone energetics in protein force fields: limitations of gas-phase quantum
1127 mechanics in reproducing protein conformational distributions in molecular dynamics
1128 simulations. *J Comput Chem* 25, 1400-1415.

1129 Martyna, G.J., Tobias, D.J., and Klein, M.L. (1994). Constant-pressure molecular-
1130 dynamics algorithms. *J Chem Phys* 101, 4177-4189.

1131 Matsumoto, G., Nakatogawa, H., Mori, H., and Ito, K. (2000). Genetic dissection of
1132 SecA: suppressor mutations against the secY205 translocase defect. *Genes Cells* 5,
1133 991-999.

1134 Meireles, L., Gur, M., Bakan, A., and Bahar, I. (2011). Pre-existing soft modes of
1135 motion uniquely defined by native contact topology facilitate ligand binding to
1136 proteins. *Protein Sci* 20, 1645-1658.

1137 Muller, B.K., Zaychikov, E., Brauchle, C., and Lamb, D.C. (2005). Pulsed interleaved
1138 excitation. *Biophys J* 89, 3508-3522.

1139 Nir, E., Michalet, X., Hamadani, K.M., Laurence, T.A., Neuhauser, D., Kovchegov, Y.,
1140 and Weiss, S. (2006). Shot-noise limited single-molecule FRET histograms:
1141 comparison between theory and experiments. *J Phys Chem B* 110, 22103-22124.

1142 Papanikolau, Y., Papadovasilaki, M., Ravelli, R.B., McCarthy, A.A., Cusack, S.,
1143 Economou, A., and Petratos, K. (2007). Structure of dimeric SecA, the *Escherichia*
1144 *coli* preprotein translocase motor. *Journal of molecular biology* 366, 1545-1557.

1145 Papanikou, E., Karamanou, S., and Economou, A. (2007). Bacterial protein secretion
1146 through the translocase nanomachine. *Nature reviews Microbiology* 5, 839-851.

1147 Phillips, J.C., Braun, B., Wang, W., Gumbart, J., Takjkhoshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K. (2005). Scalable molecular dynamics with
1148 NAMD. *J Comput Chem* 26, 1781-1802.

1149

1150 Ploetz, E., Lerner, E., Husada, F., Roelfs, M., Chung, S., Hohlbein, J., Weiss, S., and
1151 Cordes, T. (2016). Forster resonance energy transfer and protein-induced
1152 fluorescence enhancement as synergetic multi-scale molecular rulers. *Scientific
1153 reports* 6, 33257.

1154 Poglano, K.J., and Beckwith, J. (1993). The Cs sec mutants of *Escherichia coli*
1155 reflect the cold sensitivity of protein export itself. *Genetics* 133, 763-773.

1156 Ramirez-Sarmiento, C.A., and Komives, E.A. (2018). Hydrogen-deuterium exchange
1157 mass spectrometry reveals folding and allostery in protein-protein interactions.
1158 *Methods* 144, 43-52.

1159 Rapoport, T.A., Li, L., and Park, E. (2017). Structural and Mechanistic Insights into
1160 Protein Translocation. *Annu Rev Cell Dev Biol* 33, 369-390.

1161 Sardis, M.F., and Economou, A. (2010). SecA: a tale of two protomers. *Molecular
1162 microbiology* 76, 1070-1081.

1163 Sianidis, G., Karamanou, S., Vrontou, E., Boulias, K., Repanas, K., Kyripides, N.,
1164 Politou, A.S., and Economou, A. (2001). Cross-talk between catalytic and regulatory
1165 elements in a DEAD motor domain is essential for SecA function. *The EMBO journal*
1166 20, 961-970.

1167 Silhavy, T.J., and Mitchell, A.M. (2019). Genetic Analysis of Protein Translocation.
1168 *Protein J* 38, 217-228.

1169 Skinner, J.J., Lim, W.K., Bedard, S., Black, B.E., and Englander, S.W. (2012).
1170 Protein hydrogen exchange: testing current models. *Protein Sci* 21, 987-995.

1171 Smit, J.H., Krishnamurthy, S., Srinivasu, B.Y., Karamanou, S., and Economou, A.
1172 (2020). PyHDX: Derivation and visualization of protection factors from Hydrogen-
1173 Deuterium Exchange Mass Spectrometry at near residue resolution. *bioRxiv*,
1174 2020.2009.2030.320887.

1175 Tiwari, S.P., and Reuter, N. (2018). Conservation of intrinsic dynamics in proteins-
1176 what have computational models taught us? *Curr Opin Struct Biol* 50, 75-81.

1177 Tsirigotaki, A., De Geyter, J., Sostaric, N., Economou, A., and Karamanou, S.
1178 (2017a). Protein export through the bacterial Sec pathway. *Nature reviews
1179 Microbiology* 15, 21-36.

1180 Tsirigotaki, A., Papanastasiou, M., Trelle, M.B., Jorgensen, T.J., and Economou, A.
1181 (2017b). Analysis of Translocation-Competent Secretory Proteins by HDX-MS.
1182 *Methods in enzymology* 586, 57-83.

1183 Vadas, O., and Burke, J.E. (2015). Probing the dynamic regulation of peripheral
1184 membrane proteins using hydrogen deuterium exchange-MS (HDX-MS). *Biochem
1185 Soc Trans* 43, 773-786.

1186 Vandenberk, N., Karamanou, S., Portaliou, A.G., Zorzini, V., Hofkens, J., Hendrix, J.,
1187 and Economou, A. (2019). The Preprotein Binding Domain of SecA Displays Intrinsic
1188 Rotational Dynamics. *Structure (London, England : 1993)* 27, 90-101 e106.

1189 Wales, T.E., Eggertson, M.J., and Engen, J.R. (2013). Considerations in the analysis
1190 of hydrogen exchange mass spectrometry data. *Methods in molecular biology* 1007,
1191 263-288.

1192 Walters, B.T., Ricciuti, A., Mayne, L., and Englander, S.W. (2012). Minimizing back
1193 exchange in the hydrogen exchange-mass spectrometry experiment. *Journal of the
1194 American Society for Mass Spectrometry* 23, 2132-2139.

1195 Wowor, A.J., Yan, Y., Auclair, S.M., Yu, D., Zhang, J., May, E.R., Gross, M.L.,
1196 Kendall, D.A., and Cole, J.L. (2014). Analysis of SecA dimerization in solution.
1197 Biochemistry 53, 3248-3260.

1198 Wowor, A.J., Yu, D., Kendall, D.A., and Cole, J.L. (2011). Energetics of SecA
1199 dimerization. Journal of molecular biology 408, 87-98.

1200 Yang, L.Q., Sang, P., Tao, Y., Fu, Y.X., Zhang, K.Q., Xie, Y.H., and Liu, S.Q. (2014).
1201 Protein dynamics and motions in relation to their functions: several case studies and
1202 the underlying mechanisms. J Biomol Struct Dyn 32, 372-393.

1203 Zhang, Y., Doruker, P., Kaynak, B., Zhang, S., Krieger, J., Li, H., and Bahar, I.
1204 (2019). Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior.
1205 Curr Opin Struct Biol 62, 14-21.

1206 Zhang, Y., Doruker, P., Kaynak, B., Zhang, S., Krieger, J., Li, H., and Bahar, I.
1207 (2020). Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior.
1208 Curr Opin Struct Biol 62, 14-21.

1209 Zimmer, J., Nam, Y., and Rapoport, T.A. (2008). Structure of a complex of the
1210 ATPase SecA and the protein-translocation channel. Nature 455, 936-943.

1211

Supplement

A nexus of intrinsic dynamics underlies protein translocase priming

Srinath Krishnamurthy^{1*}, Nikolaos Eleftheriadis^{1*}, Konstantina Karathanou², Jochem H. Smit¹, Athina G. Portaliou¹, Katerina E. Chatzi¹, Spyridoula Karamanou¹, Ana-Nicoleta Bondar², Giorgos Gouridis^{1,3,4,5} and Anastassios Economou^{1,5,6}

¹ KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium

² Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Arnimallee 14, D-14195 Berlin, Germany

³ Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

⁴ Structural Biology Division, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Nikolaou Plastira 100, Heraklion-Crete, Greece

* Equal contribution

⁵ For correspondence: e-mail: tassos.economou@kuleuven.be, g.gouridis@imbb.forth.gr

⁶ Lead Contact

Table of contents

Abbreviations

Supplemental figures	p.3
Figure S1 (related to introduction and Figures 1, 2 and 3)	
Map, sequence, and structural elements of SecA	
Figure S2 (related to Figures 1, 2 and 4)	
Molecular dynamics simulation of motions in dimeric and monomeric SecA.	
Figure S3 (related to Figures 1-3)	
Single molecule FRET analysis in solution or with immobilized SecA molecules.	
Figure S4 (related to Figures 1-5)	
HDX-MS methodology, SecA Deuterium exchange rate map and selected D-exchange plots.	
Figure S5 (related to Figures 2-5)	
$\Delta\%$ D comparison of localized dynamics in SecA and derivatives in various liganded states.	
Figure S6 (related to Figures 1-5)	
Intrinsic and ligand-modulated clamp dynamics in SecA determined by smFRET in solution.	
Figure S7 (related to Figures 3-5)	
<i>In vitro</i> and <i>in vivo</i> functional properties of SecA and SecYEG derivatives.	
Supplemental tables	p.23
Table S1 (related to Introduction and Figures 1, 2 and S1)	
Analysis of SecA structures from the Protein data bank (XLS file).	
Table S2 (related to Figures 1, 2, 4 and S2)	
Compiled data from atomistic MD simulations (XLS file)	
Data table contains information on inter- and intra-domain H-bonds during MD simulation and analysis of Degree (DC) and Betweenness (BC) centrality in ecSecA _{2VDA} , ecSecA _{1M6N} and ecSecA _{1NL3_1} .	
Table S3 (related to Figures 1-5, S4 and S5)	
HDX-MS Data table (XLS file).	
(Presented as recommended in (Masson <i>et al.</i> , 2019). Data table contains raw D-uptake values for all states, percent uptake values and pairwise compared Δ D-uptake values between different experimental states)	
Table S4 (related to Figure 1)	
Amino acid conservation scores for all residues of ecSecA _{2VDA} from Consurf database (Ben Chorin <i>et al.</i> , 2020). (DOC file)	
Supplementary Movies	p.26
Movie S1 (related to Introduction and Figures 1 and S2)	
Movie of MD simulation of dynamics in monomeric ecSecA _{2VDA}	
Movie S2 (related to Introduction, Figures 1, 2 and S2)	
Composite movie of PBD motions derived from crystallography and MD simulated states	
Materials and methods	p.27
▪ List of Buffers	
▪ List of Strains	
▪ List of Plasmids	
▪ List of Primers	

Supplementary Figures

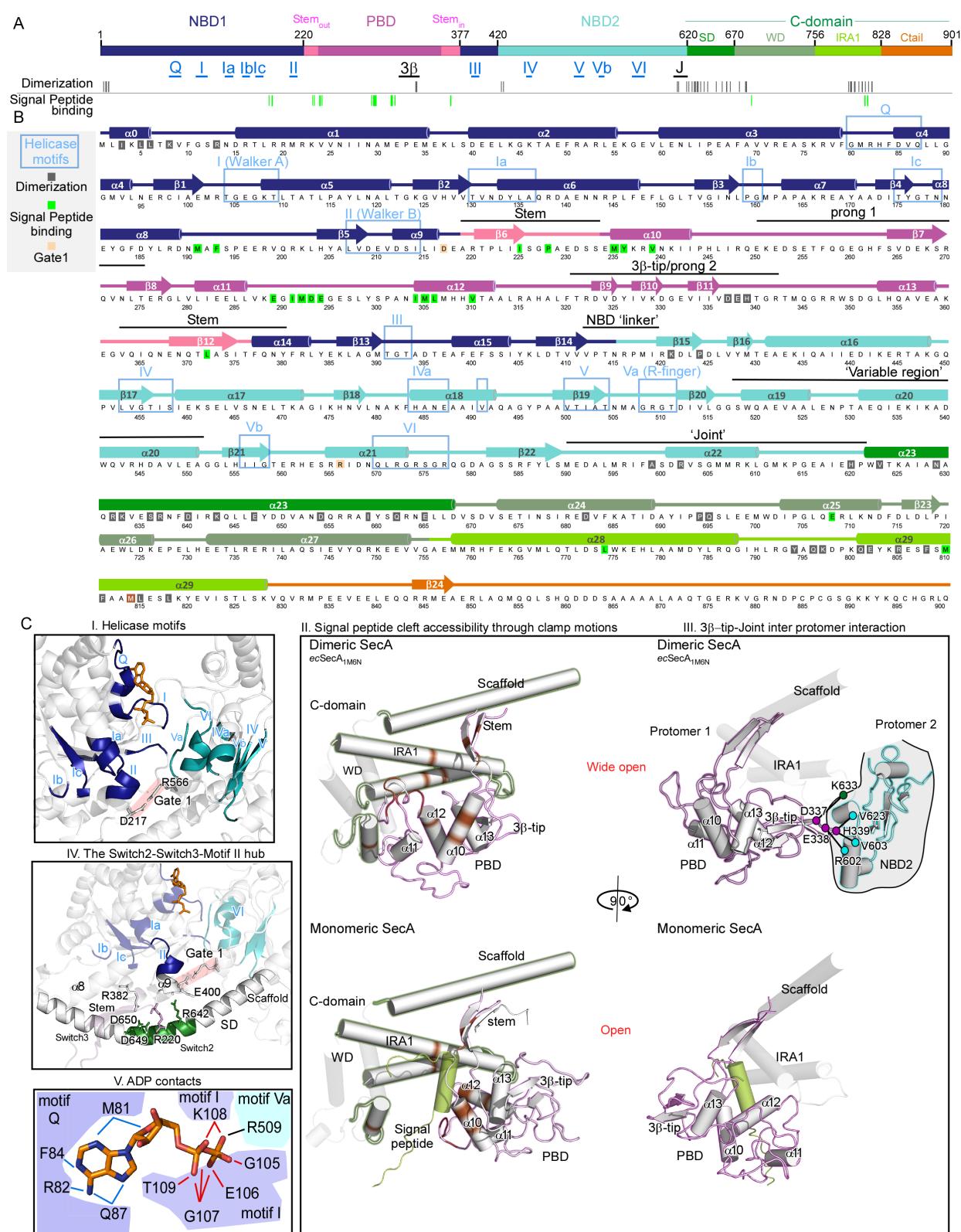


Fig. S1 Krishnamurthy *et al*

Figure S1. Map, sequence and structural elements of SecA (related to Introduction and Figures 1 and 2)

A. Linear map of the domain organization of SecA. SecA consists of 4 domains: Nucleotide

Binding Domain 1 (NBD1; dark blue); Preprotein Binding Domain (PBD; magenta) ‘sprouts’ out of NBD1 via two flexible linkers (Stem_{out} and Stem_{in}; pink). Nucleotide Binding Domain 2 (NBD2; cyan), together with NBD1 form the ATPase motor. The C-domain consists of 4 subdomains; Scaffold Domain (SD; dark green), Wing Domain (WD; pale green), Intramolecular regulator of ATPase 1 (IRA1; lime green) and the flexible C-terminal tail (orange). Helicase motifs (in blue) and important structural elements (in black): 3 β -tip and joint, are indicated. Dimerization residues were derived from dimeric ecSecA modelled after the *B. subtilis* dimeric SecA structure (PDB: 1M6N) and are detailed together with their paired residues in the supplementary Table S1 of (Gouridis *et al.*, 2013).

Residues that bind signal peptide were derived from (Gelis *et al.*, 2007).

B. Linear map of the primary sequence of SecA with secondary structural elements (coloured according to the domain organization in Panel A) and elements of functional or structural importance (adapted from (Papanikolau *et al.*, 2007)). Blue rectangles: helicase motifs ((Papanikolau *et al.*, 2007) and updated from (Fairman-Williams *et al.*, 2010; Linder and Jankowsky, 2011)); cylinders: α -helices; arrows: β -strands.

C. Blow ups of structural elements of SecA.

I. Conserved Superfamily 2 helicase motifs (light blue rectangles in Panel B) (Linder and Jankowsky, 2011; Papanikolau *et al.*, 2007) are mapped, onto the blow-up structure of the SecA nucleotide binding cleft. The open motor conformation of the ecSecA X-ray structure is shown (PDB ID: 2FSI). Helicase motifs in NBD1 and NBD2 are colored blue and cyan respectively (as in Fig. S1A), all other regions are in grey and rendered transparent. D217 and R566 (grey sticks) form the ‘Gate1’ salt bridge (shaded pink) that is required to break before the ATPase catalytic function can be activated (Karamanou *et al.*, 2007). ADP is represented as orange sticks.

II. Blow up image of the preprotein binding domain (PBD; outlined in magenta) and C-domain (outlined in green), with the clamp in the wide-open state (top panel; in dimeric SecA; ecSecA modelled after *bs*SecA; PDB ID: 1M6N) and open state (bottom panel; in monomeric SecA; PDB ID: 2VDA). SecA residues that interact with the signal peptide are coloured brown (Gelis *et al.*, 2007). The signal peptide is shown in light green (bottom panel). Secondary structural elements of the PBD are indicated.

III. Same as in panel II, with the images turned 90° clockwise. Top panel: In dimeric SecA (ecSecA modelled after *bs*SecA; PDB ID: 1M6N), 3 β -tip residues (magenta circles) in the PBD, move under the IRA1 helices to make inter-protomeric contacts with the joint (cyan circles) and SD (green circles) of the second protomer. NBD2 of the second protomer is outlined in cyan. Bottom panel: Monomeric SecA (PDB ID: 2VDA) with the clamp in the open position shows the 3 β -tip rotated away from IRA1 helices.

IV. The Stem/Scaffold- Motif II Hub. The long α 23 scaffold helix that connects NBD2 to the C-domain and regulates NBD function (PDB ID: 2VDA) contains a kinked middle (residues 640-650; green) that is a hotspot for inter-domain salt bridges. The Stem and Scaffold (coloured as in S1C.I and IV) contact each other through a hydrophobic core and salt bridges between D649-R220 and D650-R382. R642_{Scaffold} salt bridges with E400_{NBD1}. Scaffold also participates in SecA dimerization (Fig. 2D; S1B) and becomes a prominent interaction site through which monomeric SecA binds SecY (Zimmer *et al.*, 2008).

V. SecA residues that contact ADP (dark grey backbone, CPK colouring) are labeled (PDB ID: 2FSI; from (Papanikolau *et al.*, 2007)) and shown in connection to the helicase motif to which they belong. NBD1 residues are in blue, NBD2 residues are in cyan. Residues from motif Q mainly contact the adenosine (blue bonds) while residues from Motifs I (red bonds) and V (black bond) mainly contact the α and β phosphates.

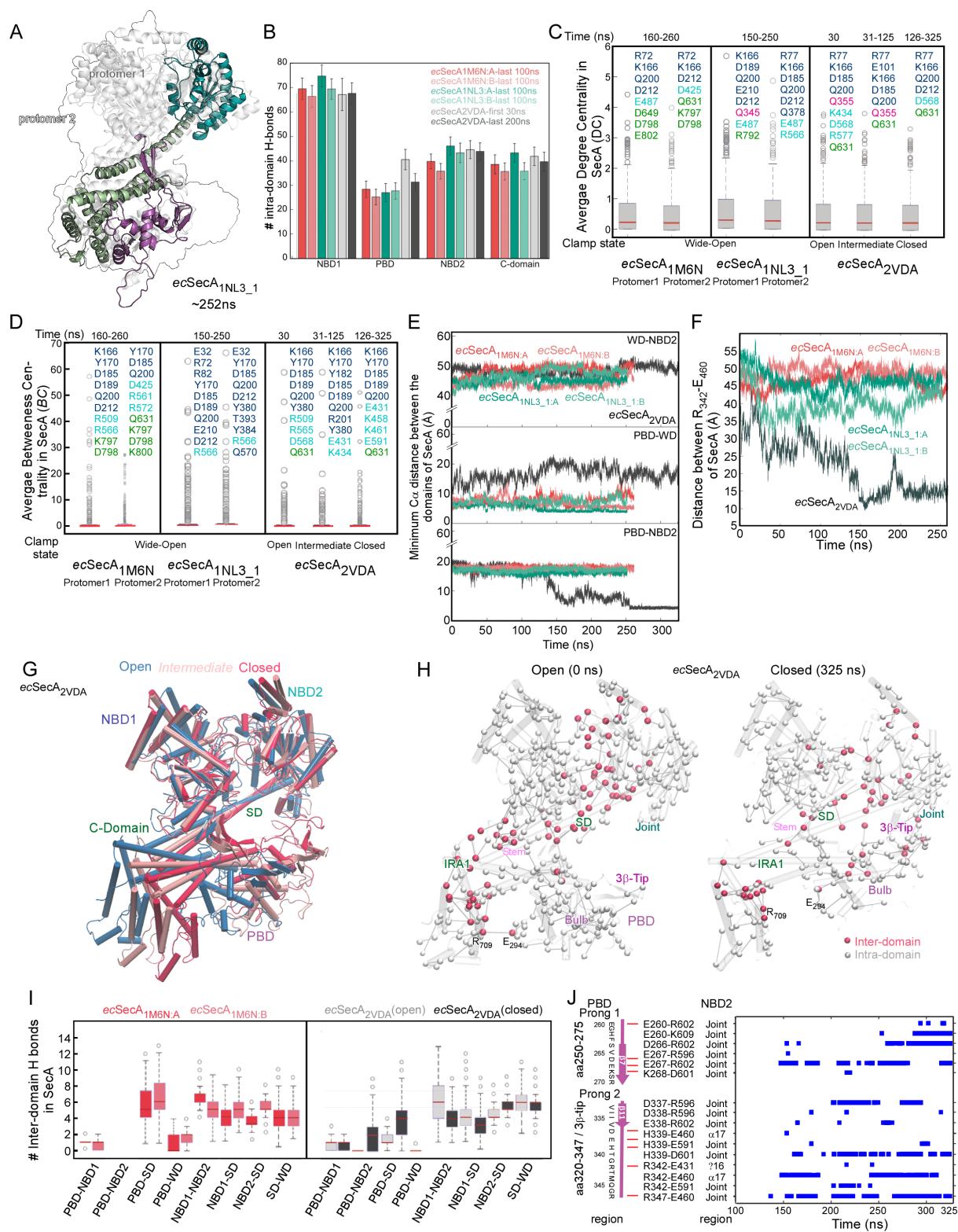


Fig. S2 Krishnamurthy et al

Figure S2. MD simulation of motions in dimeric and monomeric SecA and Graph analysis (related to Figures 1, 2 and 5).

A. Two coordinate snapshots (0 and 252 ns) from the MD simulation for the dimeric ecSecA were visualized on the *M. tuberculosis* crystallographic dimer [PDB: 1NL3_1; (Sharma et al., 2003)] that was identified as being formed between adjacent asymmetric units in the crystal

(Gouridis *et al.*, 2013). The two snapshots were aligned based on the NBD1 region, using the MultiSeq plugin of VMD (Roberts *et al.*, 2006), and superimposed. The front-facing protomer of time = 0 ns is gray, the one of time = 252 ns is colored (PBD: magenta; NBD2: cyan; C-domain: green; (Humphrey *et al.*, 1996). In either case, the back facing protomer is presented only as an outline. Molecular graphics were prepared using Visual Molecular Dynamics, VMD (Humphrey *et al.*, 1996).

B. Average number of intra-domain H bonds for domains of indicated SecA states. In monomeric SecA (ecSecA2VDA) the first 30 ns (grey bar) and last 200 ns (black bar) of simulation time are presented. In the 2 forms of dimeric SecA (1M6N:red shades, 1NL3_1: green shades) the last 100 ns of simulation time is presented for each protomer (A and B) of the dimer. The largest difference in H-bonds was observed in the PBD of monomeric SecA between early(grey bars) and later simulation time (black bar). In the 2 forms of dimeric SecA, intra-domain H-bonds do not vary across simulation time, but there are subtle differences between the two protomers within a dimer. Histograms were generated using MATLAB R2017b. Error bars represent the standard deviation of each group.

C. Distribution of average Degree Centrality values (*DC*) in simulations of monomeric and dimeric SecA (complete dataset in Table S2) (Freeman, 1979; Lazaratos *et al.*, 2020). *DC* describes the number of direct H-bonds a residue can form with unique partners during the simulation so max value is ~4-5. Average DC values were calculated for each residue by calculating its DC value at each coordinate set averaging across all coordinate sets used for the analysis. High average DC values for an amino acid residue mean that this group is in an environment in which it forms several H-bonds with different partners and are therefore indicative of stabilizing interactions. When located centrally in a H-bond cluster, groups with high DC commonly also have high Betweenness centrality (*BC*; See Panel C) values and are part of clusters which are stable. The residues with the highest average *DC* values (≥ 3) are indicated. To facilitate comparison, they are ordered according to primary sequence and colour-coded according to their domain (defined in Fig. S1A and B). Most of them map in the helicase motor. We visualize specifically the ones around the Scaffold/Stem/Motif II hub in Fig. S1C.VII. Most of these residues are highly conserved (Table S4).

D. Distribution of average Betweenness Centrality (*BC*) values in simulations of monomeric and dimeric SecA (complete dataset in Table S2) (Freeman, 1977; Lazaratos *et al.*, 2020). *BC* describes the importance of a residue in a H-bond network in terms of the fraction of shortest and continuous H-bonded pathways that pass through the residue and connect it with unique H-bond partners during the simulation. High *BC* values for an amino acid residue mean that it acts as a hub and controls multiple H-bond connections around it and at a distance. Such residues are commonly conserved and/or essential for function (Amitai *et al.*, 2004; Lazaratos *et al.*, 2020). Groups with the highest *BC* values (> 10) are considered outliers. Top 10 residues with the highest average BC values are indicated and ordered according to primary sequence. Others include residues in NBD2 and the PBD. These groups are at the crossroads of H-bond paths that inter-connect numerous other protein groups. Most of these residues are highly conserved (Table S4).

E. Changes in the minimum Ca distance (y axis; Å) between WD-NBD2 (green), PBD-WD (red) and PBD-NBD2 (blue) regions of ecSecA during simulations of monomeric ecSecA₂VDA (x axis; ns). We calculate the distances of Ca atoms of unique residue pairs that belong to different protein domains and we keep for each time of the simulation, the minimum Ca distance of the residue pair which is closer to each other among others. Note that, as the simulation progresses, the distance between the PBD and NBD2 decreases. The corresponding analysis was carried out for the SecA dimers under the same conditions and force field is included for comparison (as indicated).

Dimeric forms do not show the fast-conformational transition and re-orientation of the PBD seen in the monomer. This suggests that stability of the PBD in the Wide-open state in the

same force field in the dimers is due to additional interactions that the dimers provide (Fig. S1C.V; Table S1; Table S2).

F. Time series of Ca-Ca distances (y axis; Å) between R342_{PBD} and E460_{NBD2} of monomeric SecA (black line; ecSecA_{2VDA}) or two structural variants of dimeric SecA (red and green lines; ecSecA_{1M6N} and ecSecA_{1NL3_1} respectively) during the MD simulation time (x axis; ns). For dimeric SecAs, distances were plotted for both protomers. These timeseries indicate that closing of the PBD in monomeric ecSecA associates with formation of a salt bridge between R342 and E460 (see Panel I below). In the two dimers, the salt bridge is not sampled, as the PBD remains away from NBD2

G. Open, Intermediate and Closed conformations (colour-coded as indicated) of the monomeric ecSecA_{2VDA} structure as illustrated by the MD simulation. Coordinate snapshots from the simulation were structurally aligned based on their NBD1 region and superimposed using the MultiSeq plugin of VMD (Roberts *et al.*, 2006).

H. Changes in inter- and intra- domain H-bonding interactions during a 325 ns MD simulation of ecSecA (PDB: 2VDA; 0 ns: Open state; 325 ns: Closed state). Ca atoms involved in inter-domain hydrogen bonds are depicted as red spheres, those involved in intra-domain bonds as white ones, against a grey cartoon backdrop. Lines between Ca atoms represent H-bond distances. For simplicity, we only show unique H bonds between two protein groups. Here, the WD and SD sub-domains of the C-domain are considered as independent domains and “inter-domain” H-bond interactions between them are shown.

I. Average number of inter-domain H-bonds (y axis) between the indicated domain pairs (x axis) during the MD simulation are represented as box plots (generated using MATLAB R2017b) for both monomeric and dimeric forms of SecA. For monomeric SecA, (ecSecA_{2VDA}), H-bonds were calculated for the first 30 ns (grey bars) and last 200 ns (black bars) of the MD simulation. For dimeric SecA (ecSecA_{1M6N}, ecSecA_{1NL3_1}) H-bonds were calculated for the last 100 ns for both protomers (coloured as indicated). The central line of the box plot represents the median value. Bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. An outlier (circles) is a value that is >1.5 times the interquartile range (1.5 of IQR) away from the top or bottom of the box.

J. Inter-domain salt bridges (blue bars) between the indicated residues (y-axis) of ecSecA_{2VDA} were plotted as a function of the MD simulation time (x axis). Prong 1 (residues 250-275) and Prong 2 (residues 320-347) of PBD salt bridge with NBD2 residues of the second protomer during the course of the MD simulation. A salt bridge is considered to be formed if the distance between any of the oxygen atoms of acidic residues (ASP, GLU) and the nitrogen atoms of basic residues (ARG, HIS, LYS) are within 3.2 Å. Histidines in our simulations are singly protonated and thus neutral. We do not know if His339 can become doubly protonated and basic.

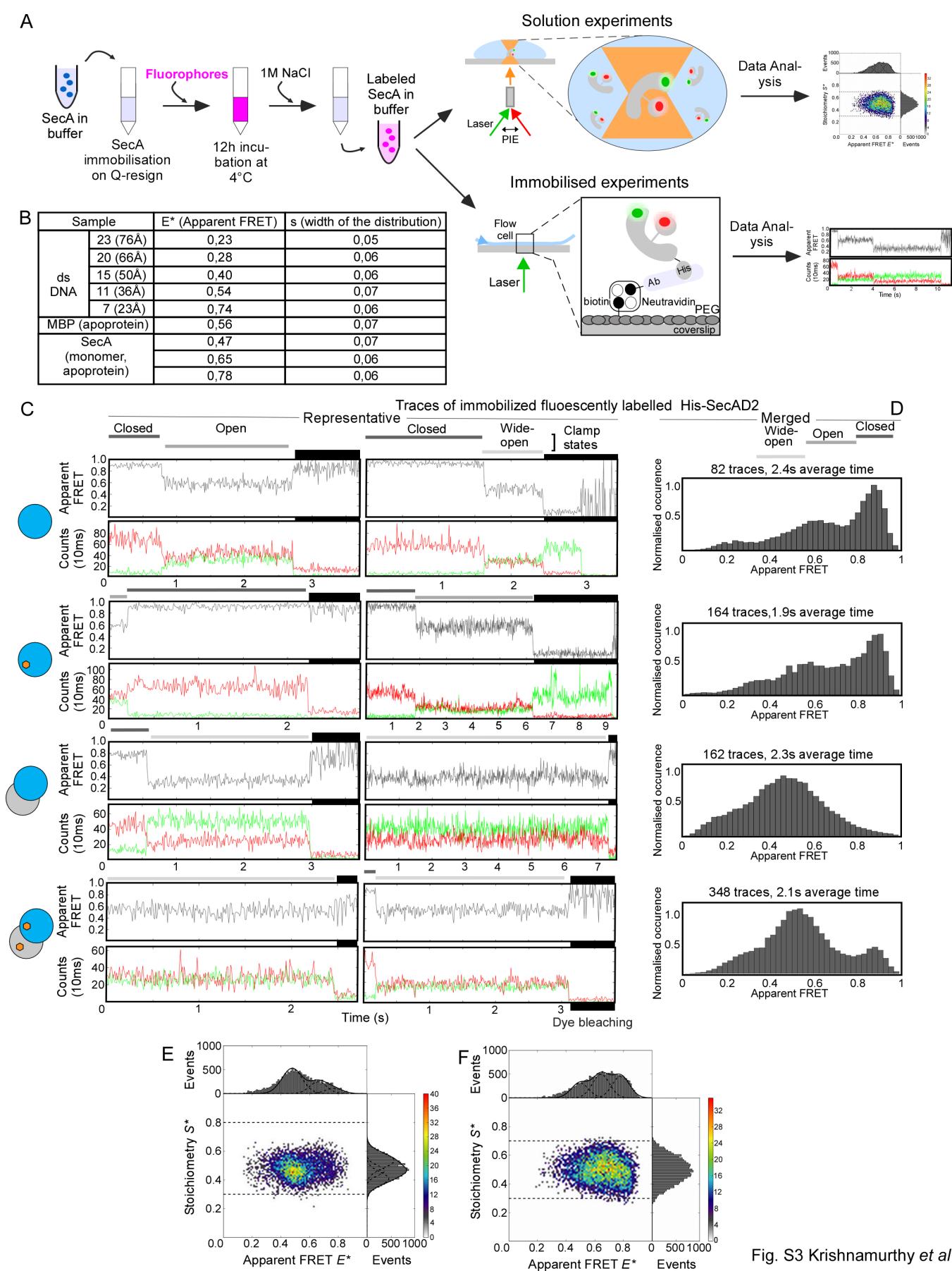


Fig. S3 Krishnamurthy et al

Figure S3. Single molecule FRET (smFRET) analysis in solution or with immobilized SecA molecules (related to Figures 1, 2, 3, 4 and 5).

A. Schematic representation of smFRET workflow using SecA either in solution or immobilized. His-SecAD2 variant (V280C_{PBD}; L464C_{NBD2}) was stoichiometrically labelled with

Alexa555 (donor) and Alexa647 (acceptor) and used (50-100pM) to probe clamp dynamics. Solution experiments were carried out on a confocal pulsed interleaved excitation microscope. FRET values of SecA molecules randomly diffusing through the confocal volume were calculated and presented on 2D-histograms. For experiments using immobilized molecules, labeled SecA molecules were surface-immobilized with PEG-biotinylated- α -His antibody and their FRET trajectories were calculated and plotted vs time. **B.** Control FRET measurements using labelled DNA and protein standards. Doubled stranded (ds) DNAs were chemically synthesized with Alexa555 and Alexa647 fluorophores incorporated in positions that differed by 7 bp (23 Å), 11 (36 Å), 15 (50 Å), 20 (66 Å) or 23 (76 Å). smFRET measurements with these molecules were used to correlate Apparent FRET (E^*) values with distance and distribution width (σ). Maltose Binding Protein (MBP) was purified and labeled (Alexa555, Alexa647) as described (de Boer *et al.*, 2019). As MBP_{Apo} acquires one state, its FRET values were used to corroborate the dsDNA measurements. Extreme smFRET values have the smallest σ (=0.05) while medium FRET values have a bigger σ (=0.07).

C.-D. Representative single traces (C), and projection of the indicated amount of single traces in the same graph (D), of smFRET experiments using immobilized His-SecAD2 molecules under the same conditions (indicated on the left pictogram). Grey-coded lines above graphs indicate different clamp states. The pictogram on the left indicates experimental conditions; single circle: monomer SecA; double circles: dimer SecA; blue: labelled protomer; grey: unlabeled protomer; orange: ADP.

C.: Apparent FRET efficiencies (E^* ; y axis) for the fluorescence trajectories of HisSecA-D2 (black line) in the course of time (x axis). Donor (Alexa555; green) and acceptor (Alexa647; red) photon counts, recorded in parallel, were binned with 10 ms (y axis) and are shown in the course of time (x axis), below the Apparent FRET panels.

D.: The number of single traces that are projected and their average time are indicated on top of each graph.

E.-F. Pulse Interleaved Excitation (PIE)-based 2D plots derived from smFRET experiments of freely diffusing, monomeric (E) or dimeric (F) SecA. The x axis represents the apparent FRET value (E^*), the y axis stoichiometry (S^*) (see material and methods). Histograms, produced by plotting the apparent FRET values (E^*) of multiple recordings (i.e. events), were fitted with three Gaussian distributions each having the width (σ) of the corresponding apparent FRET distribution (E^*) (see B).

Experiments using solution or immobilized molecules both agree that, the Wide-open state is enriched upon dimerization of SecA; variations of the plots might be due to lower statistics of the immobilized data.

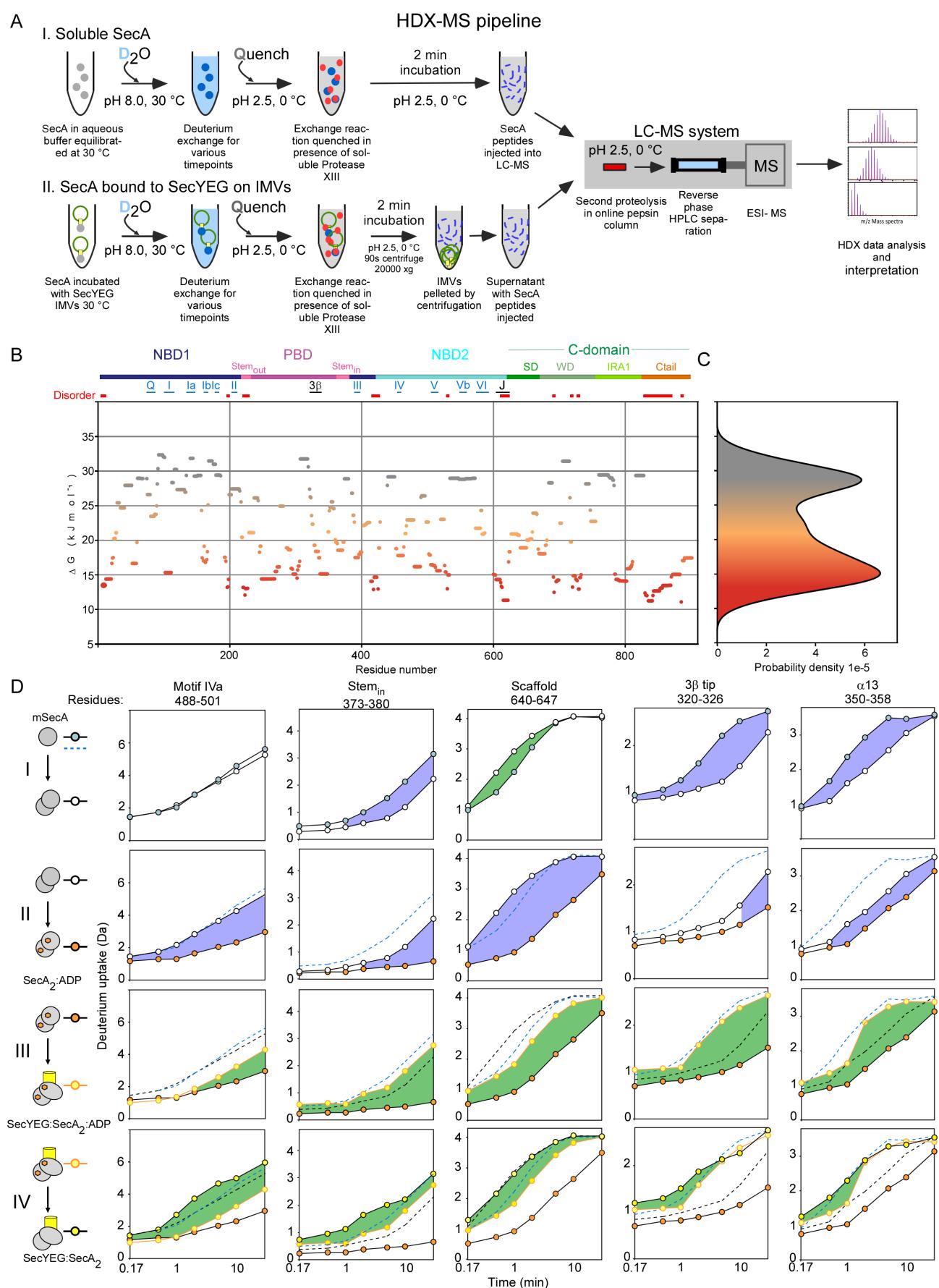


Fig. S4 Krishnamurthy et al

Figure S4. HDX-MS methodology, SecA Deuterium exchange rate map and selected D-exchange plots (related to Figures 1-7).

A. Schematic representation of HDX-MS workflow using freely diffusing SecA (I) or bound to SecYEG-IMVs (II).

I: Soluble SecA (grey circles) is equilibrated at 30°C. D-exchange (blue shading) is initiated by dilution in deuterated buffer F (1:10 dilution for 90% final D₂O concentration) and incubated for various timepoints (10 s, 30 s, 1 m, 2 m, 5 m, 10 m, 30 m, 1440 m). The reaction is quenched with formic acid (0.7% V/V final concentration) at 4°C. Protease XIII (1 mg/mL) (grey shading) is added and the sample is incubated for 2 min on ice.

II: In experiments with channel-bound SecA, soluble SecA (grey squares) is incubated with SecYEG-IMVs (green circles with yellow boxes) at a ratio of 1.5:1 (SecYEG:SecA₂). An excess of SecYEG ensures all available SecA is bound to SecYEG. D-exchange is initiated, and the reaction is quenched as in solution experiments. During the quench step, at low pH, the SecYEG:SecA₂ complex tends to dissociate (data not shown) and the free SecA is proteolyzed while SecYEG-IMVs are inaccessible to the protease. SecYEG-IMVs are pelleted by centrifugation, at 20,000 x g, (90s, 4°C), while SecA peptides (blue lines) remain in the supernatant. Sample handling between centrifugation and injection was maintained to a maximum of 30 s and was always at 4°C.

I. and II.: The reaction is then injected into a LC-MS system, maintained at pH 2.5 and 0°C, and becomes further digested using a home-packed online pepsin column (Sigma-Aldrich) before peptides are separated by reverse phase HPLC. HDX-MS data were analyzed and interpreted as described in experimental methods.

B. ΔG_{ex} values were calculated for each residue of SecA₂ on PyHDX software (Smit *et al.*, 2020) using time-course D-exchange experiments (see experimental methods), plotted from N- to C- terminus and coloured on a linear scale from grey (29 kJmol⁻¹; rigid) to red (13 kJmol⁻¹; disordered) as in Fig 1F. Flexible regions are in orange and fall in the middle of this range of ΔG_{ex} values (21 kJmol⁻¹). Disordered islands (<13 kJmol⁻¹) are indicated above the graph (red). The domain organization of SecA is indicated as a colored bar above the graph (colors as in Fig 1A). Lines depict the location and length of helicase motifs I-VI (blue), 3 β -tip and the Joint (black) in the primary sequence of SecA.

C. Histogram depicting the population density (x-axis) of residues as a function of ΔG_{ex} (y-axis aligned with S4B). The histogram is coloured based on ΔG_{ex} values as in B.

D. HDX-MS kinetic plots compare the D-uptake of selected SecA peptides (as indicated on top of panels) in different states.

I.-IV: Pictograms, on the left of panels, indicate the activation cascade of SecA as well as the current state pair comparison. Single circle: monomer SecA; double circles: dimer SecA; orange: ADP; yellow SecYEG. The symbols used on the kinetic plots for each state, are indicated on the right of the pictogram. Each row (I-IV) compares the D-uptake values (in Da) of the control state (top pictogram) to test state (bottom pictogram) across seven timepoints (10 s, 30 s, 1 m, 2 m, 5 m, 10 m and 30 m). In all plots, the y axis is scaled to equal the 100% deuteration control of each peptide (FDC, Table S1), the x axis is in logarithmic scale. Each point is the average of 3 replicate experiments. Standard deviation error bars (maximum of ± 0.12 Da, average of ± 0.06 Da) are within the area of the data point and hence were omitted.

Peptide identity: Selected peptides, with the indicated residue numbers, span: Motif IVa (I, FDC= 7.97 Da), Stem_{in} (II, FDC= 4.79 Da), Scaffold (III, FDC= 4.22 Da), 3 β -tip (IV, FDC= 2.63 Da) and α 13 (V, FDC= 3.76 Da).

Colouring: Purple: decreased, green: increased dynamics, in the test state of the indicated peptide compared to the control state. The greater the shaded area, the larger is the difference in dynamics between control and test states.

I.: SecA₂ (white circles, test) is compared to mSecA (blue circles, control).

II.: SecA₂:ADP (orange circles, test) is compared to SecA₂ (white circles, control). ADP is maintained at 2 mM. mSecA data (blue dashed line) are included for comparison.

III.: SecYEG:SecA₂:ADP (yellow circles outlined orange, test) is compared to SecA₂:ADP (orange circles, control). SecYEG:SecA₂ is maintained at a molar ratio of 1.5:1. SecA₂ data (black dashed line) are included for comparison.

IV.: SecYEG:SecA₂ (yellow circles, test) is compared to SecYEG:SecA₂:ADP (yellow circles outlined orange, control).

Fig. S5 Krishnamurthy *et al*

Figure S5. $\Delta\%$ D comparison of localized dynamics in SecA and derivatives in various liganded states (related to Figures 2-6)

A.-H. HDX-MS data from different conditions are compared pairwise as indicated on the pictograms (see below). Differences (Δ) in %D are colored (as explained below) on linear maps of SecA from the N- to the C- terminus.

Above the Panels: The domain organization, important structural elements (Helicase motifs; 3 β -tip; Joint) and regions of disorder as well as their position, are indicated onto the linear map of SecA (as in Fig. S4B).

Left of Panels: Pictograms indicate the current state pair comparison. Left pictogram: control; right pictogram: test state; grey single circle: monomer SecA; grey double circles: dimer SecA; orange hexagon: ADP; yellow cylinder: SecYEG; green cylinder: signal peptide; A red cross marks SecA or SecY mutants (as indicated).

Colouring of linear maps (Panels A-H): Purple: decreased; green: increased dynamics of the 'test state' when compared to the 'control state'. Colour shades indicate minor/major differences in dynamics (as depicted at the bottom of the Figure). All colored regions satisfy the significance threshold criteria (see Experimental methods). Grey: no coverage

A. Changes in the dynamics ($\Delta\%$ D) of mSecA upon dimerization or/and ADP binding.

- I. SecA₂ (control) is compared to mSecA (test).
- II. SecA₂ (control) is compared to SecA₂:ADP (test).
- III. mSecA (control) is compared to mSecA:ADP (test).
- IV. mSecA:ADP (control) is compared to SecA₂:ADP (test).

B. Changes in the dynamics ($\Delta\%$ D) of SecA₂ upon deletion of its C terminal tail, in the presence or absence of ADP.

- I. SecA₂ (control) is compared to SecA_{ΔCtail} (test).
- II. SecA₂:ADP (control) is compared to SecA_{ΔCtail}:ADP (test).

C. The effect of mutating Stem (i.e. L187A) on the dynamics ($\Delta\%$ D) of SecA₂ is examined, in the presence or absence of ADP.

- I. SecA₂ (control) is compared to SecA(L187A) (test).
- II. SecA₂:ADP (control) is compared to SecA(L187A):ADP (test).

D. Changes in the dynamics ($\Delta\%$ D) of SecA₂ upon channel binding, in the presence or absence of ADP.

- I. SecA₂ (control) is compared to SecYEG:SecA₂ (test).
- II. mSecA (control) is compared to SecYEG:SecA₂ (test).
- III. SecA₂:ADP (control) is compared to SecYEG:SecA₂:ADP (test).
- IV. SecYEG:SecA₂ (control) is compared to SecYEG:SecA₂:ADP (test).
- V. SecA₂ (control; D exchange carried out at 20°C) is compared to SecYEG:SecA₂ (test, D exchange carried out at 20°C).

E. Changes in the dynamics ($\Delta\%$ D) of SecA₂ upon binding to SecY_{M15}EG.

- I. SecA₂ (control) is compared to SecY_{M15}EG:SecA₂ (test).
- II. SecA₂ (control; deuterium exchange carried out at 20°C) is compared to SecY_{M15}EG:SecA₂ (test, D exchange carried out at 20°C).

F. Changes in the dynamics ($\Delta\%$ D) of mSecA upon channel or/and signal peptide binding, in the presence or absence of ADP.

- I. mSecA (control) is compared to SecYEG:mSecA (test).
- II. SecYEG:mSecA (control) is compared to SecYEG:SecA₂ (test).
- III. mSecA:ADP (control) is compared to SecYEG:mSecA:ADP (test).

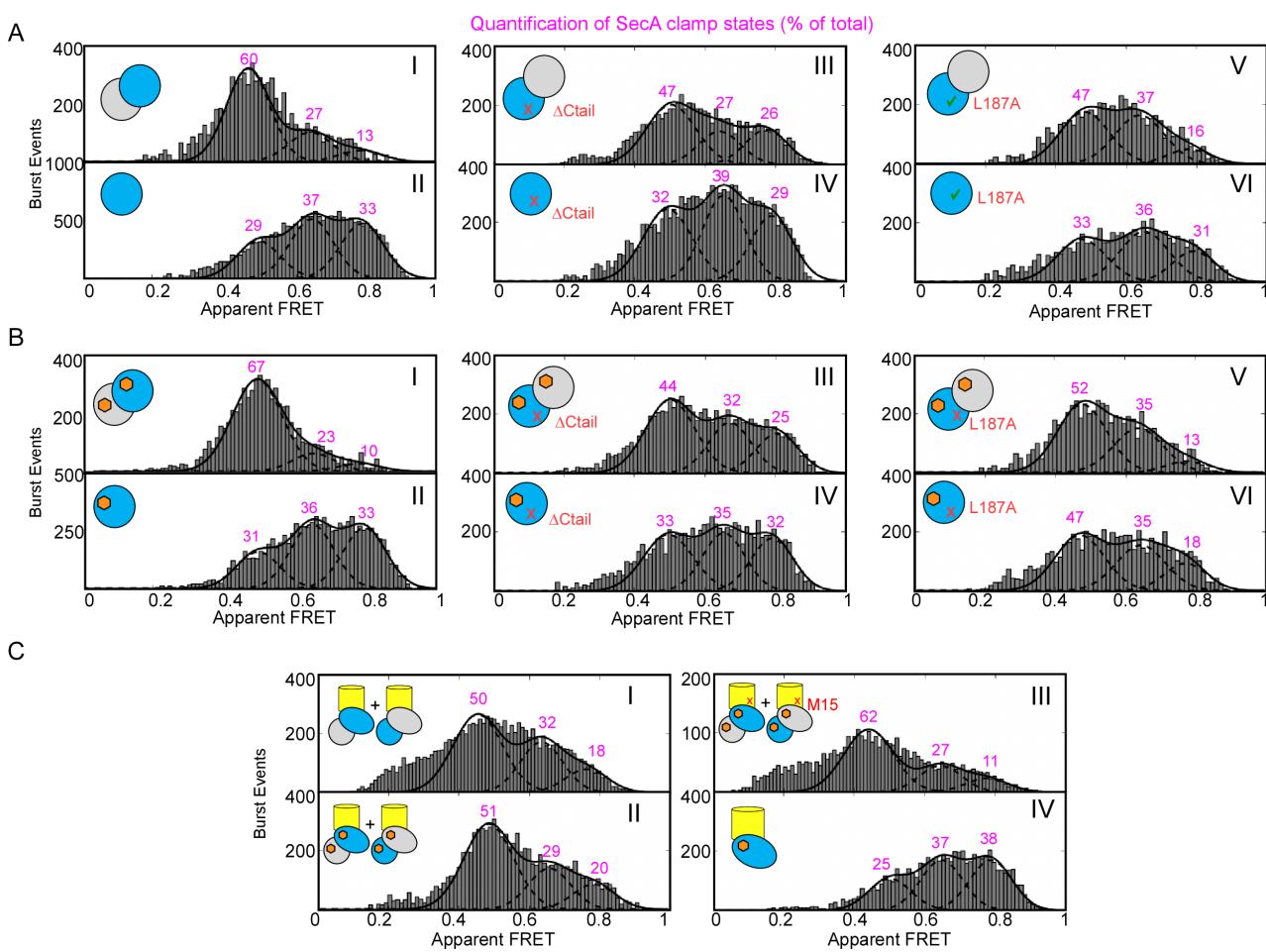


Fig. S6 Krishnamurthy *et al*

Figure S6. Intrinsic and ligand-modulated clamp dynamics in SecA determined by smFRET experiments in solution (related to Figures 1-6).

A.-C: PIE-based 2D plots derived from smFRET experiments in solution, using SecA under the conditions indicated in the inlet pictograms (see below). Histograms [x axis: apparent FRET value (E^*); y axis: burst events] were produced and fitted with Gaussian distributions as described in Fig. S3. The area under each curve was quantified and expressed as a percentage (pink numbers on top of curves) of the sum of areas under all curves.

The labeled monomer of SecA (blue) was observed by using low pM concentration (50-100pM, kinetic monomer). For dimeric SecA, 500-1000nM non-labeled SecA (grey) was added to the labeled kinetic monomer and incubated for 30 min, 4°C. ADP was added (as indicated) at 1mM and incubated for 5 min, 4°C. For channel bound SecA, 1500 nM of SecYEG-IMVs were added to SecA (as indicated) and incubated for 30 min, 4°C. Signal peptide was added to free or channel bound SecA (as indicated), at 37 μ M and incubated for 5 min, 4°C.

Inlet pictograms indicate: the fluorescent molecule(s) under observation (wild type or the indicated derivative), the state of SecA (monomer or dimer; apoprotein or ADP bound; freely diffusing or channel bound), the monodispersity of sample (for freely diffusing SecA molecules) or the ensemble of molecules (for channel bound SecA molecules), SecA homodimers (wild type) vs heterodimers (the labelled SecA protomer is the indicated mutant while the non-labelled protomer is wild type), the activated SecA protomer upon channel binding (oval) vs non-active protomer (circle), SecA or SecYEG mutants (red letters/cross). *Colors/shapes indicate:* Blue: labelled SecA protomer; grey: non-labelled SecA protomer; orange hexagon: ADP; yellow cylinder: SecYEG; green cylinder: signal peptide; circle: non-active channel bound SecA protomer; ovals: activated channel bound SecA protomer; red cross: protomer with mutation; pink: quantification (%) of SecA's clamp states

A:Freely diffusing SecA and mutant derivatives in apoprotein form; dimer SecA (I), monomer SecA (II), dimer SecA_{ΔCtail} (III), monomer SecA_{ΔCtail}, dimer SecA(L187A), monomer SecA(L187A) .

B: Freely diffusing SecA and mutant derivatives in ADP bound form, shown as in A.

C: Channel bound SecA; Channel-bound dimer SecA apoprotein (I), channel-bound ADP-bound dimer SecA (II), SecY_{M15}EG bound ADP bound dimer SecA (III), channel-bound ADP-bound monomer SecA (IV)

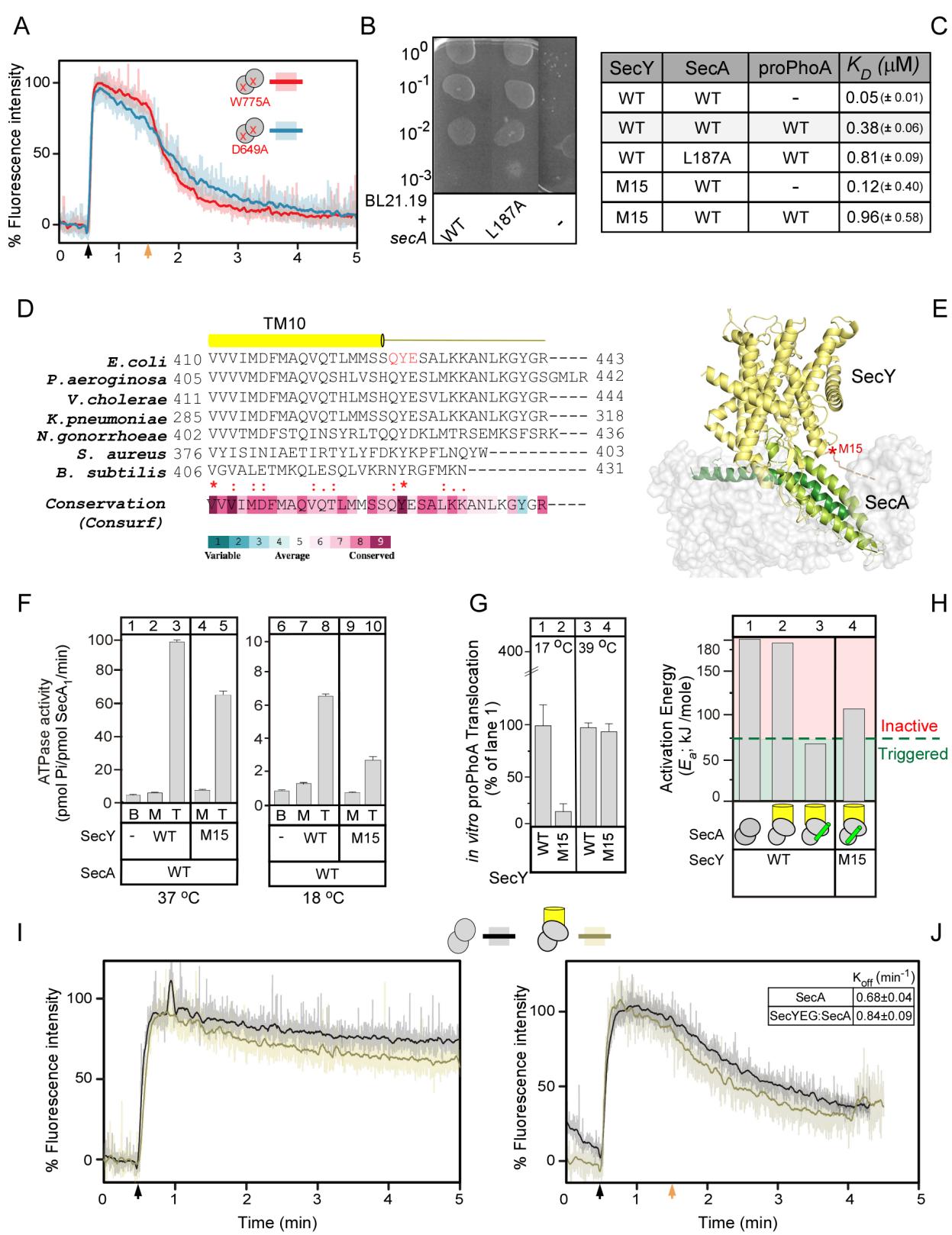


Fig. S7 Krishnamurthy et al

Figure S7. *In vitro* and *in vivo* functional properties of SecA and SecYEG derivatives (related to Figures 3-6).

A. Binding of MANT-ADP to elevated ATPase mutants of SecA was monitored by fluorescence spectrometry. The low fluorescence of MANT-ADP in H_2O increases upon binding to the hydrophobic environment of the nucleotide binding cleft of SecA (Galletto et al., 2000)(see Fig. 3E). The data is normalized taking the fluorescence signal of free MANT-

ADP as 0% and that of SecA bound MANT-ADP as 100% (maximum fluorescence intensity). We monitored two previously described elevated ATPase mutants, SecA(D649A) (blue line) (Keramisanou et al., 2006) and SecA(W775A) (red line) (Vrontou et al., 2004). Raw fluorescence data (transparent lines) is superimposed with smoothed data (solid lines). 1 μ M of SecA mutant was added to 1 μ M of MANT-ADP at t= 30 sec (black arrow) and the sample was chased with 2 mM cold ADP at t= 90 sec. Curves represent the mean of three replicate measurements. **B.** *In vivo* genetic complementation of the *E.coli* BL21.19 thermo-sensitive mutant strain by either an empty vector or one carrying the secA wt or mutants, as indicated. Serial dilutions of a culture ($OD_{600}=0.5$) were spotted (12 μ l) on LB-Ampicillin plates and grown at 42°C. n= 3 biological replicates; a representative picture is shown.

C. Binding affinities (K_D) of SecA and derivatives for the SecYEG channel (as indicated; white rows) and of channel-bound SecA and derivatives for proPhoA (as indicated; grey rows). n= 6 biological repetitions; mean values (\pm SEM) are shown. SecA binds to SecY_{M15}EG with high affinity and subsequently acquires a high affinity for preproteins, a demonstration that its association to SecY_{M15} rendered its two protomers functionally asymmetric.

D. The C-termini of SecY from selected bacteria are aligned. TM10, the last transmembrane helix of SecY is indicated. The consensus sequence (bottom) was derived from alignment of 58 sequences from representative phyla across the domains of life (Karamanou et al., 2008) and analysis in the Consurf server of 300 homologues. Colour code for residue conservation: Red= 100%; Light blue= >70% identical or of similar property. += basic; @= acidic; s=small (A, G); h=hydrophobic (ILVMA). All residue numbering corresponds to the *E.coli* protein. Y429, a key residue, mutated in either the M15 derivative used here (Q₄₂₈Y₄₂₉E₄₃₀-AAA) (Karamanou et al., 2008) or in SecY(Y429D) (Matsumoto et al., 2000; Matsumoto et al., 1997; Taura et al., 1997), renders SecY cryo-sensitive and the cells non-viable below 20°C.

E. Structural model of the *E.coli* SecYEG:SecA complex generated by homology modelling against the SecYEG:SecA structure from *T. maritima* (PDB ID: 3DIN) (Vandenberk et al., 2019) reaching up to residue 427. Q₄₂₈Y₄₂₉E₄₃₀, the site mutated on the M15 derivative (red asterisk) and the other last carboxy-terminal residues of SecY (yellow/grey drawn line), are not contained in the coordinates of the solved structures. These residues are likely to extend into making contacts with IRA1 (light green) and the scaffold domain (dark green). The last 13 C-terminal residues of *E.coli* SecYEG were shown to bind to SecA, using immobilized peptide arrays (Karamanou et al., 2008).

F. The ATPase activity of the freely diffusing (basal; B; 0.4 μ M SecA), SecYEG channel-bound (membrane; M; 1 μ M SecY) and translocating (T; SecY plus 9 μ M proPhoACys⁻) SecA was determined as described (Gouridis et al., 2010). Mutant derivatives and incubation temperatures are indicated. n= 6 biological repeats; mean values (\pm SEM) are shown.

G. *In vitro* translocation of proPhoACys⁻ (9 μ M) driven by wild-type or mutant translocases (i.e. wt SecA and the indicated SecY mutations), as described (Gouridis et al., 2010). The translocated material by the wild-type translocase at 17°C, or 39°C, is considered 100% for the indicated temperature. All other values were expressed as a percentage of the corresponding value. n= 3 biological repetitions; mean values (\pm SEM) are shown.

H. The Activation Energies (E_a) of wild type, or the indicated mutant, translocases under translocation conditions (0.4 μ M SecA; 1 μ M SecYEG supplemented with 9 μ M proPhoACys⁻, indicated by green tube) derived from Arrhenius plots, as described (Gouridis et al., 2009). n=3 biological repeats. SecY_{M15} is cryosensitive (Karamanou et al., 2008); With the exception of the cryosensitive SecY_{M15} that exhibited an additional linear period from 20-28°C, all Arrhenius plots had two linear parts [0-20°C and 20-40°C; as described (Gouridis et al., 2009)].

I-J. Binding of MANT-ADP to SecA₂ assembled in the translocase holoenzyme was monitored by fluorescence spectrometry. The data is normalized taking the fluorescence signal of free MANT-ADP as 0% and that of SecA₂ bound MANT-ADP as 100% (maximum fluorescence intensity). Raw fluorescence data (transparent lines) is superimposed with smoothed data (solid lines). 1 μ M of SecA₂ or SecYEG:SecA₂ (1.2:1 μ M) were added at t= 30 sec (black arrow). In chase experiments (J), 2 mM cold ADP was added at t= 90 sec (orange arrow). Curves represent the mean of three replicate measurements.

I. Fluorescence experiments comparing binding of SecA₂ (black line) or SecYEG:SecA₂ (brown line) to MANT-ADP. Fluorescence intensity was monitored for 5 min.

J. Fluorescence experiments comparing binding of SecA₂ (black line) or SecYEG:SecA₂ (brown line) to MANT-ADP with a subsequent chase of 2 mM cold ADP (orange arrow). Fluorescence intensity was monitored for 4.5 mins. The off rate of MANT-ADP upon addition of cold ADP chase to both SecA₂ and SecYEG:SecA₂ was calculated using a one phase decay equation (Graphpad Prism).

Supplemental tables:

Table S1 (related to Introduction and Figures 1, 2 and S1)

Analysis of SecA structures from the Protein data bank (in **XLS** file).

I. X-ray structures information: Summary information on X-ray structures of SecA homologues used in this study (organism, ligands, other factors, crystallographic conditions, the oligomeric state of the protein as identified in the crystal and the one that is proposed by EPPIC to be physiologically relevant (<http://www.eppic-web.org/ewui/>)).

II. All the PBD interactions: All of the interdomain PBD interactions identified in different X-ray structures. Initially, homology models of *E. coli* SecA were created based on the available X-ray structures, using the Swiss-model web tool (<https://swissmodel.expasy.org>). Then, for every structure, all the interactions were calculated using the PIC webserver (<http://pic.mbu.iisc.ernet.in>) and only the interdomain PBD interactions were reported. In dimeric state of the protein, inter-protomeric interactions are also reported. The color of the interaction also indicates the nature of this interaction. Green: lipophilic; blue: hydrogen bond; red: ionic; purple: cationic-pi interaction. This table is further organized based on the oligomeric and the clamp state of the protein in four main groups (Dimer Wo, Monomer WO, Monomer O and Monomer C).

III. Merged PBD interactions: The table contains the merged interactions from different structures belonging at the same of the above-mentioned group. An extra column indicates the domain (color coded) from the respective amino acid residues.

IV. Scaffold interactions: The table contains all the interdomain scaffold interactions. In dimeric state of the protein, inter-protomeric interactions are also reported.

Table S2 (related to Figures 1, 2, 5, S1 and S2)

Compiled data from atomistic MD simulations (in **XLS** file)

I. Intra-domain H-bond: H-bond frequencies (in %) between Intra-domain residue pairs for all MD simulations. Data are shown for 3 simulation time blocks of monomeric SecA (ecSecA_{2VDA}) and the last 100 ns of simulation time for dimeric SecAs (ecSecA_{1M6N} and ecSecA_{1NL3_1}). H-bond frequency, or occupancy, is defined as the percentage of length of the analyzed trajectory segment during which two residues are H-bonded. Data are shown for both protomers of dimeric SecA. Values above 20% are highlighted in red.

II. Inter-domain H-bond: H-bond frequencies (in %) between Inter-domain residue pairs during 325 ns simulation of monomeric SecA (ecSecA_{2VDA}) and during 252-262 ns simulation of dimeric SecA in two different conformer (1. ecSecA_{1M6N}, 2. ecSecA_{1NL3_1}). For monomeric SecA H-bonding data is collated for the following simulation time blocks 1) first 30 ns, 2) 95 ns simulation time, 3) last 200 ns simulation time. For dimeric SecA H-bonding data is collated for the last 100 ns simulation time. H-bond frequency, or occupancy, is defined as the percentage of length of the analyzed trajectory segment during which two residues are H-bonded. Values above 20% are highlighted in red.

III. Average DC: Average Degree Centrality (DC) for all residues of SecA. Data is shown for both monomeric SecA (ecSecA_{2VDA}) for 3 simulation time blocks and last 100 ns simulation time of dimer SecA (ecSecA_{1M6N} and ecSecA_{1NL3_1}). Degree centrality (DC) of a node n gives the number of edges (H-bonds) connecting to n. The DC value of node n can be normalized by dividing its DC by the maximum possible edges to n (which is N-1, where N is the number of total nodes in the graph). In our analysis, we consider as nodes the amino-acid residues, edges the H bonds and paths the continuous chain of H-bonded residues. When a path between two nodes is the shortest, it has the least number of intermediate nodes (Lazaratos et al., 2020). Higher values indicate a higher propensity for forming stable H-bonds. Values above 2.5 are highlighted in red.

IV. Average BC: Average Betweenness Centrality (BC) for all residues of SecA. Data is shown for both monomeric SecA (ecSecA_{2VDA}) for 3 simulation time blocks and last 100 ns simulation time of dimer SecA (ecSecA_{1M6N} and ecSecA_{1NL3_1}). Betweenness centrality of a

node n is given by the number of shortest paths that link any other two nodes (n1, n2) and pass via node n, divided by the total number of shortest paths linking n1 and n2. BC of node n can be normalized by dividing its BC by the number of pairs of nodes in the graph not including n. In our analysis, we consider as nodes the amino-acid residues, edges the H bonds and paths the continuous chain of H-bonded residues. When a path between two nodes is the shortest, it has the least number of intermediate nodes. High BC values for an amino acid residue mean that it acts as a hub and controls multiple H-bond networks around it and at a distance (Lazaratos *et al.*, 2020). Values above 10 are highlighted in red.

V. Average H-bond: Average number of intra and inter domain H-bonds in indicated simulation time blocks for all MD simulations. Intra domain H-bonds are presented for all 4 domains of SecA. Inter domain H-bonds are presented for the indicated domain pairs. Data are shown for two types of calculations, H-bonds mediated entirely by residue-residue contacts ('protein') and H-bonds that can also involve 1 water molecule to bridge two residues (1-water bridge).

VI. DC (non-averaged): Degree centrality (DC) values for all residues of SecA. Data is shown for both monomeric SecA (ecSecA_{2VDA}) for 3 simulation time blocks and last 100 ns simulation time of dimeric SecA (ecSecA_{1M6N} and ecSecA_{1NL3_1}). Absolute DC values show number of H-bonds are residue is involved in during the indicated simulation time. Values above 10 are highlighted in red.

VII. 1-w Intra-domain H bond: H-bond frequencies (in %) between one-water bridged Intra-domain residue pairs for all MD simulations. One-water bridge is considered an H bond between two residue pairs mediated by one water molecule. Data are shown for 3 simulation time blocks of monomeric SecA (ecSecA_{2VDA}) and the last 100 ns of simulation time for dimeric SecAs (ecSecA_{1M6N} and ecSecA_{1NL3_1}). H-bond frequency, or occupancy, is defined as the percentage of length of the analyzed trajectory segment during which two residues are H-bonded. Data are shown for both protomers of dimeric SecA. Values above 20% are highlighted in red.

VIII. 1-w Inter-domain H bonds: H-bond frequencies (in %) between one-water bridged Inter-domain residue pairs during 325 ns simulation of monomeric SecA (ecSecA_{2VDA}) and during 252-262 ns simulation of dimeric SecA in two different conformer (1.ecSecA_{1M6N}, 2. ecSecA_{1NL3_1}). One-water bridge is considered an H bond between two residue pairs mediated by one water molecule. For monomeric SecA H-bonding data is collated for the following simulation time blocks 1) first 30 ns, 2) 95 ns simulation time, 3) last 200 ns simulation time. For dimeric SecA H-bonding data is collated for the last 100 ns simulation time. H-bond frequency, or occupancy, is defined as the percentage of length of the analyzed trajectory segment during which two residues are H-bonded. Values above 20% are highlighted in red.

Table S3 (related to Figures 1-7, S4 and S5)

HDX-MS Data table (in **XLS** file).

(Presented as recommended in (Masson *et al.*, 2019). Data table contains raw D-uptake values for all states, percent uptake values and pairwise compared Δ D-uptake values between different experimental states)

I. HDX summary Table: Experimental details of all HDXMS results provided as recommended in Masson *et al.* 2019. Coverage map of SecA peptides obtained from solution (Fig S4A.I) and SecYEG bound SecA on IMVs (Fig. S4A.II) experiments.

II. SecA all states raw data: Raw D-uptake values (in Da) are shown with standard deviation values for all peptide in various states of SecA presented in this study. Peptide sequence and residue numbers are also shown. D-uptake values are shown as % D-uptake of the 100% deuteration control. % uptake values are coloured based on the provided colour key.

III to XI

Pairwise differential D-uptake values comparing various states of SecA are shown. Differential D-uptake between 2 states is shown both as raw ΔD (in Da) differences and $\% \Delta D$ (difference in % uptake) values in separate columns. When comparing 2 states, the control state is in black and the test state is in red (always second) in the column header. ΔD differences greater than 0.5 Da are considered significant and coloured based on either protection (negative values, purple) or increased flexibility (positive values, green). A second threshold is applied based on $\Delta \% D$ values; differences above 10% are considered significant. Peptides are considered significantly altered between 2 states if they satisfy both the ΔD and $\Delta \% D$ thresholds (see experimental methods). Differences between 10%-20% are considered minor and differences greater than 20% are considered major differences. Protection is shown in shades of purple and increased flexibility is shown in shades of green (according to the provided colour key).

III. SecA-Ligand: Dimeric SecA in solution is compared to ADP-bound SecA.

IV. mSecA-Ligand: Monomeric SecA (mSecA) in solution is compared to dimeric SecA and ligand bound mSecA states:mSecA:ADP, SecA, SecA:ADP

V. SecA-SecYEG-Ligands: Dimeric SecA bound to SecYEG (SecYEG:SecA) is compared to the following states: SecA, SecA:ADP, mSecA, mSecA:ADP, SecYEG:SecA:ADP, SecYEG(M15):SecA.

VI. SecA-SecYEG-SecYEG(M15)-18C: Dimeric SecA in solution is compared to SecYEG:SecA and SecYEG(M15):SecA. Deuterium exchange for these experiments were carried out at 18°C

VII. mSecA-SecYEG-Ligands: Monomeric SecA (mSecA) bound to SecYEG (SecYEG:mSecA) is compared to the following states: mSecA, mSecA:ADP, SecYEG:mSecA:ADP, SecYEG:SecA, SecYEG:SecA:ADP

VIII. SecA(L187A): SecA(L187A) in solution is compared to the following states: SecA(L187A):ADP, SecA, SecA:ADP

IX. SecAΔCtail: SecAΔCtail in solution is compared to the following states: SecAΔCtail:ADP, SecA, SecA:ADP

Table S4 (related to Figure 1)

Amino acid conservation scores for all residues of ecSecA_{2VDA} from Consurf database (Ben Chorin et al., 2020). (in **DOC** file). Table contains conservation scores and residue variety for each residue of *E. coli* SecA. Table was generated by Consurf database using ecSecA_{2VDA} as the input structure.

Supplementary Movies

The movies derived from crystallography and MD simulated states. Both movies were created as visualization models of the PBD motion. The movies were produced by using Pymol (<https://pymol.org/>) and composed in iMovie software.

Movie S1 (related to Introduction and Figures 1 and S2)

For Movie S1, structural frames from the MD simulations (0 and 325ns) of monomeric SecA₂VDA were used.

Movie S2 (related to Introduction, Figures 1, 2 and S2)

For Movie S2, the *E.coli* homology models (Sardis and Economou, 2010) of wide open, open and closed PBD states were used.

Materials and Methods

List of Buffers

Buffer	Composition
A	50 mM Tris-HCl, pH 8.0, 1M NaCl
B	50 mM Tris-HCl, pH 8.0, 50 mM NaCl
C	50 mM Tris-HCl, pH 8.0, 50 mM NaCl, 50% v/v glycerol
D	50 mM Tris-HCl, pH 8.0, 50 mM NaCl, 6 M Urea, 50% v/v glycerol
E	50 mM Tris-HCl pH 8.0, 50 mM KCl, 1 mM MgCl ₂ , 1 mM DTT
F	50 mM Tris-HCl pH 8.0, 50 mM KCl, 1 mM MgCl ₂ , 4 μM ZnSO ₄ , 2 mM TCEP
G	1.3% formic acid, 4 mM TCEP, 1 mg/mL fungal protease XII
H	50 mM Tris-HCl pH 8.0, 50 mM NaCl, 0.1 mM EDTA
I	50 mM Tris-HCl pH 8.0, 1 M NaCl, 0.1 mM EDTA
J	50 mM Tris-HCl pH 8.0, 50 mM NaCl, 0.01 mM EDTA
K	50 mM Tris-HCl pH 8.0, 50 mM KCl, 1 mM MgCl ₂

List of Strains

<i>E. coli</i> strain	Description (gene deleted)	Reference/source
DH5α	<i>F</i> – <i>φ80lacZΔM15</i> <i>Δ(lacZYA-argF)</i> <i>U169 recA1 endA1 hsdR17 (rK–, mK+)</i> <i>phoA supE44</i> <i>λ-thi-1 gyrA96 relA1</i>	Invitrogen
BL21 (DE3)	T7 RNA polymerase gene under the control of the <i>lac</i> UV5 promoter	(Studier <i>et al.</i> , 1990)
BL21.19 (DE3)	<i>secA13(Am) clpA::kan</i> , <i>ts</i> at 42°C;	(Mitchell and Oliver, 1993)
BL31 (DE3)	Non <i>ts</i> ; spontaneous revertant of BL21.19 (DE3)	(Chatzi <i>et al.</i> , 2017)

List of Plasmids

Gene	Uniprot accession number	Plasmid name	Vector	Description/source/reference
secA	P10408	pIMBB1280	pET3a	(Gouridis <i>et al.</i> , 2013)
-		pLMB0081	pET3a	pIMBB1280 was digested with Ncol, the secA N31-898 fragment was removed, the plasmid was re-ligated and used for secA Ncol fragment cloning
secA(Δα0/α1-6A)	P10408	pIMBB1286	pET3a	or mSecA (Gouridis <i>et al.</i> , 2013)
secA(V280C/L464)	P10408	pLMB1646	pET3a	or SecA-D2 (Vandenberk <i>et al.</i> , 2019)
His secA cys-	P10408	pLMB1791	pET16b	secA N1-901 cys-(C98S/C885S/C887C/C896C) fragment from pLMB0092 [pET3A secA cys- (1-901)] was inserted in pET16b after Ndel-BamHI digestion
His secA cys-(V280C/L464)	P10408	pLMB1819	pET16b	or His-SecA-D2 The V280C/L464C mutations were introduced in pET16b His secA cys-

				(pLMB1791) using primer pairs X1824-X1825 and X1768-X1769
secA N1-834	P10408	pIMBB1296	pET5a	(Gelis et al., 2007)
His secA cys-N1-834 (V280C/L464C)	P10408	pLMB2024	pET16b	Two stop codons were introduced in pLMB1819 at position 835 using primer pairs X1024-X1025
His secYEG	P0AGA2 P0AG96 P0AG99	pIMBB336	pET610	Gift from A. Driessens, University of Groningen, Groningen (van der Does, et al., 1998)
His secY _{M15} EG	P0AGA2 P0AG96 P0AG99	pIMBB602	pET610	(Karamanou et al., 2008)
His secAcys-(V280C/L464C/L187A)secA(L187A)	P10408P 10408	pLMB1910p LMB1860	pET16b pET5a	The mutation L187A was introduced in pLMB1819 using primer pairs X403-X901secA N31-898 (L187A) fragment from pIMBB680 (His SecA-L187A) was inserted in pLMB0081 after Ncol digestion
His secA N6-901 (L187A) His secAcys-(V280C/L464C/L187A)	P10408P 10408	pIMBB680p LMB1910	pET5ap ET16b	The mutation L187A was introduced in pIMBB7 using primer pairs X403-X901The mutation L187A was introduced in pLMB1819 using primer pairs X403-X901

List of Primers

#	Description	DNA sequence (5'-3'; Mutated codons in bold)
X403	Reverse mutagenic primer to generate secA(L187A)	CATGTTGTCGCG CGCG TAGTC AA AGCCGTA
X901	Forward mutagenic primer to generate secA(L187A)	TACGGCTTGACTAC GCGCG CGACAACATG
X1025 X930	Reverse mutagenic primer to generate two stop codons at position 835 of secA Forward mutagenic primer to generate secA H484A	TTGTTCCAGCTCCTCAAC TTACTA AGGCATA AC GTACC TGAACAACGCCAAATT CGCC GCCAACGAAGCG
X1768 X1021	Forward mutagenic primer to generate secA L464C Reverse mutagenic primer to generate secA T340A/G341A/R342A	CCATCGAAAAATCGGAGTGC GT CAA CG AACTGCC TGGT AGCAGCGGC GT TT CGTC
X1769 X1024	Reverse mutagenic primer to generate secA L464C Forward mutagenic primer to generate two stop codons at position 835 of secA	CAGTCGTTTGACACGC ACT CCGATTT TC GATGGGT TCAGGTACGTATGCCT TAGTAA GT T GAGGAGCTGGAA CAA
X1824 X1025	Forward mutagenic primer to generate secA V280C Reverse mutagenic primer to generate two stop codons at position 835 of secA	GACCGAACGTGGTCT GTGC CTGATTGAAGAACTGCTT GTTCCAGCTCCTCAAC TTACTA AGGCATA CG TACCTG AAC
X1825 X1768	Reverse mutagenic primer to generate secA V280C Forward mutagenic primer to generate secA L464C	GCAGTTCTCAATCAG GCAC AGACCACGTTGGTCCC ATCGAAAAATCGGAGTGC GT CAA AC GA CT G
X1024	Forward mutagenic primer to generate two stop codons at position 835 of secA	GTTCAGGTACGTATGCCT TAGTAA GT T GAGGAGCTGG AACAA
X1025	Reverse mutagenic primer to generate two stop codons at position 835 of secA	TTGTTCCAGCTCCTCAAC TTACTA AGGCATA CG TACCT
X1768	Forward mutagenic primer to generate secA L464C	CCATCGAAAAATCGGAGTGC GT CAA AC GA CT G
X1769	Reverse mutagenic primer to generate secA L464C	CAGTCGTTTGACACGC ACT CCGATTT TC GATGG
X1824	Forward mutagenic primer to generate secA V280C	GACCGAACGTGGTCT GTGC CTGATTGAAGAACTGC
X1825	Reverse mutagenic primer to generate secA V280C	GCAGTTCTCAATCAG GCAC AGACCACGTTGGTC

X1769	Reverse mutagenic primer to generate <i>secA</i> L464C	CAGTCGTTGACACGCCTCCGATTTGATGG
X1824	Forward mutagenic primer to generate <i>secA</i> V280C	GACCGAACGTGGTCTGTGCCTGATTGAAGAACTGC
X1825	Reverse mutagenic primer to generate <i>secA</i> V280C	GCAGTTCTTCAATCAGGCACAGACCACGTTGGTC

References

Amitai, G., Shemesh, A., Sitbon, E., Shkilar, M., Netanely, D., Venger, I., and Pietrokovski, S. (2004). Network analysis of protein structures identifies functional residues. *Journal of molecular biology* **344**, 1135-1146.

Ben Chorin, A., Masrati, G., Kessel, A., Narunsky, A., Sprinzak, J., Lahav, S., Ashkenazy, H., and Ben-Tal, N. (2020). ConSurf-DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB proteins. *Protein Sci* **29**, 258-267.

Chatzi, K.E., Sardis, M.F., Tsirigotaki, A., Koukaki, M., Sostaric, N., Konijnenberg, A., Sobott, F., Kalodimos, C.G., Karamanou, S., and Economou, A. (2017). Preprotein mature domains contain translocase targeting signals that are essential for secretion. *The Journal of cell biology* **216**, 1357-1369.

de Boer, M., Gouridis, G., Vietrov, R., Begg, S.L., Schuurman-Wolters, G.K., Husada, F., Eleftheriadis, N., Poolman, B., McDevitt, C.A., and Cordes, T. (2019). Conformational and dynamic plasticity in substrate-binding proteins underlies selective transport in ABC importers. *Elife* **8**.

Fairman-Williams, M.E., Guenther, U.P., and Jankowsky, E. (2010). SF1 and SF2 helicases: family matters. *Curr Opin Struct Biol* **20**, 313-324.

Freeman, L.C. (1977). A set of measures of centrality based on betweenness. *Sociometry* **40**, 35-41.

Freeman, L.C. (1979). Centrality in social networks. Conceptual clarification. *Social Networks* **1**, 215-239.

Galletto, R., Rajendran, S., and Bujalowski, W. (2000). Interactions of nucleotide cofactors with the *Escherichia coli* replication factor DnaC protein. *Biochemistry* **39**, 12959-12969.

Gelis, I., Bonvin, A.M., Keramisanou, D., Koukaki, M., Gouridis, G., Karamanou, S., Economou, A., and Kalodimos, C.G. (2007). Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. *Cell* **131**, 756-769.

Gouridis, G., Karamanou, S., Gelis, I., Kalodimos, C.G., and Economou, A. (2009). Signal peptides are allosteric activators of the protein translocase. *Nature* **462**, 363-367.

Gouridis, G., Karamanou, S., Koukaki, M., and Economou, A. (2010). In vitro assays to analyze translocation of the model secretory preprotein alkaline phosphatase. *Methods in molecular biology* **619**, 157-172.

Gouridis, G., Karamanou, S., Sardis, M.F., Scharer, M.A., Capitani, G., and Economou, A. (2013). Quaternary dynamics of the SecA motor drive translocase catalysis. *Mol Cell* **52**, 655-666.

Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. *J Mol Graph* **14**, 33-38, 27-38.

Karamanou, S., Bariami, V., Papanikou, E., Kalodimos, C.G., and Economou, A. (2008). Assembly of the translocase motor onto the preprotein-conducting channel. *Molecular microbiology* **70**, 311-322.

Karamanou, S., Gouridis, G., Papanikou, E., Sianidis, G., Gelis, I., Keramisanou, D., Vrontou, E., Kalodimos, C.G., and Economou, A. (2007). Preprotein-controlled catalysis in the helicase motor of SecA. *The EMBO journal* **26**, 2904-2914.

Keramisanou, D., Biris, N., Gelis, I., Sianidis, G., Karamanou, S., Economou, A., and Kalodimos, C.G. (2006). Disorder-order folding transitions underlie catalysis in the helicase motor of SecA. *Nat Struct Mol Biol* **13**, 594-602.

Lazaratos, M., Karathanou, K., and Bondar, A.N. (2020). Graphs of dynamic H-bond networks: from model proteins to protein complexes in cell signaling. *Curr Opin Struct Biol* **64**, 79-87.

Linder, P., and Jankowsky, E. (2011). From unwinding to clamping - the DEAD box RNA helicase family. *Nature reviews Molecular cell biology* **12**, 505-516.

Masson, G.R., Burke, J.E., Ahn, N.G., Anand, G.S., Borchers, C., Brier, S., Bou-Assaf, G.M., Engen, J.R., Englander, S.W., Faber, J., *et al.* (2019). Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. *Nat Methods* **16**, 595-602.

Matsumoto, G., Nakatogawa, H., Mori, H., and Ito, K. (2000). Genetic dissection of SecA: suppressor mutations against the secY205 translocase defect. *Genes Cells* **5**, 991-999.

Matsumoto, G., Yoshihisa, T., and Ito, K. (1997). SecY and SecA interact to allow SecA insertion and protein translocation across the *Escherichia coli* plasma membrane. *The EMBO journal* *16*, 6384-6393.

Mitchell, C., and Oliver, D. (1993). Two distinct ATP-binding domains are needed to promote protein export by *Escherichia coli* SecA ATPase. *Molecular microbiology* *10*, 483-497.

Papanikolau, Y., Papadovasilaki, M., Ravelli, R.B., McCarthy, A.A., Cusack, S., Economou, A., and Petratos, K. (2007). Structure of dimeric SecA, the *Escherichia coli* preprotein translocase motor. *Journal of molecular biology* *366*, 1545-1557.

Roberts, E., Eargle, J., Wright, D., and Luthey-Schulter, Z. (2006). MultiSeq: unifying sequence and structure data for evolutionary analysis. *BMC Bioinformatics* *7*, 382.

Sardis, M.F., and Economou, A. (2010). SecA: a tale of two protomers. *Molecular microbiology* *76*, 1070-1081.

Sharma, V., Arockiasamy, A., Ronning, D.R., Savva, C.G., Holzenburg, A., Braunstein, M., Jacobs, W.R., Jr., and Sacchettini, J.C. (2003). Crystal structure of *Mycobacterium tuberculosis* SecA, a preprotein translocating ATPase. *Proceedings of the National Academy of Sciences of the United States of America* *100*, 2243-2248.

Smit, J.H., Krishnamurthy, S., Srinivasu, B.Y., Karamanou, S., and Economou, A. (2020). PyHDX: Derivation and visualization of protection factors from Hydrogen-Deuterium Exchange Mass Spectrometry at near residue resolution. *bioRxiv*, 2020.2009.2030.320887.

Studier, F.W., Rosenberg, A.H., Dunn, J.J., and Dubendorff, J.W. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. *Methods in enzymology* *185*, 60-89.

Taura, T., Yoshihisa, T., and Ito, K. (1997). Protein translocation functions of *Escherichia coli* SecY: in vitro characterization of cold-sensitive secY mutants. *Biochimie* *79*, 517-521.

Vandenberk, N., Karamanou, S., Portaliou, A.G., Zorzini, V., Hofkens, J., Hendrix, J., and Economou, A. (2019). The Preprotein Binding Domain of SecA Displays Intrinsic Rotational Dynamics. *Structure* (London, England) *27*, 90-101 e106.

Vrontou, E., Karamanou, S., Baud, C., Sianidis, G., and Economou, A. (2004). Global co-ordination of protein translocation by the SecA IRA1 switch. *The Journal of biological chemistry* *279*, 22490-22497.

Zimmer, J., Nam, Y., and Rapoport, T.A. (2008). Structure of a complex of the ATPase SecA and the protein-translocation channel. *Nature* *455*, 936-943.